
UC Berkeley
UC Berkeley Previously Published Works

Title
Co-design of Control and Planning for Multi-rotor UAVs with Signal Temporal Logic
Specifications

Permalink
https://escholarship.org/uc/item/7531983n

ISBN
9781665441971

Authors
Pant, Yash Vardhan
Yin, He
Arcak, Murat
et al.

Publication Date
2021-05-28

DOI
10.23919/acc50511.2021.9483206

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7531983n
https://escholarship.org/uc/item/7531983n#author
https://escholarship.org
http://www.cdlib.org/

Co-design of Control and Planning for Multi-rotor UAVs with Signal
Temporal Logic Specifications

Yash Vardhan Pant∗, He Yin∗, Murat Arcak, Sanjit A. Seshia

Abstract— Urban Air Mobility (UAM), or the scenario where
multiple manned and Unmanned Aerial Vehicles (UAVs) carry
out various tasks over urban airspaces, is a transportation
concept of the future that is gaining prominence. UAM missions
with complex spatial, temporal and reactive requirements can
be succinctly represented using Signal Temporal Logic (STL),
a behavioral specification language. However, planning and
control of systems with STL specifications is computationally
intensive, usually resulting in planning approaches that do not
guarantee dynamical feasibility, or control approaches that
cannot handle complex STL specifications. Here, we present
an approach to co-design the planner and control such that
a given STL specification (possibly over multiple UAVs) is
satisfied with trajectories that are dynamically feasible and our
controller can track them with a bounded tracking-error that
the planner accounts for. The tracking controller is formulated
for the non-linear dynamics of the individual UAVs, and the
tracking error bound is computed for this controller when
the trajectories satisfy some kinematic constraints. We also
augment an existing multi-UAV STL-based trajectory generator
in order to generate trajectories that satisfy such constraints.
We show that this co-design allows for trajectories that satisfy
a given STL specification, and are also dynamically feasible
in the sense that they can be tracked with bounded error.
The applicability of this approach is demonstrated through
simulations of multi-UAV missions.

I. INTRODUCTION

For Urban Air Mobility to become a reality in the near
future, the underlying planning and control approaches for
the Unmanned Aerial Vehicles (UAVs) carrying out various
tasks should be robust and have strong guarantees on safety.
For this, the UAVs must respect spatial requirements, e.g.
no-fly zones around geo-fenced areas and maintaining safe
distances from each other, temporal requirements like visit-
ing particular regions only during pre-defined time intervals,
and reactive requirements, e.g. executing a contingency plan
in case of a system failure. It is hard to capture these
requirements with the objectives used in traditional control
and planning approaches, however recent work on planning
and control with Signal Temporal Logic (STL) [1]–[3] has
shown promise in representing these missions with STL,
and also on developing algorithms for UAVs and fleets of
UAVs to satisfy these requirements. However in order to be
computationally tractable, these approaches either work with
simplifying abstractions of the system dynamics [1] or the
workspace [4], or cannot use the full expressiveness of STL

2Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, USA yashpant@berkeley.edu,
he yin@berkeley.edu, arcak@berkeley.edu,
sseshia@berkeley.edu.
∗The authors contributed equally.

Tracking
Controller

Trajectory
Planner

Worst case
tracking error

UAV
Trajectories

UAV
Kinematics

Kinematic
Constraints

State & Input
Constraints

UAV
Dynamics

STL
Specification

Fig. 1: Overview of the co-design framework. The dashed lines
represents information used in the offline design phase, while solid
line represent information used during online execution.

[3], e.g. use of the logical or operator to represent choices
between multiple tasks in a mission.

In this paper, we present an approach that overcomes
these limitations by co-designing the planning and control for
multi-rotor UAVs with missions represented as STL specifi-
cations (see figure 1). To do so, we augment a state-of-the-art
trajectory planning approach [1] to generate trajectories such
that a controller that considers the non-linear UAV dynamics
can track them. We also use sum-of-squares programming
[5] to synthesize a controller that can track these trajectories
with bounded error. We explicitly compute this bound and
use it in the trajectory planner to ensure that the planned
trajectories robustly satisfy the STL specification, and that
the system, when tracking with our controller, does not
violate the specification.

A. Contributions of this work

The main contributions of our co-design approach are that
it ensures:

1) The trajectories (generated via a centralized optimiza-
tion) satisfy the STL specification in continuous time.

2) They also respect pre-defined kinematic constraints in
the form of bounds on velocity, acceleration, and jerk.

3) The non-linear dynamics and state/input constraints
of the UAVs are taken into account by the tracking
controller, and worst-case tracking error bounds are
computed.

4) The trajectory planner satisfies the STL specification
with a robustness margin, large enough to accommo-
date the tracking error bound.

Additionally, our approach can harness the full grammar
of Signal Temporal Logic (see section II-B). Through two
simulation case studies, we show how this framework can be
applied to realistic scenarios and how the guarantees above
translate to actual control performance and robust satisfaction
of the STL specification.

ar
X

iv
:2

00
9.

14
36

3v
1

 [
ee

ss
.S

Y
]

 3
0

Se
p

20
20

B. Related work

Planning and Control with STL specifications. The
problem of controlling systems with STL specifications has
been studied extensively. [6], [7] build upon [8] to develop a
Mixed Integer Programming-based Model Predictive Control
approach (MPC). These methods are developed with Linear
Time Invariant (LTI) systems in mind, and are computation-
ally complex to be applied for the control of multiple UAVs
with complex STL specifications. [2] presents a non-convex
optimization-based MPC approach that is applicable to some
non-linear systems, but is also computationally heavy to be
used for online control. A barrier function-based approach
is presented in [3], but is applicable only to a fragment
of STL. Given the computational limitations in developing
controllers for STL specifications, the work in [1] instead
aims to generate trajectories for multi-rotor UAVs such that
they satisfy a given STL specification. It however offers
only kinematic feasibility of the planned trajectories, and not
dynamic feasibility. Our co-design framework builds on this
approach, and we show we can also ensure dynamic feasibil-
ity through additional constraints, and through our design of
a tracking controller. There are also planning approaches that,
unlike our approach, discretize the workspace and abstract
away the system dynamics (e.g. [4]).

Co-designing the planner and controller. A hierarchical
control framework has been explored by the path planning
community [9]–[11]. In this framework, a low-fidelity model
is used for planning online, and a high-fidelity model is
used for designing a tracking controller offline, and the
controller is then implemented online. A robust forward
reachable set used for planning is computed in [9] by
considering the difference between the planning and tracking
models. In [10], a Hamilton-Jacobi equation based method is
presented to synthesize a tracking error bound and an optimal
tracking controller. An extension in [11] shows that for a
class of robotics systems, the problem can also be solved
using sum-of-squares (SOS) programming. Related works
other than those from the path planing literature include
the continuous-state abstraction [12], [13], which provides
a tracking controller and ensure the boundedness of the
error between the original high dimensional linear system
and its low dimensional abstraction. This idea is extended
to a general class of nonlinear systems in [14]–[16], and is
applied to UAVs in this paper.

C. Outline of the paper

In Section II we formalize the problem that we aim to
solve and provide a brief introduction to Signal Tempo-
ral Logic and its associated robustness metric. Section III
gives an overview of the co-design approach, introduces the
system dynamics used for planning and control, and the
associated hierarchical control structure. Section IV presents
the trajectory planner, which builds upon the work in [1],
and discusses how the controller performance and kinematic
constraints are taken into account. Section V presents the
synthesis for the tracking controller that uses the full non-
linear UAV dynamics, and its associated tracking error. Two

case studies for multi-UAV settings with STL specifications
are presented in Section VI. Finally, we conclude with a
discussion of the limitations of this approach and future work
in Section VII.

D. Notations

For ξ ∈ Rn, R[ξ] represents the set of polynomials in ξ
with real coefficients, and Rm[ξ] and Rm×p[ξ] to denote all
vector and matrix valued polynomial functions. The subset
Σ[ξ] :=

{
π =

∑M
i=1 π

2
i : M ≥ 1, πi ∈ R[ξ]

}
of R[ξ] is the

set of sum-of-squares (SOS) polynomials. The state of UAV
i is denoted by xi ∈ Rn. A trajectory of states over a time
interval [0, T] is denoted by xi : [0, T]→ Rn. The value of
the state at time t is denoted by xi(t).

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

Formally, in order to achieve the objectives laid out earlier
in the paper, we aim to solve the following problem:

Problem 1: Given UAV dynamics ẋi(t) = f(xi(t)) +
g(xi(t))ui(t) and output yi(t) = Cxi(t) for UAV i ∈
{1, . . . , D}, control the UAVs such that resulting output
trajectories (yi) are such that:

1) (y1, . . . ,yD) |= ϕ(y1, . . . ,yD), i.e. satisfy the STL
specification ϕ and,

2) respect constraints xi(t) ∈ X ⊂ Rn, ui(t) ∈ U ⊂
Rm, ∀i = 1, . . . , D, ∀t ∈ [0, hrz(ϕ)].

Here, xi(t) and ui(t) are the state and input for UAV
i at time t, X and U are (hyper-rectangular) state and
input constraints, and hrz(ϕ) < ∞ is the time horizon of
the specification ϕ, i.e. the minimum time duration needed
to evaluate ϕ. For simplicity we assume that all UAVs
have identical dynamics, however this not necessary for our
approach to work.

In order to avoid the pitfalls of existing approaches,
we solve this problem by solving the two following sub-
problems instead, which constitute a hierarchical planner-
controller framework:

Problem 2 (Trajectory planning): Develop a planner that
uses the UAV kinematics of the form ˙̂xi(t) = Ax̂i(t) +
Bûi(t) (details in Section III-A) to generate trajectories x̂i

such that:
1) (x̂1, . . . , x̂D) |= ϕ(x̂1, . . . , x̂D) and,
2) x̂i(t) ∈ X̂, ûi(t) ∈ Û ∀i = 1, . . . , D, ∀t ∈ [0, hrz(ϕ)],
3) any trajectories xi where ||C(xi(t) − Gx̂i(t))||∞ ≤

δ, ∀t ∈ [0, hrz(ϕ)] also satisfy ϕ.
Here, G is a matrix of appropriate size that relates the

states in the kinematic model to those in the full dynamics,
and δ ∈ R>0 is the worst-case tracking error bound.
See Section V for details. The controller design is done
individually for each UAV, so we drop the subscript i for
ease of notation:

Problem 3 (Tracking Controller): For the full UAV dy-
namics (problem 1), develop a controller u(t) = k(e(t)) s.t.
the error state e(t) = x(t)−Gx̂(t) for tracking a trajectory
x̂ is s.t. ||e(t)||∞ ≤ δ, and x(t) ∈ X, u(t) ∈ U ∀t ∈
[0, hrz(ϕ)].

B. Review of Signal Temporal Logic (STL)

Signal Temporal Logic (STL) [17] is a behavioral spec-
ification language that can be used to encode requirements
on signals. The grammar of STL [6] allows for capturing a
rich set of behavioral requirements using temporal operators,
such as the Until (U) operator and derived Always (�) and
Eventually (♦), as well as logical operators And (∧), Or (∨),
and negation (¬). With these operators, an STL specification
ϕ is defined over a signal, e.g. over the trajectories of the
UAVs, and evaluates to either True or False.

Example 1: (A two-UAV timed reach-avoid problem) Two
quad-rotor UAVs are tasked with a mission with spatial and
temporal requirements in the workspace shown in Fig. 2:

1) The two UAVs have to reach a Goal set (shown in
green), or a region of interest, within a time of 8
seconds after starting. UAV j (where j ∈ {1, 2}),
with position (in 3D) denoted by pj , has to satisfy:
ϕreach,j = ♦[0,8](pj ∈ Goal). The Eventually operator
over the time interval [0, 8] requires UAV j to be inside
the set Goal at some point within 8 seconds.

2) The two UAVs also have to avoid an Unsafe set (in
red), or no-fly zone. For each UAV j, this is encoded
with Always and Negation operators:
ϕavoid,j = �[0,8]¬(pj ∈ Unsafe)

3) Finally, the two UAVs should also be separated by at
least 0.2 meters along every axis of motion:
ϕseparation = �[0,8]||p1 − p2||∞ ≥ 0.2

These requirements are combined into a two UAV timed
reach-avoid specification:

ϕreach-avoid = ∧2j=1(ϕreach,j ∧ ϕavoid,j) ∧ ϕseparation (1)
In order to satisfy ϕ, a planning method generates tra-

jectories x̂1, x̂2 (where position p is obtained from the full
kinematic state x̂ as p = Cx) of a duration that is at least
hrz(ϕ) = 8s, where hrz(ϕ) is the time horizon of ϕ. If
the trajectories satisfy the specification, i.e. (p1, p2) |= ϕ,
then the specification ϕ evaluates to True, otherwise it is
False. In general, an upper bound for the time horizon
can be computed as shown in [6]. Here, we only consider
specifications for which the horizon is bounded. More details
on STL are in [17] or [6].

C. Robustness of STL specifications

For every STL specification ϕ, we can construct a ro-
bustness function [18] by following the grammar of STL.
It outputs a robustness value ρϕ(x) for this formula, with
respect to the signal x that it is defined over, and has the
important following property:

Theorem 2.1: [18] For any x and STL formula ϕ, if
ρϕ(x) < 0 then x violates ϕ, and if ρϕ(x) > 0 then x
satisfies ϕ. The case ρϕ(x) = 0 is inconclusive.
Thus, the degree of satisfaction or violation of a specification
is indicated by the robustness value. For simplicity, the
distances are defined in the inf-norm sense. This, combined
with Theorem 2.1 gives us the following result:

Corollary 1.1: Given a trajectory x̂ such that x̂ |= ϕ with
robustness value ρϕ(x̂) > 0, then any trajectory x that is

6
4

-6 2

0

-4

y

0-2

x

-20
2 -4

4
-66

2z

4
6

Unsafe

Goal

Fig. 2: The workspace, planned trajectories (red) and the tracked
trajectories (blue) for the two UAVs carrying out the timed reach-
avoid mission of example 1. Simulation videos are at http://
bit.ly/TimedRA. Color in digital version.

within ρϕ(x̂) of x̂ at each time, i.e. ||x̂(t) − x(t)||∞ <
ρϕ(x̂)∀t ∈ [0, hrz(ϕ)], is such that x |= ϕ (satisfies ϕ).
Significance: We use this property in the co-design, where
the planner generates a trajectory x̂ and the tracking con-
troller tracks it with a trajectory x such that ||C(x(t) −
Gx̂(t))||∞ ≤ ρϕ(x̂)∀t ∈ [0, hrz(ϕ)]. This requires the the
inf-norm of the worst-case tracking error is always less than
ρϕ(x̂). Note, ϕ is usually over a subset of states given by Cx,
e.g. the specification 1 is over the position components of the
UAV state. In general, our approach allows for specifications
over the translational positions, velocities and accelerations
of the UAV (Section IV).

III. OVERVIEW OF THE CO-DESIGN APPROACH

In order to solve problems 2 and 3, we adopt a hierarchical
planning and control stack for the UAVs of the kind that is
commonly used, see figure 3. Our framework co-designs (see
figure 1) the two main components here, namely:
• Trajectory planner that takes as input the STL specifi-

cation defining the (possibly multi-UAV) mission. Using
the UAV kinematics (Section III-A, the trajectory gen-
erator solves an optimization (in a centralized manner)
that generates trajectories for all UAVs involved. The
trajectories satisfy the STL specification in continuous
time, ensure that kinematic constraints are respected,
and take into account the worst-case tracking error.
As long as the tracking controller does not deviate
from a given bound, obtained from this optimization’s
objective, the tracking of these trajectories will be
such that the STL specification is satisfied. Section IV
presents the details.

• Tracking controller that follows the trajectories gen-
erated by the planner by taking into account both the
non-linear dynamics of multi-rotor UAVs (Section III-
B) and the kinematics that the planner uses to generate

http://bit.ly/TimedRA
http://bit.ly/TimedRA

Trajectory Generator (Section 4)

Tracking Controller
(Section 5)

Attitude and Motor Control

STL Specification:

...

Rotor speeds

Quad-rotor UAV 1

Tracking Controller
(Section 5)

Attitude and Motor Control

Quad-rotor UAV D

Rotor speeds

Fig. 3: The planning and control hierarchy for multi UAV missions.

trajectories. This controller is synthesized via a sum-of-
squares optimization through which we obtain (state-
dependent) tracking error bounds and worst-case track-
ing error bounds, which are then used in the trajectory
planning optimization. Details on the controller design
are in Section V.

Commands from the tracking controller are realized by
lower level attitude controllers (Section III-D). The details
of attitude controllers are beyond the scope of this paper,
but standard approaches can be found in [19]. The resulting
planning and control hierarchy is shown in figure 3. Note
that the trajectory planning is done in a centralized manner,
but the synthesized tracking controllers run independently
on each UAV to track these generated trajectories. The rest
of this section introduces the UAV kinematics and dynam-
ics used by the trajectory planner and tracking controller,
respectively.

A. Multi-rotor UAV kinematics for trajectory planning

To generate UAV trajectories that satisfy a STL specifica-
tion ϕ, we use the method in [1] that generates trajectories by
connecting segments of jerk-minimizing splines [20]. These
are based on the following kinematic model.

˙̂x(t) =

˙̂px(t)
˙̂py(t)
˙̂pz(t)
˙̂vx(t)
˙̂vy(t)
˙̂vz(t)
˙̂ax(t)
˙̂ay(t)
˙̂az(t)

=

v̂x(t)
v̂y(t)
v̂z(t)
âx(t)
ây(t)
âz(t)

0
0
0

+

0
0
0
0
0
0

ĵx(t)

ĵy(t)

ĵz(t)

(2)

Here p̂x, v̂x, âx represents the position, velocity, and
acceleration of the UAV in the global x coordinate (and
similarly for y and z coordinates), and jerks ĵx, ĵy , and ĵz
are the inputs û to this system.

B. Quad-rotor UAV dynamics
For the UAVs, we consider the following non-linear dy-

namics, adapted from [19, Chapter 2],

ẋ(t) =

ṗx(t)
ṗy(t)
ṗz(t)
v̇x(t)
v̇y(t)
v̇z(t)

φ̇(t)

θ̇(t)

=

vx(t)
vy(t)
vz(t)

− ft(t)
m
cφ(t)sθ(t)

ft(t)
m
sφ(t)

g − ft(t)
m
cφ(t)cθ(t)

ux(t)
Ix

uy(t)

Iy
,

(3)

where cφ := cos(φ), sφ := sin(φ) (and similarly for θ).
The 8-state system has 6 translational states px, py and

pz (the positions of the quad-rotor in a global co-ordinate
frame) and vx, vy and vz (velocities), as well as two states
for orientation φ and θ which are the roll and pitch angles
respectively. To obtain this model, we assume that yaw ψ
and its derivatives are zero throughout. The control inputs to
this model are ft (thrust), and ux and uy which are related
to the torques generated by the rotors. We define a variable
u to gather all the control inputs: u = [ft, ux, uy]>. Without
loss of generality, we assume the input constraint set is of
the form: U = {u ∈ R3 : u ≤ u ≤ u}, where u, u ∈ R3, and
≤ is applied elementwise. Here, m is the UAV’s mass, and
Ix and Iy are the moments of inertia with respect to x and y
axes in the body-fixed frame. Values for them are: m = 0.5,
and Ix = Iy = 0.2. 1

C. Error dynamics for the tracking controller
To help keep track of the “distance” between the planning

and tracking trajectories, we define the error state as:

e = x−Gx̂ =

px − p̂x
py − p̂y
pz − p̂z
vx − v̂x
vy − v̂y
vz − v̂z
φ
θ

, (4)

which include the positional and velocity differences, and the
roll and pitch angles of the UAV. Here G = diag(I6, 02×3).
Later in Section V, we will design a tracking controller to
penalize the error state e, and ensure its boundedness.

The corresponding error dynamics are:

ė(t) = fe(e(t), x̂(t)) + ge(e(t))u(t), (5)

where

fe(e, x̂) =

e4
e5
e6
−âx
−ây
g − âz

0
0

, ge(e) =

0 0 0
0 0 0
0 0 0

−ce7se8
m

0 0
se7
m

0 0
−ce7ce8

m
0 0

0 1
Ix

0

0 0 1
Iy

.

1For simplicity, we assume all UAVs have identical dynamics, however
our approach would apply otherwise as well.

In the error dynamics, âx, ây and âz are treated as bounded
disturbances, whose bounds are enforced by the STL based
planning algorithm described in Section IV.

D. Lower level attitude and motor controllers

The attitude controller takes as measurements the roll and
pitch rates φ̇, θ̇, and ux, uy as references. It is tasked with
generating torques Tx, Ty and Tz to realize ux and uy .

u̇x(t) = Tx(t)

u̇y(t) = Ty(t)

Tz(t) = (Iy − Ix)φ̇(t)θ̇(t)

(6)

Finally, from the computed values of ft, Tx, Tx and Tz ,
the desired rotor (angular) speeds ωi, i ∈ {1, . . . , 4} can be
computed by solving the equality constrained system [19]:

ft = b

4∑
i=1

ω2
i

Tx = bl(ω2
3 − ω2

1)

Ty = bl(ω2
4 − ω2

2)

Tz = d(ω2
4 + ω2

2 − ω2
3 − ω2

1)

(7)

Here, b, l, d are UAV specific constants [19]. The solution
to this system acts as the desired angular speeds for the
lower-level motor controllers to track. The formulation of
these lower-level controllers is beyond the scope of this work,
and the interested reader can refer to [19] for details.

IV. PLANNING FOR UAVS WITH STL SPECIFICATIONS

For trajectory planning with a given STL specification
ϕ, defined possibly over trajectories of multiple UAVs,
we use the method of [1] with some modifications. This
approach maximizes the robustness ρϕ (see Theorem 2.1) of
the given STL specification by selecting position waypoints
connected by jerk minimizing splines [20]. The segment
between one waypoint, given by position p̂0 = [p̂0x, p̂

0
y, p̂

0
z]
>

and velocity v̂0 = [v̂0x, v̂
0
y, v̂

0
z]>, and another with desired

position p̂1 = [p̂1x, p̂
1
y, p̂

1
z]
>, is a trajectory (see figure 4) of

fixed time duration T with the states of the kinematic model
(2) (∀l ∈ {x, y, z}, ∀t ∈ [0, T]) given by:p̂l(t)v̂l(t)

âl(t)

 =

 α
120 t

5 + β
24 t

4 + γ
6 t

3 + v̂0l t+ p̂0l
α
24 t

4 + β
6 t

3 + γ
2 t

2 + v̂0l
α
6 t

3 + β
2 t

2 + γt

 (8)

Here, α, β and γ are linear functions of p̂0, v̂0 and p̂1

(and parameter T) [20]. We assume that the start and end
accelerations are zero, i.e. â0 = â1 = 03×1 and end velocity
v̂1 is not fixed. For brevity, we omit further details here. The
interested reader can refer to [1], [20].
Trajectory planning optimization: We use the Fly-by-
Logic method [1] to generate a sequence of N + 1 po-
sition waypoints in 3-D space for each UAV (i) p̂0:Ni =
[p̂0i , . . . , p̂

N
i], where total flight time NT ≥ hrz(ϕ), such that

the resulting trajectories (see figure 4) of (8) p̂i : [0, NT]→
R9 maximize a continuously differentiable approximation
(ρ̃ϕ) [2] of the robustness ρϕ.

Fig. 4: Jerk minimizing splines connecting position waypoints p̂1,
p̂2 and p̂3. The arrows show the velocities at these waypoints
v̂i, ∀i ∈ {0, 1, 2}.

max
p̂0:N1 ,...,p̂0:N

D

ρ̃ϕ([p̂1, . . . , p̂D]) (9a)

s.t. ∀i = 1, . . . , D, ∀j = 0, . . . , N − 1 (9b)

LBvel(v̂
j
i) ≤ p̂

j+1
i − p̂ji ≤ UBvel(v̂

j
i) (9c)

LBacc(v̂
j
i) ≤ p̂

j+1
i − p̂ji ≤ UBacc(v̂

j
i) (9d)

LBjerk(v̂
j
i) ≤ p̂

j+1
i − p̂ji ≤ UBjerk(v̂

j
i) (9e)

ρ̃ϕ([p̂1, . . . , p̂D]) ≥ ε̃+ δ (9f)

This is a non-convex optimization, with linear constraints
[1] and can be solved using off-the-shelf solvers like IPOPT.
The UAV trajectories p̂i , when discretized in time, are
linear functions of the position waypoints p̂0:Ni (details
in [1]). Constraints (9c), (9d) are linear functions of the
waypoints (and associated waypoint velocities) to ensure
that the velocity and acceleration for each axis of motion
are within predefined intervals [vmin, vmax] and [amin, amax]
respectively. These constraints are from [1]. Additionally
we develop constraints (9e), also linear in the optimization
variables, for the jerk to be within pre-defined intervals
[jmin, jmax] as well. The expressions for these constraints are
in the Appendix. Finally, the constraint (9f), where ε̃ is the
worst case approximation error [2] of ρ̃ϕ with respect to ρϕ,
is to ensure that the STL robustness of the trajectories with
respect to the specification ϕ is above a threshold δ > 0. As
we will see in the next section, δ is the worst case tracking
error achieved by the tracking controller.

Theorem 4.1 (STL satisfaction and kinematic feasibility):
A feasible solution to the optimization (9) generates
trajectories p̂1, . . . , p̂D such that they:

1) Satisfy the STL specification ϕ in continuous time
2) Have bounded velocity, acceleration and jerk (along

every axis of motion l ∈ {x, y, z}) such that ∀t ∈
[0, hrz(ϕ)]: v̂l(t) ∈ [vmin, vmax], âl(t) ∈ [amin, amax]
and ĵl(t) ∈ [jmin, jmax] for each UAV.

3) As long as each UAV tracks these trajectories with
tracking error e(t) such that ||e(t)||∞ ≤ δ ∀t ∈
[0, hrz(ϕ)], the specification ϕ is satisfied.

This trajectory planning approach hence serves as a solu-
tion to problem 2. The proofs for the first two points (except
the bounded jerk constraints) can be found in [1]. The third
point is a direct consequence of Corollary 1.1.

V. CONTROLLER AND ERROR BOUND SYNTHESIS

In (5), we have seen that the planner states enter the error
dynamics. When designing a tracking controller, and comput-
ing an error bound (to solve problem 3), the planner states

are treated as uncertain parameters. Additionally, from the
second point of Theorem 4.1, we know that these uncertain
parameters are bounded: x̂(t) ∈ X̂ ∀t ∈ [0, hrz(ϕ)], where
X̂ = R3× [vmin, vmax]3× [amin, amax]3. With this information
in mind, the following proposition proposes a way of com-
puting a tracking controller that ensures boundedness of the
tracking error.

Proposition 1: Given error dynamics (5) with mappings
fe : Rn×Rn̂ → Rn, ge : Rn → Rn×m, and η ∈ R, X̂ ⊆ Rn̂,
u, u ∈ Rm, if there exist a C1 function V : Rn → R, and
k : Rn → Rm, such that for all x̂ ∈ X̂ , the following
constraints hold,

V (e) = η ⇒ ∂V

∂e
· (fe(e, x̂) + ge(e)k(e)) ≤ 0, (10a)

V (e) ≤ η ⇒ u ≤ k(e) ≤ u, (10b)

then the sublevel set ΩVη := {e ∈ Rn : V (e) ≤ η} is forward
invariant.

The sublevel set ΩVη is the error bound achieved by
the tracking controller k. In practice, it can be difficult to
find generic functions V and k satisfying constraints (10).
Therefore, we use sum-of-squares (SOS) programming to
search for them by restricting them to polynomials: V ∈
R[e], and k ∈ Rm[e]. This in turn requires the error dynamics
to be polynomials: fe ∈ Rn[(e, â)], ge ∈ Rn×m[e], where
â := [âx, ây, âz]

>. Additionally, define polynomials dl =
(amax − âl)(âl + amin), l ∈ {x, y, z}.

By applying the generalized S-procedure [5] to (10) to get
its corresponding SOS constraints, and using the volume of
the error bound as the cost function, we obtain the following
SOS optimization problem.

min
V,k,si

volume(ΩVη)

s.t. sl1 ∈ Σ[(e, â)], ∀l ∈ {x, y, z}, s2 ∈ R[(e, â)],

sj3, s
j
4 ∈ Σ[e], ∀j ∈ {1, ...,m},

k ∈ Rm[e], V ∈ R[e], (11a)

− ∂V

∂e
· (fe + gek)−

∑
l∈{x,y,z}

sl1dl

− (V − η)s2 ∈ Σ[(e, â)], (11b)

ui − ki + (V − η)sj3 ∈ Σ[e], ∀j ∈ {1, ...,m}, (11c)

ki − ui + (V − η)sj4 ∈ Σ[e], ∀j ∈ {1, ...,m}, (11d)

where polynomials decision variables si are called S-
procedure certificates. The optimization (11) is non-convex
as there are two groups of decision variables V and
(k, s2, s

j
3, s

j
4) bilinear in each other. We tackle it by using

the so called alternating direction algorithm summarized in
[14, Algorithm 1]. As a concrete example of the outputs of
optimization (11), the tracking controller for ux (in (3)) is:
ux(e) =0.001e1e6 + 0.083e2e3 + 0.139e2e6 + 0.070e3e5

− 0.186e3e7 + 0.003e3e8 + 0.001e4e6 + 0.120e5e6

− 0.062e6e7 + 0.001e6e8 − 0.001e1 − 0.289e2

− 0.002e4 − 0.320e5 − 1.142e7 + 0.001e8.

Once the error bound ΩVη is obtained, we can compute the
worst-case tracking error δ by solving a convex optimization

min
δ>0

s.t. ΩVη ⇒ −δ ≤ ei ≤ δ, i = 1, ..., n. (12)

Key result: The worst-case tracking error δ acts as the
interface between the control and planning algorithms. Its
use is formally stated below:

Theorem 5.1: Given kinematic constraint set X̂ , resulting
error bound ΩVη , tacking controller k, and worst-case tracking
error δ, if there exists a feasible planned trajectory satisfying
the STL specification ϕ when solving the optimization (9)
with X̂ and δ, then the trajectories of the nonlinear UAV
dynamics (3) under the control of k satisfy ϕ.

This follows from the controller synthesis procedure, and
the trajectory planning guarantees of Theorem 4.1. The co-
design framework ensures that planned trajectories satisfy
the STL specification ϕ, and are dynamically feasible for the
controller k to track without violating ϕ. Hence, together the
planner and controller serve as a solution to problem 12.
Co-design procedure: We now summarize the co-design
process, which is outlined in figure 1.

1) Given the kinematic constraint set X̂ and the UAV
input constraint set U , solve optimizations (11) and
(12) to get k and δ (offline).

2) Solve the optimization (9) to obtain planned trajecto-
ries x̂ satisfying ϕ with robustness above δ (offline).

3) Track x̂ for each UAV using k (online).

VI. SIMULATIONS

We demonstrate our framework through two simulation
examples, adapted from [1]. The only other approach that
can handle the full STL semantics, as well as non-linear
dynamics is [2]. However these examples, especially the sec-
ond example with 4 UAVs, are well beyond its computational
abilities. We do not perform comparisons to other approaches
as they either are for planning only [1], [4], or cannot handle
non-linear dynamics [6], [7].
Simulation setup: The trajectory planning algorithm and the
controller synthesis was implemented in Matlab, and non-
linear UAV dynamics (3) were used for the trajectory track-
ing. The trajectory planning optimization is implemented
using Casadi, and solved using IPOPT as the solver. The tra-
jectory computation times are of the order of a few seconds
for both examples. A thorough evaluation of computation
times can be found in [1]3. The SOS optimization (11)
is formulated and translated into semi-definite program-
ming (SDP) using SOSOPT, and the SDP is solved using
MOSEK. Variables V and k are parametrized using degree-
2 polynomials in both examples, and the corresponding SOS
optimization takes 1.75× 103 seconds to solve (offline).

A. Two-UAV Timed Reach Avoid

We start with the mission in Example 1, where two UAVs
are tasked with a timed reach-avoid mission (see figure 2).

Results: In the instance shown in figure 2, the UAV
initial states correspond to UAV 1 and 2 with positions
[−5, 0, 2.75]> and [−5, 2, 4]> respectively, with zero initial

2The control synthesis does not take state constraint X into account
directly, however it guarantees x(t) ∈ GX̂ ⊕ Bδ where Bδ is a box with
sides δ, G projects X̂ on the state space x and ⊕ is the Minkowski sum.

3The additional constraints for bounded jerk add little to no overhead

0 2 4 6 8
-10

-5

0

5
x

(m
)

Planned
Robustness bound
Tracked

0 2 4 6 8

0

5

10

y
(m

)

0 2 4 6 8
Time (s)

0
2
4
6

z
(m

)

Fig. 5: Position vs time for planned trajectories of UAV 2 flying
the timed reach-avoid mission, and after tracking them via the
synthesized controller. The actual trajectories (tracked) are within
the robustness bound of the planned trajectories, hence ensuring
that the specification is satisfied.

velocities and orientations. The trajectory planner generated
trajectories of robustness ρϕreach-avoid(x̂) = 1.88. The synthe-
sized controller has a worst case tracking error (in the inf-
norm sense) of δ = 1.75, implying the trajectories can be
tracked without violating (1). ΩVη is shown with the blue
ellipsoids.

Figure 5 shows the planned and tracked positions for UAV
2, and figure 6 shows the tracking errors, demonstrating that
the tracking is indeed good enough to ensure satisfaction of
the underlying STL specification. This holds for both UAVs,
for tracking of both positions and velocities, however we
do not present additional figures due to lack of space. A
video playback of the simulation can be found at http:
//bit.ly/TimedRA

B. Four-UAV Multi-mission example

Here, the four UAVs are tasked with performing two types
of mission in the workspace shown in figure 7. Two UAVs
(1 and 2) have to perform a patrolling mission, twice visiting
Zone 1 and Zone 2 between pre-defined time intervals. The
other two UAVs (3 and 4) have to visit a Deliver region
within the first two seconds to drop off a package, and then
reach the Base region. For safety, all UAVs must avoid two
Unsafe regions and maintain pairwise separation of at least
0.2m. This mission has a horizon of 20 seconds, and is
represented in STL as:

ϕmulti-mission = ∧2
i=1(♦[0,5](pi ∈ Zone 1) ∧ ♦[5,10](pi ∈ Zone 2)

∧ ♦[10,15](pi ∈ Zone 1) ∧ ♦[15,20](pi ∈ Zone 2))∧
∧ ∧4

i=3(♦[0,10](pi ∈ Deliver) ∧ ♦[10,20](pi ∈ Base))∧
∧ ∧4

i=1(�[0,20](¬pi ∈ Unsafe1) ∧�[0,20](¬pi ∈ Unsafe2))

∧i,j,i 6=j �[0,20](||pi − pj || ≥ 0.2)

0 1 2 3 4 5 6 7 8
-2

0

2

x

Tracking error pos
Tracking error vel
Robustness bounds
Worst-case tracking error

0 1 2 3 4 5 6 7 8
-2

0

2

y

0 1 2 3 4 5 6 7 8
Time (s)

-2

0

2

z

Fig. 6: Tracking errors for position and velocity in the 3 axes of
motion for UAV 2 (reach-avoid). Note that the errors are contained
within the worst-case bounds, which in turn are smaller than the
bounds imposed by the STL robustness of the trajectories.

Fig. 7: Workspace for the four UAV multi-mission example. Sim-
ulation videos are at http://bit.ly/MultiMission4UAV

Results: The trajectory planner generates trajectories that
satisfy the specifications with a robustness ρϕmulti-mission(x̂) =
1.85 ≥ δ = 1.75, ensuring that the trajectories can be
tracked without violating the specification. ΩVη is shown
with the blue ellipsoids in figure 7. The planned and tracked
trajectories are shown with red and blue curves, respectively.
A video playback of the simulation can be found at http:
//bit.ly/MultiMission4UAV

VII. CONCLUSION

Summary: In this paper, we present an approach for plan-
ning and control of (multiple) UAVs carrying out tasks
specified using Signal Temporal Logic (STL). This is done
by co-designing the trajectory generator and the controller
that tracks these trajectories. We showed how this co-design
allows us to take into account kinematic constraints, the
full non-linear UAV dynamics, and the tracking error while

http://bit.ly/TimedRA
http://bit.ly/TimedRA
http://bit.ly/MultiMission4UAV
http://bit.ly/MultiMission4UAV
http://bit.ly/MultiMission4UAV

generating and flying out trajectories that satisfy the STL
specification in continuous time. Through simulations, we
show the the co-design results in trajectories that satisfy the
STL specification and a synthesized controller that tracks
them within prescribed bounds.
Limitations and future work: In practice, the computed
worst-case tracking bounds for the synthesized controller can
be very conservative. This is noticed in the simulations where
the tracking error never approaches these bounds. This could
result in the trajectory planning optimization being unable
to obtain a high enough robustness value with respect to the
given STL specification for Theorem 4.1 to hold, e.g. in cases
where the UAVs need to fly through narrow openings, and
restricts the application of our approach to such settings. To
overcome this, we aim to improve our technique by tight-
ening the STL specification by a state-dependent function
of the tracking error in the planning phase, instead of using
the worst-case bounds on tracking error. Additionally, our
hierarchical planning and control framework is limited to
specifications only over the translational states of the system
and cannot handle temporal specifications on the orientations
of the UAVs.

REFERENCES

[1] Y. V. Pant, H. Abbas, R. A. Quaye, and R. Mangharam, “Fly-by-
logic: control of multi-drone fleets with temporal logic objectives,” in
Proceedings of the 9th ACM/IEEE International Conference on Cyber-
Physical Systems, pp. 186–197, IEEE Press, 2018.

[2] Y. V. Pant, H. Abbas, and R. Mangharam, “Smooth operator: Control
using the smooth robustness of temporal logic,” in Control Technology
and Applications, 2017 IEEE Conf. on, pp. 1235–1240, IEEE, 2017.

[3] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for
signal temporal logic tasks,” IEEE Control Systems Letters, 2019.

[4] I. Saha, R. Rattanachai, V. Kumar, G. J. Pappas, and S. A. Seshia,
“Automated composition of motion primitives for multi-robot systems
from safe ltl specifications,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2014.

[5] P. Parrilo, “Structured semidefinite programs and semialgebraic geom-
etry methods in robustness and optimization,” 2000.

[6] V. Raman, A. Donze, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in 53rd IEEE Conf. on Decision and
Control, pp. 81–87, Dec 2014.

[7] S. Sadraddini and C. Belta, “Robust temporal logic model predictive
control,” in Allerton conference, September 2015.

[8] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
1999.

[9] S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R. Vasude-
van, “Bridging the gap between safety and real-time performance in
receding-horizon trajectory design for mobile robots,” arXiv preprint
arXiv:1809.06746, 2018.

[10] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin,
“FaSTrack: A modular framework for fast and guaranteed safe motion
planning,” in 2017 IEEE 56th Annual Conference on Decision and
Control (CDC), pp. 1517–1522, Dec. 2017.

[11] S. Singh, M. Chen, S. L. Herbert, C. J. Tomlin, and M. Pavone,
“Robust tracking with model mismatch for fast and safe planning: an
sos optimization approach,” arXiv preprint arXiv:1808.00649, 2018.

[12] A. Girard and G. J. Pappas, “Hierarchical control system design using
approximate simulation,” Automatica, vol. 45, no. 2, pp. 566 – 571,
2009.

[13] S. W. Smith, M. Arcak, and M. Zamani, “Approximate abstractions
of control systems with an application to aggregation,” Automatica,
vol. 119, p. 109065, 2020.

[14] S. W. Smith, H. Yin, and M. Arcak, “Continuous abstraction of
nonlinear systems using sum-of-squares programming,” in 2019 IEEE
58th Conference on Decision and Control (CDC), pp. 8093–8098,
2019.

[15] P.-J. Meyer, H. Yin, A. H. Brodtkorb, M. Arcak, and A. J. Sørensen,
“Continuous and discrete abstractions for planning, applied to ship
docking,” arXiv e-prints, p. arXiv:1911.09773, Nov. 2019.

[16] H. Yin, M. Bujarbaruah, M. Arcak, and A. Packard, “Optimization
based plannertracker design for safety guarantees,” in 2020 American
Control Conference (ACC), pp. 5194–5200, 2020.

[17] O. Maler and D. Nickovic, Monitoring Temporal Properties of Con-
tinuous Signals. Springer Berlin Heidelberg, 2004.

[18] G. Fainekos and G. Pappas, “Robustness of temporal logic specifica-
tions for continuous-time signals,” Theor. Computer Science, 2009.

[19] F. Sabatino, “Quadrotor control: modeling, nonlinearcontrol design,
and simulation,” 2015.

[20] M. W. Mueller, M. Hehn, and R. DÁndrea, “A computationally
efficient motion primitive for quadrocopter trajectory generation,” in
IEEE Transactions on Robotics, 2015.

APPENDIX

For the constraints of the trajectory planning optimization
(9), consider the min-jerk trajectory segment [20], of time
duration T , between a waypoint p̂j = [p̂jx, p̂

j
y, p̂

j
z]
> with ve-

locity v̂j = [v̂jx, v̂
j
y, v̂

j
z]
>, and the next waypoint with desired

position p̂j+1 = [p̂1x, p̂
1
y, p̂

1
z]
>. We define the functions [1],

for t ∈ [0, T]:
K3(t) = (90t4)/(48T 5)− (90t3)/(12T 4) + (30t2)/(4T 3)

K4(t) = (90t3)/(12T 5
f)− (90t2)/(4T 4) + (30t)/(2T 3)

(13)

Let t′ = argmaxt∈[0,T]Kt(t). We can now define the con-
straints (for each UAV) that ensure velocity and acceleration
are within bounds [vmin, vmax] and [amin, amax] respectively,
for each axis of motion l:

LBvel(v̂
j
l) = (vmin − (1− TK3(T))v̂jl)/K3(T)

UBvel(v̂
j
l) = (vmax − (1− TK3(T))v̂jl)/K3(T)

LBacc(v̂
j
l) = T v̂jl + amin/K4(t′)

UBacc(v̂
j
l) = T v̂jl + amax/K4(t′)

(14)

Combining these constraints for all axis of motion
gives x, y, z the velocity and acceleration constraints
in the optimization (9) of the form LBvel(v̂

j) =
[LBvel(v̂

j
x),LBvel(v̂

j
y),LBvel(v̂

j
z)] and similarly for the upper

bound for velocities and upper/lower bounds for acceleration.
These constraints are such that:

LBvel(v̂
j) ≤ p̂j+1 − p̂j ≤ UBvel(v̂

j)

⇒ v̂jl ∈ [vmin, vmax] ∀t ∈ [0, T], ∀l ∈ {x, y, z}, and,

LBacc(v̂
j) ≤ p̂j+1 − p̂j ≤ UBacc(v̂

j)

⇒ âjl ∈ [amin, amax] ∀t ∈ [0, T], ∀l ∈ {x, y, z}

(15)

Finally, the constraint that ensures bounded jerk ĵl(t) ∈
[jmin, jmax]∀t ∈ [0, T] for each axis of motion l are:
LBjerk(v̂

j
l) = min((2T 3/30)jmin − 0.5T v̂jl , (2T 3/30)jmin + T v̂jl)

UBjerk(v̂
j
l) = min((2T 3/30)jmax − 0.5T v̂jl , (2T 3/30)jmax + T v̂jl)

The proof follows a similar construction as the proofs
in [1]. Note, these constraints are linear in the position
waypoints, which are the variables of the trajectory planning
optimization (9).

	I Introduction
	I-A Contributions of this work
	I-B Related work
	I-C Outline of the paper
	I-D Notations

	II Problem Statement and preliminaries
	II-A Problem Statement
	II-B Review of Signal Temporal Logic (STL)
	II-C Robustness of STL specifications

	III Overview of the Co-design approach
	III-A Multi-rotor UAV kinematics for trajectory planning
	III-B Quad-rotor UAV dynamics
	III-C Error dynamics for the tracking controller
	III-D Lower level attitude and motor controllers

	IV Planning for UAVs with STL specifications
	V Controller and Error Bound Synthesis
	VI Simulations
	VI-A Two-UAV Timed Reach Avoid
	VI-B Four-UAV Multi-mission example

	VII Conclusion
	References
	Appendix

