
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Energy-Efficient Architecture and Dataflow Optimization for Spiking Neural Network
Accelerators

Permalink
https://escholarship.org/uc/item/7548s2wk

Author
Lee, Jeong-Jun

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7548s2wk
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Energy-Efficient Architecture and Dataflow

Optimization for Spiking Neural Network

Accelerators

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Jeong-Jun Lee

Committee in charge:

Professor Peng Li, Chair
Professor Spencer L. Smith
Professor Bongjin Kim
Professor Michael Beyeler

September 2022

The Dissertation of Jeong-Jun Lee is approved.

Professor Spencer L. Smith

Professor Bongjin Kim

Professor Michael Beyeler

Professor Peng Li, Committee Chair

August 2022

Energy-Efficient Architecture and Dataflow Optimization for Spiking Neural Network

Accelerators

Copyright © 2022

by

Jeong-Jun Lee

iii

To my parents, family and friends for their great support

iv

Acknowledgements

First and foremost, I would like to express my sincere gratitude to Prof. Peng Li, for

his great support and invaluable guidance during the past years. His expertise, vision

and insights in the research fields deeply inspired me, which not only motivated me to

have broader perspectives and to pursue higher goals, but also taught me some valuable

life lessons. It was a great pleasure working with Prof. Li and I could not have imagined

having a better advisor for my Ph.D. study.

I would also like to thank my committee members, Prof. Spencer Smith, Prof. Michael

Beyeler, and Prof Bongjin Kim for their constructive and insightful feedback on my

research. I truly appreciate your valuable suggestions and they are extremely helpful for

this dissertation.

Being in our group with great colleagues was more than a great experience. I would

like to appreciate Dr. Yu Liu, Dr. Wenrui Zhang, Dr. Changqing Xu, Yu Wang, Renqian

Zhang, Umang Garg and Jianhao Chen, who worked with me on some research topics. I

would also like to thank Dr. Hanbin Hu, Dr. Myung Seok Shim, Richard Boone, Zheng

Ke, Karthik Somayaji, Zihu Wang, and Yuxuan Yin for their support.

Finally, I would like to thank my family for their love and support. My family is the

most priceless gift and more than everything to me. Without your dedicated support,

this journey would have been much harder.

v

Funding Sources and Disclaimer

This material is based upon work supported by the U.S. Department of Energy, Office

of Science, Office of Advanced Scientific Computing Research under Award Number DE-

SC0021319, and the National Science Foundation under Award Numbers 1948201 and

2000851.

This dissertation was prepared as an account of work sponsored by agencies of the

United States Government. Neither the United States Government nor any agency

thereof, nor any of their employees, makes any warranty, express or implied, or assumes

any legal liability or responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or represents that its use would

not infringe privately owned rights. Reference herein to any specific commercial product,

process, or service by trade name, trademark, manufacturer, or otherwise does not nec-

essarily constitute or imply its endorsement, recommendation, or favoring by the United

States Government or any agency thereof. The views and opinions of authors expressed

herein do not necessarily state or reflect those of the United States Government or any

agency thereof.

This dissertation is also supported by the UCSB ECE Dissertation Fellowship for

Summer 2022.

vi

Curriculum Vitæ
Jeong-Jun Lee

Education

Aug 2022 Ph.D. in Electrical and Computer Engineering (Expected), Univer-
sity of California, Santa Barbara.

Feb 2018 M.S in Electrical and Computer Engineering, Seoul National Uni-
versity.

Feb 2016 B.S in Electrical and Computer Engineering, Seoul National Uni-
versity.

Publications

Lee, Jeong-Jun, and Peng Li. ”Systolic Array Acceleration of Spiking Neural Networks
with Application-Independent Split-Time Temporal Coding.” 55th IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2022. *submitted

Lee, Jeong-Jun, Wenrui Zhang, and Peng Li. ”Parallel Time Batching: Systolic-Array
Acceleration of Sparse Spiking Neural Computation.” In 2022 IEEE International Sym-
posium on High-Performance Computer Architecture (HPCA), pp. 317-330. IEEE, 2022.

Lee, Jeong-Jun, Wenrui Zhang, Yuan Xie, and Peng Li. ”SaARSP: An Architecture for
Systolic-Array Acceleration of Recurrent Spiking Neural Networks.” ACM Journal on
Emerging Technologies in Computing Systems (JETC) 2022.

Lee, Jeong-Jun, Jianhao Chen, Wenrui Zhang, and Peng Li. ”Systolic-Array Spiking
Neural Accelerators with Dynamic Heterogeneous Voltage Regulation.” In 2021 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 1-7. IEEE, 2021.

Lee, Jeong-Jun, and Peng Li. ”Reconfigurable dataflow optimization for spatiotemporal
spiking neural computation on systolic array accelerators.” In 2020 IEEE 38th Interna-
tional Conference on Computer Design (ICCD), pp. 57-64. IEEE, 2020.

Lee, Jeongjun, Renqian Zhang, Wenrui Zhang, Yu Liu, and Peng Li. ”Spike-train level
direct feedback alignment: sidestepping backpropagation for on-chip training of spiking
neural nets.” Frontiers in Neuroscience 14 2020: 143.

Hwang, Sungmin*, Jeong-Jun Lee*, Min-Woo Kwon, Myung-Hyun Baek, Taejin Jang,
Jeesoo Chang, Jong-Ho Lee, and Byung-Gook Park. ”Analog Complementary Metal–
Oxide–Semiconductor Integrate-and-Fire Neuron Circuit for Overflow Retaining in Hard-
ware Spiking Neural Networks.” Journal of nanoscience and nanotechnology 20, no. 5
(2020): 3117-3122. doi: 10.1166/jnn.2020.17390 *equally contributed

Lee, Jeong-Jun, Jungjin Park, Min-Woo Kwon, Sungmin Hwang, Hyungjin Kim, and
Byung-Gook Park. ”Integrated neuron circuit for implementing neuromorphic system
with synaptic device.” Solid-State Electronics 140 (2018): 34-40.

vii

Lee, Jeong-Jun, Min-Woo Kwon, Hyungjin Kim, Sungmin Hwang, and Byung-Gook
Park. ”Implementation of inhibitory operation in neuromorphic system.” In 2017 Silicon
Nanoelectronics Workshop (SNW), pp. 113-114. IEEE, 2017.

Wang, Yu, Jeong-Jun Lee, Yu Ding, and Peng Li. ”A scalable FPGA engine for parallel
acceleration of singular value decomposition.” In 2020 21st International Symposium on
Quality Electronic Design (ISQED), pp. 370-376. IEEE, 2020.

Baek, Myung-Hyun, Taejin Jang, Hyungjin Kim, Jungjin Park, Min-Woo Kwon, Sung-
min Hwang, Suhyeon Kim, Jeong-Jun Lee, and Byung-Gook Park. ”Grain boundary
induced short-term memory effect in fully depleted thin-polysilicon devices.” Japanese
Journal of Applied Physics 58, no. 10 (2019): 101004.

Hwang, Sungmin, Hyungjin Kim, Jungjin Park, Min-Woo Kwon, Myung-Hyun Baek,
Jeong-Jun Lee, and Byung-Gook Park. ”System-level simulation of hardware spiking
neural network based on synaptic transistors and I&F neuron circuits.” IEEE Electron
Device Letters 39, no. 9 (2018): 1441-1444.

Park, Jungjin, Min-Woo Kwon, Hyungjin Kim, Sungmin Hwang, Jeong-Jun Lee, and
Byung-Gook Park. ”Compact neuromorphic system with four-terminal Si-based synaptic
devices for spiking neural networks.” IEEE Transactions on Electron Devices 64, no. 5
(2017): 2438-2444.

viii

Abstract

Energy-Efficient Architecture and Dataflow Optimization for Spiking Neural Network

Accelerators

by

Jeong-Jun Lee

Spiking neural networks (SNNs) offer a promising biologically-plausible computing

model and lend themselves to ultra-low-power event-driven processing on neuromorphic

processors. Compared with the conventional artificial neural networks, SNNs are well-

suited for processing complex spatiotemporal data. In this dissertation, we aim to address

key difficulties in accelerating SNNs: developing bio-plausible and hardware friendly al-

gorithm, efficient processing of the added temporal dimension, and handling unstructured

sparsity emergent in both space and time.

First, training SNNs to reach the same performances of conventional deep artifi-

cial neural networks (ANNs), particularly with error backpropagation (BP) algorithms,

poses a significant challenge due to inherent complex dynamics and non-differentiable

spike activities of spiking neurons. In this dissertation, we present the first study on

realizing competitive spike-train level backpropagation (BP) like algorithms to enable

on-chip training of SNNs. We propose a novel spike-train level direct feedback alignment

(ST-DFA) algorithm, which is much more bio-plausible and hardware friendly than BP.

Algorithm and hardware co-optimization and efficient online neural signal computation

are explored for on-chip implementation of ST-DFA. On the Xilinx ZC706 FPGA board,

the proposed hardware-efficient ST-DFA shows excellent performance vs. overhead trade-

offs for real-world speech and image classification applications.

Despite its significance, dataflow optimization of spiking neural accelerator architec-

ix

tures has not been extensively studied. Recognizing the need for efficient processing of

complex spatiotemporal data while considering the all-or-none nature of spiking activities,

we propose holistic reconfigurable dataflow optimization for systolic array acceleration of

spiking convolutional networks (S-CNNs). A novel scheme is introduced for parallel ac-

celeration of computation across multiple time points, which further allows for systemic

optimization of variable tiling for a large performance and efficiency gains. Also, we

pack multiple time points into a single time window (TW) and process the computations

induced by active synaptic inputs falling under several TW s in parallel, leading to the

proposed parallel time batching. It allows weight reuse across multiple time points and

enhances the utilization of the systolic array with reduced idling of processing elements,

overcoming the irregularity of sparse firing activities. We optimize the granularity of

time-domain processing, i.e., the TW size, which significantly impacts the data reuse

and utilization.

Lastly, we propose a novel technique and architecture that allow the exploitation of

temporal information compression with structured sparsity and parallelism across time,

and significantly improves data movement on a systolic array. We split a full range of

temporal domain into several time windows (TWs) where a TW packs multiple time

points, and encode the temporal information in each TW with Split-Time Temporal

coding (STT) by limiting the number of spikes within a TW up to one. STT enables

sparsification and structurization of irregular firing activities and dramatically reduces

computational overhead while delivering competitive classification accuracy without a

huge drop. To further improve the data reuse, we propose an Integration Through Time

(ITT) technique that processes integration steps across different TWs in parallel with a

systolic array.

In this dissertation, we provide unique and powerful solutions for the efficient accel-

eration of the spiking models with various datasets.

x

Contents

Acknowledgements v

Disclaimer vi

Curriculum Vitae vii

Abstract ix

List of Figures xiv

List of Tables xviii

1 Introduction 1
1.1 Neuromorphic Computing Systems . 1
1.2 Spiking Neural Network Algorithms . 2
1.3 Spiking Neural Network Accelerators . 3
1.4 Outline . 5

2 Background 7
2.1 Unique Characteristics of SNNs . 7
2.2 Spiking Neural Network Operations . 8

2.2.1 Spiking Neurons . 8
2.2.2 Spiking Neural Networks . 9

2.3 Datasets . 13
2.4 Systolic Array . 16

3 Spiking Neural Processor with Direct Feedback Alignment 17
3.1 Direct Feedback Alignment (DFA) . 18

3.1.1 Direct Feedback Alignment . 18
3.1.2 Spike-train Level Post-synaptic Potential 19

3.2 Spike-Train Level DFA (ST-DFA) . 21
3.2.1 Proposed ST-DFA Algorithm . 21

xi

3.2.2 Derivation of ST-DFA . 23
3.2.3 Simplification for Hardware Friendliness 25

3.3 SNN Accelerators with ST-DFA On-chip Training 26
3.3.1 Architecture . 26
3.3.2 On-chip Training . 28
3.3.3 Neuron Unit Design . 29
3.3.4 Efficient On-chip S-PSP Calculation 30
3.3.5 Efficient On-chip ST-DFA Implementation 32

3.4 Experiments and Results . 34
3.4.1 Experimental Settings and Benchmarks 34
3.4.2 Classification Accuracies . 35
3.4.3 FPGA Hardware Evaluations . 37

3.5 Summary and Discussions . 40

4 Dataflow Optimization for Spiking Neural Networks 42
4.1 Dataflow Optimization for Spiking CNNs 43

4.1.1 Proposed parallel processing in temporal dimension 43
4.1.2 Dataflow in Spiking CNNs . 45
4.1.3 Stationary schemes for S-CNNs 47
4.1.4 Variable Tiling . 47
4.1.5 Layer-dependent dataflow reconfiguration 50

4.2 SNN Dataflow Simulator . 51
4.2.1 Modeling of systolic array and memory 51
4.2.2 Performance modeling . 53

4.3 Experiments and Results . 54
4.3.1 Layer-specific dataflow optimization 55
4.3.2 Joint optimization of tiling and stationary flows 57
4.3.3 Joint layer-dependent reconfigurable dataflow and

hardware optimization . 58
4.4 Summary and Discussions . 59

5 Parallel-Time-Computation for Spiking Neural Computation 62
5.1 Challenges of SNN Accelerators . 63

5.1.1 Spatial and Temporal Sparsity in SNNs 63
5.1.2 Existing SNN Accelerators . 65

5.2 Proposed Architecture . 66
5.2.1 Overview of the Proposed Architecture 66
5.2.2 Time Batch (TB) and TB-tag . 68
5.2.3 Parallel Time Batching (PTB) . 71
5.2.4 Spatiotemporally-non-overlapping Spiking Activity Packing (StSAP) 73

5.3 Experiments and Results . 75
5.3.1 Architecture Specifications and Benchmarks 75

xii

5.3.2 Optimization of Array Dimension 76
5.3.3 Comprehensive Evaluation . 79

5.4 Summary and Discussions . 83

6 Recurrent Spiking Neural Network Acceleration 87
6.1 Recurrent Spiking Neural Network Accelerators 87

6.1.1 Recurrent Spiking Neural Network 87
6.1.2 R-SNN accelerators . 88

6.2 SaARSP: Proposed Architecture . 91
6.2.1 Decoupled feedforward/recurrent synaptic integration 91
6.2.2 Proposed SaARSP architecture 93
6.2.3 Time-window size optimization (TWSO) 96

6.3 Experiments and Results . 98
6.3.1 Configurations and Setups . 98
6.3.2 Spiking neural network benchmarks 101
6.3.3 Acceleration of feedforward layers with output stationary dataflow 104
6.3.4 Acceleration of recurrent layers with output stationary dataflow . 105
6.3.5 Comprehensive evaluation and optimization of recurrent layer ac-

celeration . 107
6.4 Summary and Discussions . 111

7 Application-Independent Split-Time-Temporal Coding 113
7.1 Split-Time Temporal coding (STT) . 114

7.1.1 Proposed STT . 116
7.1.2 STT-based Acceleration . 117
7.1.3 Machine Learning Performance with STT 118

7.2 Proposed Architecture . 119
7.2.1 Overview of the Proposed Architecture 119
7.2.2 Integration Through-Time (ITT) 121
7.2.3 Mapping to Systolic Array . 122
7.2.4 STT-based Layer Acceleration . 124

7.3 Experiments and Results . 127
7.3.1 Configurations and Setups . 128
7.3.2 STT: Temporal Information Compression 128
7.3.3 ITT: Data Reuse . 130
7.3.4 Comprehensive Evaluations . 131

7.4 Summary and Discussions . 136

8 Conclusion 138
8.1 Conclusion . 138

Bibliography 141

xiii

List of Figures

2.1 (a): Layer operation in SNNs. (b): Main steps of spatiotemporal operation
in a spiking neuron. 8

2.2 (a): Schematic for feedforward layer operation in SNN. (b): Schematic for
recurrent layer operation in R-SNN. 9

2.3 Computation of convolution layer in S-CNNs. 12

3.1 (a) Backpropagation (BP) vs. (b) direct feedback alignment (DFA). Solid
arrows indicate feedforward paths and dashed arrows indicate feedback
paths. The feedback matrices B1 and B2 need not be symmetric to W2

or W3. 19
3.2 The proposed spike-train level DFA (ST-DFA). 23
3.3 Proposed architecture of multi-layer SNNs with onchip ST-DFA training.

HE represents a digital hidden neuron element; and OE represents a digital
output neuron element. 27

3.4 On-line S-PSP calculation onchip. 32
3.5 On-chip ST-DFA weight update computation. 33

4.1 Overview of the proposed work: (a) parallelization in temporal dimension,
(b) systolic accelerator design, and (c) generalized loop representation of
the mapped tiling strategy. 44

4.2 Mapping of a Psum-friendly output-stationary dataflow onto a systolic
array accelerator. 46

4.3 An overview of SNN dataflow simulator framework. 51
4.4 (a) The throughput of three dataflows for VGG-16 CONV1 and CONV11

with OS and WS. (b) Energy dissipation of various dataflows for VGG-16
CONV1 and CONV11. AC refers to accumulation operation. 57

5.1 Spatial and temporal sparsity emergent in SNNs. 63
5.2 Normalized firing rate and distribution of neurons in (a): DVS-Gesture,

and (b): CIFAR10-DVS. 64

xiv

5.3 (a): Overall architecture. (b): Simplified schematic representation of the
processing element (PE) in systolic array. (c): Schematic representation
of time point, time batch (TB), TB -tag and time stride (TS). 67

5.4 Mapping of the (a): inputs and (b): outputs into the systolic array. (c):
Example of enhanced spike input density in DVS-Gesture dataset with
temporally-non-overlapping spikingactivity packing (StSAP). 69

5.5 Simplified schematic representations of (a): Conventional approach which
lacks parallel processing in time domain (executions are performed in time-
serial manner). It requires alternating weight access. (b): Proposed ap-
proach using parallel time batching (PTB). (c): Weight reuse within, and
across TBs. (d): Hiding the absence of spike with TB (grouped spiking
activity). 70

5.6 Schematic representation of StSAP. Mapping of the spike inputs from non-
bursting neurons (a): without StSAP, (b): with StSAP. (c): Greedy policy
applied to find nearest 1’s complement based on TB-tag. 74

5.7 Energy dissipation breakdown of CONV2 in DVS-Gesture with different
(a): TW size. (b): array size (TW=8). 77

5.8 Normalized energy dissipation and latency of layers with different TW
sizes, with- and without StSAP, in each dataset. (a),(b): DVS-Gesture,
(c),(d): CIFAR10-DVS, and (e),(f): Alexnet. PTB with non-
optimized TW size (TWS=1) improves the total energy dissipation and
latency by DVS-Gesture: 6.68X and 5.53X, CIFAR10-DVS: 7.82X and
4.26X, and Alexnet: 4.16X and 7.45X, over the baseline. 78

5.9 Total energy-delay product (EDP) of three different benchmarks. EDP
values are normalized to the baseline result, which exclude merging and
TW size optimization. 81

5.10 (a) Firing rate of well-trained networks. (b) PTB significantly improves
energy efficiency across wide range of sparsity-levels. With PTB, SNN
showed better result than ANN. (c) PTB supports diverse family of spiking
models. 85

6.1 Schematic representation of (a): Time-serial processing in conventional
SNNs, (b): Decoupling scheme to separate feedforward and recurrent
steps. Layer l : Recurrent layer. 90

6.2 Overview of the proposed SaARSP architecture. (a): Array computation
for feedforward integration (Step A, OS dataflow) (b): Array computation
for recurrent integration (Step B, OS dataflow) 93

6.3 Operate the array accelerator with a chosen time window size TW for K
array processing iterations. 96

6.4 Two spiking recurrent layer topologies: (a) Type 1 - uniform, and (b) Type
2 - population based. 100

xv

6.5 Normalized latency/energy of two feedforward layers in comparison with
recurrent layers, with CH−R=1.0 and CR−R=0.3. The values are normal-
ized to those of the feedforward layer with time-iteration factor K=1. . . 104

6.6 Normalized energy dissipation of recurrent layer acceleration under output
stationary dataflow. 105

6.7 Normalized (a) latency, and (b) energy dissipation of recurrent layer ac-
celeration under OS dataflow with CR−R=0.5. 107

6.8 Latency/energy of (a) Type-1, and (b) Type-2 recurrent networks with OS
and WS dataflows normalized to that of the baseline design, which follows
conventional approaches. 108

6.9 Normalized EDP in recurrent layer of eight benchmarks with OS and WS.
EDP values are normalized to the baseline result using 1-D array. The
EDP of OS and WS with and without the time window optimization is
shown. 111

7.1 Local structurization and sparsification with the proposed STT. Time-
left-from-first-spike (TFFS) presents the firing rate of the corresponding
TW. 114

7.2 Schematic representations of STT-based network operations. (a): STT-
encoder at the input layer (b): Comparison between the operations in
conventional approaches and the proposed STT-based approach (c): STT-
decoder at the output layer . 115

7.3 Spike raster plot of 20 neurons from the recurrent layer for accelerating
NTIDIGITS. (a): Original firing activities without using STT and (b):
STT-based firing activities with TW size = 10. 117

7.4 (a): Overall architecture of the proposed accelerator (b): STT-encoder
and decoder at the input and output layer, respectively (c): Mapping of
the inputs and outputs into the systolic array with the proposed ITT . . 120

7.5 Schematic representations of (a): Operations in a PE for accelerating feed-
forward and recurrent layer (b): Calculating partial sums (Psums) using
a prefix sum of the integrated synaptic inputs (ISI) 125

7.6 Normalized number of total spikes and maximum number of spikes in a
neuron with different time window sizes. 127

7.7 Normalized energy dissipation and energy breakdown with and without
the proposed techniques. 129

7.8 Normalized energy dissipation and latency of layers with different TW
sizes for NMNIST. 130

7.9 Normalized energy dissipation and latency of layers with different TW
sizes for DVS-Gesture. 131

7.10 Normalized energy dissipation and latency of layers with different TW
sizes for NTIDIGITS. 132

xvi

7.11 Machine learning performance (inference) - Accelerator performance (nor-
malized EDP) tradeoffs on various datasets. 136

xvii

List of Tables

2.1 Shape parameters of a CONV layer in S-CNNs 12

3.1 Inference accuracy comparison of HM2BP, ST-DFA and ST-DFA-2. All
SNNs are fully connected networks with a single hidden layer of 800 neu-
rons. MNIST: 28x28 input resolution; N-MNIST: 2,312 input spike trains;
16-speaker TI46: 78 input spike trains. 36

3.2 Overheads and inference performances of the fully-connected SNNs with
on-chip ST-DFA-2. 39

3.3 Overheads of an FPGA SNN with on-chip HM2-BP vs. ST-DFA-2 (Net-
work size:196-100-100-10) . 39

4.1 Layer-specific comparison of tiling strategies in output stationary (OS)
dataflows for the VGG-16 net. 54

4.2 Joint layer-dependent dataflow and accelerator optimization under differ-
ent optimization-targets for VGG-16. 56

4.3 Joint layer-dependent dataflow and accelerator optimization under differ-
ent optimization-targets for Alexnet. 56

4.4 Normalized runtime, energy dissipation, and EDP under different opti-
mization targets and hardware area constraints for VGG-16 and Alexnet.
The SNN dataflow from [30] is denoted by ref*. 60

5.1 Summary of key features in existing and our SNN accelerators. 65
5.2 A high-level overview of the input parameters. 76
5.3 Architecture specifications. 76
5.4 Performance comparison of ANNs and SNNs. 83

6.1 A high-level overview of the user-specified inputs to the simulator. 99
6.2 Architecture specifications. 99
6.3 Inference accuracy of trained R-SNNs of Type 1 topology on common

neurmorphic image/speech recognition datasets with CR−R=1.0, CR−R=0.2.102
6.4 R-SNN benchmarks used in this work. 103

xviii

6.5 Detailed performance metrics: PE utilization, number of operations and
data reuse in each integration (feedforward/recurrent) step. 110

7.1 A high-level overview of the user-defined inputs. 128
7.2 Architecture specifications. 128
7.3 Performance on fully-connected and convolutional networks: NMNIST and

DVS-Gesture. TWS denotes the applied time window size. 134
7.4 Performance on recurrent networks: N-TIDIGITS. TWS denotes the ap-

plied time window size. 135

xix

Chapter 1

Introduction

1.1 Neuromorphic Computing Systems

Conventional non-spiking artificial neural network models, or simply ANNs, employ

only rate coding where continuous-valued signals resulted from activation functions such

as sigmoid and rectified linear unit (ReLU) correspond to average firing rates. On the

other hand, spiking neural networks (SNNs) more closely resemble biological neurons, ex-

plicitly model all-or-none firing spikes across both space and time, and can leverage a rich

family of rate and temporal codes for complex spatiotemporal information processing.

© 2022 IEEE. Reprinted, with permission, from Jeong-Jun Lee, Wenrui Zhang and Peng Li, ”Paral-
lel Time Batching: Systolic-Array Acceleration of Sparse Spiking Neural Computation”, 2022 IEEE In-
ternational Symposium on High-Performance Computer Architecture (HPCA), May 2022. © 2022 ACM.
Reprinted, with permission, from Lee, Jeong-Jun, Wenrui Zhang, Yuan Xie, and Peng Li. ”SaARSP:
An Architecture for Systolic-Array Acceleration of Recurrent Spiking Neural Networks.” ACM Journal
on Emerging Technologies in Computing Systems (JETC), 2022 © 2021 IEEE. Reprinted, with permis-
sion, from Jeong-Jun Lee, Jianhao Chen, Wenrui Zhang and Peng Li, ”Systolic-Array Spiking Neural
Accelerators with Dynamic Heterogeneous Voltage Regulation”, 2021 International Joint Conference on
Neural Networks (IJCNN), Sep 2021. © 2020 IEEE. Reprinted, with permission, from Jeong-Jun Lee
and Peng Li, ”Reconfigurable Dataflow Optimization for Spatiotemporal Spiking Neural Computation
on Systolic Array Accelerators”, 2020 IEEE 38th International Conference on Computer Design (ICCD),
Dec 2020. © 2020 Frontiers. Reprinted, with permission, from Lee, Jeongjun, Renqian Zhang, Wenrui
Zhang, Yu Liu, and Peng Li. ”Spike-train level direct feedback alignment: sidestepping backpropagation
for on-chip training of spiking neural nets.” Frontiers in Neuroscience 14 (2020): 143.

1

Introduction Chapter 1

Recent studies reported competitive performances for various image and speech tasks

with biologically inspired [1, 2] and backpropagation based [3, 4] SNN training methods.

With great potentials in ultra-low power event-driven learning leveraging the spatiotem-

proal dynamics of SNNs [5], neuromorphic processors have gathered significant interest

in both academia and industry, resulting in well-known neuromorphic chips including

IBM’s TrueNorth [6] and Intel’s Loihi [7].

1.2 Spiking Neural Network Algorithms

Despite the recent progresses in SNNs and neuromorphic processor designs, fully

leveraging the theoretical computing advantages of SNNs over traditional artificial neural

networks (ANNs) [5] to achieve the state-of-the-art performance for real-world applica-

tions remains challenging. One chief difficulty here lies in training of SNNs in terms of

achievable performance and computational complexity.

Inspired by the success of error backpropagation (BP) and its variants such as stochas-

tic gradient decent in training conventional ANNs [8], various SNN BP methods have

emerged, aiming at attaining the same level of performance [9, 10, 11, 4]. The major

challenges in BP training of SNNs stem from the non-differentiablity of spike events and

temporal dynamics that prevent straightforward derivative computation. SpikeProp [9] is

the first BP algorithm to train SNNs by BP. However, SpikeProp is limited to single-spike

training for learning simple functions like XOR. [10] proposes a BP algorithm which dif-

ferentiates neuron’s membrane potential instead of discrete output spikes. [11] improves

[10] by capturing temporal effects with backpropapogation through time (BPTT) [12].

However, the error gradient is still computed by differentiating the membrane potential,

leading to inconsistency w.r.t the rate-coded loss function. More recently, [4] proposes a

hybrid macro/micro level backpropagation (HM2-BP) algorithm for training multi-layer

2

Introduction Chapter 1

SNNs, which addresses the aforementioned issues. HM2-BP precisely captures the tem-

poral behavior of the SNN at the microscopic level and directly computes the gradient

of the rate-coded loss function w.r.t tunable parameters. As a result, HM2-BP demon-

strates the state-of-the art learning performances on widely adopted SNN benchmarks

such as MNIST [13] and Neuromorphic-MNIST (N-MNIST) [14], outperforming all other

existing BP algorithms based on the leaky integrate-and-fire model.

While achieving excellent results, the aforementioned SNN BP algorithms are ham-

pered by several limitations. The error signal is propagated backward layer by layer

through weights symmetric to the feed-forward weights. This is considered not biologically-

plausible. Furthermore, BP algorithms involve complex layer-by-layer backward compu-

tations, which is expensive to implement on-chip and introduces high training latency.

For instance, while HM2-BP improves the scalability of BPTT [11] by operating on the

spike-train level, i.e. application of BP does not discretize time, it still involves complex

computations and its latency in the backward phase is proportional to network depth.

1.3 Spiking Neural Network Accelerators

Spiking neural networks (SNNs) more closely resemble biological neurons, explic-

itly model all-or-none firing spikes across both space and time, and can leverage a rich

family of rate and temporal codes for complex spatiotemporal information processing.

Recent studies reported competitive performances for various image and speech tasks

with biologically inspired [1, 2] and backpropagation based [3, 4] SNN training methods.

With great potentials in ultra-low power event-driven learning leveraging the spatiotem-

proal dynamics of SNNs [5], neuromorphic processors have gathered significant interest

in both academia and industry, resulting in well-known neuromorphic chips including

IBM’s TrueNorth [6] and Intel’s Loihi [7].

3

Introduction Chapter 1

Nevertheless, hardware acceleration of spike-based models is complicated by temporal

computation and sparse spiking activities in both space and time, two new challenges that

are absent in accelerators of non-spiking networks such as DNNs. The added temporal

dimension is fundamental to SNNs but introduces difficulties in managing compute and

data movement. Furthermore, biological brains and engineered SNN models often exhibit

a great deal of firing activity sparsity across both space and time, manifesting their

promising efficiency. The sparse spiking activities of a well-trained SNN may vary from

neurons to neurons, and from time points to time points. To fully explore the benefits

of SNNs, one must address the challenges brought by irregular patterns of spatial and

temporal sparsity.

Compared to the large body of work on DNN accelerators, e.g., [15, 16, 17, 18, 19],

much less research has been devoted to SNN hardware accelerator architectures [20, 21,

22, 23, 24]. The two best-known industrial neuromorphic chips, IBM’s TrueNorth [6]

and Intel’s Loihi [7], are based on a many-core architecture, comprising neuro-synaptic

cores with an asynchronous mesh for core-to-core communication. Each neuromorphic

core emulates a certain number of spiking neurons in a time-sequential manner. While

both architectures target large-scale spiking neural computations with low power, there

exist two primary disadvantages in these two designs: 1) lack of parallelism in each core:

the computations associated with different spiking neurons are executed sequentially,

one neuron at a time, and from time points to time points; and 2) assumption of large

core memory: as opposed to many practical cases, it is assumed that all weights of the

network are fully stored on-chip, and hence efficient dataflows maximizing the reuse of

weight data are not targeted. These issues limit the achievable throughput and/or do

not well support SNN acceleration on resource-constrained hardware like ones for edge

computing.

The recent SNN architecture SpinalFlow explores a novel compressed, time-stamped,

4

Introduction Chapter 1

and sorted spike input/output representation [20]. The main drawback of SpinalFlow is

that it only targets the class of temporally-coded spiking neuronal models in which each

neuron fires at most once, which is a highly restrictive type and has limited accuracy

for challenging learning tasks [25, 26]. While the smart exploration of such extreme

temporal sparsity leads to large latency and energy efficiency benefits, SpinalFlow is

not applicable to broader classes of SNNs employing rate and other types of temporal

codes or a combination of thereof for high-accuracy decision making. Since the maximum

firing count for each neuron is one, the structured sparse firing activities are handled as

chronologically sorted inputs with a dearth of parallel acceleration through time.

1.4 Outline

The summary of the rest of this dissertation is as follows: In Chapter 2, we provide

a brief background on unique characteristics of SNNs, basic operations in spiking neu-

ron models, datasets and systolic arrays. In Chapter 3, we perform algorithm-hardware

co-optimization and demonstrate the first on-chip hardware realization of Spike-Train

level Direct Feedback Alignment (ST-DFA) for SNNs with significantly improved accel-

erator performance compared to conventional Back-Propagation (BP). In Chapter 4, we

propose holistic reconfigurable dataflow optimization for systolic array acceleration of

spiking convolutional networks (S-CNNs), and introduce SNN dataflow simulator to sup-

port systemic design space exploration. In Chapter 5, we introduce a novel technique for

parallel acceleration in both space and time based on simultaneous processing of multiple

time batches with a temporal granularity defined by the Time Window (TW) size, along

with Spatiotemporally-non-overlapping Spiking Activity Packing (StSAP). In Chapter

6, we explore the proposed parallel acceleration technique to decouple the processing of

feedforward synaptic connections from that of recurrent connections, for efficient acceler-

5

Introduction Chapter 1

ation of complex spatiotemporal dynamics arising in R-SNNs. In Chapter 7, we propose

a novel, application independent solution called Split-Time Temporal (STT) coding that

allows the exploitation of temporal information compression with structured sparsity

and parallelism across time, which is further supported by Integration-Through-Time

(ITT). Chapter 8 summarizes this dissertation and includes discussions on potential fu-

ture work.

6

Chapter 2

Background

2.1 Unique Characteristics of SNNs

Compared with non-spiking ANNs, the most distinctive features of SNNs are temporal

data processing and data representation. All data types in ANNs, e.g., input/output

feature maps (IFmap/OFmap) and filters data in widely adopted convolutional neural

networks (CNNs), are multi-bit. The most commonly used data representations in non-

spiking ANN hardware accelerators are based on 8- to 16-bit precision [15, 19, 27, 28],

which may be further compressed using techniques such as weight quantization [29, 30].

On the other hand, input/output activations of a spiking layer are binary due to the

all-or-none characteristics of spiking neural firing characteristics, which can be more

compactly stored than multi-bit partial sum data. This disparity in data representations

can be explored in dataflow optimization [21, 20].

While integration and activation steps in ANNs exclude temporal information, a spik-

ing neuron integrates its inputs over time, as shown in Fig. 2.1(b). The spatiotemporal

information processing in SNNs empower various models and applications [3, 31, 32].

However, the added temporal dimension causes intertwined spatiotemporal interactions,

7

Background Chapter 2

Input 1(𝒔𝒋)

Output

Neuron j

Neuron i

𝑾𝒋𝒊

(a) Receptive field

Time

Input 1

Input 2

Output

Membrane

Threshold

(b)

Synaptic

input integration

Membrane

potential update

Spike generation

Next

time point

Presynaptic spike

input at time point 𝒕𝒌

v

𝒕𝒌

Input 2
v

Figure 2.1: (a): Layer operation in SNNs. (b): Main steps of spatiotemporal operation
in a spiking neuron.

rendering SNN hardware accelerators to confront complex data movement/computation,

which we address in later sections.

2.2 Spiking Neural Network Operations

2.2.1 Spiking Neurons

Common to literally all spiking neural models, operations in one spiking neuron com-

prise three main steps at each time point ti, where time point is a minimum unit of

time in SNNs: 1) integration of pre-synaptic spike inputs, 2) update of the post-synaptic

membrane potential, and 3) conditional generation of post-synaptic spike output (action

potential). As shown in Fig. 2.1 and during Step 1, if a particular pre-synaptic neuron

fires, the induced pre-synaptic current will be integrated by the post-synaptic neuron.

From a modeling perspective, in this case the corresponding synaptic weight between the

two neurons, or more generally a quantity determined by the weight, will be added (ac-

cumulated) to the post-synaptic membrane potential. After integrating all pre-synaptic

currents, in Step 2, the post-synaptic spiking neuron updates its membrane potential by

8

Background Chapter 2

Figure 2.2: (a): Schematic for feedforward layer operation in SNN. (b): Schematic for
recurrent layer operation in R-SNN.

adding to it the sum of integrated synaptic currents. Temporal decaying of the membrane

potential can also be included if the neural model is leaky. In the last step, the spiking

neuron compares its updated membrane potential with a pre-determined firing threshold

and generates an output spike (action potential) if the membrane potential exceeds the

threshold, as shown in Fig. 2.1(b). The same process repeats for all time points involved

in a given spike-based task.

2.2.2 Spiking Neural Networks

Spiking neurons are wired to form a network. The aforementioned temporal process-

ing of individual spiking neurons are brought into a network setting in which neurons

communicate with each other and perform computation by receiving and generating

stereotyped all-or-none spikes both spatially and temporally. This dissertation considers

wide range of network types, including general the most general (deep) multi-layer feed-

forward (fully-connected) spiking neural network (SNN), convolutional spiking neural

networks (S-CNN or spiking-CNN), and recurrent spiking neural network (R-SNN) ar-

chitecture, which comprises multiple fully-connected or convolutional or recurrent layers

or a combination of thereof.

9

Background Chapter 2

Feedforward spiking layers

Conventional and the most natural approach for temporal data processing is to per-

form operations time point by time point in a sequential manner, for all time points in

time stride. In feedforward spiking layers, operations in a single spiking neuron consist

of three steps at each time point tk:

Step 1: Synaptic input integration at tk:

p⃗Post[tk] = WPost,Pre × s⃗Pre[tk] (2.1)

Step 2: Membrane potential update at tk:

v⃗Post[tk] = v⃗Post[tk−1] + p⃗Post[tk]− V Post
leak (2.2)

Step 3: Conditional spike output generation at tk:

s⃗Post[tk] = f (v⃗Post[tk]) (2.3)

f (vPost
i [tk]) =

1, if vPost

i [tk] ≥ V Post
th → vPost

i [tk] = 0

0 else → vPost
i [tk] = vPost

i [tk]

(2.4)

where the Post and Pre denote the pre-synaptic layer and the post-synaptic layer, and

i represents the neuron indices in the post-synaptic layer. p⃗Post[tk], v⃗
Post[tk], and s⃗Post[tk]

are vectors, representing the integrated partial sum of the spike inputs from the pre-

synaptic layer, membrane potential and spike output of the neurons in the post-synaptic

layer at time tk, respectively. WPost,Pre is the matrix of the feedforward synaptic weights

between pre- and post-synaptic layers, Vth and Vleak are the firing threshold and leaky

10

Background Chapter 2

parameter in post-synaptic layer, respectively. f is a non-linear, all-or-non activation

function with a given Vth. In the above steps, the synaptic input integration (Step 1)

incurs matrix-vector multiplication and takes place at each time point, comprising the

dominant complexity of SNN acceleration.

Importantly, the above steps are repeated at each time point, across all time points

in time stride. The above steps present fundamental operations in any feedforward layers

including fully-connected and convolutional layers.

Recurrent Spiking Layers

Processing neural computations of a recurrent layer in SNNs follow the same three

steps in the feedforward layer with additional synaptic inputs. In a recurrent layer, lateral

recurrent inputs are also considered in addition to the feedforward input integration

(Step 1) in (2.1):

Step 1*: Feedforward synaptic input integration at tk:

p⃗Post
F [tk] = WPost,Pre × s⃗Pre[tk] (2.5)

p⃗Post
R [tk] = WPost,Post × s⃗Post[tk−1] (2.6)

p⃗Post[tk] = p⃗Post
F [tk] + p⃗Post

R [tk] (2.7)

where p⃗Post
F [tk], p⃗

Post
R [tk] and p⃗Post[tk] are vectors, representing the partial sum of the

feedforward input integration, recurrent input integration, and fully-integrated partial

sum in the post-synaptic layer at time tk, respectively. WPost,Post is the matrix of the

11

Background Chapter 2

…

R

R

C

1

2

M H

…

H

C

T

…

E

E

1

M

T

Filters (W)

Input feature

maps (IFmaps)
Output feature

maps (OFmaps)

Figure 2.3: Computation of convolution layer in S-CNNs.

Table 2.1: Shape parameters of a CONV layer in S-CNNs
Shape Parameter Description

H / H ifmap width / height
E / E ofmap width / height
R / R filter width / height
C # of ifmap/filter channels
M # of ofmap channels
T # of time steps

recurrent synaptic weights of the post-synaptic (recurrent) layer.

Convolutional Spiking Layers

The fundamental operations of a single spiking neuron in spiking-CNNs (S-CNNs)

follow the aforementioned three main steps (2.1)∼(2.4) where the computation involves

multiple filters:

At a given time-point tk,

Step 1: Integration of receptive field synaptic inputs at tk:

12

Background Chapter 2

P[m][x][y][tk] =
C−1∑
c=0

R−1∑
i=0

R−1∑
j=0

W[m][c][i][j]× I[c][Ux+ i][Uy + j][tk] (2.8)

Step 2: Membrane potential update:

V[m][x][y][tk] = V[m][x][y][tk−1] +P[m][x][y][tk] (2.9)

Step 3: Conditional spike output generation:

O[m][x][y][tk] =

1, if V[m][x][y][tk] ≥ V O

th : V[m][x][y][tk] = 0

0 else : V[m][x][y][tk] = V[m][x][y][tk]

0≤x,y<E, E=(H−R+U)/U, 0≤c<C, 0≤m<M, 0≤t<T

(2.10)

Move onto the next time-point (tk+1), and repeat the above three steps.

where P, V, O, I and W are the matrices of the partial sums (Psums), membrane

potentials, output feature maps (OFmaps), input feature maps (IFmaps) and filters,

respectively. P[m][x][y][tk] is the partial sum of the neuron at position (x, y) and in

output channel m of the OFmap at time tk. Other matrices are defined similarly. U is

a given stride size, T is the number of processing time steps, and all the other shape

parameters are listed and illustrated in Table 2.1 and Fig. 2.3. (2.8)∼(2.10) correspond

to each of the three steps discussed in (2.1)∼(2.4).

2.3 Datasets

We adopt various types of datasets for the evalutation including images/speeches,

neuromorphic images/speeches, and neuromorphic videos.

13

Background Chapter 2

MNIST

The MNIST handwritten digit dataset [13] contains 60k training and 10k testing

samples, each of which is a 28 × 28 grayscale image. Each pixel value of the MNIST

image is converted into a spike train using Poisson sampling and the probability of spike

generation is proportional to the pixel intensity. Thus, inputs are encoded into a 2D

784 × Nt matrix where Nt is the simulation time steps. Especially, due to the limited

hardware resources available on the Xilinx Zynq ZC706 board, we crop each image to

include only the 14× 14 pixels around the center for FPGA evaluation in chapter 3. For

all other experiments, each pixel value of an MNIST image is converted into a real-valued

input current.

Fashion-MNIST

The Fashion-MNIST dataset [33] is a MNIST-like, but much more difficult, clothing

classification dataset which contains 28x28 grey-scale images of clothing items. Fashion-

MNIST dataset contains 60k training examples and 10k testing examples with 10 classes.

CIFAR10-DVS

The CIFAR-10 dataset [34] consists of 60,000 32 × 32 color images in 10 classes,

with 6,000 images per class. The CIFAR10-DVS [35] dataset is a neuromorphic version

of CIFAR10, using a dynamic vision sensor (DVS) camera, an event-stream dataset for

object classification containing 10k examples with an event-based sensor, whose resolution

is 128×128 pixels.

14

Background Chapter 2

TI46-Alpha

TI46 speech corpus [36] contains spoken English alphabets/digits audios from 16

speakers. In this dissertation, we only use alphabets of the full TI46 speech corpus.

For the rest of this dissertation, we call this as TI46-Alpha or Ti46, where TI46-Alpha

consists of 4142 and 6628 spoken English examples in 26 classes for training and testing,

respectively. The continuous temporal speech waveforms are preprocessed by Lyon’s

ear model [37] with the sample rate of 12.5 kHz where each sample is encoded into 78

channels.

N-MNIST

Similar to CIFAR10-DVS, the N-MNIST dataset [14] is a neuromorphic version of

the MNIST dataset using the dynamic vision sensor (DVS) [38] in front of static digit

images on a computer monitor. Changes of pixel intensity at each location are encoded

as spike trains where image size is 34× 34 rather than 28× 28 due to the relative shifts

of each image. As in [39], we reduce the time resolution into a few hundred time steps

since original dataset requires 300000 time steps.

N-TIDIGITS

TIDIGITS [40] is a speech dataset where each sample has 64 input channels, processed

by CochleaAMS1b sensor and takes about 0.9s. The N-TIDIGITS [41] is a neuromorphic

version of TIDIGITS, where connected-digit sequences are not considered and we only

consider single-digit samples with 2,475 samples for training and 2.475 samples for testing.

Similar to N-MNIST, we reduce the temporal resolution by compressing 1 us to 3 ms,

forming 300 time steps.

15

Background Chapter 2

DVS-Gesture

The DVS-Gesture dataset [42] consists of event streams of hand/arm gestures. Using

the dynamic vision sensor (DVS) camera, the input frame is 128 × 128 pixels with two

channels where we follow the same preprocessing procedures in [43]. While each action

(sample) lasts for about 6 s, we only consider the first 1.5 s of action video as in [39]

and compress the temporal resolution to 5 ms which produced 300 time steps for each

sample.

2.4 Systolic Array

Systolic array architectures offer efficient parallel processing with high spatiotemporal

locality and compute density. In many prior works, a tightly coupled 2-D systolic array

has been adopted for CNN accelerations with clear advantages [44, 19, 45, 18]. Systolic

arrays propagate data horizontally and vertically, i.e., from left to right and from top to

bottom through all processing elements (PEs) in a globally synchronized manner, hence

naturally exploit high locality and compute density. For example, a unidirectional link

is utilized in the vertical data propagation to allow each PE to receive the input from

its upstream neighbor, perform the computation and store the results, and continue to

pass the data to its downstream neighbor. Furthermore, data are fed from edges of the

array to provide sufficient data distribution bandwidth. The above properties result in

a streamlined accelerator platform for managing data fetching without requiring compli-

cated inter-PE communication. With the advantages in terms of complexity, distribution

bandwidth, locality, and compute density, systolic arrays are adopted for efficient acceler-

ation of spiking computation in chapter 4 ∼ 7, which well-aligns with parallel-acceleration

techniques introduced in this dissertation.

16

Chapter 3

Spiking Neural Processor with

Direct Feedback Alignment

In this chapter, we present the first study on realizing competitive spike-train level back-

propagation (BP) like algorithms to enable on-chip training of SNNs. We propose a novel

spike-train level direct feedback alignment (ST-DFA) algorithm, which is much more bio-

plausible and hardware friendly than BP. Algorithm and hardware co-optimization and

efficient online neural signal computation are explored for on-chip implementation of ST-

DFA. On the Xilinx ZC706 FPGA board, the proposed hardware-efficient ST-DFA shows

excellent performance vs. overhead tradeoffs for real-world speech and image classifica-

tion applications. SNN neural processors with on-chip ST-DFA training show competitive

classification accuracy of 96.27% for the MNIST dataset with 4× input resolution reduc-

tion and 84.88% for the challenging 16-speaker TI46 speech corpus, respectively. Com-

pared to the hardware implementation of the state-of-the-art BP algorithm HM2-BP,

the design of the proposed ST-DFA reduces functional resources by 76.7% and backward

training latency by 31.6% while gracefully trading off classification performance.

This work aims to answer the following questions: 1) Can biologically plausible mech-

17

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

anisms be developed to sidestep complex BP algorithms while delivering competitive

performance? 2) Can such mechanisms be leveraged for efficient on-chip training of

multi-layer SNNs?

3.1 Direct Feedback Alignment (DFA)

3.1.1 Direct Feedback Alignment

Backpropagation (BP) has been widely applied to train neural networks. It is based

upon computing a global error at the output layer and then propagating the error signal

to hidden neurons layer by layer. During this process, the errors of a preceding layer

are multiplied with a weight matrix that is completely symmetric to the one for the

feed-forward connections. This fact is not considered biologically plausible. A recent

discover called Feedback Alignment (FA) [46] demonstrates that the weights used for

propagating the error layer by layer need not be symmetric to the weights used for

forward propagation to achieve good performance. The feedback weight matrix can be

randomly generated and then stay unchanged since the network can learn how to make

feedback useful through training. [47] applies FA for training SNNs.

A more disruptive approach called Direct Feedback Alignment (DFA) is proposed

in DNNs [48]. DFA is compared with BP in Fig. 3.1. Unlike propagating the error

back layer by layer in BP and FA, DFA feeds back the error through fixed random

feedback connections directly from the output layer to each hidden layer, eliminating

the need for layer-by-layer error backpropogation or feedback. DFA is considered more

biologically plausible because the error is generated almost completely local with no long

backpropagation/feed back train and symmetric weights are not required. [48] shows that

for conventional multi-layer ANNs like DNNs, the use of DFA can achieve competitive

18

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

x h1 h2 y

w1 w2 w3

w3
Tw2

T

(a)
x h1 h2 y

w1 w2 w3

w3
Tw2

T

(a)
x h1 h2 y

w1 w2 w3

B2

(b)

B1

x h1 h2 y

w1 w2 w3

B2

(b)

B1

Figure 3.1: (a) Backpropagation (BP) vs. (b) direct feedback alignment (DFA). Solid
arrows indicate feedforward paths and dashed arrows indicate feedback paths. The
feedback matrices B1 and B2 need not be symmetric to W2 or W3.

results with insignificant performance drops when compared with the state-of-the-art BP

methods.

In this paper, we extend the DFA for conventional ANNs [48] for SNNs. To the best

of our knowledge, this is the first work applying DFA to SNNs. Furthermore, our DFA

approach, dubbed ST-DFA, operates on the spike-train level, hence offering improved

scalability in both space (network depth) and time.

3.1.2 Spike-train Level Post-synaptic Potential

Before describing the proposed ST-DFA in Section 3.2, we present the concept of

Spike-train Level Post-synaptic Potential (S-PSP) that is behind the spike-train level

computation of ST-DFA.

The widely adopted leaky integrate-and-fire (LIF) model for spiking neurons is given

by [49]:

τm
ui(t)

dt
= −ui(t) +R αi(t), (3.1)

19

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

with

τs
αi(t)

dt
= −αi(t) +

∑
j

wij

∑
t
(f)
j

D
(
t− t

(f)
j

)
, (3.2)

where ui(t) is the membrane potential of the neuron i, αi(t) is the first order synaptic

model with time constant τs, and τm is the time constant of membrane potential with

value τm = RC. R and C are the effective leaky resistance and effective membra ne

capacitance. wij is the weight of the synapse from the pre-synaptic neuron j to the

neuron i. t
(f)
j denotes a particular firing time of the neuron j. D(t) is the Dirac delta

function. R is set to 1 since it can be absorbed into synaptic weights.

Integrating (3.1) and (3.2) gives the spike response model (SRM) [4]:

ui(t) =
∑
j

wij

∑
t
(f)
j

ϵ
(
t− t̂

(f)
i , t− t

(f)
j

)
, (3.3)

where t̂
(f)
i denotes the last firing time of the neuron i. ϵ(s, t) specifies the normalized time

course of the post-synaptic potential evoked by a single firing spike of the pre-synaptic

neuron:

ϵ(s, t) =
1

C

∫ s

0

exp

(
− t′

τm

)
αi (t− t′) dt′. (3.4)

Integrating (3.4) gives:

ϵ(s, t) =
e(−max(t−s,0)/τs)

1− τs
τm

[
e(−

min(s,t)
τm

) − e(−
min(s,t)

τs
)
]
H(s)H(t), (3.5)

where H(t) is the Heaviside step function.

The sum of the (normalized) post-synaptic potential of the neuron i evaluated right

before all the neuron i’s firing times evoked by the spike train of the pre-synaptic neuron

j defines the (normalized) spike-train level post-synaptic potential (S-PSP) ei|j,

20

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

which is given by:

ei|j =
∑
t
(f)
i

∑
t
(f)
j

ϵ(t
(f)
i − t̂

(f)
i , t

(f)
i − t

(f)
j). (3.6)

S-PSP specifies the aggregated effect of the spike train of the pre-synaptic neuron j on

the membrane potential of the post-synaptic neuron i, providing a basis for relating firing

counts to spike events.

Summing the weighted S-PSPs from all pre-synaptic neurons of the neuron i gives the

total post-synaptic potential (T-PSP) ai, which is directly correlated to the neuron

i’s firing count oi through the firing threshold voltage ν:

ai =
∑
j

wij ei|j. oi = g(ai) ≈
ai
ν

(3.7)

3.2 Spike-Train Level DFA (ST-DFA)

3.2.1 Proposed ST-DFA Algorithm

For a conventional (non-spiking) ANN, the squared error for one training example

can be defined at the output layer by:

E =
1

2
||o− y||22, (3.8)

where y and o are vectors specifying the desired output (label) and the actual output,

respectively. The output oi of each neuron i is determined by the activation function ϕi:

oi = ϕi(
∑

j wijxj), where xj is the input value from the presynaptic neuron j and wij is

the weight between the neurons j and i.

The well-known BP algorithm for an ANN [50], which is ubiquitously used in deep

21

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

learning, is:

∆wij = η
∂E

∂wk
ij

= ηδki ϕ
k−1
j

δki =

oi − yi for output layer,

ϕ′k+1
i

∑rk+1

l=1 δk+1
l wk+1

li for hidden layers,

(3.9)

where η is the learning rate, δki the error for the ith neuron of the kth layer, rk the number

of neurons in the kth layer.

It has been demonstrated recently that training SNNs using BP with respect to a

rate-coded loss function has produced highly competitive performances [10, 11, 4]. Rate-

coded loss functions are also adopted for our ST-DFA. Different from BP, the proposed

ST-DFA algorithm for SSNs computes each error δ by direct feedback from the output

layer on the spike-train level, giving to the following update rule:

∆wij = η
∂E

∂wij

= ηδki e
k
i|j,

δki =

ooi−yoi

ν
for output layer,∑ro

l=1 δ
o
l b

k
li for hidden layers,

(3.10)

where η is the learning rate, δki the error of the neuron i in the kth hidden layer, eki|j the

S-PSP from the neuron i to neuron j, ooi the actual firing count of neuron i in the output

layer, yoi the desired firing count for the neuron i, ν the firing threshold, ro the number

of neurons in the output layer, δol the error of the neuron l in the output layer, and bkli

the value of the fixed random feedback.

The last equation of (3.10) is based on the concept of DFA. As in Fig. 3.2, with ST-

DFA, the output layer is fully connected to each hidden layer through a different matrix

which is called the random feedback matrix B. The weights (values) in these matrices

22

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

Layer
Output
Layer

Output

erro
r

o0

or_o

Bk-1Bk-1

BkBk

Feedforward Spike TrainsFeedforward Spike Trains
ST-DFA FeedbackST-DFA Feedback

Output Layer Feedback

Feedforward Spike Trains
ST-DFA Feedback

Output Layer Feedback

δ k-1δ k-1δ k-1

δ kδ kδ k

ek
i|j

Si

Sj ek
i|j

Si

Sj

ek
i|0

ek
i|r_k

i

Layer k
Hidden
Layer k
Hidden

ek
i|j

Si

Sj

ek
i|0

ek
i|r_k

i

Layer k
Hidden

Figure 3.2: The proposed spike-train level DFA (ST-DFA).

are randomly generated and then stay fixed. The error vector δk of the hidden layer k is

directly obtained from the error vector of the output layer δo and the random feedback

matrix Bk as: δk = Bk × δo. The detailed derivation of ST-DFA is introduced next.

3.2.2 Derivation of ST-DFA

Similar to (3.8) and using (3.7), we define the rate-coded loss function as:

E =
1

2
||o− y||22 =

1

2
||a
ν
− y||22, (3.11)

where y, o and a are vectors specifying the desired firing counts (label), the actual

firing counts, and the T-PSP of the output neurons, respectively. Differentiating the loss

function with respect to each trainable weight wij leads to:

∂E

∂wij

=
∂E

∂aki

∂aki
∂wij

= δki
∂aki
∂wij

, (3.12)

where aki is the T-PSP of the neuron i in the kth layer.

23

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

It is instrumental to note that each S-PSP ei|j depends on both rate and temporal

information of the pre/post spike trains, i.e. ei|j depends on the pre/post-synaptic firing

counts oi and oj and pre/post-synaptic firing times t
(f)
j and t

(f)
i :

ei|j = f(oj, oi, t
(f)
j , t

(f)
i). (3.13)

For the ith output neuron, δoi can be obtained from (3.12) and (3.7):

δoi =
∂E

∂aoi
= (oi − yi)

∂oi
∂ai

=
oi − yi

ν
. (3.14)

For each ith neuron in the hidden layer k, δki is derived from the chain rule based on (3.7):

δki =
∂E

∂aki
=

rk+1∑
l=1

∂E

∂ak+1
l

∂ak+1
l

∂aki
=

rk+1∑
l=1

δk+1
l

∂ak+1
l

∂aki

=
rk+1∑
l=1

δk+1
l wk+1

li

∂ek+1
l|i

∂aki
.

(3.15)

The first key development in ST-DFA is that the way in which the error δki is calculated

in each hidden layer changes from∑rk+1

l=1 δk+1
l wk+1

li

∂ek+1
l|i

∂aki
to

∑ro

l=1 δ
o
l d

k
li

∂ek+1
l|i

∂aki
, where dkli is the direct feedback alignment

from the output neuron l to the hidden layer neuron i. dkli is a randomized and fixed

value. In this process, we replace the wk+1
li from (k + 1)th layer to kth layer in (3.15) by

dkli, leading to:

δki = δol d
k
li

∂ek+1
l|i

∂aki
. (3.16)

As such, the error δk of each hidden neuron is directly determined by the output layer

error vector δo rather than by the error vector δk+1 of the next layer.

24

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

Moreover, we have the following key observation. In (3.16), since dkli is randomly gen-

erated,
∂ek+1

l|i
∂aki

can be absorbed into dkli to further simplify ST-DFA. Denote the new DFA

parameter absorbing
∂ek+1

l|i
∂aki

by bkli = dkli
∂ek+1

l|i
∂aki

, the simplified error computation becomes:

δki =

ooi−yoi

ν
for output layer,∑ro

l=1 δ
o
l b

k
li for hidden layers,

(3.17)

where bkli is one entry of the random feedback matrix B in Fig. 3.2.

Thus, ST-DFA reduces the computational complexity by not only avoiding layer-by-

layer propagation but also the additional simplification via the use of bkli.

3.2.3 Simplification for Hardware Friendliness

The last term on the right-hand side of (3.12) differentiates the total post-synaptic

potential (T-PSP) aki . Considering (3.7), it can be written as:

∂aki
∂wij

=
∂

∂wij

rk−1∑
j=1

wij e
k
i|j

 = eki|j +
rk−1∑
l=1

wil

∂eki|l

∂oki

∂oki
∂wij

= eki|j +
eki|j
ν

rk−1∑
l=1

wil

∂eki|l

∂oki
.

(3.18)

The exact evaluation of the above expression requires multiple additions, multiplications,

and divisions, introducing high hardware overhead and additional latency.

The first term eki|j on the right-hand side of (3.18) can be interpreted as the direct

influence exerted on the T-PSP aki by changing the synaptic weight wij as seen from (3.7).

The second term
ek
i|j
ν

∑rk−1

l=1 wil

∂ek
i|l

∂oki
comes from the fact that changing the weight wij leads

to variation in the post-synaptic spike train. Thus, the S-PSP eki|l to the neuron i also

varies as it depends on the firing times of the post-synaptic neuron. Nevertheless, we have

25

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

observed that the first term dominates the second term. By dropping the second term,

we reach the final hardware-friendly ST-DFA algorithm of (3.10), which also maintains

good performance.

In comparison, the spike-train level BP algorithm HM2-BP is [4]:

∆wij = ηδki e
k
i|j

1 +
1

ν

rk−1∑
l=1

wil

∂eki|l

∂oki

 ,

δki =

oki −yki

ν
for output layer,

1
ν

∑rk+1

l=1 δk+1
l wli

∂ek+1
l|i

∂oki
for hidden layers.

(3.19)

While HM2-BP delivers the state-of-the-art performance, it would be very costly to

implement on hardware if ever feasible.

In all, compared to HM2-BP in (3.19), ST-DFA in (3.10) is much more hardware

friendly. With ST-DFA, direct error feedback to each hidden layer is accomplished with-

out layer-by-layer back propagation while HM2 requires high-resolution multiplications

with the transpose of the forward weights and other expensive operations layer by layer.

In the next section, we efficiently realize the ST-DFA algorithm on digital hardware.

3.3 SNN Accelerators with ST-DFA On-chip Train-

ing

3.3.1 Architecture

Fig. 3.3 shows the architecture of the proposed multi-layer feed-forward spiking neural

processors with the proposed ST-DFA on-chip training. Only two hidden layers are

shown for illustration purpose. Architecturally, the processor is comprised of an input

26

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

Sy
n

a
p

ti
c

C
u

rr
en

t
U

p
d

a
te

Sp
ik

e
G

en
er

a
ti

o
n

x

Fe
ed

b
a

ck
Fu

n
ct

io
n

a
l

B
lo

ck
s

ST
-D

FA

W
ei

g
h

t
 U

p
d

a
te

Fe
ed

fo
rw

a
rd

Fu

nc
ti

on
a

l B
lo

ck
s

e i
|j

W
e

ig
h

t
M

EM
W

e
ig

h
t

M
EM

S-
P

SP
 M

EM
S-

P
SP

 M
EM

Δ
w

s i
O

u
tp

u
t

La
ye

r

O
E

O
E

O
u

tp
u

t
La

ye
r

O
E

Er
ro

r
G

e
n

e
ra

to
r

G
lo

b
al

C

o
n

tr
o

lle
r

H
id

d
en

 L
a

ye
r

2

H
E

H
E

H
id

d
en

 L
a

ye
r

2

H
E

H
id

d
en

 L
a

ye
r

1

H
E

H
E

H
id

d
en

 L
a

ye
r

1

H
E

IB In
p

ut

Sp
ik

e
B

u
f.

In
p

ut

Sp
ik

es

In
p

u
t

La
be

l

O
u

tp
u

t
Sp

ik
es

D
FA

A

rr
ay

D
FA

A

rr
ay

Lo
ca

l
C

o
n

tr
o

lle
r

S-
P

SP
U

p
d

at
e

S-
P

SP
U

p
d

at
e

e i
|j

W
ij

W
ij

F
ig
u
re

3
.3
:
P
ro
p
o
se
d
a
rc
h
it
ec
tu
re

of
m
u
lt
i-
la
ye
r
S
N
N
s
w
it
h
on

ch
ip

S
T
-D

F
A

tr
ai
n
in
g.

H
E
re
p
re
se
n
ts

a
d
ig
it
al

h
id
d
en

n
eu

ro
n
el
em

en
t;
a
n
d
O
E

re
p
re
se
n
ts

a
d
ig
it
al

ou
tp
u
t
n
eu

ro
n
el
em

en
t.

27

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

spike buffer feeding multiple hidden layers composed of hidden neuron elements (HEs).

The last hidden layer connects to the output layer which consists of a set of output

neuron elements (OEs). A modular design approach is taken where each spiking neuron

is implemented in the form of HE or OE. As such, a proper number of HEs and OEs can

be instantiated to form a multi-layer SNN with arbitrary depth and width.

Both inference and training are supported. Training over an input example splits

into two phases: forward pass and backward pass. The computation of S-PSPs required

for ST-DFA training are computed in an online manner in the forward pass of training.

The remaining computations of the forward pass are identical to those performed in in-

ference. To support ST-DFA training, the error generator utilizes an array of subtractors

to compute the difference between the actual OE output spike counts with expected

ones (label). At each hidden layer, this output-layer error vector is multiplied with the

associated ST-DFA random feedback matrix inside each layer to allow weight updates

performed by each neuron.

3.3.2 On-chip Training

For each training example, the forward and backward passes of the training are con-

trolled by a global controller (FSM) as shown in Fig. 3.3. Neurons at the same layer

process information in parallel to exploit the inherent parallelism of the hardware SNN

processor architecture. In the forward pass and at each biological time step, layers are

activated by the global controller one at a time from the input to the output. After

output spikes are generated for the current time step, the global controller pushes the

training forward to the next time step. This process repeats until the current training

example has been entirely learned by the network. Then, the backward pass starts, in

which the first step is to calculate the output error δol in (3.10). After that, all hidden

28

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

layers start to perform ST-DFA for weight updating at the same time. The weight up-

date latency of each hidden layer may be different due to the differences in the number of

input synaptic connections (i.e. the preceding layer width). After all hidden layers finish

ST-DFA weight updates, the training process moves onto the next training example.

3.3.3 Neuron Unit Design

Each HE or OE contains several functional blocks categorized into feed-forward func-

tional blocks and feedback functional blocks as shown in Fig. 3.3. OEs are identical

to HEs except that no ST-DFA module is included since the error δki defined for out-

put neurons is computed by the Error Generator module. Each neuron unit contains two

memory modules that store the synaptic weights and all its spike-train level post-synaptic

potentials (S-PSPs), respectively. We implement the weight memory with block RAM

(BRAM) and the S-PSP memory with a 2-D array of flip flops (FFs) on the FPGA. A

neuron-level local controller (FSM) controls the detailed inference/training steps. The

local controller also communicates with the global controller for synchronizing processes

between different layers and inference/training stages.

In the forward pass of training, first, the synaptic current x through each synapse is

calculated, followed by the spike-train level post-synaptic potential (S-PSP) update for

the same synapse. The synaptic current update and the S-PSP update modules shown

in Fig. 3.3 are shared by all input synapses. Hence, processing of all synapses are done

in series. After all synaptic responses are generated, the spike generation module calcu-

lates the neuron’s membrane potential and makes the firing decision based on the leaky

integrate-and-fire (LIF) spiking neuron model. In the backward pass of training, the ST-

DFA module implements the proposed on-chip ST-DFA training algorithm, the output

of which is then fed to the weight update module. Finally, the corresponding synaptic

29

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

weight is updated and stored back to the weight memory. Similar to the feedforward

blocks, the feedback functional modules are also shared among all input synapses.

3.3.4 Efficient On-chip S-PSP Calculation

One important component in the proposed ST-DFA algorithm is the spike-train level

post-synaptic potential (S-PSP), ei|j, in (3.10). As demonstrated in (3.6), by definition,

ei|j is the effect of all firing events of the pre-synaptic neuron j on the post-synaptic neuron

i. However, direct implementation of (3.6) on hardware is very costly; all firing events of

the pre- and postsynaptic neurons need to be stored and excessive multiplication, division

and exponentiation operations are involved, incurring much logic complexity and memory

usage.

Instead, we propose an online S-PSP calculation approach with dramatically reduced

hardware overhead. Rather than recording all firing events of the two neurons and

computing ei|j at once in the backward pass, in the forward pass we accumulate and

update ei|j at the arrival of each firing event and store the updated ei|j in the S-PSP

memory of each neuron element.

Inspecting (3.3) and (3.6) reveals that ei|j is the normalized (by weight) of the con-

tribution from the postsynaptic neuron j to the aggregated membrane potential of the

postsynaptic neuron i. While the aggregated postsynaptic membrane potential is effec-

tively tracked by the LIF model, each individual contribution ei|j to it can be accumulated

30

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

exactly using the following equations:

τs
pi|j(t)

dt
= −pi|j(t) +

∑
t
(f)
j

D(t− t
(f)
j),

τm
qi|j(t)

dt
= −qi|j(t) + pi|j(t),

ei|j(t) =
∑
t
(f)
i

qi|j(t
(f)
i),

(3.20)

where pi|j(t) is the (normalized) synaptic input from the neuron j to neuron i, which

is part of (3.2), and qi|j(t) is interpreted as the (normalized) postsynaptic membrane

voltage contribution from the neuron j to neuron i, which shall be reset to zero when

the neuron i fires at a particular firing time t
(f)
i .

The hardware realization of (3.20) is based on discretizing it using the first-order

Euler method with a fixed stepsize:

qi|j[t+ 1] = (1− 1

τm
)qi|j[t] + pi|j[t+ 1]

pi|j[t+ 1] = (1− 1

τs
)pi|j[t] +

1

τs

∑
t
(f)
j

Dn(t− t
(f)
j)

ei|j[t+ 1]+ = qi|j[t+ 1]

qi|j[t+ 1] = 0

if t+ 1 = t
(f)
i ,

(3.21)

where Dn(·) is the unit sample function and we have abused the notation by using t and

t+ 1 to indicate a discrete time step and the step after that.

(3.21) allows ei|j to be accumulated in an online manner with great hardware efficiency

and its implementation is shown in Fig. 3.4. At each time step, we first update the value

of pi|j, followed by the updates of qi|j and ei|j, controlled by the FSM states of the local

controller shown in Fig. 3.3. The shaded blocks in Fig. 3.4 are registers used to store the

31

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

0

1

0

1

>> -
+

+

+

p[t+1]

p[t]

Sj >>

0

0 +

Si

ei|j0

1

0

1

>> -
+

q[t]

+

+

+

+

q[t+1]
rst

Figure 3.4: On-line S-PSP calculation onchip.

current-time variable values. We set both decay constants τs and τm to be a power of

2 such that multiplications/divisions are realized efficiently using shift operations. The

updated ei|j is stored in the S-PSP memory and retrieved by the ST-DFA module during

the backward training pass.

3.3.5 Efficient On-chip ST-DFA Implementation

Fig. 3.5 depicts the ST-DFA module in hidden neurons shown in Fig. 3.3. As in (3.10),

for each hidden neuron i, the inner product between the error vector δol from the output

layer and the i-th column of the random feedback matrix B of the corresponding layer is

computed. The inner product is then multiplied with ei|j to produce the weight update

value ∆wij for the j-th input synapse. All these inner products for different synapses are

computed in series and would result in large hardware and power overheads. Furthermore,

if each entry of the feedback matrix is set to be a high-bit resolution random number,

high memory usage is required for storage.

To mitigate the above design complexity, we propose a hardware-friendly realization

of ST-DFA, named ST-DFA-2. ST-DFA-2 is based on the key observation from extensive

algorithmic experiments that the feedback matrix B need not be generated in a true

32

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

>> + x
sign mliM

U
X

δo
0

δo
1

δo
r

idx

δi
ei|j

ΔWij

Bk

l

i

Figure 3.5: On-chip ST-DFA weight update computation.

random manner; setting each entry bli of B to one of a small set of fixed numbers at

random is sufficient for achieving good training performance. Furthermore, the set of

fixed numbers can be optimized for hardware efficiency. For this, we construct this

set by making each number a signed power of 2 with low-bit resolution such that the

multiplications in (3.10) can be implemented by shift operations and storage for B is

kept at minimal.

Fig. 3.5 illustrates the computation of each weight update. The corresponding inner

product is computed by accumulating the element-wise products. The idx signal selects

a particular element in the error vector δol and its shift amount mil, which is set by

the corresponding bli in the B matrix according to |bli| = 2mil . If bli is negative, the

shift result is converted to its compliment before added to δi. Finally, the resulting δi

is multiplied with the S-PSP ei|j to get the weight update value ∆wij for the current

synapse.

33

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

3.4 Experiments and Results

3.4.1 Experimental Settings and Benchmarks

Performance evaluation is divided into two parts:

1) The first section devotes to evaluate the performance of proposed ST-DFA and ST-

DFA-2 compared to HM2-BP. The classification performances are evaluated by software

simulation of the digital computations with the actual bit resolutions implemented on

FPGA. Major SNN variables, for example synaptic weight w, S-PSP ei|j and membrane

potential v, are in the fixed-point representation. Each w is a signed 17-bit variable with

12-bit fractional. 11 bits are used for each unsigned variable ei|j with 6-bit fractional and

9 bits are used for each signed variable v with 3-bit fractional.

2) In the following section, We measure the performance vs. hardware overhead trade-

offs of the proposed on-chip ST-DFA training on several feed-forward SNN neural pro-

cessors. Using multiple SNNs models with varying depths and widths, we demonstrate

the performance of both software and hardware (on-board) simulation. Compared to

hardware implementation of HM2-BP, proposed ST-DFA significantly reduces hardware

overhead which proves hardware-friendliness. FPGA prototypes of SNN neural accel-

erators are designed on the Xilinx ZC706 platform for performance evaluation, design

overhead, and power/energy analysis.

Three datasets are employed for evaluation: MNIST[13], N-MNIST, or the neuromor-

phic version of MNIST [14], and the 16-speaker English letter subset of the TI46 speech

corpus [36]. The MNIST handwritten digit dataset [13] contains 60k training and 10k

testing examples, each of which is a 28 × 28 grayscale image. Each pixel value of the

MNIST image is converted into a spike train using Poisson sampling and the probability

of spike generation is proportional to the pixel intensity. Due to the limited hardware

resources available on the Xilinx Zynq ZC706 board, we crop each image to include only

34

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

the 14× 14 pixels around the center for FPGA evaluation.

The N-MNIST dataset [14] is a neuromorphic version of MNIST. The static digit

images of MNIST are converted into spike trains using a dynamic vision sensor (DVS) [38]

moving on a pan-tilt unit. The image is resized to 34 × 34 since the relative shift of

images during the saccade process is required. Two kinds of spike events, ON and OFF,

are recorded since the intensity can either increase or decrease. Thus, each N-MNIST

image has 34 × 34 × 2 = 2312 spike sequences lasting for about 300ms. We reduce the

time resolution of the N-MNIST images by 500x to speed up the processing.

The TI46 Speech corpus [36] contains spoken English letters from 16 speaker. There

are 4,142 and 6,628 spoken English letters for training and testing, respectively. The

continuous temporal speech waveforms are first preprocessed by the Lyon’s ear model [37]

and then encoded into 78 spike trains using the BSA algorithm [51].

Among these datasets, MNIST and TI46 are tested on both software and hardware

while N-MNIST is only tested on software simulation due to that the available FPGA

resources are not sufficient to support the large number of spike trains. Moreover, to

thoroughly assess the classification performance and hardware benefits of our proposed

spike-train level direct feedback alignment (ST-DFA), we build multiple SNNs with dif-

ferent network depths and widths.

3.4.2 Classification Accuracies

The proposed spike-train level direct feedback alignment (ST-DFA) algorithm is in-

spired by the spike-train level backpropagation HM2-BP algorithm. In [4], HM2-BP is

compared with other state-of-the-art spiking or non-spiking BP methods such as spike-

based BP [10], STBP [11], temporal coding BP [52] and non-spiking BP [53] on MNIST

and N-MNIST. Apart from its high efficiency due to the spike-train level processing,

35

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

Table 3.1: Inference accuracy comparison of HM2BP, ST-DFA and ST-DFA-2. All
SNNs are fully connected networks with a single hidden layer of 800 neurons. MNIST:
28x28 input resolution; N-MNIST: 2,312 input spike trains; 16-speaker TI46: 78 input
spike trains.

Dataset Learning rule & Network structure Accuracy

MNIST HM2-BP: 784-800-10 98.93%
MNIST ST-DFA: 784-800-10 98.64%
MNIST ST-DFA-2: 784-800-10 98.74%

N-MNIST HM2-BP: 2312-800-10 98.88%
N-MNIST ST-DFA: 2312-800-10 98.47%
N-MNIST ST-DFA-2: 2312-800-10 98.59%

TI46 HM2-BP: 78-800-26 89.92%
TI46 ST-DFA: 78-800-26 87.00%
TI46 ST-DFA-2: 78-800-26 87.31%

HM2-BP outperforms or is on a par with all these recently developed algorithms. For ex-

ample, with a single hidden layer of 800 neurons, HM2-BP can achieve 98.93% accuracy

on MNIST while [53] gets up to 98.30%. HM2-BP obtains 98.88% accuracy on N-MNIST

compared with 97.80% by [52]. Moreover, HM2-BP delivers competitive performance on

challenging benchmarks such as the 16-speaker spoken English letters of TI46 Speech

corpus [36] and 47-class image recognition dataset Extended MNIST (EMNIST) [54].

As presented in Section 3.2, ST-DFA propagates the errors δ from the output layer

to each hidden layer directly without layer by layer error backpropagation through sym-

metric weights matrices. In Section 3.3.5, we further optimize ST-DFA by setting each

entry of the random feedback matrix B to a power of 2, leading to the hardware-friendly

ST-DFA-2 algorithm. In this work, feedback matrix entries are randomly chosen from

the set {−4,−2,−1, 0, 1, 2, 4} for ST-DFA-2.

Table 3.1 compares the inference accuracies of HM2-BP, ST-DFA, and ST-DFA-2

on MNIST, N-MNIST, and TI46. Compared to HM2-BP, ST-DFA and ST-DFA-2 still

36

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

maintain rather competitive performance while the low computational cost and hardware-

friendliness of ST-DFA-2 translate into huge hardware resources and energy overhead

savings as shown later. It shall be noted that in comparison with ST-DFA, ST-DFA-2

does not necessarily degrade performance; it can even slightly outperform ST-DFA in

practice.

3.4.3 FPGA Hardware Evaluations

We build several FPGA SNN accelerators on the targeted Xilinx ZC706 platform, the

sizes of which are decided considering the available resources onchip. Table 3.2 shows

the resource and energy overhead as well as the software/hardware inference accuracies

of these SNN accelerators with on-chip ST-DFA-2.

As shown in the table, the implemented networks have either one or two hidden

layer(s), and each hidden layer has 50 or 100 neurons. Numbers of input and output

neurons are application-dependent. Training powers are estimated by the Xilinx Power

Analyzer based on application-specific workloads. The training latency and training en-

ergy are for training a representative input example of the corresponding dataset using

one iteration of forward and backward passes. Table 3.2 indicates that the SNNs inte-

grated with ST-DFA-2 in general have efficient FPGA resource utilization as well as low

training energy dissipation.

Furthermore, with a trimmed down input size and/or constrained network size, the

FPGA SNNs with on-chip ST-DFA-2 can still deliver competitive classification perfor-

mance in reference to the simulated accuracies achieved at full input size and by larger

networks reported in Table 3.1. For instance, the accuracy of MNIST is based on full

input resolution which is 28 × 28 with a hidden layer of 800 neurons. However, for on-

board simulation, we implemented with reduced input resolution and smaller networks

37

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

due to the Xilinx ZC706 board resource limitation. We cropped each data of MNIST into

14x14 which causes 4X input resolution reduction and built smaller networks consists of

50 or 100 hidden neurons.

To better illustrate the cost-effectiveness of the proposed ST-DFA algorithm, we also

compare the overheads of implementing HM2-BP vs. ST-DFA-2 in a fully-connected SNN

FPGA with two hidden layers in Table 3.3. Since the main difference between HM2-BP

and ST-DFA is the backward pass algorithm, we designed HM2-BP in hardware based

on the weight updating algorithm represented in [4]. Training latency of the backward

pass of the corresponding SNN neural processor is also presented in the table. We do not

consider forward pass latency and inference latency since they do not differ significantly

in the two cases. The results in the table indicate that ST-DFA is much more efficient

in terms of hardware implementation on both resource utilization and backward pass

latency compared with HM2-BP. The ST-DFA-2 based SNN neural processor saves 18%

on LUTs, 76.7% on DSPs and 31.6% on backward phase latency compared with the

HM2-BP based SNN.

The large additional hardware overhead and backward latency of HM2-BP mainly

come from the layer-by-layer error propagation and the required multiplication opera-

tions. Moreover, as the network goes deeper, the backward phase latency grows propor-

tionally in HM2-BP, while in ST-DFA the backward latency will not affect by the network

depth since the error processing is concurrently executed in all hidden layers. This prop-

erty assures the scalability of ST-DFA which is promising for deeper networks. With

the proposed ST-DFA algorithm, we have sidestepped the complex backpropagation and

enabled cost-effective on-chip training for multi-layer SNNs.

38

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

T
a
b
le

3.
2:

O
v
er
h
ea
d
s
an

d
in
fe
re
n
ce

p
er
fo
rm

an
ce
s
of

th
e
fu
ll
y
-c
on

n
ec
te
d
S
N
N
s
w
it
h
on

-c
h
ip

S
T
-D

F
A
-2
.

M
N
IS

T
(1
4
x
1
4
in
p
u
t
re
so

lu
ti
o
n
)
@
1
0
0
M

H
z

R
e
so

u
rc
e

U
ti
li
za

ti
o
n

T
ra

in
in
g

P
o
w
e
r

(m
W

)

T
ra

in
in
g

L
a
te
n
cy

(m
S
)

T
ra

in
in
g

E
n
e
rg

y
(m

J
)

A
cc
u
ra

cy
(S

o
ft
w
a
re

S
im

u
la
ti
o
n
)

A
cc
u
ra

cy
(O

n
-b

o
a
rd

S
im

u
la
ti
o
n
)

L
U
T
s

F
F
s

D
S
P
s

1
9
6
-5
0
-1
0

33
48
4

68
36

60
11
3

3.
99
8

0.
45
2

95
.4
8%

94
.3
4%

1
9
6
-5
0
-5
0
-1
0

62
98
9

12
51
6

11
0

12
5

4.
83
6

0.
60
4

95
.8
7%

94
.5
1%

1
9
6
-1
0
0
-1
0

73
02
7

12
32
9

11
0

22
4

4.
80
2

1.
07
6

96
.8
6%

95
.7
2%

1
9
6
-1
0
0
-1
0
0
-1
0

12
64
82

23
33
1

21
0

27
5

6.
44
5

1.
77
2

97
.2
3%

96
.2
7%

T
I4
6
(1
6
-s
p
e
a
k
e
r
S
p
o
k
e
n
E
n
g
li
sh

L
e
tt
e
rs
)
@
1
0
0
M

H
z

R
e
so

u
rc
e

U
ti
li
za

ti
o
n

T
ra

in
in
g

P
o
w
e
r

(m
W

)

T
ra

in
in
g

L
a
te
n
cy

(m
S
)

T
ra

in
in
g

E
n
e
rg

y
(m

J
)

A
cc
u
ra

cy
(S

o
ft
w
a
re

S
im

u
la
ti
o
n
)

A
cc
u
ra

cy
(O

n
-b

o
a
rd

S
im

u
la
ti
o
n
)

L
U
T
s

F
F
s

D
S
P
s

7
8
-5
0
-2
6

38
22
0

88
26

76
73

3.
68
8

0.
26
9

73
.3
4%

71
.6
3%

7
8
-5
0
-5
0
-2
6

74
70
9

14
64
1

12
6

87
5.
12
3

0.
44
5

76
.4
5%

74
.9
5%

7
8
-1
0
0
-2
6

64
28
0

14
09
6

12
6

11
3

5.
08
9

0.
57
5

77
.6
4%

75
.1
9%

7
8
-1
0
0
-1
0
0
-2
6

14
54
52

30
54
6

22
6

18
5

7.
92
9

1.
46
7

87
.4
0%

84
.8
8%

T
ab

le
3
.3
:
O
v
er
h
ea
d
s
of

a
n
F
P
G
A

S
N
N

w
it
h
on

-c
h
ip

H
M
2-
B
P

v
s.

S
T
-D

F
A
-2

(N
et
w
or
k
si
ze
:1
96

-1
00

-1
00

-1
0)

L
U
T
s

F
F
s

D
S
P
s

B
a
ck

w
a
rd

P
h
a
se

L
a
te
n
cy

(u
S
)

N
o
rm

a
li
ze

d
L
U
T
s

N
o
rm

a
li
ze

d
F
F
s

N
o
rm

a
li
ze

d
D
S
P
s

N
o
rm

a
li
ze

d
B
-P

L
a
te
n
cy

H
M

2
-B

P
15
44
77

23
46
2

90
0

17
.5
60

12
2%

10
1%

42
9%

14
6%

S
T
-D

F
A

12
64
82

23
33
1

21
0

12
.0
10

10
0%

10
0%

10
0%

10
0%

39

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

3.5 Summary and Discussions

While Direct Feedback Alignment (DFA) has been attempted, this work presents the

first novel approach for implementing hardware spiking neural networks(SNNs) on the

FPGA board. This work aims to build efficient on-chip training FPGA SNN neural

processor with reduced backward training latency and hardware cost while gracefully

trading off classification performance. To be specific, Table 3.2 shows competitive soft-

ware/hardware inference accuracy despite reduce input resolution and small network size.

Comparing the accuracy of ST-DFA and ST-DFA-2, performance using ST-DFA can be

slightly better than using ST-DFA-2 and vice versa. This fact shows that the error

may vary based on randomly initialized feedback weight matrix, which makes ST-DFA-2

still powerful. Table 3.3 shows the advantages of ST-DFA-2 over HM2-BP in terms of

hardware resource utilization through the DFA algorithm and the efficient design of the

hardware design units. As shown in Table 3.1 and Table 3.2, this result proves the prac-

ticality of the DFA algorithm and the feasibility of implementing the ST-DFA algorithm

for on-chip training of the SNN processor.

Implementing training of SNNs using a BP algorithm suffers from high computing

complexity and thus high resource utilization, while a hardware-friendly, non-BP algo-

rithm, such as STDP, suffers from achieving good accuracies. We argue that our ap-

proach avoids high computation complexity by extending a BP-like algorithm (i.e. DFA)

for SNNs while maintaining the advantage of a well-defined BP-like algorithm in terms

of accuracy. To the best of our knowledge, this is the first work presenting algorithm-

hardware co-optimization and demonstrating the realization of DFA, which is an efficient

on-chip training algorithm, for SNNs.

The main focuses of this paper have been on extending the DFA concept proposed

by [48] to efficient training of SNNs, and significantly reducing the hardware cost by

40

Spiking Neural Processor with Direct Feedback Alignment Chapter 3

algorithm-hardware co-optimization while maintaining a competitive accuracy. This

paper proposes a novel spike-level direct feedback alignment (ST-DFA) algorithm for

training multi-layer spiking neural networks (SNNs) with improved bio-plausibility and

scalability over traditional backpropagation algorithms. Moreover, it is demonstrated

that the ST-DFA algorithm with its hardware-friendly optimized implementation enables

efficient on-chip training of FPGA SNN neural processors while delivering competitive

classification performance for practical speech and image recognition tasks.

41

Chapter 4

Dataflow Optimization for Spiking

Neural Networks

Hardware acceleration of conventional ANNs, in particular deep neural networks (DNNs),

offers a viable solution to deployment of models that are deeper and more powerful. Pre-

vious works have proposed dataflows to maximize throughput and energy efficiency of

DNN accelerators [15, 55, 56, 27, 57, 58], particularly for the widely adopted deep convo-

lutional neural networks (CNNs) [59, 60, 61]. Also, many previous studies have presented

specialized hardware platforms for supporting dense matrix multiplication efficiently with

various dataflow.

Clearly, there is also a strong demand for efficient dataflows and microarchitectures

for SNN accelerators. Despite its significance, dataflow optimization of SNN accelerator

architectures has not been extensively studied [62, 20, 63, 64]. The unique temporal

aspect of SNN operations and the all-or-none nature of spiking activities introduce new

challenges in dataflow optimization. One common approach is to perform SNN acceler-

ation in a temporally sequential manner while following an optimized non-spiking ANN

dataflow, ignoring the complex spatiotemporal tradeoffs [60, 62].

42

Dataflow Optimization for Spiking Neural Networks Chapter 4

In this chapter, we aim to address the stereotypical approach to accelerate spiking-

CNNs by exploring alternative dataflows with proposed dataflow simulator. This work is

motivated by a dearth of a knowledge base for developing efficient SNN dataflows despite

its crucial impact on SNN accelerator design.

4.1 Dataflow Optimization for Spiking CNNs

4.1.1 Proposed parallel processing in temporal dimension

As discussed in chapter 2.2 and shown in Fig. 2.1, the computation of a spiking neu-

ron consists of: 1) spike input integration, 2) membrane potential accumulation, and 3)

spike output generation, as in many other SNN works [65, 66, 67]. At each time point t,

all presynaptic inputs to the given postsynaptic neuron are integrated and then added to

the postsynaptic membrane potential at the previous time t− 1 in order to compute the

potential at the present time t. Finally, if the updated membrane potential exceeds a pre-

scribed firing threshed, a binary output spike is generated, and the membrane potential

is reset. The spike input integration step completely dominates the total computational

cost due to the typically high degree of presynaptic connectivity. As in Fig. 4.1, our key

observation is that the most expensive spike input integration step can be parallelized

over multiple time steps for all spiking neurons in the layer under processing given the

spike outputs from the preceding layer, which act as the inputs to the current layer. This

is because spike input integrations at different time points are independent of each other.

Upon the completion of the first step, membrane potential accumulation and spike out-

put generation shall be performed in a temporally ascending order due to the temporal

dependency introduced by the evolution of each membrane potential and reset. Our key

idea is to explore the added parallelism brought by temporal parallel processing of spike

43

Dataflow Optimization for Spiking Neural Networks Chapter 4

F
ig
u
re

4
.1
:
O
ve
rv
ie
w
of

th
e
p
ro
p
o
se
d
w
or
k
:
(a
)
p
ar
al
le
li
za
ti
on

in
te
m
p
or
al

d
im

en
si
on

,
(b
)
sy
st
ol
ic
ac
ce
le
ra
to
r
d
es
ig
n
,

an
d
(c
)
g
en

er
a
li
ze
d
lo
op

re
p
re
se
n
ta
ti
on

of
th
e
m
ap

p
ed

ti
li
n
g
st
ra
te
gy
.

44

Dataflow Optimization for Spiking Neural Networks Chapter 4

input integration, which further allows inclusion of the temporal dimension as part of

the variable tiling scheme. As shown later, systematic variable tiling optimization can

be explored to effectively optimize or tradeoff between data movement, throughput, and

energy dissipation in spiking based spatiotemporal processing.

4.1.2 Dataflow in Spiking CNNs

Dataflows specify data scheduling via variable tiling and directly impact the overall

runtime and energy dissipation of a DNN accelerator [15, 55, 56, 27, 58, 61, 68]. However,

dataflows for SNNs have not been extensively studied. Mapping the computations of a

spiking conv layer involves directly associating two parameters (dimensions) with the 2-D

systolic array to naturally exploit spatial-locality and data reuse. These two parameters

are represented as d1 and d2 in Fig. 4.1. Ultimately, an optimized tiling strategy over

the six-dimensional space of input, weight, output, and temporal data shall be adopted

to maximize data reuse, energy efficiency, and throughput.

One common dataflow approach is to perform SNN acceleration in a temporally se-

quential manner while following an optimized non-spiking ANN dataflow [60, 62]. Clearly,

this approach is unable to parallelize computation along the temporal dimension and

ignores the complications and opportunities in dealing with complex spatiotemporal pro-

cessing in SNNs. We propose in-depth dataflow optimizations considering data stationar-

ity, variable tiling, and layer/network dependencies for spiking CNNs (S-CNNs). Also, to

address this critical shortcoming of developing dataflow for SNN acceleration, we describe

near-optimal dataflows to offer insights to handle the uniqueness of SNNs.

45

Dataflow Optimization for Spiking Neural Networks Chapter 4

F
ig
u
re

4.
2:

M
ap

p
in
g
o
f
a
P
su
m
-f
ri
en

d
ly

ou
tp
u
t-
st
at
io
n
ar
y
d
at
afl

ow
on

to
a
sy
st
ol
ic

ar
ra
y
ac
ce
le
ra
to
r.

46

Dataflow Optimization for Spiking Neural Networks Chapter 4

4.1.3 Stationary schemes for S-CNNs

Three stationary dataflows, namely, input stationary (IS), weight stationary (WS),

and output stationary (OS), have been studied for non-spiking CNN accelerators [15, 55,

56, 27, 58]. In each stationary scheme, one type of the data (i.e., IFmap, filter weight, or

Psum data) stays stationary in each processing element (PE) of the array to minimize

the movement of the corresponding data. For SNNs, our key observation is that the

disparity among different data types must be considered, particularly with respect to

the low volumes of input/output spike data for each spiking neuron. The IFmap data

(input spikes) are binary and hence require low data bandwidth and are not the main

bottleneck in data movement. Similarly, since the final activation of each spiking neuron

is binary, the output spike data are not the bottleneck of data movement either. As

such, retaining the low-volume IFmap data in the systolic array by choosing the input-

stationary dataflow is not effective. The OS and WS stationary flows can minimize

the data movement of high-volume multi-bit Psum and filter weight data and shall be

specifically focused on for SNN accelerators.

4.1.4 Variable Tiling

As discussed in the previous chapter, the proposed parallelization across multiple

time points allows for systematic dataflow optimization via a proper choice of variable

tiling. Nevertheless, optimization of the variable tiling is a multi-faceted problem and

shall be based upon a careful balancing between data reuse/movement, throughput, and

energy efficiency involved in processing spatiotemporal data. Under a given hardware

resource constraint and resource allocation between the memory and compute units,

a systolic array accelerator may be either compute-bound or memory-bound, which is

further dependent on the variable tiling in conjunction with the characteristics of the

47

Dataflow Optimization for Spiking Neural Networks Chapter 4

CNN layer to be processed.

While the dataflow simulator proposed in Section 4.2 supports the evaluation of vari-

able tiling in both the compute-bound and memory-bound regimes, we discuss the im-

pacts of different tiling strategies under memory-bound operations with respect to the

high-volume multi-bit filter and Psum data, the two main bottlenecks in data move-

ment. In particular, the positioning of temporal variable t has significant impacts on the

tradeoffs between runtime (throughput) and energy dissipation.

Memory access/energy efficiency

The energy dissipated in data movement can be orders of magnitude higher than

that of the corresponding MAC operation specifically when moving data across the chip

boundary [15, 55, 56, 27, 58, 57, 59, 60]. In SNNs, Psums are the most important

contributor to data movement.

As the time parameter t goes deeper into the loop nest, it changes more frequently.

In other words, there would be more incomplete computations performed over a larger

number of time points, producing a higher volume of Psums to be stored. Although the

final OFmap data (i.e., spike outputs) is binary, the Psums are multi-bit. On the other

hand, placing parameter t in an outer-loop position helps reduce the amount of Psums.

This is because, under this case, the computation of spike output of each processed

spiking neuron spans over a shortened period of time (clock cycles), leading to faster

conversion (summation) of multi-bit Psums to binary spike outputs. This helps reduce

data movement and hence improves energy efficiency. We refer to dataflows in which t

is placed at an outer-loop position as a Psum-friendly dataflow.

48

Dataflow Optimization for Spiking Neural Networks Chapter 4

Throughput

Due to the overlap between computation and memory access, the throughput (run-

time) of a systolic array accelerator depends on the more dominant delay component of

the two [69, 44]. In the memory-bound regime, the filter weight access time dominates

the overall runtime of an accelerator.

In output stationary (OS) dataflows, placing parameter t in an inner-loop position of

the variable tiling opens up the possibility for parameters related to the filter data to be

placed in outer-loop positions, leading to less frequent access to multi-bit filter weight

data and more filter data reuse. Ultimately, doing so leads to a greater throughput

or speedup of the accelerator. We refer to such dataflows as filter-friendly dataflows.

Conversely, placing parameter t in an outer-loop position forces the parameters related

to the filter data to be placed in inner-loop positions. This may degrade runtime as it

requires more frequent filter data transfers, hindering the data loading before starting

the systolic array computation. Alternatively, throughput can be improved by adopting

a weight stationary (WS) dataflow as it immediately maximizes the filter data reuse.

However, this is typically at the cost of higher energy dissipation due to the reduced

Psum data reuse.

The above observations suggest that a careful trade-off between throughput and data

reuse (i.e., energy dissipation) must be made while optimizing the dataflow for which

the positioning the time parameter t in variable tiling is one of the key considerations.

One of the proposed tiling strategy, which enables the parallel processing of the temporal

dimension, is shown in Fig. 4.2, where data in a spatial 2D space such as filter weight data

associated with the R parameter are vectorized. The dataflow in Fig. 4.2 is an example of

Psum-friendly dataflow since all Psums generated in the array are for one specific output

position in the OFmap. At the same time, data processing associated with parameters

49

Dataflow Optimization for Spiking Neural Networks Chapter 4

(T, M) is parallelized in a simultaneous row-wise and column-wise manner. In general,

this dataflow is expected to have advantages in terms of energy efficiency but results in

greater runtime due to frequent filter data transfers.

4.1.5 Layer-dependent dataflow reconfiguration

In a deep S-CNN, early conv layers tend to have larger lateral IFmap and OFmap

dimensions and a fewer number of channels compared with late layers. For example in

VGG-16, H=224 / R=3 / C=3 / M=64 for the first conv layer CONV1, and H=14 /

R=3 / C=512 / M=512 for the 11-th conv layer CONV11. If the binary spike output

for each spiking neuron cannot be computed quickly, all its Psums must be stored over

an extended period of time, producing more Psum data movement. To prevent this from

happening, one may place the IFmap channel dimension C and filter spatial dimension

R at the inner-most loop positions. However, this may not be the optimal strategy since

it can lead to worsened filter data reuse and PE utilization. This Psum data movement

problem gets more pronounced for large OFmaps for which there is a tendency for storing

Psum data for a larger number of spike outputs.

As a result, early layers are deemed more Psum intensive, pushing the tiling opti-

mization more towards mitigating the impact of Psum data movement. Conversely, the

processing of later conv layers with more filters is more severely bottlenecked by the need

to access to a larger amount of filter data. Clearly, adopting a fixed variable tiling across

different layers or SNNs will lead to non-optimal results. Reconfiguring variable tiling

during runtime in a layer-dependent manner may further improve the overall accelera-

tor performance. Comprehensive dataflow optimization considering all these intertwined

factors will be supported by the proposed SNN dataflow simulator described next.

50

Dataflow Optimization for Spiking Neural Networks Chapter 4

Figure 4.3: An overview of SNN dataflow simulator framework.

4.2 SNN Dataflow Simulator

To support dataflow optimization over a large design space while considering complex

tradeoffs in the six-dimensional space of input, output, weight, and temporal data, we

introduce an analytic simulator for SNN dataflows. As shown in Fig. 4.3, the simulator

takes user-specified hardware configuration, including technology node and area utiliza-

tion for compute units and memory, variable tiling, and targeted S-CNN as inputs. It

produces a detailed analysis of runtime (throughput), memory access/data movement,

and energy dissipation of the systolic-array accelerator. For the later chapters, we extend

this simulator to evaluate various types of layers with the actual spiking activities for

more accurate and realistic simulation.

4.2.1 Modeling of systolic array and memory

Array configurations

The developed simulator adopts a systolic array as a central compute substrate. As

discussed in section 2.4, the array comprises tiled processing elements (PEs) with uni-

51

Dataflow Optimization for Spiking Neural Networks Chapter 4

directional links. In this work, we use different shapes of the array with the given area

constraint and compare the results to see how the different memory and array sizes have

impact on the overall performance. In the later chapters, we use a fixed number of PEs

for a fair comparison, which is similar number of PEs that have been adopted in other

works [15, 20], and mainly focus on comparing the efficacy of the proposed techniques.

Especially, the most commonly used square-shaped systolic arrays are considered. Each

systolic array comprises a set of processing elements (PEs), each containing an accumu-

late (AC) unit and a scratchpad memory (a register file). Note that since the spike inputs

are binary, the more complex MAC units are not needed.

Memory configurations

The memory hierarchy design is critical to the overall performance and energy con-

sumption of spiking neural computation due to the SNN’s memory-intensive nature. As a

standard practice, three levels of the memory hierarchy is assumed, as shown in Fig. 4.1:

an external memory (DRAM), on-chip L2/L1 buffers, and a small scratchpad memory

in each PE. Similar to many other analytic models [44, 69, 17], each level of memory

is double-buffered to hide latency and partitioned to separately store each type of data

(IFmaps, OFmaps and Psums) for the array computation.

Compute and memory tradeoffs

Under a total accelerator chip area constraint, the area of the compute units vs. that

of the memory can be varied. For example, the array size may be set to 8x8, 16x16, 24x24,

32x32, 40x40, or 48x48, which leaves the bulk of the remaining chip area to memory. In

the later chapters, we fix the configurations of compute unit and memory to mainly focus

on a fair comparison between the proposed technique and the baseline.

52

Dataflow Optimization for Spiking Neural Networks Chapter 4

4.2.2 Performance modeling

With a given tiling strategy, the simulator generates unique addresses for each data

type with respect to the inputs/outputs for the array, which follows the dataflow simulator

proposed for non-spiking society [44]. The simulator produces read/write traces with the

generated addresses for each-level of memory to evaluate memory access and latency,

following the estimation methods in many previous works [44, 69, 21].

Runtime/throughput

During each systolic array processing iteration, the worst-case delay between com-

putation/data access determines the per iteration runtime. The worst-case delay is ac-

cumulated over all iterations in the systolic array to estimate the total runtime of the

accelerator. The runtime of one array iteration is modeled by the array computation cy-

cle number which is equal to the sum of the array height/width and length of the input

spike train since the data is fed from the left and right edges of the array and propagate

via uni-directional links to the right/bottom end of the array. We model the data access

delay based on the bandwidth and read/write traces at each level of memory.

Memory access - For a given network configuration, the simulator generates a trace of

data scheduling based on the mapping order. With the pre-determined sequence of data

required from the array, a memory access to higher level caches takes place if a specific

data is absent in the current storage. For example, if the L1 buffer requires a specific

data which is only presented in the global buffer, it initializes a global buffer read and a

L1 buffer write.

Energy dissipation - Energy dissipation is evaluated based on the traces of read/writes

at each level of memory and the total number of arithmetic operations in PEs based on

the standard modeling strategy [15, 69, 21, 44]. Using CACTI [70] configured for 32nm

53

Dataflow Optimization for Spiking Neural Networks Chapter 4

Table 4.1: Layer-specific comparison of tiling strategies in output stationary (OS)
dataflows for the VGG-16 net.

Normalized Performance for VGG16 CONV1 & CONV11 layers
Tiling Runtime/Energy EDPc EDP Id

strategy C1 a C11 b C1 C11 C1 C11
ref∗∗ T/M/E/C/R 367/32.4 10K/20K 119 20k 0.84X 0.005X
ref∗ T/R/E/M/C 100/100 100/100 100 100 1X 1X

E/R/T/M/C 37.6/0.48 62.4/64.6 0.18 40.3 555X 2.5X
M/T/E/C/R 359/32.4 10K/10K 117 1M 0.85X 0.0001X
E/T/C/M/R 215/7.19 50K/50K 15.5 20M 0.06X 0.000005X
C/M/E/T/R 2K/4K 931/10K 90K 100K 0.001X 0.001X
M/E/T/C/R 224/1.20 10K/10K 2.69 2M 37X 0.00005X
T/M/E/R/C 178/14.1 139/166 25.2 229 3.97X 0.43X

1○ E-T E/C/T/M/R 30.9/2.88 18.6/138 0.89 25.6 112X 3.9X

2○ B-T T/C/E/M/R 22.9/24 14.4/127 5.50 18.2 18X 6X

3○ R-T C/T/E/M/R 22.5/35.7 13.8/106 8.03 14.7 13X 7X
a: CONV1. ref*: Existing SNN dataflow [30].
b: CONV11. ref**: Non-optimized SNN dataflow.
c: Energy-Delay Product. d: EDP improvement.

CMOS technology, the energy dissipation is evaluated with the number of accesses based

on the read/write traces, multiplied by energy per memory access at each level of memory

hierarchy. The computation energy is estimated with the total number of AC operations

for the given network multiplied by the energy per AC operation [69].

4.3 Experiments and Results

By leveraging the proposed SNN simulator, we demonstrate dataflow optimization

under various systolic array configurations and choices of stationary schemes for specific

spiking convolutional layers or across one entire spiking CNN network. We focus on the

accelerating CONV layers as they account for over 90% of total computation [15, 69, 44].

For demonstration purposes, a 28nm technology node and two total area constraints of

8mm2 and 16mm2 are assumed [15, 69]. We evaluate the performance and efficiency of

the systolic array accelerators for accelerating the inference of the pre-trained SNN imple-

54

Dataflow Optimization for Spiking Neural Networks Chapter 4

mentations of the Alexnet and VGG-16 networks, two deep learning architectures widely

adopted for image classification. These spiking CNNs have demonstrated promising clas-

sification accuracy [71, 72]. The two spiking network models operate over 200-time steps

with time-wise packing of the binary spike inputs/outputs.

4.3.1 Layer-specific dataflow optimization

We perform comprehensive dataflow optimization for a specific spiking conv layer

by comparing a large number of variable tiling strategies based on output stationary

(OS) dataflows. The targeted layers are CONV1 and CONV11 from the VGG-16 net, a

representative early and late conv layer, respectively. Dataflow optimization has not been

targeted in most of the existing SNN works [62] with a few adopting a non-spiking CNN

dataflow in which the computations at different time points are performed sequentially

and the scheduling of the computation at each time step follows the chosen dataflow

[62, 73]. One of the such SNN dataflows from [73] is denoted by ref* and chosen as a

baseline reference.

Table 4.1 reports a comprehensive comparison of the overall accelerator performance

across many tiling strategies. The accelerator performance level varies over several orders

of magnitude, indicating the key importance of dataflow optimization. For comparison

purposes, one non-optimized dataflow denoted by ref** in Table 4.1 is chosen as another

reference. It is evident that non-optimal dataflows can result in significantly degraded

overall performance.

We identify three near-optimal variable tiling schemes, denoted by 1○, 2○, and 3○

in Table 4.1. We call dataflows 1○, 2○, and 3○ energy-targeted (E-T), energy-runtime

balance-targeted (B-T), and runtime-targeted (R-T), respectively. They favor the opti-

mization of energy or runtime or strike a good balance between the two. As presented

55

Dataflow Optimization for Spiking Neural Networks Chapter 4

Table 4.2: Joint layer-dependent dataflow and accelerator optimization under different
optimization-targets for VGG-16.
VGG-16 CONV Layers (Area = 8mm2) Optimized
Target L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 Array Size
Runtime 3○ 3○ 3○ 2○ 2○ 2○ 2○ 3○ 3○ 3○ 3○ 3○ 3○ 24X24
Energy 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 32X32
EDP 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 2○ 2○ 2○ 32X32

VGG-16 CONV Layers (Area = 16mm2) Optimized
Target L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 Array Size
Runtime 3○ 3○ 3○ 3○ 2○ 2○ 2○ 3○ 3○ 3○ 3○ 3○ 3○ 32X32
Energy 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 40X40
EDP 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 1○ 40X40

∗ 1○, 2○, and 3○ represents the E-T (Energy-Targeted) / B-T (energy-runtime Balance-Targeted)
/ R-T (Runtime-Targeted) dataflow respectively.

Table 4.3: Joint layer-dependent dataflow and accelerator optimization under different
optimization-targets for Alexnet.

Alexnet CONV Layers (Area = 8mm2) Optimized
Target L1 L2 L3 L4 L5 Array Size
Runtime 1○ 2○ 3○ 3○ 3○ 24X24
Energy 2○ 1○ 1○ 1○ 2○ 32X32
EDP 2○ 3○ 3○ 3○ 3○ 16X16

Alexnet CONV Layers (Area = 16mm2) Optimized
Target L1 L2 L3 L4 L5 Array Size
Runtime 2○ 2○ 3○ 3○ 3○ 32X32
Energy 2○ 1○ 2○ 2○ 3○ 40X40
EDP 2○ 3○ 2○ 1○ 2○ 32X32

in Fig. 4.2, the advantages of the E-T dataflow result from its Psum-friendly nature in

that the Psums for each binary spike output are accumulated over a shortened time span,

reducing the energy cost of data movement. On the other hand, R-T dataflow shows the

advantages of filter reuse in that the parameters related to filters are placed in outer-loop

positions, leading to greater throughput.

56

Dataflow Optimization for Spiking Neural Networks Chapter 4

Figure 4.4: (a) The throughput of three dataflows for VGG-16 CONV1 and CONV11
with OS and WS. (b) Energy dissipation of various dataflows for VGG-16 CONV1
and CONV11. AC refers to accumulation operation.

4.3.2 Joint optimization of tiling and stationary flows

It is meaningful to investigate how variable tiling and stationarity of the dataflow

can be jointly optimized. Fig. 4.4(a) shows the throughputs of the E-T, B-T, and R-T

variable tiling when paired with the weight stationary (WS) and output (OS) schemes

for the VGG-16 CONV1 and CONV11 layers. It can be seen that WS results in an

improved throughput compared with OS due to the maximized reuse of the filter data

for both layers, as discussed in Section 4.1.4. Note that while R-T when paired with OS

provides better throughput than E-T as presented previously, with WS, E-T happens to

offer higher throughput than R-T for CONV1. This suggests that for early layers, WS

may exert a greater impact on throughput than variable tiling.

57

Dataflow Optimization for Spiking Neural Networks Chapter 4

Fig. 4.4(b) reports the breakdown of energy consumption for the three tiling schemes

when paired with OS or WS. As discussed before, the Psums data is the most important

factor in energy efficiency, which is better handled by OS. As a result, OS improves energy

efficiency over WS. Among all the considered tiling and stationarity combinations, paring

OS with E-T leads to the best energy efficiency.

4.3.3 Joint layer-dependent reconfigurable dataflow and

hardware optimization

We demonstrate the additional benefits brought by the proposed layer-dependent

configuration of variable tiling during runtime based on OS dataflows. As discussed

previously, the three tiling schemes E-T, B-T, and R-T well represent distinct trade-offs

that can be made between throughput and energy dissipation. We limit the tiling choice

of each layer to these three schemes while our simulator can support wide ranges of design

space exploration at a higher computational cost. Furthermore, we explore accelerator

hardware optimization by allocating different area budgets for the compute units and

on-chip memory under a fixed total chip area constraint. This is done by evaluating

the overall performance by changing the systolic array size, which correspondingly alters

the amount of on-chip memory under the constant total chip area. Note that optimized

accelerator hardware is not runtime reconfigurable except for the variable tiling, which

is reconfigured on a layer-by-layer basis.

Table 4.2 and Table 4.3 summarize the results of joint reconfigurable dataflow and

hardware optimization based on two total chip area constraints for VGG-16 and Alexnet,

respectively. The optimal variable tiling for all layers in the network and the optimized

accelerator in terms of its array size are reported. The results are based on maximiz-

ing one of the three performance targets across all layers of the network: throughput

58

Dataflow Optimization for Spiking Neural Networks Chapter 4

(1/runtime), energy, and energy-delay product (EDP). In general, targeting maximizing

total energy efficiency predominantly makes the optimal tiling for all layers to be E-T,

with some being B-T, which is well expected. Similarly, targeting minimizing overall

runtime makes the optimal tiling R-T for most layers. The trend on the optimization of

EDP target is less visible, potentially due to the fact that both the variable tiling and

accelerator hardware are simultaneously optimized.

Table 4.4 details the overall runtime, energy dissipation, and EDP resulted from

the optimizations performed in Tables Table 4.2 and 4.3. We also report the results

of using each of the two reference tiling schemes ref* [73] and ref** for all layers. For

completeness of comparison, the results based on a fixed default array size (16X16)

are reported to demonstrate the impact of hardware optimization. It is evident that

the overall performance improves with the chip area. The proposed joint optimization

improves EDP by up to 16.7X and by up to 282, 000X when compared with the variable

tiling ref* and ref** without hardware optimization, respectively.

4.4 Summary and Discussions

Recognizing the need for developing SNN specific dataflows, we propose holistic re-

configurable dataflow optimization for systolic array acceleration of spiking convolutional

networks (S-CNNs). As in many recent DNN accelerator works [16, 19, 74], we lever-

age systolic array architectures for efficient parallel processing with high spatiotemporal

locality and compute density [75, 76].

Our main contributions are: 1) We show that parallel spatiotemporal computation

over the six-dimensional space of input, weight, output, and temporal data involves sig-

nificant complications in balancing between data reuse/storage of different data types

and processing element utilization. 2) We investigate how the tiling strategy, in par-

59

Dataflow Optimization for Spiking Neural Networks Chapter 4

T
a
b
le

4
.4
:
N
o
rm

a
li
ze
d
ru
n
ti
m
e,

en
er
gy

d
is
si
p
at
io
n
,
an

d
E
D
P
u
n
d
er

d
iff
er
en
t
op

ti
m
iz
at
io
n
ta
rg
et
s
an

d
h
ar
d
w
ar
e
ar
ea

co
n
st
ra
in
ts

fo
r
V
G
G
-1
6
a
n
d
A
le
x
n
et
.
T
h
e
S
N
N

d
at
afl

ow
fr
om

[3
0]

is
d
en

ot
ed

b
y
re
f*
.

V
G
G
1
6

A
R
E
A

=
8
m
m

2
A
R
E
A

=
1
6
m
m

2

O
p
ti
m
iz
a
ti
o
n

H
a
rd

w
a
re

R
e
su

lt
E
D
P

H
a
rd

w
a
re

R
e
su

lt
E
D
P

ta
rg

e
t

o
p
ti
m
iz
a
ti
o
n

R
u
n
ti
m
e

E
n
er
gy

E
D
P

Im
p
ro
v
e
m
e
n
t

o
p
ti
m
iz
a
ti
o
n

R
u
n
ti
m
e

E
n
er
gy

E
D
P

Im
p
ro
v
e
m
e
n
t

a
N
on

e
(r
ef

∗∗
)

N
o
(1
6X

16
)

40
79

37
03

2x
10

5
0.
00
05
X

N
o
(1
6X

16
)

40
24

36
76

2x
10

5
0.
00
03
X

b
N
on

e
(r
ef

∗)
N
o
(1
6X

16
)

10
0

10
0

10
0

1X
N
o
(1
6X

16
)

89
.1
6

76
.9
1

64
.7
2

1X
R
u
n
ti
m
e

N
o
(1
6X

16
)

11
.7
6

17
8.
64

20
.9
3

4.
78
X

N
o
(1
6X

16
)

11
.0
4

13
9.
98

16
.4
9

3.
92
X

E
n
er
gy

N
o
(1
6X

16
)

16
.8
4

63
.2
7

10
.2
5

9.
76
X

N
o
(1
6X

16
)

15
.8
9

59
.4
7

9.
37
6

6.
98
X

R
u
n
ti
m
e

Y
es

(2
4X

24
)

9.
26

17
4.
62

16
.3
3

6.
12
X

Y
es

(3
2X

32
)

6.
04

15
2.
28

8.
84
3

7.
32
X

E
n
er
gy

Y
es

(3
2X

32
)

21
.2
7

39
.0
9

7.
69
2

13
.0
X

Y
es

(4
0X

40
)

16
.7
2

23
.8
4

3.
87
4

16
.7
X

E
D
P

Y
es

(3
2X

32
)

20
.9
3

39
.8
1

7.
66
7

13
.1
X

Y
es

(4
0X

40
)

16
.7
2

23
.8
4

3.
87
4

16
.7
X

A
le
x
n
e
t

A
R
E
A

=
8
m
m

2
A
R
E
A

=
1
6
m
m

2

O
p
ti
m
iz
a
ti
o
n

H
a
rd

w
a
re

R
e
su

lt
E
D
P

H
a
rd

w
a
re

R
e
su

lt
E
D
P

ta
rg

e
t

o
p
ti
m
iz
a
ti
o
n

R
u
n
ti
m
e

E
n
er
gy

E
D
P

Im
p
ro
v
e
m
e
n
t

o
p
ti
m
iz
a
ti
o
n

R
u
n
ti
m
e

E
n
er
gy

E
D
P

Im
p
ro
v
e
m
e
n
t

N
on

e
(r
ef

∗∗
)

N
o
(1
6X

16
)

48
39

36
04
4

3x
10

6
0.
00
00
3X

N
o
(1
6X

16
)

47
36

96
00

7x
10

5
0.
00
01
X

N
on

e
(r
ef

∗)
N
o
(1
6X

16
)

10
0

10
0

10
0

1X
N
o
(1
6X

16
)

87
.2
0

93
.3
8

75
.1
7

1X
R
u
n
ti
m
e

N
o
(1
6X

16
)

19
.8
7

67
.5
7

11
.9
1

8.
40
X

N
o
(1
6X

16
)

15
.7
6

65
.5
9

9.
52
1

7.
90
X

E
n
er
gy

N
o
(1
6X

16
)

20
.2
9

66
.9
8

11
.8
4

8.
45
X

N
o
(1
6X

16
)

15
.9
7

64
.9
6

9.
43
4

7.
97
X

R
u
n
ti
m
e

Y
es

(2
4X

24
)

19
.8
5

69
.8
8

13
.0
5

7.
66
X

Y
es

(3
2X

32
)

13
.7
3

65
.3
0

8.
13
7

9.
24
X

E
n
er
gy

Y
es

(3
2X

32
)

28
.4
4

55
.9
5

18
.7
0

5.
35
X

Y
es

(4
0X

40
)

19
.6
5

44
.3
0

10
.0
1

7.
51
X

E
D
P

Y
es

(1
6X

16
)

20
.2
9

66
.9
8

11
.8
4

8.
45
X

Y
es

(3
2X

32
)

14
.5
0

52
.0
3

7.
00
9

10
.7
X

a
W

it
h
ou

t
d
at
afl

ow
op

ti
m
iz
at
io
n
,
u
si
n
g
si
n
gl
e
ti
li
n
g
st
ra
te
gy

(r
ef
**
)
fo
r
al
l
la
ye
rs
.

b
W

it
h
ou

t
d
at
afl

ow
op

ti
m
iz
at
io
n
,
u
si
n
g
si
n
gl
e
ti
li
n
g
st
ra
te
gy

(r
ef
*)

fo
r
al
l
la
ye
rs
.

60

Dataflow Optimization for Spiking Neural Networks Chapter 4

ticular the positioning of the temporal dimension, significantly impacts data movement,

throughput, and energy efficiency. 3) We explore joint layer-dependent dataflow and ac-

celerator hardware optimization to further boost performance and energy efficiency. 4)

We develop an SNN dataflow simulator capable of analyzing the throughput and energy

dissipation of systolic array accelerators to support systematic design space exploration

while considering the inherent spatiotemporal characteristics of spiking neural computa-

tion.

We demonstrate how the tiling strategy can be reconfigured on a layer-by-layer basis

and jointly optimized with the accelerator hardware to achieve large gains in throughput

and energy efficiency. Furthermore, an SNN dataflow simulator has been developed to

aid systemic design space exploration. The proposed techniques are able to improve EDP

of the accelerator by several orders of magnitude and more than one order of magnitude

over a non-optimized and existing SNN dataflow, respectively.

61

Chapter 5

Parallel-Time-Computation for

Spiking Neural Computation

In this chapter, we aim to develop a systolic-array architecture for general SNN models

consisting of densely connected and convolutional spiking layers with the flexibility in

employing various rate and temporal codes. We propose two key techniques to enable

spike-based computation while efficiently exploring unstructured firing activity sparsity

in both space and time. First, the (sparse) firing activity of one (active) synaptic neuron

over multiple time points are packed into one time window TW . The integration of such

sparse firing inputs into the membrane potential of a connected post-synaptic neuron over

the given TW is referred to as a time batch, which is mapped to a processing element

(PE) on the systolic array. This gives rise to the proposed parallel time batching (PTB)

technique by which multiple time batches are processed simultaneously on the array.

On top of PTB, we further propose a spatiotemporally-non-overlapping spiking activity

packing (StSAP) technique to identify and combine time batches whose spike inputs

are non-overlapping either in time or space. This work provides a novel solution to

address limitations in stereotypical (time-serial) approaches for energy-efficient dataflow

62

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

Time pre-synaptic

layer

…

…

…

…

…

…

… …

Temporal sparsity
Spatial sparsity

post-synaptic

layer

neuron i

𝒕𝒌 𝒕𝒌+𝟏 𝒕𝒌−𝟏

neuron (i-1)

neuron (i+1)

Figure 5.1: Spatial and temporal sparsity emergent in SNNs.

and parallel processing in time-domain towards memory-intensive SNN accelerators.

5.1 Challenges of SNN Accelerators

While SNNs are promising brain-inspired models of computation, complex spatial

and temporal interactions in data movement and computation hinder their hardware

acceleration. Firing sparsity emergent in both spatial and temporal domains provides an

opportunity for building efficient SNN accelerators. However, tapping to this opportunity

is challenging and requires tackling the unstructured nature of spiking data sparsity from

which severe PE under-utilization and energy efficiency degradation may be resulted.

5.1.1 Spatial and Temporal Sparsity in SNNs

Unlike in conventional ANNs, information processing in SNNs takes place both spa-

tially across different neurons and temporally through an operational period of multiple

time points. Spatiotemporally sparse firing activities often arise in well-trained SNNs.

However, such sparsity is usually irregular, as shown for a pair of adjacent presynaptic

63

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

0.00 0.25 0.50 0.75 1.00
1E-6

1E-4

1E-2

1

 CONV1

 CONV2

 CONV3

 HIDDEN

B

A

0.00 0.25 0.50 0.75 1.00
1E-6

1E-4

1E-2

1

 CONV1

 CONV2

 CONV3

 HIDDEN

B

A

0.00 0.25 0.50 0.75 1.00
1E-6

1E-4

1E-2

1

 CONV1

 CONV2

 CONV3

 HIDDEN

B

A# Neurons / # Total neurons (a)

0.00 0.25 0.50 0.75 1.00
1E-6

1E-4

1E-2

1

 CONV1

 CONV2

 CONV3

 CONV4

 HIDDEN

B

A
Firing rate

(b)

0.00 0.25 0.50 0.75 1.00
1E-6

1E-4

1E-2

1

 CONV1

 CONV2

 CONV3

 CONV4

 HIDDEN

B

A
0.00 0.25 0.50 0.75 1.00

1E-6

1E-4

1E-2

1

 CONV1

 CONV2

 CONV3

 CONV4

 HIDDEN

B

A0.00 0.25 0.50 0.75 1.00
1E-6

1E-4

1E-2

1

 CONV1

 CONV2

 CONV3

 CONV4

 HIDDEN

B

A

Figure 5.2: Normalized firing rate and distribution of neurons in (a): DVS-Gesture,
and (b): CIFAR10-DVS.

and postsynatic layers in Fig. 5.1.

Spatial sparsity- At each time point tk, not all neurons in the pre-synaptic layer fire;

spatial sparsity can be leveraged to only fetch the data and process the computation

associated with active pre-synaptic neurons at a given time point.

Temporal sparsity- Different neurons might fire different number of times within the

same operational period; temporal sparsity can be exploited to avoid redundant compu-

tation and/or data movement at time points when a neuron is silent.

As one example, Fig. 5.2(a) and (b) show the normalized average firing rate dis-

tributions of two well-trained SNNs based on the neuromorphic DVS-Gesture [42] and

CIFAR10-DVS [35] datasets, respectively. Only 0.0001% of neurons at the CONV3 layer

of the DVS-Gesture model produce 150 spikes over 300 time points. Unlike the extreme

temporal sparsity assumed in [20], neurons in practical high-performance SNNs may fire

more than once. On the other hand, they exhibit a great deal of unstructured spar-

sity such that neglecting such sparsity as in [21] abandons opportunities for performance

improvements.

64

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

Table 5.1: Summary of key features in existing and our SNN accelerators.
Applicabilitya Parallelb Sparsity Learningc

processing handling Performance

Ref∗ High No Limited High
Ref∗∗ High No Yes High
[20] Low No Yes Low
[21] High Limited No High
Ours High Yes Yes High
Ref∗: Conventional approach: [60, 62, 22]
Ref∗∗: Industrial neuromorphic chips: TrueNorth [6], Loihi [7]
a: Applicability for general SNNs b: Parallel processing in time domain
c: Learning performance (achievable accuracy)

5.1.2 Existing SNN Accelerators

While holding a great deal of promise, neuromorphic SNN hardware accelerators have

not been extensively studied. Time-serial processing in SNN accelerators - The

most natural approach for SNN acceleration is to emulate the evolution of neural mem-

brane potentials and firing activities time point by time point in a sequential manner.

This has been adopted in several SNN accelerators [60, 62, 22]. We refer to this time-

serial processing approach as the conventional approach in this paper. In essence, this

conventional approach follows the paradigms of non-spiking ANN accelerators for pro-

cessing at each time step. Time-serial processing can introduce significant inefficiency

due to iterative weight data access and low utilization efficiency, as will be discussed in

Fig. 5.5. From the memory point of view, the time-sequential process requires alternating

access to different weight matrices for different time points.

Other Existing SNN Accelerators - [20] proposed an efficient method to acceler-

ate temporally-encoded SNNs. However, [20] only considers a very constrained case of

extreme temporal sparsity that prevents its application to more general SNN in which

neurons fire more than once and may employ other types of rate and temporal coding

for high accuracy. [21] introduced dataflow optimization for SNNs while operating in

65

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

the time domain. However, the tiling technique in [21] does not consider firing sparsity,

has limited weight reuse, and may lead to a significant PE under-utilization and com-

prised energy efficiency. Table 5.1 summarizes the key features and limitations of the

prior works and our work. Importantly, our work is the first work that proposes parallel

acceleration of SNNs while incorporating spatiotemporal sparsity.

5.2 Proposed Architecture

The proposed systolic-array SNN accelerator architecture is supported by two novel

techniques, namely, parallel time batching (PTB) for parallel acceleration in both space

and time, and spatiotemporally-non-overlapping spiking activity packing (StSAP) to fur-

ther improve array utilization. Both techniques are geared towards efficient exploitation

of unstructured firing sparsity.

5.2.1 Overview of the Proposed Architecture

The overall architecture is composed of a tiled array of processing element (PE) with

unidirectional links to form a systolic array along with memories for data storage, as

illustrated in Fig 5.3(a). As in Fig. 5.3(b), each PE consists of 1) an accumulate (AC)

unit, 2) a comparator, 3) a small scratch-pad memory and 4) simple controller logic.

While non-spiking accelerators generally adopt multiply-and-accumulate (MAC) units,

simpler AC units are employed to accumulate weights under (binary) input spikes. To

minimize the data movement overhead of multi-bit partial sums (Psum), one of the main

bottlenecks of SNN accelerators [21], the scratchpad in each PE stores the Psums for a

given time window (TW). We adopt three levels of the memory hierarchy: 1) an off-chip

RAM, 2) a global buffer, and 3) a double buffered L1 cache [69], [44]. The 2-D systolic

array exploits spatial and temporal parallelisms for which spike input and weight data

66

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

A
cc

el
er

a
to

r

Off-Chip RAM

Global Buffer G
lo

b
a

l
C

o
n

tr
o

ll
er

S
y

st
o

li
c

A
rr

a
y

M
em

o
ry

 C
o

n
tr

o
ll

er

(a
) F

il
te

r
B

u
ff

er

IFmap Buffer

O
F

m
a

p
 B

u
ff

er

R
E

G

R
E

G

R
E

G

C
M

P

R
E

G

R
E

G

0

R
E

G

In
p

u
t

S
p

ik
e

(f
ro

m
 a

n
 u

p
p

er
 P

E
)

W
ei

g
h

t

𝐕
𝐭𝐡

𝐕
𝐌
𝐞
𝐦

S
te

p
 1

 &
 S

te
p

 2
:

In
p

u
t

in
te

g
ra

ti
o
n

&
 V
M
e
m

 u
p

d
at

e

S
te

p
 3

:
S

p
ik

e
g

en
er

at
io

n

P
E

 C
o
n

tr
o

ll
er

O
u

tp
u

t

S
p

ik
e

(b
)

(f
ro

m
 a

le
ft

 P
E

)

R
E

G
s

se
rv

es
 a

s

sc
ra

tc
h
p

ad
 m

em
o

ry

p
re

-

sy
n

a
p

ti
c

n
eu

ro
n

s

𝑵
𝒄

T
im

e

𝑵
𝒃

T
W

𝑵
𝒂

T
im

e
b

a
tc

h
 (

T
B

)

𝑵
𝒄
:

𝑵
𝒂

:

𝑵
𝒃

: (1
,

1
,
1

)

(0
,

0
,
0

)

(0
,

1
,
0

)

T
B

-t
a
g

p
o

st
-

sy
n

a
p

ti
c

la
y

er

T
im

e
S

tr
id

e
(T

S
)

B
u

rs
ti

n
g
 n

eu
ro

n

S
il

en
t

n
eu

ro
n

N
o

n
-b

u
rs

ti
n

g
 n

eu
ro

n

(c
)

R
ep

re
se

n
ta

ti
v
e

b
it

s
o

f
T

B
s

ti
m

e
p

o
in

ts

F
ig
u
re

5
.3
:
(a
):

O
ve
ra
ll
ar
ch
it
ec
tu
re
.
(b
):

S
im

p
li
fi
ed

sc
h
em

at
ic

re
p
re
se
n
ta
ti
on

of
th
e
p
ro
ce
ss
in
g
el
em

en
t
(P

E
)
in

sy
st
ol
ic

ar
ra
y.

(c
):

S
ch
em

at
ic

re
p
re
se
n
ta
ti
on

of
ti
m
e
po
in
t,
ti
m
e
ba
tc
h
(T

B
),
T
B
-t
ag

an
d
ti
m
e
st
ri
d
e
(T

S
).

67

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

propagate vertically and horizontally across the array. The membrane potential update

and spike output generation for each neuron involves simple local computation. In the

rest of the chapter, we focus on synaptic input integration, the dominant complexity of

SNN acceleration.

5.2.2 Time Batch (TB) and TB-tag

Time stride(TS): Full range of time points over which the SNN operates. TS is split

into multiple time windows (TWs).

Time window(TW): One TW packs the firing activity of one (active) synaptic neuron

over multiple time points.

Time batch(TB): The integration of such sparse firing inputs into the membrane po-

tential of a connected post-synaptic neuron over the given TW , which is mapped to a

processing element (PE) on the systolic array. A TB corresponds to the basic unit of

workload assignable to a PE.

In Fig. 5.3(c), for example, the pre-synaptic neuron a (Na) generates three TB work-

loads within the given TS. A TB-tag is associated with TBs to indicate the existence of

input spikes in the corresponding time windows: each bits in TB-tag is set to 1 if there

is input activity; otherwise it is set to 0. We classify the pre-synaptic neurons into three

categories based on their TB-tags as shown in Fig. 5.3(c). If the TB-tags of a neuron

are all-zeros, i.e., a neuron does not fire throughout all TW s in TS, we call this neuron

a silent neuron, e.g., Neuron b (Nb) in Fig. 5.3(c). We skip silent pre-synaptic neurons

to avoid redundant processing. . We call a neuron a bursting neuron if its TB-tags are

all-ones, meaning that it fires at all TWs, e.g., Neuron a (Na) in Fig. 5.3(c). All other

neurons are defined as non-bursting neurons, e.g., Neuron c (Nc) in Fig. 5.3(c).

68

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

C
 F

il
te

rs

C
 =

 2

C
 =

 2

C
 =

 1

IF
m

a
p

T
W

T
W

T

C

…

T

O
F

m
a

p

T
W

 T
W

𝑵
𝑶
𝟐

𝑵
𝑶
𝟏

T
im

e
T

W

𝑵
𝑶
𝟏

T
im

e
S

tr
id

e
(T

S
)

…

…

T
W

𝑵
𝑶
𝟐

D
if

fe
re

n
t

o
u

tp
u

t

n
eu

ro
n

s
p

ro
ce

ss
ed

in
 d

if
fe

re
n

t
ro

w
s

D
if

fe
re

n
t

T
W

s

p
ro

ce
ss

ed
 i

n

d
if

fe
re

n
t

co
lu

m
n

s

T
im

e
T

W
 T

im
e

S
tr

id
e

(T
S

)

…

…

T
W

…

M
a

p
p

in
g

 o
f

In
p

u
ts

M

a
p

p
in

g
 o

f
O

u
tp

u
ts

A
ll

 T
B

s
fr

o
m

re
ce

p
ti

v
e

fi
el

d

(a
)

(b
)

90 256 (Neurons)

…

T
W

T

W

…

#
 o

f
T

W
s

=

A
rr

a
y

 w
id

th

(c
)

P
a

ck
in

g

(S
tS

A
P

)

F
ig
u
re

5.
4:

M
a
p
p
in
g
o
f
th
e
(a
):

in
p
u
ts

an
d
(b
):

ou
tp
u
ts

in
to

th
e
sy
st
ol
ic

ar
ra
y.

(c
):

E
x
am

p
le

of
en

h
an

ce
d
sp
ik
e

in
p
u
t
d
en

si
ty

in
D
V
S
-G

es
tu
re

d
at
a
se
t
w
it
h
te
m
p
or
al
ly
-n
on

-o
ve
rl
ap

p
in
g
sp
ik
in
ga

ct
iv
it
y
p
ac
k
in
g
(S
tS
A
P
).

69

Parallel-Time-Computation for Spiking Neural Computation Chapter 5
Input Channels (C)

(a
)

(c
)

T
im

e

P
E

𝑾

𝒊

W
ei

g
h

t
re

u
se

 a
cr

o
ss

 𝑻
𝑩

𝒔

W
ei

g
h

t
re

u
se

w
it

h
in

 𝑻
𝑩

 (
𝑷

𝑬
)

S
p

ik
e

in
p

u
ts

o
f

p
re

-s
y

n
a
p

ti
c

N
eu

ro
n

 i

𝑺
𝒊

(b
)

T
im

e
 b

a
tc

h
 (

T
B

)

𝑵
𝒂

𝑵
𝒃

𝑵
𝒄

𝑾
𝒂

𝑾
𝒃

𝑾
𝒄

P
E

P
E

T
im

e

𝑵
𝒂

𝑵
𝒃

𝑵
𝒄

𝑾
𝒂

𝑾
𝒃

𝑾
𝒄

P
E

P
E

T
im

e

𝒕 𝒊

𝒕 𝒊
+

𝟏

𝒕 𝒊
+

𝟐

𝒕 𝒊

𝒕 𝒊
+

𝟏

𝒕 𝒊
+

𝟐

T
W

 (d
)

𝒂
𝒕

𝒕𝒊
𝒎

𝒆
𝒑

𝒐
𝒊𝒏

𝒕
𝒕 𝒌

…

T
im

e

…

T
im

e

𝒕 𝒌
+

𝟏

𝑾
𝑪

𝟏

𝒕 𝒌

C
1

C
2

𝑾
𝑪

𝟐

𝒕 𝒌
+

𝟐

𝒕 𝒌
+

𝟏

𝑾
𝑪

𝟏

𝒕 𝒌

C
1

C
2

𝑾
𝑪

𝟐

𝒕 𝒌
+

𝟐

…

T
im

e

𝒕 𝒌
+

𝟏

𝑾
𝑪

𝟏

𝒕 𝒌

C
1

C
2

𝑾
𝑪

𝟐

𝒕 𝒌
+

𝟐

…

𝒂
𝒕

𝒕𝒊
𝒎

𝒆
𝒑

𝒐
𝒊𝒏

𝒕
𝒕 𝒌

+
𝟏

…

…

…

It
er

a
ti

v
e

W
ei

g
h

t
a

cc
es

s
(𝒂

𝒕
𝒆

𝒂
𝒄

𝒉
 𝒕

𝒊𝒎
𝒆

𝒑
𝒐

𝒊𝒏
𝒕)

Input Channels (C)

…

T
im

e

𝒕 𝒌
+

𝟏

𝑾
𝑪

𝟏

𝒕 𝒌

C
1

C
2

𝑾

𝑪
𝟐

𝒕 𝒌
+

𝟐

W
ei

g
h

t
re

u
se

 t
h

ro
u

g
h

ti
m

ep
o

in
ts

 𝒕
𝒌

, 𝒕
𝒌

+
𝟏

, 𝒕
𝒌

+
𝟐

…

T
im

e

𝒕 𝒌
+

𝟏

𝑾
𝑪

𝟏

𝒕 𝒌

C
1

C
2

𝑾
𝑪

𝟐

𝒕 𝒌
+

𝟐

F
ig
u
re

5
.5
:
S
im

p
li
fi
ed

sc
h
em

at
ic

re
p
re
se
n
ta
ti
on

s
of

(a
):

C
on

ve
n
ti
on

al
ap

p
ro
ac
h
w
h
ic
h
la
ck
s
p
ar
al
le
l
p
ro
ce
ss
in
g
in

ti
m
e
d
om

a
in

(e
x
ec
u
ti
on

s
a
re

p
er
fo
rm

ed
in

ti
m
e-
se
ri
al

m
an

n
er
).

It
re
q
u
ir
es

al
te
rn
at
in
g
w
ei
gh

t
ac
ce
ss
.
(b
):

P
ro
p
os
ed

ap
p
ro
a
ch

u
si
n
g
p
a
ra
ll
el

ti
m
e
b
at
ch
in
g
(P

T
B
).
(c
):

W
ei
gh

t
re
u
se

w
it
h
in
,
an

d
ac
ro
ss

T
B
s.

(d
):

H
id
in
g
th
e
ab

se
n
ce

of
sp
ik
e
w
it
h
T
B

(g
ro
u
p
ed

sp
ik
in
g
ac
ti
v
it
y
).

70

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

5.2.3 Parallel Time Batching (PTB)

Instead of operating in a time-sequential manner as in conventional approach, the

proposed architecture accelerates multiple TBs for multiple post-synaptic neurons in

different rows, and for different TWs in different columns, in parallel.

Mapping Inputs/Outputs

We assign a single PE for processing computations within a given TB of a targeted

post-synaptic neuron over the time points in the corresponding TW. Fig. 5.4(b) illustrates

how the computations of an OFmap are mapped to the PEs. Each row of the array is

utilized to compute output activation of a single post-synaptic neuron for different TWs

with multiple time-batched inputs (TBs). PEs in each column process the same TW but

for different post-synaptic neurons. Spike inputs into the array are assigned according

to the mapping of PEs for post-synaptic neurons, as shown in Fig. 5.4(a). In the array

iteration that executes computations for targeted post-synaptic neurons over the TS, the

IFmap and filter data of the TBs in range of TS from the corresponding receptive fields

are fetched into the array.

Under PTB, the computations of a single PE for a CONV layer can be expressed by

modifying (2.1) ∼ (2.4) as:

(For a specific post-synaptic neuron)

Step A: For all input neurons in receptive field -

Integration of synaptic inputs for a given TW, from time point tk to tk+TW−1:

pOji[tk, .., tk+TW−1] = wji × sRF
j [tk, .., tk+TW−1]

p ∗Oi [tk, .., tk+TW−1] =
MRF∑
j=1

pOji[tk, .., tk+TW−1]
(5.1)

71

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

Step B: Membrane potential update & Conditional spike output generation for a given

TW, from tk to tk+TW−1 (for m = 0, 1, ... , (TW − 1)).

vOi [tk+m] = p ∗Oi [tk+m] + vOi [tk+m−1]

sOi [tk+m] =

1, if vOi [tk+m] ≥ V O

th : vOi [tk+m] = 0

0 else : vOi [tk+m] = vOi [tk+m]

(5.2)

where p∗Oi denotes the integrated partial sum of all spike inputs from receptive field

in output neuron i. All the other expressions follow the definition described in (2.1) ∼

(2.4). PTB groups Step 1 in (2.1) across multiple time-points with the batch size TW

as in (5.1). With mapping of the computations into PEs as described in Fig. 5.4, PTB

enables parallel processing in both 1) space - for output neurons at different positions,

and 2) time - executing different TWs, for Step A in (5.1), the dominant complexity.

Energy reduction

To exploit unstructured firing sparsity as shown in Fig. 5.1, PTB minimizes the

weight access with two different types of reuse, as shown in Fig. 5.5(b) and (c). First,

PTB reduces alternating accesses to different weights, which is however inevitable in

the conventional time-serial processing as shown in Fig. 5.5(a). In the latter approach,

the array cycles through all required weight data to compete the processing of all post-

synaptic neurons at tk. At the next time point tk+1, the above process is repeated without

allowing weight data sharing between the two time points. Differently, PTB processes

each TB while allowing the same weight data associated with the presynaptic neuron

to be reused across the multiple time points within the TB, as shown in Fig. 5.5(b).

Furthermore, as PEs in the same row of the array performs computations of different

TWs for a given post-synaptic neuron; the same weight data is reused across these PEs,

72

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

as illustrated in Fig. 5.5(c). In summary, PTB enables weight data reuse within each TB

(PE) and across different TBs (PEs).

Utilization

PTB alleviates severe under-utilization which originates from the inactive processing

elements with a silent receptive field. Since TB packs multiple presynaptic spikes into a

TB and assign the entire TB to a PE, it reduces the number of idling PEs due to the

larger temporal granularity defined by the time window (TW) size. For example, the only

spike in ti from Neuron a (Na) results in degradation of utilization in the conventional

approach while PTB hides the absence of spikes within the packed input spikes in the

PB as described in Fig. 5.5(d).

5.2.4 Spatiotemporally-non-overlapping Spiking Activity Pack-

ing (StSAP)

To further leverage the utilization efficiency, we propose a novel compression scheme,

dubbed spatiotemporally-non-overlapping spiking activity packing (StSAP), which packs

sparse spike inputs into a denser format. The key idea here is to combine non-overlapping

spike inputs based on the TB-tags, which enables simultaneous scheduling/processing of

the non-overlapping spiking activities and hence increases the utilization efficiency.

Packing strategy

Recognizing the sparsity emergent across different neurons and TWs, we combine

TBs of non-bursting neurons. First, we trim out silent presynaptic neurons with all-zero

TB-tags without fetching them to the array. By removing silent neurons which do not

fire throughout all TWs, we compress the sparse input firing activity spatially. Then,

73

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

Systolic

Array Inputs of

Bursting
Neurons

Combined inputs

of non -bursting
neurons with StSAP

: No spike within TW

Systolic

Array

(b)

Systolic

Array

(a)

(a)

: TBs from a

pre-synaptic neuron

(1, 1, 1)

TB-tag

(1, 1, 0)

(1, 0, 1)

(1, 0, 0)

(0, 1, 1)

(0, 1, 0)

(0, 0, 1)

(0, 0, 0)

Bursting

Silent

Try

1’s complement

Try nearest

…

(c)

Figure 5.6: Schematic representation of StSAP. Mapping of the spike inputs from
non-bursting neurons (a): without StSAP, (b): with StSAP. (c): Greedy policy applied
to find nearest 1’s complement based on TB-tag.

we use plain spike inputs for the bursting neurons, as bursting neurons generate non-

zero TBs across TS. Finally, StSAP is applied to the non-bursting neurons to explore

temporal sparsity. For simple and efficient packing, we adopt a greedy combining policy

for searching TBs that can be packed together. Starting from a given TB with its TB-

tag, StSAP first tries packing with 1’s complements and finds the nearest non-overlapping

TB-tags if the exact 1’s complement does not exist, as shown in Fig. 5.6(c). We limit

the number of neurons for packing to two to simplify the packing process.

Utilization efficiency

Recognizing the unique sparse nature of SNNs, StSAP manages the spatial and tem-

poral sparsity of the spike inputs in the time-domain based on TB-tags. In Fig. 5.6, for

example, four TBs from non-bursting neurons are packed into two with StSAP. Fig. 5.4(c)

demonstrates the packing of realistic spiking input data, revealing significantly densified

input by the proposed StSAP. Simultaneous scheduling of non-bursting neurons alleviates

severe PE under-utilization, and is particularly well-suited for sparse spiking computa-

74

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

tions.

Importantly, StSAP directly points to the actual activation values and fundamentally

different from the existing packing strategies for DNNs [19, 18, 77, 78, 79, 80, 81]. For

example, [18] and [19] proposed packing of sparse columns of a convolutional filter matrix

into a denser weight matrix. However, as the time dimension is not incorporated in DNNs,

[18] and [19] primarily focused on combining non-zero weights into a denser format.

However, StSAP focuses on unique features of sparse spike inputs over time and explores

the unstructured sparsity with TB-tags.

5.3 Experiments and Results

We evaluate the performance of the proposed architecture focusing on the impact of

the proposed PTB and StSAP described in section 5.2 based on the setups described in

the following section. The performance of the proposed architecture hinges on optimizing

tradeoffs between reuse of multi-bit weight and binary input activation data, storage of

multi-bit partial sums, and array utilization, which are also dependent on structures of

layers of the spiking neural network to be accelerated. There exist two critical architec-

tural parameters, i.e., time window (TW) size and systolic array dimension that impact

the above tradeoffs. We first examine how to near-optimally choose array dimension,

and then comprehensively evaluate the proposed architecture based on realistic S-CNN

networks.

5.3.1 Architecture Specifications and Benchmarks

We evaluated the proposed idea with the simulator introduced in chapter 4 where

the user specified inputs and architecture specifications are summarized in Table 5.2 and

Table 5.3, respectively.

75

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

Table 5.2: A high-level overview of the input parameters.
Input Parameter Description

Array Array width/height, size of the scratch-pad
configuration in each PE

Memory Size of the memory, partitioning of the memory
configuration for each type of data, at each level
Time Window Ranging from each time-point (TW=1) to
(TW) Size cover all time-points with given array width
Packing Packing the non-bursting neurons or use

plain inputs
Network Number of layers, number of the neurons
Structure in each layer, layer type (CONV, FC)

Table 5.3: Architecture specifications.
Components Proposed Architecture

Number of PEs 128
ALU in PEs Adder, Comparator - 8-bit

Global Buffer Size 54KB
L1/Scratchpad Size 2KB / 96 × 8-bit
DRAM Bandwidth 30GB/sec

Bit precisions Weight/Membrane Potential - 8-bit
Input/Output Spike - TWS × 1-bit

(TWS : TW size)

5.3.2 Optimization of Array Dimension

As discussed, without using StSAP, PEs in each row of the systolic array perform

computations for the same post-synaptic neuron at different time windows while PEs

in each column process different post-synaptic neurons for the same TW. Having more

columns by increasing the array width processes each post-synaptic neuron over a longer

overall time span, resulting in more multi-bit weight data reuse. When the PE count

is fixed, this will lead to a fatter array that processes fewer post-synaptic neurons per

array iteration. This has the downside of reduced input activation data reuse across

different post-synaptic neurons. Oppositely, skinner arrays encourage input data reuse

among different post-synaptic neurons while reducing weight data reuse across multiple

time points. TW size plays an important role in the tradeoffs between input/weight data

76

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

1 2 4 8 12 16 20 24 28 32
0.00

0.25

0.50

0.75

1.00

B

 ALU

 RF

 LBUF

 GLB

 DRAM

2 8 16 24 32

1

2

3

4

5

6

 I_act

 Filter

TW Size

0.0

0.2

0.4

0.6

0.8

1.0
2 8 16 24 32

1
2
3
4
5
6

0.0
0.2
0.4
0.6
0.8
1.0

1 2 4 8 12 16 20 24 28 32
0.00

0.25

0.50

0.75

1.00

B

 ALU

 RF

 LBUF

 GLB

 DRAM

Array dimension

N
o

rm
a

li
ze

d
 E

n
er

g
y

(b)

Time Window Size (TWS) N
o

rm
a

li
ze

d
 E

n
er

g
y

(a)

0.0

0.5

1.0

1.5

2.0

B

0

1

2

3

 C
H4 / W

32

H8 / W
16

H16 / W
8

H32 / W
4

H64 / W
2

0.0

0.5

1.0

1.5

2.0

B

 F

 E

 D

 C

 B

Figure 5.7: Energy dissipation breakdown of CONV2 in DVS-Gesture with different
(a): TW size. (b): array size (TW=8).

reuse and Psum data storage, and impacts the optimal array dimension.

Impact of Time Window Size

PTB improves weight data reuse by grouping multiple time-points into a single TW,

maximizing the weight data sharing opportunity within each time window. Movement of

binary input activation data tends to a lesser problem compared to that of other multi-bit

data types. No data compression is applied to binary input data when it is fed onto the

systolic array to avoid the overheads of compression and decompression. To this end,

while wider TWs improve the reuse of multi-bit weight data on the array, but there is a

tendency of packing an increased number of zero-valued input activations within the TW,

incurring higher overheads of data fetching to and input data storage on the array. Also,

wide TWs stretch the integration of synaptic inputs over many time points, producing

more multi-bit partial sum data that must be stored.

77

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

1
2

4
8

1
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D
A

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 F
C

1

 F
C

2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C

1
2

4
8

1
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D
A

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 F
C

1

 F
C

2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C

1
.0

1
.5

2
.0

2
.5

3
.0

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

C
A

 T
o

ta
l

1
2

4
8

1
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

E

A

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 F
C

1

 F
C

2

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 F
C

1

 F
C

2

w
/o

 S
tS

A
P

1
2

4
8

1
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

E

A

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 F
C

1

 F
C

2

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 F
C

1

 F
C

2

w
/

S
tS

A
P

(a
)

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

E (NM)

A

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

w
/o

 S
tS

A
P

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

E (NM)

A

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

w
/

S
tS

A
P

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D

A
 C

O
N

V
1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

C

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D

A
 C

O
N

V
1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

C

1
.0

1
.5

2
.0

2
.5

3
.0

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

C

A

 T
o

ta
l

(b
)

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D

A
 C

O
N

V
1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D

A
 C

O
N

V
1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

C

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D

A
 C

O
N

V
1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

C

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D

A
 C

O
N

V
1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

C

1
.0

1
.5

2
.0

2
.5

3
.0

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

C

A

 T
o

ta
l

B
a
se

li
n

e:
 6

.6
8

 (
T

o
ta

l
en

er
g
y

 n
o
rm

a
li

ze
d

 t
o
 T

W
S

=
1
)

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

E (NM)

A

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

E (NM)

A

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

E (NM)

A

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

w
/o

 S
tS

A
P

w

/
S

tS
A

P

B
a
se

li
n

e:
 5

.5
3

 (
T

o
ta

l
la

te
n

cy
 n

o
rm

a
li

ze
d

 t
o

 T
W

S
=

1
)

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D

A
 C

O
N

V
1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 C
O

N
V

5

 F
C

1

 F
C

2

 F
C

3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

C 1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D

A
 C

O
N

V
1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 C
O

N
V

5

 F
C

1

 F
C

2

 F
C

3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

C

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D

A

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 C
O

N
V

5

 F
C

1

 F
C

2

 F
C

3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

C

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D

A
 C

O
N

V
1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 C
O

N
V

5

 F
C

1

 F
C

2

 F
C

3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

C 1
.0

1
.5

2
.0

2
.5

3
.0

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

C

A

 T
o

ta
l

T
im

e
W

in
d

o
w

 S
iz

e
(T

W
S

)

B
a
se

li
n

e:
 4

.1
6

 (
T

o
ta

l
en

er
g
y

 n
o
rm

a
li

ze
d

 t
o
 T

W
S

=
1
)

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

E (NM)

A

T
im

e
W

in
d

o
w

 S
iz

e
(T

W
S

)

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

E (NM)

A
 C

O
N

V
1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 C
O

N
V

5

 F
C

1

 F
C

2

 F
C

3

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 C
O

N
V

5

 F
C

1

 F
C

2

 F
C

3

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

E (NM)

A

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 C
O

N
V

5

 F
C

1

 F
C

2

 F
C

3

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 C
O

N
V

5

 F
C

1

 F
C

2

 F
C

3

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

E (NM)

A

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 C
O

N
V

5

 F
C

1

 F
C

2

 F
C

3

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 C
O

N
V

5

 F
C

1

 F
C

2

 F
C

3

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

E (NM)

A

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 C
O

N
V

5

 F
C

1

 F
C

2

 F
C

3

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 C
O

N
V

5

 F
C

1

 F
C

2

 F
C

3

w
/o

 S
tS

A
P

w

/
S

tS
A

P

B
a
se

li
n

e:
 7

.4
5

 (
T

o
ta

l
la

te
n

cy
 n

o
rm

a
li

ze
d

 t
o

 T
W

S
=

1
)

Normalized Energy

Normalized Latency

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D

A
 C

O
N

V
1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C

1
2

4
8

1
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D

A
 C

O
N

V
1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 F
C

1

 F
C

2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C
1

2
4

8
1
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D

A
 C

O
N

V
1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 F
C

1

 F
C

2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C

1
2

4
8

1
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D

A
 C

O
N

V
1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 F
C

1

 F
C

2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C

1
2

4
8

1
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D

A
 C

O
N

V
1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 F
C

1

 F
C

2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C

1
.0

1
.5

2
.0

2
.5

3
.0

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

C

A

 T
o

ta
l

B
a
se

li
n

e:
 7

.8
2

 (
T

o
ta

l
en

er
g
y

 n
o
rm

a
li

ze
d

 t
o
 T

W
S

=
1
)

1
2

4
8

1
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

E

A

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 F
C

1

 F
C

2

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 F
C

1

 F
C

2
1

2
4

8
1
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

E

A

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 F
C

1

 F
C

2

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 F
C

1

 F
C

2

1
2

4
8

1
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

E

A

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 F
C

1

 F
C

2

 C
O

N
V

1

 C
O

N
V

2

 C
O

N
V

3

 C
O

N
V

4

 F
C

1

 F
C

2

w
/o

 S
tS

A
P

w

/
S

tS
A

P

B
a
se

li
n

e:
 4

.2
6

 (
T

o
ta

l
la

te
n

cy
 n

o
rm

a
li

ze
d

 t
o

 T
W

S
=

1
)

1
2

4
8

1
2

1
6

2
0

2
4

2
8

3
2

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

D

A
 C

O
N

V
1

 C
O

N
V

2

 C
O

N
V

3

 F
C

1

 F
C

2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C

(c
)

(d
)

(e
)

(f
)

F
ig
u
re

5
.8
:
N
o
rm

al
iz
ed

en
er
g
y
d
is
si
p
at
io
n
an

d
la
te
n
cy

of
la
y
er
s
w
it
h
d
iff
er
en
t
T
W

si
ze
s,

w
it
h
-
an

d
w
it
h
ou

t
S
tS
A
P
,

in
ea
ch

d
at
as
et
.
(a

),
(b

):
D
V
S
-G

e
st
u
re

,
(c
),
(d

):
C
IF

A
R
1
0
-D

V
S
,
a
n
d

(e
),
(f
):

A
le
x
n
e
t.

P
T
B

w
it
h
n
on

-o
p
-

ti
m
iz
ed

T
W

si
ze

(T
W

S
=
1
)
im

p
ro
ve
s
th
e
to
ta
l
en

er
gy

d
is
si
p
at
io
n
an

d
la
te
n
cy

b
y
D
V
S
-G

es
tu
re
:
6.
68

X
an

d
5.
53

X
,

C
IF
A
R
1
0-
D
V
S
:
7.
82

X
an

d
4.
26

X
,
an

d
A
le
x
n
et
:
4.
16

X
an

d
7.
45

X
,
ov
er

th
e
b
as
el
in
e.

78

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

We use the CONV2 layer trained for the DVS-Gesture dataset as a representative

layer configuration to evaluate the impact of TW size in Fig. 5.7(a), which clearly shows

decreased weight access and increased input activation data access at larger TW sizes.

Typically, a TW size of 8 is near optimal, which is further discussed in Section 5.3.3.

Near-Optimal Array Dimensions

While fixing the TW size to 8, we examine how array dimension impacts the en-

ergy dissipation when accelerating the representative CONV2 layer of the DVS-Gesture

dataset. Fig. 5.7(b) shows the normalized energy dissipation and the tradeoff between

weight (filter) and input activation data access (inset) under different array dimensions

when the PE count is fixed at 128. The array dimension of 16×8 is typically a near-

optimal choice, which is adopted for the rest of the paper.

5.3.3 Comprehensive Evaluation

While fixing the array dimension, we jointly optimize the proposed PTB and StSAP

techniques with the other key architectural parameter TW size and compare our archi-

tecture with the baseline. We adopt the approaches in [21] as our baseline. We also

examine the dependencies on SNN layer structures to shed light on how the proposed

techniques exploit sparsity of spike data and the granularity of time-domain processing

to improve the overall performance.

SNN Layer-Dependent Tradeoffs

Reuse of multi-bit weight and binary input activation data, storage of multi-bit partial

sums, and array utilization can be traded off by altering the granularity of time batching,

i.e., the TW size. The resulting optimal tradeoffs have a strong dependency on the

79

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

structure of spiking neural network layers.

In general, fully-connected (FC) layers favor larger TW sizes as the multi-bit weight

data have a greater footprint and the overhead of weight data movement tends to dom-

inate. The number of input channels in a convolutional (CONV) layer determines the

amount of IFmap data that must be fetched to the array for each time batch. The lateral

dimension of the filters determines the sheer amount of weight data that must be fetched.

Therefore, CONV layers with many few input channels and large filter sizes benefit from

enlarged TW sizes as the overhead of the input activation data movement is more than

compensated by the improved weight data reuse. The opposite can be said for CONV

layers with many input channels but small sized filters.

Performance of PTB

PTB offers significant benefits in terms of latency and energy dissipation across most

CONV and FC layers in the three SNN models compared with the baseline as demon-

strated in Fig. 5.8. The impact of the TW size, on the other hand, varies from layer to

layer as a result of changing tradeoffs between weight (filter) and input (IFmap) data

movement.

Energy dissipation: Energy dissipation in CONV layers is reduced as the TW size

increases to a certain point from which any further increase in the TW size degrades

energy efficiency. In typical S-CNNs, early CONV layers and FC layers have large sized

filters or a great amount of weight data while the number of input channels tends to

be limited. This is in contrast to later CONV layers which are featured by small-sized

IFmaps, but very importantly many input channels. As such, FC layers favor large TW

sizes across the board, and the same is for early CONV layers, e.g., layer CONV1 in

Fig. 5.8 (e). The figure shows the energy dissipation of different layers in the AlexNet

model along with the total energy. The benefit from increasing the TW size is even

80

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

1 2 4 8 12 16 20 24 28 32
0.00

0.25

0.50

 DVS Gesture

 DVS CIFAR10

 Alexnet

B

A

1 2 4 8 12 16 20 24 28 32

1.00
 B

 D

 F

B

A

Time Window Size (TWS)

N
o

rm
a

li
ze

d
 E

n
er

g
y
-

D
el

a
y

 P
ro

d
u

ct
 (

E
D

P
)

Baseline (Alexnet): 26.86

Optimal TWS

Baseline (DVS Gesture): 23.24

Baseline (CIFAR10-DVS): 22.25
1 2 4 8 12 16 20 24 28 32

0.00

0.25

0.50

 DVS Gesture

 CIFAR10-DVS

 Alexnet

B

A

Figure 5.9: Total energy-delay product (EDP) of three different benchmarks. EDP
values are normalized to the baseline result, which exclude merging and TW size
optimization.

more pronounced for early CONV layers than FC layers. On the other hand, for later

CONV layers such as CONV4, energy dissipation is initially reduced by applying a small

window size; however, going beyond a TW size of 4 degrades energy efficiency due to the

comprised input data movement as shown in Fig. 5.8 (e).

Latency: We observe a clear improvement of latency by using PTB in all three networks,

as shown in Fig. 5.8. As discussed in Section 5.2, PTB mitigates systolic array under-

utilization by packing multiple input activities into time batches, reducing the idling of

the PEs. In general, applying a larger TW size further reduces the number of idling PEs

and hence latency. However, it is possible to experience a very modest increase of latency

for certain layers at large TW sizes. This is caused by the fact that a fewer number of

time points are packed into time batches towards to the very end of the operational time

period, introducing idling PEs while processing the latest time batches. Array utilization

is further improved by the proposed StSAP, discussed next.

81

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

Performance of StSAP

On top of PTB, StSAP offers further array utilization and latency improvements for

all most all CONV and FC layers, as shown in Fig. 5.8. PTB improves PE utilization

by packing multiple input spikes in a given time batch, which is to be processed on a

PE. StSAP takes one step further to analyze the patterns of sparse spiking inputs. A set

of time batches that are non-overlapping either in time or space are processed simulta-

neously on the array, further reducing PE idling and overall latency. It shall be noted

that overlaps between time batches may increase with the TW size, which may comprise

the benefits of StSAP. Moreover, the choice of TW size impacts the performance of the

underlying PTB based on which StSAP is applied. As a result, the overall performance of

StSAP is also layer dependent; overly large TW sizes can degrade the benefit of StSAP,

and hence the latency.

EDP evaluation

We use energy-delay product (EDP) to simultaneously consider latency and energy

dissipation for evaluation of the overall system performance. We multiply the total

energy consumption and the total amount of time for executing (latency) at each layer,

and then integrate EDP values of all layers to calculate total EDP. Fig. 5.9 shows the

normalized EDP of three different networks with varying TW sizes. The baseline is based

on the approach proposed in [21], which exploits limited temporal parallel processing

without handling the sparsity. Both DVS-Gesture and CIFAR10-DVS models show a

clear optimal choice at TW size of 8. The optimal trade-off point of TW size is larger

for the AlexNet model. In AlexNet, the energy dissipation of later CONV layers is

minimized by choosing a proper TW size while other layers are benefited continously

with increasing TW size, as shown in Fig. 5.8 (e). Since the overheads of later CONV

82

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

Table 5.4: Performance comparison of ANNs and SNNs.
Workload ANN SNN

MNIST 99.80% [83], 99.62% [3],
99.04% [29] ∗99.53% [39]

CIFAR10 90.49% [84], ∗91.41% [39],
93.75% [85] 93.58% [86]

DVS-Gesture 92.01% [85], 95.49% [87],
93.75% [85] ∗93.75% [39]

CIFAR10-DVS 31.00% [88], 58.10% [11],
52.40% [89] ∗56.86% [39]

∗: This work.

layers constitute to a small portion of the total overhead, the overall optimal TW size of

AlexNet is larger than those of the other two models. With the optimized TW sizes, the

proposed architecture delivers 172X, 198X and 373X EDP improvement over the baseline

for accelerating the DVS-Gesture, CIFAR10-DVS and AlexNet models, respectively. On

average, our architecture delivers 248X EDP improvement.

5.4 Summary and Discussions

SNNs have shown great potentials and results in both energy efficiency and perfor-

mance [3, 39, 11]. SNNs can show better efficiency over ANNs when key factors, i.e., data

reuse, sparsity handling and repeated operations through time, are efficiently managed

as discussed in [82, 20]. We discuss broader impacts and promises of our work.

Machine learning performance: As shown in Table 6.3, SNNs achieved comparable

performance to ANNs with promising training algorithms and network structures. Espe-

cially, with advantages in handling spatiotemporal information, SNNs can achieve better

performance over ANNs in neuromorphic datasets. Apart from machine learning perfor-

mance, the main focus of our work is to develop efficient architectures and techniques for

accelerating SNNs.

83

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

Hardware acceleration: [20] showed outperforming energy efficiency over ANNs [15]

with constraint that each neuron fires at most once, exploring extremely high tempo-

ral sparsity and low bit resolution. However, extreme sparsity often suffer from low

performance. General SNNs employing various rate and temporal codes lack efficient

architectures and techniques for hardware acceleration, which is addressed in our work.

For accelerating CIFAR10 dataset, our approach delivers 14.6X and 3.3X improve-

ment over the ANN counterpart [44, 84] for energy dissipation and latency, respectively,

as shown in Fig. 5.10(b). We adopted same network structure in [39, 84] and architec-

ture specifications using [44] for fair comparison. We adopted the training algorithm in

[39] and applied actual spiking activities of a well-trained network to our pre-determined

architecture specifications. Our work addresses the main source of inefficiency in SNNs,

i.e., iterative and irregular patterns of data access repeated through time, and presents

promising methods to outperform ANNs.

Scalability of PTB w.r.t. sparsity level: As shown in Fig. 5.10(b), the benefit of

PTB depends on temporal sparsity level: 1) low sparsity (high firing rate) increases PTB

benefits, 2) high sparsity (low firing rate) decreases PTB benefits. Still, PTB improves

energy efficiency by 28X even for the rare case of 1% firing rate. Importantly, as shown

in 5.10(a), firing rate of well-trained networks ranges from 1∼15% in practice for which

PTB can significantly improve energy efficiency.

Generality of PTB: PTB pre-calculates the synaptic input integration (S-I) step for

multiple time-points in parallel prior to the rest step. The S-I step can be performed with-

out knowing the state of the post-synaptic neuron and hence without violating causality.

Thus, as shown in Fig. 5.10(c), PTB is applicable across: 1) all typical spiking neuron

models (LIF, IF, etc.), 2) all layer structures (fully-connected, convolutional, recurrent,

etc.), 3) general SNNs with various layer types, and 4) SNN accelerators of any given

array/memory size with flexible choice of TW size. Layerwise fine-grained optimization

84

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

CONV1CONV2CONV3CONV4HIDDEN

0.0

0.1

0.2
R

an
ge

F
ir

in
g

 R
a

te

CONV 1 2 3 4 HIDDEN

: DVS Gesture (25~75%)
: CIFAR10-DVS (25~75%)
: Median
: Mean

0
%

1
0
%

2
0
%

 (a)

Synaptic input

integration

PTB

Pre-determined

pre-synaptic

spiking activity

Irregular patterns

of spatial and

temporal sparsity

Time 𝒕𝒌+𝟏 𝒕𝒌

…

…

(c)

Neurons

Layers

Step 1

Conv

FC

Recurrent

…

LIF
IF …

Step 2 & 3

Networks

E
n

er
g

y

Firing

Rate 1% 15%

(b) Typical range

Degree of sparsity High Low

ANN

14.6X

CIFAR10

[39]+[48] : w/ PTB
: w/o PTB

SNNs

0.5% 12%

3.2X
61X 28X

Figure 5.10: (a) Firing rate of well-trained networks. (b) PTB significantly improves
energy efficiency across wide range of sparsity-levels. With PTB, SNN showed better
result than ANN. (c) PTB supports diverse family of spiking models.

is possible if the optimal TW size is chosen offline, based on the given architecture,

sparsity-level and layer type.

In summary, the proposed architecture is built upon a novel parallel time batch-

ing (PTB) technique and a spatiotemporally-non-overlapping spiking activity packing

(StSAP) strategy. PTB introduces parallel acceleration of time windows (TWs) that

incorporates multiple time-points, and significantly improves energy efficiency and under-

utilization by reducing iterative data access and idling of processing units. StSAP den-

sifies the grouped input spikes (TBs) by combining non-bursting neurons with greedy

policy, which further benefits the utilization efficiency of the array. We also observe that

larger TW size does not always provide monotonic improvements, and hence perform a

joint optimization of PTB and StSAP with varying TW sizes for different networks. Our

experimental results provide insights for parallel acceleration with an optimal choice of

85

Parallel-Time-Computation for Spiking Neural Computation Chapter 5

handling the fundamental trade-offs in SNNs. Experimentally, our work improves the

energy-delay product (EDP) of the array accelerator for DVS-Gesture, CIFAR10-DVS,

and AlexNet by 248X over a baseline, on average. Compared to ANN based accelerator,

our approach improves EDP by 47X on the CIFAR10 dataset.

86

Chapter 6

Recurrent Spiking Neural Network

Acceleration

6.1 Recurrent Spiking Neural Network Accelerators

6.1.1 Recurrent Spiking Neural Network

While R-SNNs produce complex network dynamics via recurrent connections, they

have gathered significant recent research interests that perceive R-SNNs as a promis-

ing biologically inspired paradigm for time series data processing, speech recognition,

and predictive learning. In particular, the recurrent connections in an R-SNN form

temporally-based local memory, opening up opportunities for supporting broad ranges of

spatiotemporal learning tasks.

Recent advances in R-SNN network architectures and end-to-end supervised train-

ing methods have led to high-performance R-SNNs that are not attainable using un-

supervised biologically-plausible learning mechanisms such as spike-timing dependent

plasticity (STDP). For example, deep R-SNNs have been trained using recent SNN back-

87

Recurrent Spiking Neural Network Acceleration Chapter 6

propagation techniques[3, 39, 31], achieving state-of-the-art accuracy on commonly used

spike-based neuromorphic image and speech recognition datasets such as MNIST [90],

Fashion-MNIST [91], N-TIDIGITS [92], TI46 speech corpus [36], and Sequential MNIST

and TIMIT [93]. For example, [3] proposed the Spike-Train level R-SNNs Backprop-

agation (ST-RSBP) algorithm for training deep R-SNNs. By directly computing the

gradient of a rate-coded loss function defined at the output layer, this work presents near

state-of-the-art accuracy for challenging speech and image datasets, such as TI46 [36]

N-TIDIGITS [92] Fashion-MNIST [91], and MNIST [90]. [31] presented a powerful

R-SNN architecture, called long short-memory spiking neural networks (LSNNs), com-

prising multiple distinct leaky integrate-and-fire (LIF) recurrent spiking neural popula-

tions. Promising supervised and reinforcement learning, and Learning-to-Learn (L2L)

capabilities have been demonstrated using LSNNs.

6.1.2 R-SNN accelerators

While SNNs have gathered siginificant research interest as promising bio-inspired

models of computation, only a very few works have been done on SNN hardware accel-

erators [20, 22, 94, 95, 96], particularly array-based accelerators [97, 62, 73, 98, 99] due

to the fact that the spatiotemporal nature of the spikes make it difficult to design an

efficient architecture. Importantly, these limited existing works have primarily focused

on feedforward SNNs where there exist very limited works that are capable of execut-

ing R-SNNs [7, 6, 100]. For example, [97, 62, 73, 98] introduced a systolic array based

accelerator for spiking-CNNs. However, these works are only targeting feedforward net-

works where efficient method to handle recurrence, which produces tightly-coupled data

dependency in both time and space, has not been proposed. There is a key difficulty

in developing optimized hardware architecture as strict spatiotemporal dependency re-

88

Recurrent Spiking Neural Network Acceleration Chapter 6

sides in R-SNNs. Furthermore, RNN accelerator designs and techniques are incompatible

with R-SNNs due to unique properties of spiking models, such as disparity in data rep-

resentation which lead to different trade-offs in data sharing and storage compared to

non-spiking models.

There exist few types of neuromorphic hardware that are capable of executing R-

SNNs [6, 7, 100]. [6, 7] are the two best-known industrial large-scale neuromorphic chips,

based on a many core architecture. Both chips are fully programmable and have capa-

bility of executing R-SNNs, as [6] is based on intra-core crossbar memory and long-range

connections through an inter-core network and [7] adopt neuron-to-neuron mesh rout-

ing model [101]. [100] presented a multicore neuromorphic processor chip that employs

hybrid analog/digital circuit. With novel architecture that incorporates distributed and

heterogeneous memory structures with a flexible routing scheme, [100] can support a

wide range of networks including recurrent network.

However, existing architectures are limited to process R-SNNs in a time-sequential

manner, which requires alternating access to two different types of weight matrices for

every time point, i.e., feedforward weight matrix and recurrent weight matrix. The

major shortcomings in the above architectures originate from the stereotype that, both

the feedforward and recurrent inputs must be accumulated to generate final activations

at a given time point, which are the recurrent inputs to the next time point, before the

next time point can be processed. For example, large-scale multicore neuromorphic chips,

IBM’s TrueNorth with 256M synapses [6] and Intel’s Loihi with 130M synapses [7], are

based on the assumption that all weights of the network are fully stored on-chip. Using

a very large core memory can reduce inefficiencies, i.e., lack of parallelism and weight

reuse, which makes the weight reuse and data movement less important compared to

many other practical cases.

On the other hand, the main idea of our paper allows parallel compute over multiple

89

Recurrent Spiking Neural Network Acceleration Chapter 6

Figure 6.1: Schematic representation of (a): Time-serial processing in conventional
SNNs, (b): Decoupling scheme to separate feedforward and recurrent steps. Layer l :
Recurrent layer.

time points as opposed to existing architectures and maximizes weight reuse benefits.

Our main target is to minimize data-movement energy cost for memory-intensive SNN

accelerators, especially for a practical case that the accelerator cannot load entire weight

matrices. Without the proposed idea to minimize the data movement, processing R-

SNNs require alternating access to two different types of weight matrices for every time

point. Based on the fact above, we defined the baseline architecture (without decoupling)

which keeps the essential ideas of existing SNN accelerator works and extended them for

recurrent SNNs. With inherent advantages in exploiting spatiotemporal parallelism as

will discussed in section 6.2, our main accelerator is based on systolic array architecture.

This work is motivated by the lack of optimized accelerator architectures for general

recurrent spiking neural networks (R-SNNs).

90

Recurrent Spiking Neural Network Acceleration Chapter 6

6.2 SaARSP: Proposed Architecture

We present the proposed architecture for systolic-array acceleration of recurrent

spiking neural networks, dubbed SaARSP, which accelerate a given R-SNN in layer-

by-layer manner. SaARSP addresses the data dependencies introduced by temporal

processing in R-SNNs via decoupled feedforward/recurrent synaptic integration scheme

and a novel time window size optimization to enable an optimal time-domain parallelism,

and hence reduces latency and energy. It supports both the output stationary (OS) and

weight stationary (WS) dataflows for maximized data reuse.

6.2.1 Decoupled feedforward/recurrent synaptic integration

As discussed in Section 6.1, recurrence in R-SNNs introduces tightly coupled data

dependencies both in space and time, which may prevent direct parallelization in the

time domain and hence limit the overall performance. We address this challenge by

proposing a parallel processing of spike input integration by decoupling the integration

of feedforward and recurrent synaptic inputs. The key idea here is to re-structure the

spike integration process, as shown in Fig. 6.1(b). One key observation is that while the

complete processing of a recurrent layer involves temporal data dependency, the feed-

forward synaptic input integration, i.e., Step 1 corresponding to (2.5), has no temporal

data dependency and can be parallelized over multiple time points. And then, the fol-

lowing steps of recurrent input integration (Step 1*), membrane potential update (Step

2), and spike output generation (Step 3) are done in a sequential manner time-step by

time-step. For example, in conventinal approaches, spike integration step at a given time

point tk requires two different weight matrix, which is repeated for every time point, as

depicted in Fig. 6.1(a). However, decoupling feedforward and recurrent stage enables

to reuse each of the two weight data for consecutive time points in a row, as shown in

91

Recurrent Spiking Neural Network Acceleration Chapter 6

Fig. 6.1(b). This decoupling scheme can be represented based on two macro-steps below:

Step A: Feedforward spike input integration for tk to tk+TW−1 over a time window of

TW points.

fli[tk, · · · , tk+TW−1] =
M l−1∑
j=1

WF,l
ji × s

(l−1)
j [tk, · · · , tk+TW−1] (6.1)

Step B: Process Step 1*, 2 and 3 for tk to tk+TW−1 sequentially.

In the above, TW is the time window size which specifies the temporal granularity

of the decoupling. For instance, feedforward synaptic integration step is processed first,

over TW time points, followed by the rest steps in sequential manner. Processing the

feedforward input integration over multiple time points as in section 6.1 is possible since

the output spikes from the preceding layer over the same time window, which are the

inputs to the present layer, have already been computed at this point in the layer-by-layer

processing sequence. We further introduce the optimization technique in terms of time

window size in the later section.

Weight data reuse opportunity. Importantly, this decoupling scheme opens up two

weight matrix data reuse opportunities. First all, it is easy to see that the feedforward

weight matrix WF,l can be reused across all TW time points in Step A. We group the

rest of the steps (Step 1*, 2 and 3) into Step B and process it sequentially. This is

because that the layer’s spike outputs at the present time point cannot be determined

without knowing the spike outputs at the preceding time point, which feed back to the

same recurrent layer via recurrent connections according to 2.2, 2.4 and 2.6. Nevertheless,

it is important to note that despite that Step B is performed sequentially, decoupling it

from Step A allows for reuse of recurrent weight matrix WR,l across TW time points in

Step B. The decoupling scheme offers a unifying solution to enhance weight data reuse

92

Recurrent Spiking Neural Network Acceleration Chapter 6

Figure 6.2: Overview of the proposed SaARSP architecture. (a): Array computation
for feedforward integration (Step A, OS dataflow) (b): Array computation for recur-
rent integration (Step B, OS dataflow)

for both feedforward integration and recurrent integration, and are applicable to both

feedforward and recurrent SNNs.

6.2.2 Proposed SaARSP architecture

Without the proposed time-domain parallelism, accelerating recurrent layers in the

conventional approach effectively operates on a 1-D array that performs serial processing

time point by time point, as shown in Fig. 6.1(a). As discussed above, there exist very

limited works for SNN hardware accelerators, and most of prior works have primarily

focused on feedforward SNNs where the decoupling scheme has not been explored. We

keep the essential ideas of existing SNN accelerator works while extending them for

recurrent SNNs without time-domain parallelism, giving rise to the baseline architecture

93

Recurrent Spiking Neural Network Acceleration Chapter 6

adopted throughout the paper for comparison.

In contrast, Fig. 6.2 shows the overall SaARSP architecture, comprising controllers,

caches, and a reconfigurable systolic array. Memory hierarchy design is critical to the

overall performance of neural network acceleration due to its memory-intensive nature.

As a standard practice, we adopt three levels of memory hierarchy, as shown in Fig. 6.2:

1) DRAM, 2) Global buffer, and 3) double buffered L1 cache [69], [44]. We employ

programmable data links with simple control logic among the PEs in the 2-D systolic

array such that it can be reconfigured to a 1-D array. Each processing element (PE)

consists of a scratchpad and an AC unit that accumulates the pre-synaptic weights when

the corresponding input spikes are presented. The SaARSP architecture supports two

different stationary dataflows based on systolic array.

Systolic arrays. As discussed in section 2.4, a major benefit in using systolic arrays

is parallel computing in a simultaneous row-wise and column-wise manner with local

communications [62]. Furthermore, systolic arrays are inherently suitable for exploit-

ing spatiotemporal parallelism, i.e., across different neurons (space) and across multiple

time-points (time). Especially, systolic arrays are well suited for our main idea to per-

form parallel computing across time-domain. In addition, separate the row-wise and

the column-wise unidirectional links can be adopted and optimized for the specific data

disparity in SNNs.

Stationary dataflows. For non-spiking ANNs, many previous works have proposed

to leverage stationary dataflows to reduce expensive data movement [15, 44, 102]. By

keeping one type of data (input, weight, or output) in each PE, an input stationary (IS),

weight stationary (WS), and output stationary (OS) dataflow reduces the movement of

the corresponding data type. However, stationary dataflow may result in different impact

for spiking models, considering unique properties. We explore OS and WS flows to miti-

gate the movements of large volumes of multi-bit Psum and weight data, respectively. We

94

Recurrent Spiking Neural Network Acceleration Chapter 6

do not consider input stationary (IS) dataflows that are commonly used in conventional

DNN accelerators because binary input spikes are of low volume, and reusing binary

input data offers limited benefits.

Output stationary dataflow

The two processing steps are executed on SaARSP under the OS dataflow as fol-

lows. In Step A, the systolic array is configured into a 2-D shape to exploit temporal

parallelism, both across space and time, as illustrated in Fig. 6.2(a). Input spikes at

different time points within the time window are fetched to the corresponding columns

in the array from the top. Spike input integration for different time points is processed

column-wise, where input spikes propagate vertically from top to bottom. The feedfor-

ward weight matrix is fetched from the left and then propagates horizontally from left

to right, enabling weight data reuse at different time points.

Since Step B is performed sequentially, the 2-D systolic array is reconfigured into a

1-D array to fully utilize the compute resources to maximize spatial parallelism at each

individual time point as shown in Fig. 6.2(b).

Weight stationary dataflow

In WS, weight data as opposed to Psums resides stationary in the scratchpads to

maximize weight data reuse. While the weight data are in the PEs, input spikes and

Psums propagate vertically through the PEs. Unlike OS, there is no horizontal data

propagation in WS except when the array retrieves new weight data for computation.

WS suffers from increased cost for storing and moving Psums while further maximizing

weight data reuse.

95

Recurrent Spiking Neural Network Acceleration Chapter 6

Figure 6.3: Operate the array accelerator with a chosen time window size TW for K
array processing iterations.

6.2.3 Time-window size optimization (TWSO)

Processing across TW time points within the chosen time window as in (6.1) with the

decoupling scheme allows the exploitation of temporal parallelism. However, there exist

a fundamental trade-off between weight reuse and psum storage. The key advantage

of decoupling, i.e., weight data reuse across time points, may be completely offset by

the need for storing incomplete partial results across multiple time points [103]. Blindly

decoupling can exacerbate the above trade-off, and even result in worse performance, as

shown later in Fig. 6.5 and Fig. 6.7.

In order to address above issue, we introduce a novel time window size optimization

(TWSO) technique to address the fundamental trade-off, optimize the window size TW

to maximize the latency and energy dissipation benefits. We present the first work to

explore temporal-granularity in terms of TWSO, which is much powerful and flexible

than solely applying the decoupling scheme [103].

TWSO address the fundamental trade-off: As discussed above, the number

of time steps that can be executed simultaneously in one array iteration is limited by

the array width H. To accommodate higher degrees of time domain parallelisms, we

96

Recurrent Spiking Neural Network Acceleration Chapter 6

define K as the time-iteration factor such that TW = K ·H, i.e., the parallel integration

of feedforward pre-synaptic inputs of a recurrent layer consumes K array processing

iterations, as shown in Fig. 6.3. For a given K, the array reuses a single weight matrix,

either WF or WR for TW time points.

On the other hand, there may exist optimal choices for the value of TW (K). Ac-

cording to Fig. 6.3 and equation 6.1, the decoupling scheme batches the feedforward and

recurrent input integration steps, and hence it enables reuse of both the feedforward and

recurrent weight matrices WF and WR over multiple time points, avoiding expensive

alternating access to them across Step A and Step B. However, parallel processing in

the time domain can degrade the performance due to an increased amount of partial

sums (Psums). Upon completion of Step A across many time points, there exists a

large amount of incomplete, multi-bit partial sum (Psum) data waiting to be processed

in Step B. More Psums can result in degraded performance due to the increased latency

and energy dissipation of Psum data movement across the memory hierarchy. TWSO

address the aforementioned fundamental trade-off by exploring granularity with vary-

ing time-window size, and finding optimal point for the trade-off. TWSO is generally

applicable to both non-spiking RNNs and spiking RNNs.

TWSO offers application flexibility: Typically, decoupling scheme has a key limi-

tation since it does not provide benefit beyond the first layer due to temporal dependency.

This is because as the RNN is unrolled over all time points, both the feedforward and

recurrent inputs must be accumulated to generate a recurrent layer’s final activations,

which are part of the inputs to the next layer, before the next layer can be processed.

However, TWSO subdivides all time points into multiple time windows and performs

decoupled accumulation of feedforward/recurrent inputs with a granularity specified by

time window size, allowing overlapping the processing of different recurrent layers across

97

Recurrent Spiking Neural Network Acceleration Chapter 6

different time windows. For example, upon completing processing time window i for

recurrent layer k, the activities of layer k in time window (i+1) and those of layer (k+1)

in time window i can be processed concurrently. Therefore, with TWSO, decoupling can

be applied to multiple recurrent layers concurrently.

TWSO is specifically beneficial for spiking models: Since the partial sums of

each layer are multi-bit while its outputs are only binary, the benefit of increased weight

data reuse resulted from decoupling may be more easily offset by the increased storage

requirement for multi-bit psums. Optimizing the granularity of decoupling becomes even

more critical for R-SNNs as addressed by TWSO.

Also, TWSO alleviates bottleneck due to data bandwidth by allowing weight reuse

across chosen time window size as opposed to iterative weight access, and thus the time

window size is not enforced due to the memory bandwidth compared to conventional

approaches.

As we demonstrate in our experimental studies in Section 6.3, TWSO can significantly

improve the overall performance.

6.3 Experiments and Results

We perform a comprehensive evaluation of the proposed SaARSP architecture based

on both output-stationary (OS) and weight-stationary (WS) dataflows following the se-

tups described in the following section.

6.3.1 Configurations and Setups

We use an analytic architecture simulator introduced in section 4.2 to assess the

latency, memory access, and energy dissipation of the proposed SaARSP architecture and

98

Recurrent Spiking Neural Network Acceleration Chapter 6

Table 6.1: A high-level overview of the user-specified inputs to the simulator.
Input parameter Description

Array configuration Specifications of systolic array:
array height/width,
number of PEs, size of scratchpad,
memory per PE, etc.

Memory configuration Specification of memory hierarchy:
Cache sizes for each partitioned storage
(input, weight, output) at each level.

Time window size Range of support:
Min: 2D systolic array width
Max: All time points of the task

Network structure Numbers of layers and neurons per layer,
and connectivity factors between layers.

Stationary scheme Choice of different stationary schemes:
Output stationary / Weight stationary

Table 6.2: Architecture specifications.
Components SaARSP

PEs 256 (16×16)
ALU in PEs 8bit - Adder, Comparator

Global Buffer Size 1MB (250KB/500KB/250KB)
L1 Cache Size 200KB (100KB/200KB/100KB)
Scratchpad Size 32 × 8-bit

DRAM Bandwidth 30GB/sec
Bit precisions Weight/Membrane Potential - 8bit

Input/Output Spike - 1bit (binary)

compare it with a baseline. The simulator takes user-specified accelerator specification

and network structure such as the number of PEs, systolic array configuration, size of the

cache at each level, stationary scheme, and SNN network structure including the numbers

of layers and neurons and feedforward and recurrent connectivity factors, as summarized

in Table 6.1. We compare different accelerator architectures using a large number of

feedforward and recurrent SNNs that are synthetic or adapted from the neuromorphic

computing community.

We specifically consider the systolic array specifications in Table 6.2 for the proposed

SaARSP architecture in our experimental studies in Section 6.3.

99

Recurrent Spiking Neural Network Acceleration Chapter 6

Figure 6.4: Two spiking recurrent layer topologies: (a) Type 1 - uniform, and (b)
Type 2 - population based.

Critically, time windows size (TW) specifies the degree of time-domain parallelism

of the SaARSP architecture, i.e. the number of simultaneously processed time points

during layer computation. As discussed in Section 6.2.3, for a systolic-array with with

H, we define K as the time-iteration factor for more clear illustrative purpose, such that

TW = K ·H. In other words, the parallel integration of feedforward pre-synaptic inputs

of a recurrent layer consumes a multiple of K array processing iterations. We evaluate

the proposed SaARSP as K varies widely from 1 to 64.

For comparison purposes, we consider a baseline architecture which lacks the proposed

decoupled feedforward/recurrent synaptic integration approach (Section 6.2.1) and hence

processes each layer in a time-sequential manner, e.g. time step by time step. As afore-

mentioned in the previous section, our baseline well represent the existing feedforward

spiking hardware accelerators, which lacks temporal parallelism and decoupling scheme.

For fair comparison, we reconfigure the systolic array into a 1-D array with an equal

number of PEs such as the same amount of hardware resources are utilized for parallel

compute in space.

100

Recurrent Spiking Neural Network Acceleration Chapter 6

6.3.2 Spiking neural network benchmarks

We use a comprehensive set of feedforward and recurrent SNNs that are either syn-

thetic or adapted from the neuromorphic computing community to demonstrate the

performance of the proposed SaARSP architecture in Section 6.3. Feedforward SNNs

are also considered since they are a specific case of R-SNNs and SaARSP can provide a

unifying solution to both feedforward and recurrent SNNs.

We recognize two essential metrics that characterize the structure of a given R-SNN

layer or network: 1) topology, and 2) connectivity factors. The most general (deep)

multi-layer network architecture is considered where the R-SNN comprises multiple feed-

forward or recurrent layers with inter-layer feedforward connections. As commonly de-

fined, feedforward layers have no intra-layer (later) connections. On the other hand,

recurrent layers do have intra-layer connections that form recurrent loops within the

layer. We further consider two recurrent layer topologies as shown in Fig. 6.4 that were

adopted by the neuromorphic computing community and demonstrated state-of-the-art

performances: Type 1) uniform [3], Type 2) population based, comprising multiple dis-

tinct neural populations [31].

Moreover, recurrent spiking layers can be characterized by inter and intra-layer con-

nectivity, which we specify using two connectivity factors CH−R and CR−R. CH−R speci-

fies the average connection probability of each pair of two neurons between the recurrent

layer and the preceding layer. Similarly, CR−R specifies the average connection probabil-

ity between each pair of two neurons within the recurrent layer. The two connectivity

factors are used for both Type 1 and Type 2 recurrent layers, and have a significant

impact on the throughput and energy dissipation of hardware acceleration as will be

discussed in Section 6.3.

We trained a number of R-SNNs with Type 1 recurrent layers using backpropaga-

101

Recurrent Spiking Neural Network Acceleration Chapter 6

Table 6.3: Inference accuracy of trained R-SNNs of Type 1 topology on common
neurmorphic image/speech recognition datasets with CR−R=1.0, CR−R=0.2.

Dataset
Network
structure

Timesteps/
Epochs

Accuracy

MNIST 784-400(H)-400(R)-10 5/100 98.47%
MNIST 784-1000(H)-1000(R)-10 5/100 98.62%

Fashion MNIST 784-400(H)-400(R)-10 5/100 89.86%
Fashion MNIST 784-1000(H)-1000(R)-10 5/100 90.00%

TI Alpha 78-400(H)-400(R)-10 100/200 93.03%
TI Alpha 78-1000(H)-1000(R)-10 100/200 93.72%
N-MNIST 2312-400(H)-400(R)-10 100/100 98.56%
N-MNIST 2312-1000(H)-1000(R)-10 100/100 98.88%
NTIDIGITs 64-400(H)-400(R)-11 300/400 89.05%
NTIDIGITs 64-1000(H)-1000(R)-11 300/400 90.78%

tion [39] on a set of widely-adopted spiking neural based image/speech reorganization

datasets MNIST [90], Fashion MNIST [91] [104], Neuromorphic MNIST (N-MNIST), TI

Alpha (English letter subsect of the TI-46 speech corpus) [36], and NTIDIGITS (the

neuromorphic version of the speech datasets TIDIGITS) [92]. Note that the examples in

the non-neuromorphic datasets above were converted into a spiking form following the

standard practice, such as [37]. In Table 6.3, first layers in network structures are equal

to the number of input spikes for each dataset, where the inputs are all-or-none binary

spikes. Table 6.3 shows the competitive test accuracy of R-SNNs with Type 1 recurrent

layers of two different sizes: 400(H)-400(R) and 1000(H)-1000(R), where the numbers of

spiking neurons in the preceding layer (H) and the recurrent layer (R) are both set to

400 and 1,000, respectively.

Type-2 recurrent layer topology was adopted in the so-called long short-memory spik-

ing neural network (LSNN) model of [31] in which the recurrent layer consists of three

distinct leaky integrate-and-fire (LIF) spiking neural populations: 1) excitatory, 2) in-

hibitory, and 3) adaptive, as shown in Fig. 6.4. It was also shown that this R-SNN

architecture can support the powerful Learning-to-Learn (L2L) capability as a spiking

102

Recurrent Spiking Neural Network Acceleration Chapter 6

Table 6.4: R-SNN benchmarks used in this work.
Tag Network structure Avg. connectivity

B1 T1:400(H)-400(R) CH−R = 1.0 / CR−R = 0.2
B2 T1:400(H)-400(R) CH−R = 0.7 / CR−R = 0.5
B3 T1:1000(H)-1000(R) CH−R = 1.0 / CR−R = 0.2
B4 T1:1000(H)-1000(R) CH−R = 0.7 / CR−R = 0.5
B5 T2:80(H)-(200+80+120)(R) CH−R = 0.7 / CR−R = 0.4
B6 T2:80(H)-(200+80+120)(R) CH−R = 0.4 / CR−R = 0.7
B7 T2:300(H)-(500+200+300)(R) CH−R = 0.7 / CR−R = 0.4
B8 T2:300(H)-(500+200+300)(R) CH−R = 0.4 / CR−R = 0.7

compute substrate in [31].

Adopted SNN benchmarks

Recurrent Layers. For comprehensive evaluation of the proposed accelerator archi-

tecture, we adopt eight R-SNN benchmarks with varying connectivity factors as summa-

rized in Table 6.4. The first four networks B1∼B4 employ Type-1 (uniform) topology

while B5∼B8 are based on Type-2 (population based) topology. For the former group,

each recurrent layer is specified by the numbers of neurons in the preceding layer (H)

and within the targeted recurrent layer (R). For the latter group, the number of neurons

in each of three populations in the recurrent layer is shown.

Feedforward Layers. Layers in a multi-layer R-SNNs in general can be both feed-

forward and recurrent. Additionally, several feedforward spiking layers with different

inter-layer connectivity factors are considered as special cases of R-SNNs. As the net-

work goes deeper with more layers and more feedforward layers are included in the net-

work, feedforward layers may account for a considerable portion of the total workload.

It shall be noted that the proposed time-domain parallel scheme can be also applied to

process feedforward connections. In this sense, SaARSP serves as a unifying solution to

acceleration of both feedforward and recurrent layers.

103

Recurrent Spiking Neural Network Acceleration Chapter 6

Figure 6.5: Normalized latency/energy of two feedforward layers in comparison with
recurrent layers, with CH−R=1.0 and CR−R=0.3. The values are normalized to those
of the feedforward layer with time-iteration factor K=1.

6.3.3 Acceleration of feedforward layers with output stationary

dataflow

The proposed SaARSP architecture can accelerate feedforward layers as a simpler

special case (Section 6.3.2). Under the output stationary dataflow, Fig. 6.5 shows the

normalized latency and energy of processing feedforward layers of 400 spiking neurons

with different time window sizes in two different network configurations with 78 and 784

neurons in the preceding layers, respectively. The inter-layer connectivity factor CH−R

is 1.0 for all layers and two recurrent layers with intra-layer connectivity factor CR−R set

to 0.3 are also included for comparison purposes. The recurrent layers consume greater

latency and energy than the feedforward counterparts due to the additional computation

caused by recurrent connections. Nevertheless, processing of feedforward connections

contributes a considerable overhead. The latency and energy of the feedforward layers

with more connections shown in Fig. 6.5(b) can be significantly reduced by increasing

the time window size, i.e., the K value, due to the fact that larger time window sizes

offer more weight data reuse opportunities for weight reuse. That is, reusing the same

weights for processing larger number of time points mitigates expensive data movement

104

Recurrent Spiking Neural Network Acceleration Chapter 6

Figure 6.6: Normalized energy dissipation of recurrent layer acceleration under output
stationary dataflow.

from higher- to lower-level caches. However, it shall be noted that merely increasing time

window size may degrade the overall performance, which is reflected in Fig. 6.5(a). These

feedforward layers incur reduced weight access overhead due to their fewer connections.

On the other hand, employing a greater time window size produces more multi-bit Psum

data that must be kept over a larger number of time points, leading to a degradation in

overall performance.

6.3.4 Acceleration of recurrent layers with output stationary

dataflow

Before presenting a more complete evaluation of recurrent layer acceleration in Sec-

tion 6.3.5, we first analyze latency and energy dissipation trade-offs of accelerating Type-1

recurrent layers with varying time window size under the output stationary dataflow.

105

Recurrent Spiking Neural Network Acceleration Chapter 6

Latency

Fig. 6.7(a) shows the normalized latency under different connectivity and time window

sizes settings with the intra-layer connectivity factor CR−R = 0.5. In most of cases, larger

time window size (K) values are preferred at the highest inter-layer connectivity factor

(CR−R = 1.0). At smaller CR−R values, latency grows with time window size or starts

to rise after time window size is increased beyond some point. These observations may

be understood based on the role of time window size. Larger time window sizes render

more weight data reuse over a greater number of time points. However, after a certain

point, latency starts to increase due to a relatively huge amount of generated Psums.

However, increasing time window size leads to a greater amount of multi-bit Psums that

are created over more time points and must be stored prior to the completion of binary

spike output generation (Step 3 in Section 2.2). The increased Psum data movement

slows down the processing, particularly under low CH−R values for which the benefit of

weight data sharing is less due to the reduced dominance of feedforward connections.

Energy dissipation

Fig. 6.7(b) shows the normalized energy dissipation of the same set of recurrent layers.

Trade-offs between weight data reuse and Psum data are similar to the ones discussed for

latency. Larger window sizes induce more storage and movement of Psums while allowing

for more weight data reuse. When the amount of the Psum data exceeds the capacity of

lower-level caches, e.g., the scratchpad in PEs and L1 cache, expensive memory access

to higher-level caches and DRAM increases. Fig. 6.6 shows the breakdown of energy

dissipation of two recurrent layers.

106

Recurrent Spiking Neural Network Acceleration Chapter 6

Figure 6.7: Normalized (a) latency, and (b) energy dissipation of recurrent layer
acceleration under OS dataflow with CR−R=0.5.

6.3.5 Comprehensive evaluation and optimization of recurrent

layer acceleration

We investigate how the proposed decoupled feedforward/recurrent input integration,

time window size, and stationary dataflow can be jointly applied/optimized for a given

network structure based on the eight R-SNN layer benchmarks (B1 to B8) of two dif-

ferent types of Section 6.3.2. We compare the SaARSP architecture with baseline array,

which has the same number of PEs but is unable to explore the proposed time-domain

parallelism. The results in Fig. 6.8 and Fig. 6.9 are normalized to this baseline.

Trade-offs between weight data reuse and Psum movement

In order to elaborate the impact of TWSO, we sweep the time-iteration factor K as

shown in Fig. 6.8. Fig. 6.8 reports the latency and energy of the Type-1 and Type-2

107

Recurrent Spiking Neural Network Acceleration Chapter 6

Figure 6.8: Latency/energy of (a) Type-1, and (b) Type-2 recurrent networks with OS
andWS dataflows normalized to that of the baseline design, which follows conventional
approaches.

networks with various time window sizes (K values) and the two stationary dataflows.

Clear benefits can be brought by larger time window sizes when the size of the pre-

synaptic layer and the number of feedforward connections are greater or comparable to

their post-synaptic layer/recurrent connection counterparts. In such cases, the benefit of

weight reuse is maximized since the feedforward connectivity becomes more dominant.

Certainly, the impact of weight data reuse is layer/connectivity dependent. For instance,

in the case of layers B2, B4, and B5, increasing time window size may lead to high-volume

of multi-bit Psum storage and movement, offsetting the benefit of weight data reuse and

degrading the overall performance. This fact signifies the importance of performing the

proposed TWSO on a layer-by-layer basis.

108

Recurrent Spiking Neural Network Acceleration Chapter 6

For example, we observe clear indications of the impact of Psums in Fig. 6.8. In

type-2 networks, the network consists of a relatively smaller pre-synaptic layer size. As

shown in Fig. 6.8, benefit from weight reuse is concealed by the increased impact of

Psums. Compared to the type-1 networks, with high-volume of weights, Psum is a more

dominant factor in type 2 benchmark, making the optimal window size small.

Impact of stationary dataflows

Fig. 6.8 present a clear difference between the output stationary (OS) and weight

stationary (WS) dataflows, two dataflows suitable for SNNs due to the multi-bit nature

of weight and Psum data. In most of the benchmarks, WS shows better results especially

when there is no window size optimization. For the benchmarks with considerably large

pre-synaptic layers, WS shows better weight reuse and thus better performance overall.

However, the performance of WS tends to be more directly affected by the amount

of Psums since Psums are directly stored in higher-level caches without going through

scratchpads, as manifested in the results of B5 and B6. For benchmarks with fewer

weight parameters, OS produces better results. Overall, this leads to a decrease in the

optimal window size for WS, compared to OS. Nevertheless, time window optimization

is still quite beneficial, even in the case of WS.

SaARSP architecture with TWSO achieves PE utilization of 71.9% for eight bench-

marks, on average, as shown in Table 6.5. We observe a significant improvement com-

pared to the PE utilization of 11.3% in the conventional approach since TWSO decreases

the additional latency for iterative memory access, minimizing the stall cycle. Compared

to DNN systolic array counterpart with 80% PE utilization [105], which does not incorpo-

rate recurrence, the result would be a good starting point to build efficient architectures

for accelerating recurrent networks to handle the iterative memory access and complex

spatiotemporal interactions. Furthermore, we observed that the number of operations in

109

Recurrent Spiking Neural Network Acceleration Chapter 6

Table 6.5: Detailed performance metrics: PE utilization, number of operations and
data reuse in each integration (feedforward/recurrent) step.

Tag B1 B2 B3 B4 B5 B6 B7 B8 Avg.

PE utilization % 87.7 75.9 89.6 50.7 79.8 78.1 67.6 45.6 71.9
#Op ratio % 93.7 / 84.3 / 90.0 / 74.9 / 58.2 / 41.5 / 53.2 / 34.3 / 66.3 /

(F/R)∗ 6.3 15.7 10.0 25.1 41.8 58.5 46.8 65.7 33.7
Data reuse (R)∗∗ 7.4X 4.9X 1.1X 1X 6.8X 4.3X 4.4X 2.2X 4.0X
#Op ratio (F/R)∗: Ratio of the number of operations in feedforward and recurrent pass

Data reuse (R)∗∗: Data reuse improvement compared to the dataflow without TWSO

feedforward integration outnumbers the number of operations in recurrent integration,

on average, where it especially dominates the computational overhead in case of pop-

ularly used Type-1 (uniform) topology. Still, data reuse in recurrent integration step

with our TWSO technique delivers 4.0X improvement across benchmarks, on average.

Detailed results are summarized in Table 6.5. The proposed SaARSP architecture and

TWSO reduces the latency and energy dissipation of these benchmarks by up to 102X

and 161X, respectively, over the baseline.

EDP evaluation

The energy-delay-product (EDP) offers a balanced assessment of latency and energy

dissipation. The normalized EDP of the OS and WS dataflows with and without TWSO

for eight different networks is shown in Fig. 6.9. We normalize each of the latency and

energy of the baseline design to 100, so that the EDP of baseline design is normalized to

10,000.

Compared with the 1-D array baseline and our 2-D SaARSP architecture without

TWSO, optimizing time window size on top of the SaARSP architecture present orders

of magnitude of performance improvements across all benchmarks. In particular, the

SaARSP architecture with TWSO delivers 11,000X and 58X EDP improvement, respec-

tively, over the 1-D array baseline and SaARSP architecture without time window size

optimization in the case of B3. In summary, TWSO significantly improves EDP across

110

Recurrent Spiking Neural Network Acceleration Chapter 6

Figure 6.9: Normalized EDP in recurrent layer of eight benchmarks with OS and WS.
EDP values are normalized to the baseline result using 1-D array. The EDP of OS
and WS with and without the time window optimization is shown.

different benchmarks by optimizing temporal granularity. On average, decoupling scheme

with time window size optimization introduces 4,000X EDP improvement across all eight

benchmarks over the 1-D array baseline.

6.4 Summary and Discussions

This work is motivated by the lack of an efficient architecture and dataflow for efficient

acceleration of complex spatiotemporal dynamics arising in R-SNNs. To the best of our

knowledge, the proposed architecture for systolic-array acceleration of recurrent spiking

neural networks, dubbed SaARSP, presents the first systematic study of array-based

hardware accelerator architectures for recurrent spiking neural networks.

One major challenge in accelerating R-SNNs stems from the tightly coupled data

dependency in both time and space resulted from the recurrent connections. This chal-

lenge prevents direct exploration of time-domain parallelism and may severely degrade

the overall performance due to poor data reuse patterns.

The proposed SaARSP architecture is built upon a decoupling scheme and novel

111

Recurrent Spiking Neural Network Acceleration Chapter 6

time window size optimization (TWSO) technique to enable the parallel acceleration of

computation across multiple time points. This is achieved by cleverly decoupling the

processes of feedforward and recurrent synaptic input integration, two dominant costs in

processing recurrent network structures. We further boost the accelerator performance by

optimizing the temporal granularity of the proposed decoupling and stationary dataflows

in a layer dependent manner. The SaARSP architecture can be applied to the acceleration

of both feedforward and recurrent layers and hence is able to support a broad class of

spiking neural network topologies.

Experimentally, the proposed SaARSP architecture and optimization scheme reduce

the latency, energy dissipation, and energy-delay product (EDP) of the array accelerator

by up to 102X and 161X, and 4,000X on average, respectively, over a conventional baseline

for a comprehensive set of benchmark R-SNNs.

112

Chapter 7

Application-Independent

Split-Time-Temporal Coding

In this chapter, we propose a novel technique and architecture that allow the exploitation

of temporal information compression with structured sparsity and parallelism across time,

and significantly improves data movement on a systolic array. We split a full range of

temporal domain into several time windows (TWs) where a TW packs multiple time

points, and encode the temporal information in each TW with Split-Time Temporal

coding (STT) by limiting the number of spikes within a TW up to one. STT enables

sparsification and structurization of irregular firing activities and dramatically reduces

computational overhead while delivering competitive classification accuracy without a

huge drop. To further improve the data reuse, we propose an Integration Through Time

(ITT) technique that processes integration steps across different TWs in parallel with

a systolic array. The proposed architecture with STT and ITT offers an application-

independent solution for spike-based models across various types of layers and networks.

113

Application-Independent Split-Time-Temporal Coding Chapter 7

TW

Time-to-first-spike

TTFS = 1

Time-left-from-first-spike

TFFS = 4

(TW size = 5)

Original Firing Activity

STT-based Firing Activity

Time

Time

TW size + =

of spikes = 4 = TFFS

Figure 7.1: Local structurization and sparsification with the proposed STT. Time-left-
-from-first-spike (TFFS) presents the firing rate of the corresponding TW.

7.1 Split-Time Temporal coding (STT)

STT significantly reduces computational overhead by introducing local temporal res-

olution reduction per TW, well tunable based on TW size, while maintaining global

temporal information of the original spikes. While data representation in a single TW

bears similarity with conventional temporal coding, the essence of STT is to split and

structurize the spiking activities by imposing regularity in terms of the number of spikes

per synchronized TW and to enable a tunable tradeoff between machine learning and

accelerator performance from a broader perspective. By creating regularized spike trains

throughout the network, STT offers multiple benefits including uniform processing time

across TWs, reduced computational overhead, and avoiding processing of redundant

spikes as in conventional approach.

114

Application-Independent Split-Time-Temporal Coding Chapter 7

H
id

d
e
n

L
a

y
e

r

O
u

tp
u

t

L
a

y
e

r

…

H
id

d
e
n

L
a

y
e

r

…

D
e
c
o

d
e
 a

n
d

 D
e
c
is

io
n

 m
a
k
in

g

2

4

1

=

7

𝑵
𝑨

𝑵
𝑩

𝑵
𝑪

𝑵
𝑨

𝑵
𝑩

𝑵
𝑪

𝑾
𝑨
+
𝑾
𝑪

𝑾
𝑪

𝑾
𝑨

𝑾
𝑩

𝑾
𝑨
+
𝑾
𝑩
+
𝑾
𝑪

-
S

e
q

u
e
n

ti
a
l
p

ro
c
e
s
s
in

g

-
R

e
p

e
a
te

d
 w

e
ig

h
t

a
c
c
e
s
s

-
It

e
ra

ti
v
e
 i
n

te
g

ra
ti

o
n

-
P

a
ra

ll
e
l
p

ro
c
e
s
s
in

g

-
S

in
g

le
 w

e
ig

h
t

a
c
c
e
s
s

-
S

in
g

le
 i
n

te
g

ra
ti

o
n

C
o

n
v
e
n

ti
o

n
a
l
A

p
p

ro
a
c
h

ST

T
E

n
c
o

d
e
 w

it
h

 S
T

T

T
W

#
 o

f
s
p

ik
e
s

in
 T

W
 =

 1

#
 o

f
s
p

ik
e
s

in
 T

W
 =

 3

#
 o

f
s
p

ik
e
s

in
 T

W
 =

 4

T
F

F
S

 =
 1

T
im

e
 W

in
d

o
w

 S
iz

e

T
im

e
 s

tr
id

e

O
ri

g
in

a
l
fi

ri
n

g
 a

c
ti

v
it

y

(r
a
te

-b
a
s
e
d

)

S
T

T
-b

a
s
e
d

 f
ir

in
g

 a
c
ti

v
it

y

T
im

e
 W

in
d

o
w

 S
iz

e

D
e
c
is

io
n

M
a
k
in

g

T
F

F
S

 =
 2

T
W

T
im

e
 s

tr
id

e

+

+

-
T

F
F

S
 p

re
s
e
n

ts
 f

ir
in

g
 r

a
te

 o
f

th
e
 T

W

 -
S

p
ik

e
 t

im
in

g
s
 i
n

 T
W

s
 a

re
 d

e
c
o

d
e
d

to
 f

ir
in

g
 r

a
te

 a
n

d
 i
n

te
g

ra
te

d
 f

o
r

d
e
c
is

io
n

 m
a
k
in

g

T
F

F
S

 =
 4

T

F
F

S
 =

 1

T
F

F
S

 =
 3

T

F
F

S
 =

 4

𝒕 𝒌
 𝒕
𝒌
+
𝟏

T

im
e

T
im

e

𝒕 𝒌
 𝒕
𝒌
+
𝟏

…

…

(a
)

(b
)

(c
)

F
ig
u
re

7.
2:

S
ch
em

at
ic

re
p
re
se
n
ta
ti
on

s
of

S
T
T
-b
as
ed

n
et
w
or
k

op
er
at
io
n
s.

(a
):

S
T
T
-e
n
co
d
er

at
th
e
in
p
u
t
la
ye
r

(b
):

C
om

p
ar
is
on

b
et
w
ee
n
th
e
op

er
at
io
n
s
in

co
n
ve
n
ti
on

al
ap

p
ro
ac
h
es

an
d
th
e
p
ro
p
os
ed

S
T
T
-b
as
ed

ap
p
ro
ac
h
(c
):

S
T
T
-d
ec
o
d
er

a
t
th
e
o
u
tp
u
t
la
ye
r

115

Application-Independent Split-Time-Temporal Coding Chapter 7

7.1.1 Proposed STT

To address the key challenges, we propose a novel technique to locally employ tem-

poral coding for the rate-coded SNNs by dividing the time stride (TS) with a temporal

granularity defined by the time window (TW) size, dubbed Split-Time Temporal coding

(STT). The key idea here is to employ local structurization and sparsification and improve

the computational/data movement overhead by reducing the redundancy in rate-coded

firing activities on a TW basis, while local rate information is retained by using prefix

sum. Importantly, STT is universally applicable for accelerating spiking models, with

flexibility in choosing the TW size. The spike timing of a single spike in each TW carries

firing rate information with time-left-from-first-spike (TFFS), as shown in Fig. 7.1. All

layers in the network operate on locally-temporal codes, based on the proposed STT,

with the following rules:

Rule 1. We limit the maximum firing count of each neuron in a TW up to one. In

all TWs, each neuron is allowed to fire up to once where the only spike represents rate

information.

Rule 2. The spike information within a TW is represented by the timing of a single

spike. Especially, at the input layer, the spike information of original firing activity is

converted with STT, based on the number of spikes in a TW.

Rule 3. At the output layer, STT-based firing activities are decoded to firing rate. The

firing rate of each neuron is decided by integrating the firing rate from all TWs, i.e., the

sum of all TFFS in the time domain.

As shown in Fig. 7.2(a), we first convert the rate-coded original firing activities into

STT-based firing activities at the input layer. For example, as in Fig. 7.1, if the TW

size is 5 and the number of spikes in a TW is 4, the time-left-from-first-spike (TFFS)

in a corresponding TW is determined by : TFFS = (TW size) - TTFS = 5 - 1 = 4,

116

Application-Independent Split-Time-Temporal Coding Chapter 7

Time

N
e
u

ro
n

s

N
e
u

ro
n

s

(a)

(b)

Figure 7.3: Spike raster plot of 20 neurons from the recurrent layer for accelerating
NTIDIGITS. (a): Original firing activities without using STT and (b): STT-based
firing activities with TW size = 10.

representing the firing rate of the TW. If a neuron does not fire in a specific TW in

original firing activities, the STT-based firing activity of the corresponding TW of the

neuron also remains silent. In all layers in the network, each neuron follows Rule 1 and

fires at most once for a TW. For each TW throughout the layers, the timing of a single

spike represent the spike information of a TW similar to [106]. The earlier the spike, the

stronger the stimulus. At the output layer, STT-based firing activities are decoded to

firing rate for the decision making. For example, the spike train in Fig. 7.2(c) is decoded

by integrating rates across TWs:
∑

(TFFS) =
∑

(TW size)-(TFFS) = 2 + 4 + 1 = 7,

following Rule 3.

7.1.2 STT-based Acceleration

STT-based hardware acceleration significantly simplifies the synaptic input integra-

tion step, the dominant computational complexity in spiking neural computations, with

117

Application-Independent Split-Time-Temporal Coding Chapter 7

structured, high sparsity as shown in Fig. 7.3. First, STT reduces the repeated weight

access across time points to a single weight access per input neuron for a given TW. Since

an input neuron fires up to one in a TW, the corresponding weight is used only once for

the synaptic input integration. To retain the local and also global information, we use

the prefix sum of the STT-based integrated synaptic inputs in a TW while the process is

still based on a single spike per TW, following Rule 2. As will be shown in Fig. 7.5 and

discussed in Section 7.2, the prefix sum of STT-based integrated inputs is equivalent to

the Psums using a left-aligned rate code where the firing rate corresponds to TFFS.

Also, STT allows parallel acceleration through time by allocating small memory for

each time point of a TW. For example in conventional approaches, the input integration

step requires WA and WC at time point tk, and WA, WB and WC at the next time

point tk+1, as shown in Fig. 7.2(b). Considering the unstructured firing patterns across

different neurons and different time points in actual spiking activities, it requires repeated

weight access without data reuse. However, with STT, WA is integrated to the partial

sums (Psums) at tk+1, WB is integrated to Psums at tk+3 and WC is integrated to Psums

at tk. Additionally, regularized spike trains, i.e., single spike per TW, enable uniform

processing time of TWs. Each weight is used only once in a TW, and multiple TWs are

mapped in parallel on a systolic array to maximize the weight reuse across TWs.

7.1.3 Machine Learning Performance with STT

Typically, temporally-coded spiking models limit each neuron to fire at most once in

the entire time domain. This highly restrictive type of representing spike information

can introduce huge benefits in latency and energy efficiency. However, such extreme

temporal sparsity does not apply to broader classes of SNNs employing rate or other

types of temporal codes or a combination of thereof, and limits achievable accuracy

118

Application-Independent Split-Time-Temporal Coding Chapter 7

especially for challenging learning tasks.

On the other hand, rate-coded spiking models can support various types of spa-

tiotemporal dynamics of SNNs. While many recent works based on rate-coded models

reported competitive performances on various spatiotemporal tasks with bio-inspired

[32, 1] and backpropagation based [106, 39, 4] training methods, iterative weight access

due to repeated operations across time and irregular firing patterns complicate hardware

acceleration of the spike-based models.

Importantly, STT is universally applicable to any rate-coded model including fully-

connected, convolution and recurrent layers for efficient hardware acceleration of a trained

network with flexibility in selecting the temporal granularity, i.e., TW size. STT deliv-

ers competitive accuracy without any hyper-parameter tuning and significantly reduces

computational overhead for synaptic input integration, the dominant complexity of hard-

ware acceleration. STT is fundamentally different from existing temporal coding schemes

[106, 72] while the information-carrying feature in a single TW bears a similarity. Results

on various networks are discussed in Section 7.3.

7.2 Proposed Architecture

We present a systolic array-based SNN accelerator architecture that supports the

proposed STT and exploits parallelism in both space and time. The proposed archi-

tecture addresses existing inefficiencies via structured sparse firing patterns and parallel

computations across TWs based upon the STT.

7.2.1 Overview of the Proposed Architecture

Fig. 7.4 shows the overall architecture of the proposed architecture incorporating an

STT-encoder for the input layer, an STT-decoder for the output layer, controllers, caches,

119

Application-Independent Split-Time-Temporal Coding Chapter 7

T
im

e
 W

in
d

o
w

 S
iz

e

Decoder

S
T

T
-b

a
s
e
d

 f
ir

in
g

 a
c
ti

v
it

y

H
id

d
e

n

L
a

y
e

r

O
u

tp
u

t

L
a

y
e

r

…

S
p

ik
e
 I
n

p
u

t

(r
a
te

-b
a
s
e
d

) T
im

e
 W

in
d

o
w

 S
iz

e

Encoder

A
cc

e
le

ra
to

r

O
ff

-C
h

ip
 R

A
M

G
lo

b
a
l

B
u

ff
er

Global Controller

Memory Controller

O
u

tp
u

t
B

u
ff

er

Weight Buffer

In
p

u
t

B
u

ff
er

S
y
st

o
li

c
A

rr
a
y

E
n

co
d

er
/

D
ec

o
d

er

1
 1

 0
 0

 1

S
T

T
 -

 E
n

c
o

d
e
r

S
p

ik
e

C
o
u

n
te

r
=

 3

T
im

e
C

o
u

n
te

r

0
 0

 1
 0

 0

=
T

W
 S

iz
e

?

R
st

T
W

 S
iz

e

T
W

T
F

F
S

 C
o
u

n
te

r

S
T

T
 -

 D
e
c
o

d
e
r

S
u

m

(R
a
te

)
T

W
1

T

W
2

T
W

s

…

T

T

P
a

rt
ia

l
S

u
m

T
W

M
:

O
u

tp
u

t
n

eu
ro

n
s,

 N
:

In
p

u
t

n
eu

ro
n

s,
 T

:
T

im
e

st
ri

d
e

W
ei

g
h

t

M

N

N

M

In
p

u
t

S
p

ik
e 0

 0
 1

 0
 0

T
W

In
te

g
ra

ti
o

n
 T

h
ro

u
g

h
 T

im
e
 (

IT
T

)

E
a

c
h

 i
n

p
u

t
=

S
p

ik
e

 t
ra

in
 i

n
 T

W

 In
te

g
ra

te
 a

c
ro

s
s

ti
m

e
-p

o
in

ts

 D
if

fe
re

n
t

c
o

lu
m

n
s

p
ro

c
e

s
s

 d
if

fe
re

n
t

T
W

s

0
 0

 0
 0

 1

…

W
e

ig
h

t
R

e
u

s
e

a
c

ro
s

s
 T

W
s

0
 1

 0
 0

 0

(a
)

(b
)

(c
) …

F
ig
u
re

7
.4
:
(a
):

O
ve
ra
ll
ar
ch
it
ec
tu
re

of
th
e
p
ro
p
os
ed

ac
ce
le
ra
to
r
(b
):

S
T
T
-e
n
co
d
er

an
d
d
ec
o
d
er

at
th
e
in
p
u
t
an

d
ou

tp
u
t
la
y
er
,
re
sp
ec
ti
ve
ly

(c
):

M
ap

p
in
g
of

th
e
in
p
u
ts

an
d
ou

tp
u
ts

in
to

th
e
sy
st
ol
ic

ar
ra
y
w
it
h
th
e
p
ro
p
os
ed

IT
T

120

Application-Independent Split-Time-Temporal Coding Chapter 7

and a systolic array composed of tiled processing elements (PEs) with unidirectional links.

As shown in Fig. 7.4(a), the systolic array fetches the required data through three levels of

memory hierarchy: 1) off-chip RAM, 2) a global buffer and 3) double-buffered L1 caches.

The received spike input and weight data propagates vertically and horizontally with

unidirectional links across the 2-D array and is reused through multiple PEs. Each PE

is composed of 1) a simple controller, 2) a small scratch-pad memory, 3) accumulate unit

(AC), 4) a simple one-hot-to-binary decoder and 5) a comparator. Unlike multiply-and-

accumulate (MAC) operations in non-spiking accelerators, simpler AC units are used

to accumulate weight values with binary-valued spikes. To fully leverage STT-based

acceleration, the synaptic input is properly integrated into a corresponding time point

with a simple decoder, and the scratch-pad in each PE stores Psums of all time points in

a given TW. In the rest of the paper, we primarily focus on synaptic input integration,

the dominant computational complexity.

7.2.2 Integration Through-Time (ITT)

As discussed in Section 1.3, conventional approach basically perform the integration

step, time-point by time-point, which is a matrix-vector operation as in (2.1). However,

time-serial processing hinders data reuse across time-points in many small-medium scale

accelerators, resulting in iterative data access. We propose a technique that process inte-

gration steps through time which performs integration step as matrix-matrix operation

on top of STT, breaking out of a stereotypical approach.

2-D systolic arrays naturally exploit parallelism and data reuse in both vertical

and horizontal directions. To fully utilize such advantages, we propose an Integration

Through-Time (ITT) technique on top of STT, which defines a spiking activity in a TW

as a basic unit of workload and maps spiking activities in multiple TWs into the systolic

121

Application-Independent Split-Time-Temporal Coding Chapter 7

array, concurrently. As shown in Fig. 7.4(c), ITT assigns entire spike trains in a TW to

a single PE and accelerates multiple TWs in different PEs simultaneously. ITT allows

for accelerating multiple time points in several TWs in parallel based on the fact that

the synaptic input integration step (Step 1) only depends on the spike inputs from the

previous layer. Integration of synaptic inputs across multiple time points with ITT can

be expressed by modifying (2.1), which is similar to the ones in the previous chapter, but

with regulated spiking activities upon STT, as:

Step 1 - ITT: Synaptic input integration in TW n ∼ TW n+m:

pPost[TW n, TW n+1, ..., TW n+m]

= pPost[(tk(n−1)+1, ..., tkn), ..., (tk(n+m−1)+1, ..., tk(n+m))]

= WPost,Pre × sPre[TW n, TW n+1, ..., TW n+m]

= WPost,Pre × sPre[(tk(n−1)+1, ..., tkn), ..., (..., tk(n+m))]

(7.1)

where k is the size of the TW, pPost and sPre are now matrices, and synaptic input

integration is processed across TW s. TWn denotes the n-th time window which contains

k different time points, i.e., TWn = (tk(n−1)+1, ..., tkn). Remaining steps remains the same

as in equation 2.2 ∼ 2.4 and all the other expressions follows the definition described in

chapter 2.2. Importantly, ITT directly maps the TW to a PE which contains multiple

time points which is different from chapter 4. Also, regulated spiking activities with STT

enables uniform processing time of TWs which further boost the efficiency.

7.2.3 Mapping to Systolic Array

We structurize the irregular sparse firing activities with uniformity across TWs based

on STT and accelerate input integration steps of multiple TWs in different output neu-

rons in parallel using ITT. With STT and ITT, our mapping strategy enables parallel

122

Application-Independent Split-Time-Temporal Coding Chapter 7

processing in both 1) time: across multiple time point and 2) space: across different

output neurons, which significantly improves data movement and processing time.

Mapping Input and Outputs

The proposed architecture accelerates partitioned matrix-matrix multiplication of the

weight and spike input matrices on the systolic array and employs parallelism both across

different neurons and different TWs. As shown in Fig. 7.4(c), PEs in a specific row

performs the computations for a particular output neuron across different TWs. In each

column, PEs process spike inputs of a given TW for different output neurons. Data are

only fed from the edges of the systolic array providing high data distribution bandwidth.

In each PE, the PE receives spike input and weight from its upper and left neighbors

and passes spike input and weight to its lower and right neighbors.

Energy Reduction

The main bottleneck of the SNN accelerators is the data movement/access overhead

of multi-bit weight data which is addressed by the proposed techniques. First, STT min-

imizes the computational overhead required for dense spiking activities with structured

sparsification. STT restricts each neuron to fire at most once in a TW and enables the

same weight data associated with a presynaptic neuron to be used only once. In gen-

eral, applying a larger TW size further reduces the computational and data movement

overhead with higher sparsity in spiking activities. Data movement/access is further

improved with ITT by the improved weight data reuse. PEs in the same row in the ar-

ray perform computations of a post-synaptic neuron across different TWs, i.e., the same

weight data is reused across PEs in the same row with different spike inputs.

123

Application-Independent Split-Time-Temporal Coding Chapter 7

Utilization Efficiency and Latency

STT and ITT improve severe under-utilization which originates from iterative data

access and the irregularity of sparse firing activities at each time point in the time stride.

As discussed in Section 7.1, each neuron fires at most once in a TW with STT, and thus

the processing of any TW takes the same amount of time. Uniformity in processing time

across TWs and higher sparsity with STT significantly improve latency and utilization

efficiency. Iterative access of the required data at each time point can cause stalls of the

array, which is the source of inefficiency in addition to computation latency, while ITT

reduces memory access to higher-level caches by the improved weight data reuse and less

data movement.

While a mapping strategy in [21] share a similarity that different PEs can operate for

different time-points, we emphasize that our work is based on the sparse actual spiking

activity and multiple time-points packed into one TW, which is fundamentally different

from [21].

7.2.4 STT-based Layer Acceleration

Each PE accelerates the fundamental operations of a spiking neuron. In recurrent

layers, PE operates with a simple additional step to incorporate recurrent synaptic inputs.

Note that, hardware resources are reused across different steps.

The operations in a single PE follow the three steps (2.1) ∼ (2.4) with an AC unit

and a small scratch-pad shared through the steps, as shown in Fig. 7.5(a). In Step 1, the

synaptic input integration step, PE determines the address based on the spike timing in a

given TW and accumulates the associated weight into a corresponding memory. A single

spike in a TW can be interpreted as a one-hot encoded address for the integration. The

small scratch-pad memory first stores the integrated synaptic inputs (ISI) of multiple

124

Application-Independent Split-Time-Temporal Coding Chapter 7

P
ro

ce
ss

in
g

El
e

m
e

n
t

O
u

tp
u

t

S
p

ik
e

P
re

fi
x
 S

u
m

𝑾
𝑹

S
te

p
 1

-R

P
su

m
[5

]

P
su

m
[4

]

R
E

G

C
a
lc

u
la

te
 P

su
m

s

u
si

n
g
 p

re
fi

x
 s

u
m

 o
f

IS
I

S
p

ik
e

a
t

p
re

v
io

u
s

ti
m

e-
p

o
in

t

R
d

A
d

d
r

W
r

S
p

ik
e

in
p

u
ts

0

 1
 0

 0
 0

T
W

O
n

e-
h

o
t

to

B
in

a
ry

W
ei

g
h

t
R

d

A
d

d
r

W
r

S
te

p
 1

-F

IS
I[

5
]

IS
I[

4
]

R
E

G

R
E

G

C
M

P

R
E

G

𝐕
𝐭𝐡

𝐕
𝐌
𝐞
𝐦

R
d

A
d

d
r

S
te

p
 2

S

te
p

 3

𝐈𝐒
𝐈[
𝟓
]

𝐈𝐒
𝐈[
𝟒
]

𝐈𝐒
𝐈[
𝟑
]

𝐈𝐒
𝐈[
𝟐
]

𝐈𝐒
𝐈[
𝟏
]

𝑾
𝑨

𝑾
𝑩

𝑾
𝑪

𝐏
𝐬𝐮
𝐦
[𝟓
]

𝐏
𝐬𝐮
𝐦
[𝟒
]

𝐏
𝐬𝐮
𝐦
[𝟑
]

𝐏
𝐬𝐮
𝐦
[𝟐
]

𝐏
𝐬𝐮
𝐦
[𝟏
]

𝑾
𝑨
+
𝑾

𝑩
+
𝑾

𝑪

𝑾
𝑨
+
𝑾

𝑩
+
𝑾

𝑪

𝑾
𝑨
+
𝑾

𝑪

𝑾
𝑨
+
𝑾

𝑪

𝑾
𝑪

P
su

m
[5

]

P
su

m
[4

]

R
E

G

P
re

fi
x
 s

u
m

 o
f

IS
I

fo
rm

s
P

su
m

E
q

u
iv

a
le

n
t

to
 l

ef
t-

a
li

g
n

ed
 s

p
ik

e
tr

a
in

s

𝑵
𝑨

𝑵
𝑩

𝑵
𝑪

𝐈𝐒
𝐈[
𝟓
]
𝐈𝐒
𝐈[
𝟒
]

𝐈𝐒
𝐈[
𝟏
]

T
W

 …

𝑵
𝑨

𝑵
𝑩

𝑵
𝑪

𝐏
𝐬𝐮
𝐦
[𝟓
]
𝐏
𝐬𝐮
𝐦
[𝟒
]
…

(a
)

(b
)

F
ig
u
re

7
.5
:
S
ch
em

a
ti
c
re
p
re
se
n
ta
ti
on

s
of

(a
):

O
p
er
at
io
n
s
in

a
P
E

fo
r
ac
ce
le
ra
ti
n
g
fe
ed

fo
rw

ar
d
an

d
re
cu

rr
en
t
la
ye
r

(b
):

C
a
lc
u
la
ti
n
g
p
a
rt
ia
l
su
m
s
(P

su
m
s)

u
si
n
g
a
p
re
fi
x
su
m

of
th
e
in
te
gr
at
ed

sy
n
ap

ti
c
in
p
u
ts

(I
S
I)

125

Application-Independent Split-Time-Temporal Coding Chapter 7

time points in a given TW. In the above operation, a simple combinational logic, one-hot

to binary, converts the spike trains of a TW into an address to the small scratch-pad.

As shown in Fig. 7.5(a), for example, if the spike input is 01000 with TW size 5, the

associated weight is properly integrated into ISI[TFFS] = ISI[4], which is the integrated

synaptic input of the second time point in the TW.

Next, the actual Psum is calculated using the ISI in the previous step. As discussed

in Section 7.1 and shown in Fig. 7.5(b), we utilize the prefix sum of ISI which restores the

rate and temporal information equivalent to a left-aligned rate code counterpart, while

sustaining the advantages of using STT with a single spike. As shown in Fig. 7.5(b), the

use of prefix sum yields the same Psum results as using left-aligned, rate codes where

the rate equals TFFS. Note that, the number of operations to calculate the prefix sum

equals to (TW size - 1) which is negligible compared to input integration steps.

For the rest of the operation, PE processes Step 2 and Step 3 with the integrated

Psums, time point by time point, in a sequential manner. At a given time point tk,

PE updates the membrane potential with Psum[tk] and the membrane potential of the

previous time point tk−1. If the updated membrane potential exceeds the pre-defined

threshold, the PE generates an output spike and resets the membrane potential.

In case of recurrent layers, the synaptic input integration step is almost the same as in

those of feedforward acceleration with additional step for integrating recurrent synaptic

inputs, denoted as Step 1-R in Fig. 7.5(a). To simplify the recurrent pass, we adopt self

recurrent structure in [107] which only requires a single additional integration operation.

The proposed PE is capable of accelerating both feedforward and recurrent layer on top

of the proposed techniques. As will discussed in Section 7.3, STT with the use of prefix

sum delivers competitive accuracy for various networks and significantly improves the

accelerator performance.

126

Application-Independent Split-Time-Temporal Coding Chapter 7

2 4 6 8 10

0.0

0.5

1.0 NMNIST CONV2

 NTIDIGITS Recurrent

 DVS Gesture FC

N
o

rm
a

li
z
e

d

#
 t

o
ta

l
s
p

ik
e

s

2 4 6 8 10

0.0

0.5

1.0

N
o

rm
a

li
z
e

d

M
a
x

 #
 s

p
ik

e
s

 NMNIST CONV2

 NTIDIGITS Recurrent

 DVS Gesture FC

Time window size with STT

Figure 7.6: Normalized number of total spikes and maximum number of spikes in a
neuron with different time window sizes.

7.3 Experiments and Results

We perform comprehensive evaluations of the proposed architecture with various layer

types, i.e., fully-connected (FC), convolutional (CONV) and recurrent, focusing on the

impact of the proposed STT and ITT. We first examine how the data reuse and com-

putational complexity change upon the proposed techniques with critical architectural

parameter, i.e., time window (TW) size. Then, we explore joint optimization of ma-

chine learning performance and SNN hardware accelerator performance with application-

independent split-time temporal coding. We adopt the state-of-the-art training algorithm

proposed in [44] as our ML performance baseline, and compare it with our accuracy

achieved using the proposed STT over various TW sizes. Since this is the first work of

temporal information compression (STT) with time-domain parallel processing (ITT), we

set our hardware baseline as the one that has trained with [44] and optimizes data reuse

and storage efficiency for each time-point (time-serial approach) without incorporating

proposed STT and ITT, as in [108, 22, 109].

127

Application-Independent Split-Time-Temporal Coding Chapter 7

Table 7.1: A high-level overview of the user-defined inputs.
Input Description

Array Array width/height,
configuration size of the scratch-pad in PE

Memory Size of the memory in three levels:
configuration off-chip RAM, Global buffer, L1 cache

STT Use STT-based spiking acitivities or
plain counterpart along with time window size

ITT Mapping different TWs across columns of
the systolic array with given TW size

Time Window Ranging from plain inputs (TW=1) to
(TW) Size the size of a scratch-pad in PE, i.e., TW=50
Layer Type fully-connected, convolutional and recurrent
Network Number of layers, layer types, and
Structure number of the neurons in each layer

Table 7.2: Architecture specifications.
Components Proposed Architecture

Number of PEs 128
ALU in PEs Adder, Comparator - 8-bit

Global Buffer Size 54KB
L1/Scratchpad Size 2KB / 50 × 8-bit
DRAM Bandwidth 30GB/sec

Bit precisions Weight/Membrane Potential - 8-bit
Input/Output Spike - TWS × 1-bit

(TWS : TW size)

7.3.1 Configurations and Setups

We use an analytic architecture simulator introduced in section 4.2 to assess the

latency, memory access, and energy dissipation of the proposed techniques and compare it

with a baseline. The user-specified inputs and architecture specification are summarized

in Table 7.1 and Table 7.2.

7.3.2 STT: Temporal Information Compression

STT reconstructs the spike information with higher, but structured sparsity by divid-

ing time stride into multiple TWs, squeezing the entire spike information in each TW to

128

Application-Independent Split-Time-Temporal Coding Chapter 7

1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

E
n

e
rg

y

B
re

a
k

d
o

w
n

A
1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

E
n

e
rg

y

B
re

a
k
d

o
w

n

A

 off-chip RAM

 GLB Rd

 GLB Wr

 L1 Rd

 L1 Wr

 PEs
2 3 4

0.00

0.04

0.08

E
n

e
rg

y

B
re

a
k

d
o

w
n

A

w/o

ITT & STT

w/ ITT &

STT (TW5)

w/ ITT &

STT (TW10)

w/ ITT &

STT (TW15)

Figure 7.7: Normalized energy dissipation and energy breakdown with and without
the proposed techniques.

a timing of the single spike. Spike rates are usually directly related to the performance

of the accelerator and a fewer number of spikes not only reduces the number of accu-

mulate operations but also alleviates the overhead of data movement. As introduced in

Section 7.1, STT applies to all layer types including FC, CONV and recurrent layers.

Furthermore, flexibility in TW size selection for STT enables the proposed architecture

to accelerate individual applications with different optimizations.

Computational overhead

The number of spikes required for layer acceleration decreases with larger TW size,

and hence the computational overheads by STT. Given the actual spiking activities, the

overhead reduction and a compression of the spike information differ across layers and

networks. Approximately, the number of required AC operations is inversely proportional

to the TW size, as shown in Fig. 7.6.

Data movement

STT enables fewer weight data movements associated with active pre-synaptic neu-

rons across the different levels of the memory hierarchy. In conventional approaches,

iterative weight access based on the active pre-synaptic neurons at each time point is

129

Application-Independent Split-Time-Temporal Coding Chapter 7

CONV1 CONV2 FC TOTAL
0.001

0.01

0.1

1

N
o

rm
a
li

z
e
d

E
n

e
rg

y

 : Baseline : ITT : STT(TW
3
)+ITT

 : STT(TW
5
)+ITT : STT(TW

10
)+ITT

CONV1 CONV2 FC TOTAL
0.001

0.01

0.1

1

N
o

rm
a

li
z
e

d

L
a

te
n

c
y

 Baseline

 TTC

 TTC+TRR(TW=3)

 TTC+TRR(TW=5)

 TTC+TRR(TW=10)

CONV1 CONV2 FC TOTAL
0.001

0.01

0.1

1

N
o

rm
a

li
z
e

d

E
n

e
rg

y

 : Baseline : ITT : STT(TW
3
)+ITT

 : STT(TW
5
)+ITT : STT(TW

10
)+ITT

221 X

196 X

Figure 7.8: Normalized energy dissipation and latency of layers with different TW
sizes for NMNIST.

inevitable due to the sequential processing. However, STT reduces temporal resolution,

and more sparsely populated spikes mitigate read and write memory access at each level

of memory. For example, the spiking activity of a bursting neuron, which fires across five

consecutive time points, forces to integrate the corresponding weight in those five-time

points, repeatedly. This may incur data movements from higher-level caches depending

on spiking activities of the pre-synaptic layer and the memory size. In contrast, the

weight is required only once throughout all time points in TW when the information

compression is applied. Data movement and reuse are further improved by the proposed

ITT.

7.3.3 ITT: Data Reuse

ITT significantly improves the data reuse by providing the data sharing opportunity

across TWs and post-synaptic neurons, and minimizes the memory access and stall cycles

originating from additional latency for iterative memory access. ITT maps spike inputs

in multiple TWs into different columns and enables weight reuse across PEs in the same

row.

130

Application-Independent Split-Time-Temporal Coding Chapter 7

FC1 FC2 TOTAL
0.001

0.01

0.1

1

N
o

rm
a
li
z
e
d

L
a

te
n

c
y

 Baseline

 TTC

 TTC+TRR(TW=3)

 TTC+TRR(TW=5)

 TTC+TRR(TW=10)

FC1 FC2 TOTAL
0.001

0.01

0.1

1

N
o

rm
a

li
z
e

d

E
n

e
rg

y

 Baseline

 TTC

 TTC+TRR(TW=3)

 TTC+TRR(TW=5)

 TTC+TRR(TW=10)

CONV1 CONV2 FC TOTAL
0.001

0.01

0.1

1

N
o

rm
a

li
z
e

d

E
n

e
rg

y

 : Baseline : ITT : STT(TW
2
)+ITT

 : STT(TW
4
)+ITT : STT(TW

8
)+ITT

21 X

17 X

Figure 7.9: Normalized energy dissipation and latency of layers with different TW
sizes for DVS-Gesture.

We use the recurrent layer trained for the NTIDIGITs as a representative layer to

analyze the impact of the proposed techniques in data movements, as shown in Fig.

7.7. Clearly, larger TW sizes reduce access to higher-level caches and improve energy

dissipation. Compared to a conventional approach without the proposed ideas, we observe

a huge improvement in memory access to the L1 cache and global buffer. In general, such

impact varies from layer to layer based on the actual firing activity, data movements in

and between the array and memory hierarchy as a result of the dataflow determined

by given memory sizes and layer specifications. Without using the proposed ITT and

STT, iterative operations through 300-time points may markedly degrade the overall

performance of the accelerator.

7.3.4 Comprehensive Evaluations

We examine how the proposed STT and ITT with the key architectural parameter

TW size improve the overall accelerator performance. Also, we evaluate the tunable

tradeoffs between machine learning and accelerator performance in terms of the TW

size.

131

Application-Independent Split-Time-Temporal Coding Chapter 7

R FC TOTAL
0.001

0.01

0.1

1

N
o

rm
a

li
z
e

d

E
n

e
rg

y

 Baseline

 TTC

 TTC+TRR(TW=3)

 TTC+TRR(TW=5)

 TTC+TRR(TW=10)
R FC TOTAL

0.001

0.01

0.1

1

N
o

rm
a

li
z
e

d

L
a

te
n

c
y

 Baseline

 TTC

 TTC+TRR(TW=3)

 TTC+TRR(TW=5)

 TTC+TRR(TW=10)

CONV1 CONV2 FC TOTAL
0.001

0.01

0.1

1

N
o

rm
a
li
z
e
d

E
n

e
rg

y

 : Baseline : ITT : STT(TW
5
)+ITT

 : STT(TW
10

)+ITT : STT(TW
15

)+ITT

47 X

20 X

Figure 7.10: Normalized energy dissipation and latency of layers with different TW
sizes for NTIDIGITS.

Latency

We observe a huge improvement in latency by using STT and ITT in all three net-

works, as shown in Fig. 7.8 ∼ 7.10 As discussed in Sections 7.3.2 and 7.3.3, 1) STT

reduces latency of the computations in the array proportionally to the TW size by pro-

cessing TW instead of a time-point, and 2) ITT minimizes the additional delay due to

stall cycles that wait for the required data, by reusing the weight data horizontally. In

general, a larger TW size compresses the temporal information with a greater stride

in the time domain and further reduces computational overheads and data movements,

hence the latency.

However, after a certain TW size, the additional improvement with a much larger TW

size decreases. This is due to the fact that spikes are often clustered in a certain range in

the time domain as shown in Fig. 7.3, and the number of TWs is the reciprocal of TW

size. Also, the impact on latency may vary with the spiking activity depending on how

uniformly the spikes are spread through neurons and time points. For example, five spikes

from five different neurons in the time domain will still have the same computational

complexity when STT is applied. In the other case, if there exist five spikes from a single

132

Application-Independent Split-Time-Temporal Coding Chapter 7

neuron while other neurons are silent, STT may significantly reduce the computations

and weight access. The proposed techniques improved the latency by 97X on average,

across three different networks.

Energy Dissipation

Energy dissipation is reduced as TW size increases in all layers, similar to the latency.

Generally, larger TWs provide the opportunity to reuse the same weight across more

time points. Especially, the benefit from data movement/reuse is maximized when the

layer has relatively a great amount of weight, as in CONV2 in NMNIST. Having more

weights emphasizes the benefits compared to the baseline since it exacerbates more data

movement and access to higher-level caches in conventional approaches due to iterative

weight access.

As discussed, the impact of the proposed techniques on energy dissipation also de-

pends on the temporal sparsity level. For example, a single spike throughout the entire

time domain from a particular neuron cannot be reused across TWs and will result in

less benefit. Importantly, however, firing activities from a neuron are often clustered in

a certain range in the time domain and weights can be reused through the TWs. Across

three different networks, our methods delivered 78X energy dissipation improvement, on

average.

Machine Learning Performance

Our experimental results present a huge accelerator performance improvement with

temporal information compression using STT. However, there exists a fundamental trade-

off between accelerator performance and machine learning performance. While STT

significantly improves latency and energy dissipation by using structured and sparse

spiking activities, using STT may cause a local temporal information loss in a TW.

133

Application-Independent Split-Time-Temporal Coding Chapter 7

Neuromorphic MNIST
Method Network Accuracy Timepoints

HM2BP [4] 400-400 98.88% 400
SLAYER [43] 500-500 98.95% 300
SLAYER [43] CNNa 99.22% 300
TSSL-BP [39] CNNa 99.25% 30

STT (TWS=3) CNNa 99.18% TW3 × 10
STT (TWS=5) CNNa 99.12% TW5 × 6
STT (TWS=10) CNNa 98.76% TW10 × 3
STT (TWS=15) CNNa 98.10% TW15 × 2
CNNa: 12C5-P2-64C5-P2.

DVS-Gesture
Method Network Accuracy Timepoints

RNN [85] P4-512 52.78%
LSTM∗ [85] P4-512 88.19%
TSSL-BP [39] P4-512 87.15% 300

STT (TWS=2) P4-512 86.46% TW2 × 150
STT (TWS=4) P4-512 85.76% TW4 × 75
STT (TWS=8) P4-512 84.37% TW8 × 38
∗ includes much greater number of tunable parameters.

Table 7.3: Performance on fully-connected and convolutional networks: NMNIST and
DVS-Gesture. TWS denotes the applied time window size.

When the original input spiking activity is converted based on the STT, a single

spike in a TW conveys the entire information of the corresponding TW based on the

spike timing. We use a prefix sum to avoid iterative weight access and to retain the

temporal information, which is equivalent to the ones using left-aligned rate code. While

using a single spike can exactly represent the rate information, it may lose some of the

temporal information within the TW since the timings of the spikes are not considered.

Nevertheless, STT-based acceleration delivers competitive performance as summa-

rized in Table 7.3 ∼ Table 7.4. We adopted the training algorithm in [39] and conducted

STT-based inference test on well-trained networks with different TW sizes. For example,

[39] achieved 93.29% accuracy and STT-based simulation achieved 92.40% inference ac-

curacy with TW size=5 for the NTIDIGITS dataset. TWi denotes that the time window

134

Application-Independent Split-Time-Temporal Coding Chapter 7

N-TIDIGITS
Method Network Accuracy Timepoints

HM2BP [4] 250-250 89.69% 300
BP (GRU) [41] 200-200-100 89.92%
BP (LSTM) [41] 250-250 91.25%
TSSL-BP [39] 400a 93.29% 300

STT (TWS=5) 400a 92.40% TW5 × 60
STT (TWS=10) 400a 91.19% TW10 × 30
STT (TWS=15) 400a 89.41% TW15 × 20
400a: Recurrent layer with LISR [107]

Table 7.4: Performance on recurrent networks: N-TIDIGITS. TWS denotes the ap-
plied time window size.

size is i, and TW5 × 60 represents that the original spiking activity, spanned through

300-time points, is encoded to 60 consecutive TWs where each TW contains 5-time points

with at most a single spike. We observe that the proposed STT can deliver competitive

inference performance up to a certain TW size across various networks as in Table 7.3 ∼

Table 7.4 while providing a significant improvements on hardware acceleration.

EDP evaluation

We adopt an energy-delay product (EDP) to simultaneously consider latency and

energy dissipation for evaluation of the proposed techniques and to compare the impact

of the TW size selection. We multiply the total execution time with the total energy

dissipated at each layer and add up the EDP values of all layers in the network. Impor-

tantly, the proposed techniques can be generally applied to rate-based SNN models for

an aggressive inference acceleration with flexibility in choosing TW size, depending on

the application objective which is further discussed in the next section. As shown in Fig.

7.11, our work delivers 15,000X EDP improvement with the maximum TW sizes which do

not significantly drop the accuracy (¡3%), on average, across four different benchmarks.

135

Application-Independent Split-Time-Temporal Coding Chapter 7

1 10 100 1k 10k

85

90

95

100

A
c

c
u

ra
c

y
 (

%
)

Normalized EDP

 NMNIST

 DVS-Gesture

 NTIDIGITS

𝑻𝑾𝟓, 𝑻𝑾𝟏𝟎, 𝑻𝑾𝟏𝟓

𝑻𝑾𝟑, 𝑻𝑾𝟓, 𝑻𝑾𝟏𝟎

𝑻𝑾𝟐, 𝑻𝑾𝟒, 𝑻𝑾𝟖

𝑩𝒂𝒔𝒆𝒍𝒊𝒏𝒆

Figure 7.11: Machine learning performance (inference) - Accelerator performance
(normalized EDP) tradeoffs on various datasets.

7.4 Summary and Discussions

In this work, we propose novel techniques 1) STT: structurization and sparsification

of irregular firing activities on a TW basis and 2) ITT: parallel acceleration of TWs and

data reuse across space and time, with the systolic array-based accelerator supporting the

two techniques. As shown in Fig. 7.11, applying STT and ITT significantly improves the

accelerator performance without a huge accuracy drop across various types of networks,

i.e., FC, CONV and recurrent. Our work introduces a universally applicable solution to

optimize the tradeoffs between the machine learning (ML) performance and hardware

accelerator (HW) performance with flexibility in choosing TW size, depending on the

objectives.

ML-HW Performance Trade-off

STT significantly reduces computational overhead by introducing local temporal res-

olution reduction per TW, well tunable based on TW size, without hyper parameter

136

Application-Independent Split-Time-Temporal Coding Chapter 7

tuning, while maintaining global temporal information of the original spikes. Aggressive

reduction with larger TW sizes ensure more substantial accelerator performance im-

provement, but may lose local temporal information in TW, leading to a non-negligible

classification accuracy drop.

We adopt an energy-delay product (EDP) to simultaneously consider latency and

energy dissipation for evaluation of the proposed techniques and to compare the impact

of the TW size selection. We multiply the total execution time with the total energy

dissipated at each layer and add up the EDP values of all layers in the network. As

shown in Fig. 7.11, ML-HW performance trade off can be flexibly adjusted depending on

application objectives where small TW sizes with STT and ITT can still deliver significant

improvement. Our work delivers 15,000X EDP improvement with the maximum TW sizes

which do not significantly drop the accuracy, on average across different benchmarks, as

shown in Fig. 7.11.

Technically, all spiking models incorporate the synaptic input integration step, the

Step 1 (2.1) mentioned in Section 2.2. Therefore, the proposed techniques are gener-

ally applicable across all typical spiking operations, all layer structures including fully-

connected, convolutional and recurrent layers, and general SNNs with various layer types.

As a tunable trade-off, we leave the selection of TW size for STT and ITT as an open-

ended solution for other works to decide based on the application goal.

137

Chapter 8

Conclusion

8.1 Conclusion

This dissertation mainly focuses on hardware-friendly training algorithms, systematic

dataflow exploration of various spiking neural networks (SNNs) for efficient and parallel

acceleration of neural computations, and temporal resolution reduction technique with

STT, which allows to process regulated spiking activities. We briefly summarize the

major contributions of this dissertation as follows.

In Chapter 3, we propose a novel spike-level direct feedback alignment (ST-DFA)

algorithm for training multi-layer spiking neural networks (SNNs) with improved bio-

plausibility and scalability over traditional backpropagation algorithms. Moreover, it

is demonstrated that the ST-DFA algorithm with its hardware-friendly optimized im-

plementation enable efficient on-chip training of FPGA SNN neural processors while

delivering competitive classification performance for practical speech and image recog-

nition tasks. Compared to the hardware implementation of the state-of-the-art BP al-

gorithm HM2-BP, the design of the proposed ST-DFA reduces functional resources by

76.7% and backward training latency by 31.6% while gracefully trading off classification

138

Conclusion Chapter 8

performance.

Acceleration of SNNs is challenged by fundamental issues: unstructured sparsity

emergent in both space and time, and stereotypical approach to process spiking models

in a time-sequential manner which requires iterative data access.

In Chapter 4, a novel scheme is introduced to enable the parallel acceleration of

computation across multiple time points, which further leads to large performance and

efficiency gains via optimization of the tiling strategy. We demonstrate how the tiling

strategy can be reconfigured on a layer-by-layer basis and jointly optimized with the

accelerator hardware to achieve large gains in throughput and energy efficiency. Fur-

thermore, an SNN dataflow simulator has been developed to aid systemic design space

exploration. The proposed techniques are able to improve EDP of the accelerator by

several orders of magnitude and more than one order of magnitude over a non-optimized

and existing SNN dataflow, respectively.

In Chapter 5, we presents the first analysis framework to evaluate temporal parallel

processing of systolic array-based hardware architecture for accelerating SNNs, which

efficiently manages the sparse nature of spiking computations and supports a diverse

family of spiking models. The proposed architecture is built upon a novel parallel time

batching (PTB) technique and a spatiotemporally-non-overlapping spiking activity pack-

ing (StSAP) strategy. PTB introduces parallel acceleration of time windows (TWs)

that incorporates multiple time-points, and significantly improves energy efficiency and

under-utilization by reducing iterative data access and idling of processing units. StSAP

densifies the grouped input spikes (TBs) by combining non-bursting neurons with greedy

policy, which further benefits the utilization efficiency of the array. We also observe that

larger TW size does not always provide monotonic improvements, and hence perform a

joint optimization of PTB and StSAP with varying TW sizes for different networks.

One major challenge in accelerating R-SNNs stems from the tightly coupled data

139

dependency in both time and space resulted from the recurrent connections. This chal-

lenge prevents direct exploration of time-domain parallelism and may severely degrade

the overall performance due to poor data reuse patterns. In Chapter 6, we extend the

parallel time computation technique to recurrent SNNs, which basically decouples the

processing of feedforward synaptic connections from that of recurrent connections. The

proposed SaARSP architecture is built upon a decoupling scheme and novel time window

size optimization (TWSO) technique to enable the parallel acceleration of computation

across multiple time points. This is achieved by cleverly decoupling the processes of

feedforward and recurrent synaptic input integration, two dominant costs in processing

recurrent network structures. We further boost the accelerator performance by optimiz-

ing the temporal granularity of the proposed decoupling and stationary dataflows in a

layer dependent manner.

In Chapter 7, we propose a novel, universally applicable solution for sparsification and

structurization of any rate-based spiking activities and explore the impact of temporal

granularity defined by the time window (TW) size. STT significantly improves accelerator

performance by reducing the spike redundancy on a TW basis and handling the TW

as the basic unit of operation with structured firing activities across TWs. Also, we

introduce the ITT upon STT technique, which enables parallel acceleration in time based

on simultaneous processing of multiple TWs across columns of the systolic array. ITT

enables the data reuse across TWs with uniform processing times for TWs, leading to

further improved performance on top of STT. Lastly, we develop a systolic array-based

architecture supporting STT and ITT, which is capable of accelerating various types of

layers.

We hope this dissertation could help the neuromorphic community to attain energy-

efficient, high performance, and move forward.

140

Bibliography

[1] Y. Hao, X. Huang, M. Dong, and B. Xu, A biologically plausible supervised
learning method for spiking neural networks using the symmetric stdp rule, Neural
Networks 121 (2020) 387–395.

[2] Y. Zhang, P. Li, Y. Jin, and Y. Choe, A digital liquid state machine with
biologically inspired learning and its application to speech recognition, IEEE
transactions on neural networks and learning systems 26 (2015), no. 11
2635–2649.

[3] W. Zhang and P. Li, Spike-train level backpropagation for training deep recurrent
spiking neural networks, in Advances in Neural Information Processing Systems,
pp. 7800–7811, 2019.

[4] Y. Jin, W. Zhang, and P. Li, Hybrid macro/micro level backpropagation for
training deep spiking neural networks, in Advances in Neural Information
Processing Systems, pp. 7005–7015, 2018.

[5] W. Maass, Networks of spiking neurons: the third generation of neural network
models, Neural networks 10 (1997), no. 9 1659–1671.

[6] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla,
N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, et. al., Truenorth: Design and tool
flow of a 65 mw 1 million neuron programmable neurosynaptic chip, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 34
(2015), no. 10 1537–1557.

[7] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou,
P. Joshi, N. Imam, S. Jain, et. al., Loihi: A neuromorphic manycore processor
with on-chip learning, IEEE Micro 38 (2018), no. 1 82–99.

[8] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et. al., Learning representations
by back-propagating errors, Cognitive modeling 5 (1988), no. 3 1.

[9] S. M. Bohte, J. N. Kok, and H. La Poutre, Error-backpropagation in temporally
encoded networks of spiking neurons, Neurocomputing 48 (2002), no. 1-4 17–37.

141

[10] J. H. Lee, T. Delbruck, and M. Pfeiffer, Training deep spiking neural networks
using backpropagation, Frontiers in neuroscience 10 (2016) 508.

[11] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, Spatio-temporal backpropagation for
training high-performance spiking neural networks, Frontiers in neuroscience 12
(2018).

[12] P. J. Werbos et. al., Backpropagation through time: what it does and how to do it,
Proceedings of the IEEE 78 (1990), no. 10 1550–1560.

[13] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et. al., Gradient-based learning
applied to document recognition, Proceedings of the IEEE 86 (1998), no. 11
2278–2324.

[14] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, Converting static image
datasets to spiking neuromorphic datasets using saccades, Frontiers in
neuroscience 9 (2015) 437.

[15] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks, IEEE journal of
solid-state circuits 52 (2016), no. 1 127–138.

[16] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and J. Cong,
Automated systolic array architecture synthesis for high throughput cnn inference
on fpgas, in Proceedings of the 54th Annual Design Automation Conference 2017,
pp. 1–6, 2017.

[17] Y. Shen, M. Ferdman, and P. Milder, Escher: A cnn accelerator with flexible
buffering to minimize off-chip transfer, in 2017 IEEE 25th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM),
pp. 93–100, IEEE, 2017.

[18] X. He, S. Pal, A. Amarnath, S. Feng, D.-H. Park, A. Rovinski, H. Ye, Y. Chen,
R. Dreslinski, and T. Mudge, Sparse-tpu: Adapting systolic arrays for sparse
matrices, in Proceedings of the 34th ACM International Conference on
Supercomputing, pp. 1–12, 2020.

[19] H. Kung, B. McDanel, and S. Q. Zhang, Packing sparse convolutional neural
networks for efficient systolic array implementations: Column combining under
joint optimization, in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems,
pp. 821–834, 2019.

[20] S. Narayanan, K. Taht, R. Balasubramonian, E. Giacomin, and P.-E. Gaillardon,
Spinalflow: an architecture and dataflow tailored for spiking neural networks, in

142

2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pp. 349–362, IEEE, 2020.

[21] J.-J. Lee and P. Li, Reconfigurable dataflow optimization for spatiotemporal
spiking neural computation on systolic array accelerators, in 2020 IEEE 38th
International Conference on Computer Design (ICCD), pp. 57–64, IEEE, 2020.

[22] D. Neil and S.-C. Liu, Minitaur, an event-driven fpga-based spiking network
accelerator, IEEE Transactions on Very Large Scale Integration (VLSI) Systems
22 (2014), no. 12 2621–2628.

[23] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R.
Lester, A. D. Brown, and S. B. Furber, Spinnaker: A 1-w 18-core system-on-chip
for massively-parallel neural network simulation, IEEE Journal of Solid-State
Circuits 48 (2013), no. 8 1943–1953.

[24] C. Mayr, S. Hoeppner, and S. Furber, Spinnaker 2: A 10 million core processor
system for brain simulation and machine learning, arXiv preprint
arXiv:1911.02385 (2019).

[25] I. M. Comsa, T. Fischbacher, K. Potempa, A. Gesmundo, L. Versari, and
J. Alakuijala, Temporal coding in spiking neural networks with alpha synaptic
function, ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (May, 2020).

[26] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier, Stdp-based
spiking deep convolutional neural networks for object recognition, Neural Networks
99 (Mar, 2018) 56–67.

[27] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, Diannao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning, ACM
SIGARCH Computer Architecture News 42 (2014), no. 1 269–284.

[28] X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, and X. Ji, High-performance fpga-based
cnn accelerator with block-floating-point arithmetic, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 27 (2019), no. 8 1874–1885.

[29] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, Binarized
neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1, arXiv preprint arXiv:1602.02830 (2016).

[30] W. Nogami, T. Ikegami, R. Takano, T. Kudoh, et. al., Optimizing weight value
quantization for cnn inference, in 2019 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8, IEEE, 2019.

143

[31] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass, Long
short-term memory and learning-to-learn in networks of spiking neurons, in
Advances in Neural Information Processing Systems, pp. 787–797, 2018.

[32] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier, Stdp-based
spiking deep convolutional neural networks for object recognition, Neural Networks
99 (2018) 56–67.

[33] H. Xiao, K. Rasul, and R. Vollgraf, Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, arXiv preprint arXiv:1708.07747
(2017).

[34] A. Krizhevsky, V. Nair, and G. Hinton, The cifar-10 dataset, online: http://www.
cs. toronto. edu/kriz/cifar. html 55 (2014), no. 5.

[35] H. Li, H. Liu, X. Ji, G. Li, and L. Shi, Cifar10-dvs: an event-stream dataset for
object classification, Frontiers in neuroscience 11 (2017) 309.

[36] M. Liberman, R. Amsler, K. Church, E. Fox, C. Hafner, J. Klavans, M. Marcus,
B. Mercer, J. Pedersen, P. Roossin, D. Walker, S. Warwick, and A. Zampolli, TI
46-word LDC93S9, 1991.

[37] R. Lyon, A computational model of filtering, detection, and compression in the
cochlea, in Acoustics, Speech, and Signal Processing, IEEE International
Conference on ICASSP’82., vol. 7, pp. 1282–1285, IEEE, 1982.

[38] P. Lichtsteiner, C. Posch, and T. Delbruck, A 128 ×128 120 db 15µs latency
asynchronous temporal contrast vision sensor, IEEE journal of solid-state circuits
43 (2008), no. 2 566–576.

[39] W. Zhang and P. Li, Temporal spike sequence learning via backpropagation for
deep spiking neural networks, Advances in Neural Information Processing Systems
33 (2020).

[40] R. G. Leonard and G. Doddington, Tidigits speech corpus, Texas Instruments, Inc
(1993).

[41] J. Anumula, D. Neil, T. Delbruck, and S.-C. Liu, Feature representations for
neuromorphic audio spike streams, Frontiers in neuroscience 12 (2018) 23.

[42] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo, T. Nayak,
A. Andreopoulos, G. Garreau, M. Mendoza, et. al., A low power, fully event-based
gesture recognition system, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7243–7252, 2017.

[43] S. B. Shrestha and G. Orchard, Slayer: Spike layer error reassignment in time, in
Advances in Neural Information Processing Systems, pp. 1419–1428, 2018.

144

[44] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna, Scale-sim:
Systolic cnn accelerator simulator, arXiv preprint arXiv:1811.02883 (2018).

[45] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, et. al., Google’s neural machine translation system:
Bridging the gap between human and machine translation, arXiv preprint
arXiv:1609.08144 (2016).

[46] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, Random synaptic
feedback weights support error backpropagation for deep learning, Nature
Communications (11, 2016) 13276 EP.

[47] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, Event-driven random
back-propagation: Enabling neuromorphic deep learning machines, Frontiers in
neuroscience 11 (2017) 324.

[48] A. Nøkland, Direct feedback alignment provides learning in deep neural networks,
in Advances in neural information processing systems, pp. 1037–1045, 2016.

[49] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press, 2002.

[50] D. E. Rumelhart, J. L. McClelland, P. R. Group, et. al., Parallel distributed
processing, vol. 1. MIT press Cambridge, 1988.

[51] B. Schrauwen and J. Van Campenhout, Bsa, a fast and accurate spike train
encoding scheme, in Neural Networks, 2003. Proceedings of the International Joint
Conference on, vol. 4, pp. 2825–2830, IEEE, 2003.

[52] H. Mostafa, Supervised learning based on temporal coding in spiking neural
networks, IEEE transactions on neural networks and learning systems 29 (2018),
no. 7 3227–3235.

[53] D. Neil, M. Pfeiffer, and S.-C. Liu, Phased lstm: Accelerating recurrent network
training for long or event-based sequences, in Advances in Neural Information
Processing Systems, pp. 3882–3890, 2016.

[54] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, EMNIST: an extension of
mnist to handwritten letters, arXiv preprint arXiv:1702.05373 (2017).

[55] M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal, Memory-centric
accelerator design for convolutional neural networks, in 2013 IEEE 31st
international conference on computer design (ICCD), pp. 13–19, IEEE, 2013.

145

[56] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, A 240 g-ops/s
mobile coprocessor for deep neural networks, in Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, pp. 682–687,
2014.

[57] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, et. al., Dadiannao: A machine-learning supercomputer, in 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 609–622,
IEEE, 2014.

[58] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and
O. Temam, Shidiannao: Shifting vision processing closer to the sensor, in
Proceedings of the 42nd Annual International Symposium on Computer
Architecture, pp. 92–104, 2015.

[59] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and H. Qian,
Fully hardware-implemented memristor convolutional neural network, Nature 577
(2020), no. 7792 641–646.

[60] Y. Cao, Y. Chen, and D. Khosla, Spiking deep convolutional neural networks for
energy-efficient object recognition, International Journal of Computer Vision 113
(2015), no. 1 54–66.

[61] P. Gysel, M. Motamedi, and S. Ghiasi, Hardware-oriented approximation of
convolutional neural networks, arXiv preprint arXiv:1604.03168 (2016).

[62] S.-Q. Wang, L. Wang, Y. Deng, Z.-J. Yang, S.-S. Guo, Z.-Y. Kang, Y.-F. Guo,
and W.-X. Xu, Sies: A novel implementation of spiking convolutional neural
network inference engine on field-programmable gate array, Journal of Computer
Science and Technology 35 (2020) 475–489.

[63] A. Afifi, A. Ayatollahi, and F. Raissi, Implementation of biologically plausible
spiking neural network models on the memristor crossbar-based cmos/nano
circuits, in 2009 European Conference on Circuit Theory and Design,
pp. 563–566, IEEE, 2009.

[64] L. Chen, C. Li, T. Huang, Y. Chen, and X. Wang, Memristor crossbar-based
unsupervised image learning, Neural Computing and Applications 25 (2014), no. 2
393–400.

[65] Q. Wang, Y. Li, and P. Li, Liquid state machine based pattern recognition on fpga
with firing-activity dependent power gating and approximate computing, in 2016
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 361–364,
IEEE, 2016.

146

[66] Y. Liu, Y. Jin, and P. Li, Exploring sparsity of firing activities and clock gating
for energy-efficient recurrent spiking neural processors, in 2017 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED),
pp. 1–6, IEEE, 2017.

[67] Y. Liu, Y. Jin, and P. Li, Online adaptation and energy minimization for
hardware recurrent spiking neural networks, ACM Journal on Emerging
Technologies in Computing Systems (JETC) 14 (2018), no. 1 1–21.

[68] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro, R. Tapiador-Morales, I.-A.
Lungu, M. B. Milde, F. Corradi, A. Linares-Barranco, S.-C. Liu, et. al., Nullhop:
A flexible convolutional neural network accelerator based on sparse representations
of feature maps, IEEE transactions on neural networks and learning systems 30
(2018), no. 3 644–656.

[69] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Krishna,
Understanding reuse, performance, and hardware cost of dnn dataflow: A
data-centric approach, in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 754–768, 2019.

[70] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, Cacti 6.0: A tool to
model large caches, HP laboratories 1 (2009) 1–24.

[71] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, Going deeper in spiking neural
networks: Vgg and residual architectures, Frontiers in neuroscience 13 (2019) 95.

[72] L. Zhang, S. Zhou, T. Zhi, Z. Du, and Y. Chen, Tdsnn: From deep neural
networks to deep spike neural networks with temporal-coding, in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, pp. 1319–1326, 2019.

[73] P.-Y. Tan, P.-Y. Chuang, Y.-T. Lin, C.-W. Wu, and J.-M. Lu, A power-efficient
binary-weight spiking neural network architecture for real-time object
classification, arXiv preprint arXiv:2003.06310 (2020).

[74] H.-T. Kung, B. McDanel, and S. Q. Zhang, Mapping systolic arrays onto 3d
circuit structures: Accelerating convolutional neural network inference, in 2018
IEEE International Workshop on Signal Processing Systems (SiPS), pp. 330–336,
IEEE, 2018.

[75] H.-T. Kung, Why systolic architectures?, Computer 15 (1982), no. 01 37–46.

[76] H. Kung and C. E. Leiserson, Systolic arrays (for vlsi), in Sparse Matrix
Proceedings 1978, vol. 1, pp. 256–282, Society for industrial and applied
mathematics Philadelphia, PA, USA, 1979.

147

[77] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, Eyeriss v2: A flexible accelerator
for emerging deep neural networks on mobile devices, IEEE Journal on Emerging
and Selected Topics in Circuits and Systems 9 (2019), no. 2 292–308.

[78] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, Eie:
Efficient inference engine on compressed deep neural network, ACM SIGARCH
Computer Architecture News 44 (2016), no. 3 243–254.

[79] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. Vijaykumar, Sparten: A
sparse tensor accelerator for convolutional neural networks, in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 151–165, 2019.

[80] A. Delmas Lascorz, P. Judd, D. M. Stuart, Z. Poulos, M. Mahmoud, S. Sharify,
M. Nikolic, K. Siu, and A. Moshovos, Bit-tactical: A software/hardware approach
to exploiting value and bit sparsity in neural networks, in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 749–763, 2019.

[81] K. Kanellopoulos, N. Vijaykumar, C. Giannoula, R. Azizi, S. Koppula, N. M.
Ghiasi, T. Shahroodi, J. G. Luna, and O. Mutlu, Smash: Co-designing software
compression and hardware-accelerated indexing for efficient sparse matrix
operations, in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 600–614, 2019.

[82] Z. Du, D. D. B.-D. Rubin, Y. Chen, L. Hel, T. Chen, L. Zhang, C. Wu, and
O. Temam, Neuromorphic accelerators: A comparison between neuroscience and
machine-learning approaches, in 2015 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 494–507, IEEE, 2015.

[83] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, Regularization of neural
networks using dropconnect, in International conference on machine learning,
pp. 1058–1066, PMLR, 2013.

[84] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, Direct training for spiking
neural networks: Faster, larger, better, in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 1311–1318, 2019.

[85] W. He, Y. Wu, L. Deng, G. Li, H. Wang, Y. Tian, W. Ding, W. Wang, and
Y. Xie, Comparing snns and rnns on neuromorphic vision datasets: Similarities
and differences, Neural Networks 132 (2020) 108–120.

[86] S. Deng and S. Gu, Optimal conversion of conventional artificial neural networks
to spiking neural networks, arXiv preprint arXiv:2103.00476 (2021).

148

[87] W. Zhang and P. Li, Skip-connected self-recurrent spiking neural networks with
joint intrinsic parameter and synaptic weight training, Neural Computation 33
(2021), no. 7 1886–1913.

[88] G. Orchard, C. Meyer, R. Etienne-Cummings, C. Posch, N. Thakor, and
R. Benosman, Hfirst: A temporal approach to object recognition, IEEE
transactions on pattern analysis and machine intelligence 37 (2015), no. 10
2028–2040.

[89] A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benosman, Hats:
Histograms of averaged time surfaces for robust event-based object classification,
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1731–1740, 2018.

[90] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied
to document recognition, Proceedings of the IEEE 86 (1998), no. 11 2278–2324.

[91] H. Xiao, K. Rasul, and R. Vollgraf, Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, arXiv preprint arXiv:1708.07747
(2017).

[92] J. Anumula, D. Neil, T. Delbruck, and S.-C. Liu, Feature representations for
neuromorphic audio spike streams, Frontiers in neuroscience 12 (2018) 23.

[93] J. S. Garofolo, Timit acoustic phonetic continuous speech corpus, Linguistic Data
Consortium, 1993 (1993).

[94] S. Saha, H. Duwe, and J. Zambreno, Cynapse: A low-power reconfigurable neural
inference accelerator for spiking neural networks, Journal of Signal Processing
Systems 92 (2020), no. 9 907–929.

[95] W. Guo, H. E. Yantir, M. E. Fouda, A. M. Eltawil, and K. N. Salama, Toward the
optimal design and fpga implementation of spiking neural networks, IEEE
Transactions on Neural Networks and Learning Systems (2021).

[96] S.-G. Cho, E. Beigné, and Z. Zhang, A 2048-neuron spiking neural network
accelerator with neuro-inspired pruning and asynchronous network on chip in
40nm cmos, in 2019 IEEE Custom Integrated Circuits Conference (CICC),
pp. 1–4, IEEE, 2019.

[97] K. Akbarzadeh-Sherbaf, S. Safari, and A.-H. Vahabie, A digital hardware
implementation of spiking neural networks with binary force training,
Neurocomputing 412 (2020) 129–142.

[98] S. Guo, L. Wang, S. Wang, Y. Deng, Z. Yang, S. Li, Z. Xie, and Q. Dou, A
systolic snn inference accelerator and its co-optimized software framework, in
Proceedings of the 2019 on Great Lakes Symposium on VLSI, pp. 63–68, 2019.

149

[99] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz, E. Vianello,
and E. Beigne, Spiking neural networks hardware implementations and challenges:
A survey, ACM Journal on Emerging Technologies in Computing Systems
(JETC) 15 (2019), no. 2 1–35.

[100] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, A scalable multicore
architecture with heterogeneous memory structures for dynamic neuromorphic
asynchronous processors (dynaps), IEEE Transactions on Biomedical Circuits and
Systems 12 (2018), no. 1 106–122.

[101] A. S. Cassidy, P. Merolla, J. V. Arthur, S. K. Esser, B. Jackson, R. Alvarez-Icaza,
P. Datta, J. Sawada, T. M. Wong, V. Feldman, et. al., Cognitive computing
building block: A versatile and efficient digital neuron model for neurosynaptic
cores, in The 2013 International Joint Conference on Neural Networks (IJCNN),
pp. 1–10, IEEE, 2013.

[102] Y.-H. Chen, J. Emer, and V. Sze, Using dataflow to optimize energy efficiency of
deep neural network accelerators, IEEE Micro 37 (2017), no. 3 12–21.

[103] F. Silfa, G. Dot, J.-M. Arnau, and A. Gonzàlez, E-pur: an energy-efficient
processing unit for recurrent neural networks, in Proceedings of the 27th
International Conference on Parallel Architectures and Compilation Techniques,
pp. 1–12, 2018.

[104] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, Converting static image
datasets to spiking neuromorphic datasets using saccades, Frontiers in
neuroscience 9 (2015) 437.

[105] N. K. Jha, S. Ravishankar, S. Mittal, A. Kaushik, D. Mandal, and M. Chandra,
Draco: Co-optimizing hardware utilization, and performance of dnns on systolic
accelerator, in 2020 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pp. 574–579, IEEE, 2020.

[106] S. Park, S. Kim, B. Na, and S. Yoon, T2fsnn: deep spiking neural networks with
time-to-first-spike coding, in 2020 57th ACM/IEEE Design Automation
Conference (DAC), pp. 1–6, IEEE, 2020.

[107] W. Zhang and P. Li, Spiking neural networks with laterally-inhibited self-recurrent
units, in 2021 International Joint Conference on Neural Networks (IJCNN),
pp. 1–8, IEEE, 2021.

[108] A. Khodamoradi, K. Denolf, and R. Kastner, S2n2: A fpga accelerator for
streaming spiking neural networks, in The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 194–205, 2021.

150

[109] J. Shen, D. Ma, Z. Gu, M. Zhang, X. Zhu, X. Xu, Q. Xu, Y. Shen, and G. Pan,
Darwin: a neuromorphic hardware co-processor based on spiking neural networks,
Science China Information Sciences 59 (2016), no. 2 1–5.

151

	Acknowledgements
	Disclaimer
	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Neuromorphic Computing Systems
	Spiking Neural Network Algorithms
	Spiking Neural Network Accelerators
	Outline

	Background
	Unique Characteristics of SNNs
	Spiking Neural Network Operations
	Spiking Neurons
	Spiking Neural Networks

	Datasets
	Systolic Array

	Spiking Neural Processor with Direct Feedback Alignment
	Direct Feedback Alignment (DFA)
	Direct Feedback Alignment
	Spike-train Level Post-synaptic Potential

	Spike-Train Level DFA (ST-DFA)
	Proposed ST-DFA Algorithm
	Derivation of ST-DFA
	Simplification for Hardware Friendliness

	SNN Accelerators with ST-DFA On-chip Training
	Architecture
	On-chip Training
	Neuron Unit Design
	Efficient On-chip S-PSP Calculation
	Efficient On-chip ST-DFA Implementation

	Experiments and Results
	Experimental Settings and Benchmarks
	Classification Accuracies
	FPGA Hardware Evaluations

	Summary and Discussions

	Dataflow Optimization for Spiking Neural Networks
	Dataflow Optimization for Spiking CNNs
	Proposed parallel processing in temporal dimension
	Dataflow in Spiking CNNs
	Stationary schemes for S-CNNs
	Variable Tiling
	Layer-dependent dataflow reconfiguration

	SNN Dataflow Simulator
	Modeling of systolic array and memory
	Performance modeling

	Experiments and Results
	Layer-specific dataflow optimization
	Joint optimization of tiling and stationary flows
	Joint layer-dependent reconfigurable dataflow and hardware optimization

	Summary and Discussions

	Parallel-Time-Computation for Spiking Neural Computation
	Challenges of SNN Accelerators
	Spatial and Temporal Sparsity in SNNs
	Existing SNN Accelerators

	Proposed Architecture
	Overview of the Proposed Architecture
	Time Batch (TB) and TB-tag
	Parallel Time Batching (PTB)
	Spatiotemporally-non-overlapping Spiking Activity Packing (StSAP)

	Experiments and Results
	Architecture Specifications and Benchmarks
	Optimization of Array Dimension
	Comprehensive Evaluation

	Summary and Discussions

	Recurrent Spiking Neural Network Acceleration
	Recurrent Spiking Neural Network Accelerators
	Recurrent Spiking Neural Network
	R-SNN accelerators

	SaARSP: Proposed Architecture
	Decoupled feedforward/recurrent synaptic integration
	Proposed SaARSP architecture
	Time-window size optimization (TWSO)

	Experiments and Results
	Configurations and Setups
	Spiking neural network benchmarks
	Acceleration of feedforward layers with output stationary dataflow
	Acceleration of recurrent layers with output stationary dataflow
	Comprehensive evaluation and optimization of recurrent layer acceleration

	Summary and Discussions

	Application-Independent Split-Time-Temporal Coding
	Split-Time Temporal coding (STT)
	Proposed STT
	STT-based Acceleration
	Machine Learning Performance with STT

	Proposed Architecture
	Overview of the Proposed Architecture
	Integration Through-Time (ITT)
	Mapping to Systolic Array
	STT-based Layer Acceleration

	Experiments and Results
	Configurations and Setups
	STT: Temporal Information Compression
	ITT: Data Reuse
	Comprehensive Evaluations

	Summary and Discussions

	Conclusion
	Conclusion

	Bibliography

