
UC Irvine
ICS Technical Reports

Title
Parallel data compression

Permalink
https://escholarship.org/uc/item/7561s3d6

Authors
Stauffer, Lynn M.
Hirschberg, Daniel S.

Publication Date
1991-05-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7561s3d6
https://escholarship.org
http://www.cdlib.org/

Notice: This Materiaf
may be protected
by Copyright Law
(Title 17 U.S.C.)

Parallel Data Compression

Lynn M. Stauffer_
University of California, f~vine

Irvine, CA 92717
stauffer@ics.uci.edu

Daniel S. Hirschberg
University of California, Irvine

Irvine, CA 92717 _
dan@ics. uci~edu

Technical Report 91-44

May 1, 1991

ABSTRACT

Data compression schemes remove data redundancy in communi-

cated and stored data and increase the effective capacities of communi­

cation and storage devices. Parallel algorithms and implementations for

textual data compression are surveyed. Related concepts from parallel

computation and information theory are briefly discussed. Static and

dynamic methods for codeword construction and transmission on vari-

ous models of parallel computation are described. Included are parallel

methods which boost system speed by coding data concurrently, and

approaches which employ multiple compression techniques to improve

compression ratios. Theoretical and empirical comparisons are reported

and areas for future research are suggestecl.

z
6 ;ít?

I

C, 3
l¡ o! 91--tff

i.',

f.·.~.(...... : ~ ; ;

1 ;. ~ •

:.)t·i ·:
•, !.

'i

Introduction ..

Preliminaries

Contents

Models of Parallel Computation ..

Categorization of Compression Methods .

Evaluation of Compression Methods

Parallel Statistical Coding

Huffman Coding Reduced to Parallel Circuit Evaluation.

Coding as the Multiplication of Concave Matrices .

Other Parallel Statistical Schemes .

Parallel Dictionary Compression

Static Dictionary Compression on the Systolic Array .

Sliding Wiridow Method on the Systolic Array . . .

Dynamic Dictionary Coding on the Systolic Array. . .

Multiple Data Compression

Future Research

References

Page

1

4

4

7

12

14

15

19

21

23

25

29

36

44

46

49

l. lntroduction

Data compression attempts to remove redundancy from data and thereby

increases the effective density of transmitted or stored data. Traditionally, there

has been a tradeoff between the benefits of employing data compression and the

computational overhead required to perform encoding and decoding. Parallelism

represents an avenue for increasing the speed (throughput) and performance of a

data compression subsystem. Consequently, parallel data compression is suitable

for a wider range of applications. The purpose of this paper is to present and

analyze parallel data compression methods. For a reference on data compression

terminology, see [LH87], [S88A] and [BCW90].

Parallel computing, the process of solving problems on parallel computers, has

risen out of the need for higher performance systems. Weather prediction, nuclear

reactor monitoring, DNA sequencing and artificial intelligence applications demand

time-critica! computers that are extremely fast [Q87]. For sequential systéms, data

compression improves communication speed and storage utilization. In the parallel

environment, processor interconnection data-rates and data availability play even

more critica! roles in system performance. Data compression in these parallel

systems motivates the concurrent coding schemes surveyed in this paper.

Data compression has become an essential component of high speed data

storage and communication. Performance of distributed computing systems is of­

ten restricted by the speed of the communication channel. Compacting messages

before transmission increases the effective bandwidth of the communication link.

. Advances in VLSI continue to expand the practicality of placing sophisticated data

compression algorithms implemented in VLSI at each end of every communication

channel. These encoding/decoding chips increase the capacity of the interconnec­

tion. Other services, such as data processing, which manipulate large volumes of

data that must be retrieved from and stored in externa! storage devices, also benefit

1

from widespread incorporation of data compression sche.mes. By compressing the

data before it is stored and later expanding the stored form, the effective capacity

of the storage medium is increased. Data compression provides additional benefits

such as increased security and efficiency in search operations on compressed files

and reduction in backup and recovery costs in computer systems.

From a practica! point of view, speed distinguishes the use of parallelism in

data compression. Parallel data compression is appropriate for a wider range of

time-critica! applications. High-resolution stereoscopic color television broadcast­

ing is one example of an application whose data rate is so critica! that the overhead

required for compressing data may outweigh the benefits of reducing data redun­

dancy [C90]. In addition to speed, the throughput of many parallel computational

models is independent of the size of the model; this has both theoretical and

practica! ramifications.

The state-of-the-art in software data compression systems is the UNIX1 com­

pres3 utility which is based on a variation of Lempel-Ziv coding [ZL 78] dueto Welch

[W84]. The UNIX compre33 utility provides compression savings of up to 80% at

a relatively high input bandwidth2 of 30 Kbytes per second on a 1 MIPS machine

[TW89]. Higher compression savings achieved by high-order Markov models and

improved versions of compre33 operate at limited bandwidths of approximately

10 Kbytes per second on a 1 MIPS machine. Thomborson and Wei describe a

high-bandwidth (40 Kbytes per second) systolic text compression system with

compression savings ranging from 20% to 70% [TW89]. A number of other im­

plementations achieve good compression at input rates of several hundred million

bits per second [HR90, SR90, Z90A, Z90B, Z90c].

Although the practicality and applicability of performing data compression

is increased by introducing parallelism to speed up coding, multiprocessing is an

1 UNIX is a trademark of AT&T Bell Laboratories.
2 Bandwidth is synonymous with data transfer rate.

2

alternative use of concurrency which employs various coding schemes to improve

compression effectiveness. At the expense of system time and hardware resources,

multiple compression algorithms, operating simultaneously, can improve compres­

sion rates. While this use of parallelism may be less practica! because of its resource

demands, the benefits of compression may outweigh the increased overhead for

certain applications. Competitive parallel processing and algorithm pipelining are

discussed in Section 5.

This survey of parallel data compression considers lossless data compression

techniques which operate under the constraint that the decompressed data must

be identical to the original data stream. Lossless compression demands that no

form of deviation be introduced into the data during encoding or decoding. Text

compression, the focus of this survey, is normally restricted to lossless compression.

Image processing is an example of an application that can tolerate inconsistencies

between the original data and its compressed form. Lossy image compression

techniques often subdivide the input into subimages which are compressed and

expanded independently in parallel. Errors introduced along the boundaries of the

substreams ·cause deviation from the input; however, normally the decompressed

image closely approximates the original. Lipton and Lopresti present a systolic

array for string comparisons with applications to lossy data compression [1185].

It is further assumed that the communication channels and storage devices

are noiseless. That is, it is assumed· that no data inaccuracies are introduced

during data transmission. Many techniques are available for error detection and

correction but are not included in this survey.

Background concepts in data compression and parallel computation are pro­

vided in Section 2. Parallel coding systems based on concurrent manipulation of

source data are described in Sections 3 and 4. Aggregate compression systems

incorporati~g collections of compression methods to _improve coding effectiveness

3

are discussed in Section 5. Finally, in Section 6, topics for future research and their

relationship to known results are examined.

2. Preliminaries

A brief introduction to data compression and parallel processing is provided

m this section. The terms and assumptions necessary for a careful evaluation

and comparison of parallel data compression methods are presented. For a more

detailed discussion of data compression in the sequential. setting see (LH87], [S88A]

and (BCW90].

2.1. Models of Parallel Computation

The purpose of this section is to introduce sorne of the concepts, formal mod­

els, and performance measures from the area of parallel computation. There are a

variety of abstract models of parallel machines that correspond to different system

designs. Closest to the physical hardware are VLSI models that focus on tech­

nological limits. Other models, slightly removed from the actual implementation,

emphasize the importance of processor interconnection organization. Another class

of machines is defined by Flynn's Taxonomy which categorizes an architecture by

the presence or absence of multiplicity in the instruction and input streams [F66].

Furthest from physical system design is a general-purpose theoretical model, the

parallel random access machine (PRAM) in which it is assumed that each proces­

sor has random access in unit time to any cell of a global memory. The following

discussion on parallel models includes only those models that are bases for the data

compression methods presented in this paper. For a more thorough discussion of

parallel models, see (M88].

4

Flynn's classification distinguishes parallel architectures based on the con­

cepts of instruction stream and data stream. An instruction stream is a se­

quence of instructions executed by a computer and a data stream is the se­

quence of input data. Single-Instruction, Single-Data (SISD) computers are essen­

tially enhanced sequential computers capable of pipelining the instruction stream.

Multiple-Instruction, Multiple-Data (MIMD) computers include multiprocessing

systems that have independent processors operating on non-overlapping sequences

of input. The most common model is the Single-Instruction, Multiple-Data (SIMD)

computer which typically consists of a number of uniform processors, an intercon­

nection network, andan associative memory. The synchronized processing elements

of an SIMD computer, also referred to as a proce.s.sor arra y, simultaneously perform

the same operation on different data. Processor arrays can differ in terms of number

of processors and method of interprocessor communication.

The principal model of computation considered in the theoretical study of

parallel algorithms and the complexity of parallel computation is the parallel ran­

dom access machine (PRAM) which is in the SIMD classification [FW78, G78]. The

PRAM consists of a number of identical general-purpose sequential processors, all

of which are connected to a large shared, random access memory. Each processor

has a prívate memory for local computation, but communication between proces­

sors is done through information exchange in a global random access memory. It

is further assumed that each processor may access any cell in the common memory

in constant time. In the PRAM model, each processor i~ assigned an index and all

processors execute the same instruction sequence. However, each processor may

perform differently depending on its corresponding index. The PRAM is not a

physically realizable model since it is impossible to provide a constant length com­

munication link amongst an arbitrarily large number of processors. N evertheless,

5

the intention of the PRAM model is to permit the study of parallel computation

abstracted away from the issues of interprocessor communication.

There are several variants of the PRAM which differ in their handling of simul­

taneous reading and writing of the global memory. The weakest of these variants

is the Exclusive-Read, Exclusive-Write (EREW) PRAM in which concurrent reads

and writes are prohibited. The Concurrent-Read, Exclusive-Write model permits

multiple processors to access a common memory location but forbids simultane­

ous writes. The least restrictive model, the Concurrent-Read, Concurrent-Write

(CRCW) PRAM, allows different processors to read from and write to identical

positions in the shared memory. CRCW PRAM models are further distinguished

by their methods of handling write confl.icts. Even though there are a variety of

PRAM models, they do not differ widely in computational power.

Although the PRAM provides a useful framework for studying parallel com­

putation, other SIMD models that view a parallel computer as a set of processors

interconnected in a fixed pattern more closely resemble actual hardware. These

models assume that each processor has its own local memory and that data passes

between elements via a communication network. In the me.sh-connected SIMD

model, processors are arranged in a lattice with connections between neighboring

processors. Sy.stolic array.s are linearly connected SIMD computers consisting of

synchronized rudimentary processing elements (see Figure 1). Two-dimensional

mesh-connected processor arrays allow links between adjacent elements. A d­

dimensional cube-connected SIMD model considers processing elements as the

corners of ad-dimensional cube and connects each processor to its d neighbors. A

three-dimensional cube network hypercube is shown in Figure 2a. A tree-connected

network restricts data movement to links between a processor and its parent (or

children). For example, in Figure 2b, processing element with index 6 may route

data to processor 3 and processor 3 may send messages to processors 1, 6 and 7.

6

processing processing processing
element 1 element 2 element k - ~ -- --
memory 1 memory 2 memory k

Figure 1

Linearly connected SIMD network of k processing elements

ptoc.
e e

1
m.

ptoc.
e
2
m

ptoc.
T1

pro e
elefl

(a) (b)

Figure 2

(a) 3-D cube connected network (hypercube) on 8 processing elements

(processor i.d. 's represented in binary) (b) tree connected network on

7 processing elements

In a tree-connected system with n processors, data communication takes at most

logarithmic time. A tree-connected processor array is used by Gonzales-Smith and

Storer to maintain a dynamic coding dictionary [GS85, S88A].

2.2. Categorization of Compression Methods

There are a number of ways of classifying compression methods. This section

describes the classifications that are relevant to parallel data compression.

7-

Bell, Cleary and Witten draw a careful distinction between statistical and

dictionary based data compression [BCW90). Methods, such as Huffman coding

and arithmetic coding, based on character frequencies are labeled statistical meth­

ods. Other compression techniques function by replacing large blocks of input

with references to earlier occurrences of identical data. These dictionary methods,

also called textual substitution and Lempel-Ziv compression, achieve compression

by replacing phrases with pointers into sorne dictionary. Typically, a table or

dictionary of target strings is constructed and the table indexes are encoded. Two

factors differentiate versions of Lempel-Ziv coding, whether to limit how long an

entry remains in the dictionary and which substrings become part of the dictionary.

Sliding window compression restricts references to a fixed size window and allows

any substring in the window to be included in the dictionary. Methods of this type

are often labeled LZl compression. Fully adaptive techniques are characterized

by an independently maintained dictionary that is separate from the data and

are referred to as type LZ2. Instead of allowing references to any string that has

previously appeared, LZ2-type dictionary compression parses the processed data

into phrases, where each phrase consists of the longest matching phrase already

processed plus one additional appended character. Each phrase is encoded as an

index to its prefix, plus the extra character. The new concatenated string is added

to the dictionary.

Not only are data compression schemes categorized as statistical or dictionary

methods, but they are also classified as static or dynamic. A static compression

method creates a fixed mapping from input characters or strings to an encoded

representation. The classical static statistical method is Huffman coding [H52].

Huffman coding assigns codewords to input strings based on the probabilities of

source characters. The probabilities are calculated before transmission and are

used to create a prefix coding table of variable length codewords. Compression is

8

achieved by assigning short codewords for highly probable input strings and longer

codewords for less probable input. An earlier static method, Shannon-Fano coding,

also attempts to assign short codewords to frequently occurring source strings

(F49, FW78]. Shannon-Fano coding creates a minimal prefix code that differs only

slightly from optima!. Static dictionary compression replaces repeated substrings

by references to a fixed table of strings. Parallel static statistical compression

schemes are discused in Section 3 and parallel static dictionary compression is the

focus of Section 4.1.

Dynamic or adaptive models incorporate a mapping between input charac­

ters or strings and the encoded representation that evolves as the input is being

transmitted. These models adapt to changes in input characteristics. Ziv and

Lempel devised an adaptive dictionary coding method that parses the input into

strings that are used to build a table whose indexes are then encoded into fixed

length codewords [ZL 78]. Frequently occurring strings are grouped together and

represented by a single codeword. Welch improved the Ziv and Lempel algorithm

by initializing the dictiónary with the character set and building the table using the

current match augmented with the subsequent input character (W84]. Thomborson

and Wei implementa dynamic move-to-front text compressor on the systolic array

[TW89]. Gonzales-Smith and Storer investigate dynamic dictionary compression

employing different learning rules (GS85, S88A, S88B]. A number of other systolic

designs implement a changing dictionary and are described in Section 4.3 [HR90,

SR90, TW89, Z90A, Z90B, Z90c].

In between static and dynamic methods are semi-adaptive schemes, such as

sliding window data compression, which encocle substrings of the input as references

to identical substrings occurring in a fixed-size window of characters preceding the

input. The contents of the window can be viewed as a semi-adaptive dictionary.

9

Sliding window compression methods are based on the LZl model (described in

[ZL 77]) and systolic implementations are reported in Section 4.2.

Most compression methods are codeword-based. Codeword-based compres­

s1on schemes replace input substrings by codewords to obtain a more compact

representation of the input. Huffman coding is an example of codeword-based

compression. However, in sorne compression schemes, such as arithmetic coding,

it is not possible to identify the particular input character that caused a partic­

ular bit of the encoded stream. For codeword-based compression methods, let

a = { s1, s2, ... , Sn-1, Sn} be the source alphabet. A source message is a concate­

nated sequence of characters over the alphabet a. Let (3 = {O, 1, 2, ... , ¡ - 1} be

the code alphabet. A code C = { ci, c2, ... , cm} is a finite nonempty set of finite

sequences over code alphabet (3. Each e¡ is a codeword. A mesMge over C is a

string resulting from the concatenation of codewords from C. A code C is distinct

if the assignment of source words (strings over the source alphabet) to codewords

is one-to-one. A code C is uniquely decipherable if the message created by the

encoding of a sequence of input words has a unique decomposition (i.e. codewords

are distinguishable from the entire compacted message). A code C is a prefix code

if no codeword in C is a prefix of another codeword. Note that any pref.ix code is

uniquely decipherable.

Instead of constructing a mapping from source messages to codewords, arith­

metic coding represents the input string by a subinterval of the interval between O

and 1 on the real line [WNC87]. The method uses the probabilities of the source to

successively narrow the interval used to represent the input. Ultimately, the inter­

val is be narrowed sufficiently so that only the source string would be represented

by any number in the interval. Arithmetic coding dispenses with the restriction

that every character in the source message must be represented by an integral
'

number of bits. Because of this property, arithmetic coding is capable of achieving

10

~ompression results that are arbitrarily close to the entropy of the source, defined

below.

There are a number of measures used to determine the "goodness" of a

particular code. Of interest to this survey is the notion of an optimal or minimum­

redundancy code. 3 A minimum-redundancy code has minimum average codeword

length for a given discrete probability distribution of the source [LH87]. This defi­

nition is based on the information theory concept of entropy which is a measure of

the information content of a message. For an unpredictable source, entropy (infor­

mation content) is high; for an ordered source, entropy is low. Formally, for source

alphabet a {s1, s2, ... , sn} with probabilities of occurrence {p1,p2, ... ,pn}

and distinct code e = { ci, c2, ... 'en}, the expression4 ¿~=1 -pk lgpk denotes

the entropy of the source and L::~=l Pklen(ck) is the average codeword length,

where len(ck) is the length of codeword ck. Theoretically, the minimum length

of a compressed message should equal its entropy. That is, since the length of

a code message must be sufficient to carry the information of the corresponding

source message, entropy imposes a lower bound on codeword length [LH87]. A

minimum-redundancy code for source alphabet a minimizes the difference between

the average codeword length and the entropy of the source.

·Data compression schemes can be further categorized as either off-line, on­

line, or real-time. An off-line model can manipulate and preprocess the entire

input string prior to coding. In on-line models, neither the sender or receiver

can see all of the data at ·once; that is, data is constantly flowing through the

encoder, transmitted, and pushed through the decoder. On-line algorithms are

further distinguished as real-time methods if, for sorne constant k, exactly one new

character is read into the encoder and one character is written by the decoder

3 In the parallel computation community, the term "optimal'' is used to describe efficient parallel
algorithms. Therefore, in this paper, "optima!" is reserved for describing parallel algorithms and
"minimum-redundancy" is used for coding.
4 In this paper, lg denotes the base 2 logarithm.

11

every k units of time [SR90]. On-line algorithms are forced to construct the

coding dictionary "on the fiy". The scheme is designed to "learn" an approximate

distribution of the data and to adapt to fiuctuations in the source.

Many static compression schemes, such as Huffman coding, that create the

compression mapping prior to data transmission, can be viewed as two-phase

methods. The first phase, operating off-line, analyzes the character probabilities.

The second phase matches the input against the codeword table to perform the

actual compression. The work of Teng [T87], Kirkpatrick and Przytycka [KP90],

Larmore and Przytycka [LP91], and Atallah et al. [AKLMT89] focuses on the first

phase by investigating the off-line parallel construction of a Huffman prefix code.

Gonzales-Smith and Storer use a two-phase parallel data compression method,

implemented on a systolic array, that assumes the existence of the static coding

dictionary (created off-line) and transmits the coded message on-line [GS85, S88A].

Parallel static _compression systems based on character statistics are surveyed

m Section 3. Section 4.1 presents systolic implementations of static dictionary

methods and sliding substitutional designs are described in Section 4.2. Dynamic

dictionary approaches implemented on the systolic pipe are covered in Section 4.3.

2.3. Evaluation of Compression Methods

A common measure used to evaluate and compare coding techniques is com­

pression ratio. There are several different definitions of compression ratio which

attempt to describe the space reduction attained by compression. For example,

com pression ratio has been defined as the ratio (encoded message length) / (source

message length), as the ratio (source message length) / (encoded message length), as

the number of bits per input character, andas 1-(encoded message length)/(source

message length) [LH87, S88, BCW90]. In this paper, compression ratio is defined as

the ratio (encoded message length) / (source message length). C ompression s avings

is defined by 1-(compression ration). For example, if the input string toan encoder

12

consists of 2000 bits and the corresponding output is 500 bits, the compression ratio

is 500/2000 == .25 or 25% and the compression savings is 1 - 500/2000 == .75 or

75%. Compression ratios describe compression effectiveness but do not take other

important performance measures into consideration. For instance, one compres­

sion scheme may achieve 80% compression savings but may take an unreasonable

amount of time to execute. Another scheme may give poorer compression ratio

but perform in real-time. When possible, methods are compared in terms of speed,

space usage, compression ratio, and system bandwidth5.

In the study of parallel complexity, problems are classified according to their

use of time and processor resources. The class N C incorp~rates a hierarchy of

problems that are solvable by deterministic parallel algorithms that operate in time

bounded by a power of the logarithm of the size of the input using a polynomially­

bounded number of processors.

Work is another measure used to evaluate parallel algorithm performance.

The work done by a parallel algorithm is defined as the product of the time and

processor requirements. If Seq(P) is the time complexity of the fastest known

sequential algorithm for a problem P then a parallel algorithm is optimal if it

takes O(Seq(P)/P)6 time using O(P) processors. Moreover, the work performed

by an optima! algorithm is proportional to the time required by the fastest known

sequential algorithm. As mentioned earlier, parallel computation adds the dimen­

sion of processor usage to algorithm evaluation. The processor requirements of

each parallel system are given to aid in this comparison. The theoretical PRAM

model cannot be physically implemented and is therefore limited to theoretical

evaluation. For other parallel models, empirical findings are included. Statistical

coding on the PRAM is described in the next section.

5 The bandwidth of a device is measured as the number of bytes transferred per unit time.
6 0-notation represents _an upper bound on the asymptotic behavior of a function.

13

3. Parallel Statistical Coding

A statistical compressor assigns codes based on probabilities of individual

symbols. Static Huffman compression calculates character frequencies during a

preprocessing pass over the source data. This information is used to assign code­

words so that short codes correspond to high-frequency symbols and longer codes

are given to low-probability characters. The second pass encocles the source data

using the generated codewords. This section examines parallel approaches to sta­

tistical coding.

Huffman compression generates a prefix code such that the average word

length is minimal. The prefix code is equivalent to a full7 binary tree with the

source symbol probabilities associated with the leaves. To construct this code

tree, Huffman's algorithm proceeds as follows [H52]. Initially, each probability is

assigned to a tree of height O (i.e., a single node). Iteratively, the pair of trees

corresponding to the two smallest probabilities are combined into a single tree

with an associated probability equal to the sum of the frequencies of the two

original trees. Huffman's scheme constructs a minimum-redundancy prefix code

in O(n log n) time, where n is the size of the source alphabet. If the symbol

frequencies are presorted, Huffman's method requires only linear time. Applying

a recursive description of Huffman tree creation, Teng developed the first parallel

algorithm for Huffman coding [T87]. Teng's approach implements a parallel dy­

namic programming solution and runs in O(log2 n) time using O(n6) processors.

Although unreasonable resource bounds render this solution impractical, the results

are significant since they were the first to place the Huffman coding problem in

the computational class NC. Further work by Atallah et al. lowered the time and

processor requirements by taking advantage of implicit properties of the tree corre­

sponding to the graph-theoretical interpretation of Huffman's solution [AKLMT89].

Section 3.1 describes parallel minimum-redundancy prefix code creation based on

7 A binary tree is ful/ if every interna! (non-leaf) node has exactly two children.

14

dynamic programming and Section 3.2 surveys improved approaches which profit

from concave matrix multiplication and approximation. Section 3.3 considers other

parallel statistical coding methods.

3.1. Huffman Coding Reduced to Parallel Circuit Evaluation

The first parallel Hu:ffman code construction algorithm solved the problem

indirectly by a unifarm reduction to a min-plus circuit value problem of polynomial

size and linear degree [T87]. The min-plus circuit value problem can be sol ved in

logarithmic time with a polynomial number of processors. This reduction coupled

with the efficient circuit evaluation algorithm yielded the first NC algorithm far

the creation of minimum-redundancy prefix codes.

The reduction is based on a recursive definition of minimal average word

length. N amely, let the input to the Hu:ffman coding algorithm consist of a sequence

(pi, p2, ... , Pn) of source character probabilities and let H(i, j) be the average word

length of a Hu:ffman code far probabilities (pi, ... ,pj)· Initially the input sequence

is sorted into nondecreasing order in O(log n) time using O(n) processors. Then

the values of H(i,j) are given by the fallowing recurrence relation:

H(i,j) = { :in{=i+l {H(i, k - 1) + H(k,j)} + ¿~=;Pr
'/, =]

i < j
(a)

An example of this dynamic programming approach to sequential code creation is

given in Figure 3. The idea is to build a tree of size k by taking the minimum total

path length over all possible tree configurations of size less than k.

Teng provides a sequential algorithm, implementing the above recursive def­

inition, far building a minimum-redundancy prefix code. It can be sketched as:

l. Initialize H(i,j) =O far i = j and H(i,j) = +oo far i < j.

2. For i < j estimate H(i,j) applying relation (a) and the value_s of H obtained

d uring the previous step.

3. If any H value changed since previous iteration, return to step 2.

15

P1 = .36 P2 = .29 p3 = .25 p4 = .1

H(l, 2) = H(l, 1) + H(2, 2) + P1 + P2 = .65

H(2, 3) = H(2, 2) + H(3, 3) + P2 + p3 = .54

. { H (2, 2) + H (3, 4) + P2 + p3 + p4
H(2, 4) = mm = .99

H(2, 3) + H(4, 4) + P2 + p3 + p4

¡ H(l, 1) + H(2, 4) + P1 + P2 + p3 + p4

H(l, 4) = min H(l, 2) + H(3, 4) + P1 + P2 + p3 + p4 = 1.99

- H(l, 3) + H(4, 4) + P1 + P2 + p3 + p4
(a)

Directed graph induced by H(ij):

Corresponding Tree:

(b)

(e)

Figure 3

(a) Dynamic programming sol u tion (b) Directed graph (e) H uffman tree

16

Teng reduces the algorithm to a min-plus circuit value problem which can be

evaluated in O(log2 n) time using a polynomial number of processors on the CRCW

PRAM [MRK85]. This results in an NC algorithm for generating the values H(i, j),

for all i and j. It remains to derive the tree and corresponding codewords from

the H values. Teng describes a construction which builds a directed graph whose

vertex set is the collection { H (i, j) j 1 ::; i ::; j ::; n} and w hose edges connect vertex

H(i,j) with the vertices H(i, k - 1) and H(k,j) where k is given by the recursive

definition of H(i,j). The directed graph induced by H(l, n) is made into a tree by

marking all of the nodes reachable from the root H(l,n) in O(logn) time using a

polynomial number of processors. Figures 3b and 3c show the directed graph and

final tree for the problem in Figure 3c. The resulting tree represents a minimum­

redundancy prefix code for the source character probabilities (p1,p2, ... ,pn) and

is constructed in O(log2 n) using O(n6) processors on the CRCW PRAM model.

The codeword for each source character can be generated in O(log n) time using

O(n / log n) processors by tree contraction [MR85]. Tree contraction is useful in

parallel tree manipulation and is the basis of the approach taken by Atallah et al.

to improve on Teng's original result [AKLMT89].

Miller and Reif define RAKE and COMPRESS operations on trees [;MR85].

Let RAKE be an operation that removes all leaves from a tree and let COMPRESS

be an operation that halves each chain of nodes (from leaf to roo't) by pointer

doubling. Atallah et al. considera restricted form of the RAKE operation where a

leaf is removed only if its siblings are leaves [AKLMT89]. They show that any left­

justified8 tree can be reduced to a single chain of vertices along the leftmost path

of the tree in at most flog n l applications of RAKE. They also notice that each

iteration of Step 2 in Teng's sequential algorithm simulates the RAKE operation

and can be done in O(log n) using n 3 / log n processors on the CREW PRAM model

8 A binary tree T is left-justified if for every pair of siblings u and v, with u to the left of v, if the
subtree Tv rooted at v is not empty at sorne level l in the tree then the subtree Tu rooted at u is
full at level l.

17

of computation. However, the algorithm requires O(n) iterations and therefore

yields an O(n log n) total time bound.

The execution performance can be reduced to O(log n), usmg the same

number of processors, by introducing a step which carries out the COMPRESS op­

eration and thereby reduces the height of the tree [AKLMT89]. The COMPRESS

step estimates a quantity F(i,j), where H(l, i) + F(i,j) is the minimum average

word length of a tree over source frequencies (P1, P2, ... , Pi) restricted to contain­

ing a subtree corresponding to (pi,p2, ... ,p¡). Quantity F(i,j) can be defined

recursively in terms of precomputed H values and previous F values as follows:

i+l<j
(b)

{

H(i + 1,j) + ¿:=l Pr

F(i,j)= . {H(i+l,j)+¿~=1 Pr
min .

minr:~+l { F(i, k) + F(k, j)}

i+l=j

Atallah et al. provide the following sketch of the algorithm which performs

flog n l RAKE operations followed by flog n l COMPRESS operations to reduce

the tree to a single node [AKLMT89].

l. Initialize H(i, j) = O for i = j and H(i, j) = +oo for i < j.

2. Itera te r1og n l times: For i < j estima te H (i, j) applying relation (a) using

the values of H obtained during the previous step.

3. Initialize F(i,j) = H(i + 1,j) + ¿~=i Pr·

4. Iterate flog n l times: For i < j estimate F(i, j) applying relation (b) using

the values of F obtained during the previous step.

The final value of F(l, n) gives the average word length of the minimum­

redundancy prefix code. As noted above, since any left-justified tree can be

reduced to a single leftmost chain of nodes by flog n l applications of RAKE,

flog n l COMPRESS operations on a chain reduces the tree to the empty tree.,

Therefore, the above algorithm computes the quantity F(l, n) in O(log n) time

using O(n3 / log n) processors on a CRCW PRAM. Although the paper does not

18

mention the generation of the corresponding tree or codewords from the com­

puted H and F values, an approach similar to Teng's (described earlier) provides

these within the same resource bounds. Also, Teng proves that, for any nonde­

creasing sequence of probabilities (p1, p2, . .. , Pn), there is a left-justified Huffman

tree representing a minimum-redundancy prefix code for (pi,p2, ... ,pn) [T87].

Thus, utilizing a parallel dynamic programming approach, Huffman codes can

be constructed for a given list of probabilities, in O(log n) time using (n3 / log n)

processors. These bounds can be improved by formulating the Huffman coding

problem in terms of multiplications of concave matrices. This approach is discussed

in the following section.

3.2. Coding as the Multiplication of Concave Matrices

In light of the sequential O(n log n) performance of Huffman's algorithm, the

parallel dynamic programming solution of the previous section is of little practica!

value since it requires O(n3) work. This section discusses an alternative approach

due to Atallah et al. which runs in O(log2 n) time using n 2 / log n processors

[AKLMT89]. The bottleneck of the dynamic programming algorithms is the n 3

processor bound that arises from multiplication of arbitrary matrices. Concave

matrices are a subclass of matrices that can be multiplied more efficiently in

parallel. By formulating the Huffman tree problemas a multiplication of concave

matrices, the processor requirement is reduced.

A concave matrix M is a rectangular matrix that satisfies the quadrangle

condition (see Figure 4). Specifically, for n x m matrix M, the following inequality

holds for all l ~ i < k ~ n, 1 ~ j < l ~ m:

M[i, j] + M[k, l] ~ M[i, l] + M[k, j]

Atallah et al. give a recursive algorithm for multiplying concave matrices over

the closed semi-ring (min,+) which runs in O(lognloglogn) time using n 2/logn

19

Matrix M: M(ij] + M(k,l] ~ M(i,l] + M(kj]

GG
' /

'" "'
GJ]/ 'Q

Matrix M

Figure 4

1

1

1

1

1

The quadrangle condi tion

5 9 13 17

4 7 10 13

3 5 7 9

2 3 4 5

1 1 1 1

Example

processors on the CREW PRAM, and O((loglogn)2) time using n 2/(loglogn)

processors on the CRCW PRAM [AKLMT89]. By taking advantage of the more

efficient concave matrix multiplication, they describe a solution to the Huffman

tree construction problem that runs in O(log2 n) time using n 2 / log n processors.

Their approach reduces Huffman coding to a minimum-weighted path problem for

a directed graph which can be solved via parallel concave matrix multiplication.

The reduction is two-fold. As mentioned earlier, for any nondecreasing sequence

of probabilities (pi,p2, ... ,pn) there exists a left-justified tree representing the

corresponding minimum-redundancy code such that the heights of the ·subtrees

not on the leftmost path are no more than flog n l · The first step of the reduction

builds minimum-redundancy height-limited subtrees of height at most flog n l for

all possible subintervals (p¡, ... ,pn)· The resulting information is represented as

a matrix A which is computed in O(log2 n) time using n2 / log n processors by a

reduction to recursive multiplication of concave matrices.

The matrix A generated in step 1 is augmented to form matrix M. Matrix

M has no simple meaning in terms of Huffman trees. But, matrix M 2flognl gives

20

the minimum weighted path length of the minimum-redundancy Huffman tree for

probabilities (pi,p2, ... ,pn) and the information needed to construct the tree. The

second phase consists of the creation of matrix M and a series of flog n l concave

matrix multiplications which can be performed in O(log n) time using n 2 / log n

processors. This two-phase reduction yields the Huffman tree in a total of O(log2 n)

time using n 2 / log n processors on the CREW PRAM. On the CRCW PRAM, the

resource bounds fall to O(logn(loglogn)2) time and n 2/(loglogn)2 processors.

3.3. Other Parallel Statistical Schemes

Larmore and Przytycka give a reduction of the Huffman tree problem to

the Concave Least Weight Subsequence problem resulting in a new linear time

sequential algorithm and a more efficient parallel algorithm [LP91]. Given a

concave triangular matrix of weights { w(i, j)IO ::; i < j ::; n }, the Concave Least

Weight Subsequence problem is to find a subsequence O = /30 < /31 < · · · <

f3m = n which minimizes the sum I.::k=l w(f3k-1, f3k). This subsequence can be

found in sublinear time. Reducing the Huffman tree problem to the Concave

Least Weight Subsequence problem results in an O(y'n log n)-time and n-processor

parallel algorithm. Although the solution is not in NC, it performs less total work

than any other sublinear time parallel Huffman algorithm. Further research is

needed to find an optimal sublinear time Huffman tree construction algorithm.

Generation of near-minimum-redundancy codes can be done optimally in par­

allel. Shannon-Fano coding is an example of a statistical coding scheme which

produces a near-minimum-redundancy prefix code such that the average codeword

length exceeds the minimum length by at most 1 bit. An optimal O(log n) time,

, n/ log n processor EREW PRAM algorithm for near-optimal code construction is

described by Atallah et al. [AKLMT89]. Nearly minimum-redundancy code cre­

ation is reduced to the problem of constructing a tree given a monotonic sequence of

leaf levels. Initially, the input frequencies (pi, p2, ... , Pn) are sorted anda sequence

21

of lengths (li, l2, ... , ln) are calculated such that log(l/p¡) :::; [¡ :::; log(l/p¡) + l.
Next, tree T is constructed optimally by invoking the algorithm for monotonic leaf

level sequences. Tree T is then compressed using parallel tree contraction resulting

in a minimum-redundancy prefix codeword tree T'. Atallah et al. claim that tree

T' is the Shannon-Fano tree [AKLMT89] In the same paper, a parallel algorithm

for constructing almost optimal binary search trees is presented which can be used

to build trees which differ from a minimum-redundancy prefix code by at most

1 / n k bits in O(k log2 n) time and n 2 / log2 n processors.

Approximate solutions to the minimum-redundancy coding problem are inves­

tigated by Kirkpatrick and Przytycka [KP90]. They give an O(log n log* n)-time,

n-processor CREW algorithm for finding an approximate solution to the problem.

A variation of the Huffman tree problem is the alphabetic version which,

given a sequence of probabilities (p1,p2, ... ,pn); finds a binary tree of minimum

weighted path length, with weight Pi assigned to the ith leaf. An NC algorithm is

given for an approximate solution to the alphabetic Huffman coding problem using

a parallel implementation of the Package Merge technique dueto Larmore [LP91].

The O(log2 n) time, n processor algorithm improved an earlier approximation which

required an additional factor of n processors. Since the alphabetic Huffman coding

problem can be sol ved sequentially in O(n log n) time, further work is needed to

eliminate an additional log n factor to obtain an optimal parallel solution.

Concurrency can be introduced into all phases of a compression system.

That is, parallelism can speed up code creation, encoding and decoding. Once

the code has been selected, the input message can be encoded and decoded in

linear time by replacing each character by its corresponding code. In 1987, the

decoding problem was solved optimally in parallel. Moreover, Teng and Weng give

an optima! EREW PRAM algorithm for decomposing prefix-coded messages and

uniquely decipherable-coded messages in O(log n) time and O(n/ log n) processors

22

[TW87]. They reduce the decoding problem to the problems of parallel finite-state

automata simulation and the evaluation of prefix sums. To complete the solution,

they present an optima! parallel simulation algorithm for finite-state automata

using dynamic expression evaluation and parallel tree contraction techniques. Since

uniquely decipherable codes provide more compression than prefix codes and can be

decompressed with no additional computational effort, they conclude that uniquely

decipherable codes are superior to prefix codes [TW87].

The above parallel coding methods are of theoretical interest, however they

are not directly realizable in hardware. Lea reports on a hardware implementation

of a text compression system based on n-gram coding [L 78]. For n-gram coding, the

dictionary consists of a collection words each of length exactly n. The dictionary is

stored in an associative memory and parallel manipulation of the table is conducted

on an associative parallel processor. 9 Two different implementations, based on

fixed record length and byte-organized variable record length, significantly reduce

overheads in execution time and program storage when compared to software

implementations. In the next section, parallel systems for dictionary compression

are examined.

4. Parallel Dictionary Compression

Dictionary or substitutional coding removes data redundancy by replacing

recurrent input substrings by references to earlier copies [RPE81, SS82]. U sually,

such a reference is called a pointer and the substring being referenced is called

the target. Targets are maintained in a dictionary of phrases that are expected

to occur frequently. Dictionary-based compression techniques are distinguished by

their use and maintenance of the coding dictionary. Sorne methods restrict the

length of dictionary entries. Within this restriction, the dictionary can be static,

semi-adaptive, or adaptive. A static dictionary is created before any encoding or

9 An associative parallel processor is a processor array with an associative memory.

23

decoding begins and must remain unchanged. Better compression is achieved by

adaptive methods that allow additions, deletions, and changes to the collection of

referenced strings during the course of encoding.

Dictionary techniques are further classified as externa! or interna!. Externa!

dictionary or LZ2-type schemes store target phrases in a separate dictionary and

the data stream is compressed by replacing occurrences of repeated substrings by

indexes into the dictionary. The resulting compressed stream contains characters

of the input alphabet interspersed with pointers into the dictionary. Decoding re­

constructs the source string by substituting dictionary entries for pointers. Interna!

substitution methods (also referred to as sliding window or LZl-type coding) do not

maintain an explicit dictionary. Instead, repeated substrings are replaced by point­

ers to earlier occurrences of the same substring. The resulting string of characters

and pointers contains the compression dictionary implicitly. Recursive schemes,

implemented internally or externally, permit pointer targets to contain pointers.

Once the dictionary has been selected, the input stream must be parsed

to determine which substrings are to be replaced by dictionary pointers. The

most straightforward approach is greedy parsing where at each step the encoder

finds the longest dictionary phrase that matches a prefix of the uncoded portion

of the input stream. That is, the input stream is compared to each word in

the dictionary and the entry corresponding to the longest prefix of the uncoded

portion of the input stream is used to encocle the input prefix. In the parallel

setting, this longest match step can be executed concurrently by a collection of

processors (BCW90]. For a dictionary of size N, 2N - 1 processors configured as

a binary tree can find the longest match in O(log N) time. Each leaf processor is

assigned to perform comparisons for a different dictionary entry. The remainirig

N - 1 processors coordinate the results via signals that propagate up and clown

the tree in O(log N) time. Figure 5 is an example of the parallel match step

24

for dictionary "~be," "acb," "bac," "bca," "cab", "cha", "aa", and "bb" and

input string "baccbaacb." Processing elements 1 through 8 compare prefixes of

the input stream to their corresponding dictionary entries and propagate, in the

case of a match, their processor identification and match length, and a O otherwise.

Processors 9 through 14 compare the match lengths of non-zero inputs and output

the processor identification and match length of the input having the longest

match. Other parallel implementations can be devised based on different processor

configurations. Zito-Wolf presents a more efficient implementation using pipelined

trees [Z90c]. Systolic architectures for the dictionary match step are considered

later in this section.

In the parallel VLSI environment, static, semi-adaptive, and dynamic dic­

tionary schemes have been considered using the systolic array. One advantage

of the systolic implementation is that a larger pipe can be fabricated by placing

a sequence of processing elements on a single chip, and then joining a series of

chips on a board. Another bertefit is that the length of interprocessor connections

are constant and independent of the size of the array. Systolic architectures for

dictionary compres.sion reduce the computational overhead by accelerating both

encoding and decoding and are therefore suitable for a larger range of applications.

4.1. Static Dictionary Compression on the Systolic Array

Qonzales-Smith and Storer give parallel algorithms for data compress1on

using static dictionary coding [GS85, S88A]. They implement a recursive static

dictionary which replaces input substrings by indices into a static table of dictionary

entries, each of which may contain pointers to other indices. This allows for the

representation of strings longer than the maximum-length dictionary entry and

therefore may reduce both the maximum length of a dictionary entry and the size

of the VLSI implementation. Also, a pointer is permitted to point to a suffix

of a dictionary entry and pointers may be of va:dable size. The dictionary is

25

Dictionary

"abe" p.e. 1

p.e. 9

"acb" p.e. 2

"bac" p.e. 3

p.e. 10

"bca" p.e. 4 3, 6, 2

p.e. 15

"cab" p.e. 5

p.e. 11

"cha" p.e. 6

p.e. 14

"aa" p.e. 7

p.e. 12

"bb" p.e. 8

input string "baccbaacb"

Figure 5

Parallel longest match step for dictionary of size N = 8

assumed to be available and details of its construction are not discussed. However,

the importance and complexity of dictionary selection are emphasized in that

compression performance is directly related to the "goodness" of the dictionary.

The systolic encoding/ decoding pipe consists of a series of processing elements

linearly connected by a two-way communication channel. A schematic of the

architecture is shown. in Figure 6. Each processing element stores a dictionary

element. The two-way communication channel allows both the compression and

expansion algorithms to use the same dictionary structure. · The dictionary is

constructed prior to compression and loaded into the processors. For purposes

26

processing processing processing
element 1 element 2 element N

input input input

so urce buffer buffer buffer encoded
message dict. die t. die t.

message

entry 1 entry 2 entry N

Figure 6

Systolic array for static dictionary coding

of explanation, encoding is assumed to proceed from left to right, and decoding

from right to left. Encoding is performed by parallelizing a greedy algorithm for

compressing substrings. Input characters are piped into a processor from the left

and compared against the dictionary entry stored in that processor. If the length

of the match exceeds the size of a pointer to the dictionary substring, then the

matched data is replaced by the pointer. An example of the encoding process is

gi ven in Figure 7.

An optimal algorithm for computing the minimum compressed form of a

substring requires access to the entire input string and may involve global data

flow. These restrictions prohibit parallelism. Gonzales-Smith a~d Storer prove

that a greedy parsing strategy is a reasonable approach whose performance is close

to that of the optimal algorithm [GS85, S88A]. The greedy algorithm may also

require global communication among processors in a systolic architecture if the

entire dictionary must be searched to determine the longest match. This can be

avoided by enforcing three conditions: the dictionary entries must be organized

in order of shortest to longest strings, encoding must proceed from left to right

and suffixes of dictionary elements cannot be prefixes of other dictionary entries.

Performance of the greedy approach is unknown when these assumptions fail to

hold.

27

Source alphabet: {a, ... , z, A, ... , Z, ., ,, ;, !, ?}
Input String: Data coding removes redundant information.
Dictionary:

00- 04 ~info
05 - 11 coding
12 - 18 bremove
19 - 22 tion
23 - 28 Data05
29- 36 bredunda
37- 44 29nt00rm
45 - 49 13s37

Initial 8 7 6 5 4 3 2 1 Processor
Configuration 49-45 44-37 36-29 28-23 22-19 18-12 11-5 4-0 Pointers

13s37 29nt00rm bredunda Data05 tion bremove bcoding binfo Dict. Entry
+-Data cod ...

After 16 8 7 6 5 4 3 2 1
e y eles 13s37 29nt00rm bredunda Data05 tion bremove bcoding binfo

Data Dcoding remov +-es redun ...

After 21 8 7 6 5 4 3 2 1
e y eles 13s37 29nt00rm Dredunda Data05 tion Dremove Dcoding binfo

Data 05remov esbre +- dundant ...

After 29 8 7 6 5 4 3 2 1
e y eles 13s37 29nt00rm Dredunda Data05 tion bremove Dcoding binfo

D ataO 5remove sbredun dantb +- info ...

After 33 8 7 6 5 4 3 2 1
cycles 13s37 29nt00rm Dredunda Data05 tion bremove Dcoding binfo

D ataO 513sbre dundant binfo +- rmation ...

After 41 8 7 6 5 4 3 2 1
e y eles 13s37 29nt00rm bredunda Data05 tion bremove Dcoding binfo

Data05 13sb redunda ntOOrma tion.

After 45 8 7 6 5 4 3 2 1
e y eles 13s37 29nt00rm bredunda Data05 tion Dremove Dcoding binfo

2313sb red u ndantOO rmation

After 58 8 7 6 5 4 3 2 1
e y eles 13s37 29nt00rm Dredunda Data05 tion bremove Dcoding binfo

2313s Dredunda ntOOrm atio n.

After 65 8 7 6 5 4 3 2 1
cycles 13s37 29nt00rm Dredunda Data05 tion Dremove Dcoding binfo

2313s 29nt00rm a19.

After 79 8 7 6 5 4 3 2 1
e y eles 13s37 29nt00rm Dredunda Data05 tion bremove Dcoding binfo

2313s 37a19.

After 81 8 7 6 5 4 3 2 1
cycles 13s37 29nt00rm bredunda Data05 tion bremove bcoding binfo
23+- 13s37 a19.

After 84 8 7 6 5 4 3 2 1
e y eles 13s37 29nt00rm Dredunda Data05 tion Dremove bcoding binfo

45a19.

COMPLETE OUTPUT: 2345a19.

Figure 7

Example of encoding using systolic implementation of a static

dictionary using 8 processors

28

Decoding on the systolic array is similar to encoding. The compressed string

enters the pipe from the right and expansion consists of replacing each pointer

by its target string. In particular, processor i compares its identification to the

incoming pointer and if the processor finds a match, it outputs its corresponding

dictionary entry.

A difficulty in this design concerns buffer overflow errors that occur w hen

data moves too quickly through parts of the array. A locking scheme prevents

local buffer overflow. That is, no additional characters are read in until there is

available space in the buffer. Unfortunately, locking signals can propagate up the

pipe, eventually locking the entrance processor. The Gonzales-Smith and Storer

architecture avoids this global system lock by assuming that the input data rate into

the decoding circuit is commensurate with the speed of the compression chip [GS85,

S88A]. As described, static dictionary compression requires no additional overhead

for maintaining the dictionary but suffers from the performance limitations of a

non-adaptive technique. The next section considers semi-adaptive techniques which

achieve better compression performance by adapting to characteristics of the input.

4.2. Sliding Window Method on the Systolic Array

Systolic algorithms for the sliding (LZl-type) dictionary model compress

text by replacing repeated substrings by pointers to earlier occurrences of the

identical substring. In this scheme, pointers denote phrases in a fixed-size window

immediately preceding the current coding position. For an implicit dictionary or

"sliding window" of size N, the systolic design of Gonzales-Smith and Storer stores

the last 2N characters processed, one item per processing element [GS85, S88A].

Also, each processor has three additional registers for holding an input character

and its encoding information (see Figure 8). The additional N processors form

a lookahead buffer that is used to aid in the continuous maintenance of the semi­

adaptive dictionary.

29

p.e. 2N

dict.
entry

D

p.e. N+l

dict.
entry

p.e. N

dict.
entry

lookahead buffer

DO
input character

match location

match length

Figure 8

Systolic sliding window architecture

p.e. 1

dict.
entry

The systolic encoder consists of 2N linearly-connected processing elements.

To encocle the current character in the sliding dictionary model, the window is

searched for the longest match with the lookahead buffer. Encoding proceeds from

right to left and the dictionary is continuously updated by moving the fixed-size

window over the input, removing symbols on the left and adding new characters on

the right. As data is piped through the array, information is maintained for each

input character on the position and length of the longest match which is encoded

as a triple (position, length, next character). "Next character" is the first character

that did not match the substring in the window. As a character travels through
/

the pipe, it is accompanied by its longest match location and length information

which is updated whenever a longer match is found.

Gonzales-Smith and Storer describe an encoding method that performs com­

parisons on blocks of N input characters at a time. During processing of these

30

characters, N new characters are read in, and N previously coded symbols are

output. In particular, let ªN+i, ... , a2N be the sequence of characters read in

during the processing of characters ai, ... , ªN. Since a block of size N has been

coded, each processor updates its local dictionary element by replacing it by the

current contents of its input register and, after an additional left shift, encoding

continues. For the next N cycles, characters ªN +l' ... , a2N are compared against

each character in the correct dictionary of inpµt characters a1, ... , ªN. Notice that

not all processors participate in each system cycle. By knowing their own processor

identification and the number of system cycles, each processor can determine which

comparisons to perform. Processor 2N has the additional function of handling the

longest match position and length information and, when the length l exceeds

the size of a pointer, the pointer is output and the next l characters in the pipe

are ignored. Moreover, whenever pointers overlap, processor 2N alters the output

pointer to maximize compression.

Calculating the longest match information requires communication among

non-neighboring processors. Gonzales-Smith and Storer investigated two schemes

for updating match position and length figures [GS85, S88A]. The first design

stacks a binary tree-connected collection of 2N - 1 processors on top of the systolic

architecture. In logarithmic time, information is propagated up and clown the

tree to determine the position and length of the longest match. More precisely, if

processor i detects a match, it checks with each of its neighboring processors. If

the succeeding processor i + 1 did not match, then processor i sends a message to

· its parent processor in the binary tree signaling that it has the first character of

a matching string. Similarly, if processor i's preceding neighbor did not match, i

flags i ts parent processor that i t is at the end of a match. These signals propagate

up the tree until sorne processor k is able to pair up a start and an e11d symbol.

Processor k then calculates the match length and returns the information to the

31

processor (processor j) holding the first character in the match. If the new match

length exceeds the existing longest match beginning at that character, the match

position is assigned the processor number j and the length register is updated.

An encoding example based on the tree-connected support structure is given in

Figure 9.

The second match position and length updating scheme avoids sorne of the

VLSI layout concerns, such as long edge lengths, at the expense of an increased

logic delay of O(-/N). Processors are placed in an O(-/N) x O(-/N) grid with

constant length connections and additional system cycles are introduced to spread

information among non-neighboring processors. If the maximum length of a target

string is limited to sorne constant k, the logical delay can be bounded by k.

Decoding of the systolic dictionary model expands all pointers by employing

a series of O(N) processors. Since all pointers are to locations less than N

characters away, the N most recently decoded characters are stored in the pipe.

The pointer (position, length)=(p, l) is decoded by concatenating the characters

stored in processor p to processor p - l + 1. The array is augmented wi th two

additional pointers which aid in switching from different modes in the decoding

process. Similar to encoding, decoding proceeds in blocks of N characters. Before

entering the pipe, the pointer (position, length)=(p, l) is expanded in to the sequence

of integers p,p + 1, ... ,p + l - l. The expanded encoded message consisting of

characters and digits is fed into the pipe on every other system cycle. After each

cycle, the input shifts left and each processor compares its identification number

to the input. If the input item is an integer equal to the processor number, the

processor replaces the integer by the contents of its dictionary entry. After N

cycles, each processor replaces its dictionary entry with the contents of its input

register.

32

input string: ababbaba

After 9 cycles::

dictionary a b a b b a b a

input b a b b a b a X

8 7 6 3 2 1

(locati~
(8,2)

aba b b a b a

a b baba x x
(8,2) (4,2)

a b a b b a b a

b b a b a X X X

a b a b b a b a

b a b a X X X X

(7,3)

final output: ababb(7,3)

Figure 9

Encoding example on a tree-connected systolic sliding-window design

33

Like the static dictionary model, the Gonzales-Smith and Storer architecture

for the sliding window model requires that the speed of the chip and the rate of

the communication channel guarantee that additional data <loes not arrive at a

processing element prior to it having available space. Hence, any improvements to

the system performance that impact the data transfer rate may force the redesign of

many system components. Another disadvantage is the communication and logical

delays associated with the maintenance of match information. This design can,

however, be implemented in VLSI straightforwardly, but details of the appropriate

system parameters, such as array dictionary size specifications, are not discussed.

A different systolic data compression design built from a systolic array and

binary trees is described by Zito-Wolf [Z90A). In this design, unlike the Gonzales­

Smith and Storer designs in which the data, dictionary, and output all flow through

the systolic array, the data stream and dictionary are separated and longest match

decisions are made by the tree processors. The dictionary is stored in the systolic

array and compression is performed in two steps. First, the maximal match ending

at each character is computed by making each input character simultaneously avail­

able to every processor via a broadcast tree of logari thmic depth, and identifying

the largest match at each cycle using another tree connected collection of proces­

sors. This is in contrast to previous approaches which calculate the longest match

beginning ata particular symbol. By not requiring global processor communication,

all steps take unit time and system speed is unaffected by match length.

More recent architectures for sliding dictionary compression on the systolic

array have attempted to remove the propagation delay introduced in previous

designs. To be practica!, data compression components must operate on-line and at

high input bandwidths. On-line compression of an unbounded input requires time

proportional to the input length and space proportional to the size of the dictionary.

Henriques and Ranganathan investigated VLSI implementations, using CMOS

34

technology, of a systolic architecture for sliding window dictionary compression

[HR90]. They describe an on-line linear time and linear size systolic compression

system. Moreover, they argue that a buffer size of 256 is most reasonable for

VLSI implementation. This is based on experimental observations and the fact

that the buffer size determines the pointer length which impacts the codeword size

and ultimately the compression ratio. Although the overall system time is linear,

addi tional dock cycles are used to propagate the length and match information

among the processors. Also, for a system of N processors, only a single maximum

length match is calculated for each block of N characters. How this impacts the

compression effectiveness is not discussed, but it seems that this limited use of

substring replacement may have a negative impact of compression. Unfortunately,

no empirical results are given.

Zito-Wolf describes a bi-directional real-time systolic architecture for sliding

window data coding that processes a character on every system cyde [Z90B].

Encoding is performed in two stages. The first stage is conducted on a systolic

array which transforms the input into a stream of maximal matches. That is,

for every input character a pair (location, length) is computed, identifying the

longest match ending at that character. During the second stage, the array output

is directed to a serial processor which extracts a sequence of matches that cover

the input. The compression time is not only linear in the size of the input but

also requires only a single dock cyde to process each character. More importantly,

unlike the Gonzales-Smith architecture, the dock cyde is bounded and independent

of the dictionary size. U sing a 40Mhz dock, the system processes at a high­

bandwidth of 300 million bits per second. As with other systolic implementations,

the architecture is modularly expandable which allows for larger applications.

35

Like the static dictionary model, the Gonzales-Smith and Storer architecture

for the sliding window model requires that the speed of the chip and the rate of

the communication channel guarantee that additional data <loes not arrive at a

processing element prior to it having available space. Hence, any improvements to

the system performance that impact the data transfer rate may force the redesign of

many system components. Another disadvantage is the communication and logical

delays associated wi th the maintenance of match information. This design can,

however, be implemented in VLSI straightforwardly, but details of the appropriate

system parameters, such as array dictionary size speci:fications, are not discussed.

A different systolic data compression design built from a systolic array and

binary trees is described by Zito-Wolf [Z90A]. In this design, unlike the Gonzales­

Smith and Storer designs in which the data, dictionary, and output all flow through

the systolic array, the data stream and dictionary are separated and longest match

decisions are made by the tree processors. The dictionary is stored in the systolic

array and compression is performed in two steps. First, the maximal match endíng

at each character is computed by making each input character simultaneously avail­

able to every processor via a broadcast tree of logari thmic depth, and identifying

the largest match at each cycle using another tree connected collection of proces­

sors. This is in contrast to previous approaches which calculate the longest match

begínning at a particular symbol. By not requiring global processor communication,

all steps take unit time and system speed is unaffected by match length.

More recent architectures for sliding dictionary compression on the systolic

array have attempted to remove the propagation delay introduced in previous

designs. To be practica!, data compression components must operate on-line and at

high input bandwidths. On-line compression of an unbounded input requires time

proportional to the input length and space proportional to the size of the dictionary.

Henriques and Ranganathan investigated VLSI implementations, using CMOS

34

technology, of a systolic architecture for sliding window dictionary compression

[HR90]. They describe an on-line linear time and linear size systolic compression

system. Moreover, they argue that a buffer size of 256 is most reasonable for

VLSI implementation. This is based on experimental observations and the fact

that the buffer size determines the pointer length which impacts the codeword size

and ultimately the compression ratio. Although the overall system time is linear,

ad di tional clock cycles are used to propaga te the length and match information

among the processors. Also, for a system of N processors, only a single maximum

length match is calculated for each block of N characters. How this impacts the

compression effectiveness is not discussed, but it seems that this limited use of

substring replacement may have a negative impact of compression. Unfortunately,

no empirical results are given.

Zito-Wolf describes a bi-directional real-time systolic architecture for sliding

window data coding that processes a character on every system cycle [Z90B].

Encoding is performed in two stages. The first stage is conducted on a systolic

array which transforms the input into a stream of maximal matches. That is,

for every input character a pair (location, length) is computed, identifying the

longest match ending at that character. During the second stage, the array output

is directed to a serial processor which extracts a sequence of matches that cover

the input. The compression time is not only linear in the size of the input but

also requires only a single clock cycle to process each character. More importantly,

unlike the Gonzales-Smith architecture, the clock cycle is bounded and independent

of the dictionary size. U sing a 40Mhz clock, the system processes at a high­

bandwidth of 300 million bits per second. As with other systolic implementations,

the architecture is modularly expandable which allows for larger applications.

35

4.3. Dynamic Dictionary Coding on the Systolic Array

Dynamic dictionary compression systems utilize an evolving dictionary that

adapts to changes in the input characteristics. Usually, dynamic approaches achieve

superior compression results over static and semi-adaptive methods. There are

a number of different dynamic approaches, all of which must include two basic

strategies: match selection and dictionary update procedures. Dynamic dictionary

compression implemented on the systolic array is the focus of this section.

4.3.1. ldentity Heuristic and Systolic Dynamic Dictionary Coding

In 1988, Storer introduced the first systolic implementation for the dynamic

dictionary model [S88A, S88B]. The approach is similar to the Gonzales-Smith and

Storer implementation for the static dictionary model with additional specifications

for updating the dictionary. As in the static design, a greedy approach is used for

match selection. Dictionary maintenance involves the determination of strings to

be inserted or possibly deleted. Candidate strings for insertion are derived from the

concatenation of two previous matches (this is referred to as the identity update

heuristic). Two separate dictionary pipes are employed, each initialized to contain

the coding alphabet with one character per processor. Initially, compression begins

using one of the two dictionaries and once the current dictionary becomes full,

additional space is made available by swapping in the other (empty) dictionary.

La ter, when the dictionary again becomes full, the roles of the two dictionaries are

reversed.

If N is the size of the dictionary, encoding is performed on a systolic pipe

consisting of N processors, numbered O through N - l from left to right. If A is the

size of the input alphabet, processors O through A - 1 are assigned the characters

of the source alphabet and processors A through N - l are capable of storing a pair

of pointers. A flag bit in each processor is used to delimit the current dictionary.

Initially, the flag bit in processor 1 is the only one set. The processor holding the

36

flag is designated to "learn" the next new dictionary entry. All of the processors

to the left of the learning processor contain dictionary entries, while processors to

the right are empty. The input stream enters from the left and, as in .the static

dictionary systolic implementation, whenever a prefix 6f the input stream matches

the contents of a processor, the string is replaced by the processor's number. The

dictionary is updated by assigning the first pair of pointers to enter the learning

processor to the dictionary entry stored in the learning processor and then passing

the flag to the next processor. When processor N - 1 receives a dictionary item,

the signal is sent indicating that the dictionary is full. At this point, control is

shifted to the empty dictionary and the current dictionary is flushed out.

As for encoding, decoding utilizes a pipe of size N and data enters the pipe

from the left and exits on the right. However, the processors are numbered N -1 to

O, with O being the rightmost processor. Processors O through A- 1 are initialized

to contain the source alphabet and processor A starts out as the learning processor.

Expansion is carried out as in the static dictionary system; that is, whenever an

input substring arrives at a processor with index equal to the input, it is replaced

by the word stored in the processor.

The identity heuristic for updating the systolic dictionary is closely related

to a serial update heuristic which augments the dictionary with the concatenation

of the previous match and the current longest match. The Storer implementa­

tion builds larger dictionary strings from two smaller ones. Storer compares the

performance of the serial and systolic designs and finds that the difference in com­

pression effectiveness is insignificant (S88A, S88B]. Storer hypothesizes that the

systolic learning of the dictionary is superior to serial learning when compression

is performed on a systolic array. This conjecture is based on an experiment which

constructed a dictionary using the serial identity heuristic and then compressed a

number of files using a serial algorithm and a systolic static dictionary simulator.

37

In many cases, the compression savings achieved by the parallel version was 10 to

15 percent more than that achieved by the serial algorithm.

Storer and Reif present a systolic real-time architecture based on a modified

version of the identity heuristic of earlier designs [SR90]. The dictionary update

heuristic, instead of entering the concatenation of two previous matches, adds the

concatenation of two strings only if nei ther pointer was adopted by the preceding

processor. A prototype VLSI chip for their design was built using a systolic coding

pipe of 4, 096 processing elements and a 25Mhz dock capable of operating at 300

million bits per second.

4.3.2. Move-to-Front Compression on the Systolic Array

Thomborson and Wei investigate systolic implementations of dynamic move­

to-front coding algorithms [TW89]. In general, a move-to-front compression scheme

maintains a self-organizing list of target strings (applying the move-to-front list

maintenance heuristic) and encocles the table indexes using a statistical code.

Huffman and arithmetic compression for index coding assign short codewords

to positions near the front of the list. When a symbol is transmitted, the code

corresponding to its current table position is output and the symbol is moved to

the front of the list. Currently, move-to-front compression consists of two major

algorithmic variants. The simpler procedure permutes a byte-leve! fixed-length

list of symbols and the other defined-word approach divides the input stream

into "words" and transmits words by a move-to-front code [BSTW86, E87]. For

example, a byte-leve! move-to-front code might maintain a target list of 256 entries

corresponding to the 256 possible values of an 8-bit ASCII byte. Such a system

achieves compression savings of 30% to 40% on text files [TW89]. Defined-word

methods often provide higher compression savings of 48% to 75%.

Systolic implementations of a fixed-table-size move-to-front system are com­

posed of two separate chains of processors, one for encoding and the other for

38

decoding. The sequential encoder permutes a table of fixed-length 2k. A systolic

byte-level encoder uses a linear array of 2k processing elements. The ith processing

element, 1 ~ i ~ 2k, stores the target symbol t¡ which is currently in the ith posi­

tion of the fixed-length table. The input data stream eiüers the array at processing

element 1, flows through the array, and is output by processing element 2k.

Encoding of source character a proceeds as follows. Symbol a is input to

processing element 1. If a matches t1 then the codevalue '1' is passed to processing

element 2 signifying that a appears in the first position in the list. Eventually the

codevalue '1' is output as the encoding of a. If a is not equal to t1, a is copied in to

register t1 and the previous contents of t1 are transmitted to processing element

2 for deposit in location t2. That is, a is placed at the front of the list, and the

remainder of, the list is bumped back. General processing element i receives a

4-tuple (a,u,p,flag) from its neighboring processor i - 1, where a is the source

character, u is the table symbol being moved clown in the list, p is a's list index,

and flag is set when the list needs further updating. If flag is set and a differs from

t¡, u is copied in to t¡ and (a, t¡, p, TRUE) is passed to processing element i + l. Jf

flag is set and a matches t¡, u is copied into t¡ and (a, u, i, FALSE) is transmitted.

Otherwise, input (a, u, p, flag) p~sses through processing unit i, unchanged. Figure

10 depicts the encoding of the string "architecture" for a systolic encoder consisting

of 8 processing elements.

A string of k-bit codes, corresponding to the list positions of the input char­

acters, is output by the encoding array and fed into a fixed-to-variable-length

coding system. List positions near the head of the list are assigned short code­

words. Thomborson and Wei experimented with various tail-end encoders and

conclude that higher compression ratios can be obtained by using a dynamic fixed­

to-variable-length encoder sensitive to changes in locality of reference in the source

39

Initial 8 7 6 5 4 3 2 1 Proc. Elem. ID
Configuration e r a u h e Dict. Entry

+- architecture

After 1 8 7 6 5 4 3 2 1
cycle e r a u h a

(a,c,O,T) +- rchitecture

After 2 8 7 6 5 4 3 2
e y eles e r a u e r

(a,h,O,T) (r,a,O,T) +- chitecture

After 3 8 7 6 5 4 3 2

cycles e r a u h a e

(a,t,O,T) (r,c,O,T) (c,r,O,T) +- hitecture

After 4 8 7 6 5 4 3 2 1

cycles e r a e r h

(e matches pe 3) (a,u,O,T) (r,h,O,T) (c,a,O,T) (h,c,O,T) +- itecture

(a matches pe 5)

After 5 8 7 6 5 4 3 2 1
cycles e r u h a. e

(a,a,5,F) (r,t,O,T) (c,c;3,F) (h,r,O,T) (i,h,O,T) +- tecture

After 9 8 7 6 5 4 3 2 1

cycles e u a e e t

5 +- (r,r,6,F) (c,c,3,F) (h,h,4,F) (i,t,O,T) (t,r,O,T) (e,h,O,T) (c,t,O,T) (t,c,O,T) +- ture

After 16 8 7 6 5 4 3 2

e y eles u r e u r e

3 +- (u,a,O,T) (r,h,O,T) (e,e,5,F)

After 17 8 7 6 5 4 3 2 1

e y eles a h e u r e

8 +- (r,r,7,F) (e,e,5,F)

After 18 8 7 6 5 4 3 2 1

cycles a h e u r e

7 +- (e,e,5,F)

COMPLETE OUTPUT: 5,6,3,4,7,6,8,5,3,8,7,5

Figure 10

A fixed-length systolic encoder

[TW89]. Their empirical findings suggest that their fixed-to-variable code con­

verter gives rather poor compression savings (11 % to 22%) but can perform at a

40

high bandwidth. Dynamic Huffman coding provides better compression savings

(19% to 38%) but operates at a limited bandwidth.

A systolic byte-level decoder also requires a linear array of 2k processmg

elements. Instead of storing the ith element in the list, processing unit i reserves

the k-bit index q¡, 1 ::; i ::; 2k, corresponding to the list posi tion of the character

with representation i. For ASCII cedes, q¡ is the table index of the entry with

ASCII value i. During decoding of symbol b, processing element i receives input

(b, r) from processing element i - 1, where r is the value of the decoded symbol.

If b equals q¡ then q¡ is set to '1' and r is assigned i. That is, the symbol with

representation i is moved to the first list entry and b is decoded as i. If b is

greater than q¡ then q¡ is incremented by one to reflect the movement of character

representation i deeper into the list. Figure 11 depicts the behavior of the systolic

move-to-front decoder.

Both the encoder and decoder are systolic arrays composed of simple process­

ing elements and can be implemented fairly straightforwardly. Thomborson and

Wei describe encoder and decoder chips that can operate at an input bandwidth

of 40 Mbytes per second [TW89]. The bandwidth of their design is dependent on

the behavior of the front-end variable-to-fixed decoder. This is an advantage over

the Gonzales-Smith and Storer design whose data transfer rate is determined by

the systolic dock. For these systems, any improvement in the bandwidth may re­

quire changes to many system components. Also, Thomborson and Wei report that

their systolic implementation requires fewer processing elements than the Gonzales­

Smith and Storer VLSI implementation and improves the compression speed by a

factor of three.

As mentioned earlier, defined-word schemes provide better compression than

byte-level methods. The most notable scheme, BSTW compression, is due to

Bentley, Sleator, Tarjan and Wei [BSTW86]. Initially, the encoder list of the

41

Encoded message: 5,6,3,4,7,6,8,5,3,8,7,5
Dictionary:

Character Representation
e 1
h 2
t 3
u 4
a 5
r 6

7
e 8

lnitial 8 7 6 5 4 3 2 1 Processor
Configuration 8 7 6 5 4 3 2 1 List Position of character

with rep.= proc. ID

After 1 8 7 6 5 4 3 2 1
e y ele 8 7 6 5 4 3 2 1

(5,o) +- 6,3,4, ...

After 3 8 7 6 5 4 3 2 1
cycles 8 7 6 5 4 3 3 3

(5,o) (6,o) (3,o) +- 4,7,6, ...

After 4 8 7 6 5 4 3 2 1
cycles 8 7 6 5 4 4 4 1

(5,o) (6,o) (3,1) (4,o) +- 7,6,8, ...

After 6 8 7 6 5 4 3 2 1
cycles 8 7 6 1 6 5 1 3

(5,5) (6,o) (3,1) (4,2) (7,o) (6,o) +- 8,5,3, ...

After 7 8 7 6 5 4 3 2 1
cycles 8 7 6 2 6 5 2 4

(5,5) (6,o) (3,1) (4,2) (7,o) (6,o) (8,o) +- 5,3,8, ...

After 8 8 7 6 5 4 3 2 1
cycles 8 7 1 3 6 6 3 5

(5,5) (6,6) (3,1) (4,2) (7,o) (6,o) (8,o) (5,o) +- 3,8,7, ...

After 9 8 7 6 5 4 3 2 1
e y eles 8 7 2 4 7 1 4 1
5+- (6,6) (3,1) (4,2) (7,o) (6,3) (8,o) (5,1) (3,o) +- 8,7,5, ...

After 12 8 7 6 5 4 3 2 1
cycles 8 1 5 7 8 1 6 4
2+- (7,7) (6,3) (8,o) (5,1) (3,3) (8,o) (1,0) (5,o)

After 14 8 7 6 5 4 3 2 1
cycles 8 3 6 7 1 3 7 5
3+- (8,o) (5,1) (3,3) (8,4) (7,o) (5,o)

After 17 8 7 6 5 4 3 2 1
cycles 3 5 1 8 3 4 7 5
3+- (8,4) (7,6) (5,o)

After 18 8 7 6 5 4 3 2 1
cycles 4 6 2 8 3 4 7 5
4+- (7,6) (5,o)

COMPLETE OUTPUT: 5,6,1,2,7,3,8,1,3,4,6,8 = architecture

Figure 11

A fixed-length systolic decoder

BSTW algorithm is empty. The first time a word is encountered, an escape code is

42

transmitted followed by the word in cleartext. The word is entered into the move­

to-front table. Subsequent occurrences of the word are encoded by the word's list

posi tion. The BSTW scheme compresses the cleartext and list indexes applying

two separate codes.

The implementation of the byte-level encoder and decoder systolic arrays

can be modified to allow for word-based compression by storing words rather than

single characters in the processing elements. With a 3-bit count field, each variable­

length word of 7 or fewer ASCII characters is encoded in 59 bits. However, this

design requires 127 bits to represent the 4-tuples (2 words at 59 bits each, 8-bit table

index, and 1-bit flag) processed by the encoder and therefore forces an unreasonably

high number of 254 input/output pins per processing element. In addition, this

approach suffers from an increased clock cycle to perform word comparisons. By

reducing the maximum word-length, the pin requirements are lessened but at the

expense of decreased compression effectiveness.

Thomborson and Wei investigate an alternative system which approximates

the BSTW procedure on the systolic array [TW89]. The idea is to map variable­

length words toan 8-bit hashcode using a hardwired hash table. These 8-bit codes

are entered into the move-to-front list of target strings and manipulated as in the

byte-level systolic encoder and decoder arrays. A closed hashing scheme with no

collision resolution is used to obtain a high-speed, high-bandwidth design. These

performance improvements, however, come at the expense of poorer compression

performance. Unlike the BSTW algorithm in which the least-recently-used target

word "falls" off of the end of the list, the hashing approach randomly eliminates

list words. This random behavior of the systolic design yields compression savings

ranging from 25 % to 65 % .

43

A systolic encoder, based on an 8-bi t hashing scheme, uses an array of 239

processing elements. 10 Each processing element i stores a word w¡ and a hashcode

h¡. A word W is ini tially parsed from the source stream and hashed to an 8-

bi t hashcode w. If the hash table entry with index w is different from word W,

the entry is overwritten by word W and an escape code is output. If w matches

the entry, the hash component outputs the hashcode w. The hash indexes and

escape codes are input into the move-to-front systolic encoder. Encoding and list

evolution are identical to the byte-level encoder. Two independent fixed-to-variable

code converters are used to compress th.e pipeline output, one for clear text and the

other for fixed-to-variable index coding. Decoding of hash indexes closely mimics

the byte-level decoder with the addition of hash table manipulation and hash index

to source word conversion.

5. Multiple Data Compression

The static and dynamic data compression methods in Sections 3 and 4 em­

ploy a single coding scheme that manipulates the data in parallel. The systolic

array implementations pipeline the coding table to decrease compression overhead.

Parallel code construction speeds up codeword creation by building the codeword

tree in parallel. Each of these methods has its advantages and disadvantages and

is designed to improve compression speed. Alternatively, combining multiple data

compression techniques works to obtain greater compression savings. Competitive

parallel processing and pipelining of compression algorithms apply parallelism to

data compression by utilizing multiple compression methods operating in parallel.

A pipelining data compression system combines two or more coding algo­

rithms to compress data more effectively than the individual methods performing

in isolation. The approach is to use a succession of compression techniques to

10 Using an 8-bit code and allowing for cleartext escape codes for each possible word length requires
a table of size 28 - 23 = 248. To improve hash function performance, 239, the largest prime less
than 248, is chosen.

44

data
so urce

r--------------------------------------,
1 1
1 1

coding
method

1

coding
method

2

coding
method

3

1

1
1

1
1 1
1 compression module 1
L--------------------------------------~

Figure 12

data
transmitter

Pipeline of compression techniques to improve compression ratio

Fixed iVariable
data dictionary Length __ statistical Lengt1-l, data -- compression compression -- -- -- transmitter so urce Codes Codes technique technique

Figure 13

Example of a pipelined compression scheme

improve the compression ratio (see Figure 12). The selection of appropriate coding

methods and their optima! positioning in the compression pipeline infl.uences the

system performance. Sorne data compression methods, such as Huffman coding,

take advantage of character redundancy while others, including dictionary meth­

ods, profit from string repetition. Bailey and Mukkamala observe that if the input

contains string redundancy, it also exhibits character redundancy [BM90]. They

also note that the fixed length codes that are produced by a string parsing algorithm

may contain multiple copies of the same codeword. By directing the fixed length

output of the dictionary compression algorithm into a prefix coding element, addi­

tional compression is achieved (see Figure 13). Based on empir~cal investigations of

2-stage methods, pipelined data compression algorithms significantly increase com­

pression savings. The major disadvantage of pipelining methods is the overhead

required to runa sequence of sequential methods.

45

data
so urce

coding
method

1

coding
method

2

coding
method

3

coding
method

4

coding
method

5

Figure 14

referee
processing
element

data
transmitter

Multiple compression techniques competing for best compression performance

Competitive parallel processing for data compression employs several proces­

sors, each simultaneously executing a different data compression method [C90]. In

this MISD parallel system, the output· stream of the processor achieving the best

compression savings is selected by the referee processor and transmitted. This is

illustrated in Figure 14. Information is relayed with the coded package to enable

the appropriate decompression processor.

6. Future Research

There are a number of important questions that remain unanswered in the

area of parallel data compression. In this section, we suggest possibilities for future

investigation.

46

As this survey has outlined, known results can be divided into the broad

classes of statistical and dictionary-based compression. Most of the work in sta­

tistical methods is under the PRAM model of parallel computation and focuses

on the parallel construction of trees and related issues. More practica! approaches

in other parallel models are necessary. For example, can a minimum-redundancy

prefix code be found efficiently using a systolic architecture? Also, there are no

known parallel designs for adaptive statistical coding methods, such as adaptive

Huffman coding and arithmetic coding. Given the better compression results of

dynamic methods, these are important areas needing attention.

The work in parallel dictionary coding has been limited primarily to the

systolic array. Dictionary compression systems need to be developed for alternative

parallel' models, such as the hypercube.

Teng suggests further investigation of randomized and probabilistic algo­

rithms for minimum-redundancy prefix coding [T87]. Also, optimal solutions for

the general and alphabetic versions of the Huffman coding problem are not known

and warrant further research. Another unanswered question is whether there exists

a poly-logarithmic time, sub-quadratic processor algorithm for the Huffman tree

problem. A variation of Huffman coding is the length-limited Huffman coding

problem which creates a code from a sequence of probabilities restricted to sorne

maximum code length. Parallel construction of length-limited Huffman codes re­

mains an open problem.

Thomborson and Wei give a systolic move-to-front (see Section 4.3.2) com­

pression system using a multiple-mode fixed-to-variable tail-end code converter

that operates at a high input bandwidth [TW89]. Unfortunately, the overall com­

pression is significantly worse than H uffman encoding. They suggest that the

development of a high-bandwidth Huffman en,coder is an interesting area for future

research.

47

The discussion in Section 5 illustrates the impact of multiple parallel schemes,

such as a pipelined succession of data compression systems ora competitive collec­

tion of methods operating simultaneously, on the overall compression ratio. The

enhanced compression comes at the expense of additional hardware expenditures.

Future work addressing issues of performance, feasibility, and suitability of these

aggregate designs is needed.

Context modeling is a promising new approach to data compression which

uses the preceding few characters of the input to predict and therefore estímate

the probability of the next input character [BCW90]. For instance, in isolation,

'the probability of the letter "u" occurring is very low. However, if the preceding

character is a "q" the probability of the next letter being a "u" approaches l.

Context-modeling has not been addressed in the parallel setting.

48

REFERENCES

[AKLMT89) ATALLAH, M. J., KosARAJU' s. R., LARMORE, L. L., MILLER, G. L.,
AND TENG, S.-H. Constructing trees in parallel. In Proceedings 1989
ACM Symposium on Parallel Algorithms and Architectures, Sante Fe,
New Mex., ACM, New York, 1989, pp. 283-290.

[BM90] BAILEY, R. L. AND MUKKAMALA R. Pipelining data compression
algorithms. The Computer Journal 33, 4 (1990), 308-313.

[BCW90] BELL, T. C., CLEARY, J. G., AND WITTEN, I. H. Text Compression,
Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

[BSTW86] BENTLEY, J. L., SLEATOR, D. D., TARJAN, R. E., ANO WEI, v. K.
A locally adaptive data compression scheme. Commun. A CM 29, 4
(April, 1986), 320-330.

[C90) Competitive parallel processing for compression of data. NASA Tech
Briefs 14, 2 (Feb., 1990), 32-33.

[E87] ELIAS, P. Interval and recency rank source coding: two on-line
adaptive variable-length schemes. IEEE Trans. Inf. Theory IT-33,
1 (Jan., 1987), 3-10.

[F49] FANO, R. M. Transmission of Information, M.I.T. Press, Cambridge,
Mass., 1949.

[F66] FLYNN, M. J. Very high-speed computing systems. In Proceeding3
IEEE, Vol. 54, 1966, pp. 1901-1909.

[FW78] FoRTUNE, S. AND WYLLIE, J. Parallelism in random access machines.
In Proceeding3 of the Tenth Annual ACM Sympo3Íum on Theory of
Computing, ACM, New York, 1978, pp. 114-118.

[G78] GoLDSCHLAGER, L. M. A unified approach to models of synchronous
parallel machines. In Proceeding3 of the Tenth Annual A CM Sympo-
3Íum on Theory of Computing, ACM, New York, 1978, pp. 89-94.

[GS85] GoNZALEZ-SMITH, M. E. AND STORER, J. A. Parallel algorithms for
data compression. J. ACM 32, 2 (Apr., 1985), 344-373.

[HR90] HENRIQUES, s. AND RANGANATHAN' N. A parallel architecture for
data compression. In Proceedings of the Second IEEE Sympo3Íum on
Parallel and Distributed Processing, Dallas, Texas, 1990.

49

[H52]

[KP90]

[LP91]

[L 78]

[LH87]

[1185]

[MRK85]

[MR85]

[M88]

[Q87]

[RPE81]

[SR90]

[S88A]

50

HUFFMAN, D. A. A method for the construction of mini­
mum-redundancy codes. Proceedings !RE 4 O, 9 (Sept., 1952),
1098-1101.

KIRKPATRICK, D. G. AND PRZYTYCKA, T. Parallel construction of
near optimal binary trees. In Proceedings 1990 A CM Symposium on
Parallel Algorithms and Architectures, Crete, Greece, 1990.

LARMORE, L. L. AND PRZYTYCKA, T. Personal communication, 1991.

LEA, R. M. Text compression with an associative parallel processor.
Computer J. 21, 1 (Jan., 1978), 45-56.

LELEWER, D. A. AND HrRSCHBERG, D. S. Data compression. ACM
Comp. Sur. 19, 3 (Sep., 1987), 261-296.

LIPTON, R. J. AND LoPRESTI, D. A systolic array for rapid string
comparison. In Proceedings Chapel Hill Conference on VLSI, 1985.

MILLER, G. L., RAMACHANDRAN' v., AND KALTOFEN' E. Efficient par­
allel evaluation of straight-line code and arithmetic circuits. Technical
Report. University of Southern California (1985).

MILLER, G. L. AND REIF, J. H. Parallel tree contraction and its
application. In Proceedings of the Twenty-Sixth Annual Symposium
on Foundations of Computer Science, IEEE, Portland, Oregon, 1985,
pp. 478-489.

MILUTINOVIC, V. M., En. Computer Architecture: Concepts and
Systems, North-Holland, New York, 1988.

QUINN, M. J. Designing Efficient Algorithms for Parallel Computers,
McGraw-Hill, New York, 1987.

RoDEH, M., PRATT, V. R. AND EVEN, S. Linear algorithm for data
compression via string matching. J. ACM 28, 1 (Jan., 1981), 16-24.

STORER, J. A. AND REIF, J. H. A parallel architecture for high
speed data compression. In Proceedings of the Third Symposium on
the Frontiers of Massively Parallel Computation, Fairfax, Vir., IEEE
Computing Society Press, Washington, D. C., 1990.

STORER, J. A. Data Compression Methods and Theory, Computer
Science Press, Rockville, Maryland, 1988a.

[S88B]

[SS82]

[T87]

[TW87]

[TW89]

[W84]

[WNC87]

[Z90A]

[Z90B]

[Z90c]

[ZL 77]

[ZL 78]

51

STORER, J. A. Parallel algorithms far on-line dynamic data com­
pression. In Proceedings of the IEEE lnternational Conference on
Communications: Digital Technology - Spanning the Universe, IEEE
Publishing, New York, 1988b, pp. 385-389.

STORER, J. A. AND SzYMANSKI, T. G. Data compression in textual
substitution. J. A CM 29, 4 (1982), 928-951. -

TENG, S.-H. The construction of Huffman-equivalent prefix code in
NC. ACM SIGACT J. 18, 4 (May, 1987), 54-61.

TENG, S.-H. AND WANG, B. Parallel algorithms far message decom­
position. J. of Parallel and Distr. Comp. 4 (1987), 231-249.

THOMBORSON, C. D. AND WEI, BEL LE W.-Y. Systolic implementa­
tions .of a move-to-front text compressor. In Proceeding3 1989 A CM
Sympo3Íum on Parallel Algorithms and A rchitectures, Sante Fe, New
Mex., ACM, New York, 1989, pp. 283-290.

WELCH, T. A. A technique far high-perfarmance data compression.
Computer 17, 6 (June, 1984), 8-19.

WITTEN, I.H., NEAL, R. M., AND CLEARY, J. G. Arithmetic coding
far data compression. Commun. ACM 30, 6 (June, 1987), 520-540.

ZITO-W o L F, R. J. A broadcast /reduce archi tecture far high-speed
data compression. In Proceedings of the Second IEEE Symposium on
Parallel and Distributed Processing, Dallas, Texas, 1990a.

ZITO-WOLF, R. J. A systolic architecture far sliding-window data
compression. In Proceedings of the IEEE Worbhop on VLSI Signal
Proce33Íng, 1990b.

ZrTo-WoLF, R. J. VLSI architectures far high-speed sliding dic­
tionary data compression. Technical Report Number CS-90-149.
Computer Science Department, Brandeis University, MA (1990c).

Z1v, J. AND LEMPEL, A. A universal algorithm far sequential data
compression. IEEE Trans. Inf. Theory 23, 3 (1977), 337-343.

Z1v, J. AND LEMPEL, A. Compression of individual sequences via
variable-rate coding. IEEE Trans. Inf. Theory 24, 5 (1978), 530-536.

. '

111111111111111111111111~ 11~ ll 1~111111111111111111 ~11 ~1111
3 1970 00882 4499 '

