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ABSTRACT OF THE DISSERTATION 

 

Investigating the Source of Particulate Matter Toxicity: Kinetics of Reactive Oxygen Species 

from Biomass Burning Components in Lung Lining Fluids and Characterization of Toxic 

Components 

 

by 

 

David Hilario Gonzalez-Martinez 

Doctor of Philosophy in Atmospheric and Oceanic Sciences 

University of California, Los Angeles 2019 

Professor Suzanne E. Paulson, Chair 

 

 Epidemiological studies have shown that inhalation of particulate matter (PM) is 

associated with increased cardiovascular diseases, respiratory diseases, asthma and cancer. 

However, the underlying biological mechanisms and PM components responsible for adverse 

health outcomes are poorly understood. Induction of oxidative stress mediated by an 

overproduction of reactive oxygen species (ROS) is one hypothesis for PM induced health 

effects. The PM components responsible for ROS generation and under conditions relevant to the 

lung are not well known. Inhalation of PM containing of water-soluble like substances (HULIS) 

are thought to disrupt cellular iron homeostasis, contributing to the development of pulmonary 

inflammation and disease. Cigarette smoke and wood smoke contain significant amounts of 

HULIS, but there is scant literature characterizing HULIS in these particles. Malondialdehyde 

(MDA) is a toxic aldehyde traditionally measured in biological systems as a marker for oxidative 

stress. Interestingly, a handful of literature suggests that MDA may be present in ambient PM, 
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potentially adding to the toxicity of inhaled PM. However, no study has quantified MDA in 

ambient PM.  

In this work we apply the terephthalate probe, thermodynamic modeling and chemical 

kinetics modeling to elucidate mechanisms of OH generation from HULIS-Fe interactions in 

simulated lung fluids (SLF) and human bronchoalveolar lavage fluids (BALF). We employ 

fluorescence and infrared spectroscopy to characterize HULIS isolated from the water-soluble 

fraction of cigarette smoke condensate and wood smoke particles. We apply the 2-thiobarbituric 

acid method on biomass burning and urban PM2.5 to quantify ambient particle phase MDA for 

the first time. 

We use Suwannee River Fulvic Acid (SRFA) as a surrogate for HULIS and investigate 

its impact on OH generation from Fe(II) in SLF and BALF. Model and experimental results are 

used to find best-fit rate coefficients for key reactions. In SLF, modeling results indicate SRFA 

strongly chelates Fe species and enhances Fe-mediated reduction of O2 to O2
- to 5.1 ± 1.5 M-1 s-1 

and destruction of H2O2 to (4.3 ± 1.4) × 103 M-1 s-1. In BALF, the dominant Fe binding protein is 

albumin but the impact of albumin-Fe complexes on ROS generation has never been defined. 

Using a rate limiting approximation and experiments measuring OH generation, we estimate that 

the rate constant for albumin-Fe mediated O2 to O2
- reduction is (1.8 ± 0.1) M-1 s-1. We also 

estimate the rate constant for SRFA-Fe(II) mediated O2 to O2
- reduction to be 2.7 ± 0.3 M-1 s-1.  

Fluorescence and Fourier transform infrared (FTIR) spectroscopy is used on HULIS 

isolated from cigarette smoke condensate and wood smoke particles. Fluorescence spectra 

indicate that HULIS in both cigarette smoke condensate and wood smoke contains fluorophores 

that closely resemble those of SRFA. FTIR spectroscopy further indicates that isolated HULIS 
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contain similar organic functional groups as SRFA, but with higher aliphatic, ether, primary 

alcohol, organonitrogen character. Using the 2-thiobarbiutric acid assay, we estimate ambient 

malondialdehyde concentrations to be 40.7 ng/m3  – 75.3 ng/m3  in biomass burning and urban 

PM2.5 extracts, making up an average of (1.37 ± 0.12) ×10-2 % of total PM2.5 mass. These 

concentrations are comparable to previous field measurements of particle phase methylglyoxal 

and malonic acid, two similar atmospheric carbonyls.  
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1. Introduction  

1.1 Background  

Epidemiological studies have shown that particulate matter (PM) inhalation is associated 

with increased mortality, cancer, cardiovascular diseases, cardiopulmonary diseases, respiratory 

diseases and emergency room visits.1-6 However, the chemical components and biological 

mechanisms that underlie PM induced diseases have yet to be determined.7, 8 One hypothesis that 

has received much attention is the induction of oxidative stress and inflammation due to an 

overproduction of reactive oxygen species (ROS) from inhaled PM.7-10 ROS are a class of highly 

reactive oxygen bearing species that include superoxide (O2
-), hydrogen peroxide (H2O2) and the 

hydroxyl radical (OH).  

1.2 Health Impacts of Particulate Matter and ROS  

1.2.1 Health Impacts of Fine Particulate Matter  

 In the 1980’s and 1990’s, epidemiological studies determined that exposure to total 

suspended particles were associated with increased morbidity and mortality, suggesting a strong 

causal link between particle inhalation and adverse health outcomes.11 Further studies suggested 

an association with fine particulate matter (PM2.5) specifically.11 Famously, the Harvard Six 

Cities Study investigated mortality risk as a function of PM2.5 concentrations for cities with 

differing particle concentrations.1 The results of the Harvard Six Cities Study, which have been 

confirmed by several metanalyses, revealed a decrease in life expectancy by roughly two years in 

the most polluted city compared to the cleanest city.1, 2, 12 The growing amount of 

epidemiological evidence for PM2.5 induced health effects ultimately led to the U.S. 

Environmental Protection Agency to regulate particulate matter in 1997.11, 13 At the time, the 



 

2 
 

association of PM2.5 exposure and health outcomes were not supported by toxicological and 

clinical studies. At the present time, the underlying mechanisms of particle induced diseases are 

still not well defined.  

1.2.2 Endogenous and Exogenous ROS 

 Endogenous ROS primarily arises from the mitochondria during normal cellular 

metabolism and signaling.14, 15 ROS can also be generated as a macrophage response to foreign 

bodies, initiated by O2 reduction by NADPH.16 These processes are crucial to maintain cellular 

homeostasis and viability. Exogenous ROS refers to species produced from external ROS active 

components entering physiological systems, such as inhaled particles. An overproduction of 

ROS is thought to overwhelm antioxidant defense systems, induce oxidative stress and initiate 

pulmonary and systemic inflammation.7, 8 Inflammation is generally characterized by 

transcription factor activation,17 cytokine/chemokine production18 and oxidative damage to 

DNA, proteins, lipids19 and cell death.20 Inflammation is a common underlying condition in the 

myriad of detrimental health effects associated with PM2.5 inhalation. Of all PM2.5 components, 

soluble transition metal ions21-27 and quinones25, 26, 28-31 are most commonly identified as 

important contributors to ROS in surrogate lung fluids (SLF), broncholaveolar lavage fluids 

(BALF) and other aqueous solutions.21-24 The focus of this work in on the role of Fe mediated 

ROS generation in SLF and BALF. 
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1.3 Mimicking the Lung 

1.3.1 Surrogate Lung Fluids (SLF) 

Inhaled PM2.5 deposited in the alveoli first contacts the alveolar lining fluid. Thus, to 

investigate PM2.5 mediated ROS chemistry relevant to the lung, a representative solution must be 

used. Many studies have adopted surrogate lung fluids (SLF) to mimic physiological conditions 

as much as possible.32-36 The composition of SLF varies greatly among studies but several 

components are commonly used.35, 36 SLF usually includes a combination of inorganic salts, 

antioxidants that may include ascorbate (Asc), glutathione (GSH), uric acid (UA), α-tocopherol 

and various organic acids. The solutions are usually buffered at pH 7.2-7.4 with an ionic strength 

that mimics lung lining fluid.35, 36 Asc, GSH, UA and α-tocopherol are naturally occurring lung 

antioxidants and reducing agents,37 while the organic acids mimic metal-binding proteins.35, 36 

Common organic acids used are citrate (Cit), acetate, pyruvate, lactate, glycine or L-cysteine 

used singly or in combination.35 However, many studies use these organic acids at varying 

concentrations without rigorous justification.24 While these organic acids are convenient, they do 

not represent the true metal binding proteins that impact ROS chemistry in the lung. For 

example, Cit has been shown to enhance ROS formation from Fe34 whereas metal binding 

proteins are thought to inhibit Fe mediated ROS formation.38, 39 

Few studies have employed SLF with phospholipids and proteins that better reflect lung 

lining fluid,24, 35, 36, 40, 41 with Asc, GSH, UA, albumin and dipalmitoylphosphatidylcholine being 

the most common bio molecules used. Among these studies, investigators use different 

concentrations of antioxidants, phospholipids and proteins. This is partially due to a wide range 

of reported concentrations and varying methodologies for measuring antioxidants, phospholipids 
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and proteins in lung lining fluid.41 Furthermore, the pH of SLF and physiological lung lining 

fluid has a significant impact on ROS chemistry and protein-metal binding. While most reported 

SLF have pH of 7.2-7.4,35 recent in vivo measurements of alveolar lining fluid indicate a pH 

range of 6.6-6.9.42, 43 Thus, while SLF are convenient to use, there is reason to adopt solutions 

more representative of human lung lining fluids to understand mechanisms and variability of 

ROS generation. 

1.3.2 Bronchoalveolar Lavage Fluids (BALF) 

Bronchoalveolar lavage fluids (BALF) are the supernatant collected from 

bronchoalveolar lavage procedure performed on humans and are a good representation of 

alveolar lining fluid.41 BALF composition is dominated by inorganic salts, phospholipids and 

proteins.35, 41 The lipid fraction is mostly phosphatidylcholine while the protein mass fraction is 

dominated by albumin (50%), non-metal binding proteins (43%) and transferrin (7%).41 A 

limitation of BALF is that it is 50 to 200-fold diluted compared to true physiological conditions; 

thus, the concentration of lipids, proteins and antioxidants are significantly diminished.41 

Furthermore, the composition and pH of BALF varies among patients. Despite this, investigators 

have been able to correct for this dilution and estimate concentrations of alveolar lung lining 

fluid components.41 Although BALF are mostly used for compositional information, some 

studies have used them for particle extractions to investigate ROS formation.24 

1.4 Role of transition metals in ROS formation  

Of all PM2.5 components, soluble transition metal ions are most commonly identified as 

important contributors to OH formation by particles extracted in SLF, BALF and other aqueous 

solutions.21-27 The redox active transitions metals Fe, Cu and Mn can form OH via similar 
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reactions shown in R1.1-R1.4. Under some physiological conditions, the biological reducing 

agent Asc reduces oxidized metal species (R1.4) and catalytically forms OH radicals:32 

Fe(II) + O2 → O2
- + Fe(III)        R1.1 

Fe(II) + O2
- + 2H+ →H2O2 + Fe(III)      R1.2 

Fe(II) + H2O2 → Fe(III) + OH- + OH      R1.3 

HAsc- + Fe(III) → HAsc.  + Fe(II)                  R1.4 

Where HAsc- represents the singly protonated ascorbate molecule that is dominant in SLF and 

BALF. There is evidence that chelators such as Cit can complex Fe(II) and catalyze R1.1 and 

R1.3,44-46 increasing its rate coefficient by almost two orders of magnitude (R1.5-R1.6) and 

effectively acting as a prooxidant.  

Cit-Fe(II) + O2 → O2
- + Cit-Fe(III)       R1.5 

Cit-Fe(II) + H2O2 → Cit-Fe(III) + OH- + OH    R1.6 

Conversely, Charrier et al. (2011)32 has shown that the Cit-Cu(II) complex is less ROS active 

relative to Cu(II) and Asc dissolved in pH 7.4 phosphate buffer, indicating an antioxidant effect 

from Cit-Cu(II). Thus, the presence of organic chelating agents significantly alters transition 

metal mediated ROS generation. 

1.5 Influence of Organic Chelators and BALF Proteins on Fe Mediated ROS Generation 

1.5.1 Influence of Organic Chelating Agents on Fe mediated ROS Generation  

The inorganic Fe(III)/Fe(II) couple has a relatively high reduction potential (+.770 V), 

and produces OH relatively slowly at physiological pH.34, 47, 48 Organic chelating agents can alter 
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the reduction potential of the Fe(III)/Fe(II) and may either enhance or diminish oxidation by O2 

and H2O2, impacting Fe mediated ROS generation.41, 47, 49 Fe(II) stabilizing ligands such as 1,10-

phenanthroline, tend to inhibit ROS generation by increasing the Fe(III)/Fe(II) reduction 

potential (+1.14 V), such that Fe(II) oxidation is inhibited.49 Many naturally occurring Fe(III) 

stabilizing ligands are carboxylates, which tend to lower the reduction potential of the 

Fe(III)/Fe(II) redox couple, making the complex thermodynamically favored to oxidation.47 

Some proteins are such strong Fe(III) stabilizing ligands that they reduce the reduction potential 

outside of the range accessible of biological reductants, which inhibits ROS generation by R1.1-

R1.4.41  

Electrochemical studies have revealed that Cit commonly used in SLF can significantly 

reduce the reduction potential of the Fe(III)/Fe(II) redox couple, making Fe(II) more susceptible 

to oxidation by O2 and H2O2.
50, 51 In this work we investigate the kinetics of ROS generation 

from Cit-Fe complexes due to their presence in SLF. However, the use of Cit in SLF does not 

represent the role of iron binding proteins and their physiological relevance of Fe mediated ROS 

chemistry in lung lining fluid.  

1.5.2 Influence of Fe Binding Lung Proteins on ROS Generation  

In contrast to SLF, the Fe chelators in BALF are dominated by the Alb and Tf.41 Alb and 

Tf are thought to exhibit antioxidant properties by chelating Fe species.39, 52 Alb is thought to 

weakly and non-specifically chelate Fe(II), forming complexes that inhibit ROS generation while 

also scavenging ROS and sparing damage to more crucial biomolecules.52, 53 Much of this 

evidence is based on non-specific ROS assays with varying protocols that fail to reveal 

fundamental ROS reactions or Fe speciation.54-57 In contrast, Xu et al. (2008)58 observed that 
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bovine serum albumin complexes Fe(III) and enhances Fe(II) oxidation by O2, potentially 

indicating an enhancement of ROS dur to bovine serum albumin. Furthermore, there is a lack of 

literature on binding constants between inorganic Fe(II) and Alb. Along with the conflicting 

literature regarding the antioxidant nature of Alb, we could find no studies investigating ROS 

formation kinetics arising from the interactions of Alb and inorganic Fe(II). While Alb-Fe 

interactions are poorly defined, the interactions of Tf and Fe are better characterized.  

Tf has two pH dependent Fe(III) binding sites located at the N-terminal and C-terminal of 

the protein.59, 60 Both binding sites are considered to be independent, since Fe(III) binding on one 

site does not affect binding on the second site.60 Electrochemical studies have revealed the Tf -Fe 

binding significantly reduces the redox potential of the Fe(III)/Fe(II) outside of the range 

accessible by biological reducing agents.39, 59, 61, 62 This would inhibit the Tf-(Fe(III))2 complex 

from being reduced by Asc or O2
-, thereby inhibiting OH generation through R1.1-R1.4. The 

mobilization of Fe from Tf by external organic chelators have been associated with Fe toxicity, 

oxidative stress and inflammation.63-65  

1.6 Role of Atmospheric Humic-Like Substances in ROS and Health Effects 

1.6.1 Humic-Like Substances (HULIS)  

Atmospheric humic-like substances (HULIS) are water soluble, polyacidic, low 

molecular weight compounds typically associated with biomass burning,66-69 although secondary 

formation of HULIS has been reported.70 HULIS derives its name due to its physical and 

chemical similarities to soil derived humic acids and fulvic acid, and often fulvic acids and 

humic acids are used as HULIS surrogates. In general, the humic acid fraction of soil is soluble 

at alkaline pH (pH ~8) whereas the fulvic acid fraction is soluble at all pH and contains lower 
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molecular weight, aromaticity and higher oxygenated groups than the humic acid fraction.71 Both 

HULIS and humic substances contain similar organic functional groups such as quinone 

moieties, phenols, ketones, and carboxylates.71, 72 However, HULIS has been shown to generally 

have lower molecular weight, aromaticity and weaker acid characteristics.71, 72 

1.6.2 Isolation of HULIS 

Isolation of HULIS from PM has been achieved through extraction with aqueous 

alkaline73-76 and organic solvents.77, 78 Using alkaline extraction methods allow for separation of 

a humic acid-like and fulvic acid-like fraction of HULIS. The most common methods for HULIS 

separation include individual or combinations of ion change chromatography, size exclusion 

chromatography, and reversed phase liquid chromatography.71 Spectroscopic characterization 

has revealed that the water-soluble fraction of HULIS is most similar to fulvic acids.71  

1.6.3. Spectroscopic Characterization of HULIS 

To chemically characterize HULIS UV-Vis, fluorescence, Fourier transform infrared 

(FTIR) and nuclear magnetic resonance (NMR) spectroscopy have been used. Fluorescence and 

FTIR characterization with be discussed in detail in chapter 6. UV-Vis characterization of 

HULIS have shown similarities to UV-Vis spectra of humic acid and fulvic acid, characterized 

by high UV absorption that decreases into the visible with featureless spectra.72 Multiple authors 

measure absorbance of aqueous HULIS extracts to obtain some chemical information about the 

sample,75, 79-81 although this form of characterization is very limited due to featureless UV-Vis 

spectra of HULIS. The ratio of absorbance at 250 nm to 350 nm, known as the E2/E3 ratio, has 

been associated with HULIS molecular size and aromaticity.78, 79, 82 Higher E2/E3 ratios have 
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been observed in summer HULIS relative to autumn HULIS collected from the same region, 

possibly due to combustion of lignin material in the autumn.77 

Both 1H-NMR and 13C-NMR have been employed to characterize HULIS functional 

groups.75-77, 83 Decesari et al. (2000)83 used 1H-NMR on aerosol extracts and fog water and 

determined the presence of polyphenols, alcohols, ethers, aliphatic and hydroxylated carboxylic 

acids. This characterization is consistent with SRFA and FTIR characterizations of HULIS 

isolated from atmospheric aerosols. Havers et al. (1998)75 used 1H-NMR and assigned H atoms 

from HULIS to polysaccharides, aliphatic and aromatic structures and noted the lower aromatic 

character of HULIS relative to humic acid and fulvic acid. A drawback of 1H-NMR is that 

HULIS extractions are mixtures and thus 1H signals from separate neighboring molecules 

interfere with resultant 1H-NMR spectra.72 13C-NMR analysis on HULIS extracts have revealed 

the presence of mostly aliphatic and aromatic carbon similar to HA and FA.76 Duarte et al. 

(2005)77 analyzed summer and autumn HULIS extracts that revealed saturated aliphatics, C-O 

bonds, C-N bonds, ethers, esters and carboxyl groups. Duarte et al. (2005)77 also noted that 

autumn samples were higher in aromatic content due to contributions from biomass burning.  

1.6.4 HULIS-Fe Mediated ROS Generation 

Atmospheric HULIS contains quinone, carboxylic, and phenolic functional groups that are 

associated with ROS activity.72, 84, 85 Redox cycling of quinone moieties by imidazole groups on 

HULIS have been shown to produce ROS.85 The carboxylate and phenolic groups make HULIS 

a strong Fe chelator that tends to enhance Fe mediated ROS formation.72 Little attention has been 

given to HULIS-Fe in a physiological context, but recent studies have shown HULIS to form 

ROS in physiologically relevant systems.86-88 HULIS and HULIS-transition metal complexes 
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have been shown to catalyze DTT consumption at physiological pH, indicating ROS generation 

under physiologically relevant conditions.86 The 2-deoxy-D-ribose (2-DR) assay has been 

applied on human lung tissues exposed to HULIS derived from coal and cigarette smoke.87, 88 

These studies have shown that HULIS-Fe interactions were associated with 2-DR oxidation 

products indicating OH generation, Fe accumulation and collagen deposition in human lung 

tissues. These studies suggest that HULIS-Fe plays a role in lung injury induced by cigarette 

smoke and coal dust exposure.   

Because no standard HULIS material exists, multiple studies have used fulvic acids as a 

surrogate for HULIS.71, 72 Multiple studies investigating fulvic acid have shown that it is capable 

of chelating Fe species and enhancing Fe mediated O2 and H2O2 reduction.89-91 

FA + Fe(II) ⇋ SRFA-Fe(II)      R1.7 

FA-Fe(II) + O2 →SRFA-Fe(III) + O2
-     R1.8 

FA-Fe(II) + H2O2 → SRFA-Fe(III) + OH- + OH               R1.9 

A recent study has shown that binding of Fe(II) by Suwannee River Fulvic Acid (SRFA)  

enhances Fe(II) mediated O2 reduction and H2O2 decomposition by two to three orders of 

magnitude when compared to inorganic Fe.91 In this work we use SRFA as a substitute for 

atmospheric HULIS and investigate its impact on Fe mediated OH generation in SLF and 

BALF. 

1.7 ROS Measurement Methods  

There exists a wide variety of acellular and cellular assays to monitor ROS formation in 

vitro and in vivo. For decades, the 2-thiobarbituric acid (TBA) assay to quantify 
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malondialdehyde (MDA) has been used in biological systems.92-95 Under acidic and heated 

conditions, two TBA molecules react with MDA to form an absorbing and fluorescent TBA2-

MDA adduct. MDA is a product of lipid peroxidation and has been used as a marker for ROS 

and oxidative stress.92-95 However, due to the presence of non-MDA interfering chromophores, 

authors often use the signal from this assay for analysis, calling these products thiobarbituric acid 

reactive substances (TBARS).96, 97 Preparation of biological samples for the TBA assay 

introduces several problems due to precipitation of material under acidic conditions (pH ~3) and 

MDA binding with proteins, requiring a deproteinization step.98, 99 The heating phase of the TBA 

assay can cause MDA precursors to form MDA during the assay, a behavior that can be reduced 

by adding a radical scavenger.100 Such interferences on the TBA assay are improved by using 

HPLC fluorescence and mass spectrometry methods.98, 99  

MDA is also a product OH induced 2-DR oxidation and thus 2-DR has been added to 

aqueous and biological systems as a marker of OH generation.101, 102 However, the 2-DR assay 

does not reveal fundamental reactions that lead to OH generation of 2-DR degradation and is not 

useful for quantifying fundamental ROS. Interestingly, there is some evidence that MDA forms 

in the atmosphere, but it has not yet been quantified in either the gas or particle phase.103-105  In 

this work we will use the TBA assay on atmospheric extracts to attempt to quantify MDA in 

atmospheric aerosols.  

Two common assays used to investigate PM mediated ROS generation under 

physiological conditions are the DTT and dichlorofluorescein diacetate (DCFH2-DA). In the 

DTT assay, particle components have been shown to catalyze the formation of disulfide bonds in 

the DTT molecules and thus ROS generation is correlated with DTT consumption.106, 107 It is not 
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clear what ROS the DTT assay is sensitive to nor what its physiological relevance is. DTT 

consumption has shown correlations with redox active components in PM.106, 108, 109 DCFH2-DA 

forms a fluorescent product with multiple ROS including OH, H2O2, organic peroxides and 

peroxynitrates.110 However, the non-specificity of the DCFH2-DA assay limits its use in 

mechanistic and kinetic studies. 

In order to understand fundamental ROS reactions that lead to OH generation, this work 

employs the terephthalate probe for OH radicals. Of all probes available for OH radicals, the 

terephthalate probe is the most sensitive and forms only a single ring retaining fluorescent 

product.111, 112 In order to accurately quantify OH radicals using the terephthalate probe, it is 

crucial that an accurate percent yield be calculated. There is evidence that the percent yield of 

this reaction has a pH dependence.111, 112 However, the two studies investigating the pH 

dependences of the terephthalate probe report yield values that differ by a factor of two. The use 

of the terephthalate probe will be the foundation for the bulk of this work. 

 In this work we have four main goals (1) To develop a method using experiments and 

kinetic modeling to determine the yield of the terephthalate + OH reaction. (2) Apply the 

terephthalate probe, kinetic and thermodynamic modeling to understand HULIS-Fe mediated OH 

generation in SLF and BALF. (3) Use spectroscopic methods to characterize HULIS from wood 

smoke and cigarette smoke condensate. (4) Apply the TBA assay to quantify MDA in 

atmospheric aerosols. 
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2. Determination 2-Hydroxy Terephthalic Acid Yield for Hydroxyl Radical Quantification 

2.1 Introduction 

.OH plays an important role in various atmospheric and surface water processes. Aerosol 

aging by .OH can modify chemical composition113 cloud condensation nuclei (CCN) activity114 

hygroscopic properties,115 and optical properties of aerosols.116 Hydroxyl radical also plays an 

important role in the chemistry of surface waters,117, 118 degradation of drugs after release into the 

environment,119 in oxidative stress in marine organisms,120 and in waste water treatment.121 

Inhalation of fine particulate matter has shown correlation with adverse health impacts, including 

asthma, cardiovascular diseases, pulmonary inflammation, lung cancer and mortality.122, 123  

While the mechanism(s) by which ambient particles impact health is not yet completely 

understood, a hypothesized cause under active investigation is oxidative stress, mediated by 

reactive oxygen species (ROS).124 

A direct measurement of hydroxyl radicals in aqueous solutions is difficult due to its low 

concentrations, short lifetime and chemical and physical similarity to the aqueous solvent. 

Chemical probes such as benzene,125 nitrobenzene,126 benzoate,127 and terephthalate (TA)112, 128-

132 have been used to quantify OH. These methods depend on fluorescence (2-

hydroxyterephthalic acid) or UV absorption (benzene derivatives) of oxidation products. 

Additional approaches, such as electron paramagnetic resonance, are also available.133 

Of the hydroxyl radical probes, terephthalate has several advantages. Due to its 

symmetric configuration, the .OH reaction with terephthalate results in only one ring- preserving 

product, 2-hydroxyterephthalic acid (hTA, Fig. 2.1). Furthermore, 2-hydroxyterephthalic acid is 

strongly fluorescent 134 facilitating detection limits as low as ~2 nM (Tab. 2.1), compared to 30 
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nM for benzoate.135 Further, TA is more soluble, has a more stable fluorescent product and is 

less susceptible to pH changes compared to several other .OH probes.136 

Table 2.1. Excitation/emission wavelengths and detection limits for OH detection using 

terephthalic acid. 
Excitation (nm) Emission (nm) hTA Detection Limit OH generation System Ref. 

320 420 1.4 nM Fenton Reaction This 

study 315 435 5x10-7 M Microdialysis 137 

309 412 5nM Fenton reaction 138 

320 420 * Photolysis of Nitrate/H2O2 139 

323 435 50nM Radiolysis 140 

240/310 435 ‡ Photolysis of Nitrate 141 
‡Detection limit of formation of hTA. These authors state hTA can be detected at “sub-nM 

levels, but do not provide a number or limit of detection determination methodology. 

*These authors reported detection limits as rates (5x10-12 M/s) but did not report the integration 

times, so detection limits in absolute terms are not known.  

 

   Accurate quantification of .OH with the terephthalate probe requires knowledge of the 

yield of the fluorescent product, hTA, per molecule of .OH reacted. A handful of prior studies 

have quantified the .OH formation yield, each with a different source of hydroxyl radicals: 

Matthews (1980)111 used radiolysis; Charbouillot et al. (2011)112 used photolysis of nitrate and 

H2O2 (Fig. 2.2), Page et al. (2010)141 used photolysis of nitrite and Mark et al. (1998)142 used 

sonication of water but did not show data or indicate a pH for their measurements. The Matthews 

(1980)111 (30.5 – 35% increasing as pH increased from 2 - 9), Mark et al. (1998)142 and Page et 

al. (2010)141 (both 35% at unspecified pH) measurements are nearly double those of Charbouillot 

et al. (2011)112 (14 – 23% increasing as pH increased from 4 – 7.5). As both the high27, 136, 143, 144 

and low145-148 values have been taken up in the literature we attempt to address the discrepancy.  
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The hTA yield has also been found to depend on the O2 concentration in the sample;111, 

140 all yields discussed here are for aqueous solutions in equilibrium with air at one atmosphere. 

Charbouillot et al. (2011)112 found that the hTA yield is not influenced by ionic strength, 

ammonium or sulfate ions within the 0.25 – 2 mM range studied, but that the yield has a fairly 

strong temperature dependence; the yield increases by about a factor of 2 between 278 and 303 K 

at pH 5.4.  

The discrepancy between the measurements of Matthews (1980),111 Page et al. (2010),141 

and Charbouillot et al. (2011)112 were suggested by Page et al. (2012)149 to be due to the 

photolysis light source used by Charbouillot et al. (2011)112 also photolyzing hTA, reducing its 

apparent yield.  

Here, we report a new measurement of the hTA yield, using a different source of OH. 

Because of the substantial discrepancy between the published datasets, and because there is  little 

data available for the yield of hTA under acidic conditions relevant to water in the atmosphere, 

such as cloud, fog and rain water150 we measure YhTA at pH 3.5 using a dark ferrous Fenton 

system to generate OH.  

2.2 Materials and Methods 

2.2.1 Materials 

Disodium terephthalate (TA) was purchased from TCI America. 2-hydroxy terephthalic 

acid (hTA) was purchased from Apollo Sci. Methanol (HPLC grade) and sulfuric acid (reagent 

grade), Chelex® 100 sodium form (50-100 dry mesh), uric acid (>99%), sodium Citrate tribasic 

dihydrate (>99%), L-ascorbic acid (BioXtra, >99%), L-glutathione reduced (>98%), 

ethylenediaminetetraacetic acid (EDTA), horseradish peroxidase type II, para-hydroxyphenyl 
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acetic acid, potassium hydrogen phthalate, H2O2 (30%) and FeSO4 (>98%) were purchased from 

Sigma-Aldrich. Sodium phosphate dibasic and potassium phosphate monobasic were purchased 

from Acros Organics. Ferrozine (4,4'-[3-(2-pyridinyl)-1,2,4-triazine-5,6-diyl] 

dibenzenesulfonate) was purchased from Fluka Analytic. Hydrophilic Lipophilic Balance 

cartridges were purchased from Waters (Oasis, 10mg). All materials were used as received.    

A rigorous cleaning process was followed for all glass and Teflon containers. After each 

use, the glass/plastic ware was washed with warm water and soap, then rinsed in deionized (18 

M DI) water (3), ethanol (3), and finally DI water (3). The vessels were then soaked in a 1 

M nitric acid bath overnight, rinsed with DI water (3) and air dried. Nitric acid baths were 

replaced after being used twice. 

 Stock solutions were prepared with 18 M DI water after further purification by passing 

through a Chelex column to remove trace metals. pH was measured with a bench top pH meter 

(HANNA instruments, HI 3220), calibrated daily.  Stock solutions of hTA (10-3 M) and Fe(II) 

(5.1 mM) were wrapped in foil; hTA was kept refrigerated for a few months and Fe(II) was 

prepared daily and refrigerated. Dissolved oxygen was present in all solutions as solutions were 

in contact with air and were not degassed. 

2.2.2 Fluorescence Spectroscopy and Quantification of hTA 

hTA fluorescence intensity was measured in single wavelength mode at 

excitation/emission wavelengths of 320/420 nm with a Lumina Fluorescence Spectrometer 

(Thermo Scientific). For the purposes of the measurements carried out here, hTA calibration 

curves were prepared in pH 3.5 solutions at hTA concentrations of 50, 100, 500 and 800 nM. An 

A 10-3 M Stock solution of hTA in milli-Q water (18 MΩ) was prepared using an acid cleaned 



 

17 
 

Teflon bottle which was wrapped in aluminum and stored in the refrigerator. A 5-point 

calibration was performed prior to each experiment.  

2.2.3 Quantification of Fe(II)  

Fe(II) was quantified with the ferrozine method151 using a liquid waveguide capillary cell 

(LWCC-3100, World Precision Instruments Inc.), a UV-Vis light source (AvaLight-DHS, 

Avantes) and UV-Vis spectrometer (AvaSpec 2048L, Avantes). The Fe(II)-ferrozine complex 

has a maximum absorbance at 562 nm (A562). To account for instrument drift and solution 

turbidity, the absorbance at 700 nm (A700) was subtracted from A562. Aliquots were analyzed by 

adding 10 µL of 5.1 mM ferrozine to 2.0 mL aliquots. Fe(II) calibration curves are made by 

preparing a stock solution of 2 mM Iron Sulfate (Sigma-Aldrich) at pH 3.5 and diluting to 

between 0.012 and 0.75 µM Fe(II).  

2.2.4 Quantification of H2O2 

Quantification of aqueous H2O2 was performed using a High Performance Liquid 

Chromatograph equipped with a fluorescence detector (Shimadzu RF-10AXL detector).152 The 

eluent, water with 0.1 mM EDTA adjusted to pH 3.5 with 0.1 N sulfuric acid, was delivered at 

0.6 mL/min to a C18 guard column. H2O2 elutes at 0.5 min, after which it is mixed with a 

fluorescent reagent containing horseradish peroxidase and para-hydroxyphenyl acetic acid 

(POHPAA). The peroxidase enzyme catalyzes a reaction between H2O2 and POHPAA to form a 

fluorescent dimer, which is detected at the λex/λem 320/400 nm. The solution is mixed with 

ammonium hydroxide (30%) to increase its fluorescence intensity prior to detection. The HPLC 

was calibrated at least weekly with 10-8 to 10-6 M standards prepared from a 0.3% stock solution, 

titrated with sodium thiosulfate to determine the concentration. 
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2.2.5 Oxidation of TA via a Ferrous Fenton System 

 Experiments to derive hTA yields were carried out as follows. Triplicate samples of 4.44-

4.77 µM FeSO4 and 5.38-6.00 µM H2O2 (Tab. 2.2) were mixed with excess terephthalate (~500 

µM, 100-fold excess) in 60 mL Teflon bottles and allowed to react in the dark with gentle 

shaking (25 rpm, Heidolph Rotamax) at 20°C. FeSO4 was added last as to initiate the Fenton 

reaction. The resulting solution was monitored in triplicate for H2O2, Fe(II) and hTA every 20 

minutes for 2 h. Initial concentrations of H2O2 and Fe(II) are shown in Table 2.2. Blanks 

consisted of TA in pH 3.5. Aliquots were diluted by 5 - 10× to fall within the ranges of detection 

for Fe(II) and H2O2. At µM concentrations, the system is sensitive to trace contaminants, 

including metals and organics, which can change .OH formation chemistry and/or the ability of 

terephthalate to scavenge all available OH, thus rigorous cleaning, dust exclusion and high purity 

reagents were critical for these experiments. 

Table 2.2. Initial conditions for hydroxy terephthalic acid (hTA) yield experiments. 
 

Trial [Fe(II)]o M [H2O2]o M 

1 4.44 ± 0.16 6.00 ± 0.34 

2 4.55 ± 0.22 5.38 ± 0.06 

3 4.77 ± 0.06 5.48 ± 0.25 

 

A 54-reaction chemical kinetics model (Tab. 2.3) including reactions describing Fenton 

chemistry, acid-base equilibria, iron sulfate chemistry and odd oxygen free radical chemistry was 
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developed to derive hTA yields. Concentrations as a function of time were calculated from initial 

concentrations using FACSIMILIE (MCPA Software, UK).  

Table 2.3. Kinetic Model used to fit to experimental data. 
 

# Reaction kf kr Keq Ref 

      

 General Equilibria*     

1 H2O ⇌ H+ + OH- 1.3×10-3 1.3×1011 10-14 [2] 

2 Fe3+ + H2O ⇌ FeOH2+ + H+ 6.46×107 1010 6.46×10-3 [3] 

3 Fe3+ + 2 H2O ⇌ Fe(OH)2
+ + 2H+ 2.14×103 1010 2.14×10-6 [3] 

4 2 Fe3+ + 2 H2O ⇌ Fe2(OH)2
4+

 + 2H+ 1.12×107 1010 1.12×10-3 [3] 

5 Fe2+ + H2O ⇌ FeOH+ + H+ 3.16 1010 3.16×10-10 [3] 

6 H2O2 ⇌ HO2
- + H+ 1.26×10-2 1010 1.26×10-12 [3] 

7 HO2 ⇌ O2
- + H+ 1.58×105 1010 1.58×10-5 [3] 

8 Fe3+ + H2O2 ⇌ FeHO2
2+ + H+ 5×10-3 1.36 3.65×10-3 [4] 

9 FeOH2+ + H2O2 ⇌ Fe(OH)(HO2)
+ + H+ 2×106 1010 2×10-4 [3] 

 Terephthalate Probe      

10 TA + OH → (Y) hTA + (1-Y) X 4.4×109   [1] 
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11 X + OH → Z 109   [5] 

12 hTA + OH → hTAox 6.3×109   [1] 

 Fe(II)/Fe(III) Reactions     

13 Fe2+ + O2 → Fe3+ + O2
- 0.111 ± 0.007   [6] 

14 Fe2+ + O2
- + 2H+→ Fe3+ + H2O2 107   [6] 

15 Fe2+ + H2O2 → Fe3+
  + OH + OH- 76   [3] 

16 FeOH+ + H2O2 → Fe3+ + OH + 2 OH- 5.9×106   [3] 

17 FeHO2
2+ → HO2 + Fe2+ 2.3×10-3   [4] 

18 Fe(OH)(HO2)
+ → Fe2+ + HO2 + OH- 2.3×10-3   [3] 

19 Fe2+ + OH → Fe3+ + OH- 2.7×108   [3] 

20 FeOH+ + OH → Fe3+ + 2 OH- 2.7×108   [7] 

21 Fe2+ + HO2 → Fe3+ + HO2
- 1.2×106   [3] 

22 FeOH+ + HO2 → FeOH2++ HO2
- 1.2×106   [3] 

23 Fe2+ + O2
- → Fe3+ + O2

2- 107   [3] 

24 FeOH+ + O2
- → FeOH2+ + O2

- 107   [3] 

25 Fe3+ + HO2 → Fe2++ O2 + H+ 3.1×103   [7] 

26 FeOH2+ + HO2 → FeOH+ + O2 + H+ 2×104   [3] 
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27 Fe(OH)2
+ + HO2 → Fe(OH)2 + O2 + H+ 2×104   [3] 

28 Fe3+ + O2
- → Fe2+ + O2 5×107   [3] 

29 FeOH2+ + O2
- → FeOH+ + O2 5×107   [3] 

30 Fe(OH)2
+ + O2

- → Fe(OH)2 + O2 5×107   [3] 

 ROS Reactions     

31 H2O2 + OH → HO2 + H2O 3.3×107   [3] 

32 HO2 + OH → O2 + H2O 7.1×109   [7] 

33 O2
- + OH → O2 + OH- 1010   [7] 

34 OH + OH → H2O2 5.2×109   [3] 

35 H2O2 + HO2 → OH + O2 + H2O 0.5   [7] 

36 HO2 + HO2 → H2O2+ O2 8.3×105   [3] 

37 HO2 + O2
- → HO2

- + O2 9.7×107   [3] 

38 O2
2- + H+ → HO2

- 1010   [3] 

39 O2
- + H2O2 → OH- + OH + O2 10-4   [7] 

 Sulfate Equilibria     

40 H+ + SO4
2- ⇌ HSO4

- 9.77×1011 1010 97.7 [3] 

41 Fe2+ + SO4
2- ⇌ FeSO4 1.78×1012 1010 178 [3] 
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42 Fe3+ + SO4
2- ⇌ FeSO4

+ 8.31×1013 1010 8.31×103 [3] 

43 Fe3+ + 2 SO4
2- ⇌ Fe(SO4)2

- 2.63×1015 1010 2.63×105 [3] 

 Sulfate Reactions     

44 FeSO4 + H2O2 → Fe3+ + SO4
2- + OH + 

OH- 

78   [3] 

45 FeSO4 + OH → Fe3+ + SO4
2- + OH- 2.7×108   [3] 

46 FeSO4 + HO2 → Fe3+ + SO4
2- + HO2

- 1.2×106   [3] 

47 FeSO4 + O2
- → Fe3+ SO4

2- + O2
2- 5×108   [3] 

48 Fe2+ + SO4
- → Fe3+ + SO4

2- 3×108   [3] 

49 FeOH+ + SO4
- → Fe3+ + SO4

2- 3×108   [3] 

50 FeSO4 + SO4
- → Fe3+ + 2 SO4

2- 3×108   [3] 

51 FeSO4
+ + O2

- → Fe2+ + SO4
2- + O2 103   [3] 

52 FeSO4
+ + HO2 → Fe2+ + SO4

2- + O2
 + 

H+ 

103   [3] 

53 Fe(SO4)2
- + HO2 → Fe2+ + 2 SO4

2- + O2 

+ H+ 

103   [3] 

54 Fe(SO4)2
- + O2

- → Fe2+ + SO4
2- + O2 103   [3] 

*Rate constants include the concentration of water [55 M]; model uses a concentration of 1 M 

for water. [1] Page et al. (2010)141; [2] Miller et al. (2012) 89; [3] De Laat et al. (2005)153; 

values for I ~0; [4] Walling et al. (1973)154; [5] Klopffer et al. (1991) 155: the rate constants of 

between OH and most organics in aqueous solution are on the order of 109 M-1S-1, the rate 

constant of products from the OH reaction with TA other than hTA was estimated based on 

this. [6] Pham et al. (2008) 156; [7] Bielski et al. (1985)157  
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2.3 Results 

2.3.1 2-Hydroxyterephthalate Yield 

Fig. 2.1 shows experimental data (symbols) and model best fit (lines) for the average of 

three experiments; error bars show the standard deviation of nine measurements at each time 

point (three replicates from each of three experiments). The model is most sensitive to the rate 

constant for Fe(II) reacting with H2O2 to make .OH and co-products (the Fenton reaction, k15 in 

Tab. 2.3). Most published rates for this reaction fall within the range 55 -76 M-1s-1.158, 159 The 

best fit between the model and the measured H2O2 and Fe(II) was obtained using 76 M-1s-1 for 

the Fenton reaction. This results in mean square errors (MSEs) of 4.3 and 3.1 % for Fe(II) and 

H2O2, respectively (Fig. 2.1). We then adjusted the yield of hTA (YhTA) to minimize the MSE 

between the model and the average concentration of hTA and found a best-fit YhTA = 31.5 ± 7%, 

with and MSE of 0.24%. Altering YhTA does not affect the modeled Fe(II) and H2O2 

concentrations. The error bars for the yield were derived by finding the best fit YhTA for ± 1  of 

the measured hTA concentrations (Fig. 2.1). At pHs above 4, formation of iron hydroxide and 

iron sulfate precipitates increase,158 compromising the utility of the Fe(II)/H2O2 system as an .OH 

source, so we were not able to measure YhTA at higher pHs.  
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Figure 2.1. Concentration profiles of Fe(II), H2O2 and hTA averaged from triplicate 

measurements of three experimental trials. Error bars represent ± one standard deviation of 9 

samples. Dashed lines indicate model fit to experimental data. Average initial concentrations of 

Fe(II) and H2O2 were 4.59 and 5.56 M, respectively. The yield of hTA is estimated to be 31.5 

±7%. 

Fig. 2.2 summarizes reported measurements of hTA yields as a function of pH. Our 

results are in excellent agreement with the results of Matthews (1980)111 and about double those 

of Charbouillot et al. (2011).112 Some of the difference is explained by the temperature 

dependence reported by Charbouillot et al. (2011)112 (above). Differences in the temperature of 

this work (293 K) and Charbouillot et al. (2011)112 (288 K) would suggest a difference of about 

20% (Matthews et al. (1980)111 did not report a temperature). To generate .OH radicals, 

Matthews (1980)111 used radiolysis, while Charbouillot et al. (2011)112 photolyzed either nitrate 

or H2O2 using a 1000 W xenon lamp ( > 300 nm). In a separate study, Page et al. (2010)141 

reported that the UV absorption spectrum for hTA contains a weak absorption between 275 - 365 

nm, with a slight pH dependence. Wavelengths below 365 nm were observed to cause some 

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120

C
o

n
ce

n
tr

at
io

n
 μ

M

Time (Mins)

Fe(II)

H₂O₂

hTA



 

25 
 

decomposition of hTA, leading the researchers to conclude that nitrate photolysis could not be 

used to probe hTA formation.149 Charbouillot et al. (2011)112 had good agreement between their 

results using nitrate or H2O2 as the .OH source, but since they used the same lamp, similar 

degradation of hTA likely occurred. We conclude that the Matthews (1980)111 yields, together 

with this work and Page et al. (2010)141 are correct and recommend a yield of 35% for pHs above 

9, decreasing monotonically to 30.5% at pH 2 with the expression YhTA (%) = 30 + 0.43 × pH, 

and possibly decreasing more below pH 2. 

 

 

 

 

 

 

 

Figure 2.2. hTA yields as a function of pH. Matthews (1980)111 did not indicate error bars or the 

experimental temperature; Charbouillot et al. (2011)112 measurements were performed at 288 K; 

this work was performed at 293 K.  Two other groups129, 142 report values of 35% at unspecified 

pH. 
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2.4 Conclusions 

The terephthalate method for quantification of hydroxyl radical is a robust, 

straightforward method under most conditions, and it can often be used with a stand-alone 

fluorescence spectrometer without the need for prior separation. To calculate the .OH 

concentration, the yield of hTA from the .OH reaction with TA is required; best estimates off this 

yield are 35% at pH 9 or above, decreasing monotonically to 30.5% at pH = 2.  
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3. HULIS Enhancement of Hydroxyl Radicals: Fulvic Acid-Fe(II) Complexes in the Presence 

of Lung Antioxidants 

3.1 Introduction 

Epidemiological studies have shown that inhalation of ambient particulate matter (PM) is 

associated with increased cardiovascular and respiratory diseases and mortality.2 Inhaled PM 

may contribute to these health effects by producing an excess of reactive oxygen species (ROS) 

in the lungs.7, 8 ROS are a class of reactive oxygen-bearing compounds that include the hydroxyl 

radical (OH), hydrogen peroxide (H2O2) and superoxide (O2
-). ROS are generated by both PM 

and by cells as a physiological response to inhaled PM.22, 44 Antioxidants defend against 

oxidative damage, but adverse health effects occur when antioxidants are depleted by excess 

ROS production.160 Of all ROS species, OH may be the most damaging to the lungs, capable of 

oxidizing DNA, proteins and lipids.19  

Due to the complexity and variability in chemical composition, the PM components that 

contribute to ROS generation are still not well understood. Recently, some studies have adopted 

surrogate lung fluids (SLF) to mimic physiological conditions as much as possible.32, 33 

Commonly, SLF includes several or all of ascorbate (Asc), glutathione (GSH), uric acid (UA) 

and citrate (Cit) buffered at pH 7.4 with an ionic strength that mimics lung lining fluid. Asc, 

GSH and UA are naturally occurring antioxidants and reducing agents37 while Cit mimics metal-

binding proteins.161, 162 Previous laboratory studies have shown that the presence of these 

antioxidants has a significant impact on the ability of redox active PM components to produce 

OH.32  
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 Soluble transition metal ions have been identified as important contributors to OH 

formation by particles extracted in SLF and other aqueous solutions.21-23
 In the presence of Asc, 

transition metals are capable of producing OH via reactions R14-R16 and R31; note that 

reactions are numbered per their appearance in Table 3.1: 

Fe(II) + O2 → O2
- + Fe(III)        R14 

Fe(II) + O2
- + 2H+ →H2O2 + Fe(III)      R15 

Fe(II) + H2O2 → Fe(III) + OH- + OH      R16 

HAsc- + Fe(III) → HAsc.  + Fe(II)                  R31 

Where HAsc- represents the singly protonated ascorbate molecule that is dominant in SLF. There 

is evidence that Cit can complex Fe(II) and catalyze R3.14 and R3.1644-46 increasing its rate 

coefficient by almost two orders of magnitude (Table 3.1). 

Humic-like substances (HULIS) is a general term for complex organics common in 

atmospheric aerosols, including material with a biomass burning source, studied here, and other 

humic-like substances from soil or formed via secondary reactions as part of SOA formation.  

Humic and fulvic acids and HULIS share many common functional groups, including 

polycarboxylates, carbonyls, phenols, quinones, aliphatics and aromatics.163 Some of these 

groups chelate transition metals and may be able to participate in redox cycling.164, 165 Due to the 

similarities between HULIS and humic substances, fulvic acid (FA) and humic acid (HA) are 

frequently used as surrogates for HULIS, although there are important chemical and physical 

differences.71 FA and HA are found in terrestrial and aquatic environments and result from the 

biological decomposition of organic matter. Generally, HULIS has been found to have lower 
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molecular weight, lower aromaticity and weaker acid characteristics compared to FA and HA.71 

Here we use Suwannee River Fulvic Acid (SRFA) as a surrogate for HULIS. SRFA forms Fe(II) 

complexes that catalyze the decomposition of H2O2 by catalyzing R14 and R16,90, 165 enhancing 

OH formation in the following manner: 

SRFA + Fe(II) ⇋ SRFA-Fe(II)      R51 

SRFA-Fe(II) + O2 →SRFA-Fe(III) + O2
-     R54 

SRFA-Fe(II) + H2O2 → SRFA-Fe(III) + OH- + OH                R56 

Previous studies have shown R54 and R56 to be much faster than R14 and R16 respectively.89, 90 

A direct measurement of the reaction of HAsc- with SRFA-Fe(III) is not available.  

Only a handful of studies have analyzed the effect of HULIS in physiologically relevant 

conditions; some have been carried out under acidic or natural water conditions.165 Ghio and 

Quigly (1994)87 used OH generation in human lung tissue cultures to probe the relationship 

between Fe, OH formation and HULIS found in coal dusts. Using an indirect assay that 

measured oxidation products of 2-deoxy-D-ribose (2-DR), they found that addition of the OH 

scavengers dimethylsulfoxide and dimethylthiourea and the strong metal chelator deferoxamine 

completely stopped production of 2-DR oxidation products, implicating metal-catalyzed OH 

formation. The study also observed an increase in both dissolved Fe and oxidation products as 

coal dust HULIS concentrations were increased. The increases in available Fe and formation of 

oxidation products were further associated with collagen deposition in the tissue cultures, 

suggesting HULIS-Fe driven OH formation could play a role in coal-mediated lung damage.87 In 

a separate study, Ghio et al. (1994)88 found that cigarette smoke condensate and HULIS isolated 
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from lung tissues of smokers had very similar FTIR spectra, and that exposing in vitro lung 

tissue to HULIS isolated from cigarette smoke together with ferric citrate resulted in production 

of 2-DR oxidation products. The products were also inhibited by the addition of deferoxamine, 

further supporting the notion that HULIS-Fe redox interactions play a role in lung injury. 

  HULIS extracted from atmospheric aerosols has been shown to produce ROS in the 

dithiothreitol (DTT) assay performed in phosphate buffer.85, 86, 166 Lin and Yu (2011)85 isolated 

water-soluble HULIS from PM2.5 particles from rural and suburban areas in China during winter, 

and the extracts averaged 10% Fe by mass. All extracts exhibited strong DTT consumption, 

activity that was inhibited by 33% upon the addition of the strong iron chelator diethylene 

triamine pentacetic acid, indicating that DTT oxidation arose from interactions of metals with 

HULIS.  

 Few studies have attempted to model “dark” ROS kinetics mediated by Fe(II) in the 

presence of SRFA, a process complicated by uncertainty of heterogeneity of Fe binding sites on 

SRFA. Voelker et al. (1996)165 modeled SRFA-Fe(II) interactions focusing on the behavior of 

Fe(II) and H2O2 at pH 3-5 and without defined SRFA binding to Fe. Miller et al. (2012)89 

measured and modeled OH formation from SRFA-Fe(II) using a two-ligand model for Fe 

binding  at pH = 8.2. Neither study had redox cycling; ROS chemistry was only driven by O2 

reduction (R14), the Fenton reaction (R16) and SRFA interactions (R51, R54, R56).  

 For thermodynamic modeling, we used Visual MINTEQ 3.1, a model that synthesizes 

available literature describing aqueous equilibrium reactions relevant to natural waters. The 

model has available chemistry for SRFA, Cit, inorganic salts and Fe, but it does not have 

antioxidant chemistry. For SRFA chemistry, a NICA-Donnan model implicit in Visual MINTEQ 
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3.1 describes binding of metals to FA molecules via carboxylate and phenolic binding sites 

coupled with Donnan-gel electrostatic interactions.167, 168  

Here, we investigate SRFA-Fe(II) complexes in SLF, using experiments, and 

thermodynamic and kinetic modeling. SLF consisted of 100-300 µM Asc, GSH, UA and Cit 

species that can compete with SRFA or HULIS. Experiments probe OH formation kinetics and 

cumulative production with and without added H2O2. H2O2 was added to probe different 

reactions in the chemical kinetics model. Activity of HULIS extracted from BBA with added Fe 

is also quantified. A 62 reaction chemical kinetics model developed and combined with a NICA-

Donnan thermodynamic model167, 168 are used to interpret the results, and assess the ability of the 

models and the underlying chemistry to reproduce the observations. 

3.2 Experimental 

3.2.1 Materials and Cleaning Protocol 

SRFA Standard I (International Humic Substances Society), TA (TCI, 99%), TAOH 

(Aldrich, 97%), Ferrozine (Aldrich, 97%), FeSO4•5H2O (Arcos, 99%), NaCl (EMD, 99%), 

sodium phosphate dibasic (Acros, 99%), potassium phosphate monobasic (Acros, 99%), 

ascorbate sodium salt (Sigma, 99%), urate sodium salt (Sigma, 99%, L-glutathione reduced 

(Sigma, 99%) and citrate tribasic sodium salt (Sigma-Aldrich, 99%) and 2,2,2-trifluoroethanol 

(Arcos, 99%) were used as received. SRFA standard I is a purified material and contains less 

than 1% inorganic ash and background transition metal contaminants are negligible.  

A rigorous cleaning process was followed for vessels. After each use, each vessel was 

washed with warm water and soap, and then rinsed deionized (18 M DI) water (3), ethanol (3), 

and finally DI water (3), soaked in a 1 M nitric acid bath overnight, rinsed with DI water and air 
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dried. Acid baths were replaced after two uses and kept covered to avoid dust deposition. All 

analytical solutions were prepared with chelex-treated 18 M DI water.  

3.2.2 Surrogate Lung Fluid (SLF) and SRFA 

SLF was prepared as follows. A buffer solution (pH = 7.2-7.4) consisting of 114 mM 

NaCl, 7.8 mM Sodium phosphate dibasic and 2.2 mM potassium phosphate monobasic was 

prepared in DI water (18 M). The buffer was adjusted to pH 7.2-7.4 with a pH meter (HANNA 

instruments, HI 3220), calibrated daily. The buffer solution was passed through a 

chromatography column (Chemglass, Coarse filter) filled with Chelex-100 beads (Sodium form, 

Sigma Life Science) at a rate of 1 drop per 4 seconds to remove trace metals and used within a 

month of preparation. 200 µM Ascorbate, 100 µM reduced glutathione, 100 µM uric acid sodium 

salt, and 300 µM citric acid stock solutions were made fresh daily and added to phosphate buffer 

immediately prior to beginning experiments. 1 mg/mL SRFA stock solutions were prepared in 

phosphate buffer solution and stored in a refrigerator (4 o C) for up to a month. 

3.2.3 Quantification of OH from SRFA-Fe(II) Complexes Using Terephthalic Acid  

Terephthalic acid (TA) reacts with OH to form strongly fluorescent 2-

hydroxyterephthalic acid (TAOH) with a yield of 33% at pH 7.4.111, 169 A 1 mM stock solution of 

TAOH was prepared in DI water and kept refrigerated in the dark. TAOH solutions in phosphate 

buffer were used to prepare a 50 – 800 nM daily calibration curve. TAOH fluorescence at was 

measured at λex/λem of 320/420 nm with a Lumina fluorescence spectrometer (Lumina Thermo 

Scientific).  

To prepare SRFA-Fe(II) solutions, TA (10 mM) and SRFA (0, 5, 10, 15 or 20 µg/mL) 

was added to SLF in a Teflon petri dish, and Fe(II) at 0, 100, 250, 500 or 1000 nM was added 
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immediately prior to analysis. This concentration range of SRFA and Fe(II) corresponds to 

aqueous BBA and [Fe(II)] observed in ambient PM samples consisting of (25 ± 13) m3 of 

ambient urban air extracted in 10 mL (Paulson et al. 2016).109 To further probe the system, 1 µM 

H2O2 was added to a subset of experiments. Two types of blanks were measured daily: 1) TA 

and SRFA in SLF and 2) TA in SLF.  For kinetic measurements, aliquots were monitored every 

30 minutes for two hours; for other samples, OH production was measured only at two hours. 

Aqueous SRFA has native fluorescence that interferes with both the excitation and 

emission wavelengths of TAOH (320 nm and 420 nm), however SRFA has negligible 

interference with the TAOH assay if [SRFA] = 5 µg/mL (Fig. 3.1). Solutions initially at 

concentrations > 5 µg/mL were diluted to [SRFA] ≤ 5 µg/mL before measuring TAOH 

fluorescence.  

 

 

 

 

 

 

 

 

 

Figure 3.1. Calibration curves for TAOH and TAOH with the addition of 5 µg/mL. Data points 

represent the average of three measurements and error bars denote ±1σ. 
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3.2.4 Extraction of Fresno Biomass Burning Aerosol 

PM2.5 from a biomass burning event near California State University, Fresno (36.82 oN, 

119.74 oW) was collected from Sept. 10 – 16 2015 on a 406 cm2 Teflon-coated glass fiber filter 

(Tisch Environmental, Lot#120618003) using a Hi-volume PM2.5 sampler (nominally at 1.13 

m3/min, Tisch Environmental) placed on the roof of one of the University buildings for 143 

hours. The sample contained 72.4 µg/cm2 of aerosol (Ohaus -PA84), and 41.2 µg/cm2 of BBA 

(approximately equivalent to HULIS), corresponding to 3.0 and 1.73 µg/m3 of mass and BBA 

respectively. BBA was determined using an Optical Transmissometer (Magee Scientific, OT21). 

The BBA concentration was calculated using an absorption cross section of 9.6 m2g-1 170 after 

subjecting to a mass loading correction developed by Jimenez et al. (2007)171; more details are 

available in Paulson et al. (2016).109 The mass loading is unexpectedly low, possibly due to 

malfunction of the pump for part or all of the sampling period. 

 To investigate the effect of atmospheric HULIS on OH production from Fe(II), we 

extracted two sets of three 1.6 cm2 punches of the biomass burning sample and filter blanks in 7 

mL SLF and measured cumulative OH production at two hours. 20 µL of 2,2,2-Trifluoroethanol 

was added to filter punches before extraction to improve particle solubility. The HULIS solutions 

contained 16.7 µg/mL of total aerosol and approximately 9.5 µg/mL HULIS. 500 nM Fe(II) was 

added to one set of samples. HULIS samples were diluted 2x to avoid the interference of HULIS 

fluorescence with the TAOH assay. Total soluble Fe (Fe(II) + Fe(III)) was measured at two 

hours using the ferrozine assay, combined with a strong reducing agent.151, 172 Briefly, a filtered 

(0.2 µm polypropylene filter) 2 mL aliquot from the biomass burning sample was mixed with 20 

µL of each hydroxylamine (0.6 M) and ferrozine (5.1 mM). Hydroxylamine reduces all soluble 
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Fe to Fe(II), and ferrozine forms a strongly absorbing complex with Fe(II) (562 nm). Mixtures 

were allowed to react for 20 minutes at room temperature to ensure complete reduction of Fe(III) 

species, and absorption was measured with a liquid waveguide capillary cell (LWCC-3100, 

World precision Inc.). 

3.2.5 Chemical Kinetics and Thermodynamic Modeling 

The 62-reaction chemical kinetics model (Table 3.1) includes water, HxOy, Cl, phosphate, 

ascorbic, uric and citric acid, glutathione and SRFA chemistry. It is based on several earlier 

studies (Table 3.1) including a two ligand model for SRFA developed by Miller et al. (2012).89 

Visual MINTEQ 3.1 calculations (not shown) indicate insignificant amounts of free Fe3+ due to 

binding by Cit or SRFA, thus Fe3+ precipitation reactions are not important for this system and 

are not included. Zepp et al. (1992)173 showed that Fe(II)-phosphate complexes have no effect on 

OH formation and thus are omitted from the kinetics model (Table 3.1). FACSIMILE v4.2 

(MCPA Software Ltd) was used as the solver.  

Table 3.1. Kinetic model.  
#

  Reaction kf kr Keq 

 General Equilibria     

1a H2O ⇌ H+ + OH-  1.3×10-3 1.3×1011 10-14 

2k H2O2 ⇌ HO2
- + H+ 1.26×10-2 1010 1.26×10-12 

3a HO2 ⇌ H+ + O2
- 1.14×106 7.2×1010 1.58×10-5 

4b Fe(II) + Cit3- ⇌ [Cit-Fe(II)]- 1013.1 1010 103.1 

5b Fe(III) + Cit3- ⇌ Cit-Fe(III) 1021.8 1010 1011.8 

6 H3PO4 ⇌ H2PO4- + H+ 107.85 1010 10-2.15 

7 H2PO4
- ⇌ HPO4

2- + H+ 102.8 1010 10-7.2 

8j OH + Cl- ⇌ HOCl- 4.3×109 6.1×109 0.704 

9j HOCl- + H+ ⇌ Cl + H2O 2.1×1010 1.3×103 1.61×107 

10j Cl + Cl- ⇌ Cl2
- 2.1×1010 1.1×105 1.91×105 
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 Terephthalate Probe    

11c TA + OH → (Y) TAOH  + (1-Y)X  4.4×109   

12c X + OH → Z 109   

13c TAOH + OH → TAOHox 6.3×109   

     

 Inorganic Fe(II)/Fe(III) Reactions    

14e Fe(II) + O2 → Fe(III) + O2
- 8.8×10-2   

15e Fe(II) + O2
- + 2H+ → Fe(III) + H2O2 200   

16k Fe(II) + H2O2 → Fe(III) + OH + OH- 55   

17f Fe(III) + H2O2 →   Fe(II) + HO2 + H+   2×10-3   

18m Fe(III) + O2
-  → Fe(II) + O2  1.5×108   

19f Fe(III) + HO2 → Fe(II) + O2 + H+  2×103   

20f Fe(II) + HO2 → Fe(III) + HO2
-  1.2×106    

21k Fe(II) + O2
-  → Fe(III) + O2

2- 107   

22f Fe(II) + OH → Fe(III) + OH-  3.2×108   

23j Fe(II) + Cl → Cl- + Fe(III) 5.9×106   

24j Fe(II) + Cl2
- → Cl + Cl- + Fe(III) 1.4×107   

     

25n 

Citrate Reactions 

Cit-Fe(II) + O2 → Cit-Fe(III) + O2
- (3.0 ± 0.7)   

26m Cit-Fe(II) + O2
- + 2H+ → Cit-Fe(III) + H2O2 6.0×105   

27n Cit-Fe(II) + H2O2 → Cit-Fe(III) + OH + OH- (4.2 ± 1.7) × 103   

28m  Cit-Fe(III) + O2
- → Cit-Fe(II) + O2 4.2×105   

29l Cit3- + OH → Citox 1.1×108   

     

 Antioxidant Reactions    

30h 2Asc.- + H+ ⇌ HAsc- +DHA 1.4×106 2.8×10-9 5×1014 

31h Fe(III) + HAsc- → Fe(II) + H+ + Asc.- 102   

32h Cit-Fe(III) + HAsc- → Cit-Fe(II) + H+ + Asc.- 102   

33h HAsc- + OH → Asc.- + H2O  1.1×1010   

34h HAsc- + GSH. → Asc.- + GSH 6×108   

35h HAsc- + UA. → Asc.- + UA- 106   

36h HAsc- + O2
- → Asc.- + HO2

 2.7×105   

37h HAsc- + HO2 → Asc.- + H2O2
 2.7×105   

38h UA- + OH → UA.  1010   

39h GSH + OH → GSH.  1.1×1010   

     

 ROS Reactions    

40i H2O2 + OH → H2O + HO2
  2.7×107   

41g O2
- + H2O2 → OH- + OH + O2 0.13   

42a OH + OH → H2O2 5.5×109   

43a OH + O2
- → OH- + O2 1.01×1010   

44m O2
- + O2

- + 2H+ → H2O2 + O2 1.9×105   

45a H2O2 + HO2 → H2O + O2 + OH 3.1   

46k  OH + HO2 → H2O + O2 7.1×109   
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47a HO2 + HO2 → H2O2 + O2 8.3×105   

48a HO2 + O2
- → H2O2 + O2

 9.7×107   

49k  HO2 + O2
- → HO2

- + O2 9.7×107   

50k  O2
2- + H+ → HO2

- 1010   

     

 SRFA Reactions     

51a Fe(II) + SRFA ⇌  Fe(II)-SRFA1 1010 2.9×104 3.5×105 

52a Fe(III) + SRFA → Fe(III)-SRFA 1.3×106   

53a Fe(II)-SRFA1 →Fe(II)-SRFA2 6.3×10-3   

54n Fe(II)-SRFA1 + O2 →  Fe(III)-SRFA + O2
- (5.1 ± 1.0)   

55a Fe(II)-SRFA1 + O2
- + 2H+ →  Fe(III)-SRFA + H2O2 2×107   

56n Fe(II)-SRFA1 + H2O2→  Fe(III)-SRFA + OH + OH- (4.3 ± 1.4) × 103   

57a Fe(II)-SRFA1 + OH → Fe(III)-SRFA + OH- 1010   

58a Fe(II)-SRFA2 → Fe(III)-SRFA 3.1×10-3   

59a Fe(III)-SRFA + O2- → Fe(II)-SRFA1 + O2 2.8×105   

60h Fe(III)-SRFA + HAsc- → Fe(II)-SRFA1 + H+ +Asc.-  102   

61a SRFA + OH → SRFAox + O2
- 5.3×109   

62a SRFA + O2
- → SRFAox + H2O2

 9×103   

Units are in s-1 or M-1s-1
 for first and second order reactions respectively. Fe(II) represents all inorganic 

Fe(II) species. (a) Miller et al. (2012).89 Molecular weight of SRFA is 750 g/mol for all calculations. (b)   

Li et al. (2007).174 (c) Page et al. (2010).141 Y represents percent yield of TAOH formation set to 33%. X 

represents biproducts of TA oxidation and k12 is estimated based off rate coefficients for OH oxidation of 

organics in aqueous solutions (~109).155 (d) Rush et al. (1990).175 (e) Santana-Casiano et al. (2005).48 (f)   

Lewis et al. (2009).176 (g) Bielski et al. (1985).157 (h) Buettner et al.177 Values are for HAsc- reduction of 

Fe(II)-EDTA complex. Assumed to be the same for Cit-Fe(III) and Fe(III)-SRFA. DHA represents 

Dehydroascorbic acid. (i) Christensen et al. (1982).178 (j) Jayson et al. (1973).179 (k) De Laat et al. 

(2005).153 (l) Monod et al. (2005).180 Value for Succinic acid. (m) Pham et al. (2008)46 (n) Indicates rate 

coefficient fitted to experimental data.  

 

3.3 Results and Discussion 

3.3.1 OH Formation from SRFA-Fe(II) Complexes 

Figure 3.2 shows OH generation curves from 500 nM Fe(II) as a function of [SRFA] and 

Figure 3.3 shows the OH production rates. OH production was nearly linear over the first two 

hours (Fig. 3.2) although it has slight 2nd order behavior (discussed below). The OH production 

rates increased linearly with [SRFA] until 15 µg/mL but increasing SRFA further to 20 µg/mL 

resulted in a slight decrease compared to 15 µg/mL (Fig. 3.3, also discussed below). The initial 

OH production rate for 500 nM Fe(II) in the absence of SRFA was (0.38 ± 0.02) µM/hr, in very 
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good agreement with 0.34 µM/hr reported by Charrier and Anastasio (2015).26 Figure 3.4 shows 

the cumulative quantity of OH produced in two hours as a function of [Fe(II)]i from (0 – 1000 

nM), and SRFA from (0 - 20 µg/mL). As for 500 nM Fe(II) (above), addition of SRFA enhances 

OH formation until 15 µg/mL. Above this it decreases slightly, especially at higher Fe. For 

[SRFA] = 0 and 5 µg/mL, OH production increases nearly linearly with [Fe(II)]i. At higher 

[SRFA], OH production has an increasingly nonlinear dependence on Fe(II). 

 

 

 

 

 

 

Figure 3.2. Kinetics of OH production from SRFA and 500 nM Fe(II) over two hours. Each 

point represents the average of three measurements and error bars denote range of data.  
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Figure 3.3. Two hour OH production rates from 500 nM Fe(II) as a function of SRFA 

concentration, calculated data in figure 2. Filled points indicate the average of three 

measurements while the unfilled point indicates the average of two. Error bars denote ±1σ. The 

dashed line is a linear fit of the first four points. 

 

 

 

 

 

 

Figure 3.4. OH produced at two hours from Fe(II), SRFA-Fe(II) and Fe(II)/SRFA-Fe(II) + 1 µM 

H2O2. Each filled data point represents the average of three measurements and error bars denote 

range of data. Open symbols indicate a single measurement. Solid lines denote fit to 

experimental data. Dashed lines denote model results.  

 

The number of OH molecules produced per Fe(II) after two hours range from a low of 

1.9 and 1.1 for [Fe(II)]i at 100 and 1000 nM respectively and [SRFA] = 0, to a maximum of 3.5 
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to 2 for [Fe(II)]i at 100 to 1000 nM and SRFA of 15 µg/mL, respectively (Fig. 3.5). In reasonable 

agreement with this, Charrier et al. (2011)32 found 24 – 19 OH produced per initial Fe after 24 

hours for [Fe(II)]i = 500 to 1000 nM, respectively (absent SRFA). Both results for [OH]/[Fe(II)]i 

at two and 24 hours are greater than unity, indicating redox cycling of Fe(II). OH production 

from Fe(II) (R14-R16) requires 3 electrons, allowing the calculation of the number of reduction 

cycles (Figure 3.6); values range from 2.8 to 9.0 over two hours. 

 

 

 

 

 

 

 

Figure 3.5. Ratio of OH produced at two hours per Fe(II) in solution as a function of [Fe(II)]. 

Different curves represent differing amounts of SRFA. 
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Figure 3.6. Number of reduction cycles in the first two hours as a function of [SRFA]. Data 

estimated by multiplying [OH]/[Fe(II)] ratio by 3.  

 

 There are two possible explanations for the slight decrease in OH production as SRFA is 

increased from 15 to 20 µg/mL. While scavenging of OH by neighboring groups on the same 

SRFA molecule near the site of OH production has been proposed,165 this process would not be 

expected to depend on [SRFA], as the OH does not escape into solution. This process is different 

from bimolecular scavenging of OH by SRFA, which would depend on the concentration of 

SRFA in solution. [SRFA] varies from 5 µg/mL to 20 µg/mL, TA is present in significant excess 

(10 mM). The ratio of carbon groups on TA to SRFA varies from ~280 to 71, thus even the 

highest [SRFA] only reduces TA conversion to TAOH by ~1.4%. Two other hypotheses are as 

follows. A possible concentration-dependent explanation is a reduction in reactivity of TA with 

OH due to interactions with aromatic groups on SRFA. Lindsey et al. (2000)181 observed such a 

phenomenon for the reaction of phenol with OH in the presence of 5-30 µg/mL SRFA in acidic 

solutions, a phenomenon hypothesized to be due to π-π stacking of aromatic rings with the 

hydrophobic aromatic regions of SRFA molecules.181 Another possibility may be the availability 
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of a set of binding sites on the SRFA molecule that have comparable or higher binding 

coefficients relative to the sites that enhance Fe reactivity, but have low abundance, and the 

ability to reduce the reactivity of Fe.  

3.3.2 OH from SRFA-Fe(II) with added H2O2 

OH production in the absence of added H2O2 is limited by the reactions that reduce O2 to 

form O2
- (R14, R25, R54), which can then be converted to H2O2 and ultimately OH. To test the 

consistency of the Fenton rate coefficients responsible for converting H2O2 to OH, (R27, R56) 

we added H2O2 to some experiments. Figures 3.4, 3.7 and 3.8 show the quantity of OH produced 

from Fe(II) at two hours after the addition of 1 µM H2O2, as a function of [Fe(II)]i for [SRFA] = 

0, 5, 10, and 15 µg/mL. OH produced from Fe(II) without added H2O2 is also shown for 

comparison. In all cases, the addition of 1 µM H2O2 enhances OH production from Fe(II), 

although the magnitude of the enhancement decreases as [SRFA] increases. Model predictions 

for OH production at two hours are also shown in figure 3.4 and are in very good agreement with 

experimental data (discussed below).  
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Figure 3.7. OH produced at two hours from 10 µg/mL SRFA mixed with Fe(II) (blue circles) 

and Fe(II) + 1 µM H2O2 (orange circles) as a function of [Fe(II)]i. Each filled data point 

represents the average of three measurements and error bars denote ±1σ.  

 

 

 

 

 

 

 

 

 

Figure 3.8. OH produced at two hours from 15 µg/mL SRFA mixed with Fe(II) and Fe(II) + 1 

µM H2O2 as a function of [Fe(II)]i. Each filled data point represents the average of three 

measurements and error bars denote ±1σ. Lines are best fits of the data. 
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SRFA has been shown to be able to reduce Fe(III) to Fe(II) in pH 3.5 solutions.165 In 
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0

500

1000

1500

2000

2500

0 500 1000 1500

[O
H

] 
(n

M
)

[Fe(II)]i (nM)

10  µg/mL SRFA-Fe(II)

10  µg/mL SRFA-Fe(II) +1 µM H2O2

0

500

1000

1500

2000

2500

0 500 1000 1500

[O
H

] 
(n

M
)

[Fe(II)]i (nM)

15 µg/mL SRFA-Fe(II)

15 µg/mL SRFA-Fe(II) + 1 µM H2O2



 

44 
 

buffer was measured for [SRFA] between 0 and 20 µg/mL, and [Fe(II)]i = 500 nM, at two hours. 

Values fell between -22 nM and 93 nM with no particular trend and averaged 25 ± 38 nM 

(Figure 3.9), indicating that SRFA on its own has only a minor ability to donate electrons (R31) 

to promote OH formation. In a similar system at pH = 8.2, Miller et al. (2012)89 measured OH 

production using production of 5-hydroxyphthalhydrazide over time. From their data, assuming a 

yield of 20% for 5-hydroxypthalhydrazide,182 we can calculate OH production at two hours. 

Miller et al. (2012)89 found a modest amount of OH formation from SRFA and a higher 

concentration of Fe (2 µM); 125 and 250 nM for 10 and 20 µg/mL respectively, in reasonable 

agreement with our results.  

 

 

 

 

 

 

 

 

 

Figure 3.9. OH production at two hours from varying [SRFA] and 500 nM Fe(II) in phosphate 

buffer (absent from antioxidants). 

 

3.3.4 OH Production from Fresno Biomass Burning Aerosol  

 Table 3.2 shows OH production from the Fresno winter BBA sample, containing roughly 

57% HULIS by mass. Also shown is the same aerosol sample with 500 nM Fe(II) added, and 

500 nM Fe(II) alone, all in SLF. The upper limit of the HULIS concentration in solution was 9.5 
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µg/mL, assuming all HULIS was water soluble. The BBA contained (230 ± 16) nM soluble 

Fe(II) as measured by the ferrozine assay. The BBA sample mixed with 500 nM Fe(II) produced 

49% more OH than the BBA sample alone, and 28% more than the sum of the production from 

500 nM Fe(II) and the BBA sample. Although the BBA also likely contained additional redox 

active transition metals such as Cu and Mn109 as well as quinones, pyridine and imidazole 

moieties that may also participate in ROS cycling and contribute to OH formation as well.85, 166 

For example, Cu is known to form a redox couple with Fe species.183 The results both support 

the importance of HULIS interactions with transition metals in determining the OH formation 

and suggest that all binding sites on the HULIS were not already saturated with transition metals. 

While the results demonstrate that iron activity is enhanced by HULIS, results are limited, since 

we did not have enough BBA samples to investigate the effect of BBA mass loading on OH 

formation. 

Table 3.2. OH generated at two hours from Fresno BBA and 500 nM Fe(II) extracted in SLF. 

 

 

 

Errors denote ±1σ of three measurements. *9.5 µg/mL HULIS present in solution (upper limit). 

 

3.3.5 Minteq Chemical Speciation Modeling  

Figure 3.10 shows equilibrium speciation in the absence and presence of SRFA for 

[Fe(II)] = 1000 nM, calculated with Visual MINTEQ 3.1 (Royal Institute of Technology, 

Sweden) using a NICA-Donnan model for FA binding to Fe(II). Input parameters for MINTEQ 

are shown in Tables 3.3 and 3.4. No thermodynamic data for Fe(II) binding with UA or GSH 

could be found, and Charrier and Anastasio (2011)32 found that Asc does not significantly bind 

System [OH] Production µM 

500 nM Fe(II)  .55 ± .02 

BBA* 3.4 ± 0.1 

BBA* + 500 nM Fe(II) 5.0 ± 0.1 
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to Fe(II), thus Asc, UA and GSH were omitted from the calculations. There is evidence that GSH 

can bind to Fe(II),184, 185 but the system has not been sufficiently well characterized to put in our 

model; these interactions merit further study. In the absence of SRFA, only 12% of Fe(II) is free 

(Fig. 3.10A). The majority of Fe(II) binds to Cit and HPO4
2-, with only a small contribution from 

H2PO4
-, in good agreement with similar modeling by Charrier and Anastasio (2011)32. Fe 

speciation was not significantly different for lower [Fe(II)]i. This is likely due to the greater 

abundance of citrate compared to the range of Fe(II) concentrations. 

 

 

 

 

 

Figure 3.10. Thermodynamic calculations of Fe(II) binding at 1000 nM Fe(II)as a function of 

[SRFA] at equilibrium using Visual MINTEQ.  (A) Fe(II) speciation in SLF. (B) Fe(II) 

Speciation in SLF with 5 µg/mL SRFA. (C) Fe(II) Speciation in SLF with 10 µg/mL SRFA. 

The NICA-Donnan model describes binding of metals to FA molecules via carboxylate 

and phenolic binding sites coupled with Donnan-gel electrostatic interactions.167, 168 The 

concentration of carboxylate (Q1) and phenolic (Q2) binding is proportional to the total mass of 

SRFA (Table 3.4). MINTEQ calculates Q1 as 29.4 – 118 µM and Q2 as 9.3 – 37.2 µM for 5 - 20 

µg/mL SRFA. For the SRFA system, Fe speciation was the same for lower [Fe(II)]i with the 

exception [SRFA] = 5 µg/mL. This is likely due to the greater abundance of SRFA compared to 

the range of [Fe(II)] (0-1 µM). For 5 µg/mL SRFA and [Fe(II)]i < 1000 nM, 94% of Fe(II) binds 

to SRFA with minor contributions from Cit, HPO4
2- and free Fe(II) (Fig. 3.10B). For [Fe(II)]i = 

1000 nM and [SRFA] ≥ 5 µg/mL, 100% of Fe(II) is bound to SRFA (Fig 3.10C). Calculations 
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predict that Fe(II) is bound to the carboxylate site of SRFA, with no contributions from phenolic 

binding sites at any of the concentrations tested. This obviously implies that while the model and 

theoretical framework are able to explain the increased OH production with 5 µg/mL of SRFA, 

they will not be able to explain increases in OH production as more SRFA is added as Fe binding 

does not change as [SRFA] is increased.  

Table 3.3. Concentration inputs for Visual MINTEQ speciation calculations. 

  

Species Concentration (mg/L) 

Cl- 4041 

PO4
3- 950 

Citrate  57.6 

Na+ 3006 

K+ 86.02 

Fe2+ (x10-2) .558, 1.395, 2.79, 5.58 

SRFA 0, .005, .010, .015, .02 

 

pH = 7.4 

Ionic Strength set to 0.17 M 

Table 3.4. Input parameters for SRFA using NICA-Donnan model. 

Species  logK1 n1 

Q1 

(mmol/g) logK2 n2 

Q2 

(mmol/g) b 

Ratio of 

DOM to 

DOC 

% 

active 

DOM 

that is 

FA 

Proton 2.34 0.66 5.88 8.6 0.76 1.86 0.57 2 100 

Fe 6 0.25  36 0.19     
K-equilibrium constant. Q- Binding site concentration per mass of SRFA. Q1 and Q2 indicated 

carboxylate and phenolic binding sites respectively. n-Non-ideality parameter. b-Donnan volume 

parameter. 
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3.3.6 Chemical Kinetics Modeling Results  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. Chemical kinetics modeling results for H2O2 concentration and the OH produced 

(cumulative) over two hours from Fe(II) (dashed lines) and SRFA-Fe(II) complexes (solid lines) 

in SLF. [SRFA] = 5 µg/mL in all cases. (a) 100 nM Fe(II) (b) 1000 nM Fe(II) (c) 100 nM Fe(II) 

+ 1 µM H2O2 (d)1000 nM + 1 µM H2O2. 

 

Chemical kinetics model results are shown in Figures 3.4 (dashed lines) and 3.11 (all 

lines). Figure 3.4 shows good agreement between the model and measurement data for OH 

formation as a function of [Fe(II)]i, with and without 5 µg/mL SRFA and added H2O2, including 

the initially non-linear dependence of this system on Fe(II).  For the citrate-Fe system over the 

range 100 nM – 1000 nM Fe(II) (no SRFA), the kinetic model predicts that 27% of Fe(II) is 

bound as Cit-Fe(II). This disagrees somewhat with thermodynamic modeling that indicates 59% 

Fe is bound as Cit-Fe(II) (Figure 3.10A). With SRFA added, the kinetic model predicts 83% - 

81% of Fe(II) is bound to SRFA at 5 µg/mL; the remainder is mostly inorganic iron with some 

Cit-Fe(II). Of the Fe(II) bound to SRFA, ~33 and 67% are bound to the active (type 1) and 
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inactive (type 2) sites (as defined by Miller et al. (2012),89 Table 3.1), respectively. This is in 

reasonable agreement with thermodynamic modeling that predicts 100% and 94 % of Fe bound 

to SRFA for 100 nM (not shown) and 1000 nM (Figure 3.10B) Fe(II) respectively. The 

thermodynamic model differentiates carboxylate and phenolic sites, but not active and inactive 

sites, and places Fe(II) in the carboxylic:phenolic sites at a ratio of 3.2:1. It is not well known 

which of these sites are more active.  

The system of reactions describing the HyOx/SRFA/Citrate/Fe chemistry leading to OH 

formation is very sensitive to the superoxide formation and Fenton rate coefficients (Reactions 

25, 27, 54 and/or 56, Table 3.1), depending on whether H2O2 was added to the experiment. In the 

absence of added H2O2, OH formation depends ultimately on the initial reduction of O2 to O2
- 

(R25), the rate limiting step in the chain of reactions leading from O2 to OH via O2
- and H2O2. In 

the presence of added H2O2, the Fenton reaction (R54/56) becomes rate limiting. The rate 

coefficients for these reactions, including their dependence on pH, T and ionic strength (I) are 

not well known. The Cit-Fe(II) system, the chemistry is somewhat sensitive to Fe2+ (free Fe(II))-

mediated formation of O2
- (k14); SRFA-Fe(II) is less sensitive. While values for k14 vary by 

almost three orders of magnitude in literature (.058 48  - 13 186 ) M-1s-1, many of the studies used 

very different solutes than those used here. Here we find that the value suggested by Santana-

Casiano (2005)48, 8.8×10-2 M-1s-1 for I = 0 at pH 6-8.2 and T = (25 ± 0.5) oC works best. Santana-

Casiano (2005)48, also reports a k14 = 5.8×10-2 M-1s-1  for I = 0.7 that fits very well with our data. 

Using k14 values higher than 0.3 M-1s-1 significantly overshoots observed OH (Fig. 3.12). 
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Figure 3.12. OH produced at two hours from Fe(II) and as a function of [Fe(II)]i. Each filled 

data point represents the average of three measurements and error bars denote ±1σ. Lines are 

best fits of the data. Solid line indicates model fit with k14 = 0.3 M-1s-1.  

Best fits for k25, k27, k54 and k56 were determined by minimizing the cumulative percent 

error between the four experimental data points and model results as a function of the fitted rate 

coefficients, except where noted. Error estimates were derived from a 15% departure beyond the 

minimum error between experimental data and model results. 

Reactions 27 and 56, the Cit-Fe(II) and SRFA-Fe(II)-mediated Fenton reactions (Fe(II) + 

H2O2 → Fe(III) + OH + OH-) respectively, are dominant for experiments with added 1 µM H2O2 

and at low [Fe(II)]i. Thus, k27 and k56 were fitted to experiments with added 1 µM H2O2 and low 

[Fe(II)]i (100 and 250 nM). For the Fenton reaction mediated by Cit-Fe(II), k27 of (4.2 ± 1.7) × 

103 M-1s-1 best fit experimental data. This is in excellent agreement with a k27 of (4.9 ± 0.3) × 103 

M-1s-1
 reported by Rush et al. (1990)175 for pH 7.2 and T = 25 oC. Pham et al. (2008)46 reports a 

much higher value for k27, 6.7 × 106 M-1s-1 (pH = 6-8, I= 0 and T = 25.0 ± 0.6 oC) but noted their 

study was not very sensitive to this reaction. In the presence of SRFA, data are best fit by 
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adjusting k56 to (4.3 ± 1.4) × 103 M-1s-1 (Figs. 2 and 4). For k56, Miller et al. (2012)187 suggest 1.7 

× 103 M-1s-1 at pH = 8 and I = 0. Differences in the SRFA-Fe(II) rate coefficients may be due to 

differences in pH, I and T (which Miller et al. (2012)187 did not report). 

Without added H2O2, the model is most sensitive to reactions 25 and 54, reduction of 

oxygen to superoxide. Thus, k25 and k54 were fitted to experiments absent external H2O2 after 

fitting k27 and k56 to the Fe(II)/SRFA-Fe(II) + 1 µM H2O2 system. Relative to inorganic Fe(II), 

chelation of Fe(II) by Cit also enhances the rate of O2
- formation (k25). We find that a k25 of 3.0 ± 

0.7 M-1s-1
 fits best with our experimental data, in very good agreement with two published values 

for k25; Pham et. al (2008)46 report k25 = 2.9 M-1s-1 for water at pH 6-8, I = 0 and T = (25 ± 

0.6)oC, and Rose et al. (2003)188 report k25 = 2.6 M-1s-1 for seawater (pH 8.1, T= 25 ± 0.5 oC).  

The SRFA-enhanced superoxide formation reaction (R54) was investigated by Fuji et al. 

(2010),90 using FA isolated from several soil samples, at pH 8.2, I = 0.73 and T = 25 oC. They 

report a range for k54 from 5.6 – 52 M-1s-1. Miller et al. (2009)189 found a value of 75 M-1s-1 for 

k54 for SRFA. Minimizing the k54 – dependent error between our modelled and measured values, 

we find two wells with similar minimum errors, one at 5.1 M-1s-1 and the other at 100 M-1s-1. The 

two values are associated with very different steady state H2O2 concentrations; ~200 nM (data 

not shown) and ~1.6 µM. Using the horseradish peroxidase method,190 we measured H2O2 

concentrations after two hours for Fe(II) and SRFA-Fe(II) in SLF, and found H2O2 to be ~150 

nM, in agreement with the lower k54 and inconsistent higher value for this reaction (data not 

shown). The presence of a second minimum for the rate coefficient may possibly explain the 

high value reported by Miller et al. (2009).189  The combination of the OH and H2O2 results 
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indicate the best-fit rate coefficient for the SRFA-Fe(II) mediated superoxide formation reaction 

is 5.1 ± 1.5 M-1s-1.  

Fe(II) binding by both Cit and SRFA ligands accelerate both O2
- formation and H2O2 

destruction relative to Fe(II), interestingly, by very similar amounts; by factors of 34 - 78. As a 

result, the SRFA has a modest effect when compared to solutions with sufficient Cit to chelate 

Fe. Furthermore, there is evidence that GSH chelates and cycles Fe(III) to Fe(II),184, 185 but 

relevant rate coefficients are not available. However, Charrier et al. (2011)32 showed Asc and Cit 

drive OH production from Fe(II) (measured at 24 hours) while GSH had a negligible effect. 

Thus, it is reasonable to assume that the effect of GSH on Fe cycling is unimportant for our 

model. 

Consistent with the thermodynamic model, the chemical kinetics model also predicts 

essentially no difference between 5 µg/mL SRFA and higher SRFA concentrations, a behavior 

that is not consistent with our experimental data. The simplest explanation of this phenomena is 

that the model does not accurately predict the distribution between active and inactive SRFA 

binding sites (distributions above). There are a number of sources of such an error, including the 

assumed k53, the rate of conversion of SRFA1 to SRFA2 (Table 3.1), the form of Fe(II) to which 

SRFA-Fe(III) is reduced to, and the number of SRFA binding sites, which depends on the 

assumed SRFA molecular weight; we assume a relatively low molecular weight of SRFA (750 

g/mol).187 Binding site estimates are on a molar basis in the kinetic literature, although as they 

are on a mass basis in the thermodynamic literature, the assumed molecular weight thus this does 

not explain the thermodynamic results. Constraining the problem further is worthy of more 

study.  
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Figures 3.11a and 3.11b show predicted concentration profiles for OH and H2O2 over two 

hours for 100 and 1000 nM Fe(II) with and without SRFA (without added H2O2). For 100 nM 

Fe(II), OH formation initially has an increasing slope, after which it approaches linearity as H2O2 

approaches steady state. For 1000 nM Fe(II), H2O2 reaches a steady-state concentration within 

30 minutes, after which OH production is linear. For both Fe(II) concentrations, H2O2 

approaches steady-state concentrations of 200 nM and 250 nM for the Cit-Fe(II) and SRFA-

Fe(II) system, respectively. For the SRFA-Fe(II) system, H2O2 decreases slightly after 60 

minutes. The experimental data in Fig. 3.1 are consistent with the model; the slopes, while fit 

well with linear curves, exhibit slightly increasing slopes with time, and OH production is higher 

for the SRFA-Fe(II) system.  

Figures 3.11c and 3.11d show concentration profiles for OH and H2O2 over two hours for 

100 and 1000 nM Fe(II), with and without SRFA and with 1 µM added H2O2. In all cases with 

added H2O2, OH production is initially fast as there is excess H2O2 to be destroyed by Fe(II). OH 

production then approaches linearity as H2O2 reaches steady-state concentrations of 200 nM and 

250 nM for the Cit-Fe(II) and SRFA-Fe(II) systems, respectively. H2O2 for the SRFA-Fe(II) 

system begins to slightly decrease after 60 minutes.  

In both Cit-Fe(II) and SRFA-Fe(II) systems, H2O2 is ultimately limited by the reduction 

of O2 to O2
- (R14, R54). In SLF solutions, Asc is present to efficiently cycle Fe(III) to Fe(II), 

keeping the Fe(II)/Fetotal ratio high throughout (1.0 - 0.97 for Fe(II) and 1 - 0.88 for SRFA-

Fe(II)). The system eventually leads to a balance of H2O2 production and consumption and 

consequently a linear OH production rate once the reactions reach steady state.  
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4. HULIS Enhancement of OH in Human Lung Fluids: Fulvic Acid-Fe(II) Complexes in 

Bronchoalveolar Lavage Fluids 

4.1 Introduction 

Particulate matter (PM) inhalation has been associated with increased mortality and the 

development of asthma, cancer, respiratory and cardiovascular diseases.2, 191 Despite decades of 

research, the biological mechanisms associated with particle-induced diseases are still poorly 

understood. A hypothesized pathway for PM induced pathogenesis is the induction of oxidative 

stress initiated by an overproduction of reactive oxygen species (ROS).7, 8 ROS are a class of 

highly reactive species that include superoxide (O2
-), hydrogen peroxide (H2O2) and the hydroxyl 

radical (OH). In physiological systems, ROS are naturally formed by metabolic processes and 

are crucial for cellular signaling and homeostasis.192  However, an overproduction of ROS can 

overwhelm antioxidant defenses and initiate oxidative stress.160, 192 ROS can be generated 

directly by PM components or by cellular defenses in response to inhaled PM.22, 26, 34 Of all ROS, 

OH is the most oxidizing and is capable of damaging proteins, lipids and DNA.192 Due to the 

complexity of particle composition and experimental limitations, the mechanisms of OH 

generation from redox-active particle components under physiological conditions are poorly 

understood.  

Inhaled PM first contacts the epithelial lung lining fluid where particle components can 

dissolve into the aqueous phase. To mimic physiological conditions of lung lining fluids, 

numerous studies have used acellular surrogate lung fluids (SLF) that typically contain 

physiological amounts of ascorbate (Asc), glutathione and uric acid.32-34 Citrate is commonly 

added in SLF as a protein mimic, although it is not a component of lung lining fluid. While 
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convenient to use, the physiological relevance of SLF is limited due to a lack of relevant 

biomolecules. Only a small subset of studies have used SLF with phospholipids and proteins that 

better reflect the composition lung lining fluid.24, 35, 36, 40, 41, 193  

Here we use bronchoalveolar lavage fluids (BALF) to better represent human lung lining 

fluids.24 BALF is the supernatant remaining after centrifugal separation of the fluid from the 

bronchoalveolar lavage procedure.41 Measurements on concentrated BALF from healthy young 

adults have suggested that in vivo alveolar lung lining fluid contains on average 4.8 mg/mL 

phospholipids, 14.3 mg/mL proteins, 100-200 µM each of ascorbate, glutathione and uric acid.35, 

41 The lipid fraction is 90% phosphatidylcholine, 9% Phosphatidylglycerol and 1% cholesterol 

by mass. The protein content on average is composed of  50% Albumin (Alb), 15% 

immunoglobulins, 7% Transferrin (Tf) and other proteins.41  Due to the nature of collection, 

BALF can be 50 to 200 fold diluted compared to true physiological conditions; thus, the 

concentration of lipids, proteins and antioxidants are significantly diminished compared to in 

vivo lung lining fluid.41 Furthermore, the protein content, lipid content and pH of BALF varies 

among patients.  

Fe is generally the most abundant transition metal in particulate matter, it actively 

produces OH in SLF.26, 32, 34, 194 Soluble Fe is an essential micronutrient crucial for normal 

cellular function. It is tightly regulated in part by proteins such that ROS formation is controlled 

or inhibited.195, 196 In the presence of O2 and biological reducing agents such as Asc, Fe(II) is 

capable of redox cycling and producing OH (R4.1-R4.4).32, 34 

            Fe(II) + O2 → O2
- + Fe(III)        R4.1 

Fe(II) + O2
- + 2 H+ → H2O2 + Fe(III)      R4.2 
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Fe(II) + H2O2 → Fe(III) + OH- + OH      R4.3 

Asc- + Fe(III) → Asc.  + Fe(II)                  R4.4 

Experimental studies utilizing both BALF and SLF have shown that Asc greatly enhances the 

ability of Fe to produce ROS, consistent with R4.1-R4.4 above, while other antioxidants have a 

much more minor impacts.24, 32, 34 Sun et al. (2001)24 used BALF to extract residual oil fly ash 

(8.5% transition metals, 50 µg/mL) and investigated ROS production.24 They measured ROS 

formation indirectly using an 18O labeling technique on 50 µg/mL residual oil fly ash extracts. 

Briefly, samples are exposed to 18O2, incubated at 37 oC for 24 hours and the amount 18O 

incorporated into the sample was measured and used as a marker for ROS. The investigators 

observed 18O incorporation was significant only when physiological amounts of Asc (284 µM) 

were added to BALF to account for dilution. No other antioxidants significantly impacted 18O in 

corporation in BALF.24 This is consistent with Charrier et al. (2011)32 who found that Asc was 

25 and 145 times as effective at promoting 24 hour OH formation from Fe(II) and Cu(II) 

respectively. While Asc readily promotes redox cycling of Fe, organic chelators and proteins can 

significantly alter reduction potential and the rate of ROS formation.34, 49, 197 

The inorganic Fe(III)/Fe(II) couple has a relatively high reduction potential (+770 mV), 

and produces OH relatively slowly (k4.1 ~0.1 M-1s-1, k4.3 ~ 55 M-1s-1) at physiological pH.34, 47, 48 

Electrochemical studies have revealed that citrate, which is commonly used as a protein mimic in 

SLF can significantly reduce the reduction potential of the Fe(III)/Fe(II) redox couple, making 

Fe(II) more susceptible to oxidation by O2 and H2O2.
50, 51 Consistent with this behavior, we 

previously showed that citrate enhances the rate constants of R4.1 and R4.3 by a factor of 34 and 

76 respectively in an SLF at pH 7.2-7.4.34 However, citrate is not present in physiological lung 
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fluid. Here we investigate the role of the most abundant iron-binding proteins in BALF, 

transferrin (Tf) and albumin (Alb).41   

BALF contains significant amounts of immunoglobulin and other proteins, but since they 

have no known interactions with Fe, they are not included here. Alb and Tf are thought to inhibit 

ROS formation by chelating Fe species.39, 52 Alb is thought to weakly and non-specifically 

chelate Fe(II), forming complexes that inhibit ROS generation while also scavenging ROS and 

sparing damage to more crucial biomolecules.52, 53 Much of this evidence is based on non-

specific ROS assays with varying protocols that did not probe fundamental ROS reactions or Fe 

speciation.54-57 

Few measurements of binding constants between Fe and albumin are available in the 

literature. Xu et al. (2008)58 suggested that bovine serum albumin (BSA) can complex Fe(III) 

(βBSA-Fe(III) = 2.9x107 M-1)  and also suggested that BSA enhanced iron redox cycling but did not 

provide rate constants or binding constants of Alb-Fe(II). To date, one measurement of binding 

between human serum albumin and inorganic Fe(II) has been reported; Duff et al. (2009)198 used 

isothermal titration calorimetry and determined βAlb-Fe = 2.0 x 104 M-1 with a 1:1 stoichiometry 

(pH 6.4, T = 298 K).198 Analogous to reactions of Cit-Fe and Fulvic Acid-Fe,34 these reactions 

are described as follows: 

      Alb + Fe(II) ↔ Alb-Fe(II)      R5.5 

     Alb-Fe(II) + O2 → Alb-Fe(III) + O2
-                R5.6 

     Alb-Fe(II) + H2O2 → Alb-Fe(III) + OH- + OH    R5.7 
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We have been unable to find any investigations of OH formation kinetics from the interactions of 

Alb and inorganic Fe(II).   

While Alb-Fe interactions are not well understood, the interactions of Tf and Fe are better 

characterized. Tf has two homologous pH-dependent Fe(III) binding sites, located at the N and 

C-terminals of the protein,59, 60, 199 respectively, and carbonate or bicarbonate anions are 

necessary for Tf-Fe(III) binding.60 Although both Fe(III) binding sites on Tf are homologous, 

experimental studies have shown differences in binding characteristics. The N-terminal binding 

site does not bind Fe(III) below pH 5.7, and the C-terminal binding site does not significantly 

bind Fe(III) below pH 4.8; both sites reach maximum iron binding capacity above pH 7.4.59, 60 

Fe(III) appears to bind preferentially to the N-terminal site of unsaturated Tf, especially when 

incubated at 37oC.200 Both binding sites appear to be independent of one another.60 While the 

precise molecular dynamics of Tf-Fe(III) binding are not known, recent molecular dynamics 

simulations suggest pH changes that alter the protonation state of tyrosine residues at the binding 

site are a critical factor governing Tf-Fe(III) binding.199, 201 Under endosomal pH (pH 4.5-6.5), 

protonation of tyrosine residues induces conformational changes that form an “open” Tf, 

facilitating Fe(III) release.199, 201 

Electrochemical studies have shown that Tf  bonds Fe, significantly reducing the redox 

potential of the Fe(III)/Fe(II) couple, moving it outside of the range accessible by biological 

reducing agents (-400 to -500 mV).39, 59, 61, 62 This inhibits reduction of the Tf-(Fe(III))2 thereby 

inhibiting OH generation via R4.1-R4.4. Despite Tf’s high affinity for Fe, studies have revealed 

that external chelating agents can compete for Fe binding with Tf and enhance ROS 

generation.65, 202 It has been suggested that chelators can mobilize Fe away from Tf,  and 
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depending on the nature of the ligand, promote Fe mediated ROS formation (R4.1-R4.4).63, 203 In 

fact, Abdizadeh et al. (2017)199 performed molecular dynamics simulations that indicate external 

chelators are necessary for Fe release by Tf.  

The Fe species that are not bound to Tf in physiological systems (including that bound by 

albumin) are commonly referred to as non-transferrin bound iron (NTBI). NTBI have been 

associated with Fe toxicity, oxidative stress and inflammation.63-65 It has been suggested that Fe 

bound to Alb can act as a form of ROS active NTBI, but the impact of Alb and Tf on Fe-

mediated OH generation under physiologically relevant conditions, the subject of this work, has 

not been investigated.  

 Inhaled PM can introduce humic-like substances (HULIS) that can chelate iron and alter 

Fe speciation and OH generation,34, 88 potentially serving as a source of NTBI. HULIS are 

complex organics commonly identified in biomass burning and cigarette smoke particles.34, 71 

HULIS is chemically similar to humic and fulvic acids found in aquatic and terrestrial systems.71 

Both HULIS and humic substances have organic functional groups (carboxylates, phenols, 

ketones) that are known to chelate Fe in acidic and physiologically relevant solutions.34, 71, 165 In 

general, HULIS has lower molecular weight, aromaticity and acid characteristics than humic and 

fulvic acids.71 However, due to a lack of HULIS reference material, numerous studies have used 

humic or fulvic acid as a HULIS surrogate. In this work, we use Suwanee River Fulvic Acid 

(SRFA) as a substitute for HULIS due to similar molecular weight and solubility. Only a small 

handful of studies have investigated HULIS under physiological conditions. 

In previous work we used SLF containing, 0.1-1 µM Fe(II), 0- 20 µg/mL SRFA and 

physiological amounts of Asc, glutathione, uric acid and citrate (100-300 µM) to investigate Fe-
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mediated OH generation.34 SRFA was found to chelate Fe(II) and enhance rates of Fe(II) 

mediated O2 reduction and H2O2 decomposition by factors of 58 to 78, thereby enhancing OH 

generation over two hours (R4.8-R4.10). 

            SRFA + Fe(II) ↔  SRFA-Fe(II)       R4.8 

SRFA-Fe(II) + O2 → SRFA-Fe(III) + O2
-                R4.9 

SRFA-Fe(II) + H2O2 → SRFA-Fe(III) + OH- + OH    R4.10 

Using the same SLF formulation, Wei et al. (2018)204 used the terephthalate probe to  

investigate OH generation from 1 µM Fe(II) and 10µg/mL SRFA over 1.3 hours. In 

agreement with our previous work, Wei et al. (2018)204 suggests that SRFA enhances R1 

and R3 but provides no kinetic rate constants. Yu et al. (2018)108 simultaneously measured 

DTT consumption and OH generation from interactions of isolated ambient HULIS  and 

SRFA with 1 µM Fe(II) in a phosphate buffer over 1.3 hours. They found that both isolated 

ambient HULIS and 5 µg/mL SRFA enhance OH generation from Fe(II), although they did 

not report the mass of isolated HULIS or the PM from extracted filters. These results 

indicate both HULIS and SRFA enhance OH generation by interacting with Fe(II).  

Only a small handful of studies have investigated the biological effects of 

combinations of HULIS or SRFA with Fe. Two early studies investigated the role of coal 

dust and tobacco smoke derived HULIS and Fe on OH generation in human lung cell 

cultures and tissues in vitro.87, 88 Measuring the oxidation products of 2-deoxy-D-ribose as 

a probe for OH generation, Ghio et al. (1994)87, 88 found that the strong iron chelator 

deferoxamine inhibited formation of the oxidation products in both lung cell cultures 
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exposed to coal dust HULIS and human lung tissue exposed to tobacco smoke HULIS, 

implicating HULIS-Fe catalyzed OH generation. Both studies observed increasing Fe 

accumulation, collagen deposition and 2-deoxy-D-ribose oxidation products with 

increasing HULIS concentrations in the biological samples.87, 88 However, the 2-

deoxyribose assay does not directly quantify OH concentrations, and thus is limited in 

elucidating fundamental ROS reactions.  

More recently, atmospheric particles containing HULIS and soil-derived humic 

substances have been proposed to induce lung injury and diseases by disrupting cellular Fe 

homeostasis.195, 205 In this model, inhaled HULIS and fulvic acid deposits in the alveoli, 

which is followed by endocytosis by epithelial lung cells, then proceed to complex cellular 

Fe. This results in a HULIS/fulvic acid-induced functional Fe deficiency that if not 

resolved leads to oxidative stress, activation of kinases and transcription factors that release 

proinflammatory mediators.87, 88  Complicating the role of HULIS/Fulvic Acid-Fe mediated 

ROS generation, Ghio et al. (2016),195 used the Amplex Red assay to measure H2O2 

generation in human bronchial epithelial cells exposed to HULIS containing wood smoke 

particles with and without ferric ammonium citrate. The investigators observed that H2O2 

generation was decreased in cells that were exposed to the combination containing Fe. 

They suggest the extra Fe loading resolves the functional iron deficiency and thus 

decreases H2O2 generation and inflammatory response. One reason for lower H2O2 

generation could be due to the ability of HULIS-Fe to degrade H2O2 more efficiently than 

other forms of Fe in the cell. However, this may not account for the decrease in 

inflammatory mediators released with extra Fe loading. Thus, it is not clear what the role 
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HULIS complexation of cellular Fe has on ROS generation, meriting further investigation 

of HULIS-Fe mediated ROS formation in the presence of biological Fe chelators and 

reductants. In any case, these studies suggest that Fe binding by external ligands and 

subsequent ROS generation plays an important, if not well-defined role. 

In this work, we investigate OH generation from a series of systems to elucidate the 

interactions of iron-binding proteins present in lung fluid, SRFA and Fe in producing OH 

radicals. We use either the BALF supernatant or the saline used to obtain the BALF, with known 

amounts of added Alb and Tf. This saline has a pH of 5.5. Because ascorbate (Asc) is a critical 

reductant in lung lining fluids and in cells, but it has been depleted in BALF, physiological levels 

of Asc are added to both saline and BALF. We investigate the kinetics of Fe(II)-mediated OH 

generation from Alb/Tf mixtures, Fe and SRFA, all individually and in combination for a range 

of ratios of Alb:Tf:SRFA at constant Fe. Finally, we compare these results to OH generation 

from Fe(II)/SRFA-Fe(II) in BALF to investigate the role of metal binding proteins and SRFA in 

human lung lining fluids. 

4.2 Materials & Methods 

4.2.1 Materials 

FeSO4•5H2O (Arcos, 99%), NaCl (Sigma, 99%), human albumin (Sigma, 98%), human 

apo-transferrin (Sigma, 98%), SRFA Standard II (International Humic Substances Society), L-

ascorbate sodium salt (Sigma, 99%), terephthalate sodium salt (TCI, 99%), 2-

hydroxyterephthalate (TCI, %). Saline Solution (0.9%), Microcentrifuge tubes, Water Bath 

(Isotemp 2025, Fischer Scientific), pH probe (HANNA Instruments, HI 3220). 
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Table 4.1 Summary of protein content and pH of BALF used for experiments. 

 

 

BALF from 8 healthy patients and their corresponding total protein concentrations (41 – 

192 µg/mL) were obtained by Andrew J. Ghio (EPA/UNC Chapel Hill). Alb and Tf 

concentrations in BALF were estimated to range from (20 – 100) µg/mL and (3 – 13.5) µg/mL 

respectively. These ranges were estimated by assuming that total BALF protein concentrations 

are composed of 50% and 7% Alb and Tf respectively.41 Data for total protein content, estimated 

Alb/TF concentrations and pH of BALF used are shown in Table 4.1. 

4.2.2 Cleaning Protocol and Stock Solutions 

In order to avoid contamination a rigorous cleaning protocol was adapted from Kuang et 

al. (2017).206 2 mM stock solutions of FeSO4 are prepared a pH 3.5 solution and diluted to 20 

µM daily. 1 mg/mL stock solutions of SRFA are prepared in saline solution and refrigerated for 

up to a month between uses. 100 mM terephthalate solutions are prepared in saline solution and 

are refrigerated for up to a month. 1 mM stock solutions of hTA were prepared in DI water and 

refrigerated in the dark. pH 6.5 saline solutions (0.9%) are prepared by combining 9 g NaCl in 1 

BALF 
# Date Collected pH 

Total Protein 
(µg/mL) 

Estimated Albumin 
(µg/mL) 

Estimated 
Transferrin 
(µg/mL) 

3 10/3/2016 6 132 66 9.24 

4 10/31/2016 6 140 70 9.8 

5 12/2/2016 6 192 96 13.44 

6 9/19/2016 6.3 124 62 8.68 

7 9/2/2016 5.8 157 78.5 10.99 

8 11/7/2016 6.1 130 65 9.1 

10 9/26/2016 4.7 136 68 9.52 

11 12/5/2015 6.2 128 64 8.96 
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L of milli-Q water (18 MΩ). The pH is adjusted by adding drops of 0.1 M NaOH and measured 

using a pH probe (HANNA Instruments, HI 3220). 

4.2.3 OH Generation from Fe(II) and SRFA-Fe(II) in BALF 

To probe SRFA-Fe(II) mediated-OH formation in BALF, 10 mM terephthalate, SRFA (0, 10, 20, 

30, 40, 50 µg/mL), 200 µM Asc and 1 µM FeSO4 were added to BALF. Samples are prepared at 

a final volume of 1 mL in 1.5 mL microcentrifuge tubes. FeSO4 was added immediately prior to 

analysis and measurements are made after 2 hours of incubation at 37OC +/- 0.5. The Fe(II) 

concentration was chosen to match he lower range of clinical NTBI concentrations ([Fe] = 1 – 10 

µM).207 

4.2.4 Quantification of OH Radicals with the Terephthalate Probe  

OH radicals react with terephthalate to produce the fluorescent 2-hydroxyterephthalate 

(hTA) molecule with a pH dependent yield.111, 208 Fluorescence of hTA is measured at 320 

nm/420 nm wavelengths using a Lumina fluorescence spectrometer (Lumina Thermo Scientific). 

50-800 nM hTA calibration curves were prepared daily either in DI water (pH 5.5) or in a pH 6.5 

NaCl solution (0.9% saline), depending on which solution is used for the day of the experiment. 

There were no significant differences in hTA calibration slopes prepared in pH 5.5 DI water, pH 

5.5 saline and pH 6.5 saline. For experiments in BALF, a calibration curve in pH 5.5 DI water is 

used with pH specific yield of hTA to calculate OH concentrations.  

The native fluorescence of SRFA interferes with measurements of hTA but this effect is 

negligible at [SRFA] = 5 µg/mL.34 Samples containing SRFA were diluted to 5 µg/mL before 

measurements. hTA calibrations containing 5 µg/mL SRFA were used to calculate OH 

concentrations from samples containing SRFA. 
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4.2.5 Impact of Albumin and Transferrin on Fe(II) and SRFA-Fe(II) Mediated OH 

Formation 

To investigate the interplay between Alb, Tf and SRFA with respect to their impact on 

Fe-mediated OH generation, SRFA (0, 10, 20, 30 µg/mL), 1 µM FeSO4 and 200 µM Asc were 

combined in a 0.9% saline solution with or without Alb and Tf.  Three sets of experiments were 

performed: (1) SRFA, FeSO4 and Asc in saline solutions. Blanks consisted of (Asc) or (SRFA + 

Asc) absent of Fe(II)  (2) SRFA, FeSO4 and Asc combined in saline solutions containing only 

Alb. Blanks consisted of (Asc + Alb) or (Asc + Alb + SRFA) absent of Fe(II). (3) SRFA, FeSO4 

and Asc in solutions containing Alb and Tf at a fixed [Alb]/[Tf] ratio of 7.14.41 Blanks consisted 

of (Asc + Alb + Tf) or (Asc + Alb + Tf + SRFA) absent of Fe(II) . A full summary of blanks, 

samples and concentrations of reagents are shown in Table 4.2. 

Table 4.2. Summary of reagents used for different experiments. 
Experiment Samples Blanks [Asc] 

µM 

[Fe(II)] 

µM 

[SRFA] 

µg/mL 

[Alb] 

µg/mL 

[Tf] 

µg/mL 

1 Asc, FeSO4, SRFA Asc, SRFA 200 1 0 ,10, 20, 

30 

  

2 Asc, FeSO4, Alb, 

SRFA 

Asc, Alb, SRFA 200 1 0 ,10, 20, 

30 

20-500  

3 Asc, FeSO4, Alb, Tf, 

SRFA 

Asc, Alb, Tf, 

SRFA 

200 1 0 ,10, 20, 

30 

20-500 2.8-70 

 

 In all experiments, components were added in sequential order as saline solution, 

terephthalate, Alb, Tf, and SRFA. FeSO4 immediately prior to incubation. Triplicate blanks and 
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samples were prepared in 1.5 mL microcentrifuge tubes with a final volume of 1 mL followed by 

incubation at 37oC for 2 hours before measurement. Experiments were carried out in pH 5.5 and 

pH 6.5 saline in order to capture the pH range observed in BALF (pH = 4.7 – 6.4, Table 4.1).  

4.2.6 Kinetic Analysis of OH Generation from Fe(II), Alb-Fe(II) and SRFA-Fe(II) in pH 5.5  

We performed time dependent measurements of OH generation from individual and 

combinations of Fe(II), SRFA, and Alb in pH 5.5 saline to estimate rate constants of O2
- 

formation (k1, k6 and k9). First, individual systems of Fe(II), Alb-Fe(II) and SRFA-Fe(II) with 

200 µM Asc were probed for OH generation kinetics over two hours. From this data we 

estimated k1, k6 and k9 individually. We then performed experiments measuring of two hour 

[OH] from the combination of Fe(II), SRFA, Alb and 200 µM Asc in pH 5.5 saline at 37OC and 

developed a kinetic equation to predict OH generation. 

4.3 Results and Discussion 

4.3.1 Individual Impact of Alb and Tf on Fe(II) Mediated OH Generation  

        Figure 4.1 shows [OH]2hr as a function of [Alb] for 1 µM Fe(II) and 200 µM Asc in pH 5.5 

saline solution. Intercepts indicate [OH]2hr from Fe(II) absent of proteins. The addition of Alb 

alone enhances [OH]2hr by Fe(II) from 160 nM to a maximum of 590 nM ([Alb] = 500 µg/mL) in 

a nearly linear manner (Figure 4.1 blue circles).  
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Figure 4.1. [OH]2hr as a function of [Alb] from pH 5.5 solutions containing Fe(II) and Alb (blue 

circles) and Fe(II), Alb and Tf (orange) Samples containing Tf had a fixed [Alb]:[Tf] of 7.1. The 

orange triangles indicate [OH]2hr from Fe(II) as a function of [SRFA] in pH 5.5 (secondary axis).   

 

Relative to inorganic Fe(II) alone, Alb and Tf together, in their physiological ratio of 7.14 

([Alb]:[Tf]), enhanced [OH]2hr from 160 nM up to 432 nM when [Alb] = 500 µg/mL and [Tf] = 

70 µg/mL (Figure 4.1, green squares). However, this enhancement plateaus when [Alb] = 300 

µg/mL and [Tf] = 42 µg/mL. Similar behavior is observed at pH 6.5, as Alb and Tf linearly 

increased [OH]2hr by Fe(II) from 191 nM to by maximum of 653 nM when [Alb] = 500 µg/mL 

and [Tf] = 70 µg/mL (Figure 4.2, blue circles). Tf on its own did not show any ability to enhance 

OH generation in the1 µM Fe(II) in pH 5.5 solution suggesting that Alb is responsible for OH 

enhancement from Fe(II). This enhancement in OH generation is likely due to the ability of Alb 

to chelate Fe and enhance Fe(II) oxidation as suggested by Xu et al. (2008).58 Tf potentially 

attenuates the enhancement OH generation by Alb-Fe(II) (Figure 4.1 green curve). This could be 

due to the ability of Tf to bind Fe(III) species and form complexes that cannot be reduced by 

Asc, effectively removing Fe species from being redox cycled by R4.1-R4.4.39, 59, 61, 62  
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Figure 4.2.  2 hour [OH] generation from 1 µM Fe(II) in solutions containing Alb and Tf (blue 

circles) and solutions containing Alb, Tf and SRFA (Orange circles and grey squares) in pH 6.5 

saline. Data points indicate average of three measurement and error bars indicate range of 

measured values. Solid lines indicate best fit curves through experimental data. 

4.3.2 SRFA-Fe(II) Mediated OH Generation 

           For pH 5.5 solutions containing SRFA-Fe(II), SRFA enhanced [OH]2hr from 160 nM 

when [SRFA] = 0 µg/mL up to 1494 nM OH when [SRFA] = 30 µg/mL (Figure 4.1, orange 

triangles). Time dependent measurements in Figure 4.3 show that Fe(II) and SRFA-Fe(II) 

systems in pH 5.5 linearly produce OH over two hours. SRFA enhanced the rate OH generation 

from 1 µM Fe(II) from 1.37 nM/min to a maximum of 12.6 nM/min at [SRFA] = 30 µg/mL 

(Figure 4.3, slopes). Similarly in pH 6.5, 10 µg/mL SRFA enhanced the initial rate of OH 

generation by 1 µM Fe(II) from 3.90 nM/min to 8.42 nM/min (Figure 4.4), although OH 

generation in pH 6.5 is not completely linear over the entire two hours of measurement. 
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Figure 4.3.  Kinetics of OH generation from 1 µM Fe(II) (blue) and Fe(II) + SRFA (Orange 

squares, grey diamonds and yellow triangles) with 200 µM Asc in pH 5.5 Saline. T = 37OC. Data 

points indicate average of three measurements and error bars are range of measured values. 

Curves indicate best fit curve through experimental data. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.  Kinetics of OH generation from 1 µM Fe(II) (blue diamonds) and 10 µg/mL SRFA 

(orange circles) in pH 5.5 Saline. T = 37OC. Data points indicate average of three measurement 

and error bars indicate range of measured values. Solid lines indicate best fit curves through 

experimental data. The open circle indicated a single measurement.  
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Initial rates for OH generation from Fe(II) and are 2.8X higher in pH 6.5 (3.90 nM/min) than in 

pH 5.5 (1.37 nM/min). OH generation rates for Fe(II) and [SRFA] = 10 µg/mL are moderately 

higher in pH 6.5 (8.42 nM/min) than in pH 5.5 (6.84 nM/min). SRFA enhanced [OH]2hr by Fe(II) 

from 191 nM up to 1796 nM when [SRFA] = 30 µg/mL in pH 6.5 (Fig 4.2, intercepts). We did 

not measure kinetic data for 1µM Fe(II) and 30 µg/mL SRFA in pH 6.5. These results suggest 

that SRFA significantly enhances OH generation from Fe(II) in both pH 5.5 and 6.5, with a 

moderately higher enhancement in pH 6.5. 

4.3.3 Impact of Albumin and Transferrin on SRFA-Fe(II) Mediated OH Generation 

          Figures 4.5 and 4.2 show [OH]2hr as a function of [Alb] concentration from 1 µM Fe(II) 

and varying [SRFA] with and without Alb and Tf in their physiological ratios ([Alb]:[Tf] = 7.14) 

in pH 5.5 and pH 6.5 respectively. 

 

 

 

 

 

 

 

 

 

Figure 4.5.  2 hour [OH] generation as a function of albumin concentrations from 1 µM Fe(II) 

and varying amounts Alb, Tf  and SRFA (Orange diamonds, grey triangles and yellow squares) 

in pH 5.5 saline. Samples containing Alb and Tf had a fixed [Alb]:[Tf] of 7.14. Data points 

indicate average of three measurements and error bars are range of measured values. Curves 

indicate best fit curve through experimental data. 
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 In pH 5.5, Alb and Tf moderately decreases [OH]2hr from 10 µg/mL SRFA and 1 µM Fe(II) with 

increasing protein concentrations, from [OH]2hr = 795 nM absent of proteins to a minimum of 

586 nM OH around [Alb] = 200 µg/mL. When [SRFA] = 20 µg/mL, Alb and Tf decreased [OH]-

2hr by Fe(II) from 1212  nM to a minimum of 765 nM when [Alb] = 200 µg/mL and [Tf] = 28 

µg/mL. When [SRFA] = 30 µg/mL, Alb and Tf decreases [OH]2hr by Fe(II) from 1494 nM to a 

minimum of 868 nM when [Alb] = 200 µg/mL and [Tf] = 28 µg/mL. Curiously in all cases, 

increasing protein concentrations beyond [Alb] = 200 µg/mL slightly increases [OH]2hr for 

samples in pH 5.5. In contrast to the decreases in [OH]2hr observed for pH 5.5, in pH 6.5 Alb and 

Tf increased [OH]2hr by 10 µg/mL SRFA + 1 µM Fe(II) from 647 nM to a maximum of 1128 

when [Alb] = 500 µg/mL and [Alb] = 70 µg/mL (Figure 4.2, Orange Squares), in a linear 

fashion. When [SRFA] = 30 µg/mL, Alb and Tf decreases [OH]2hr generation from 1796 nM to a 

minimum of 1175 nM OH at [Alb] = 200 µg/mL. Increasing protein concentrations beyond this 

slightly increases [OH]2hr, as was observed for pH 5.5. 

To analyze data from these various systems, we define a quantity called the “SRFA 

Enhancement Factor” (EFSRFA) which is the ratio of two hour OH generation from the SRFA-

Fe(II) system to the Fe(II) system in the particular solution being investigated (Eqn. 4.1). EFSRFA 

is used to understand OH generation trends arising from interactions of SRFA, Alb, and Tf with 

Fe(II). 

                               𝑬𝑭𝑺𝑹𝑭𝑨 =  
[𝑶𝑯]𝟐𝒉𝒓,𝑭𝒆(𝑰𝑰)+𝑺𝑹𝑭𝑨

[𝑶𝑯]𝟐𝒉𝒓,𝑭𝒆(𝑰𝑰)
    (Eqn. 4.1) 

Using a rate limiting approximation we derived an expression for EFSRFA using appropriate 

binding constants k4.1, k4.6 and k4.9 (Eqn. 4.2). Predictions from Eqn. 4.2 are compared to 
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experimental data to test the validity of the rate limiting approximation and estimated rate 

constants. SRFA-Fe(II) binding is defined by a single carboxylate binding site with a βSRFA-Fe(II) 

= 9.5 x 103 M-1  (Visual MINTEQ 3.1). Alb-Fe(II) binding is described by a single Fe(II) binding 

site with a βAlb-Fe(II) = 2.0 x 104 M-1 as determined by Duff et al. (2009)198 (pH 6.4, 25OC). 

[SRFA] and [Alb] are calculated by using molar masses of 750 g/mol and 66.5x103 g/mol 

respectively.  

[𝑶𝑯]𝟐𝒉𝒓,𝑭𝒆(𝑰𝑰)+𝑨𝒍𝒃+𝑺𝑹𝑭𝑨

[𝑶𝑯] 𝟐𝒉𝒓,𝑭𝒆(𝑰𝑰)+𝑨𝒍𝒃
= 𝟏 +  

(
𝒌𝟗𝜷(𝑺𝑹𝑭𝑨−𝑭𝒆)

𝒌𝟏
)[𝑺𝑹𝑭𝑨]

𝟏+(
𝒌𝟔
𝒌𝟏

 −𝟏)𝜷(𝑨𝒍𝒃−𝑭𝒆)[𝑨𝒍𝒃]
   (Eqn. 4.2) 

          Figure 4.6 and 4.7 shows EFSRFA as a function of total protein mass for solutions 

containing Fe(II), SRFA, Alb and Tf in pH 5.5 and pH 6.5 respectively.  

 

 

 

 

 

 

 

 

Figure 4.6 Enhancement factor (EFSRFA) of the solution containing SRFA, Fe(II), Alb and Tf 

relative to the solution with Fe(II), Alb and Tf as function of [Alb] in pH 5.5 ([Alb]:[Tf] = 7.14 

in all samples). Intercepts indicate enhancement of OH from Fe(II) by SRFA absent of proteins. 

Data points indicate average of three measurement and error bars indicate error propagation 

values. Solid lines indicate best fit curves through experimental data. 
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Figure 4.7 Enhancement factor (EFSRFA) of the solution containing SRFA, Fe(II), Alb and Tf 

relative to the solution with Fe(II), Alb and Tf as function of [Alb] in pH 6.5 ([Alb]:[Tf] = 7.14 

in all samples). Intercepts indicate enhancement of OH from Fe(II) by SRFA absent of proteins. 

Data points indicate average of three measurement and error bars indicate error propagation 

values. Solid lines indicate best fit curves through experimental data. 

 

Intercepts indicate EFSRFA due to SRFA-Fe(II) interactions absent of proteins. In pH 5.5 saline, 

the presence of 10, 20 and 30 µg/mL SRFA absent proteins enhances increases [OH]2hr from 1 

µM Fe(II) by an EFSRFA of 4.7, 7.6 and 9.3 respectively (Figure 4.6 intercepts). Increasing the 

concentration of Alb and Tf reduces EFSRFA to a minimum of 2, 2.1 and 2.5 for 10, 20 and 30 

µg/mL SRFA respectively. In pH 6.5, 10, and 30 µg/mL SRFA enhances [OH]2hr from 1 µM 

Fe(II) by 3.3, and 9.2 respectively (Figure 4.7 intercepts). Increasing the concentration of Alb 

and Tf reduces EFSRFA to a minimum of 1.7 and 2.0 for 10 and 30 µg/mL SRFA respectively 

(Figure S5). For [SRFA] = 10 µg/mL, EFSRFA is 42% higher in pH 5.5 (EFSRFA = 4.7) than in pH 

6.5 (EFSRFA = 3.3), whereas EFSRFA are nearly identical at both pH 5.5 and 6.5 at [SRFA] = 30 

µg/mL. 
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        Figure 4.8 show the EFSRFA as a function of the SRFA:Protein mass ratio for all OH 

measurements from Fe(II), Alb, Tf and SRFA in pH 5.5 and pH 6.5. For both curves, intercepts 

are forced through 1 as shown by Equation 2 when [SRFA] = 0 µg/mL. In pH 5.5 saline, 

increasing SRFA enhances [OH]2hr from 1 µM Fe(II) by up to an EFSRFA of 9.3 when the 

SRFA:Protein mass ratio is 1.3 (Figure 4.8 blue curve).  In pH 6.5 saline, the SRFA 

enhancement ratio plateaus at an EFSRFA  of 7.2 when the SRFA:Protein mass ratio is 0.66 (Figure 

4.8 red curve). The increase in EFSRFA with increasing SRFA:Protein indicates that SRFA is 

capable of enhancing OH generation. This is likely due to the ability of SRFA to competitively 

chelate Fe species from Alb and Tf and form complexes that are more ROS active than Fe bound 

to Alb or Tf. The Fe binding capacity of Tf increases with increasing pH, reaching full binding 

capacity at pH > 7.4. 59, 60 This is likely due to deprotonation of tyrosine residues that induce 

conformational changes favoring Fe(III) binding.199, 201  

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Enhancement factor (EFSRFA) of the solution containing SRFA, Fe(II), Alb and Tf 

relative to the solution with Fe(II), Alb and Tf as function of SRFA:(Alb + Tf) ratio in pH 5.5 

and pH 6.5 saline. Data points indicate average of three measurements and error bars error 

propagation values. Curves indicate best fit curve through experimental data. 

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4
SRFA:(Albumin + Transferrin) Mass Ratio

pH 5.5

pH 6.5



 

75 
 

Thus, Tf would is a more efficient Fe chelator at pH 6.5 than in pH 5.5. The EFSRFA plateau 

observed in pH 6.5 is likely due to the enhanced ability of Tf to chelate Fe(III) with increasing 

pH.59 Thus at pH 6.5, Tf likely removes Fe species from being redox cycled by Asc to a greater 

degree than in pH 5.5, potentially accounting for the higher EFSRFA in pH 5.5 solutions. To probe 

this behavior further, we investigate the OH generation kinetics of Fe(II), Alb-Fe(II) and SRFA-

Fe(II). 

4.3.4 Kinetics of OH Generation from Fe(II), Albumin-Fe(II) and SRFA-Fe(II)   

         We investigated the individual impact of SRFA, Alb and Tf on Fe(II) mediated OH 

generation and estimated rate constants for k1, k6 and k9 from kinetic and [OH]2hr data. Briefly, 

we assume that Asc quickly reduces any Fe(III) species, so that [Fe(II)] is essentially constant. In 

all cases we assume that reduction of O2 by Fe(II) and the following reactions of O2
- and H2O2 

are the dominant source of OH (R4.1, R4.6, R4.9). From these assumptions we derive rate 

equations that can be used to calculate rate constants from time dependent [OH] data and binding 

constants. Rate constants estimated using this analysis and binding constants used are shown in 

Table 4.3. 

Table 4.3. Summary of estimated rate constants from different experimental systems with 

200µM Asc in pH 5.5 saline, T = 37OC. Binding constants used were βAlb-Fe(II)  = 2.0×104 M-1 

from Duff et al. (2009) and βSRFA-Fe(II) = 9.5×103 M-1 from Visual MINTEQ 3.1. 

Reaction  Binding Constant (M-1) Rate Constant (M-1s-1) 

k4.1 Fe(II) + O2  (10.0 ± 0.1)×10-2 

k4.6 Alb-Fe(II) + O2 2.0×104 (1.8 ± 0.1) 

k4.9 SRFA-Fe(II) + O2 9.5×103 (2.7 ± 0.3) 
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         The blue curve in Figure 4.3 shows the kinetics of OH generation from 1 µM Fe(II) in pH 

5.5 saline absent of any chelators. Over two hours, OH is generated linearly at a rate of 1.37 

nM/min. Absent of external H2O2, Fe(II) mediated OH formation is rate limited by on the 

reaction of Fe(II) with O2 (R4.1) since O2
- must be converted to H2O2 (R4.2) before OH 

formation occurs (R4.3).34  Thus we assume that the rate limiting step for this system is R1 and 

from data in figure 2 we determined that k4.1 = (10.0 ± 0.1) ×10-2  M-1s-1. This is in good 

agreement with Jones et al. (2014)209 who reports a k4.1 of 9×10-2 M-1s-1 at pH 5.5 (T = 25oC) and 

comparable to a k4.1 = .111 M-1s-1 reported by Pham et al. (2008)156 at pH 6.0 (T = 25oC and 0.1 

M ionic strength). 

 

 

 

 

            

 

 

 

Figure 4.9.  Ratio of [OH]2hr from the solution containing 1 µM Fe(II) + Alb to [OH]2hr to the 

solution containing from 1 µM Fe(II) system. in pH 5.5 Saline, T = 37OC, 200 µM Asc. Data 

points indicate average of three measurement and error bars error propagation values. Solid lines 

indicate best fit curves through experimental data 
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             Figure 4.9 shows the ratio of [OH]2hr generated from the Alb-Fe(II) system to the Fe(II) 

system as a function of [Alb]. Assuming that R4.6 (Alb-Fe(II) + O2) is the rate limiting for this 

system we determined k4.6 = (1.8 ± 0.1) M-1s-1 from data in Figure 4.9. These results suggest that 

Alb chelates inorganic Fe(II) and enhances the rate constant of R4.1 by a factor of 18. To our 

knowledge, this is the first estimation for the rate constant of Alb-Fe(II) mediated O2
- formation 

(k4.6). This characterization of Alb-Fe(II) binding supports a non-specific carboxylate-Fe(II) 

binding site on Alb proposed by Duff et al. (2009).198  The ROS generation from Alb-Fe(II) is 

consistent with carboxylate binding interactions. Carboxylate groups are known to chelate Fe 

species, resulting in a lower reduction potential that enhances Fe mediated ROS generation 

(R4.1-R4.4).45, 210  

         In a similar manner, we determined the rate constant of SRFA-Fe(II) mediated O2
- 

generation k4.9 = (2.7 ± 0.3) M-1s-1 from data in Figure 4.3, indicating that SRFA enhanced the 

rate of O2
- formation (R4.1) by a factor of 25. This is comparable to our previous work where we 

reported that k4.9 = 5.1 M-1 s-1 for SLF containing Asc, GSH, UA and citrate at pH 7.2-7.4 (T = 

25oC). 34 The lower k9 determined in this work is likely due to the protonation of carboxylate 

groups on SRFA at lower pH, reducing the ability of SRFA to chelate Fe(II) consistent with a 

general decrease in k9 with decreasing pH observed in other studies.91, 211 However, we could 

only find one study that determined k9 at pH 5.5. Jones et al. (2015)211 determined that k4.9 = 

0.02 M-1s-1 based off of the disappearance of Fe(II) species over 28 hours using a phenanthroline 

ligand method. However, the system investigated by Jones et al. (2015)211 had no reducing 

agents and used significantly higher concentrations of SRFA (103 µg/mL) and Fe(II) (1 mM) 

than our system of 10 µg/mL SRFA and 1 µM Fe(II). Such a dramatic difference in [SRFA] and 
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[Fe(II)] significantly influences SRFA-Fe(II) speciation. Jones et al. (2015)211 used MINTEQ 

speciation modeling and determined that Fe(II) occupied the carboxylate and phenolate SRFA 

binding sites in a roughly 5:4 ratio. In contrast, MINTEQ speciation modeling determined that all 

Fe(II) was bound to the carboxylate binding sites on SRFA for our system of 1µM Fe(II) and 10 

µg/mL SRFA (data not shown). Furthermore, out measurements are based on OH generation of 

two hours whereas Jones et al. (2015)211  based their calculations on Fe(II) disappearance over a 

significantly longer time scale (28 hrs.). Thus, the factor of 135 difference between our k4.9 and 

that of Jones et al. (2015)211 may be due to dramatic differences in reagent concentrations and a 

significantly different time scale use to model this chemistry.  

 

 

 

 

 

 

 

Figure 4.10. Enhancement factor (EFSRFA) as a function of [Alb] from a system combining 1µM 

Fe(II), 10 µg/mL SRFA, Alb and 200 µM Asc pH 5.5 (T = 37OC). Blue data points indicate 

average of three measurements and error bars indicate error propagation values. Solid blue line 

indicates predicted EFSRFA using Equation 2. 

          To test the validity of the rate limiting approximation and estimated rate constants, we 
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4.10, data points). Using Eqn. 4.2 and rate constants in Table 1 we predict EFSRFA and compare to 

experimental results (Figure 4.10, solid line). Both experimental data and Eqn. 4.2 predictions 

show that the presence of Alb decreases EFSRFA with increasing [Alb]. The prediction of EFSRFA 

for the combination of Fe(II), Alb, SRFA and Asc agrees well with experimental data for [Alb] = 

0 – 1.5 µM but beyond this overpredicts SRFA enhancement ratio by a factor of 1.4 and 1.7 

when [Alb] is 4.5 µM and 7.5 µM respectively. Experimental data shows that SRFA enhances 

two hour [OH] from Fe(II) by a factor of (4.7 ± 0.8) (Figure 4.10 intercept) which is in excellent 

agreement with the predicted EFSRFA of 4.4 predicted by Eqn. 4.2 These results indicate that the 

rate limiting approximation is reasonably valid under our experimental conditions.  

            We propose that, Alb is capable of mobilizing Fe(II) away from SRFA and thereby 

decreasing the rate O2
- and ultimately OH generation. However, in order to form OH, the 

formation of O2
- by Fe(II) must be followed by the formation and destruction of H2O2.

34, 204, 210 It 

is likely that Alb enhances the ability of Fe(II) to form and oxidize H2O2 but this is not explicitly 

investigated in this work. To determine the relevance of these results in physiological lung lining 

fluid, we compare results to measurements of [OH]2hr from Fe(II) and SRFA-Fe(II) in BALF. 
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4.3.5 OH Formation from SRFA-Fe(II) in BALF + Ascorbate  

  

 

 

 

 

 

 

Figure 4.11. [OH]2hr from 1 µM Fe(II) + 200 µM Asc dissolved in different BALF (n = 8, T = 

37OC, pH = 4.7-6.3) as a function of [SRFA]. Data points indicate average of three 

measurements and error bars indicate range of values.  

          Figure 4.11 shows two hour [OH] as a function of [SRFA] for combinations of Fe(II), 

SRFA and 200 µM Asc in BALF (n = 8). Asc is added to all BALF in order to account for 

dilution of antioxidants during the lavage procedure as done by Sun et al. (2001).24 Absent of 

SRFA, all BALF with 1 µM added Fe(II) [OH]2hr from 124 nM (BALF 4) to 330 nM (BALF 6) 

with an average of 220 nM. To our knowledge, these are the first measurements of OH from 

Fe(II) in BALF, but we have investigated similar systems in SLF. The range of [OH]2hr = 124 

nM to 330 nM from 1 µM Fe(II) is significantly lower [OH]2hr = 1094 nM observed for the same 

system in SLF.34 This dramatic differences in OH produced is likely due to the presence of 

citrate that forms complexes with Fe(II) that enhance ROS reactions forming OH. 34 BALF 

contains Alb and Tf which alter Fe(II) mediated ROS chemistry in a different manner than 
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citrate, indicating that citrate is not a good mimic for metal binding proteins found in lung lining 

fluid.  

           The addition of SRFA enhanced two hour [OH] from 1 µM Fe(II) approximately linearly 

with [SRFA] for all BALF (Figure 4.11). To our knowledge, these are the first measurements of 

SRFA-Fe(II) mediated OH generation in BALF but we have investigated similar systems in 

SLF.34 For [SRFA] = 10 µg/mL and 1 µM Fe(II)  in BALF, [OH]2hr ranged from 421 nM to 895 

which is lower than [OH]2hr = 1683 nM we reported for the same system in SLF.34 When 

[SRFA] = 20 µg/mL, [OH]2hr ranged from 642 nM to 1479 in BALF which is lower than [OH]2hr 

= 1793 nM we reported for the same system in SLF. OH measurements in BALF varied by 

roughly a factor of 2, possibly reflecting the differences in proteins, phospholipids and 

antioxidants concentrations we were unable to quantify amongst the different BALF. Aside from 

the of metal binding proteins that alter ROS chemistry, phospholipids and proteins can scavenge 

OH and potentially impact our measurements. However, since we were unable to quantify the 

absolute concentrations of proteins and phospholipids in BALF, we cannot quantify this effect. 

The higher values previously observed for the 1 µM Fe(II)  and SRFA-Fe(II) systems in SLF is 

likely due to the high pH of 7.2-7.4 which is generally associated with faster ROS generation 

from SRFA-Fe(II) than in pH 5.5.34, 91, 211 
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Figure 4.12.  Enhancement factor (EFSRFA) as a function of SRFA:Protein mass ratio from 

solutions containing 1 µM Fe(II) relative to solutions containing 1 µM Fe(II)  and varying SRFA 

in BALF (red circles and solid line) pH 5.5 saline (blue dashed circles), pH 6.5 saline (green 

dashed line). Red data points indicate average of three measurements in BALF and error bars 

indicate propagated error values. Solid lines are best fit curves through experimental data. Data 

for best fit lines from pH 5.5 and pH 6.5 systems are shown in Figure 4.8. 

             Figure 4.12 shows the EFSRFA  as a function of SRFA:Protein mass ratio for all 

measurements of Fe(II) and SRFA-Fe(II) in BALF, pH 5.5 and pH 6.5 saline. Alb and Tf 

concentrations in BALF were estimated by assuming that Alb + Tf composed 57% of the total 

protein mass. The best fit line from EFSRFA from 1 µM Fe(II), SRFA, Alb and Tf in pH 5.5 and 

6.5 are shown in the blue and green curves respectively. The red curve indicates best fit line 

through all measurements of OH generation from Fe(II) and SRFA-Fe(II) in BALF and indicate 

a decent correlation (R2
 = 0.5). EFSRFA data from measurements on BALF correlate reasonably 

well with solutions of Fe(II), SRFA, Alb and Tf in pH 5.5 and 6.5. This suggests that Alb and Tf 

play an important role in reducing OH generation that arises from SRFA-Fe(II).  
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           This work suggests both Alb and Tf can mobilize Fe species from SRFA-Fe(II) binding. 

We propose that Alb can chelate Fe(II) away from SRFA and forms a complex that is less ROS 

active, yet interestingly possess an ability to enhance OH generation relative to inorganic Fe(II) 

alone. Tf likely chelates transient Fe(III) species produce during Fe(II) oxidation and results in 

Fe(III) complexes that are resistant to reduction by Asc, thus inhibiting R4.1-R4.4. To our 

knowledge this is the first characterization of ROS generation kinetics arising from interactions 

of Alb and Tf with Fe(II) in the presence of Asc. Furthermore, we report the first measurements 

OH generation from Fe(II) and SRFA-Fe(II) in BALF which more realistically represent human 

lung lining conditions. 
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5. Spectroscopic Characterization of HULIS from Woodsmoke and Cigarette Smoke 

Condensate    

5.1 Introduction 

Humic-like substances (HULIS) are a mixture of water soluble complex, organic, 

macromolecular compounds that have been identified in fog, cloud water, biomass burning 

aerosol and cigarette smoke.71, 88, 212-215  HULIS are thought to play a role in the inhalation 

toxicity of cigarette smoke and wood smoke particles, but this role is not well defined.88, 216, 217 

The toxic properties of HULIS may result from their high content of oxygenated functional 

groups (ketones, carboxylates and phenolates) that form stable complexes with transition metals, 

in particular with Fe.88, 217-221 The ability of HULIS to chelate Fe has been associated with 

reactive oxygen species (ROS) generation under physiological conditions 34, 87, 88 and functional 

deficiency of cellular Fe that leads to transcription factor activation and release of 

proinflammatory mediators and tissue injury.205, 216 HULIS derived from biomass burning has 

been associated with significantly higher optical absorption and ROS activity in simulated lung 

fluids relative to HULIS formed from atmospheric processing,109 although this has not been 

explicitly distinguished in the literature.  

Two studies used FTIR spectroscopy to identify HULIS in cigarette smoke condensate 

and lung tissues of smokers and coal miners.87, 88 HULIS in the lung tissues of smokers has 

shown to produce ROS, accumulate Fe and induce collagen deposition, suggesting that HULIS-

Fe binding plays a significant role in lung injury from PM inhalation. Ghio et al. (1994)88 

showed that cigarette smoke-derived HULIS introduced into the lungs of an animal model is 

phagocytosed and leads to intracellular accumulation of Fe. Ghio et al. (2015)216 exposed the 

water soluble fraction of wood smoke particles to BEAS-2B epithelial lung cells and observed 



 

85 
 

increased cellular ROS generation, sequestration of mitochondrial Fe, mitogen-activated protein 

kinase activation, NrF2 transcription activation and release of interleukin-6 and interleukin-8 

proinflammatory mediators.216 The authors hypothesized that these effects were due to 

endocytosis of HULIS found in woodsmoke particles; suggesting the introduction of HULIS 

chelates cellular Fe, causing a functional Fe deficiency and inducing a cascade of 

proinflammatory events that may manifest as lung injury.216 Ghio et al. (2017)205 suggests that 

HULIS mediated disruption of cellular Fe homeostasis is a common step for pulmonary and 

systemic health effects arising from exposure to cigarette smoke, biomass burning aerosols and 

ambient urban PM. These studies highlight the importance of the ability of HULIS to bind Fe 

and induce determinantal health effects, suggesting characterization of HULIS is important for 

PM health studies.   

HULIS derives its name from its physical and chemical similarities to terrestrial and 

aquatic humic acids (HA) and fulvic acids (FA).71 Traditionally, soil humic substances have been 

extracted at alkaline pH  (pH  13-14), to separate it from an insoluble material, referred to as 

humin. Acidification of the alkaline extract to pH 1 produces a precipitant that is defined as the 

humic acid (HA) fraction and the remaining supernatant is the fulvic acid (FA) fraction.71 Thus 

the fractions of soil humic substances are operationally defined as humin (insoluble), HA 

(alkaline soluble) and FA (soluble at all pH). A variety of gel permeation chromatography 

methods have been developed to remove inorganic impurities and concentrate fractions of humic 

substances.71 Early studies on atmospheric HULIS have used alkaline extraction and gel 

permeation chromatography methods to study both the soluble and insoluble components.73-75 

Recent studies have focused on the water soluble fraction of ambient HULIS that by definition is 

more similar to FA.71 
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Spectroscopic characterization has revealed that HULIS shares numerous functional 

groups with HA and FA, including carboxylic and phenolic groups but HULIS generally has 

weaker acid characteristics, lower molecular weight and aromaticity and higher aliphatic 

character.71, 72 Fluorescence characterization of HULIS has been used to identify fluorophores 

that bear similarities to those in HA and FA.71, 72 Two distinct excitation/emission peaks (ex/em) 

have been identified in HULIS, a FA-like ex/em pair at 330-350 nm/420-480 nm and a HA-like 

ex/em pair at 250-260 nm/380-480 nm.222 HULIS from PM and fog water have shorter 

wavelength fluorescence peaks when compared to soil humic substances.77, 79 This has been 

attributed to a lower aromatic content and higher condensed conjugated bonds and aliphatic 

character in HULIS.77, 79 

FTIR spectroscopy is a useful tool for characterizing HULIS as it reveals information on 

organic functional groups. HA, FA and HULIS all share some similar FTIR peaks, yet some 

differences in HULIS have been identified.71, 72 Generally, these FTIR spectra reveal a broad 

absorption peak centered around 3300 cm-1, (O-H stretch from alcohols, phenols and carboxylic 

acids), 2960-2860 cm-1 (C-H stretch from aliphatic), 1720 cm-1  (C=O stretch mostly from 

carboxylic acids), 1600-1660 cm-1 (C=C stretch from aromatics and C=O stretches from 

conjugated carbonyls), a broad peak around 1400 cm-1 (C-H stretch aliphatics), 1220 cm-1 (C=O 

stretch and O-H bending from carboxylates) and a pair of peaks ranging from 2970-2840 cm-1 

and 3030 cm-1 (C-H stretch from aliphatics).75, 77, 78, 223 These peaks have also been identified in 

humic substances, and SRFA in particular has shown strikingly similar FTIR spectra to ambient 

HULIS extracts.78 No standard HULIS material exists, but due to the similarity functional 

groups, solubility and molecular weight71 several studies have used FA (usually Suwannee River 

Fulvic Acid) as a HULIS surrogate.34, 108, 204 However, HULIS samples have shown a relatively 



 

87 
 

strong discrete peaks at 1589 cm-1, 1280 cm-1 and 863 cm-1, indicating organic nitrate groups (R-

ONO2) that are not found in soil humic substances.78  

 In this work we use fluorescence and FTIR spectroscopy to characterize HULIS from 

cigarette smoke condensate and wood smoke particles. Spectroscopic characterization is 

performed on the water-soluble fraction of cigarette smoke condensate (Cig-WS), the water-

soluble fraction of wood smoke particles (Wood-WS) and Suwannee River Fulvic Acid (SRFA). 

Using a traditional alkaline extraction method, we isolate the FA fraction of HULIS from 

cigarette smoke condensate (Cig-FA) and wood smoke particle (Wood-FA). We then use 

fluorescence and FTIR spectroscopy to characterize Cig-FA and Wood-FA and compare it to 

their water-soluble counterparts and SRFA. Fluorescence excitation-emission matrix (EEM) and 

FTIR spectroscopy are used to compare fluorophores and organic functional groups present 

among the different samples. 

5.2 Materials Methods 

5.2.1 Isolation of Fulvic Acid Like Fraction of Cigarette Smoke and Wood Smoke 

Cigarette smoke condensate (Tobacco Health Research Institute, University of Kentucky) 

was employed in this study. Preparation from the mainstream smoke of burning Kentucky 

Reference 1R1 cigarettes was automated and has been previously described.224 Cig-WS was 

prepared by agitating 10 mg condensate in 1.0 mL Hank’s buffered saline solution for 2 hr, 

centrifugation of the suspension at 10000 G x 10 minutes, and separating the supernatant.   

Wood smoke was generated by heating white oak wood on an electric heating element 

(Brinkmann Corporation, Dallas, TX) in a Quadrafire 3100 woodstove (Colville, WA). Wood 

smoke particles were collected by bubbling it into 100% ethanol and this suspension was treated 
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in both a SpeedVac Concentrator (Savant, Life Technologies Corporation, Grand Island, NY) 

and a lyophilizer (Labconco, Fort Scott, KS). The elemental/organic carbon in the wood smoke 

particles was 0.004 ± 0.002 (Sunset Labs, Hillsborough, NC).225 Wood-WS was prepared by 

agitating 10 mg wood smoke particle/1.0 mL HBSS for 2 hr, centrifugation of the suspension at 

10000 G x 10 minutes, and separating the supernatant. 

To isolate the Cig-FA and Wood-FA, the alkaline extraction procedure commonly used 

to for isolate soil HA and FA is used. Briefly, Cig-WS and Wood-WS are brought to pH 13 using 

1 M NaOH and centrifuged at 10000 G x 10 minutes, separating the supernatant. The resulting 

supernatant was acidified to pH 1 using HCl and centrifuged at 10000 G x 10 minutes, separating 

the supernatant. This resulting Cig-FA and Wood-FA are brought to a pH of 5.5-6 using 1 M 

NaOH and then stored in a freezer (0oC) until analysis.  

5.2.2 Fluorescence and Fourier Transform Infrared Analysis of Materials 

Fluorescence excitation-emission matrix (EEM) scans are performed on all samples using 

a Lumina Spectrometer, (Thermo Scientific). Fluorescence excitation-emission matrix spectra 

covering λex = 250-700 nm and λem = 255-705 nm in 5 nm intervals at a scan speed of 60 nm/min 

were obtained. Fluorometer parameters included an excitation/emission slit size of 10 nm and an 

integration time of 10 ms.  Fluorescence analysis is performed on the aqueous solutions of Cig-

WS, Wood-WS, Cig-FA, Wood-FA and SRFA. 

FTIR scans are performed on Cig-FA, Wood-FA and SRFA using a UATR Two FTIR 

spectrometer (Perkin-Elmer). In order to minimize solvent interferences, Cig-FA and Wood-FA 

samples were evaporated to dryness with a gentle stream of N2 at room temperature. SRFA was 

analyzed as a solid, as received from IHSS. Nordic Fulvic Acid FTIR data is provided by 
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International Humic Substances Society (IHSS). In all fluorescence EEM spectra, the diagonal 

line across spectra is an instrument artifact due to Rayleigh scattering.226     

5.3 Results  

5.3.1 Fluorescence Excitation-Emission Matrix Spectra  

Figure 5.1 shows the fluorescence EEM spectra of 30 µg/mL aqueous SRFA and Nordic 

Fulvic Acid. SRFA shows two distinct fluorescence peaks centered at ex/em = (325-350) nm/460 

nm and ex/em = (320-325) nm/420 nm. Nordic Fulvic Acid has markedly different EEM features 

than SRFA, with two distinct fluorescence peaks centered at ex/em = 410 nm/470 nm and ex/em 

455 nm/(500-580) nm. The reasons for this are not known. 

 

 

 

 

 

 

 

 

Figure 5.1 Fluorescence excitation-emission matrices of SRFA Standard II (Left) and Nordic 

Fulvic Acid (Right) in H2O. 

The fluorescence EEM spectrum of Cig-WS and the Cig-FA are shown in Figure 5.2. 

Cig-WS was diluted to a final concentration of 5.4 µg/mL to avoid signal saturation and related 

red shifting of fluorescence contours. Cig-FA was diluted by 100×, but the mass concentration of 

Cig-FA is not known. Both Cig-WS and CSC-FA have very similar fluorescence EEM, with two 

sets of distinct peaks at ex/em = (340-355) nm/460 nm and ex/em = (325-350) nm/420 nm. 
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These peaks are similar to the fluorescence peaks observed for SRFA EEM (Fig. 5.1). This 

indicates that the bulk if not all of Cig-WS is composed of Cig-FA with fluorophores resembling 

those of SRFA. However, both CSC and CSC-FA EEMs (Fig. 5.2) have contours stretching into 

lower wavelengths, features not observed in SRFA EEM. This could be due to the presence of 

lower molecular weight substances with lower aromatic systems and unsaturated bonds, 

consistent with observations of ambient HULIS extracts.77, 79 

 

 

 

 

 

 

 

Figure 5.2. Excitation emission matrices of Cig-WS (Left) and Cig-FA (Right). 

The fluorescence EEM spectra for 5.4 µg/mL Wood-WS and Wood-FA are shown in 

Figure 5.3. Wood-FA was diluted by 50×, but the mass concentration is not known. The 

fluorescence EEM of Wood-WS and Wood-FA show strikingly different features (Figure 5.3). 

Wood-WS exhibits two peaks at ex/em = 410 nm/465 nm and ex/em = 455 nm/(515-550) nm, 

nearly identical to fluorescence features of Nordic Fulvic Acid (Figure 5.1). The Wood-FA 

fraction shows two distinct peaks at ex/em = (320-350) nm/(405-420) nm and ex/em = (345-355) 

nm/460 nm that resemble those of SRFA, Cig-WS and Cig-FA but have lower overall 

fluorescence intensity than Wood-WS. The differences in EEM features indicate that the 
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dominant fluorophores in Wood-WS are markedly different than the Wood-FA fraction. 

Interestingly, the Wood-FA fraction shows a third distinct peak centered at ex/em = 275 

nm/(300-320) nm not observed in Cig-WS, Cig-FA, SRFA or Nordic Fulvic Acid. This could be 

due to the presence of single oxygenated aromatic molecules, such as phenols and 

methoxyphenols, that are commonly associated with the water-soluble fraction of woodsmoke 

particles. Interestingly, none of the EEM exhibited the commonly reported HA-like ex/em pair at 

(250-260) nm/(380-480) nm.222 

 

 

 

 

 

 

 

Figure 5.3. EEM of WSP (Left) FA Fraction of WSP (right). 

5.3.2 FTIR spectra   

FTIR spectra of solid Cig-FA, Wood-FA and SRFA are shown in Figure 5.4A and 5.4B. 

Common FTIR absorbances and functional groups between Cig-FA, Wood-FA, SRFA, and 

Nordic Fulvic Acid are summarized in Table 5.1. All FTIR spectra exhibit several striking 

similarities. All samples have a broad peak near 3300-3400 cm-1 indicating O-H stretching in 

alcohols, phenols or carboxylates. Peaks centered near 2938-2975 cm-1 indicate C-H stretching 

from aliphatic groups. Another infrared absorption of interest is the peak at 1707-1727 cm-1 



 

92 
 

characteristic of C=O stretching from carboxylates and to a lesser degree ketones and 

aldehydes.77, 78 All samples have somewhat broad peaks centered around 1615 cm-1 indicating 

C=C stretching in aromatic rings and C=O stretches in conjugated carbonyl systems. However, 

Cig-FA has a discrete sharp peak at 1639 cm-1 that is somewhat overlaps with a broader peak 

around 1615 cm-1 (Figure 5.4A). This could be due to organic nitrates (R-ONO2) that absorb in 

the same region but typically have sharp and discrete peaks.227 Cig-FA, SRFA and Nordic Fulvic 

Acid all exhibit broad peaks centered near 1388-1403 cm-1 indicating C-H bending from aliphatic 

groups (Figure 5.4B); interestingly, this feature was absent in Wood-FA spectra. All samples 

have broad peaks centered near 1195-1211 cm-1 that have be attributed to C=O stretching and 

OH bending from carboxylic acids (Figure 5.4B).78 These FTIR features of Cig-FA and Wood-

FA are consistent with spectra of  HULIS isolated from ambient PM, 78 cigarette smoke 

condensate88  and water-soluble organic fraction of PM extracts.71, 75, 79, 81  
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Figure 5.4. FTIR Spectra of the fulvic acid fraction of wood smoke particles (Wood-FA), fulvic 

acid fraction of cigarette smoke condensate (Cig-FA) and Suwannee River Fulvic Acid (SRFA). 

 

Both Cig-FA and Wood-FA have peaks that are not seen in SRFA and Nordic Fulvic 

Acid. Both Cig-FA and Wood-FA have discrete peaks near 1512 cm-1 may indicate aromatic 

nitro compounds (C-NO2).
227 Cig-FA shows a discrete peak near 1561 cm-1 that may indicate N-

O stretching in organic nitro compounds (R-NO2), although this peak is not seen in Wood-FA. 

Peaks centered near 1460 cm-1 are associated with C-H bonds from aliphatic groups. One peak 

centered near 1105 cm-1 indicates C-O bonds from aliphatic ethers (Figure 5.4A). The peaks 

centered near 1460 cm-1 and 1105 cm-1 that are not seen in SRFA are consistent with more 
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aliphatic character observed in HULIS.71, 72  The peak at 1045 cm-1 indicates C-OH bond from 

primary alcohols and has been observed in urban HULIS reported by Chen et al. (2016).228 The 

Cig-FA spectrum shows a discrete sharp peak around 815 cm-1 that might be attributed to 

organic nitrates and inorganic nitrates.227 We conclude that Cig-FA and Wood-FA fractions 

contain significant amounts HULIS bearing similar functional groups to SRFA and Nordic 

Fulvic Acid, but with a more aliphatic, organic nitro and organic nitrate character. 

 

Table 5.1. Summary of common FTIR peaks among samples.  

 

 

 

 

 

 

 

 

 

 

 

 

5.4 Conclusion 

Both fluorescence EEM spectra and FTIR demonstrate strong similarities between Cig-

WS, Cig-FA, Wood-FA and SRFA.  This is consistent with prior results showing HULIS, 

including a FA-like substance, in cigarette smoke condensate and ambient air particles.71, 214 

SRFA  Nordic FA* Cig-FA Wood-

FA 

Bond Functional Group 

3308 3398 3280 3333 O-H Alcohols, Phenols, 

Carboxylic acids 

2938 2975 2937 2950 C-H Aliphatic 

1707 1723 1715 1720 C=O Carboxylic Acids, 

Ketones, Aldehydes 

1620 1620 1639 1611 C=C 

C=O 

Aromatic and 

Conjugated Systems 

1398 1388 1403 
 

C-H Alkane 

1195 1208 1204 1211 C-O Esters  
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These results indicate that HULIS is a significant component of cigarette smoke condensate and 

wood smoke particle and contains oxygenated organic functional groups capable of chelating Fe.   
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6.Malondialdehyde in Atmospheric Aerosols: Application of the Thiobarbituric Acid 

Method 

6.1 Introduction 

The thiobarbituric acid (TBA) assay to quantify malondialdehyde (MDA) has been 

widely used as an indicator of aqueous reactive oxygen species (ROS), lipid peroxidation, 

oxidative stress and rancidity in food products.92-95 MDA is a product of lipid peroxidation92, 229 

and OH oxidation of 2-deoxy-D-ribose (2-DR) oxidation.93, 101, 102 MDA has also been shown to 

be toxic and mutagenic to humans, suggesting a role more significant than an indicator for 

oxidation in biological systems229-231 Several studies have implicated MDA in mammalian 

mutagenicity, carcinogenesis and atherosclerosis.229-232 Basu et al. (1983)230 exposed MDA salts 

in differing amounts to strains of salmonella typhimurium, a bacteria commonly found in the 

intestines. Using a mutagenicity assay they determined MDA induces 5 reverants per µM of 

MDA, providing evidence of the mutagenic nature of MDA. MDA can form adducts with 

guanine and adenine bases in DNA molecules which in turn causes mutagenic effects associated 

with carcinogenesis.232, 233 Ma et al. (2014)234 developed a method to measure a MDA-

Deoxyguanosine adduct (M1dG) in human leukocyte DNA. M1dG is a premutagenic lesion 

suspected to contribute to carcinogenesis by inducing mutations of guanine to thymine and 

adenine.235 Niedernhofer et al. (2003)231 suggested that MDA interactions with nucleic acids 

induces interstrand cross linking of DNA molecules which yields mutagenicity in human 

embryonic kidney cells in vitro. Voitkun et al. (1999)236 observed that MDA initiates DNA-

protein cross linking, due to reaction of MDA with proteins followed by crosslinking between 

DNA molecules and histones. MDA has been shown to react with primary amines and induce 

lysine-lysine crosslinks.237 These lysine-lysine crosslinks products have been identified in 
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oxidized lipoproteins and are thought to interfere with lipoproteins interactions with 

macrophages—an underlying behavior of atherogenisis.229, 238 Furthermore, MDA may harden 

cardiovascular tissues due to induced cross-linking of collagen.239  

While most widely employed as a marker for oxidation, there is literature suggesting 

MDA forms in the atmosphere.103-105 We found three studies that measured the formation of gas 

phase MDA formation in laboratory simulations.103-105 Liu et al. (1999)103, 104 observed MDA 

formation in experimental chamber photo-oxidation of 2-butenedial, 4-oxo-pentenal and 1,3-

butadiene, byproducts of oxidized aromatic compounds. Zhou et al. (2014)105 found that 

ozonolylsis of polyunsaturated fatty acids at the surface of an aqueous layer produces gaseous 

MDA. Only one study claims to have measured MDA in ambient air using a derivatization 

method coupled with High-Resolution Gas Chromatography/Ion Trap Mass Spectrometry in San 

Francisco, CA.240 The authors claim that MDA co-elutes with an internal standard that is 

distinguishable by interpreting multiple electron ionization, methane chemical ionization and 

derivative chemical ionization spectra. However, they did not quantify MDA concentrations and 

their experimental design did not distinguish between gas or particle phase MDA. We could find 

no studies that quantified gaseous MDA concentrations.  

Like other atmospheric carbonyls, MDA potentially enters the aqueous or organic phase 

following Henry’s Law or Pankow’s absorptive theory241 but this has never been investigated 

experimentally and there is a lack of thermodynamic data for MDA. Only one modeling study 

has addressed MDA dissolution into atmospherically relevant waters. Okochi et al. (2002)242 

used a bond contribution method to estimate the Henry’s Law Constant for MDA (1.4×104 M 

atm-1) and modeled MDA dissolution in fog droplets. Their model predicted that 8-9% of gas 
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phase MDA would partition into fog droplet at pH 6 when [MDA] = 10-10-4 ppb but this 

partitioning ceased at pH 2. This pH dependence of MDA dissolution is driven by acid-base 

equilibria, since aqueous MDA exists mainly in its enol form with a pKa of 4.7 (Figure 6.1). 

Their model further predicts that MDA complexation to Cu(II) and Ni(II) at the droplet surface 

enhances MDA partitioning.242  

 

 

 

 

 

 

 

 

Figure 6.1. Mechanism of MDA dissolution and enol/enolate equilibria. 

Furthermore, Beeby et al. (1987)243 found that photolysis of glycoaldehyde in aqueous solutions 

produced MDA, suggesting formation of MDA can occur the bulk aerosol or cloud water. These 

studies highlight the possibility that MDA is present in ambient aerosols. Interestingly, MDA 

toxicity is associated with the same health effects observed from ambient PM2.5 exposure. Thus, 

if MDA is present in ambient PM2.5, it may contribute to the toxicity of inhaled PM2.5. Despite 

this, MDA has yet to be quantified in the ambient atmosphere or PM. 

Malondialdehye 

Dissolution 

Enol Equilibria 
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Derivatization of MDA by TBA is the most common and easily accessible method for 

measuring MDA, yet it has some setbacks. Two TBA molecules react with MDA in the presence 

of acid and heat to form an absorbing adduct (TBA2-MDA) that can be measured via absorbance 

or fluorescence spectroscopy (Fig. 6.2). There is a large amount of literature employing the TBA 

assay with varying protocols on a diverse array of biological systems. Generally, optical 

detection methods are plagued by interferences from MDA precursors that form (TBA)2-MDA 

upon heating and non-MDA products that absorb or fluorescence at similar wavelengths.229 Such 

interferences are greatly improved by using high performance liquid chromatography (HPLC) or 

mass spectrometry.98, 99 While arguably better methods to quantify lipid peroxidation and ROS 

have been developed, MDA has remained of interest due to its inherent toxicity. 

 

 

 

Figure 6.2. Condensation Reaction of MDA and TBA to form TBA2-MDA. 

To our knowledge, there have been no quantification of MDA in atmospheric aerosols. 

Here we use an altered HPLC-fluorescence method to apply the TBA assay on PM2.5 extracts for 

the first time. This application of the TBA assay is used to estimate MDA concentrations in 

biomass burning aerosols (BBA) and urban PM2.5. We use fluorescence excitation-emission 

(EEM) scans reveal fluorescence features of extracted PM samples, characterize the TBA2-

MDA, potential interfering compounds and other fluoresce peaks of interest.  
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6.2 Methods 

6.2.1 Materials and Chemicals 

Malondialdehyde tetrabutyl ammonium salt (≥ 96%), 2-thiobarbituric acid (Sigma-

Aldrich, ≥ 96%) and acrolein (analytical standard) were purchased from Sigma-Aldrich. 0.1 N 

sulfuric acid was purchased from Titripur. HPLC-grade acetonitrile was purchased from 

Omnisolve. HPLC-grade methanol was purchased from Fischer Scientific and a stir and hot plate 

(Cimarec Basic) and 15mL Falcon tubes (Corning Brand), was obtained from Thermo Scientific. 

Ultra-high purity Argon and Nitrogen was purchased from AirGas N2 gas. formaldehyde (36.5%-

37.5% in water), sodium formate (99.9%), and oxalic acid (99.9%) were obtained from Aldrich. 

sodium malonate dibasic monohydrate (Bioextra) was purchased through Sigma. Glyoxal (40% 

in water) and methylglyoxal (40% in water) were purchased from Tokyo Chemical Industry 

(TCI).  

6.2.2 Estimation of Malondialdehyde Using 2-Thiobarbituric Acid 

Quantification of TBA2-MDA (Fig. 6.2) was performed using a High Performance Liquid 

Chromatography (HPLC) with a fluorescence detector (Shimadzu RF-10AXL detector) coupled 

to a reversed phase C-18 chromatography column (GL Sciences Inc., Intersil ODS-2, 5 µm, 4.6 x 

250 mm) and guard column (Thermo Scientific, ODS Hypersil JAVELIN Filter, 5 µm, 4 x 10 

mm). A wide variety of protocols exist for HPLC-fluorescence detection of TBA2-MDA in 

biological samples but the TBA assay has never been applied to PM extracts. Because the TBA2-

MDA adduct is most stable under acidic conditions (pH 2-3)244 we carry out the assay at pH 3. 

An eluent of 7:3 acetonitrile and milli-Q water (18MΩ) acidified to pH 3 (0.1 N sulfuric acid) 

suggested by Fukunaga et al. (1995),245 worked well with our experimental system. The eluent 
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was continuously degassed by a gentle stream of argon and delivered at a rate of 1.0 mL/min. 

The TBA2-MDA adduct elutes at 6 minutes, and fluorescence is measured at λex/λem = 530 

nm/550nm. The HPLC was calibrated daily with four MDA standards ranging from 0.25 µM to 

2.5 µM. A typical TBA2-MDA calibration curve is shown in Figure 6.3.  

 To prepare calibration standards, stock solutions of 20 mM malondialdehyde 

tetrabutylammonium and 100 mM TBA are prepared in pH 3. 10 mL TBA stock solution is 

prepared in 50 mL Teflon tubes and stirred with a magnetic stir bar under gentle heating for 

approximately 15 minutes until all TBA powder is dissolved. The TBA is used immediately after 

preparation because a precipitate forms after approximately 20 minutes at room temperature. In 

all standards, 4 mM TBA and 0.25 µM to 2.5 µM MDA are combined with pH 3 water in 15 mL 

Falcon tubes and sealed tightly. Blanks consisted of 4 mM TBA in pH 3 for calibrations and PM 

extracts. Standards are incubated in a boiling water bath for 1.25 hours upon which the solution 

turns a pink-purple color. Solutions are cooled in a refrigerator at 4oC for 15 minutes before 

immediate analysis. Chromatography peaks from the HPLC are analyzed using Chromperfect 

software (Shimadzu). 
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Figure 6.3. Calibration curve for TBA2-MDA adduct measured on HPLC-Fluorescence detector. 

Peaks eluted at a retention time of 6 minutes and peak areas were determined by Chromperfect 

software. 

 

6.2.3 Excitation-Emission Matrix and Interfering Compounds (3D Fluorescence) 

The Excitation-Emission Matrix (EEM) scan mode was used to determine fluorescence 

features (Lumina Fluorometer, Thermo Scientific) of MDA calibrations, BBA extracts, PM 

samples and potential interfering compounds. Scans were performed with 10 nm excitation and 

emission slit widths, scanning intervals of 5 nm at 60 nm per second with a 20 ms integration 

time. To characterize potential interfering compounds, we performed the TBA assay on several 

compounds that may be present in atmospheric aerosols. We tested solutions of 10 mM 

formaldehyde, formate, oxalic acid, malonate, glyoxal, methylglyoxal and acrolein with 4 mM of 

TBA heated in pH 3 (100oC, 1.25 hrs.). Samples are scanned with EEM mode to determine 

fluorescence features of the TBA2-MDA adduct and any other fluorescent products, if any.  
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6.2.4 Application of 2-Thiobarbituric Acid Method to Measure MDA in Ambient PM2.5  

A sample containing substantial BBA mixed with urban emissions was collected in 

Fresno, CA as described in previous work.34 The sample was collected from September 10-16, 

2015 and corresponds to an average of 3.0 µg/m3 PM2.5. During the winter, the site is influenced 

by residential wood burning especially at night and during the morning hours.109, 206 BBA content 

was characterized using an aethalometer with optical absorption.109 Urban PM2.5 from Los 

Angeles, CA (Urban LA) were collected on the roof of the Math Sciences Building at UCLA. 

Urban LA samples were collected on acid washed and pre-weighed PTFE filters (PALL, 47 mm 

2 µm pore size) using a URG cyclone connected to a high-volume air pump. Flowrates were 

monitored using rotameters (Kings Instruments 7530) set at 92.5 liters per minute, corresponding 

to a cut size of 2.5 microns. Three samples were collected for approximately 24 hours during 

March 27th-30th 2019. The mass of collected particles were determined immediately after 

collection using a microbalance (1 µg precision, ME 5, Sartorius). To remove charge on the 

PTFE filters a charge neutralizer was passed over filters for 30 seconds before weighing. The 

three urban LA samples contained 201 µg, 551 µg and 835 µg corresponding to average PM 

concentrations of 1.6 µg/m3, 4.3 µg/m3 and 6.3 µg/m3 respectively. 

PM2.5 samples were extracted in methanol by placing them into 15mL Falcon tubes with 

7.5 mL HPLC-grade methanol and incubating for 1 hour at room temperature covered from light. 

The filters were then removed, and the methanol extracts evaporated to dryness using a gentle 

stream of N2 at room temperature. To concentrate the extracts, the extracts were reconstituted in 

750 µL of water at pH 3. This was followed by the addition of TBA to reach a concentration of 4 

mM and incubated at 100oC for 1.25 hours. Prior to TBA addition and incubation, a gentle 
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stream of argon was bubbled through for approximately 30 seconds to remove any oxygen and 

reduce ROS generation during the assay. To investigate the potential impact of ROS on the 

assay, we analyzed calibration standards in oxic and anoxic conditions. No difference was 

observed indicating that oxygen does not impact the condensation reaction between TBA and 

MDA (data not shown) and ROS do not affect the calibration. After incubation, samples are 

cooled in a fridge (4oC) and are immediately analyzed for MDA on the HPLC and with EEM 

scans. For samples analyzed on HPLC, 3 aliquots are injected in order to confirm reproducibility 

of a single sample.  

6.3 Results and Discussion 

6.3.1 Malondialdehyde in Fresno BBA and Los Angeles PM2.5 

  Figure 6.4 shows an EEM for a 1 µM MDA standard reacted with 4 mM TBA. 

Fluorescence contours indicate a fluorophore with peak fluorescence centered at λex/λem = 530 

nm/550nm, corresponding to the TBA2-MDA adduct.98, 99, 229 

 

 

 

 

 

 

Figure 6.4. Excitation-emission matrix scan of 1 µM MDA assayed with 4 mM TBA in pH 3. 
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All PM extracts showed signal at λex/λem = 530 nm/550nm on the HPLC with a retention time of 

6 minutes, indicating the presence of TBA2-MDA in all PM extracts. Figure 6.5 shows the 

estimated MDA mass as a function of PM mass from Fresno BBA and Urban LA samples, 

assuming the measured TBA2-MDA fluorescence corresponds to the presence of MDA only. 

Increasing amounts of Fresno BBA extract produced a linear response indicating 51.4 ng, 67.8 

ng and 92.0 ng MDA (Fig. 6.5, orange squares), corresponding to an average of 30.0 ng/m3 

MDA. All Urban LA samples assayed with TBA exhibited signal for the TBA2-MDA adduct 

(Fig. 6.5 and Fig. 6.7) Extracted and concentrated solutions Urban LA samples appear to contain 

51.1 ng, 96.5 ng and 72.4 ng MDA corresponding to  40.7 ng/m3, 75.3 ng/m3
, and 54.6 ng/m3 

MDA respectively. To our knowledge, this is the first quantification of MDA in ambient PM2.5 

and thus we cannot compare this range of MDA concentrations. However, two similar C3 organic 

compounds, methylglyoxal and malonic acid have been quantified in ambient urban PM2.5.
240, 241, 

246-249  Methylglyoxal, the α-carbonyl isomer of MDA, have reported concentrations ranging 0.8 

– 242 ng/m3 in urban PM2.5.
240, 241, 246-249 Malonic acid is a potential acid catalyzed oxidation 

product of MDA and measurements indicate a range 17.6-233 ng/m3 malonic acid in urban 

PM2.5.
246, 247, 249 Thus, our reported range of 30.0 – 75.3 ng/m3 MDA are comparable to reported 

particle phase concentrations of MDA related C3 compounds methylglyoxal and malonic acid. 
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Figure 6.5. Mass of MDA measured from TBA assay on Fresno biomass burning aerosol (BBA, 

orange squares) and urban Los Angeles PM2.5 (Urban LA) extracts (green diamond, red triangle, 

purple circle). MDA mass was calculated attributing all fluorescence at 550 to the TBA2-MDA. 

Error bars indicate range of three values measured on the HPLC from the same sample extract. 

6.3.2 EEM Scans of Fresno BBA and Los Angeles PM2.5 

 Figure 6.6A shows the EEM of the concentrated 467 µg Fresno BBA extracts without 

addition of TBA. The fluorescence spectrum has two fluorescence peaks centered at λex/λem = 

350 nm/460 nm and λex/λem = 330 nm/410 nm; these are characteristic of atmospheric humic-like 

substances (HULIS) and similar to Fulvic Acids.71, 206 Figure 6.6B shows EEM scans for the 

same 467 µg Fresno BBA concentrate assayed with 4 mM TBA. The scan shows that after 

reaction with TBA, the sample retains some of the fluorescence features of HULIS, and adds a 

fluorescent feature matching the TBA2-MDA fluorophore centered at λex/λem = 530 nm/550 nm. 

Interestingly, there is another fluorophore centered at λex/λem = 455 nm/470 nm with a similar 

trapezoidal shape of the TBA2-MDA fluorophore. This fluorophore could be due to formation of 

a TBA-aldehyde adduct caused by the condensation of a different aldehyde or other species. 
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However, we were unable to recreate this fluorophore using a range of compounds other than 

MDA, as discussed below. 

 

 

 

 

 

 

Figure 6.6. Excitation-emission matrix of 467 µg Fresno BBA extracted in methanol and 

reconstituted in pH 3 (A) and (B) 467 µg Fresno BBA extract assayed with 4 mM TBA in pH 3. 

 

Figures 6.7A-C show EEM scans of the concentrated Urban LA PM2.5 extracts collected 

on three different days reacted with 4 mM TBA. Concentrated extracts of Urban LA PM2.5 

without addition of TBA have no observable fluorescence. EEMs for all three samples show the 

characteristic fluorescence of the TBA2-MDA adduct centered at λex/λem = 530 nm/550 nm. Two 

additional trapezoidal-shaped peaks are also observed on either side of the MDA peak, at λex/λem 

= 455 nm/470 nm and λex/λem = 640 nm/665 nm. Like the Fresno BBA EEM, these fluorescence 

features could be due to the reaction of TBA with other aldehyde or similar molecules, 

potentially with one carbon bridging the two aromatic rings rather than three. The peak at λex/λem 

= 640 nm/665 nm may also be due to an analog of MDA or a related compound. However, we 

have been unable to recreate the two satellite fluorescent peaks in laboratory experiments. 

A B 
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Figure 6.7. Excitation-emission matrix of urban Los Angeles PM2.5 (Urban LA) assayed with 

TBA in pH 3 (A) 201 µg (B) 551 µg (C) 835 µg. Urban Los Angeles PM2.5 extracts without 

addition of TBA show no fluorescence features.  

6.3.3 Interfering Compounds  

To determine whether any components of PM may interfere with the measurement of 

MDA, we reacted a variety of different compounds with 4 mM TBA. Of all compounds tested, 

only acrolein produced any measurable TBA2-MDA. Triplicate samples of 1 mM and 10 mM 

acrolein were reacted with 4 mM TBA under oxygenated conditions produced (0.450 ± 0.070) 

µM and (0.868 ± 0.181) µM of MDA respectively (Table 6.1). This corresponds to 0.004% -

A B 

C 
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0.008% conversion of acrolein to MDA suggesting minimal interferences since ~1mM of 

acrolein is likely much higher than would be found in any of our extracts.  

Table 6.1. MDA measured from reaction of 1mM and 10 mM acrolein with 4 mM TBA at 

100oC in pH 3 under oxygenated conditions. 

[Acrolein](mM) [MDA] Produced (µM) %Converted to MDA 

1 mM (0.450 ± .070) .008% 

10 mM (0.868 ± .181) .004% 

 

Acrolein may produce MDA through acid hydration of the alkene followed by oxidation 

as proposed in Figure 6.8 and the MDA may have been present in the bottle from the 

manufacturer. Under this mechanism, protonation of the alkene group produces a primary and 

secondary carbocation, followed hydration that produces 2-hydroxypropanal and 3-

hydroxypropanal. Two possible oxidation products of these hydration products are glyoxal and 

MDA. The hydration of acrolein to 3-hydroxypropanal has been identified under acidic 

conditions,250-252 but we could find no studies identifying MDA as a product of acrolein 

hydration and oxidation. Furthermore, primary carbocations are known to be less stable than 

secondary carbocations. Thus, one would expect that the formation of MDA from acrolein is a 

minor pathway, consistent with the observation of a very small part of MDA associated with the 

acrolein.  
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Figure 6.8. Proposed mechanism for conversion of acrolein to MDA under acidic, oxygenated 

conditions.  

6.4 Potential Sources of Atmospheric MDA 

Elucidating the source of MDA from these atmospheric aerosols is difficult due to the 

small amount of literature on this topic. A possible explanation for MDA in Fresno BBA and 

Urban LA PM2.5 is secondary MDA formation due to photo-oxidation, ozonolysis or OH 

oxidation of organic precursors as described be Liu et al. (1999).103, 104 However, these studies 

did not consider particle phase MDA and there is limited information on gas-particle partitioning 

of MDA. Although ambient MDA has not been previously quantified, the α-carbonyl isomer of 

MDA, methylglyoxal has been studied extensively and may provide insight on the 

physicochemical properties of atmospheric MDA. Gaseous methylglyoxal ranges between .03 – 
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0.9 ppb in urban air241, 248 and is recognized as a potentially important contributor to secondary 

organic aerosol (SOA) formation.70, 241, 253  Recent field measurements indicate that the Henry’s 

Law constants and partitioning coefficients for methylglyoxal are up to five orders of magnitude 

higher than predicted theoretical values.241  Since MDA and methylglyoxal have similar 

theoretical Henry’s Law constants (~104
 M

 atm-1)241, 242 and similar molecular structures, it is 

possible that they share similar gas-particle partitioning behavior. An important difference is that 

MDA forms an enol upon dissolution whereas glyoxal does not, potentially enhancing MDA 

partitioning into the aqueous phase. Since MDA has a pKa of 4.7, dissolution is potentially 

inhibited under dilute acidic conditions relevant to cloud and fog droplets (pH 1-3). MDA 

complexation to Cu(II) and Ni(II) at the droplet surface may enhance MDA uptake,242 but more 

experimental investigation with other abundant transition metals (Fe) is needed to confirm the 

atmospheric relevance of this process. Interestingly, MDA has a higher boiling point (108 oC) 

than methylglyoxal (72 oC), and thus may partition more readily than methylglyoxal due to a 

lower vapor pressure. We hypothesize that MDA undergoes gas-particle partitioning into the 

aqueous and organic phase of ambient aerosols. Particle phase MDA may be capable of 

undergoing hydration and oligomerization reactions similar to other small carbonyls,241 

potentially revealing a previously unrecognized contributor to SOA. 

It is also possible that photochemical reactions within aerosol waters produce MDA as 

suggested by Beeby et al. (1987).243 One can speculate that ROS generation from redox active 

transition metals and organic peroxides could also oxidize organics into MDA under dark 

conditions, but no literature on this chemistry specific to MDA exists. Polyunsaturated fatty 

acids are MDA precursors in biological systems, but they also have been identified in marine 
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aerosols.254 Therefore, it may be possible to form MDA from oxidation of unsaturated fatty acids 

components in PM2.5  

While Fresno BBA are mixed with urban emissions, the biomass burning component may 

introduce an alternative mechanism for MDA formation. Biomass material is composed of a 

variety of polysaccharides such as cellulose, hemicellulose, lignin, and free sugars. It is well 

documented that the aqueous oxidation of 2-DR sugar produces MDA.93, 102 Since oxidation of 

an individual sugar can lead to MDA formation, it may be possible that combustion of 

polysaccharides and free carbohydrates in biomass produces MDA. Such mechanisms of MDA 

formation are beyond the scope of this work, but merit further investigation. 
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7. Conclusions  

 Inhaled PM is associated with a wide array of adverse health effects in humans, but the 

biological mechanisms and PM components contributing to health effects are poorly defined.7, 8 

Inflammation initiated by an overproduction of ROS is thought to be a common step in the 

pathogenesis of PM induced diseases.7, 8 OH radicals are thought to be most damaging ROS as 

they are capable of oxidizing lipids, proteins and DNA. It is hypothesized that PM components 

that produce ROS in the body contribute to the inhalation toxicity of PM. However, it is 

important to note that ROS generation from inhaled PM is not the only pathway for PM induced 

diseases. Many studies have highlighted the ability of inhaled PM components (HULIS) to alter 

iron homeostasis, suggesting that water soluble organic compound that chelate cellular iron 

contributes to PM toxicity.195, 205, 216, 255 Furthermore, ambient PM is known to contain a variety 

of aldehyde compounds. The toxicity of aldehydes has been well documented and is thought to 

involve reactions with amino and nucleic acids.256 Malondialdehyde is a toxic aldehyde that has 

mostly been studied in biological systems because it is a byproduct of lipid peroxidation.98, 229-231, 

235 There is some evidence that malondialdehyde exists in ambient particles, and given its 

toxicity, could contribute to overall particle toxicity. In this work we have elucidated mechanisms 

of HULIS-Fe mediated OH formation in representative lung lining fluids, spectroscopically 

characterized ambient HULIS and measured malondialdehyde in ambient PM for the first time. 

 Quantifying OH radicals from ambient PM and their components requires accurate 

measurement methods. OH radicals in aqueous solutions are difficult to measure directly due to 

low concentrations, short lifetimes and spectroscopic similarities to water. Terephthalate is a 

particularly sensitive probe for OH, with a detection limit as low as 2 nM.111, 112 Terephthalate 
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reacts with OH to form a fluorescent product, 2-hydroxyterephthalic acid (hTA), with a moderate 

dependence on pH and temperature.111, 112 However, there is disagreement in the literature on the 

yield of the fluorescent product (YhTA), which introduces a large uncertainty in the quantification 

of OH. Using a pH 3.5 dark ferrous Fenton system to generate OH radicals, we find that YhTA 

=31.5 ± 7%. This is about double the recent literature value measured by Charbouillot et al. 

(2011),112 but in excellent agreement with earlier measurements by Matthews et al. (1980).111 In 

chapter 3 and 4, we measured OH radicals in representative lung lining fluids with a pH ranging 

from 5.5 to 7.4.  For these analyses, we used the data set from Matthews et al. (1980)111 to 

calculate OH concentrations at varying pH. 

 Fe(II) is a key player in ROS formation in surrogate lung fluids (SLF) containing the 

antioxidants, Asc, GSH, UA and citrate. HULIS in particulate matter such as biomass burning 

aerosol chelate Fe(II), but the effect on ROS formation in the presence of lung antioxidants is not 

known. We used SRFA as a surrogate for HULIS and investigate its effect on OH formation 

from Fe(II) in SLF. For the first time, a chemical kinetics model was developed to explain 

behavior of Fe(II) and SRFA in SLF. Model and experimental results were used to find best-fit 

rate coefficients for key reactions. Modeling results indicate SRFA enhances Fe-mediated 

reduction of O2 to O2
- and destruction of H2O2 to OH to 5.1 ± 1.5 and (4.3 ± 1.4) × 103 M-1 s-1 

respectively. Best-fit rates for Citrate–Fe(II) mediated O2 to O2
- and H2O2 to OH were 3.0 ± 0.7 

and (4.2 ± 1.7) × 103 M-1 s-1 respectively. The kinetics model agrees with both the experimental 

results and thermodynamic model calculations of chemical speciation for 0 and 5 μg/mL SRFA, 

but both models were less successful at predicting further enhancements to OH formation at 

higher SRFA concentrations. These results suggest that SRFA, and thereby HULIS, are capable 
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of strongly chelating Fe species and produce a substantial amount of OH radicals under 

conditions relevant to the lung. This is consistent with previous studies that suggested HULIS 

generates OH in human lung tissues, contributing to iron accumulation, collagen deposition and 

inflammation.87, 88  

SLF lacks the Fe binding lung proteins, Albumin (Alb) and Transferrin (Tf), which limits 

their physiological relevance. To approach more physiologically relevant conditions, we 

investigated OH generation from SRFA-Fe(II) in human BALF. Consistent with our results in 

SLF, we find that SRFA enhances OH generation from Fe(II) in BALF collected from 8 healthy 

patients. We found that Alb and Tf suppresses OH generation from SRFA-Fe(II) mixtures, 

suggesting an important role that is poorly characterized. Furthermore, it is well accepted that 

Alb chelates Fe(II) and suppresses ROS activity, yet there have been no measurements of Alb-Fe 

mediated OH generation. Interestingly, we found that albumin enhances OH generation from 

inorganic Fe(II) by a factor of 20 yet suppresses OH generation from SRFA-Fe(II) in pH 5.5 

saline solutions containing physiological amounts of Asc. Using an approximation that assumes 

O2 to O2
- reduction is the rate limiting step for OH generation, we derived a kinetic equation and 

estimated the rate constant for Alb-Fe(II) and SRFA-Fe(II) mediated O2 to O2
- reduction. We 

find that Alb and SRFA enhanced the rate constant to Fe(II) mediated O2 reduction to (1.8 ± 0.1) 

M-1 s-1and (2.7 ± 0.3) M-1 s-1 respectively. The OH generation predicted by the kinetic 

approximation and estimated rate constants agree well with OH measurements from a combined 

system of Fe(II), Alb and SRFA. 

We have spectroscopically characterized the fulvic acid fraction of HULIS from the 

water-soluble component of cigarette smoke condensate (Cig-WS) and wood smoke particles 
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(Wood-WS). Fluorescence spectra indicate that the fulvic acid fraction of HULIS from cigarette 

smoke condensate (Cig-FA) and wood smoke (Wood-FA) contain fluorophores bearing striking 

similarities to SRFA. However, Cig-FA and Wood-FA  also contain lower wavelength 

fluorescence features than SRFA, indicating the presence of smaller molecules with less 

aromatic and conjugated character than SRFA.72 FTIR spectra of HULIS derived from Cig-FA 

and Wood-FA show striking similarities to FTIR spectra of SRFA as observed by previous 

studies.88 Consistent with previous characterization of HULIS, Cig-FA and Wood-FA FTIR 

spectra revealed organic nitro and organic nitrate compounds not observed in SRFA and 

exhibited higher aliphatic character.71, 72 This indicates that isolated HULIS derived from 

cigarette smoke and wood smoke share chemical similarities and functionalities with SRFA. 

Like SRFA, Cig-FA and Wood-FA may be capable of strongly chelating Fe species, potentially 

contributing to physiological ROS generation and disruption of cellular Fe homeostasis.  

We have applied the 2-thiobarbituric acid assay on PM2.5 extracts to quantify 

malondialdehyde in atmospheric aerosols for the first time. We estimated of biomass burning and 

urban PM2.5 contains 30.0 ng/m3 – 75.3 ng/m3 of malondialdehyde accounting for (1.37 ± 0.12) 

×10-2 % of total PM mass. These concentrations of ambient malondialdehyde are comparable to 

reported concentrations of the related C3 compounds methylglyoxal and malonic acid.241, 248 

Malondialdehyde in ambient PM may result from oxidation of aromatic VOCs,103, 104 oxidation 

of lipids at the ocean surface105 and combustion of polysaccharide structures in biomass. Since 

malondialdehyde is a highly toxic and mutagenic compound, it may contribute to the toxicity of 

ambient PM. Interestingly, malondialdehyde has been implicated in the development of some 
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PM related health effects such as atherosclerosis and cancer. The scant literature on the 

formation, prevalence and toxicity of atmospheric malondialdehyde merits further investigations.   
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