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ABSTRACT 

Data compression schemes remove data redundancy in communi-

cated and stored data and increase the effective capacities of communi­

cation and storage devices. Parallel algorithms and implementations for 

textual data compression are surveyed. Related concepts from parallel 

computation and information theory are briefly discussed. Static and 

dynamic methods for codeword construction and transmission on vari-

ous models of parallel computation are described. Included are parallel 

methods which boost system speed by coding data concurrently, and 

approaches which employ multiple compression techniques to improve 

compression ratios. Theoretical and empirical comparisons are reported 

and areas for future research are suggestecl. 
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l. lntroduction 

Data compression attempts to remove redundancy from data and thereby 

increases the effective density of transmitted or stored data. Traditionally, there 

has been a tradeoff between the benefits of employing data compression and the 

computational overhead required to perform encoding and decoding. Parallelism 

represents an avenue for increasing the speed ( throughput) and performance of a 

data compression subsystem. Consequently, parallel data compression is suitable 

for a wider range of applications. The purpose of this paper is to present and 

analyze parallel data compression methods. For a reference on data compression 

terminology, see [LH87], [S88A] and [BCW90]. 

Parallel computing, the process of solving problems on parallel computers, has 

risen out of the need for higher performance systems. Weather prediction, nuclear 

reactor monitoring, DNA sequencing and artificial intelligence applications demand 

time-critica! computers that are extremely fast [Q87]. For sequential systéms, data 

compression improves communication speed and storage utilization. In the parallel 

environment, processor interconnection data-rates and data availability play even 

more critica! roles in system performance. Data compression in these parallel 

systems motivates the concurrent coding schemes surveyed in this paper. 

Data compression has become an essential component of high speed data 

storage and communication. Performance of distributed computing systems is of­

ten restricted by the speed of the communication channel. Compacting messages 

before transmission increases the effective bandwidth of the communication link. 

. Advances in VLSI continue to expand the practicality of placing sophisticated data 

compression algorithms implemented in VLSI at each end of every communication 

channel. These encoding/decoding chips increase the capacity of the interconnec­

tion. Other services, such as data processing, which manipulate large volumes of 

data that must be retrieved from and stored in externa! storage devices, also benefit 
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from widespread incorporation of data compression sche.mes. By compressing the 

data before it is stored and later expanding the stored form, the effective capacity 

of the storage medium is increased. Data compression provides additional benefits 

such as increased security and efficiency in search operations on compressed files 

and reduction in backup and recovery costs in computer systems. 

From a practica! point of view, speed distinguishes the use of parallelism in 

data compression. Parallel data compression is appropriate for a wider range of 

time-critica! applications. High-resolution stereoscopic color television broadcast­

ing is one example of an application whose data rate is so critica! that the overhead 

required for compressing data may outweigh the benefits of reducing data redun­

dancy [C90]. In addition to speed, the throughput of many parallel computational 

models is independent of the size of the model; this has both theoretical and 

practica! ramifications. 

The state-of-the-art in software data compression systems is the UNIX1 com­

pres3 utility which is based on a variation of Lempel-Ziv coding [ZL 78] dueto Welch 

[W84]. The UNIX compre33 utility provides compression savings of up to 80% at 

a relatively high input bandwidth2 of 30 Kbytes per second on a 1 MIPS machine 

[TW89]. Higher compression savings achieved by high-order Markov models and 

improved versions of compre33 operate at limited bandwidths of approximately 

10 Kbytes per second on a 1 MIPS machine. Thomborson and Wei describe a 

high-bandwidth ( 40 Kbytes per second) systolic text compression system with 

compression savings ranging from 20% to 70% [TW89]. A number of other im­

plementations achieve good compression at input rates of several hundred million 

bits per second [HR90, SR90, Z90A, Z90B, Z90c]. 

Although the practicality and applicability of performing data compression 

is increased by introducing parallelism to speed up coding, multiprocessing is an 

1 UNIX is a trademark of AT&T Bell Laboratories. 
2 Bandwidth is synonymous with data transfer rate. 
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alternative use of concurrency which employs various coding schemes to improve 

compression effectiveness. At the expense of system time and hardware resources, 

multiple compression algorithms, operating simultaneously, can improve compres­

sion rates. While this use of parallelism may be less practica! because of its resource 

demands, the benefits of compression may outweigh the increased overhead for 

certain applications. Competitive parallel processing and algorithm pipelining are 

discussed in Section 5. 

This survey of parallel data compression considers lossless data compression 

techniques which operate under the constraint that the decompressed data must 

be identical to the original data stream. Lossless compression demands that no 

form of deviation be introduced into the data during encoding or decoding. Text 

compression, the focus of this survey, is normally restricted to lossless compression. 

Image processing is an example of an application that can tolerate inconsistencies 

between the original data and its compressed form. Lossy image compression 

techniques often subdivide the input into subimages which are compressed and 

expanded independently in parallel. Errors introduced along the boundaries of the 

substreams ·cause deviation from the input; however, normally the decompressed 

image closely approximates the original. Lipton and Lopresti present a systolic 

array for string comparisons with applications to lossy data compression [1185]. 

It is further assumed that the communication channels and storage devices 

are noiseless. That is, it is assumed· that no data inaccuracies are introduced 

during data transmission. Many techniques are available for error detection and 

correction but are not included in this survey. 

Background concepts in data compression and parallel computation are pro­

vided in Section 2. Parallel coding systems based on concurrent manipulation of 

source data are described in Sections 3 and 4. Aggregate compression systems 

incorporati~g collections of compression methods to _improve coding effectiveness 
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are discussed in Section 5. Finally, in Section 6, topics for future research and their 

relationship to known results are examined. 

2. Preliminaries 

A brief introduction to data compression and parallel processing is provided 

m this section. The terms and assumptions necessary for a careful evaluation 

and comparison of parallel data compression methods are presented. For a more 

detailed discussion of data compression in the sequential. setting see (LH87], [S88A] 

and (BCW90]. 

2.1. Models of Parallel Computation 

The purpose of this section is to introduce sorne of the concepts, formal mod­

els, and performance measures from the area of parallel computation. There are a 

variety of abstract models of parallel machines that correspond to different system 

designs. Closest to the physical hardware are VLSI models that focus on tech­

nological limits. Other models, slightly removed from the actual implementation, 

emphasize the importance of processor interconnection organization. Another class 

of machines is defined by Flynn's Taxonomy which categorizes an architecture by 

the presence or absence of multiplicity in the instruction and input streams [F66]. 

Furthest from physical system design is a general-purpose theoretical model, the 

parallel random access machine (PRAM) in which it is assumed that each proces­

sor has random access in unit time to any cell of a global memory. The following 

discussion on parallel models includes only those models that are bases for the data 

compression methods presented in this paper. For a more thorough discussion of 

parallel models, see (M88]. 
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Flynn's classification distinguishes parallel architectures based on the con­

cepts of instruction stream and data stream. An instruction stream is a se­

quence of instructions executed by a computer and a data stream is the se­

quence of input data. Single-Instruction, Single-Data (SISD) computers are essen­

tially enhanced sequential computers capable of pipelining the instruction stream. 

Multiple-Instruction, Multiple-Data (MIMD) computers include multiprocessing 

systems that have independent processors operating on non-overlapping sequences 

of input. The most common model is the Single-Instruction, Multiple-Data (SIMD) 

computer which typically consists of a number of uniform processors, an intercon­

nection network, andan associative memory. The synchronized processing elements 

of an SIMD computer, also referred to as a proce.s.sor arra y, simultaneously perform 

the same operation on different data. Processor arrays can differ in terms of number 

of processors and method of interprocessor communication. 

The principal model of computation considered in the theoretical study of 

parallel algorithms and the complexity of parallel computation is the parallel ran­

dom access machine (PRAM) which is in the SIMD classification [FW78, G78]. The 

PRAM consists of a number of identical general-purpose sequential processors, all 

of which are connected to a large shared, random access memory. Each processor 

has a prívate memory for local computation, but communication between proces­

sors is done through information exchange in a global random access memory. It 

is further assumed that each processor may access any cell in the common memory 

in constant time. In the PRAM model, each processor i~ assigned an index and all 

processors execute the same instruction sequence. However, each processor may 

perform differently depending on its corresponding index. The PRAM is not a 

physically realizable model since it is impossible to provide a constant length com­

munication link amongst an arbitrarily large number of processors. N evertheless, 
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the intention of the PRAM model is to permit the study of parallel computation 

abstracted away from the issues of interprocessor communication. 

There are several variants of the PRAM which differ in their handling of simul­

taneous reading and writing of the global memory. The weakest of these variants 

is the Exclusive-Read, Exclusive-Write (EREW) PRAM in which concurrent reads 

and writes are prohibited. The Concurrent-Read, Exclusive-Write model permits 

multiple processors to access a common memory location but forbids simultane­

ous writes. The least restrictive model, the Concurrent-Read, Concurrent-Write 

(CRCW) PRAM, allows different processors to read from and write to identical 

positions in the shared memory. CRCW PRAM models are further distinguished 

by their methods of handling write confl.icts. Even though there are a variety of 

PRAM models, they do not differ widely in computational power. 

Although the PRAM provides a useful framework for studying parallel com­

putation, other SIMD models that view a parallel computer as a set of processors 

interconnected in a fixed pattern more closely resemble actual hardware. These 

models assume that each processor has its own local memory and that data passes 

between elements via a communication network. In the me.sh-connected SIMD 

model, processors are arranged in a lattice with connections between neighboring 

processors. Sy.stolic array.s are linearly connected SIMD computers consisting of 

synchronized rudimentary processing elements (see Figure 1). Two-dimensional 

mesh-connected processor arrays allow links between adjacent elements. A d­

dimensional cube-connected SIMD model considers processing elements as the 

corners of ad-dimensional cube and connects each processor to its d neighbors. A 

three-dimensional cube network hypercube is shown in Figure 2a. A tree-connected 

network restricts data movement to links between a processor and its parent ( or 

children). For example, in Figure 2b, processing element with index 6 may route 

data to processor 3 and processor 3 may send messages to processors 1, 6 and 7. 
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memory 1 memory 2 memory k 

Figure 1 

Linearly connected SIMD network of k processing elements 
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Figure 2 

(a) 3-D cube connected network (hypercube) on 8 processing elements 

(processor i.d. 's represented in binary) (b) tree connected network on 

7 processing elements 

In a tree-connected system with n processors, data communication takes at most 

logarithmic time. A tree-connected processor array is used by Gonzales-Smith and 

Storer to maintain a dynamic coding dictionary [GS85, S88A]. 

2.2. Categorization of Compression Methods 

There are a number of ways of classifying compression methods. This section 

describes the classifications that are relevant to parallel data compression. 
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Bell, Cleary and Witten draw a careful distinction between statistical and 

dictionary based data compression [BCW90). Methods, such as Huffman coding 

and arithmetic coding, based on character frequencies are labeled statistical meth­

ods. Other compression techniques function by replacing large blocks of input 

with references to earlier occurrences of identical data. These dictionary methods, 

also called textual substitution and Lempel-Ziv compression, achieve compression 

by replacing phrases with pointers into sorne dictionary. Typically, a table or 

dictionary of target strings is constructed and the table indexes are encoded. Two 

factors differentiate versions of Lempel-Ziv coding, whether to limit how long an 

entry remains in the dictionary and which substrings become part of the dictionary. 

Sliding window compression restricts references to a fixed size window and allows 

any substring in the window to be included in the dictionary. Methods of this type 

are often labeled LZl compression. Fully adaptive techniques are characterized 

by an independently maintained dictionary that is separate from the data and 

are referred to as type LZ2. Instead of allowing references to any string that has 

previously appeared, LZ2-type dictionary compression parses the processed data 

into phrases, where each phrase consists of the longest matching phrase already 

processed plus one additional appended character. Each phrase is encoded as an 

index to its prefix, plus the extra character. The new concatenated string is added 

to the dictionary. 

Not only are data compression schemes categorized as statistical or dictionary 

methods, but they are also classified as static or dynamic. A static compression 

method creates a fixed mapping from input characters or strings to an encoded 

representation. The classical static statistical method is Huffman coding [H52]. 

Huffman coding assigns codewords to input strings based on the probabilities of 

source characters. The probabilities are calculated before transmission and are 

used to create a prefix coding table of variable length codewords. Compression is 
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achieved by assigning short codewords for highly probable input strings and longer 

codewords for less probable input. An earlier static method, Shannon-Fano coding, 

also attempts to assign short codewords to frequently occurring source strings 

(F49, FW78]. Shannon-Fano coding creates a minimal prefix code that differs only 

slightly from optima!. Static dictionary compression replaces repeated substrings 

by references to a fixed table of strings. Parallel static statistical compression 

schemes are discused in Section 3 and parallel static dictionary compression is the 

focus of Section 4.1. 

Dynamic or adaptive models incorporate a mapping between input charac­

ters or strings and the encoded representation that evolves as the input is being 

transmitted. These models adapt to changes in input characteristics. Ziv and 

Lempel devised an adaptive dictionary coding method that parses the input into 

strings that are used to build a table whose indexes are then encoded into fixed 

length codewords [ZL 78]. Frequently occurring strings are grouped together and 

represented by a single codeword. Welch improved the Ziv and Lempel algorithm 

by initializing the dictiónary with the character set and building the table using the 

current match augmented with the subsequent input character (W84]. Thomborson 

and Wei implementa dynamic move-to-front text compressor on the systolic array 

[TW89]. Gonzales-Smith and Storer investigate dynamic dictionary compression 

employing different learning rules (GS85, S88A, S88B]. A number of other systolic 

designs implement a changing dictionary and are described in Section 4.3 [HR90, 

SR90, TW89, Z90A, Z90B, Z90c]. 

In between static and dynamic methods are semi-adaptive schemes, such as 

sliding window data compression, which encocle substrings of the input as references 

to identical substrings occurring in a fixed-size window of characters preceding the 

input. The contents of the window can be viewed as a semi-adaptive dictionary. 
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Sliding window compression methods are based on the LZl model ( described in 

[ZL 77]) and systolic implementations are reported in Section 4.2. 

Most compression methods are codeword-based. Codeword-based compres­

s1on schemes replace input substrings by codewords to obtain a more compact 

representation of the input. Huffman coding is an example of codeword-based 

compression. However, in sorne compression schemes, such as arithmetic coding, 

it is not possible to identify the particular input character that caused a partic­

ular bit of the encoded stream. For codeword-based compression methods, let 

a = { s1, s2, ... , Sn-1, Sn} be the source alphabet. A source message is a concate­

nated sequence of characters over the alphabet a. Let (3 = {O, 1, 2, ... , ¡ - 1} be 

the code alphabet. A code C = { ci, c2, ... , cm} is a finite nonempty set of finite 

sequences over code alphabet (3. Each e¡ is a codeword. A mesMge over C is a 

string resulting from the concatenation of codewords from C. A code C is distinct 

if the assignment of source words ( strings over the source alphabet) to codewords 

is one-to-one. A code C is uniquely decipherable if the message created by the 

encoding of a sequence of input words has a unique decomposition (i.e. codewords 

are distinguishable from the entire compacted message ). A code C is a prefix code 

if no codeword in C is a prefix of another codeword. Note that any pref.ix code is 

uniquely decipherable. 

Instead of constructing a mapping from source messages to codewords, arith­

metic coding represents the input string by a subinterval of the interval between O 

and 1 on the real line [WNC87]. The method uses the probabilities of the source to 

successively narrow the interval used to represent the input. Ultimately, the inter­

val is be narrowed sufficiently so that only the source string would be represented 

by any number in the interval. Arithmetic coding dispenses with the restriction 

that every character in the source message must be represented by an integral 
' 

number of bits. Because of this property, arithmetic coding is capable of achieving 
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~ompression results that are arbitrarily close to the entropy of the source, defined 

below. 

There are a number of measures used to determine the "goodness" of a 

particular code. Of interest to this survey is the notion of an optimal or minimum­

redundancy code. 3 A minimum-redundancy code has minimum average codeword 

length for a given discrete probability distribution of the source [LH87]. This defi­

nition is based on the information theory concept of entropy which is a measure of 

the information content of a message. For an unpredictable source, entropy (infor­

mation content) is high; for an ordered source, entropy is low. Formally, for source 

alphabet a {s1, s2, ... , sn} with probabilities of occurrence {p1,p2, ... ,pn} 

and distinct code e = { ci, c2, ... 'en}, the expression4 ¿~=1 -pk lgpk denotes 

the entropy of the source and L::~=l Pklen( ck) is the average codeword length, 

where len( ck) is the length of codeword ck. Theoretically, the minimum length 

of a compressed message should equal its entropy. That is, since the length of 

a code message must be sufficient to carry the information of the corresponding 

source message, entropy imposes a lower bound on codeword length [LH87]. A 

minimum-redundancy code for source alphabet a minimizes the difference between 

the average codeword length and the entropy of the source. 

·Data compression schemes can be further categorized as either off-line, on­

line, or real-time. An off-line model can manipulate and preprocess the entire 

input string prior to coding. In on-line models, neither the sender or receiver 

can see all of the data at ·once; that is, data is constantly flowing through the 

encoder, transmitted, and pushed through the decoder. On-line algorithms are 

further distinguished as real-time methods if, for sorne constant k, exactly one new 

character is read into the encoder and one character is written by the decoder 

3 In the parallel computation community, the term "optimal'' is used to describe efficient parallel 
algorithms. Therefore, in this paper, "optima!" is reserved for describing parallel algorithms and 
"minimum-redundancy" is used for coding. 
4 In this paper, lg denotes the base 2 logarithm. 
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every k units of time [SR90]. On-line algorithms are forced to construct the 

coding dictionary "on the fiy". The scheme is designed to "learn" an approximate 

distribution of the data and to adapt to fiuctuations in the source. 

Many static compression schemes, such as Huffman coding, that create the 

compression mapping prior to data transmission, can be viewed as two-phase 

methods. The first phase, operating off-line, analyzes the character probabilities. 

The second phase matches the input against the codeword table to perform the 

actual compression. The work of Teng [T87], Kirkpatrick and Przytycka [KP90], 

Larmore and Przytycka [LP91], and Atallah et al. [AKLMT89] focuses on the first 

phase by investigating the off-line parallel construction of a Huffman prefix code. 

Gonzales-Smith and Storer use a two-phase parallel data compression method, 

implemented on a systolic array, that assumes the existence of the static coding 

dictionary (created off-line) and transmits the coded message on-line [GS85, S88A]. 

Parallel static _compression systems based on character statistics are surveyed 

m Section 3. Section 4.1 presents systolic implementations of static dictionary 

methods and sliding substitutional designs are described in Section 4.2. Dynamic 

dictionary approaches implemented on the systolic pipe are covered in Section 4.3. 

2.3. Evaluation of Compression Methods 

A common measure used to evaluate and compare coding techniques is com­

pression ratio. There are several different definitions of compression ratio which 

attempt to describe the space reduction attained by compression. For example, 

com pression ratio has been defined as the ratio ( encoded message length) / ( source 

message length), as the ratio ( source message length) / ( encoded message length), as 

the number of bits per input character, andas 1-(encoded message length)/(source 

message length) [LH87, S88, BCW90]. In this paper, compression ratio is defined as 

the ratio ( encoded message length) / ( source message length). C ompression s avings 

is defined by 1-( compression ration). For example, if the input string toan encoder 
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consists of 2000 bits and the corresponding output is 500 bits, the compression ratio 

is 500/2000 == .25 or 25% and the compression savings is 1 - 500/2000 == .75 or 

75%. Compression ratios describe compression effectiveness but do not take other 

important performance measures into consideration. For instance, one compres­

sion scheme may achieve 80% compression savings but may take an unreasonable 

amount of time to execute. Another scheme may give poorer compression ratio 

but perform in real-time. When possible, methods are compared in terms of speed, 

space usage, compression ratio, and system bandwidth5. 

In the study of parallel complexity, problems are classified according to their 

use of time and processor resources. The class N C incorp~rates a hierarchy of 

problems that are solvable by deterministic parallel algorithms that operate in time 

bounded by a power of the logarithm of the size of the input using a polynomially­

bounded number of processors. 

Work is another measure used to evaluate parallel algorithm performance. 

The work done by a parallel algorithm is defined as the product of the time and 

processor requirements. If Seq(P) is the time complexity of the fastest known 

sequential algorithm for a problem P then a parallel algorithm is optimal if it 

takes O(Seq(P)/P)6 time using O(P) processors. Moreover, the work performed 

by an optima! algorithm is proportional to the time required by the fastest known 

sequential algorithm. As mentioned earlier, parallel computation adds the dimen­

sion of processor usage to algorithm evaluation. The processor requirements of 

each parallel system are given to aid in this comparison. The theoretical PRAM 

model cannot be physically implemented and is therefore limited to theoretical 

evaluation. For other parallel models, empirical findings are included. Statistical 

coding on the PRAM is described in the next section. 

5 The bandwidth of a device is measured as the number of bytes transferred per unit time. 
6 0-notation represents _an upper bound on the asymptotic behavior of a function. 
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3. Parallel Statistical Coding 

A statistical compressor assigns codes based on probabilities of individual 

symbols. Static Huffman compression calculates character frequencies during a 

preprocessing pass over the source data. This information is used to assign code­

words so that short codes correspond to high-frequency symbols and longer codes 

are given to low-probability characters. The second pass encocles the source data 

using the generated codewords. This section examines parallel approaches to sta­

tistical coding. 

Huffman compression generates a prefix code such that the average word 

length is minimal. The prefix code is equivalent to a full7 binary tree with the 

source symbol probabilities associated with the leaves. To construct this code 

tree, Huffman's algorithm proceeds as follows [H52]. Initially, each probability is 

assigned to a tree of height O (i.e., a single node ). Iteratively, the pair of trees 

corresponding to the two smallest probabilities are combined into a single tree 

with an associated probability equal to the sum of the frequencies of the two 

original trees. Huffman's scheme constructs a minimum-redundancy prefix code 

in O( n log n) time, where n is the size of the source alphabet. If the symbol 

frequencies are presorted, Huffman's method requires only linear time. Applying 

a recursive description of Huffman tree creation, Teng developed the first parallel 

algorithm for Huffman coding [T87]. Teng's approach implements a parallel dy­

namic programming solution and runs in O(log2 n) time using O(n6 ) processors. 

Although unreasonable resource bounds render this solution impractical, the results 

are significant since they were the first to place the Huffman coding problem in 

the computational class NC. Further work by Atallah et al. lowered the time and 

processor requirements by taking advantage of implicit properties of the tree corre­

sponding to the graph-theoretical interpretation of Huffman's solution [ AKLMT89]. 

Section 3.1 describes parallel minimum-redundancy prefix code creation based on 

7 A binary tree is ful/ if every interna! (non-leaf) node has exactly two children. 
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dynamic programming and Section 3.2 surveys improved approaches which profit 

from concave matrix multiplication and approximation. Section 3.3 considers other 

parallel statistical coding methods. 

3.1. Huffman Coding Reduced to Parallel Circuit Evaluation 

The first parallel Hu:ffman code construction algorithm solved the problem 

indirectly by a unifarm reduction to a min-plus circuit value problem of polynomial 

size and linear degree [T87]. The min-plus circuit value problem can be sol ved in 

logarithmic time with a polynomial number of processors. This reduction coupled 

with the efficient circuit evaluation algorithm yielded the first NC algorithm far 

the creation of minimum-redundancy prefix codes. 

The reduction is based on a recursive definition of minimal average word 

length. N amely, let the input to the Hu:ffman coding algorithm consist of a sequence 

(pi, p2, ... , Pn) of source character probabilities and let H( i, j) be the average word 

length of a Hu:ffman code far probabilities (pi, ... ,pj)· Initially the input sequence 

is sorted into nondecreasing order in O(log n) time using O( n) processors. Then 

the values of H(i,j) are given by the fallowing recurrence relation: 

H(i,j) = { :in{=i+l {H(i, k - 1) + H(k,j)} + ¿~=;Pr 
'/, =] 

i < j 
(a) 

An example of this dynamic programming approach to sequential code creation is 

given in Figure 3. The idea is to build a tree of size k by taking the minimum total 

path length over all possible tree configurations of size less than k. 

Teng provides a sequential algorithm, implementing the above recursive def­

inition, far building a minimum-redundancy prefix code. It can be sketched as: 

l. Initialize H(i,j) =O far i = j and H(i,j) = +oo far i < j. 

2. For i < j estimate H(i,j) applying relation (a) and the value_s of H obtained 

d uring the previous step. 

3. If any H value changed since previous iteration, return to step 2. 
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P1 = .36 P2 = .29 p3 = .25 p4 = .1 

H(l, 2) = H(l, 1) + H(2, 2) + P1 + P2 = .65 

H(2, 3) = H(2, 2) + H(3, 3) + P2 + p3 = .54 

. { H ( 2, 2) + H ( 3, 4) + P2 + p3 + p4 
H(2, 4) = mm = .99 

H(2, 3) + H(4, 4) + P2 + p3 + p4 

¡ H(l, 1) + H(2, 4) + P1 + P2 + p3 + p4 

H(l, 4) = min H(l, 2) + H(3, 4) + P1 + P2 + p3 + p4 = 1.99 

- H(l, 3) + H(4, 4) + P1 + P2 + p3 + p4 
(a) 

Directed graph induced by H(ij): 

Corresponding Tree: 

(b) 

(e) 

Figure 3 

(a) Dynamic programming sol u tion (b) Directed graph (e) H uffman tree 

16 



Teng reduces the algorithm to a min-plus circuit value problem which can be 

evaluated in O(log2 n) time using a polynomial number of processors on the CRCW 

PRAM [MRK85]. This results in an NC algorithm for generating the values H( i, j), 

for all i and j. It remains to derive the tree and corresponding codewords from 

the H values. Teng describes a construction which builds a directed graph whose 

vertex set is the collection { H ( i, j) j 1 ::; i ::; j ::; n} and w hose edges connect vertex 

H(i,j) with the vertices H(i, k - 1) and H(k,j) where k is given by the recursive 

definition of H(i,j). The directed graph induced by H(l, n) is made into a tree by 

marking all of the nodes reachable from the root H(l,n) in O(logn) time using a 

polynomial number of processors. Figures 3b and 3c show the directed graph and 

final tree for the problem in Figure 3c. The resulting tree represents a minimum­

redundancy prefix code for the source character probabilities (p1,p2, ... ,pn) and 

is constructed in O(log2 n) using O(n6 ) processors on the CRCW PRAM model. 

The codeword for each source character can be generated in O(log n) time using 

O( n / log n) processors by tree contraction [MR85]. Tree contraction is useful in 

parallel tree manipulation and is the basis of the approach taken by Atallah et al. 

to improve on Teng's original result [ AKLMT89]. 

Miller and Reif define RAKE and COMPRESS operations on trees [;MR85]. 

Let RAKE be an operation that removes all leaves from a tree and let COMPRESS 

be an operation that halves each chain of nodes ( from leaf to roo't) by pointer 

doubling. Atallah et al. considera restricted form of the RAKE operation where a 

leaf is removed only if its siblings are leaves [AKLMT89]. They show that any left­

justified8 tree can be reduced to a single chain of vertices along the leftmost path 

of the tree in at most flog n l applications of RAKE. They also notice that each 

iteration of Step 2 in Teng's sequential algorithm simulates the RAKE operation 

and can be done in O(log n) using n 3 / log n processors on the CREW PRAM model 

8 A binary tree T is left-justified if for every pair of siblings u and v, with u to the left of v, if the 
subtree Tv rooted at v is not empty at sorne level l in the tree then the subtree Tu rooted at u is 
full at level l. 
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of computation. However, the algorithm requires O( n) iterations and therefore 

yields an O( n log n) total time bound. 

The execution performance can be reduced to O(log n ), usmg the same 

number of processors, by introducing a step which carries out the COMPRESS op­

eration and thereby reduces the height of the tree [AKLMT89]. The COMPRESS 

step estimates a quantity F(i,j), where H(l, i) + F(i,j) is the minimum average 

word length of a tree over source frequencies (P1, P2, ... , Pi) restricted to contain­

ing a subtree corresponding to (pi,p2, ... ,p¡). Quantity F(i,j) can be defined 

recursively in terms of precomputed H values and previous F values as follows: 

i+l<j 
(b) 

{ 

H(i + 1,j) + ¿:=l Pr 

F(i,j)= . {H(i+l,j)+¿~=1 Pr 
min . 

minr:~+l { F( i, k) + F( k, j)} 

i+l=j 

Atallah et al. provide the following sketch of the algorithm which performs 

flog n l RAKE operations followed by flog n l COMPRESS operations to reduce 

the tree to a single node [ AKLMT89]. 

l. Initialize H( i, j) = O for i = j and H( i, j) = +oo for i < j. 

2. Itera te r1og n l times: For i < j estima te H ( i, j) applying relation (a) using 

the values of H obtained during the previous step. 

3. Initialize F(i,j) = H(i + 1,j) + ¿~=i Pr· 

4. Iterate flog n l times: For i < j estimate F( i, j) applying relation (b) using 

the values of F obtained during the previous step. 

The final value of F(l, n) gives the average word length of the minimum­

redundancy prefix code. As noted above, since any left-justified tree can be 

reduced to a single leftmost chain of nodes by flog n l applications of RAKE, 

flog n l COMPRESS operations on a chain reduces the tree to the empty tree., 

Therefore, the above algorithm computes the quantity F(l, n) in O(log n) time 

using O( n3 / log n) processors on a CRCW PRAM. Although the paper does not 
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mention the generation of the corresponding tree or codewords from the com­

puted H and F values, an approach similar to Teng's ( described earlier) provides 

these within the same resource bounds. Also, Teng proves that, for any nonde­

creasing sequence of probabilities (p1, p2, . .. , Pn ), there is a left-justified Huffman 

tree representing a minimum-redundancy prefix code for (pi,p2, ... ,pn) [T87]. 

Thus, utilizing a parallel dynamic programming approach, Huffman codes can 

be constructed for a given list of probabilities, in O(log n) time using ( n3 / log n) 

processors. These bounds can be improved by formulating the Huffman coding 

problem in terms of multiplications of concave matrices. This approach is discussed 

in the following section. 

3.2. Coding as the Multiplication of Concave Matrices 

In light of the sequential O( n log n) performance of Huffman's algorithm, the 

parallel dynamic programming solution of the previous section is of little practica! 

value since it requires O(n3 ) work. This section discusses an alternative approach 

due to Atallah et al. which runs in O(log2 n) time using n 2 / log n processors 

[AKLMT89]. The bottleneck of the dynamic programming algorithms is the n 3 

processor bound that arises from multiplication of arbitrary matrices. Concave 

matrices are a subclass of matrices that can be multiplied more efficiently in 

parallel. By formulating the Huffman tree problemas a multiplication of concave 

matrices, the processor requirement is reduced. 

A concave matrix M is a rectangular matrix that satisfies the quadrangle 

condition (see Figure 4). Specifically, for n x m matrix M, the following inequality 

holds for all l ~ i < k ~ n, 1 ~ j < l ~ m: 

M[i, j] + M[k, l] ~ M[i, l] + M[k, j] 

Atallah et al. give a recursive algorithm for multiplying concave matrices over 

the closed semi-ring (min,+) which runs in O(lognloglogn) time using n 2/logn 
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Matrix M: M(ij] + M(k,l] ~ M(i,l] + M(kj] 
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processors on the CREW PRAM, and O((loglogn)2 ) time using n 2/(loglogn) 

processors on the CRCW PRAM [AKLMT89]. By taking advantage of the more 

efficient concave matrix multiplication, they describe a solution to the Huffman 

tree construction problem that runs in O(log2 n) time using n 2 / log n processors. 

Their approach reduces Huffman coding to a minimum-weighted path problem for 

a directed graph which can be solved via parallel concave matrix multiplication. 

The reduction is two-fold. As mentioned earlier, for any nondecreasing sequence 

of probabilities (pi,p2, ... ,pn) there exists a left-justified tree representing the 

corresponding minimum-redundancy code such that the heights of the ·subtrees 

not on the leftmost path are no more than flog n l · The first step of the reduction 

builds minimum-redundancy height-limited subtrees of height at most flog n l for 

all possible subintervals (p¡, ... ,pn)· The resulting information is represented as 

a matrix A which is computed in O(log2 n) time using n2 / log n processors by a 

reduction to recursive multiplication of concave matrices. 

The matrix A generated in step 1 is augmented to form matrix M. Matrix 

M has no simple meaning in terms of Huffman trees. But, matrix M 2flognl gives 
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the minimum weighted path length of the minimum-redundancy Huffman tree for 

probabilities (pi,p2, ... ,pn) and the information needed to construct the tree. The 

second phase consists of the creation of matrix M and a series of flog n l concave 

matrix multiplications which can be performed in O(log n) time using n 2 / log n 

processors. This two-phase reduction yields the Huffman tree in a total of O(log2 n) 

time using n 2 / log n processors on the CREW PRAM. On the CRCW PRAM, the 

resource bounds fall to O(logn(loglogn)2) time and n 2/(loglogn)2 processors. 

3.3. Other Parallel Statistical Schemes 

Larmore and Przytycka give a reduction of the Huffman tree problem to 

the Concave Least Weight Subsequence problem resulting in a new linear time 

sequential algorithm and a more efficient parallel algorithm [LP91]. Given a 

concave triangular matrix of weights { w( i, j)IO ::; i < j ::; n }, the Concave Least 

Weight Subsequence problem is to find a subsequence O = /30 < /31 < · · · < 

f3m = n which minimizes the sum I.::k=l w(f3k-1, f3k ). This subsequence can be 

found in sublinear time. Reducing the Huffman tree problem to the Concave 

Least Weight Subsequence problem results in an O( y'n log n )-time and n-processor 

parallel algorithm. Although the solution is not in NC, it performs less total work 

than any other sublinear time parallel Huffman algorithm. Further research is 

needed to find an optimal sublinear time Huffman tree construction algorithm. 

Generation of near-minimum-redundancy codes can be done optimally in par­

allel. Shannon-Fano coding is an example of a statistical coding scheme which 

produces a near-minimum-redundancy prefix code such that the average codeword 

length exceeds the minimum length by at most 1 bit. An optimal O(log n) time, 

, n/ log n processor EREW PRAM algorithm for near-optimal code construction is 

described by Atallah et al. [AKLMT89]. Nearly minimum-redundancy code cre­

ation is reduced to the problem of constructing a tree given a monotonic sequence of 

leaf levels. Initially, the input frequencies (pi, p2, ... , Pn) are sorted anda sequence 
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of lengths (li, l2, ... , ln) are calculated such that log(l/p¡) :::; [¡ :::; log(l/p¡) + l. 
Next, tree T is constructed optimally by invoking the algorithm for monotonic leaf 

level sequences. Tree T is then compressed using parallel tree contraction resulting 

in a minimum-redundancy prefix codeword tree T'. Atallah et al. claim that tree 

T' is the Shannon-Fano tree [AKLMT89] In the same paper, a parallel algorithm 

for constructing almost optimal binary search trees is presented which can be used 

to build trees which differ from a minimum-redundancy prefix code by at most 

1 / n k bits in O( k log2 n) time and n 2 / log2 n processors. 

Approximate solutions to the minimum-redundancy coding problem are inves­

tigated by Kirkpatrick and Przytycka [KP90]. They give an O(log n log* n )-time, 

n-processor CREW algorithm for finding an approximate solution to the problem. 

A variation of the Huffman tree problem is the alphabetic version which, 

given a sequence of probabilities (p1,p2, ... ,pn); finds a binary tree of minimum 

weighted path length, with weight Pi assigned to the ith leaf. An NC algorithm is 

given for an approximate solution to the alphabetic Huffman coding problem using 

a parallel implementation of the Package Merge technique dueto Larmore [LP91]. 

The O(log2 n) time, n processor algorithm improved an earlier approximation which 

required an additional factor of n processors. Since the alphabetic Huffman coding 

problem can be sol ved sequentially in O( n log n) time, further work is needed to 

eliminate an additional log n factor to obtain an optimal parallel solution. 

Concurrency can be introduced into all phases of a compression system. 

That is, parallelism can speed up code creation, encoding and decoding. Once 

the code has been selected, the input message can be encoded and decoded in 

linear time by replacing each character by its corresponding code. In 1987, the 

decoding problem was solved optimally in parallel. Moreover, Teng and Weng give 

an optima! EREW PRAM algorithm for decomposing prefix-coded messages and 

uniquely decipherable-coded messages in O(log n) time and O( n/ log n) processors 
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[TW87]. They reduce the decoding problem to the problems of parallel finite-state 

automata simulation and the evaluation of prefix sums. To complete the solution, 

they present an optima! parallel simulation algorithm for finite-state automata 

using dynamic expression evaluation and parallel tree contraction techniques. Since 

uniquely decipherable codes provide more compression than prefix codes and can be 

decompressed with no additional computational effort, they conclude that uniquely 

decipherable codes are superior to prefix codes [TW87]. 

The above parallel coding methods are of theoretical interest, however they 

are not directly realizable in hardware. Lea reports on a hardware implementation 

of a text compression system based on n-gram coding [L 78]. For n-gram coding, the 

dictionary consists of a collection words each of length exactly n. The dictionary is 

stored in an associative memory and parallel manipulation of the table is conducted 

on an associative parallel processor. 9 Two different implementations, based on 

fixed record length and byte-organized variable record length, significantly reduce 

overheads in execution time and program storage when compared to software 

implementations. In the next section, parallel systems for dictionary compression 

are examined. 

4. Parallel Dictionary Compression 

Dictionary or substitutional coding removes data redundancy by replacing 

recurrent input substrings by references to earlier copies [RPE81, SS82]. U sually, 

such a reference is called a pointer and the substring being referenced is called 

the target. Targets are maintained in a dictionary of phrases that are expected 

to occur frequently. Dictionary-based compression techniques are distinguished by 

their use and maintenance of the coding dictionary. Sorne methods restrict the 

length of dictionary entries. Within this restriction, the dictionary can be static, 

semi-adaptive, or adaptive. A static dictionary is created before any encoding or 

9 An associative parallel processor is a processor array with an associative memory. 
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decoding begins and must remain unchanged. Better compression is achieved by 

adaptive methods that allow additions, deletions, and changes to the collection of 

referenced strings during the course of encoding. 

Dictionary techniques are further classified as externa! or interna!. Externa! 

dictionary or LZ2-type schemes store target phrases in a separate dictionary and 

the data stream is compressed by replacing occurrences of repeated substrings by 

indexes into the dictionary. The resulting compressed stream contains characters 

of the input alphabet interspersed with pointers into the dictionary. Decoding re­

constructs the source string by substituting dictionary entries for pointers. Interna! 

substitution methods ( also referred to as sliding window or LZl-type coding) do not 

maintain an explicit dictionary. Instead, repeated substrings are replaced by point­

ers to earlier occurrences of the same substring. The resulting string of characters 

and pointers contains the compression dictionary implicitly. Recursive schemes, 

implemented internally or externally, permit pointer targets to contain pointers. 

Once the dictionary has been selected, the input stream must be parsed 

to determine which substrings are to be replaced by dictionary pointers. The 

most straightforward approach is greedy parsing where at each step the encoder 

finds the longest dictionary phrase that matches a prefix of the uncoded portion 

of the input stream. That is, the input stream is compared to each word in 

the dictionary and the entry corresponding to the longest prefix of the uncoded 

portion of the input stream is used to encocle the input prefix. In the parallel 

setting, this longest match step can be executed concurrently by a collection of 

processors (BCW90]. For a dictionary of size N, 2N - 1 processors configured as 

a binary tree can find the longest match in O(log N) time. Each leaf processor is 

assigned to perform comparisons for a different dictionary entry. The remainirig 

N - 1 processors coordinate the results via signals that propagate up and clown 

the tree in O(log N) time. Figure 5 is an example of the parallel match step 
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for dictionary "~be," "acb," "bac," "bca," "cab", "cha", "aa", and "bb" and 

input string "baccbaacb." Processing elements 1 through 8 compare prefixes of 

the input stream to their corresponding dictionary entries and propagate, in the 

case of a match, their processor identification and match length, and a O otherwise. 

Processors 9 through 14 compare the match lengths of non-zero inputs and output 

the processor identification and match length of the input having the longest 

match. Other parallel implementations can be devised based on different processor 

configurations. Zito-Wolf presents a more efficient implementation using pipelined 

trees [Z90c]. Systolic architectures for the dictionary match step are considered 

later in this section. 

In the parallel VLSI environment, static, semi-adaptive, and dynamic dic­

tionary schemes have been considered using the systolic array. One advantage 

of the systolic implementation is that a larger pipe can be fabricated by placing 

a sequence of processing elements on a single chip, and then joining a series of 

chips on a board. Another bertefit is that the length of interprocessor connections 

are constant and independent of the size of the array. Systolic architectures for 

dictionary compres.sion reduce the computational overhead by accelerating both 

encoding and decoding and are therefore suitable for a larger range of applications. 

4.1. Static Dictionary Compression on the Systolic Array 

Qonzales-Smith and Storer give parallel algorithms for data compress1on 

using static dictionary coding [GS85, S88A]. They implement a recursive static 

dictionary which replaces input substrings by indices into a static table of dictionary 

entries, each of which may contain pointers to other indices. This allows for the 

representation of strings longer than the maximum-length dictionary entry and 

therefore may reduce both the maximum length of a dictionary entry and the size 

of the VLSI implementation. Also, a pointer is permitted to point to a suffix 

of a dictionary entry and pointers may be of va:dable size. The dictionary is 
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Dictionary 

"abe" p.e. 1 

p.e. 9 

"acb" p.e. 2 

"bac" p.e. 3 

p.e. 10 

"bca" p.e. 4 3, 6, 2 

p.e. 15 

"cab" p.e. 5 

p.e. 11 

"cha" p.e. 6 

p.e. 14 

"aa" p.e. 7 

p.e. 12 

"bb" p.e. 8 

input string "baccbaacb" 

Figure 5 

Parallel longest match step for dictionary of size N = 8 

assumed to be available and details of its construction are not discussed. However, 

the importance and complexity of dictionary selection are emphasized in that 

compression performance is directly related to the "goodness" of the dictionary. 

The systolic encoding/ decoding pipe consists of a series of processing elements 

linearly connected by a two-way communication channel. A schematic of the 

architecture is shown. in Figure 6. Each processing element stores a dictionary 

element. The two-way communication channel allows both the compression and 

expansion algorithms to use the same dictionary structure. · The dictionary is 

constructed prior to compression and loaded into the processors. For purposes 
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processing processing processing 
element 1 element 2 element N 

input input input 

so urce buffer buffer buffer encoded 
message dict. die t. die t. 

message 

entry 1 entry 2 entry N 

Figure 6 

Systolic array for static dictionary coding 

of explanation, encoding is assumed to proceed from left to right, and decoding 

from right to left. Encoding is performed by parallelizing a greedy algorithm for 

compressing substrings. Input characters are piped into a processor from the left 

and compared against the dictionary entry stored in that processor. If the length 

of the match exceeds the size of a pointer to the dictionary substring, then the 

matched data is replaced by the pointer. An example of the encoding process is 

gi ven in Figure 7. 

An optimal algorithm for computing the minimum compressed form of a 

substring requires access to the entire input string and may involve global data 

flow. These restrictions prohibit parallelism. Gonzales-Smith a~d Storer prove 

that a greedy parsing strategy is a reasonable approach whose performance is close 

to that of the optimal algorithm [GS85, S88A]. The greedy algorithm may also 

require global communication among processors in a systolic architecture if the 

entire dictionary must be searched to determine the longest match. This can be 

avoided by enforcing three conditions: the dictionary entries must be organized 

in order of shortest to longest strings, encoding must proceed from left to right 

and suffixes of dictionary elements cannot be prefixes of other dictionary entries. 

Performance of the greedy approach is unknown when these assumptions fail to 

hold. 
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Source alphabet: {a, ... , z, A, ... , Z, ., ,, ;, !, ?} 
Input String: Data coding removes redundant information. 
Dictionary: 

00- 04 ~info 
05 - 11 coding 
12 - 18 bremove 
19 - 22 tion 
23 - 28 Data05 
29- 36 bredunda 
37- 44 29nt00rm 
45 - 49 13s37 

Initial 8 7 6 5 4 3 2 1 Processor 
Configuration 49-45 44-37 36-29 28-23 22-19 18-12 11-5 4-0 Pointers 

13s37 29nt00rm bredunda Data05 tion bremove bcoding binfo Dict. Entry 
+-Data cod ... 

After 16 8 7 6 5 4 3 2 1 
e y eles 13s37 29nt00rm bredunda Data05 tion bremove bcoding binfo 

Data Dcoding remov +-es redun ... 

After 21 8 7 6 5 4 3 2 1 
e y eles 13s37 29nt00rm Dredunda Data05 tion Dremove Dcoding binfo 

Data 05remov esbre +- dundant ... 

After 29 8 7 6 5 4 3 2 1 
e y eles 13s37 29nt00rm Dredunda Data05 tion bremove Dcoding binfo 

D ataO 5remove sbredun dantb +- info ... 

After 33 8 7 6 5 4 3 2 1 
cycles 13s37 29nt00rm Dredunda Data05 tion bremove Dcoding binfo 

D ataO 513sbre dundant binfo +- rmation ... 

After 41 8 7 6 5 4 3 2 1 
e y eles 13s37 29nt00rm bredunda Data05 tion bremove Dcoding binfo 

Data05 13sb redunda ntOOrma tion. 

After 45 8 7 6 5 4 3 2 1 
e y eles 13s37 29nt00rm bredunda Data05 tion Dremove Dcoding binfo 

2313sb red u ndantOO rmation 

After 58 8 7 6 5 4 3 2 1 
e y eles 13s37 29nt00rm Dredunda Data05 tion bremove Dcoding binfo 

2313s Dredunda ntOOrm atio n. 

After 65 8 7 6 5 4 3 2 1 
cycles 13s37 29nt00rm Dredunda Data05 tion Dremove Dcoding binfo 

2313s 29nt00rm a19. 

After 79 8 7 6 5 4 3 2 1 
e y eles 13s37 29nt00rm Dredunda Data05 tion bremove Dcoding binfo 

2313s 37a19. 

After 81 8 7 6 5 4 3 2 1 
cycles 13s37 29nt00rm bredunda Data05 tion bremove bcoding binfo 
23+- 13s37 a19. 

After 84 8 7 6 5 4 3 2 1 
e y eles 13s37 29nt00rm Dredunda Data05 tion Dremove bcoding binfo 

45a19. 

COMPLETE OUTPUT: 2345a19. 

Figure 7 

Example of encoding using systolic implementation of a static 

dictionary using 8 processors 
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Decoding on the systolic array is similar to encoding. The compressed string 

enters the pipe from the right and expansion consists of replacing each pointer 

by its target string. In particular, processor i compares its identification to the 

incoming pointer and if the processor finds a match, it outputs its corresponding 

dictionary entry. 

A difficulty in this design concerns buffer overflow errors that occur w hen 

data moves too quickly through parts of the array. A locking scheme prevents 

local buffer overflow. That is, no additional characters are read in until there is 

available space in the buffer. Unfortunately, locking signals can propagate up the 

pipe, eventually locking the entrance processor. The Gonzales-Smith and Storer 

architecture avoids this global system lock by assuming that the input data rate into 

the decoding circuit is commensurate with the speed of the compression chip [GS85, 

S88A]. As described, static dictionary compression requires no additional overhead 

for maintaining the dictionary but suffers from the performance limitations of a 

non-adaptive technique. The next section considers semi-adaptive techniques which 

achieve better compression performance by adapting to characteristics of the input. 

4.2. Sliding Window Method on the Systolic Array 

Systolic algorithms for the sliding (LZl-type) dictionary model compress 

text by replacing repeated substrings by pointers to earlier occurrences of the 

identical substring. In this scheme, pointers denote phrases in a fixed-size window 

immediately preceding the current coding position. For an implicit dictionary or 

"sliding window" of size N, the systolic design of Gonzales-Smith and Storer stores 

the last 2N characters processed, one item per processing element [GS85, S88A]. 

Also, each processor has three additional registers for holding an input character 

and its encoding information (see Figure 8). The additional N processors form 

a lookahead buffer that is used to aid in the continuous maintenance of the semi­

adaptive dictionary. 
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DO 
input character 
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Figure 8 

Systolic sliding window architecture 

p.e. 1 

dict. 
entry 

The systolic encoder consists of 2N linearly-connected processing elements. 

To encocle the current character in the sliding dictionary model, the window is 

searched for the longest match with the lookahead buffer. Encoding proceeds from 

right to left and the dictionary is continuously updated by moving the fixed-size 

window over the input, removing symbols on the left and adding new characters on 

the right. As data is piped through the array, information is maintained for each 

input character on the position and length of the longest match which is encoded 

as a triple (position, length, next character). "Next character" is the first character 

that did not match the substring in the window. As a character travels through 
/ 

the pipe, it is accompanied by its longest match location and length information 

which is updated whenever a longer match is found. 

Gonzales-Smith and Storer describe an encoding method that performs com­

parisons on blocks of N input characters at a time. During processing of these 
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characters, N new characters are read in, and N previously coded symbols are 

output. In particular, let ªN+i, ... , a2N be the sequence of characters read in 

during the processing of characters ai, ... , ªN. Since a block of size N has been 

coded, each processor updates its local dictionary element by replacing it by the 

current contents of its input register and, after an additional left shift, encoding 

continues. For the next N cycles, characters ªN +l' ... , a2N are compared against 

each character in the correct dictionary of inpµt characters a1, ... , ªN. Notice that 

not all processors participate in each system cycle. By knowing their own processor 

identification and the number of system cycles, each processor can determine which 

comparisons to perform. Processor 2N has the additional function of handling the 

longest match position and length information and, when the length l exceeds 

the size of a pointer, the pointer is output and the next l characters in the pipe 

are ignored. Moreover, whenever pointers overlap, processor 2N alters the output 

pointer to maximize compression. 

Calculating the longest match information requires communication among 

non-neighboring processors. Gonzales-Smith and Storer investigated two schemes 

for updating match position and length figures [GS85, S88A]. The first design 

stacks a binary tree-connected collection of 2N - 1 processors on top of the systolic 

architecture. In logarithmic time, information is propagated up and clown the 

tree to determine the position and length of the longest match. More precisely, if 

processor i detects a match, it checks with each of its neighboring processors. If 

the succeeding processor i + 1 did not match, then processor i sends a message to 

· its parent processor in the binary tree signaling that it has the first character of 

a matching string. Similarly, if processor i's preceding neighbor did not match, i 

flags i ts parent processor that i t is at the end of a match. These signals propagate 

up the tree until sorne processor k is able to pair up a start and an e11d symbol. 

Processor k then calculates the match length and returns the information to the 
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processor (processor j) holding the first character in the match. If the new match 

length exceeds the existing longest match beginning at that character, the match 

position is assigned the processor number j and the length register is updated. 

An encoding example based on the tree-connected support structure is given in 

Figure 9. 

The second match position and length updating scheme avoids sorne of the 

VLSI layout concerns, such as long edge lengths, at the expense of an increased 

logic delay of O( -/N). Processors are placed in an O( -/N) x O( -/N) grid with 

constant length connections and additional system cycles are introduced to spread 

information among non-neighboring processors. If the maximum length of a target 

string is limited to sorne constant k, the logical delay can be bounded by k. 

Decoding of the systolic dictionary model expands all pointers by employing 

a series of O(N) processors. Since all pointers are to locations less than N 

characters away, the N most recently decoded characters are stored in the pipe. 

The pointer (position, length )=(p, l) is decoded by concatenating the characters 

stored in processor p to processor p - l + 1. The array is augmented wi th two 

additional pointers which aid in switching from different modes in the decoding 

process. Similar to encoding, decoding proceeds in blocks of N characters. Before 

entering the pipe, the pointer (position, length )=(p, l) is expanded in to the sequence 

of integers p,p + 1, ... ,p + l - l. The expanded encoded message consisting of 

characters and digits is fed into the pipe on every other system cycle. After each 

cycle, the input shifts left and each processor compares its identification number 

to the input. If the input item is an integer equal to the processor number, the 

processor replaces the integer by the contents of its dictionary entry. After N 

cycles, each processor replaces its dictionary entry with the contents of its input 

register. 
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input string: ababbaba 

After 9 cycles:: 

dictionary a b a b b a b a 

input b a b b a b a X 

8 7 6 3 2 1 

(locati~ 
(8,2) 

aba b b a b a 

a b baba x x 
(8,2) (4,2) 

a b a b b a b a 

b b a b a X X X 

a b a b b a b a 

b a b a X X X X 

(7,3) 

final output: ababb(7,3) 

Figure 9 

Encoding example on a tree-connected systolic sliding-window design 
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Like the static dictionary model, the Gonzales-Smith and Storer architecture 

for the sliding window model requires that the speed of the chip and the rate of 

the communication channel guarantee that additional data <loes not arrive at a 

processing element prior to it having available space. Hence, any improvements to 

the system performance that impact the data transfer rate may force the redesign of 

many system components. Another disadvantage is the communication and logical 

delays associated with the maintenance of match information. This design can, 

however, be implemented in VLSI straightforwardly, but details of the appropriate 

system parameters, such as array dictionary size specifications, are not discussed. 

A different systolic data compression design built from a systolic array and 

binary trees is described by Zito-Wolf [Z90A). In this design, unlike the Gonzales­

Smith and Storer designs in which the data, dictionary, and output all flow through 

the systolic array, the data stream and dictionary are separated and longest match 

decisions are made by the tree processors. The dictionary is stored in the systolic 

array and compression is performed in two steps. First, the maximal match ending 

at each character is computed by making each input character simultaneously avail­

able to every processor via a broadcast tree of logari thmic depth, and identifying 

the largest match at each cycle using another tree connected collection of proces­

sors. This is in contrast to previous approaches which calculate the longest match 

beginning ata particular symbol. By not requiring global processor communication, 

all steps take unit time and system speed is unaffected by match length. 

More recent architectures for sliding dictionary compression on the systolic 

array have attempted to remove the propagation delay introduced in previous 

designs. To be practica!, data compression components must operate on-line and at 

high input bandwidths. On-line compression of an unbounded input requires time 

proportional to the input length and space proportional to the size of the dictionary. 

Henriques and Ranganathan investigated VLSI implementations, using CMOS 
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technology, of a systolic architecture for sliding window dictionary compression 

[HR90]. They describe an on-line linear time and linear size systolic compression 

system. Moreover, they argue that a buffer size of 256 is most reasonable for 

VLSI implementation. This is based on experimental observations and the fact 

that the buffer size determines the pointer length which impacts the codeword size 

and ultimately the compression ratio. Although the overall system time is linear, 

addi tional dock cycles are used to propagate the length and match information 

among the processors. Also, for a system of N processors, only a single maximum 

length match is calculated for each block of N characters. How this impacts the 

compression effectiveness is not discussed, but it seems that this limited use of 

substring replacement may have a negative impact of compression. Unfortunately, 

no empirical results are given. 

Zito-Wolf describes a bi-directional real-time systolic architecture for sliding 

window data coding that processes a character on every system cyde [Z90B]. 

Encoding is performed in two stages. The first stage is conducted on a systolic 

array which transforms the input into a stream of maximal matches. That is, 

for every input character a pair ( location, length) is computed, identifying the 

longest match ending at that character. During the second stage, the array output 

is directed to a serial processor which extracts a sequence of matches that cover 

the input. The compression time is not only linear in the size of the input but 

also requires only a single dock cyde to process each character. More importantly, 

unlike the Gonzales-Smith architecture, the dock cyde is bounded and independent 

of the dictionary size. U sing a 40Mhz dock, the system processes at a high­

bandwidth of 300 million bits per second. As with other systolic implementations, 

the architecture is modularly expandable which allows for larger applications. 
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the systolic array, the data stream and dictionary are separated and longest match 
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array and compression is performed in two steps. First, the maximal match endíng 

at each character is computed by making each input character simultaneously avail­

able to every processor via a broadcast tree of logari thmic depth, and identifying 

the largest match at each cycle using another tree connected collection of proces­

sors. This is in contrast to previous approaches which calculate the longest match 

begínning at a particular symbol. By not requiring global processor communication, 
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array have attempted to remove the propagation delay introduced in previous 

designs. To be practica!, data compression components must operate on-line and at 

high input bandwidths. On-line compression of an unbounded input requires time 
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Henriques and Ranganathan investigated VLSI implementations, using CMOS 
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technology, of a systolic architecture for sliding window dictionary compression 

[HR90]. They describe an on-line linear time and linear size systolic compression 

system. Moreover, they argue that a buffer size of 256 is most reasonable for 

VLSI implementation. This is based on experimental observations and the fact 

that the buffer size determines the pointer length which impacts the codeword size 

and ultimately the compression ratio. Although the overall system time is linear, 

ad di tional clock cycles are used to propaga te the length and match information 

among the processors. Also, for a system of N processors, only a single maximum 

length match is calculated for each block of N characters. How this impacts the 

compression effectiveness is not discussed, but it seems that this limited use of 

substring replacement may have a negative impact of compression. Unfortunately, 

no empirical results are given. 

Zito-Wolf describes a bi-directional real-time systolic architecture for sliding 

window data coding that processes a character on every system cycle [Z90B]. 

Encoding is performed in two stages. The first stage is conducted on a systolic 

array which transforms the input into a stream of maximal matches. That is, 

for every input character a pair ( location, length) is computed, identifying the 

longest match ending at that character. During the second stage, the array output 

is directed to a serial processor which extracts a sequence of matches that cover 

the input. The compression time is not only linear in the size of the input but 

also requires only a single clock cycle to process each character. More importantly, 

unlike the Gonzales-Smith architecture, the clock cycle is bounded and independent 

of the dictionary size. U sing a 40Mhz clock, the system processes at a high­

bandwidth of 300 million bits per second. As with other systolic implementations, 

the architecture is modularly expandable which allows for larger applications. 
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4.3. Dynamic Dictionary Coding on the Systolic Array 

Dynamic dictionary compression systems utilize an evolving dictionary that 

adapts to changes in the input characteristics. Usually, dynamic approaches achieve 

superior compression results over static and semi-adaptive methods. There are 

a number of different dynamic approaches, all of which must include two basic 

strategies: match selection and dictionary update procedures. Dynamic dictionary 

compression implemented on the systolic array is the focus of this section. 

4.3.1. ldentity Heuristic and Systolic Dynamic Dictionary Coding 

In 1988, Storer introduced the first systolic implementation for the dynamic 

dictionary model [S88A, S88B]. The approach is similar to the Gonzales-Smith and 

Storer implementation for the static dictionary model with additional specifications 

for updating the dictionary. As in the static design, a greedy approach is used for 

match selection. Dictionary maintenance involves the determination of strings to 

be inserted or possibly deleted. Candidate strings for insertion are derived from the 

concatenation of two previous matches ( this is referred to as the identity update 

heuristic ). Two separate dictionary pipes are employed, each initialized to contain 

the coding alphabet with one character per processor. Initially, compression begins 

using one of the two dictionaries and once the current dictionary becomes full, 

additional space is made available by swapping in the other ( empty) dictionary. 

La ter, when the dictionary again becomes full, the roles of the two dictionaries are 

reversed. 

If N is the size of the dictionary, encoding is performed on a systolic pipe 

consisting of N processors, numbered O through N - l from left to right. If A is the 

size of the input alphabet, processors O through A - 1 are assigned the characters 

of the source alphabet and processors A through N - l are capable of storing a pair 

of pointers. A flag bit in each processor is used to delimit the current dictionary. 

Initially, the flag bit in processor 1 is the only one set. The processor holding the 
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flag is designated to "learn" the next new dictionary entry. All of the processors 

to the left of the learning processor contain dictionary entries, while processors to 

the right are empty. The input stream enters from the left and, as in .the static 

dictionary systolic implementation, whenever a prefix 6f the input stream matches 

the contents of a processor, the string is replaced by the processor's number. The 

dictionary is updated by assigning the first pair of pointers to enter the learning 

processor to the dictionary entry stored in the learning processor and then passing 

the flag to the next processor. When processor N - 1 receives a dictionary item, 

the signal is sent indicating that the dictionary is full. At this point, control is 

shifted to the empty dictionary and the current dictionary is flushed out. 

As for encoding, decoding utilizes a pipe of size N and data enters the pipe 

from the left and exits on the right. However, the processors are numbered N -1 to 

O, with O being the rightmost processor. Processors O through A- 1 are initialized 

to contain the source alphabet and processor A starts out as the learning processor. 

Expansion is carried out as in the static dictionary system; that is, whenever an 

input substring arrives at a processor with index equal to the input, it is replaced 

by the word stored in the processor. 

The identity heuristic for updating the systolic dictionary is closely related 

to a serial update heuristic which augments the dictionary with the concatenation 

of the previous match and the current longest match. The Storer implementa­

tion builds larger dictionary strings from two smaller ones. Storer compares the 

performance of the serial and systolic designs and finds that the difference in com­

pression effectiveness is insignificant (S88A, S88B]. Storer hypothesizes that the 

systolic learning of the dictionary is superior to serial learning when compression 

is performed on a systolic array. This conjecture is based on an experiment which 

constructed a dictionary using the serial identity heuristic and then compressed a 

number of files using a serial algorithm and a systolic static dictionary simulator. 
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In many cases, the compression savings achieved by the parallel version was 10 to 

15 percent more than that achieved by the serial algorithm. 

Storer and Reif present a systolic real-time architecture based on a modified 

version of the identity heuristic of earlier designs [SR90]. The dictionary update 

heuristic, instead of entering the concatenation of two previous matches, adds the 

concatenation of two strings only if nei ther pointer was adopted by the preceding 

processor. A prototype VLSI chip for their design was built using a systolic coding 

pipe of 4, 096 processing elements and a 25Mhz dock capable of operating at 300 

million bits per second. 

4.3.2. Move-to-Front Compression on the Systolic Array 

Thomborson and Wei investigate systolic implementations of dynamic move­

to-front coding algorithms [TW89]. In general, a move-to-front compression scheme 

maintains a self-organizing list of target strings ( applying the move-to-front list 

maintenance heuristic) and encocles the table indexes using a statistical code. 

Huffman and arithmetic compression for index coding assign short codewords 

to positions near the front of the list. When a symbol is transmitted, the code 

corresponding to its current table position is output and the symbol is moved to 

the front of the list. Currently, move-to-front compression consists of two major 

algorithmic variants. The simpler procedure permutes a byte-leve! fixed-length 

list of symbols and the other defined-word approach divides the input stream 

into "words" and transmits words by a move-to-front code [BSTW86, E87]. For 

example, a byte-leve! move-to-front code might maintain a target list of 256 entries 

corresponding to the 256 possible values of an 8-bit ASCII byte. Such a system 

achieves compression savings of 30% to 40% on text files [TW89]. Defined-word 

methods often provide higher compression savings of 48% to 75%. 

Systolic implementations of a fixed-table-size move-to-front system are com­

posed of two separate chains of processors, one for encoding and the other for 
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decoding. The sequential encoder permutes a table of fixed-length 2k. A systolic 

byte-level encoder uses a linear array of 2k processing elements. The ith processing 

element, 1 ~ i ~ 2k, stores the target symbol t¡ which is currently in the ith posi­

tion of the fixed-length table. The input data stream eiüers the array at processing 

element 1, flows through the array, and is output by processing element 2k. 

Encoding of source character a proceeds as follows. Symbol a is input to 

processing element 1. If a matches t1 then the codevalue '1' is passed to processing 

element 2 signifying that a appears in the first position in the list. Eventually the 

codevalue '1' is output as the encoding of a. If a is not equal to t1, a is copied in to 

register t1 and the previous contents of t1 are transmitted to processing element 

2 for deposit in location t2. That is, a is placed at the front of the list, and the 

remainder of, the list is bumped back. General processing element i receives a 

4-tuple (a,u,p,flag) from its neighboring processor i - 1, where a is the source 

character, u is the table symbol being moved clown in the list, p is a's list index, 

and flag is set when the list needs further updating. If flag is set and a differs from 

t¡, u is copied in to t¡ and (a, t¡, p, TRUE) is passed to processing element i + l. Jf 

flag is set and a matches t¡, u is copied into t¡ and (a, u, i, FALSE) is transmitted. 

Otherwise, input (a, u, p, flag) p~sses through processing unit i, unchanged. Figure 

10 depicts the encoding of the string "architecture" for a systolic encoder consisting 

of 8 processing elements. 

A string of k-bit codes, corresponding to the list positions of the input char­

acters, is output by the encoding array and fed into a fixed-to-variable-length 

coding system. List positions near the head of the list are assigned short code­

words. Thomborson and Wei experimented with various tail-end encoders and 

conclude that higher compression ratios can be obtained by using a dynamic fixed­

to-variable-length encoder sensitive to changes in locality of reference in the source 
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Initial 8 7 6 5 4 3 2 1 Proc. Elem. ID 
Configuration e r a u h e Dict. Entry 

+- architecture 

After 1 8 7 6 5 4 3 2 1 
cycle e r a u h a 

(a,c,O,T) +- rchitecture 

After 2 8 7 6 5 4 3 2 
e y eles e r a u e r 

(a,h,O,T) (r,a,O,T) +- chitecture 

After 3 8 7 6 5 4 3 2 

cycles e r a u h a e 

(a,t,O,T) (r,c,O,T) (c,r,O,T) +- hitecture 

After 4 8 7 6 5 4 3 2 1 

cycles e r a e r h 

(e matches pe 3) (a,u,O,T) (r,h,O,T) (c,a,O,T) (h,c,O,T) +- itecture 

(a matches pe 5) 

After 5 8 7 6 5 4 3 2 1 
cycles e r u h a. e 

(a,a,5,F) (r,t,O,T) (c,c;3,F) (h,r,O,T) (i,h,O,T) +- tecture 

After 9 8 7 6 5 4 3 2 1 

cycles e u a e e t 

5 +- (r,r,6,F) (c,c,3,F) (h,h,4,F) (i,t,O,T) (t,r,O,T) (e,h,O,T) (c,t,O,T) (t,c,O,T) +- ture 

After 16 8 7 6 5 4 3 2 

e y eles u r e u r e 

3 +- (u,a,O,T) (r,h,O,T) (e,e,5,F) 

After 17 8 7 6 5 4 3 2 1 

e y eles a h e u r e 

8 +- (r,r,7,F) (e,e,5,F) 

After 18 8 7 6 5 4 3 2 1 

cycles a h e u r e 

7 +- (e,e,5,F) 

COMPLETE OUTPUT: 5,6,3,4,7,6,8,5,3,8,7,5 

Figure 10 

A fixed-length systolic encoder 

[TW89]. Their empirical findings suggest that their fixed-to-variable code con­

verter gives rather poor compression savings ( 11 % to 22%) but can perform at a 
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high bandwidth. Dynamic Huffman coding provides better compression savings 

(19% to 38%) but operates at a limited bandwidth. 

A systolic byte-level decoder also requires a linear array of 2k processmg 

elements. Instead of storing the ith element in the list, processing unit i reserves 

the k-bit index q¡, 1 ::; i ::; 2k, corresponding to the list posi tion of the character 

with representation i. For ASCII cedes, q¡ is the table index of the entry with 

ASCII value i. During decoding of symbol b, processing element i receives input 

( b, r) from processing element i - 1, where r is the value of the decoded symbol. 

If b equals q¡ then q¡ is set to '1' and r is assigned i. That is, the symbol with 

representation i is moved to the first list entry and b is decoded as i. If b is 

greater than q¡ then q¡ is incremented by one to reflect the movement of character 

representation i deeper into the list. Figure 11 depicts the behavior of the systolic 

move-to-front decoder. 

Both the encoder and decoder are systolic arrays composed of simple process­

ing elements and can be implemented fairly straightforwardly. Thomborson and 

Wei describe encoder and decoder chips that can operate at an input bandwidth 

of 40 Mbytes per second [TW89]. The bandwidth of their design is dependent on 

the behavior of the front-end variable-to-fixed decoder. This is an advantage over 

the Gonzales-Smith and Storer design whose data transfer rate is determined by 

the systolic dock. For these systems, any improvement in the bandwidth may re­

quire changes to many system components. Also, Thomborson and Wei report that 

their systolic implementation requires fewer processing elements than the Gonzales­

Smith and Storer VLSI implementation and improves the compression speed by a 

factor of three. 

As mentioned earlier, defined-word schemes provide better compression than 

byte-level methods. The most notable scheme, BSTW compression, is due to 

Bentley, Sleator, Tarjan and Wei [BSTW86]. Initially, the encoder list of the 
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Encoded message: 5,6,3,4,7,6,8,5,3,8,7,5 
Dictionary: 

Character Representation 
e 1 
h 2 
t 3 
u 4 
a 5 
r 6 

7 
e 8 

lnitial 8 7 6 5 4 3 2 1 Processor 
Configuration 8 7 6 5 4 3 2 1 List Position of character 

with rep.= proc. ID 

After 1 8 7 6 5 4 3 2 1 
e y ele 8 7 6 5 4 3 2 1 

(5,o) +- 6,3,4, ... 

After 3 8 7 6 5 4 3 2 1 
cycles 8 7 6 5 4 3 3 3 

(5,o) (6,o) (3,o) +- 4,7,6, ... 

After 4 8 7 6 5 4 3 2 1 
cycles 8 7 6 5 4 4 4 1 

(5,o) (6,o) (3,1) (4,o) +- 7,6,8, ... 

After 6 8 7 6 5 4 3 2 1 
cycles 8 7 6 1 6 5 1 3 

(5,5) (6,o) (3,1) (4,2) (7,o) (6,o) +- 8,5,3, ... 

After 7 8 7 6 5 4 3 2 1 
cycles 8 7 6 2 6 5 2 4 

(5,5) (6,o) (3,1) (4,2) (7,o) (6,o) (8,o) +- 5,3,8, ... 

After 8 8 7 6 5 4 3 2 1 
cycles 8 7 1 3 6 6 3 5 

(5,5) (6,6) (3,1) (4,2) (7,o) (6,o) (8,o) (5,o) +- 3,8,7, ... 

After 9 8 7 6 5 4 3 2 1 
e y eles 8 7 2 4 7 1 4 1 
5+- (6,6) (3,1) (4,2) (7,o) (6,3) (8,o) (5,1) (3,o) +- 8,7,5, ... 

After 12 8 7 6 5 4 3 2 1 
cycles 8 1 5 7 8 1 6 4 
2+- (7,7) (6,3) (8,o) (5,1) (3,3) (8,o) (1,0) (5,o) 

After 14 8 7 6 5 4 3 2 1 
cycles 8 3 6 7 1 3 7 5 
3+- (8,o) (5,1) (3,3) (8,4) (7,o) (5,o) 

After 17 8 7 6 5 4 3 2 1 
cycles 3 5 1 8 3 4 7 5 
3+- (8,4) (7,6) (5,o) 

After 18 8 7 6 5 4 3 2 1 
cycles 4 6 2 8 3 4 7 5 
4+- (7,6) (5,o) 

COMPLETE OUTPUT: 5,6,1,2,7,3,8,1,3,4,6,8 = architecture 

Figure 11 

A fixed-length systolic decoder 

BSTW algorithm is empty. The first time a word is encountered, an escape code is 
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transmitted followed by the word in cleartext. The word is entered into the move­

to-front table. Subsequent occurrences of the word are encoded by the word's list 

posi tion. The BSTW scheme compresses the cleartext and list indexes applying 

two separate codes. 

The implementation of the byte-level encoder and decoder systolic arrays 

can be modified to allow for word-based compression by storing words rather than 

single characters in the processing elements. With a 3-bit count field, each variable­

length word of 7 or fewer ASCII characters is encoded in 59 bits. However, this 

design requires 127 bits to represent the 4-tuples (2 words at 59 bits each, 8-bit table 

index, and 1-bit flag) processed by the encoder and therefore forces an unreasonably 

high number of 254 input/output pins per processing element. In addition, this 

approach suffers from an increased clock cycle to perform word comparisons. By 

reducing the maximum word-length, the pin requirements are lessened but at the 

expense of decreased compression effectiveness. 

Thomborson and Wei investigate an alternative system which approximates 

the BSTW procedure on the systolic array [TW89]. The idea is to map variable­

length words toan 8-bit hashcode using a hardwired hash table. These 8-bit codes 

are entered into the move-to-front list of target strings and manipulated as in the 

byte-level systolic encoder and decoder arrays. A closed hashing scheme with no 

collision resolution is used to obtain a high-speed, high-bandwidth design. These 

performance improvements, however, come at the expense of poorer compression 

performance. Unlike the BSTW algorithm in which the least-recently-used target 

word "falls" off of the end of the list, the hashing approach randomly eliminates 

list words. This random behavior of the systolic design yields compression savings 

ranging from 25 % to 65 % . 
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A systolic encoder, based on an 8-bi t hashing scheme, uses an array of 239 

processing elements. 10 Each processing element i stores a word w¡ and a hashcode 

h¡. A word W is ini tially parsed from the source stream and hashed to an 8-

bi t hashcode w. If the hash table entry with index w is different from word W, 

the entry is overwritten by word W and an escape code is output. If w matches 

the entry, the hash component outputs the hashcode w. The hash indexes and 

escape codes are input into the move-to-front systolic encoder. Encoding and list 

evolution are identical to the byte-level encoder. Two independent fixed-to-variable 

code converters are used to compress th.e pipeline output, one for clear text and the 

other for fixed-to-variable index coding. Decoding of hash indexes closely mimics 

the byte-level decoder with the addition of hash table manipulation and hash index 

to source word conversion. 

5. Multiple Data Compression 

The static and dynamic data compression methods in Sections 3 and 4 em­

ploy a single coding scheme that manipulates the data in parallel. The systolic 

array implementations pipeline the coding table to decrease compression overhead. 

Parallel code construction speeds up codeword creation by building the codeword 

tree in parallel. Each of these methods has its advantages and disadvantages and 

is designed to improve compression speed. Alternatively, combining multiple data 

compression techniques works to obtain greater compression savings. Competitive 

parallel processing and pipelining of compression algorithms apply parallelism to 

data compression by utilizing multiple compression methods operating in parallel. 

A pipelining data compression system combines two or more coding algo­

rithms to compress data more effectively than the individual methods performing 

in isolation. The approach is to use a succession of compression techniques to 

10 Using an 8-bit code and allowing for cleartext escape codes for each possible word length requires 
a table of size 28 - 23 = 248. To improve hash function performance, 239, the largest prime less 
than 248, is chosen. 
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Figure 13 

Example of a pipelined compression scheme 

improve the compression ratio (see Figure 12). The selection of appropriate coding 

methods and their optima! positioning in the compression pipeline infl.uences the 

system performance. Sorne data compression methods, such as Huffman coding, 

take advantage of character redundancy while others, including dictionary meth­

ods, profit from string repetition. Bailey and Mukkamala observe that if the input 

contains string redundancy, it also exhibits character redundancy [BM90]. They 

also note that the fixed length codes that are produced by a string parsing algorithm 

may contain multiple copies of the same codeword. By directing the fixed length 

output of the dictionary compression algorithm into a prefix coding element, addi­

tional compression is achieved (see Figure 13). Based on empir~cal investigations of 

2-stage methods, pipelined data compression algorithms significantly increase com­

pression savings. The major disadvantage of pipelining methods is the overhead 

required to runa sequence of sequential methods. 
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Multiple compression techniques competing for best compression performance 

Competitive parallel processing for data compression employs several proces­

sors, each simultaneously executing a different data compression method [C90]. In 

this MISD parallel system, the output· stream of the processor achieving the best 

compression savings is selected by the referee processor and transmitted. This is 

illustrated in Figure 14. Information is relayed with the coded package to enable 

the appropriate decompression processor. 

6. Future Research 

There are a number of important questions that remain unanswered in the 

area of parallel data compression. In this section, we suggest possibilities for future 

investigation. 
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As this survey has outlined, known results can be divided into the broad 

classes of statistical and dictionary-based compression. Most of the work in sta­

tistical methods is under the PRAM model of parallel computation and focuses 

on the parallel construction of trees and related issues. More practica! approaches 

in other parallel models are necessary. For example, can a minimum-redundancy 

prefix code be found efficiently using a systolic architecture? Also, there are no 

known parallel designs for adaptive statistical coding methods, such as adaptive 

Huffman coding and arithmetic coding. Given the better compression results of 

dynamic methods, these are important areas needing attention. 

The work in parallel dictionary coding has been limited primarily to the 

systolic array. Dictionary compression systems need to be developed for alternative 

parallel' models, such as the hypercube. 

Teng suggests further investigation of randomized and probabilistic algo­

rithms for minimum-redundancy prefix coding [T87]. Also, optimal solutions for 

the general and alphabetic versions of the Huffman coding problem are not known 

and warrant further research. Another unanswered question is whether there exists 

a poly-logarithmic time, sub-quadratic processor algorithm for the Huffman tree 

problem. A variation of Huffman coding is the length-limited Huffman coding 

problem which creates a code from a sequence of probabilities restricted to sorne 

maximum code length. Parallel construction of length-limited Huffman codes re­

mains an open problem. 

Thomborson and Wei give a systolic move-to-front (see Section 4.3.2) com­

pression system using a multiple-mode fixed-to-variable tail-end code converter 

that operates at a high input bandwidth [TW89]. Unfortunately, the overall com­

pression is significantly worse than H uffman encoding. They suggest that the 

development of a high-bandwidth Huffman en,coder is an interesting area for future 

research. 
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The discussion in Section 5 illustrates the impact of multiple parallel schemes, 

such as a pipelined succession of data compression systems ora competitive collec­

tion of methods operating simultaneously, on the overall compression ratio. The 

enhanced compression comes at the expense of additional hardware expenditures. 

Future work addressing issues of performance, feasibility, and suitability of these 

aggregate designs is needed. 

Context modeling is a promising new approach to data compression which 

uses the preceding few characters of the input to predict and therefore estímate 

the probability of the next input character [BCW90]. For instance, in isolation, 

'the probability of the letter "u" occurring is very low. However, if the preceding 

character is a "q" the probability of the next letter being a "u" approaches l. 

Context-modeling has not been addressed in the parallel setting. 
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