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Human observers have optimal
introspective access to perceptual
processes even for visually masked stimuli
Megan A K Peters1*, Hakwan Lau1,2

1Department of Psychology, University of California, Los Angeles, Los Angeles,
United States; 2Brain Research Institute, University of California, Los Angeles, Los
Angeles, United States

Abstract Many believe that humans can ‘perceive unconsciously’ – that for weak stimuli, briefly

presented and masked, above-chance discrimination is possible without awareness. Interestingly,

an online survey reveals that most experts in the field recognize the lack of convincing evidence for

this phenomenon, and yet they persist in this belief. Using a recently developed bias-free

experimental procedure for measuring subjective introspection (confidence), we found no evidence

for unconscious perception; participants’ behavior matched that of a Bayesian ideal observer, even

though the stimuli were visually masked. This surprising finding suggests that the thresholds for

subjective awareness and objective discrimination are effectively the same: if objective task

performance is above chance, there is likely conscious experience. These findings shed new light on

decades-old methodological issues regarding what it takes to consider a neurobiological or

behavioral effect to be ’unconscious,’ and provide a platform for rigorously investigating

unconscious perception in future studies.

DOI: 10.7554/eLife.09651.001

Introduction
Above-chance performance without awareness in perceptual discrimination tasks is a strong form of

unconscious perception. In these demonstrations (e.g., blindsight: Weiskrantz, 1986) the subjective

threshold for awareness (when a stimulus is consciously ‘seen’) seems well above the objective

threshold for forced-choice discrimination (when a stimulus can be correctly identified): subjects can

discriminate a target above chance performance, yet report no awareness of the target. Many

researchers believe normal, healthy subjects can also directly discriminate near-threshold, low-inten-

sity targets without subjective awareness (e.g., Boyer et al., 2005; Charles et al., 2013;

Merikle et al., 2001; but see Snodgrass et al., 2004 for an opposing view).

We conducted an informal survey to confirm this popular belief, which also revealed that many

believe convincing evidence for this phenomenon is lacking. We asked survey participants three key

questions: (1) "Do you believe in subliminal perception?" (2) "Do you believe that the subjective

threshold for awareness is above the objective discrimination threshold?" and (3) "If ‘yes’, do you

believe this has been convincingly demonstrated in the literature?" Most respondents reported

believing that subliminal processing exists (94%), but also that they did not believe it had been con-

vincingly demonstrated in the literature (64%). These belief patterns were shown even among those

who reported having published on subliminal or unconscious perception (94% and 61%, respec-

tively). See Appendix 1 for full text of questions and detailed survey results.

A primary culprit in this controversy is the problem of criterion bias: an observer’s report of

‘unseen’ doesn’t necessarily imply complete lack of awareness, only that the stimulus’ strength fell

below some arbitrary boundary for reporting ‘seen’ (Eriksen, 1960; Hannula et al., 2005;
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Lloyd et al., 2013; Merikle et al., 2001). Unfortunately, most methods of studying unconscious per-

ception suffer from this ‘criterion problem’ (e.g., Charles et al., 2013; Jachs et al., 2015;

Ramsøy and Overgaard, 2004). With such methods, one could argue that reports of ‘unawareness’

may only mean some stimuli are relatively hard to perceive compared to those that are clearly

visible.

To avoid this criterion problem, several groups (Kolb and Braun, 1995; Kunimoto et al., 2001)

sought to identify conditions in which confidence was uncorrelated with accuracy, which they argued

would indicate no subjective awareness of the target. Unfortunately, some of these efforts were not

replicable (Morgan et al., 1997; Robichaud and Stelmach, 2003). Others revealed that estimating

the correspondence between confidence and accuracy requires mathematical considerations more

complicated than originally envisaged (Evans and Azzopardi, 2007; Galvin et al., 2003;

Maniscalco and Lau, 2012). Importantly, the conceptual link between metacognitive sensitivity (i.e.,

correlation between confidence and accuracy) and conscious awareness is itself controversial

(Charles et al., 2013; Fleming and Lau, 2014; Jachs et al., 2015).

Here, we employ a recently-developed confidence-rating method to address this problem

(Barthelmé et al., 2009; de Gardelle and Mamassian, 2014). Subjects discriminated two stimulus

intervals, only one of which contained a target, and indicated confidence in their decisions using a 2-

interval forced-choice procedure (2IFC), that is, indicating which of the two discrimination decisions

eLife digest In the 1980s, psychologists made an unexpected discovery while working with

individuals who had become blind after sustaining damage to areas of the brain required for vision.

These individuals could respond correctly to questions about the shape and location of objects in

their visual field, even though they could no longer see the objects. This phenomenon became

known as ’blindsight’, and it is regarded as a classic example of perception in the absence of

conscious awareness.

Many researchers who study consciousness believe that everyone is capable of subliminal or

unconscious perception: that is, of detecting and processing stimuli without being consciously aware

of them. However, studies investigating this phenomenon have produced contradictory results.

Peters and Lau have now tested unconscious perception directly, using a recently developed

method that overcomes some of the problems faced by previous studies.

Human volunteers took part in several trials, in which they were shown two images. Each image

was ‘masked’ to prevent the volunteers from consciously registering them. After each image was

shown, the volunteers had to state whether a patch of gray and white stripes in the masked image

was tilted to the left or to the right. However, one of the two images did not include a gray and

white patch. After seeing both images in a trial, the volunteers also had to indicate which of their

answers they were most confident about.

If the volunteers could perceive the patches without being consciously aware of doing so, their

response should show two features. The volunteers should correctly state the tilt direction of the

stripes more often than would be expected if they were guessing at random. However, they should

also feel no more confident in their responses for the images that did feature a striped patch than

for the ‘no patch’ ones. Peters and Lau found no such evidence of unconscious perception.

Nevertheless, the volunteers were consistently better at correctly stating the direction the stripes

were tilted in than their confidence ratings would suggest. Does this indicate some degree of

perception without awareness? Peters and Lau argue that it does not, because a computer model

designed to perform the task showed a similar level of performance to the volunteers.

These findings suggest that previous reports of unconscious perception may have been

contaminated by the problems that Peters and Lau controlled for, and that perhaps unconscious

perception doesn’t occur in people without brain damage. Researchers will now need to do more

studies using similar approaches to determine whether observers without brain damage can truly

experience unconscious perception, and how such unconscious perception might be represented in

the brain.

DOI: 10.7554/eLife.09651.002
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they felt more confident in. This approach has several advantages. First, 2IFC tasks depend little on

response bias compared to multi-point confidence-rating scales. Maintaining the criteria for exten-

sive confidence scales may also be demanding, leading subjects to respond somewhat randomly in

conditions of vague awareness and thereby producing the negative result Kolb and Braun (1995)

observed (Morgan et al., 1997). Second, the interpretation of 2IFC confidence-rating in this context

is straightforward: ‘Performance without Awareness’ would mean subjects can perform the target

discrimination yet fail to place bets appropriately to distinguish this performance from discrimination

of a blank stimulus (which guarantees chance performance). That is, following psychophysics tradi-

tions (Kolb and Braun, 1995; Peirce and Jastrow, 1884), if a certain above-chance discrimination

seems introspectively no different from a random guess based on no stimulus at all (as reflected by

betting behavior), we interpret the discrimination to be unconscious. Here, we explored whether

such Performance without Awareness occurs in normal observers in two behavioral experiments, and

compared these results to predictions of a Bayesian ideal observer.

Figure 1. Stimuli and procedures for the 2IFC confidence-rating task. (A) Targets consisted of oriented (45˚ left- or
right-tilted from vertical) Gabor patches presented at multiple near-threshold contrast levels; masks consisted of

bandpass-noise filtered random RGB values (see Materials and methods). (B) Each trial consists of two intervals of

discrimination in which the target stimulus (T) was forward- and backward-masked (M). Gabor patch targets were

presented only in target-present (TP) intervals; in target-absent (TA) intervals, the target was replaced with blank

frames. Otherwise timings of stimuli were matched between the two intervals. (C) Experimental tasks. Experiment

1 required subjects to bet on which discrimination they felt more confident before they indicated their orientation

discrimination choices (left or right tilt of the Gabor) sequentially for both intervals. Shown is an example trial in

which TP is presented before TA; in the experiment this order varied randomly from trial to trial. In Experiment 2,

subjects bet on the more confident interval after the discriminations, and feedback was given. (See

Materials and methods for more details.)

DOI: 10.7554/eLife.09651.003
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Results

Behavioral experiments
Nine human observers participated in two experiments of our 2IFC confidence-rating paradigm (Fig-

ure 1). In both experiments, participants viewed two intervals in which they were required to dis-

criminate the orientation (right or left tilt) of a Gabor patch target embedded in forward- and

backward-masks (Figure 1A,B), and judged which of the discrimination choices they felt more confi-

dent in. Crucially, in one of the intervals the target was absent (Figure 1B), such that above-chance

discrimination performance was impossible. We performed two experiments to assess the potential

contributions of question order, receipt of feedback, and a priori knowledge of the presence of a

target-absent interval (Figure 1C). In Experiment 1, participants judged which decision they felt

more confident in and then indicated their orientation decisions for both intervals, while in Experi-

ment 2 they indicated their orientation discrimination decisions before selecting the more-confident

interval. In Experiment 2, we also provided feedback on the confidence decision, and told partici-

pants that one interval contained no target; this information was withheld from participants in Exper-

iment 1. Stimuli, timing details, and order of question prompts in the two experiments are also

discussed in greater detail in the Methods section.

For both experiments, we evaluated whether participants exhibited Performance without Aware-

ness (Figure 2A) or Performance > Awareness (Figure 2B). In both cases, the response pattern of

interest can be visualized as percent of time betting on the target-present interval as a function of

percent correct orientation discrimination in the target-present interval. ‘Performance without

Awareness’ (Figure 2A) would be supported if observers can discriminate the target above chance

(>50% accuracy) while being unable to bet on their choices more often than betting on the target-

absent interval (which necessarily yields chance-level performance). That is, observers correctly dis-

criminate the target’s orientation more than 50% of the time, but bet on the target-present interval

50% of the time (i.e., they bet randomly on the target-present versus target-absent interval),

Figure 2. Schematic explanation of predictions of the experiments. (A) A ‘Performance without Awareness’ pattern

of behavior, in which subjects are able to discriminate the target above chance while betting on the target-present

interval at chance. (B) A ‘Performance > Awareness’ pattern of behavior, in which subjects are less able to bet on

their discrimination decisions than they are able to correctly discriminate the target. In both (A) and (B), the

diagonal dashed line indicates where rate of betting on the target-present interval equals objective discrimination

performance.

DOI: 10.7554/eLife.09651.004
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indicating they are not aware of the information that contributed to their discrimination decision. If

this were to occur, it would most likely happen at low discrimination performance levels, yielding a

pattern of behavior similar to that presented in Figure 2A.

However, in psychophysics, thresholds can also be defined as midway between ceiling and floor

performance (Macmillan and Creelman, 2004), such that threshold discrimination performance is

defined as 75% accuracy rather than >50% (chance level). This concept can also be applied to sub-

jective betting data in the sense that betting on the target-present interval could be considered ‘cor-

rect’ or ‘advantageous’ betting. In this sense (threshold = 75% correct performance), the subjective

Figure 3. Group-level results of behavioral experiments (rows 1 and 2), presented in comparison to the predictions of the Bayesian ideal observer

model (row 3; see Materials and methods - Computational Model). In both experiments, human observers displayed no evidence of Performance

without Awareness, but appeared to demonstrate Performance > Awareness (panels A and D). However, the ideal observer model also demonstrated

such behavior (panel G), indicating that it is not suboptimal at all but arises from the 2IFC nature of the confidence task (see Bayesian Ideal Observer

Model results section and Figure 2 caption for explanation). Horizontal gray lines in panels A, D, and G indicate chance-level betting (50%) on the

target-present (TP) interval. Panels B, E, and H show rising Type 2 hit rate (‘HR’; when subjects bet on a correct orientation discrimination choice) but

relatively flat Type 2 false alarm rate (‘FAR’; when subjects bet on an incorrect orientation discrimination choice), and panels C, F, and I show higher

orientation discrimination accuracy when the target-present (TP) interval is bet on; these patterns suggest that human subjects and the Bayesian ideal

observer were rating confidence via assessing their probability of correctly discriminating orientation, rather than target presence versus absence only.

The model demonstrates good explanatory power for the data across all participants (mean proportion of variance accounted for by the model, R2 =

0.565). Error bars for behavioral data indicate the standard error of the mean across subjects with data in each bin.

DOI: 10.7554/eLife.09651.005
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threshold for confidence might be above the objective threshold for discrimination. In other words,

observers may bet on the target-present interval less often than they get the discrimination correct,

but still above chance. This would occur because the orientation discrimination choice requires eval-

uation of only one interval (the one with the target in it) and therefore is subject to only one source

of uncertainty, but the ‘betting’ choice requires evaluation of both intervals, and therefore has two

potential sources of uncertainty. This pattern of behavior (Figure 2B) may occur even if subjects do

not display Performance without Awareness, and would be characterized by a pattern of responses

that fall below the identity line (diagonal dashed line). We call this possibility ‘Performance >

Awareness’.

We discuss the results of both experiments together for ease of interpretation, and because the

results are very similar (Figure 3A–F). To anticipate, we found no evidence of Performance without

Awareness. Although we found strong evidence of Performance > Awareness across the experi-

ments (Figure 3A,D), subsequent computational modeling (Bayesian Ideal Observer Model section)

suggests that this is somewhat trivial: even an ideal observer is expected to show Performance >

Awareness (Figure 3G; see Bayesian Ideal Observer Model section for further explanation).

To look for evidence of Performance without Awareness, we first plotted percent of trials in which

observers bet on the target-present interval against orientation discrimination accuracy for both

experiments (Figure 3A,D). In contrast to what might have been suggested based on previous

results (e.g., Boyer et al., 2005; Charles et al., 2013; Merikle et al., 2001; but see

Snodgrass et al., 2004), visual inspection alone clearly reveals no evidence for Performance without

Awareness in either experiment: it looks as though observers could bet on the target-present inter-

val above chance as soon as they were able to discriminate the target above chance, and there is no

hint of the Performance without Awareness pattern. We quantitatively assessed the possibility of

Performance without Awareness using a Bayesian observer model (see Modeling Results, below),

but found no evidence that a Performance without Awareness pattern could capture human behav-

ior. Individual subjects’ performance closely resembles group data and averages (Appendix 2).

Because thresholds can be defined in psychophysical terms (75% performance) rather than abso-

lute terms (>50%), we also evaluated the possibility of Performance > Awareness. We used kernel

smoothing regression (see Materials and methods) to interpolate each individual subject’s data in

order to estimate how often subjects bet on the target-present interval when they were performing

at 75% correct on orientation discrimination. Because results are very similar across the two

Table 1. Individual values, means, standard deviations, and p-values for t-tests showing that

Performance > Awareness occurs across both experiments. Results from Experiment 2 show that the

pattern does not change with different question order or feedback.

Expt Subject p(choose TP interval) at p(correct) = 0.75

1 1 AVT 0.676

2 AM 0.714

3 JDK 0.716

4 SH 0.682

5 MM 0.684

6 AC 0.685

7 MR 0.674

8 MK 0.658

9 RA 0.619

2 1 AVT 0.666

2 AM 0.713

3 JDK 0.746

Mean (s) 0.686 (0.033)

t(11) 6.718

p 0.00003

DOI: 10.7554/eLife.09651.006
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experiments, we combined results from both and performed a two-tailed one-sample t-test to assess

whether this predicted percentage betting on the target-present interval significantly diverged from

75%. This analysis revealed that observers bet on the target-present interval significantly less than

75% of the time at 75% correct orientation discrimination accuracy (Figure 3A,D, Table 1). Thus,

observers exhibited Performance > Awareness (but see also Modeling Results, below).

2IFC detection?
One possible concern is that subjects were not rating confidence but instead engaging in 2IFC

detection of the target-present interval. To confirm that subjects were indeed rating confidence, we

plotted Type 2 hit rate and Type 2 false alarm rate against orientation discrimination accuracy

(Figure 3B,E). A Type 2 hit is defined as placing a bet on a correct orientation discrimination deci-

sion, whereas a Type 2 false alarm is defined as placing a bet on an incorrect orientation discrimina-

tion decision. These are in contrast to Type 1 hits and false alarms, which can be defined as saying

‘left’ when a left-tilted Gabor was presented and saying ‘left’ when a right-tilted Gabor was pre-

sented, respectively, according to standard signal detection theoretic definitions (Green and Swets,

1966; Macmillan and Creelman, 2004).

Subjects displayed increasing Type 2 hit rate as a function of orientation discrimination accuracy,

whereas Type 2 false alarm rate remained relatively flat at around 50% (chance level) across increas-

ing orientation discrimination accuracy. In other words, subjects did not bet on orientation discrimi-

nation choices they expected to get wrong, even at high performance (i.e. high contrast) levels.

Thus, they were probably truly rating confidence and not simply engaging in 2IFC detection. In

keeping with this observation, we also plotted orientation discrimination accuracy conditional upon

subjects’ selection of the target-present interval, i.e. p(correctorientationDiscrimination | target-present

selected) and p(correctorientationDiscrimination | target-present not selected) (Figure 3C,F). This visualiza-

tion revealed that subjects were worse at orientation discrimination when they did not select the tar-

get-present interval. This result is in keeping with typical observations of worse objective

performance for low confidence trials, since not betting on the target-present interval is essentially

an indication of low confidence in that discrimination choice. See also the ’Unconscious ‘hunches’?’

section, below.

Notably, the similarity in participants’ behavior between Experiments 1 and 2 reveals that receipt

of feedback on confidence judgments, knowledge that one interval is physically blank, question

order, and ability to monitor reaction time do not affect behavioral outcomes.

Unconscious ‘hunches’?
Throughout this report, we define conscious awareness of the target to occur when introspective

assessment of the correctness of an orientation discrimination choice can differentiate between a tar-

get being present or not. In this sense, observers are unconscious of the information contributing to

their decision if they can discriminate a target above chance, but doing so feels no different intro-

spectively from discriminating (or guessing about) nothing at all. However, one concern might be

that subjects are able to meaningfully rate confidence despite no subjective visual experience of the

stimulus due to some sort of non-visual ‘hunch’ or ‘feeling’. Indeed, such metacognitive insights (the

ability to introspectively distinguish between correct and incorrect responses) have recently been

reported even in the absence of objective task performance sensitivity, although not in the context

of perception (e.g., Scott et al., 2014).

We think this issue is essentially one of terminology; our definition of conscious awareness follows

a long history in psychology and psychophysics traditions in relating the ability to meaningfully rate

confidence to subjective awareness (c.f. Kolb and Braun, 1995; Peirce and Jastrow, 1884), accord-

ing to which, strictly speaking, a non-visual hunch is also defined as conscious so long as it meaning-

fully tracks visual processes; regardless of whether such ‘hunches’ are visual in nature, it is still

meaningful to distinguish between having such introspective insight versus having no insight whatso-

ever. However, we also ran a control study in which the subjective task was to indicate which interval

appeared more visible rather than confidence in the corresponding discrimination. In other words, it

was akin to a 2IFC detection task rather than a metacognitive judgment. Results of this control study

(Appendix 3) mirrored those of the main experiments: as soon as participants were able to discrimi-

nate the target above chance, they were able to indicate which interval contained the target above

Peters and Lau. eLife 2015;4:e09651. DOI: 10.7554/eLife.09651 7 of 30
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chance. Thus, even when the 2IFC task was visibility judgment rather than confidence, subjects’

behavior was inconsistent with the Performance without Awareness pattern – suggesting there is

also no Performance without Visual Awareness. See Appendix 3 for details of the control study.

Bayesian ideal observer model
We developed a Bayesian ideal observer model utilizing a similar representation space as standard

2-dimensional signal detection theory (Figure 4) (King and Dehaene, 2014; Macmillan and Creel-

man, 2004). The primary finding is that even an ideal observer model exhibits Performance > Aware-

ness, as depicted in Figure 1B. Intuitively, this effect occurs because the orientation discrimination

choice requires evaluation of only one interval (the one with the target in it) and therefore is cor-

rupted by only one source of noise, but the ‘betting” choice requires evaluation of both intervals,

and therefore has two potential sources of noise.

Figure 4. Illustration of the Bayesian ideal observer’s 2-dimensional representation space, following standard 2-

dimensional signal detection theory (King and Dehaene, 2014; Macmillan and Creelman, 2004). (a) Distributions

Sleft and Sright lie on orthogonal axes cleft and cright representing left- and right-tilted targets, respectively, and the

noise distribution lies at the origin. On each simulated trial, the model ‘sees’ two samples, one drawn from a

source distribution Si to represent the target-present interval (dTP) and the other from the noise distribution to

represent the target-absent interval (dTA). It marginalizes across all contrast evidence levels to guess the

orientations of both samples according to the posterior probabilities of left- and right-tilted sources. Then, it

compares the posterior probabilities of the chosen orientations in each interval to select the interval with higher

confidence (p(correct)) (see Materials and methods - Bayesian ideal observer model).

DOI: 10.7554/eLife.09651.007
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The model ‘performs’ a 2IFC confidence discrimination by comparing the posterior probability of

left- or right-tilted source distributions given the data to perform the orientation discrimination task

on each of the two intervals on each trial. Then, it uses the posterior probability of the choice it

made on each interval as a measure of confidence (i.e., p(correct)), and compares this measure

between the two intervals to select the choice it is more confident in (see Figure 4 and

Materials and methods – Bayesian ideal observer model). We also explored several model variants

to establish the robustness of the model’s performance; see Appendix 4 for details on model

variants.

Unsurprisingly, the Bayesian ideal observer did not display signs of Performance without Aware-

ness. We next evaluated whether causing the model to exhibit Performance without Awareness

(Figure 2A) by degrading the 2IFC confidence judgment could produce better fit to participants’

data. We tested three levels of increasing decisional noise (sd; see Materials and methods) to cause

the model to exhibit increasing Performance without Awareness as described in Figure 2A, and

assessed the goodness of fit (R2) for each subject for each decisional noise value. We found that

causing the model to exhibit increasing Performance without Awareness behavior resulted in increas-

ingly worse R2 values (Table 2). To confirm this trend, we conducted a 12 (subjects; subjects 1–3

who completed both experiments are treated independently) x 4 (decisional noise magnitude)

repeated measures ANOVA on the R2 values. This analysis revealed a main effect of decisional noise

(F(3,33) = 19.301, p <0.001), indicating that the ideal observer model (sd = 0) best captures human

performance, and that any suboptimal Performance without Awareness (sd >0) pattern fits human

data more poorly than the ideal observer behavior – even without punishing the decisional noise

model for having an additional parameter.

Crucially, however, the ideal observer does exhibit Performance > Awareness (Figure 3G), and to

a similar extent as our human participants (R2 = 0.565; see Appendix 4 for details of goodness of fit

metrics); trends for Type 2 hit and false alarm rates (Figure 3H), and percent correct conditional

upon having bet on the target-present versus target-absent interval (Figure 3I), also match human

data. That the ideal observer exhibits behavior that may seem suboptimal, and in the same pattern

as human observers, confirms that this perhaps counterintuitive but optimal behavior arises from the

confidence-comparison nature of the 2IFC confidence-rating task: the decision about orientation in

Table 2. R2 values quantifying goodness of fit for ideal observer (sd = 0) and three alternative

decisional noise magnitudes (sd >0) which cause increasing degrees of Performance without

Awareness. Decisional noise greater than 0 – i.e., increased level of Performance without Awareness –

causes a drop in goodness of fit between model and human data. See Methods and Appendix 4 for

more details.

Expt Subject

Decisional noise sd

0 (Ideal observer) 0.1 0.2 0.3

1 1 0.465 0.459 0.456 0.447

2 0.580 0.578 0.565 0.544

3 0.470 0.464 0.448 0.428

4 0.396 0.392 0.381 0.363

5 0.649 0.655 0.645 0.628

6 0.480 0.473 0.458 0.434

7 0.453 0.452 0.444 0.427

8 0.602 0.595 0.583 0.563

9 0.503 0.509 0.512 0.504

2 1 0.624 0.624 0.622 0.612

2 0.783 0.780 0.775 0.766

3 0.777 0.778 0.767 0.753

Mean R2 (s) 0.565 (0.126) 0.563
(0.128)

0.555
(0.129)

0.539 (0.131)

DOI: 10.7554/eLife.09651.008
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the target-present interval is limited by one source of noise (the single target-present interval), but

the comparison of confidence is limited by the system’s noise in both intervals. So even if confidence

monotonically increases with accuracy for the target-present interval, there will be trials in which –

by chance – the discrimination choice for the blank (target-absent) interval happens to seem more

confident, that is, its posterior probability is larger. This will happen sometimes even on trials in

which the observer gets the target-present orientation discrimination correct. In these trials, the

observer (human or simulated) will select the target-absent interval. This process will lead to the

appearance of what we called Performance > Awareness, as displayed by our human participants

and ideal observer (refer also to Figure 2 for additional explanation). Thus, the subjective ratings by

human participants are already close to ideal, as if the actual effective threshold for subjective

awareness is no different from the objective threshold for discrimination. Importantly, this is true

despite the apparent measured differences in psychophysically defined thresholds (75%).

Discussion
Blindsight (Weiskrantz, 1986) is the intriguing demonstration of Performance without Awareness in

neurological patients. Despite widely held beliefs by experts, here we found no evidence that it

occurs in normal observers. Importantly, although the measured psychophysical threshold (75%) for

awareness seemed to be above the objective discrimination threshold, computational analysis

revealed that the actual effective thresholds are essentially the same; people’s subjective ratings are

close to ideal, given their objective performance levels. This challenges longstanding beliefs regard-

ing the nature of subjective versus objective thresholds in perceptual studies (Merikle et al., 2001;

see survey results in Appendix 1).

Our findings cannot rule out all forms of unconscious perception, such as subliminal priming, in

which the evidence for unconscious processing is typically indirect benefits in reaction times

(Hannula et al., 2005). However, our findings bear upon those studies, too. Traditionally, interpret-

ing such effects as unconscious required that the relevant stimuli yield zero sensitivity in a direct task

(d’ = 0). Recently, many have relaxed this requirement and considered subjectively reported lack of

awareness as sufficient (Pessiglione et al., 2009; Soto et al., 2011), presumably because we

(wrongly) believed that certain stimuli might surpass the objective threshold while still being below

the subjective one. One may also argue that while objective threshold requirements are rigorous,

the valid and meaningful measure is the subjective threshold (Charles et al., 2013; Merikle et al.,

2001). Our results suggest this reasoning is flawed. If a stimulus surpasses the objective threshold,

there is likely conscious experience; subjects likely report lack of awareness because they interpret

the response options in relative terms in the context of stimuli of various strengths. This undermines

claims that higher-cognitive phenomena – e.g. working memory, error detection, or motivation – can

really operate unconsciously, if assessed with reference to subjective rather than objective thresholds

(Charles et al., 2013; Pessiglione et al., 2009; Soto et al., 2011).

Although the 2IFC confidence-rating procedure bypasses the response bias problem, interpreting

the subjective vs. objective function is non-trivial: to determine whether participants’ Performance >

Awareness behavior was optimal required detailed computational analysis. An alternative approach,

which may be simpler, would be to compare the objective and subjective functions between task

conditions, in a rationale similar to Lau and Passingham (2006).

Although we found no evidence of ‘blindsight’ in normal observers, our study lays out the logic of

what would be required to demonstrate it unequivocally. For example, it has recently been argued

that TMS-induced ‘blindsight’ (Boyer et al., 2005) is contaminated by criterion bias (Lloyd et al.,

2013). 2IFC confidence-rating may help resolve such issues without invoking theoretically compli-

cated problems concerning signal detection theory (e.g., Heeks and Azzopardi, 2015). Thus,

despite their negative nature, our findings may beget fruitful lines of inquiry to address which stimuli,

procedures, or brain stimulation techniques can selectively impair subjective conscious experience,

beyond impacting sheer objective processing sensitivity.
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Materials and methods

Behavioral experiments
Subjects
Twelve subjects (two women, ages 19–32, ten right-handed) gave written informed consent to par-

ticipate in our behavioral experiments. All subjects had normal or corrected-to-normal eyesight, and

wore the same corrective lenses for all sessions, if applicable. Behavioral experiments were con-

ducted in accordance with the Declaration of Helsinki and were approved by the UCLA Institutional

Review Board.

Stimuli and apparatus
Targets consisted of Gabor patches (sinusoidal gratings) at a spatial frequency of 0.025 cycles/pixel,

tilted by 45˚ to the right or the left of vertical. Gratings and subtended 500 pixels, or ~111 visual

degrees, and were presented in a circular annulus with a Gaussian hull spatial constant of 100. On

each trial, targets could take on one of thirteen possible contrast levels drawn from the range 15–

90%. Masks consisted of white noise patches of random RGB values bandpass-filtered to a range of

spatial frequencies immediately surrounding the spatial frequency of the target. They were pre-

sented in a circular annulus of identical size to the spatial envelope of the Gabor patch targets. All

stimuli were displayed via a custom Matlab R2013a (Natuck, MA) script utilizing PsychToolbox 3.0.12

on a gamma-corrected Dell E773c CRT monitor with a refresh rate of 75 Hz.

Procedure – Experiment 1
Nine subjects participated in Experiment 1. Subjects were seated with their chins in a chinrest at a

viewing distance of 42 cm from the screen. Targets and masks (Figure 1A) were presented for two

to three frames (33–40 ms) each (jittered timing, with equal probability for two or three frames), with

33-40 ms ISI between masks and 0ms ISI for target-mask or mask-target transitions, in a forward-

and backward-masking paradigm in which three masks were presented before and three after the

target presentation (i.e., the target was ‘sandwiched’ between mask presentations) (Figure 1B).

The trial structure extends the two-by-two forced-choice (2x2FC) paradigm first introduced by

Nachmias and Weber (1975) and subsequently employed to explore the relationship between

detection and identification (e.g., Thomas et al., 1982; Watson and Robson, 1981), and more

recently applied to research on confidence (Barthelmé et al., 2009, 2010; de Gardelle and Mamas-

sian, 2014). We combined these procedure types. In our procedures, each trial consists of two time

intervals, within only one of which the target is presented. In target-absent intervals, the target pre-

sentation was replaced with blank frames, similar to the blank frames between masks, to maximize

phenomenological similarity between target-present (TP) and target-absent intervals (TA)

(Figure 1B). Unlike previous usage of the 2x2FC, however, we required observers to indicate target

orientation on both target-present and target-absent intervals within a trial in addition to the final

judgment type, despite the fact that there was a target in only one of the intervals.

In target-present intervals, targets were presented at 45˚ tilted right or left from vertical at one of

the possible contrasts. Following presentation of both intervals, observers pressed a key indicating

which discrimination decision they would like to bet on (a measure of confidence; Type 2 judgment),

and then indicated their discrimination choices for both intervals in order (leftward or rightward tilt;

Type 1 judgment) (Figure 1C). In target-absent intervals, participants’ answers were coded as ‘cor-

rect’ with 50% probability. No feedback was provided on a trial-by-trial basis. To motivate subjects,

we informed them that a target was present in both intervals, but that one might be harder to dis-

criminate than the other. Subjects were informed that they would be awarded a point for every cor-

rect discrimination (Type 1 judgment), and an additional point every time they bet on an interval

they discriminated correctly (Type 2 judgment), and total points were displayed at the end of the

experiment; they were also told that if they earned more points than the previous participant, they

would be paid an additional $10 bonus at the end of all sessions.

In each behavioral session, trials were presented in a randomized full factorial design, counterbal-

ancing interval order, in ten blocks of 52 trials per block. Every subject undertook five 60-minute ses-

sions, for a total of 2600 trials spread across up to thirteen contrast levels, two orientations, and two

interval presentation orders. Levels of contrast presented to each participant were titrated across
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sessions to ensure performance spanning approximately evenly from chance (50% correct) to 100%

correct, resulting in no fewer than 200 trials per contrast level (10 trials per condition x 2 orientations

x 2 interval orders x 5 sessions). Subjects were paid $10 per session.

Procedure – Experiment 2
Three subjects who had participated in Experiment 1 also participated in Experiment 2. Procedures

for Experiment 2 were identical to those described above for Experiment 1, except for the feedback

structure, observer’s knowledge about target-present versus target-absent intervals, and order of

questions (Figure 1B). In Experiment 2, we wanted to motivate subjects to bet on the target-present

interval as much as possible, to maximize the possibility of observers performing optimally (i.e., to

alleviate any Performance > Awareness). So, we defined a ‘correct’ Type 2 judgment for the pur-

poses of feedback only as a Type 2 hit, i.e. trials in which the observer correctly discriminated the

target-present interval and bet on the target-present interval. Subjects were also informed that in

one of the intervals the target was physically absent, and that betting on that interval would not

earn them a point even if they ‘discriminated’ its orientation correctly (as before, they still had a 50%

chance to earn a point for ‘correctly discriminating’ the target-absent interval; subjects were made

aware of this structure). Additionally, we provided ‘correct/incorrect’ feedback on the Type 2

responses to further encourage betting on the target-present interval. Finally, we altered the ques-

tion order such that after each interval was presented, subjects pressed a button to discriminate the

interval, and then only after both intervals had been presented did they indicate which choice they

would like to bet on. In this way, subjects were allowed the ability to monitor their own reaction

times, which ought to be faster for target-present intervals on average (as target-absent intervals are

simply guesses by definition); this would provide another source of potential information to contrib-

ute to confidence judgments, as it has been shown that subjects use reaction time monitoring to

inform confidence judgments (Kiani et al., 2014). Points were awarded as in Experiment 1, and the

same bonus payment motivation was employed. Also as before, participants completed five behav-

ioral sessions each for Experiment 2, and were paid $10 per session.

Statistical analyses
For each subject in each experiment, data were collapsed across tilt (left/right), interval presentation

order (first/second), and session for each contrast level. At each contrast level for each subject, we

next calculated (a) percent correct orientation discrimination, (b) percent of trials in which the target-

present interval was chosen, (c) Type 2 hit rate and Type 2 false alarm rate according to standard

Type 2 signal detection theoretic definitions (Type 2 hit: correct orientation discrimination and bet

on target-present interval; Type 2 false alarm: incorrect orientation discrimination and bet on target-

present interval) (Fleming and Lau, 2014; Maniscalco and Lau, 2012), and (d) percent correct orien-

tation discrimination conditional on having chosen the target-present versus target-absent interval.

Group-level analyses and graphical presentation were conducted by binning subjects’ data into

ten equally-spaced bins of percent correct orientation discrimination performance in the range 0.5 –

1 and calculating the mean and standard deviation of each of the above statistics for each bin.

To interpolate between discrete data points, we fitted a kernel smoothing regression function to

each observer’s data, which is a non-parametric approach to estimate the conditional expectation of

a random variable, E Y Xj Þ ¼ f Xð Þð where f is a non-parametric function. This approach is based on

kernel density estimation, implementing Nadaraya-Watson kernel regression (Nadaraya, 1964; Wat-

son, 1964) via

f̂ x;K;hð Þ ¼

Pn
i¼1Kh x�xið Þyi

Pn
i¼1Kh x�xið Þ

(1)

where K is a Gaussian kernel with bandwidth h.

All analyses were carried out in Matlab R2013a (Natuck, MA) and SPSS Version 22 (IBM

Corporation; Armonk, NY).

Peters and Lau. eLife 2015;4:e09651. DOI: 10.7554/eLife.09651 12 of 30

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.09651


Bayesian ideal observer model
Model space
Our model representation space extends Macmillan and Creelman’s (2004) two-dimensional signal

detection theory (SDT) and related Bayesian (King and Dehaene, 2014) framework, in which stimu-

lus categories are represented by bivariate Gaussian distributions centered along the axes in a Car-

tesian plane, and ‘noise’ (or a blank stimulus) is represented by a similar bivariate Gaussian centered

at the origin (Figure 4). Although for this particular task we could have used a 1-dimensional space

alternative (see e.g. Sridharan et al., 2014), to facilitate additional model variants (see Appendix 4)

and possible future applications to stimuli that contain a mixture of multiple stimulus categories, we

elected to present the model in a two-dimensional format. To accomplish both the orientation dis-

crimination and 2IFC confidence judgments, on each simulated two-interval trial, two pairs of evi-

dence values (representing the evidence in favor of a left- or right-tilted target) of the form d = [dleft,

dright] are drawn: one sample is drawn from one of the signal distributions S (dTP, target-present

intervals), and the other drawn from the noise distribution (dTA, target-absent intervals) (Figure 4).

Inference process
Our ideal observer employs Bayesian inference in which each interval’s sample (i.e., evidence pair) d

is first categorized as belonging to S1 or S2 on the basis of the posterior probabilities of each, and

then uses the posterior probability of the chosen orientation as a measure of confidence in each dis-

crimination decision.

We assume that each generating stimulus category, S, is dependent on the evidence in favor (or

contrast) of the presented stimulus, c, and can be represented by a bivariate Gaussian distribution

such that Scleft~ N c; 0½ �;
P

ð Þ for a ‘left’ tilt and Scright~ N 0; c½ �;
P

ð Þ for a ‘right’ tilt (Figure 5). Addi-

tionally, in the most basic formulation we define
P

¼
1 0

0 1

� �

(although we explore other poten-

tially more biologically plausible variants; see Appendix 4). We also assume the cleft and cright axes

(left and right tilt) to be orthogonal, although this constraint is not necessary for the model to cap-

ture behavioral performance (see Appendix 4).

Importantly, c – the contrast or evidence level along each axis that gave rise to the data sample

the observer sees – is unknown to the observer. So, because contrast evidence is a secondary (or

nuisance) variable to the primary variable of interest – in this case, the orientation of the Gabor patch

– the observer ‘integrates out’ or marginalizes over all possible contrast evidence levels to produce

the posterior probability estimate of each tilt (Yuille and Bülthoff, 1996). Thus, the joint probability

of each orientation and contrast evidence level is estimated through Bayes’ rule

pðS;cjdÞ ¼
pðdjS;cÞ p ðS;cÞ

p ðdÞ
(2)

and then the secondary variable is integrated out, leaving estimation of the posterior probability of

each orientation S via the marginal distribution (Yuille & Bülthoff, 1996)

p ðSjdÞ ¼

ð

p ðS; cjdÞdc (3)

In the simplest form, both orientations have equal prior probability of 0.5. The observer then

makes its orientation decision (for each interval) via

Schosen ¼ arg max
i

p Si dj Þð (4)

To determine which interval’s choice the observer is more confident in, the model refers to the

magnitude of the posterior probabilities of each Schosen in each interval as a measure of the probabil-

ity of having made a correct orientation discrimination choice, i.e. p(correct) = p(Schosen|d). Then, the

observer compares these posterior probabilities for the target-present (TP) and target-absent (TA)

intervals by computing a decision variable D via

D ¼ logðpðSchosen;TP jdTP Þ

pðSchosen;TAjdTAÞ
Þ (5)
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The observer bets on the interval with the higher probability of being correct: if this decision vari-

able D is greater than 0, the observer selects the target-present interval to ‘bet’ on; if it is less than

0, the observer selects the target-absent interval. Sample code for this Bayesian ideal observer is

included in Source code 1.

Evaluation of model performance
We examined the relative agreement between our model’s predictions and collected behavioral

data by calculating the multinomial likelihood of the model given the observed data, which has pre-

viously been used within a signal detection framework. Details of goodness of fit calculations are

described in Appendix 4.

To evaluate whether human participants exhibited Performance without Awareness, we needed

to cause the model to also exhibit Performance without Awareness. We therefore degraded the

2IFC confidence judgment process in the following way: On each trial, after the orientation decision

had been reached, we programmed an added decisional noise parameter, sd, such that the decision

variable D calculated as in Equation 5 was corrupted by additive Gaussian noise with mean 0 and

standard deviation sD, such that

D ¼ logðpðSchosen;TP jdTP Þ

pðSchosen;TAjdTAÞ
Þ þ sd (6)

This causes the model to perform closer to chance at higher levels of orientation discrimination

performance, i.e. to exhibit Performance without Awareness at increasing objective performance lev-

els (Figure 5). We tested three decisional noise magnitudes – 0.1, 0.2, and 0.3 – and calculated the

goodness of fit (see Appendix 4) for each sd for each subject.

Alternative models
We also examine three other possible contributing factors: correlated noise/non-orthogonal source

distributions, signal-dependent (multiplicative), and signal-independent (additive) noise (see Appen-

dix 4). These factors do not affect the qualitative trend of the model’s performance.

For completeness, we also examine two other decision rules, detailed in Appendix 5: a heuristic

observer which does not ignore contrast evidence as above, but explicitly estimates the most likely

contrast level via hierarchical Bayesian inference (Yuille and Bülthoff, 1996); and a heuristic likeli-

hood comparison observer (similar to Barthelmé et al., 2009). Importantly, the hierarchical model

produced behavior similar to the ideal observer, indicating that such behavior is not idiosyncratic or

Figure 5. Illustration of increasing values for sd on the appearance of Performance without Awareness behavior,

used to evaluate the possibility that human participants may have exhibited Performance without Awareness.

Increasing sd values resulted in increasingly poor R2 values (see Results), indicating that the ideal observer (which

displays no performance without awareness) produces the best fit to human data.

DOI: 10.7554/eLife.09651.009
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specific only to the ideal observer presented above. The likelihood-only model, on the other hand,

failed to produce predictions that matched collected behavioral data, either qualitatively or

quantitatively.
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Appendix 1: Survey

Methods

Subjects
Eighty-seven respondents replied to our informal online survey. Survey procedures were

conducted in accordance with the Declaration of Helsinki and were approved by the UCLA

Institutional Review Board.

Survey questions
All questions were presented through the online software SurveyMonkey. The survey was

advertised through use of social media (e.g. Facebook, Twitter), and through placement of an

advertisement soliciting volunteer participation in the Association for the Scientific Study of

Consciousness (ASSC) Monthly Newsletter. Respondents were not paid for their answers. This

survey was informal, in that it did not involve random sampling or counterbalancing of

question order.

We asked three critical questions of respondents:

1. “Do you personally believe that it is possible for a stimulus to be perceived subliminally, i.e.,

to exert influence on neural processing and behavior without the relevant feature being

perceivable at all?”

2. “Do you personally believe that for some stimulus, there is a subjective threshold (for the

subjective, conscious experience of seeing to occur) above an objective threshold (for one to

be able to discriminate or identify the stimulus)? That is, do you think there exists a certain

contrast level or duration of presentation such that subjects will be able to discriminate or

identify the stimulus even though they cannot subjectively see the stimulus?”

3. “If you answered ’yes’ to the last question, do you think it has been demonstrated

unequivocally in the literature?”

Results
Eighty-seven individuals responded to our informal survey. We collected demographic data on

the following: age, highest degree earned, year of highest degree, field of degree earned,

current occupation/position, and number of publications related to subliminal perception.

Most respondents held a research doctorate (66%), mostly in Psychology (39%), Philosophy

(19%), or Neuroscience (18%). About half of respondents (52%) received their degree in the

last five years, and just over a third (38%) reported having one or more relevant publications

on subliminal/unconscious perception. See Appendix 2—Figure 1 for detailed demographic

information.
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Appendix 1—Figure 1. Demographics of survey respondents (n = 87).

DOI: 10.7554/eLife.09651.011

Appendix 1—Figure 2. Answers to the three survey questions of interest.

(A) Most respondents reported believing that some forms of subliminal perception exists (Q1),

and that specifically the subjective threshold for conscious awareness is above the objective

threshold for direct discrimination (Q2). However, most respondents also reported that they

did not think this phenomenon (Q2) had been convincingly demonstrated in the literature

(Q3). (B) The pattern of results was similar for the subset of respondents who had at least one

relevant publication.

DOI: 10.7554/eLife.09651.012

Most respondents reported believing that subliminal processing exists (Q1) (94%), and that

the subjective threshold is above the objective one (Q2) (89%). Of those who responded ‘Yes’

to Question 2, however, only about a third (36%) reported believing Performance without

Awareness has been unequivocally demonstrated in the literature (Q3) (Appendix 2—Figure

2A). Interestingly, the pattern of responses did not change for the subset of respondents who

reported having at least one relevant publication (Q1: 94%, Q2: 88%, Q3: 39%; Appendix 2—

Figure 2B). Thus, although a majority of scholars in this field report believing Performance

without Awareness can exist, most also recognize that demonstrating it convincingly has been

difficult.
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Appendix 2: Individual behavioral results: Experiments 1 and
2

Appendix 2—Figure 1. Individual subjects’ data for percent betting on target-present (TP)

interval as a function of orientation discrimination percent correct.

Individual subjects’ data closely resembles grouped data: all subjects exhibited Performance >

Awareness, but no subjects exhibited Performance without Awareness. The same three

subjects participated in both Experiments 1 and 2.

DOI: 10.7554/eLife.09651.013
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Appendix 2—Figure 2. Individual subjects’ data for Type 2 hit rate (T2HR) and Type 2 false

alarm rate (T2FAR).

Individual subjects’ data closely resembles grouped data. The same three subjects

participated in both Experiments 1 and 2.

DOI: 10.7554/eLife.09651.014
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Appendix 2—Figure 3. Individual subjects’ data for percent correct orientation discrimination

conditional on having chosen to bet on the target-present (TP) interval or not.

Individual subjects’ data closely resembles grouped data.

The same three subjects participated in both Experiments 1 and 2.

DOI: 10.7554/eLife.09651.015

We also found that subjects were overall unbiased in their choices of left- versus right-tilted

Gabor patches, justifying use of percent correct rather than the signal detection theory metric

d’. We calculated the mean criterion used by each subject across all levels of contrast

according to signal detection theory, assuming equal variance for distributions representing

left- versus right-tilted stimuli, i.e.

c ¼ �
1

2
z HRð Þ þ z FARð Þð Þ (A2�1)
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where HR refers to the hit rate (i.e., the participant said ‘left’ when a left-tilted Gabor was

presented) and FAR refers to the false alarm rate (i.e., the participant said ‘left’ when a right-

tilted Gabor was presented) (Macmillan and Creelman, 2004). Individual subjects’ criterion

values are presented in Appendix 2–Table 1. A two-tailed t-test (treating each subject as an

independent sample) revealed these values to not be significantly different from 0

(Appendix 2–Table 1).

Appendix 2–Table 1. Mean value of criterion for each subject, demonstrating that subjects did

not display biases to say ‘left’ versus ‘right’ in the orientation discrimination task.

Experiment Subject c

1 1 0.047

2 0.074

3 -0.039

4 -0.029

5 -0.013

6 -0.030

7 0.0267

8 -0.039

9 0.003

2 1 0.229

2 0.004

3 0.035

Mean (s) 0.022

t(11) 1.04

p 0.3215

DOI: 10.7554/eLife.09651.016
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Appendix 3: Control study

We ran a control study to assess whether the lack of Performance without Awareness

observed in Experiments 1 and 2 may have occurred because subjects have an unconscious

‘hunch’ of confidence despite having absolutely no phenomenal experience of the stimulus.

Three observers (all male, ages 19-32, all right-handed) gave written informed consent to

participate. One observer had participated in Experiments 1 and 2; the other two were naive.

All procedures were identical to Experiment 2, with two exceptions: (1) observers were not

told that one interval was blank; and (2) observers were asked to indicate which interval was

‘more visible’ rather than which discrimination they believed they were more likely to get

correct. Thus, observers engaged in a task more akin to a 2IFC detection task rather than a

metacognitive judgment.

Despite these manipulations, the results of the control experiment closely mirror the results of

Experiments 1 and 2. Subjects were able to detect the target in the TP interval above chance

as soon as they were able to discriminate the target above chance, and individual subjects’

data closely resembled the group data (Figure S3). Note that the computational model

described in the main text does not apply to these data, as participants were doing 2IFC

detectability discrimination rather than a 2IFC metacognitive judgment. This means that even

though participants’ data lie near the identity line of equal orientation percent correct and

percent betting on the TP interval (dashed diagonal line) – above the behavior predicted by

the confidence model – this should not be taken to mean they are displaying any sort of

‘supra-optimal’ behavior, as the tasks are fundamentally different. The position of responses

on this graph for this task will depend on the precise relationship between the detectability

and discriminability of the stimulus for each individual subject (Thomas et al., 1982;

Thomas, 1987).

Appendix 3—Figure 1. Results of control experiment.

Psychometric functions were fitted as in Experiments 1 and 2 (see Materials and methods —

Statistical analyses).Group data is representative of individual subjects’ responses (left panel

versus right three panels). As before, subjects displayed behavior inconsistent with

Performance without Awareness. If anything, participants were able to bet on the target-

present interval more often when the interval judgment was one of detection rather than Type

2 or metacognitive assessment of the correctness of the Type 1 discrimination. However, this

should not be taken to indicate ‘supra-optimal’ behavior with reference to the ideal observer

model of confidence, as the task here is not confidence but a task akin to 2IFC detection,

meaning it would require a different computational analysis for assessment of optimality.

DOI: 10.7554/eLife.09651.017
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Appendix 4: Model details and variants

Adjustments for non-orthogonal signal dimensions
In its simplest form, the ideal observer model assumes independence/orthogonality of the

stimuli – graphically, that the Sleft and Sright distributions lie on the x and y axes, respectively.

However, it is conceivable that the stimuli are correlated or anti-correlated. Therefore, we

explored modifying the cright axis to define it as a vector specified by �, the angle between the

x axis and the vector (Appendix 4—Figure 1).

Appendix 4—Figure 1. Graphical intuition of correlated stimuli (A) and anti-correlated stimuli

(B).

DOI: 10.7554/eLife.09651.018

Formally, instead of cright = [0, c], we define

cright ¼ c � cos �ð Þ; c � sin �ð Þ½ � (A4�1)

The � parameter thus allows control of the degree of correlation (or anti-correlation) between

the Sleft and Sright distributions. This formulation is mathematically equivalent to specifying

non-zero covariance in the definition of the variance-covariance matrix S (Macmillan &

Creelman, 2004), but we favor using � here because it provides a graphically intuitive analog

to changing the amount of ‘tilt’ between the left- and right-tilted Gabor patch targets, that is,

the relationship between the detectability and discriminability of a stimulus (see also King and

Dehaene, 2014). For example, Gabor patches that are ± 45˚ tilted from vertical ought to

demand a larger � value than other, less discriminable versions, such as ± 5˚ tilt.

To explore whether this factor was important to model fits, we fitted the value for � to the

three participants’ data who had completed both main experiments (see Comparison of

model to behavioral data, below) and compared model fits with measures of R2 (see

Goodness of fit, below) and the Bayesian information criterion (BIC).

Best-fitting values for � were quite consistent across participants, and indicate a slight anti-

correlation between the Sleft and Sright distributions (� = 97.27º, s = 18.79º). The goodness of

fit was evaluated for these three participant’s data individually for each experiment given

these best-fitting values, and was found to be very good for all across two different null

models (R2 = 0.636 ± 0.172; BIC = 4669.31 ± 960.94). However, the single free parameter �

does not provide any significant improvement in the fit of the model to the data: with no free

parameters, R2 = 0.617 ± 0.141 and BIC = 4657.10 ± 960.73. Thus, we present the parameter-

free model in the main text.
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Comparison of model to behavioral data
We examined the relative agreement between our model’s predictions and collected behavioral

data by calculating the multinomial likelihood of the model given the observed data

(Dorfman and Alf, 1969), which has previously been used within a signal detection

framework. Formally, the likelihood of a certain model m (with a given set of parameters ’)

can be expressed as,

LmðfjdataÞ ¥
Y

ij
Pf ðRijSjÞ

ndataðRijSjÞ

(A4�2)

where each Ri is a behavioral response a subject may produce on a given trial, and each Sj is a

type of stimulus that might be shown on that trial. The expression ‘ndata(Ri Sj)’ is a count of

how many times a subject actually produced Ri after being shown Sj. The expression ‘Pf(Ri Sj)’

denotes the probability with which the subject produces the response Ri after being presented

with Sj, according to the model specified with parameters f. This corresponds to the

percentage of time each of the models described above produced response Ri after having

been ‘presented’ with stimulus Sj. Note that this approach does not examine the performance

of a model relative to the behavioral data with reference to any summary statistics, but instead

allows for fitting of the full distribution of probabilities of each response type contingent on

each stimulus type.

Given that the model cannot meaningfully represent the physical contrast presented to a

human participant, we simulated all possible contrast evidence values on a scale of 0 to 5 in

steps of 0.2, and calculated the percent correct orientation discrimination performance

predicted by the model at each of these contrast evidence levels. We then matched each

participant’s data to the closest ‘contrast evidence’ level in the model by identifying ‘contrast’

levels at which each model performed similarly to the participant on the orientation

discrimination task, i.e. matching the percent correct orientation discrimination performance

between the model and the data for each contrast level presented to a human participant.

The remainder of the summary statistics used in the Behavioral Results analyses – percent of

time TP interval was chosen, Type 2 Hit Rate and False Alarm Rate, and percent correct

orientation discrimination conditional on TP chosen or unchosen – can then all be derived from

this full behavioral profile of stimulus-contingent response probabilities, allowing for

comprehensive comparison between model predictions and behavioral data.

We used this measure both to explore the goodness of fit (see below) of the model given no

free parameters, and also to evaluate the ideal observer’s dependence on the free parameter

� to the observed behavioral data in all experiments on a subject-by-subject basis, by

maximizing the likelihood of the model parameters given the data (Equation A4-2) for each

model-subject combination. To compare between two models with unequal numbers of

parameters, it is standard to use the Bayesian information criterion (BIC), which penalizes more

complicated models according to the number of free parameters to avoid overfitting. The BIC

is calculated as

BIC ¼ �2 � ln Lm ; dataj Þð Þ þ k�lnðnÞð (A4�3)

where Lm ; dataj Þð is defined as in Equation A4-2, k is the number of free parameters, and n is

the number of data points.

Maximum likelihood fits were accomplished using a customized Nelder-Mead simplex search

algorithm (Lagarias et al., 1998) to minimize the negative log-likelihood (Equation A4-2).

Model predictions were accomplished through Monte Carlo simulation, with 10,000 paired-

interval ‘trials’ at each simulated stimulus contrast level.
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Goodness of fit
To quantify the goodness of fit for the parameter-free ideal observer model presented in the

main text, as well as for the model utilizing the best-fitting value of � for each participant, we

calculated the generalized coefficient of determination, R2, as described in

(Nagelkerke, 1991). This provides a continuous measure ranging from zero (corresponding to

worst fit) to one (corresponding to best fit) based on the maximum likelihood criteria of fit.

The formula used is

R2 ¼ 1� exp �
2

n
l b

^
� �

�l 0ð Þ

� �� �

(A4�4)

where n is the number of data points, and l b̂ð Þ and l 0ð Þ denote the log-likelihoods of the fitted

and the null model, respectively. We explored two null models: (1) A model which produces

every response type with equal probability (i.e., randomly guesses); and (2) a model which

knows the correct answer with 100% probability. The generalized R2 is interpreted as the

proportion of variance in the data that is explained by the model.

Biological plausibility
We also considered several other modifications to make our model more biologically plausible.

Multiplicative noise is considered due to the observation that neurons often display constant

or near-constant Fano factor F, where F ¼ s2W
�W

, where s2W is the variance and �W the mean

of the neuron’s firing rates in some time window W. In other words, the variance increases as

mean firing increases, leading to increased neuronal variability with stronger stimulus inputs.

Additionally, both multiplicative and additive noise are considered elements of the noise in

neural firing rates and behavioral responses (e.g., Dosher and Lu, 1998).

We thus considered two additional free parameters, individually and in conjunction with one

another:

1. f - signal-dependent (multiplicative) noise, or correction for near-constant Fano factor: the

variance-covariance matrix is modified to be
P

¼
cf 0

0 cf

� �

�

2. " - additive noise: the variance-covariance matrix is modified to be
P

¼
" 0

0 "

� �

Notably, neither of these parameters – individually or in conjunction with one another –

produced any significant effect on qualitative model trends or fit (Equation A4-2,A4-3).
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Appendix 5: Alternative models

For completeness, we detail two other models considered here.

Alternative model 1: heuristic – hierarchical inference
To evaluate whether the behavioral pattern predicted by the Bayesian ideal observer is

idiosyncratic or robust to different decision strategies, we explored an alternative model which

does not ‘ignore’ (marginalize over) contrast as a secondary or nuisance variable. Instead, this

Bayesian heuristic observer engages in hierarchical inference: it first estimates the most likely

contrast to have produced the current stimulus as a secondary or hidden variable, then uses it

to inform the decision about the primary variable of interest, that is, the most likely orientation

of the stimulus (Yuille et al., 1996).

Upon seeing a sample d, this observer first makes a guess ĉi at the most probable c to have

generated the current data point d, along both the cleft and cright dimensions. It does so via

maximizing the likelihood of each data point d given the possible source distributions

centered at all possible contrast values c along the axes:

ĉleft ¼ argmax
cleft

p d Ŝ cleft

�

�

�

��

and

ĉright ¼ argmax
cright

p d Ŝ cright

�

�

�

��

(A5�1)

where Ŝ cleft~N cleft; 0
� �

;
P

� �

and Ŝ cright~N 0; cright
� �

;
P

� �

. This can easily be calculated by a

projection of each d ¼ dleft; dright
� �

onto the cleft and cright axes, that is ĉleft ¼ dleft and

ĉright ¼ dright (Appendix 5—Figure 1). In other words, the model decomposes the stimulus in

each interval into the most likely ’left tilt contrast’ (cleft) and ’right tilt contrast’ (cright) to have

given rise to what the model is ’seeing’. Values for ĉleftand ĉright are not constrained to be

positive; negative values represent contrast evidence for a left or right tilt that falls below the

’medium gray’ of the ’nothing’ distribution. Note that one could also assess this for values of �

other than 90º.

Appendix 5—Figure 1. Illustration of the hierarchical inference process.

The observer first makes a best guess about the most likely contrast to have given rise to the

evidence it is seeing, and then uses that inferred contrast evidence level to conduct the rest of
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the inference process. It does this for both the target-present interval (A) and the target-

absent interval (B).

DOI: 10.7554/eLife.09651.019

Once the most likely values for ĉleftand ĉright have been obtained, the observer refers to these

new ‘best guess’ source distributions as Ŝ ĉ leftand Ŝ ĉright (Appendix 5—Figure 1). The Bayesian

heuristic observer determines the posterior probability of each stimulus orientation source

distribution S
_

c
_

i

for each data sample d via Bayes’ Rule,

pðŜ ĉI jdÞ ¼
pðdjŜ ĉI ÞpðŜ ĉI Þ

pðdÞ
(A5�2)

with each orientation Ŝ ĉI having equal prior probability of 0.5. The observer then makes its

orientation decision via

Ŝ chosen ¼ arg max
i

pðŜ ĉI jdÞ (A5�3)

To determine which choice the observer is more confident in, the model refers to the

magnitude of the posterior probabilities of each Ŝ chosen in each interval as a measure of the

probability of having made a correct orientation discrimination choice, i.e.

pðcorrectÞ ¼ p Ŝ chosen dj Þ
�

. Then the observer compares these posterior probabilities for the

Target Present (TP) and Target Absent (TA) intervals by computing the decision variable D via

D ¼ logðpðŜ chosen;TP jdTP Þ

pðŜ chosen;TAjdTAÞ
Þ (A5�4)

As before, if this decision variable is greater than 0, the observer selects the TP interval; if it is

smaller than 0, the observer selects the TA interval as being more confident. This model

produces the same behavior as the Bayesian ideal observer described in the main text

(Appendix 5—Figure 2, top row).

Alternative model 2: heuristic – likelihood comparison
Barthelmé et al., 2009 used a variant of the two-by-two forced-choice paradigm

(Nachmias and Weber, 1975), in which two threshold-level stimuli are simultaneously rather

than sequentially presented. The observer is asked to choose which stimulus he would be

more confident discriminating, and then to discriminate that stimulus. Importantly, in their

task, templates are provided on-screen, such that observers may match the stimulus to a

provided template rather than a remembered or inferred stimulus dimension.

In that study, the authors compare the performance of a series of models in predicting

discrimination and confidence decision, including a Bayesian posterior for each template given

the stimulus, and a Bayesian likelihood of each stimulus given each template. The authors

report that the likelihood model fits their data better than the posterior model, and conclude

that the likelihood method of evaluating confidence describes how human observers judge

confidence (despite it being suboptimal). Here, we evaluate the performance of a similar

likelihood-only model, defining the decision variable with reference to the most likely contrast

level to have given rise to the current sample, i.e.
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D ¼ logðpðdTP jŜ chosen;TP Þ

pðdTAjŜ chosen;TAÞ
Þ (A5�5)

This decision variable is evaluated as described for Equation A5-5 in the main text. This model

failed to produce behavior consistent with human observers’ responses (Appendix 5—Figure

2, bottom row).

Appendix 5—Figure 2. Sample of predicted behavior from Alternative Models 1 (Heuristic -

hierarchical Inference) and 2 (Heuristic - likelihood comparison) (at � = 90º; see above).

While the hierarchical observer produces behavior similar to the ideal observer, the likelihood

comparison strategy does not.

DOI: 10.7554/eLife.09651.020
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