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Abstract

The algebraic Brauer-Manin obstruction on Châtelet surfaces, degree 4 del Pezzo surfaces,
and Enriques surfaces

by

Bianca Lara Viray

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bjorn Poonen, Chair

We construct infinitely many Châtelet surfaces, degree 4 del Pezzo surfaces, and Enriques
surfaces that are everywhere locally solvable, but have no global rational points. The lack of
rational points on these surfaces is explained by an algebraic Brauer-Manin obstruction. The
Enriques surfaces arise as quotients of certain K3 surfaces that are ramified double covers of
a degree 4 del Pezzo surface with no rational points. We also construct an algebraic family of
Châtelet surfaces over an open subscheme of P1

Q such that exactly 1 Q-fiber has no Q-points.
This example is in stark contrast to the philosophy “geometry controls arithmetic”.



i

To Tony,
the best mathematical older sibling I could ever ask for.



ii

Contents

1 Introduction 1
1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Surfaces 3
2.1 Overview of the classification of surfaces . . . . . . . . . . . . . . . . . . . . 3
2.2 Conic bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Enriques surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Rational points 7
3.1 The Brauer group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Azumaya algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Torsors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Obstructions to the Hasse principle . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1 The Brauer-Manin obstruction . . . . . . . . . . . . . . . . . . . . . . 9
3.3.2 The descent obstruction . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.3 The étale-Brauer obstruction . . . . . . . . . . . . . . . . . . . . . . 11

4 Failure of the Hasse principle for characteristic 2 Châtelet surfaces 12
4.1 Proof of Theorem 4.0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Failure of the Hasse principle for degree 4 del Pezzo surfaces 16
5.1 Proof of Theorem 5.0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1.1 Global function field case . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Failure of the Hasse principle for Enriques surfaces 20
6.1 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Local solvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Absence of rational points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4 Algebraic Brauer set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



iii

7 A family of surfaces with exactly one pointless rational fiber 25
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Proof of Theorem 7.0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.2.1 Irreducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2.2 Local Solvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



iv

Acknowledgments

It is an honor to be able to thank my advisor, Bjorn Poonen, for the immense amounts
of guidance and support he has provided during my graduate studies. He has been integral
in this thesis and in my growth as a mathematician; his mathematical insight, patience, and
kindness are continually inspiring.

I also would like to give a special thanks to Anthony Várilly-Alvarado. His tireless
mentoring, teaching, and constant friendship have helped me enormously and I would not
be where I am today without him.

I have been extremely fortunate to have had numerous excellent mentors during my
graduate career. I thank Kristin Lauter, Diane MacLagan, and Ronald van Luijk for the
opportunities and support that they have provided me. I thank Matt Baker, Jon Hanke,
Martin Olsson, Bernd Sturmfels, and Ravi Vakil for the many pieces of advice they have
given me at various points during my graduate career.

I thank Kiril Datchev and Daniel Erman for being incredible friends and being there
whenever I needed them.

I thank the members of Unbounded Representation and the Noetherian Ring for fostering
a friendly and supportive community at Berkeley. It has been a pleasure and an honor to
work with them.

I thank my parents and my sisters for their constant love and encouragement and I thank
Cole for always being by my side, through everything.



1

Chapter 1

Introduction

Throughout this thesis, we are interested in determining whether X(k) 6= ∅ for a given
variety X over a global field k. Since X(k) ↪→ X(Ak), it is necessary that X(Ak) 6= ∅. If
the converse holds for all varieties in some set S, then we say that S satisfies the Hasse
principle. There are a smattering of classes of varieties that satisfy the Hasse principle, for
example genus 0 curves, quadric hypersurfaces in projective space, and cubic hypersurfaces
in at least 9-dimensional projective space over Q [Sko01, Thm 5.1.1]. However, as one may
have gathered from this list, it is expected that the varieties that satisfy the Hasse principle
are scarce.

If a class of varieties does not satisfy the Hasse principle, then we would like to understand
the obstructions that account for this failure. The guiding philosophy of this research is
summarized by the statement “Geometry controls arithmetic”. That is to say, the geometric
properties of a class of varieties should determine whether this class satisfies the Hasse
principle, and if not, the complexity of the obstructions that account for its failure.

The simplest type of obstruction is the algebraic Brauer-Manin obstruction. It is conjec-
tured that for curves and rational surfaces the algebraic Brauer-Manin obstruction explains
all failures of the Hasse principle [CT03,Poo06]. In Chapters 4 and 5, we construct many
examples of two kinds of rational surfaces, namely Châtelet surfaces and del Pezzo surfaces
of degree 4, that have an algebraic Brauer-Manin obstruction to the Hasse principle.

One expects that this obstruction is no longer sufficient to explain all failures of the Hasse
principle in the case of Enriques surfaces. However, there are no Enriques surfaces that are
known to have no rational points and no algebraic Brauer-Manin obstruction. In Chapter 6
we construct Enriques surfaces with an étale-Brauer obstruction from del Pezzo surfaces of
degree 4 and explain how this obstruction actually arises from an algebraic Brauer element.

In Chapter 7, we show that the “geometry controls arithmetic” philosophy does not apply
to all arithmetic properties, in particular the property of a variety having a Q-point. We
construct an algebraic family of Châtelet surfaces over an open subscheme of P1

Q such that
exactly 1 fiber has no rational point.
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1.1 Notation

Throughout, k will denote a field. If additional hypotheses on k are needed, they will
be stated at the beginning of the chapter or section. Let ksep denote a fixed separable
closure of k, let k denote a fixed algebraic closure, and let Gk denote the absolute Galois
group Gal(ksep/k). For a scheme X over k, let Xsep := X ×Spec k (Spec ksep) and let X :=
X ×Spec k

(
Spec k

)
. If k is a global field, let Ak denote the adèle ring of k, let Ok denote the

ring of integers, and, for any finite set of places S, let Ok,S denote the ring of S-integers. For
a place v of a global field k, let kv denote the completion, let Ov denote the ring of integers
of kv, and let Fv denote the residue field.

By k-variety we mean a separated scheme of finite type over k and by nice k-variety we
mean a smooth projective geometrically integral k-variety. We will sometimes omit mention
of k if it is obvious from context. By curve and surface we mean a smooth projective variety
of dimension 1 or 2 respectively (unless otherwise stated). For a scheme X over k, let Pic(X)
denote the Picard group and, if X is a smooth k-variety, let KX denote the canonical divisor.
For an integral scheme, let k(X) denote the function field, and for a point x ∈ X, let κ(x)
denote the residue field.

For any separable quadratic extension L/k and element b ∈ k×, let (L/k, b)2 denote the
rank 4 cyclic k-algebra

L⊕ L · y, where y2 = b and `y = yσ(`) for all ` ∈ L,

where σ is the nontrivial element in Gal(L/k). Recall that (L/k, b)2 is trivial in Br k if and
only if b ∈ NL/k (L). If the characteristic of k is different than 2, then there is some a ∈ k×
such that L = k (

√
a). In this case we also denote (L/k, b)2 by (a, b)2 and this algebra is

isomorphic to the quaternion algebra

k ⊕ k · i⊕ k · j ⊕ k · ij, where i2 = a, j2 = b, and ij = −ji.
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Chapter 2

Surfaces

In this thesis we focus on four particular kinds of surfaces: Châtelet surfaces, degree 4
del Pezzo surfaces, Enriques surfaces, and K3 surfaces. In order to give a sense of how the
surfaces fit together, we give a brief overview of the classification of surfaces. We also review
a construction of smooth proper models of certain conic bundles.

2.1 Overview of the classification of surfaces

The definitions and theorems in this chapter can be found in various sources. See, for
example, [Bea96,IS96] in the characteristic 0 case, and [Mum69,BM77,BM76] in the positive
characteristic case.

Definition 2.1.1. For a regular projective variety X, let φnK denote the rational map asso-
ciated to the complete linear system |nKX |. The Kodaira dimension of X

κ(X) =

{
−∞ if |nKX | = ∅ for all n ∈ Z>0,

maxn∈Z>0 dimφnK(X) otherwise.

The Kodaira dimension is a coarse measure of the geometric complexity of a variety. For
instance, curves with Kodaira dimension −∞, 0, or 1 correspond to curves with genus 0, 1
or ≥ 2 respectively. For surfaces, we have the following correspondence.

Theorem 2.1.2 (Classification of surfaces). Let X be a k-minimal surface, that is to say, X
has the property that any birational morphism X → Y where Y is regular is an isomorphism.
Then exactly one of the following holds:

1. There exists an integral curve C on X such that KX · C < 0. In this case X is a
geometrically ruled surface or a geometrically rational surface and κ(X) = −∞.

2. The canonical divisor KX is numerically equivalent to 0, or, equivalently, 12KX is
linearly equivalent to 0. Either condition implies that κ(X) = 0.
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3. κ(X) = 1 and X is either geometrically elliptic or geometrically quasi-elliptic. This
means that there exists a morphism X → C where the generic fiber is a smooth genus
1 curve (elliptic), or a singular rational curve with arithmetic genus 1 (quasi-elliptic).
The latter case only occurs in characteristic 2 or 3.

4. X is a surface of general type and κ(X) = 2.

The surfaces in classes (1) and (2) have been studied and classified further. The geometric
genus, g = H0(X,KX), of a geometrically ruled surface agrees with the geometric genus
of the curve C that gives a ruling of X; that is to say, C is the unique curve such that
there is a smooth morphism X → C with the property that the generic fiber is rational.
Geometrically ruled surfaces of genus 0 are geometrically rational and thus fall under the
following classification theorem of Iskovskikh.

Theorem 2.1.3 ([Isk79]). Let X/k be a geometrically rational surface. Then X is k-
birational to a del Pezzo surface or a conic bundle.

We will give a construction of a particular type of conic bundle in §2.2. For more infor-
mation on rational varieties, see [MT86].

In order to further classify surfaces of Kodaira dimension 0, we need to examine additional
numerical invariants, namely Betti numbers and the topological Euler characteristic.

Definition 2.1.4. The ith Betti number is denoted bi. If char k = 0 then bi is the dimension
of the C-vector space given by singular cohomology H1(Xan,C). If char k = p > 0, then bi is
the dimension of the Q`-vector space given by étale cohomology Hi

et(X,Q`) where ` is a prime
different from p. In either case, the topological Euler characteristic is χtop(X) =

∑
i(−1)ibi.

Theorem 2.1.5. Let X be a nice surface of Kodaira dimension 0. Then X satisfies exactly
one of the following.

1. b1 = 0, b2 = 22, χtop(X) = 24 and χ(OX) = 2. In this case KX ∼ 0 and X is called a
K3 surface.

2. b1 = 0, b2 = 10, χtop(X) = 12 and χ(OX) = 1. This implies that 2KX ∼ 0, and if the
characteristic of k is different from 2, KX � 0. In this case, we call X an Enriques
surface.

3. b1 = 4, b2 = 6, χtop(X) = 0 and χ(OX) = 0. In this case X is an abelian surface.

4. b1 = 2, b2 = 2, χtop(X) = 0 and χ(OX) = 0. In this case X is a bielliptic surface.

For further information on these surfaces, there is a wealth of references to choose from,
such as [BHPVdV04,CD89, IS96,Mum08]. In §2.3, we review some constructions and prop-
erties of Enriques surfaces.
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2.2 Conic bundles

Let E be a rank 3 vector sheaf on a k-variety B. A conic bundle C over B is the zero
locus in PE of a nowhere vanishing zero section s ∈ Γ(PE , Sym2(E)). A diagonal conic bundle
is a conic bundle where E = L1 ⊕ L2 ⊕ L3 and s = s1 + s2 + s3, si ∈ Γ(PE ,L⊗2

i ).
In this thesis we focus on one particular class of conic bundles: Châtelet surfaces. Over a

field of characteristic different from 2, Châtelet surfaces are defined to be smooth projective
models of an affine hypersurface

y2 − az2 = P (x),

where a ∈ k× and P (x) is a separable polynomial of degree 3 or 4. We can construct these
models in the following way.

Let a ∈ k×, and let P (x) ∈ k[x] be a separable polynomial of degree 3 or 4. Consider the
diagonal conic bundle X given by B = P1,L1 = O,L2 = O,L3 = O(2), s1 = 1, s2 = −a, s3 =
−w4P (x/w). This smooth conic bundle contains the affine hypersurface y2 − az2 = P (x) ⊂
A3 as an open subscheme and so we say that X is the Châtelet surface given by

y2 − az2 = P (x).

Note that since P (x) is not identically zero, X is an integral surface.
This construction fails in characteristic 2 due to the inseparability of y2 − az2. Thus

to define Châtelet surfaces in characteristic 2, we replace y2 − az2 with its Artin-Schreier
analogue y2 + yz + az2. We can construct these models as a conic bundle where E =
O⊕O⊕O(2) and s = s1− s2 where s1 is a global section of Sym2(O⊕O) and s2 is a global
section of O(2)⊗2 = O(4). Take a ∈ k and P (x) a separable polynomial over k of degree 3
or 4. If s1 = y2 + yz + az2 and s2 = w4P (x/w), then X contains the affine variety defined
by y2 + yz + az2 = P (x) as an open subset.

Lemma 2.2.1. X is smooth over k.

Proof. Let π be the morphism X → P1. Since P1 is smooth over k, X is smooth over k at all
points where π is smooth. Therefore it remains to check smoothness at the singular points in
the fibers where w4P (x/w) = 0. Except when P (x) has degree 3, all of these singular points
are contained in the subscheme isomorphic to y2 + yz + az2 = P (x) ⊂ A3. Therefore, we
can use the Jacobian criterion to show smoothness. If P (x) is degree 3, then we can make a
change of variables on P1 to interchange 0 and ∞ and then use the Jacobian criterion.

We say that X is the Châtelet surface given by

y2 + yz + az2 = P (x).

As above, since P (x) is not identically zero, X is integral.
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2.3 Enriques surfaces

In this section, we assume that the characteristic of k is different from 2. Over fields of
characteristic 2, non-classical Enriques surfaces exist. For more details on these non-classical
surfaces see [CD89].

We are interested in the study of Enriques surfaces; however, as the following theorem
shows, the study of Enriques surfaces is intimately related to the study of certain K3 surfaces.
Recall that an invertible sheaf L of order 2 on a variety X corresponds to an étale double
cover f : Y → X such that f ∗L ∼= OY .

Theorem 2.3.1. Let X be an Enriques surface and f : Y → X the étale double cover
corresponding to KX ∈ (PicX) [2]. Then Y is a K3 surface.

Conversely, the quotient of a K3 surface by a fixed-point free involution is an Enriques
surface.

Proof. The first statement is Proposition 1.3.1 of [CD89]. For the converse, let Y be a K3
surface, let X be the quotient of Y by the fixed-point free involution, and let π : Y → X be
the natural map. Since π∗KX = KY = OY , KX is numerically trivial and κ(X) = 0. We
also have that χtop(X) = 1

2
χtop(Y ) = 12. Thus, by Theorem 2.1.5, we have completed the

proof.

Example 2.3.2. Let Y be the variety

V (〈Pi(s, t, u)−Qi(x, y, z) : i = 0, 1, 2〉) ⊂ P5,

where degPi = degQi = 2 for all i and the polynomials Pi, Qi are generic. Then one can
show that Y is a K3 surface. Let ι denote the involution on P5

ι : (s : t : u : x : y : z) 7→ (−s : −t : −u : x : y : z).

Due to our genericity assumption, ι|Y has no fixed points so X := Y/ι is an Enriques surface.

While the set of complete intersections of 3 quadrics is not dense in the moduli space
of K3 surfaces, a theorem proved independently by Cossec and Verra shows that, from the
point of view of Enriques surfaces, it suffices to consider these examples.

Theorem 2.3.3 ([Cos83,Ver83]). Let Y be a K3 surface over an algebraically closed field
with a fixed point free involution ιY . Then there exists a regular map of degree 1, ψ : Y → P5

such that ψ(Y ) is the complete intersection of 3 quadrics given in Example 2.3.2. In addition,
ψ ◦ ιY = ι, with ι as in the example above, and ψ(Y ) does not intersect the fixed locus of ι.
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Chapter 3

Rational points

In this chapter, we review some possible obstructions to the Hasse principle, namely the
Brauer-Manin obstruction (§3.3.1), the descent obstruction (§3.3.2), and the étale-Brauer
obstruction (§3.3.3). In order to define these obstructions, we first review some facts about
the Brauer group (§3.1) and torsors (§3.2). Most of the information in this section can be
found in [Sko01]; we give an alternate source when needed.

3.1 The Brauer group

The (cohomological) Brauer group of a scheme X, denoted BrX, is the étale cohomology
group H2

et (X,Gm). Note that if X = Spec k then this agrees with the usual notion of Br k,
namely H2 (Gk, k

sep×). If X is a regular quasi-projective variety over a field, then the Brauer
group can be identified with the group of Azumaya algebras up to equivalence; we explain
this further in §3.1.1.

We say that an element A ∈ BrX is algebraic if

A ∈ ker (BrX → BrXsep) ,

and transcendental otherwise. The subgroup of algebraic elements is denoted Br1X. The
Hochschild-Serre spectral sequence relates the algebraic part of the Brauer group to Galois
cohomology by the following long exact sequence:

0 → PicX → (PicXsep)Gk → Br k → Br1X
r→ H1(Gk,PicXsep) → H3(k,Gm).

If k is a global field, then H3(k,Gm) = 0 [NSW08, 8.3.11(iv), 8.3.17] so

Br1X

Br0X

∼−→ H1(Gk,PicXsep), where Br0X := im Br k.

This map is unfortunately very difficult to explicitly compute and even harder to explicitly
invert. Nevertheless, this isomorphism is usually the main tool used when studying the
algebraic part of the Brauer group.
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If X is a regular noetherian integral scheme, the purity theorem gives a method of testing
whether an element of Brk(X) extends to an element of BrX.

Theorem 3.1.1 (Gabber, [Fuj02]). Let X be a regular noetherian integral scheme. Then
the following sequence is exact

0 → BrX → Brk(X) →
⊕

Y codim 1

H1(κ(Y ),Q/Z)′,

where H1(κ(Y ),Q/Z)′ means that we ignore the p-primary part if κ(Y ) is imperfect of char-
acteristic p.

In particular, this theorem implies that if Z ⊆ X has codimension greater than or equal
to 2 then BrX ∼= BrX \ Z.

3.1.1 Azumaya algebras

The Brauer group of a field k can be defined as the group of central simple algebras over
k up to equivalence. The notion of a central simple algebra over a field is generalized to an
arbitrary base scheme by Azumaya algebras.

Definition 3.1.2. An Azumaya algebra A is an OX-algebra A that is coherent as an OX-
module and that the fiber A ⊗OX

κ(x) is a central simple algebra over κ(x) for all points
x ∈ X.

We say that two Azumaya algebras A,A′ are similar (A ∼ A′) if there exist locally free
coherent OX-modules E and E ′ such that

A⊗OX
EndOX

(E) ∼= A′ ⊗OX
EndOX

(E ′)

Definition 3.1.3. The Azumaya Brauer group of X, denoted BrAzX, is the set of Azumaya
algebras up to similarity. It is a group under tensor product.

Grothendieck showed that the Azumaya Brauer group always injects into the cohomo-
logical Brauer group [Gro68a, Eqn. 2.1]. With additional assumptions on X, we have the
following stronger relationship.

Theorem 3.1.4 (Gabber, de Jong [dJ]). If X has an ample invertible sheaf, then the natural
map BrAzX ↪→ BrX induces an isomorphism

BrAzX ∼= (BrX)tors .

Together Theorems 3.1.1 and 3.1.4 imply that if X is a quasi-projective variety over a
field, then

BrAzX ∼= (BrX)tors = BrX.
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3.2 Torsors

Let G be an fppf group scheme over a scheme S.

Definition 3.2.1. A (right) S-torsor under G is an fppf S-scheme X equipped with a right
G-action such that the morphism

X ×S G → X ×S X
(x, g) 7→ (x, xg)

is an isomorphism.

In this thesis, we are concerned with the case where G is a linear algebraic group over k.
In this case, since G is affine, isomorphism classes of S-torsors under G are classified by the

pointed set defined by Cech cohomology Ȟ
1

fppf (S,G)[Sko01, §2.2].

Lemma 3.2.2. [Sko01, Lemma 2.2.3] Let X be a right S-torsor under G and F be an affine
S-scheme equipped with a left action of G. Then the quotient of X ×S F by the action of
G given by (x, f) 7→ (xg−1, gf) exists as an affine S-scheme Y ; in particular, there exists a
morphism of S-schemes X ×S F → Y whose geometric fibers are orbits of G.

Definition 3.2.3. The scheme Y is called the contracted product of X and F with respect
to G and it is denoted X ×G

S F or X ×G F . It is also referred to as the twist of F by X and
denoted FX .

3.3 Obstructions to the Hasse principle

3.3.1 The Brauer-Manin obstruction

For any scheme T and point x ∈ X(T ), the functoriality of the Brauer group induces a
map

BrX → BrT, denoted A 7→ evA(x).

For a fixed element A ∈ BrX, using the above induced map and class field theory, we obtain

X(k) //

evA

��

X(Ak)

evA
��

ϕA

((QQQQQQQQQQQQQQ

0 // Br k //
⊕

v Br kv

P
invv // Q/Z // 0

(3.3.1)

Remark 3.3.1. A priori, evA (X(Ak)) ⊆
∏

v Br kv. However, one can show that for any
{Pv} ∈ X(Ak), evA (Pv) = 0 for almost all v, so the image actually lies in the direct sum.
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The diagram shows that X(k) ⊆ ϕ−1
A (0) for any A ∈ BrX. In particular

X(k) ⊆ X(Ak)
Br1 :=

⋂
A∈Br1 X

ϕ−1
A (0) , and X(k) ⊆ X(Ak)

Br :=
⋂

A∈Br X

ϕ−1
A (0) .

We say there is a Brauer-Manin obstruction to the Hasse principle if

X(Ak) 6= ∅ and X(Ak)
Br = ∅.

The obstruction is termed algebraic if, in addition, X(Ak)
Br1 = ∅.

The continuity of evA is often needed when computing Brauer-Manin obstructions. While
this result is well-known, it is difficult to find in the literature so we give a proof for the
reader’s convenience.

Lemma 3.3.2. Let kv be a local field and let V be a smooth projective scheme over kv. For
any [B] ∈ BrV ,

evB : V (kv) → Br kv

is continuous for the discrete topology on Br kv.

Proof. To prove continuity, it suffices to show that ev−1
B (A) is open for any A ∈ Br kv. By

replacing [B] with [B]− [A], we reduce to showing that ev−1
B (0) is open. Since V is a smooth

projective scheme over a field, BrAz V = BrV , so without loss of generality we can assume
that B is an Azumaya algebra.

Fix a representative B of the element [B] ∈ BrAz V . Let n2 denote the rank of B and let
fB : YB → V be the PGLn-torsor associated to B. Then we observe that the set ev−1

B (0) is
equal to fB(YB(kv)) ⊂ V (kv). This set is open by the implicit function theorem [Igu00, Thm.
2.2.1].

3.3.2 The descent obstruction

Let G be a linear algebraic group over k. An element x ∈ X(k) induces a map

Ȟ
1

fppf(X,G) → Ȟ
1

fppf(k,G), denoted τ 7→ τ(x).

For anyX-torsor underG, f : Y → X, let τY denote the associated element of Ȟ
1

fppf (X,G).
Then we have the following partition of rational points

X(k) =
∐

σ∈Ȟ
1
fppf(k,G)

{x ∈ X(k) : τY (x) = σ} .

Using the twisted torsor construction as explained in 3.2, one can show that [Sko01, §2.2, p.
22]

{x ∈ X(k) : τY (x) = σ} = fσ (Y σ(k)) .
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Thus, we can rewrite the partition as follows.

X(k) =
∐

[σ]∈Ȟ
1
fppf(k,G)

fσ (Y σ (k))

Therefore X(k) is contained in the descent set

X(Ak)
descent :=

⋂ ⋃
[σ]∈Ȟ

1
fppf(k,G)

fσ (Y σ (Ak)) ,

where the intersection is taken over all linear algebraic groups G and all torsors f : Y → X
under G. We say there is a descent obstruction to the Hasse principle if

X(Ak) 6= ∅ and X(Ak)
descent = ∅.

We note that if we instead take the intersection over only connected linear algebraic
groups, the obstruction we obtain is no stronger than the Brauer-Manin obstruction, at
least in the case of geometrically integral varieties over a number field [Har02, Thm. 2(2)].
Since an arbitrary linear algebraic group is the extension of a finite étale group by a connected
linear algebraic group, this leads us to a study of the étale-Brauer obstruction.

3.3.3 The étale-Brauer obstruction

The following definitions can be found in [Poo08]. Let G be a finite étale group over
k. Using the same partition of rational points as described in §3.3.2, we see that X(k) is
contained in the étale-Brauer set

X(Ak)
et,Br :=

⋂ ⋃
[σ]∈H1

fppf(k,G)

fσ
(
Y σ (Ak)

Br
)
,

where the intersection is taken over all torsors f : Y → X under finite étale groups G. We
say there is an étale-Brauer obstruction to the Hasse principle if

X(Ak) 6= ∅ and X(Ak)
et,Br = ∅.

Harari’s result [Har02, Thm. 2(2)] (mentioned above in §3.3.2) leads us to ask if the étale-
Brauer obstruction is at least as strong as the descent obstruction. Demarche has answered
this question in the affirmative, for nice varieties over a number field [Dem09]. Under the
same assumptions, Skorobogatov showed that the reverse inclusion also holds [Sko09, Cor.
1.2], thereby showing that

X(Ak)
et,Br = X(Ak)

descent

for any nice variety X over a number field k.
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Chapter 4

Failure of the Hasse principle for
characteristic 2 Châtelet surfaces

Recently Poonen showed that, for any global field k of characteristic different from 2,
there exists a Châtelet surface over k that violates the Hasse principle [Poo09, Prop 5.1 and
§11]. We extend Poonen’s result to characteristic 2 by proving the following.

Theorem 4.0.3. Let k be a global field of characteristic 2. There exist infinitely many
Châtelet surfaces over k with a Brauer-Manin obstruction to the Hasse principle.

The proof of Theorem 4.0.3 is constructive. The difficulty in the proof lies in finding
suitable equations so that the Brauer set is easy to compute and empty.

Interestingly, even though the obstruction for the Châtelet surface is Brauer-Manin, Poo-
nen showed that the existence of such a surface can be used to show that the étale-Brauer ob-
struction is insufficient to explain all failures of the Hasse principle [Poo08]. While Poonen’s
paper assumes that the characteristic is different from 2, all of the arguments go through in
characteristic 2 by using Theorem 4.0.3 instead of [Poo09, Prop. 5.1 and §11] and replacing
any polynomial of the form by2 + az2 by its Artin-Schreier analogue, by2 + byz + az2.

4.1 Proof of Theorem 4.0.3

Let k be a global field of characteristic 2. Let κ denote its constant field and let n denote
the order of κ×. Choose γ ∈ κ such that T 2 + T + γ is irreducible in κ[T ]. Fix a prime
p of k of odd degree and let S = {p}. By class field theory and the Chebotarev density
theorem [Neu99, Thm 13.4, p. 545], we can find elements a, b ∈ Ok,S that generate prime
ideals of even and odd degree, respectively, such that a ≡ γ (mod b2Ok,S). These conditions
imply that vp(a) is even and negative and that vp(b) is odd and negative.
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Define

f(x) = a−4nbx2 + x+ ab−1,

g(x) = a−8nb2x2 + a−4nbx+ a1−4n + γ.

Note that g(x) = a−4nbf(x) + γ. Let X be the Châtelet surface given by

y2 + yz + γz2 = f(x)g(x). (∗)

Lemma 4.1.1 shows that X(Ak) 6= ∅, and Lemma 4.1.2 shows that X(Ak)
Br = ∅. Together,

these show that X has a Brauer-Manin obstruction to the Hasse principle.

Lemma 4.1.1. The Châtelet surface X has a kv-point for every place v.

Proof. Suppose that v = va. Since a generates a prime of even degree, the left-hand side
of (∗) factors in kv[y, z]. Therefore, there is a solution over kv.

Now suppose that v 6= va. Since y2 +yz+az2 is a norm form for an unramified extension
of kv for all v, in order to prove the existence of a kv-point, it suffices to find an x ∈ kv

such that the valuation of the right-hand side of (∗) is even. Suppose further that v 6= vp, vb.
Choose x such that v(x) = −1. Then the right-hand side of (∗) has valuation −4 so there
exists a kv-point.

Suppose that v = vp. Let π be a uniformizer for v and take x = πa2/b. Then

f(x) = b−1a4−4nπ2 + a2b−1π + ab−1.

Since a has negative even valuation and n ≥ 1, we have v(f(x)) = v(a2b−1π) which is even.
Now let us consider

g(x) = a4−8nπ2 + a2−4nπ + a1−4n + γ.

By the same conditions mentioned above, all terms except for γ have positive valuation.
Therefore v(g(x)) = 0.

Finally suppose that v = vb. Take x = 1
b
+ 1. Then

f(x) =
1

b

(
a−4n + a+ 1 + b+ a−4nb2

)
.

Note that by the conditions imposed on a, (a−4n + a+ 1 + b+ a−4nb2) ≡ γ+b (mod b2Ok,S).
Thus v(f(x)) = −1. Now consider

g(x) = a−8n + a−8nb2 + a−4n + a−4nb+ a1−4n + γ

modulo b2Ok,S. By the conditions imposed on a, we have

g(x) ≡ 1 + 1 + b+ γ + γ ≡ b (mod b2Ok,S).

Thus v(g(x)) = 1, so v (f(x)g(x)) is even.
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Let L = k[T ]/(T 2 +T +γ) and let A denote the class of the cyclic algebra (L/k, f(x))2 in
Br k(X). Using the defining equation of the surface, we can show that (L/k, g(x))2 is also a
representative for A. Since g(x)+a−4nbf(x) is a v-adic unit, g(x) and f(x) have no common
zeroes. Since A is the class of a cyclic algebra of order 2, the algebra (L/k, f(x)/x2)2

is another representative for A. Note that for any point P of X, there exists an open
neighborhood U containing P such that one of f(x), g(x), f(x)/x2 is a nowhere vanishing
regular function on U . Therefore, A is an element of BrX.

Lemma 4.1.2. Let Pv ∈ X(kv). Then

invv(evA(Pv)) =

{
1/2 if v = vb,

0 otherwise.

Therefore X(Ak)
Br = ∅.

Proof. The surface X contains an open affine subset that can be identified with

V (y2 + yz + az2 − P (x)) ⊆ A3.

Let X0 denote this open subset. Since evA is continuous by Lemma 3.3.2 and invv is an
isomorphism onto its image, it suffices to prove that invv takes the desired value on the
v-adically dense subset X0(kv) ⊂ X(kv).

Since L/k is an unramified extension for all places v, evaluating the invariant map reduces
to computing the parity of the valuation of f(x) or g(x).

Suppose that v 6= va, vb, vp. If v(x0) < 0, then by the strong triangle inequality,
v(f(x0)) = v(x2

0). Now suppose that v(x0) ≥ 0. Then both f(x0) and g(x0) are v-adic
integers, but since g(x)− a−4nbf(x) = γ either f(x0) or g(x0) is a v-adic unit. Thus, for all
Pv ∈ X0(kv), invv(A(Pv)) = 0.

Suppose that v = va. Since a generates a prime of even degree, T 2 + T + γ splits in ka.
Therefore, (L/k, h) is trivial for any h ∈ ka(V )× and so invv(A(Pv)) = 0 for all Pv ∈ X0(kv).

Suppose that v = vp. We will use the representative (L/k, g(x)) ofA. If v(x0) < v(a4nb−1)
then the quadratic term of g(x0) has even valuation and dominates the other terms. If
v(x0) > v(a4nb−1) then the constant term of g(x0) has even valuation and dominates the
other terms. Now assume that x0 = a4nb−1u, where u is v-adic unit. Then we have

g(x0) = u2 + u+ γ + a1−4n.

Since γ was chosen such that T 2 +T +γ is irreducible in F[T ] and p is a prime of odd degree,
T 2 +T +γ is irreducible in Fp[T ]. Thus, for any v-adic unit u, u2 +u+γ 6≡ 0 (mod p). Since
a ≡ 0 mod p, this shows g(x0) is a v-adic unit. Hence invv(A(Pv)) = 0 for all Pv ∈ X0(kv).

Finally suppose that v = vb. We will use the representative (L/k, f(x)) of A. If v(x0) <
−1 then the quadratic term has odd valuation and dominates the other terms in f(x0). If
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v(x0) > −1 then the constant term has odd valuation and dominates the other terms in
f(x0). Now assume x0 = b−1u where u is any v-adic unit. Then we have

f(x0) =
1

b

(
a−4nu2 + u+ a

)
.

It suffices to show that a−4nu2 + u+ a 6≡ 0 (mod bOk,S). Since a ≡ γ (mod bOk,S), we have

a−4nu2 + u+ a ≡ u2 + u+ γ.

Using the same argument as in the previous case, we see that a−4nu2+u+a 6≡ 0 (mod bOk,s)
and thus v(g(x0)) = −1. Therefore invv(A(Pv)) = 1

2
for all Pv ∈ X0(kv).
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Chapter 5

Failure of the Hasse principle for
degree 4 del Pezzo surfaces

In 1975, Birch and Swinnerton-Dyer produced two examples of del Pezzo surfaces of
degree 4 over Q that have a Brauer-Manin obstruction to the Hasse principle [BSD75, Thm.
3]. We generalize their result to the following.

Theorem 5.0.3. Let k be any global field of characteristic not 2. There exist infinitely many
degree 4 del Pezzo surfaces with Brauer-Manin obstructions to the Hasse principle.

The proof of Theorem 5.0.3 is constructive. For ease of exposition, we first give the proof
in the case that k is a number field, and then we describe the changes that must be made in
the case of positive characteristic in §5.1.1.

5.1 Proof of Theorem 5.0.3

Let k be a number field. By class field theory and the Chebotarev density theorem [Neu99,
Thm 13.4, p. 545], there exists a totally positive element a ∈ k such that a generates a prime
ideal, −1 is a square in ka, the residue field of ka has at least 3 elements, and all primes
lying over 2, 3, and 5 split completely in k(

√
a)/k. Let b ∈ Ok be an a-adic unit that is a

nonsquare in ka. Let c ∈ Ok be an element such that b2c+ b ≡ 1 (mod a). Note that these
conditions imply that c and b2c2 − 1 are a-adic integers.

Let X be the intersection of the following two quadrics in P4.

st = x2 − ay2(
s− b2ct

) (
cs+ (1− b2c2)t

)
= x2 − az2

Since 1 − b2c2 is nonzero, X is smooth and thus is a del Pezzo surface of degree 4. In
Lemma 5.1.1, we show that X has everywhere local points and in Lemma 5.1.2, we show
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that X has a Brauer-Manin obstruction to the existence of rational points. Together these
show that X fails to satisfy the Hasse principle.

Lemma 5.1.1. X has a kv-point for every place v.

Proof. Let v be archimedean or a place lying over 2, 3 or 5. By our assumption on a,
√
a ∈ kv.

Thus (0 : 0 :
√
a : 1 : 1) is a kv-point of X.

Now suppose that v is a place dividing c that lies over a prime which is at least 7. The
point (−a : 1 : 0 : 0 : 1) is a non-singular point of Fv and thus lifts to a kv-point.

Now suppose that v is a finite place dividing b(b2c2 − 1) that does not divide 30ac. Let
C1, C2 be the arithmetic genus 1 curves over k obtained by intersecting X with V (t− y) and
V (t− z) respectively. If C1 has bad reduction at a place dividing b then 2ac− 2 has positive
valuation at that place. If C2 has bad reduction at a place dividing b then 8ac − 2 has
positive valuation at that place. Thus for v dividing b under the above assumptions, then
at least one of C1, C2 has good reduction at v. A similar argument shows that for v|b2c2 − 1
and v - 30ac, at least one of C1, C2 has good reduction at v. Thus, by Hensel’s Lemma and
the Weil conjectures, either C1 or C2 has a kv-point. Therefore, X has a kv-point.

Now let v be a finite place lying over a prime greater than 5 and that v - acb(b2c2 − 1).
Then v is a place of good reduction, and so the Weil conjectures imply that, since #Fv ≥ 7,
#X(Fv) 6= ∅. Thus, X has at least one smooth Fv-point, which, by Hensel’s lemma, lifts to
a kv-point.

Lastly, suppose that v = a. The equations modulo a are

x2 ≡ st (mod a)
0 ≡ cs2 − 2b2c2st− b2c(1− b2c2)t2 (mod a)

≡ c
(
s− 2b2c+

√
4b2

2
t
) (

s− 2b2c−
√

4b2

2
t
)

(mod a)

≡ c (s− t(b2c+ b)) (s− t(b2c− b)) (mod a)

Since b2c + b ≡ 1 (mod a), (1 : 1 : 1 : 0 : 0) is a smooth Fa-point of X and thus lifts to a
ka-point of X.

Let A denote the class of the quaternion algebra
(
a, s−b2ct

s

)
2

in Br k(X). Using the

defining equations of the surface, we conclude that(
a,
cs+ (1− b2c2)t

s

)
2

,

(
a,
cs+ (1− b2c2)t

t

)
2

, and

(
a,
s− b2ct

t

)
2

are also representatives for A. Since for any point P of X ∩ (D+(s) ∪D+(t)) there exists

a neighborhood U containing P such that one of s−b2ct
s

, s−b2ct
t
, cs+(1−b2c2)t

s
, cs+(1−b2c2)t

t
is a

nowhere vanishing regular function, A is an element of Br (X ∩ (D+(s) ∪D+(t))). The
subscheme X ∩ V (s, t) is codimension 2 in X so, by the Purity theorem, A extends to
an element of BrX. We will show that A gives a Brauer-Manin obstruction to the Hasse
principle.
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Lemma 5.1.2. Let Pv ∈ X(kv). Then

invv (evA(Pv)) =

{
1/2 if v = va,

0 otherwise.

Therefore X(Ak)
A = ∅.

Proof. By Lemma 3.3.2, it suffices to show the above formula for all Pv ∈ (X ∩D+(u, v)) (kv).
Suppose that v is archimedean. Since a is totally positive, it is a square in kv. Thus, A is
trivial for all points Pv and invv (evA(Pv)) = 0.

Now suppose that v is a finite prime different from a. Since kv(
√
a)/kv is an unramified

extension, it suffices to show that one of s−b2ct
s

, s−b2ct
t
, cs+(1−b2c2)t

s
, cs+(1−b2c2)t

t
has even valu-

ation. If v(s) < v(t), then v
(

s−b2ct
s

)
= 0. Now assume that v(s) ≥ v(t). Then s−b2ct

t
and

cs+(1−b2c2)t
t

are both v-adically integral. Since cs+(1−b2c2)t
t

− c s−b2ct
t

= 1, by the strong triangle
equality, one of these two values is a v-adic unit. Hence invv (invA(Pv)) = 0.

Lastly, suppose that v = va. Since ka(
√
a)/ka is a ramified extension, it suffices to show

that the reduction modulo a of s−b2ct
s

is not a square in Fa. Let (s : t : x : y : z) ∈ X(ka).
After scaling we may assume that s, t, x, y, z ∈ Oa and that at least one coordinate is an
a-adic unit. We note that the s, t and x-coordinates must be a-adic units so, after scaling,
we may assume x = 1. Modulo a, we have the following system of equations,

st = 1, cs2 − 2b2c2st+ b2c(b2c2 − 1)t2 = 0.

By eliminating t from the second equation, we see that s2 ≡ b2c± b. Thus

s− b2ct

s
=
s2 − b2cst

s2
=
b2c± b− b2c

s2
=
±b
s2
,

which, by our assumption on b, is never a square. Therefore, invv (evA(Pv)) = 1/2.

5.1.1 Global function field case

Let k be a global field of characteristic different from 2. Fix a place ∞ of k, and let Ok

be the ring of elements integral at all places except ∞. Let a ∈ Ok be such that a generates
a prime ideal, −1 is a square in ka, and ∞ and all primes with residue field consisting of less
than 6 elements split completely in k(

√
a)/k. Let b and c satisfy the same assumptions as

above. Then the same statements hold, with slight modifications to the proofs as explained
below.

Lemma 5.1.2 goes through exactly as stated. Consider Lemma 5.1.1. The first case (v
archimedean or a place lying over 2, 3, or 5) is replaced with the case where v is ∞ or such
that #Fv < 6. Then the rest of the proof goes through unless char k = 3 or 5. If char k | 15,
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then we need a new argument for the places dividing b(b2c2 − 1) that do not divide 2ac.
Instead of considering the curves obtained by intersecting X with V (t − y) and V (t − z),
now let C1, C2 be the arithmetic genus 1 curves obtained by intersecting X with V (t+y+z)
and V (t + z). By a similar argument, we see that at most one of C1, C2 has bad reduction
at v, so by the Weil Conjectures and Hensel’s Lemma, at least one of C1, C2 has a kv-point.
Therefore X has a kv-point.
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Chapter 6

Failure of the Hasse principle for
Enriques surfaces

In 2007, Cunnane showed that Enriques surfaces need not satisfy the Hasse principle by
constructing a family of surfaces such that the K3 double covers and all of their twists had
no adelic points [Cun07]. He shows that whenever a K3 double cover and all of its twists
have no adelic points the lack of rational points on the Enriques surface is caused by an
algebraic Brauer-Manin obstruction.

We construct a family of Enriques surfaces with no rational points and such that each
K3 double cover has local points everywhere. We show that these counterexamples to the
Hasse principle are explained by an algebraic Brauer-Manin obstruction.

6.1 Main result

Let d be a nonzero squarefree integer and define Yd to be the K3 surface in P5
Q cut out

by the following quadrics

st = x2 − 5y2

(s+ t)(s+ 2t) = x2 − 5z2

du2 = 10x2 − 3y2 + z2.

Let ι be the involution (s : t : u : x : y : z) 7→ (−s : −t : −u : x : y : z). Since ι|Yd
has no

fixed points, the quotient Xd := Yd/ι is an Enriques surface. We let fd denote the natural
map Yd → Xd. Let P = {2, 3, 5, 7, 11, 13, 17, 19, 23, 41, 383,∞} and let Σ = {d ∈ Z | d ∈
Z×2

v for all v ∈ P and p - d for all p < 98}.
Theorem 6.1.1. Assume that d ∈ Σ. Then Yd(AQ) 6= ∅ and Xd(Q) = ∅.

In §6.2 we show that Xd has local points everywhere and in §6.3 we show that Xd has
no Q-points. Together these complete the proof of Theorem 6.1.1. In §6.4 we show that this
lack of rational points is explained by an algebraic Brauer-Manin obstruction.
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6.2 Local solvability

Proposition 6.2.1. Yd(AQ) 6= ∅ for all d ∈ Σ.

Proof. Since Yd is projective, it is equivalent to prove that Yd(Qv) is nonempty for all com-
pletions Qv of Q.

If v is a finite prime of good reduction and v ≥ 22, then by the Weil conjectures and
Hensel’s lemma Yd has a Qv-point.

So it remains to consider the archimedean place, the finite primes less than 22 and the
primes of bad reduction of Yd, which are 2, 3, 5, 7, 41, 383 and the primes dividing d.

Now assume that v is a finite prime which divides d. Consider the smooth genus 5 curve
Z = V (u) ∩ Yd. The curve Z has good reduction at all primes dividing d. Since all primes
dividing d are at least 98, the Weil conjectures and Hensel’s lemma show that Z(Qv) 6= ∅
and thus Yd(Qv) 6= ∅.

One can check that the only places remaining are those in P . If v ∈ P then, by as-
sumption, d is in Q×2

v . Also, if v 6= 2 then one of −1, 5,−5 is in Q×2
v . Therefore, one of the

following is a Qv-point

(1 : 1 : 3
√

1/d : 1 : 0 :
√
−1), (10 : −10 : 6

√
5/d : 5 : 5 :

√
5), (5 : 0 :

√
−5/d : 0 : 0 :

√
−5).

If v = 2 then (−25 : 5 :
√
−135/d : 0 : 5 : 2

√
−15) is a Qv-point. This completes the

proof.

6.3 Absence of rational points

By [Sko01, Form. 2.12], we have

Xd(Q) =
⋃

σ∈H1(Q,Z/2Z)

fσ
d (Y σ

d (Q)) .

Any element σ ∈ H1(Q,Z/2Z) = Q×/Q×2 can be represented by a squarefree integer e.
The associated twist, which we will denote fd,e : Yd,e → Xd, is given by the vanishing of the
following quadrics in P5

est = x2 − 5y2 (6.3.1)

e(s+ t)(s+ 2t) = x2 − 5z2 (6.3.2)

edu2 = 10x2 − 3y2 + z2. (6.3.3)

We will prove that if 5 - d then for all squarefree integers e, Yd,e has no rational points
and therefore obtain

Proposition 6.3.1. If 5 - d, then Xd(Q) = ∅.
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For any nonzero squarefree integer e, define Se to be the vanishing locus of

est = x2 − 5y2

e(s+ t)(s+ 2t) = x2 − 5z2

in P4. The surface Se is a del Pezzo surface of degree 4 and there is an obvious projection
morphism πd,e : Yd,e → Se. Therefore if Se(Q) = ∅, then Yd,e(Q) = ∅ for all d.

Lemma 6.3.2. Let e be any squarefree integer not divisible by 2. Then Se and S2e are
isomorphic. In particular,

Se(Q) = ∅ ⇐⇒ S2e(Q) = ∅.

Proof. One can easily check that (s : t : x : y : z) 7→ (2t : s : x : y : z) gives an isomorphism
from S2e to Se.

Lemma 6.3.3. If there exists an odd prime p such that p ≡ ±2 (mod 5) and p | e then

Se (Qp) = ∅.

Proof. Assume (s : t : u : x : y : z) ∈ Yd,e (Qp). Since p is inert in Q(
√

5), vp(est) ≡
vp(e(s + t)(s + 2t)) ≡ 0 mod 2. Thus s and t have different p-adic valuations. But this
implies that vp(e(s+ t)(s+ 2t)) is odd, resulting in a contradiction.

Lemma 6.3.4. If 5 | e and 5 - d, then Yd,e(Q5) = ∅.

Proof. Let (s : t : u : x : y : z) ∈ Yd,e(Z5). After scaling we may assume that at least one coor-
dinate is in Z×5 . By considering the equations 6.3.1 modulo 5 we see that v5(x), v5(y), v5(z) >
0. Considering the equations 6.3.1 modulo 52 implies that v5(u), v5(s), v5(t) > 0 which gives
a contradiction.

Lemma 6.3.5. Assume that e = ±
∏
pi where pi ≡ ±1 mod 5. Let A =

[(
5, s+t

t

)]
∈

Br k(Se). Then A ∈ BrSe and

invv(evA(Pv)) =

{
1/2 if v = 5,

0 otherwise.

for all {Pv} ∈ Se(AQ). Therefore, Se (AQ)A = ∅.

Proof. This statement and proof is a very slight generalization of [BSD75, Thm. 3].
Let Pv = (s : t : u : x : y : z). Note that

A =

[(
5,
s+ t

t

)]
=

[(
5, e

s+ 2t

t

)]
=

[(
5, e

s+ t

s

)]
=

[(
5,
s+ 2t

s

)]
.
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For any point P of Se, there exists an open set U containing P where at least one of
s+t
t
, e s+2t

t
, e s+t

s
, s+2t

s
is an invertible regular function, unless P ∈ V (s, t). Since V (s, t)∩X is

codimension 2 in X, A extends to an element of BrSe.
Assume v 6= 5. Then Q

(√
5
)
/Q is unramified at v so it suffices to show that one of

v

(
s+ t

t

)
, v

(
e
s+ 2t

t

)
, v

(
e
s+ t

s

)
, v

(
s+ 2t

s

)
is even. In fact, we will show that at least one of the above quantities is 0. If v(s) < v(t)
then v

(
s+2t

s

)
= 0. If v(s) > v(t) then v

(
s+t
t

)
= 0. Now consider the case v(s) = v(t). Then

s+t
t

and s+2t
s

are v-adic integers and s
t

is a v-adic unit. Since(
s+ 2t

s

) (s
t

)
−

(
s+ t

t

)
= 1,

either s+t
t

or s+2t
s

is a v-adic unit.
Now assume v = 5. The difference of the defining equations of Se yields the congruence

relation
(s− 2t)(s− t) ≡ 0 (mod 5).

Thus s+t
t
≡ ±2 (mod 5) and hence invv(evA(Pv)) = 1/2 for all Pv ∈ Se(Qv).

Proof of Proposition 6.3.1. By [Sko01, Formula 2.12], it suffices to show that Yd,e(Q) = ∅ for
all squarefree integers e. If 5 | e, then we are done by Lemma 6.3.4. If 5 - e, we will show
that Se(Q) = ∅. By Lemma 6.3.2, we may assume that 2 - e. Then either there exists an
odd prime p ≡ ±2 (mod 5) such that p | e or e = ±

∏
pi where pi ≡ ±1 (mod 5) for all i.

Thus by Lemmas 6.3.3 and 6.3.5 we have our result.

6.4 Algebraic Brauer set

We have an exact sequence of Galois modules

0 → 〈KX〉
λ→ PicX → NumX → 0

Let Brλ = r−1λ∗ (H1(GQ, 〈KX〉)) ⊆ Br1X. By [Sko01, Thm. 6.1.2], we have

Xd(AQ)Brλ =
⋃

squarefree
integer e

fd,e (Yd,e(AQ)) . (6.4.1)

Using this we can prove

Theorem 6.4.1. For any d ∈ Σ, Xd(AQ)Br1 = ∅.
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Proof. By the functoriality of the Brauer group we have evA(f(P )) = evf∗A(P ) for any map
f : Y → X, P ∈ Y (T ), and A ∈ BrX. Therefore, for any subgroup B ∈ BrX, we have
X(AQ)B ∩ f(Y (AQ)) = Y (AQ)f∗B. Using this in conjunction with Equation 6.4.1, we obtain

Xd(AQ)Br1 =
⋃

squarefree
integer e

fd,e

(
Yd,e(AQ)f∗d,e(Br1 Xd)

)
.

Since Yd,e(AQ)(5, s+t
t

) = ∅ for all e it suffices to show that there exists an element A ∈
Br1Xd such that f ∗d,eA =

(
5, s+t

t

)
. The function s+t

t
∈ k(Yd,e) is fixed by σ, so it is an element

of k(Xd). Therefore,
(
5, s+t

t

)
is an element of Brk(Xd). Let D be a prime divisor on Xd

in the support of div
(

s+t
t

)
. One can check that D must be either the push-forward of the

vanishing locus of t on Yd or the push-forward of the vanishing locus of s+ t on Yd. Using the

defining equations of Yd,e, one can check that either
(

x
y

)2

= 5 or
(

x
z

)2
= 5 in κ ((f ∗(D)red)).

Since x
y

and x
z

are fixed by σ, the same relation holds in κ(D). Thus, the Purity theorem

(Theorem 3.1.1) tells us that
(
5, s+t

t

)
is an element of BrXd and we have our result.
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Chapter 7

A family of surfaces with exactly one
pointless rational fiber

We construct a family of smooth projective geometrically integral surfaces over an open
subscheme of P1

Q with the following curious arithmetic property: there is exactly one Q-
fiber with no rational points. Our proof makes explicit a non-effective construction of Poo-
nen [Poo09, Prop. 7.2]. This example demonstrates that the guiding philosophy “geometry
controls arithmetic” does not apply to all arithmetic properties, namely it doesn’t apply to
the existence of Q-points. We believe that this is the first example of an algebraic family
where exactly one Q-fiber has no rational points.

Theorem 7.0.2. Define P0(x) := (x2−2)(3−x2) and P∞(x) := 2x4+3x2−1. Let π : X → P1
Q

be the Châtelet surface bundle over P1
Q given by

y2 + z2 =
(
6u2 − v2

)2
P0(x) +

(
12v2

)2
P∞(x),

where π is projection onto (u : v). Then π(X(Q)) = A1
Q(Q).

Note that the degenerate fibers of π do not lie over P1(Q) so the family of smooth
projective geometrically integral surfaces mentioned above contains all Q-fibers.

The non-effectivity in [Poo09, Prop. 7.2] stems from the use of higher genus curves and
Faltings’ theorem. (This is described in more detail in [Poo09, §9]). We circumvent the use
of higher genus curves by an appropriate choice of P∞(x).

7.1 Background

A Châtelet surface bundle over P1 is a flat proper morphism V → P1 such that the generic
fiber is a Châtelet surface. We can construct them in the following way. Let P,Q ∈ k[x,w]
be linearly independent homogeneous polynomials of degree 4 and let α ∈ k×. Let V be



26

the diagonal conic bundle over P1
(a:b) × P1

(w:x) given by L1 = O,L2 = O,L3 = O(1, 2), s1 =

1, s2 = −α, s3 = −(a2P + b2Q). By composing V → P1 × P1 with the projection onto the
first factor, we realize V as a Châtelet surface bundle. We say that V is the Châtelet surface
bundle given by

y2 − αz2 = a2P (x) + b2Q(x),

where P (x) = P (x, 1) and Q(x) = Q(x, 1). We can also view a, b as relatively prime,
homogeneous, degree d polynomials in u, v by pulling back by a suitable degree d map
φ : P1

(u:v) → P1
(a:b).

7.2 Proof of Theorem 7.0.2

By [Isk71], we know that the Châtelet surface

y2 + z2 = (x2 − 2)(3− x2)

violates the Hasse principle, i.e. it has Qv-rational points for all completions v, but no Q-
rational points. Thus, π(X(Q)) ⊆ A1

Q(Q). Therefore, it remains to show that X(u:1), the
Châtelet surface defined by

y2 + z2 = (6u2 − 1)2P0(x) + 122P∞(x),

has a rational point for all u ∈ Q.
If P(u:1) := (6u2 − 1)2P0(x) + 122P∞(x) is irreducible, then by [CTSSD87a,CTSSD87b]

we know that X(u:1) satisfies the Hasse principle. Thus it suffices to show that P(u:1) is
irreducible and X(u:1)(Qv) 6= ∅ for all u ∈ Q and all places v of Q.

7.2.1 Irreducibility

We prove that for any u ∈ Q, the polynomial P(u:1) (x) is irreducible in Q[x] by proving
the slightly more general statement, that for all t ∈ Q

Pt(x) := (2x4 + 3x2 − 1) + t2(x2 − 2)(3− x2) = x4(2− t2) + x2(3 + 5t2) + (−6t2 − 1)

is irreducible in Q[x]. We will use the fact that if a, b, c ∈ Q are such that b2 − 4ac and ac
are not squares in Q then p(x) := ax4 + bx2 + c is irreducible in Q[x].

Let us first check that for all t ∈ Q, (3 + 5t2)
2 − 4 (2− t2) (−6t2 − 1) is not a square in

Q. This is equivalent to proving that the affine curve C : w2 = t4 + 74t2 + 17 has no rational
points. The smooth projective model, C : w2 = t4 + 74t2s2 + 17s4 in weighted projective
space P(1, 1, 2), has 2 rational points at infinity. Therefore C is isomorphic to its Jacobian.
A computation in Magma shows that Jac(C)(Q) ∼= Z/2Z [BCP97]. Therefore, the points at
infinity are the only 2 rational points of C and thus C has no rational points.
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Now we will show that (−6t2 − 1) (2− t2) is not a square in Q for any t ∈ Q. As
above, this is equivalent to determining whether C ′ : w2 = (−6t2 − 1)(2− t2) has a rational
point. Since 6 is not a square in Q, this is equivalent to determining whether the smooth
projective model, C ′, has a rational point. The curve C ′ is a genus 1 curve so it is either
isomorphic to its Jacobian or has no rational points. A computation in Magma shows that
Jac (C ′) (Q) ∼= Z/2Z [BCP97]. Thus #C ′ (Q) = 0 or 2. If (t, w) is a rational point of C ′,
then (±t,±w) is also a rational point. Therefore, #C (Q) = 2 if and only if there is a point
with t = 0 or w = 0 and one can easily check that this is not the case.

7.2.2 Local Solvability

Lemma 7.2.1. For any point (u : v) ∈ P1
Q, the Châtelet surface X(u:v) has R-points and

Qp-points for every prime p.

Proof. Let a = 6u2 − v2 and let b = 12v2. We will refer to a2P0(x) + b2P∞(x) both as P(a:b)

and P(u:v).
R-points: It suffices to show that given (u : v) there exists an x such that

P(a:b) = x4(2b2 − a2) + x2(3b2 + 5a2) + (−6a2 − b2)

is positive. If 2b2− a2 is positive, then any x sufficiently large will work. So assume 2b2− a2

is negative. Then α = −(3b2+5a2)
2(2b2−a2)

is positive. We claim P(a:b)(
√
α) is positive.

P(a:b)(
√
α) = α2(2b2 − a2) + α(3b2 + 5a2) + (−6a2 − b2)

=
(3b2 + 5a2)2

4(2b2 − a2)
+
−(3b2 + 5a2)2

2(2b2 − a2)
+ (−6a2 − b2)

=
1

4(2b2 − a2)

(
4(2b2 − a2)(−6a2 − b2)− (3b2 + 5a2)2

)
=

1

4(2b2 − a2)

(
−17b4 − 74a2b2 − a4

)
Since 2b2−a2 is negative by assumption and −17b4−74a2b2−a4 is always negative, we have
our result.

Qp-points:

p ≥ 5 Without loss of generality, let a and b be relatively prime integers. Let X(a:b) denote
the reduction of X(a:b) modulo p. We claim that there exists a smooth Fp-point of
X(a:b) that, by Hensel’s lemma, we can lift to a Qp-point of X(a:b).

Since P(a:b) has degree at most 4 and is not identically zero modulo p, there is some
x ∈ Fp such that P(a:b) (x) is nonzero. Now let y, z run over all values in Fp. Then the
polynomials y2, P(a:b) (x) − z2 each take (p + 1)/2 distinct values. By the pigeonhole
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principle, y2 and P(a:b) (x)− z2 must agree for at least one pair (y, z) ∈ F2
p and one can

check that this pair is not (0, 0). Thus, this tuple (x, y, z) gives a smooth Fp-point of
X(a:b). (The proof above that the quadratic form y2 + z2 represents any element in Fp

is not new. For example, it can be found in [Coh07, Prop 5.2.1].)

p = 3 From the equations for a and b, one can check that for any (u : v) ∈ P1
Q, v3(b/a) is

positive. Since Q3(
√
−1)/Q3 is an unramified extension, it suffices to show that given

a, b as above, there exists an x such that P(a:b)(x) has even valuation. Since v3(b/a)
is positive, v3(2b

2 − a2) = 2v3(a). Therefore, if x = 3−n, for n sufficiently large, the
valuation of P(a:b)(x) is −4n+ 2v3(a) which is even.

p = 2 From the equations for a and b, one can check that for any (u : v) ∈ P1
Q, v2(b/a) is at

least 2. Let x = 0 and y = a. Then we need to find a solution to z2 = a2(−7+ (b/a)2).
Since v2(b/a) > 1, −7 + (b/a)2 ≡ 12 mod 8. By Hensel’s lemma, we can lift this to a
solution in Q2.
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