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Paleoceanography and Paleoclimatology
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Abstract Ice core records from Antarctica show mostly synchronous temperature variations during
the last deglacial transition, an indication that the climate of the entire continent reacted as one unit
to the global changes. However, a record from the Taylor Dome ice core in the Ross Sea sector of East
Antarctica has been suggested to show a rapid warming, similar in style and synchronous with the
Oldest Dryas—Bølling warming in Greenland. Since publication of the Taylor Dome record, a number of
lines of evidence have suggested that this interpretation is incorrect and reflects errors in the underlying
time scale. The issues raised regarding the dating of Taylor Dome currently linger unresolved, and the
original time scale remains the de facto chronology. We present new water isotope and chemistry data from
nearby Taylor Glacier to resolve the confusion surrounding the Taylor Dome time scale. We find that the
Taylor Glacier record is incompatible with the original interpretation of the Taylor Dome ice core, showing
that the warming in the area was gradual and started at ∼18 ka BP (before 1950) as seen in other East
Antarctic ice cores. We build a consistent, up-to-date Taylor Dome chronology from 0 to 60 ka BP by
combining new and old age markers based on synchronization to other ice core records. The most notable
feature of the new TD2015 time scale is a gas age—ice age difference of up to 12,000 years during the Last
Glacial Maximum, by far the largest ever observed.

1. Introduction

The transition from the last glacial period to the Holocene is of great interest because it is a time of large-scale
changes to the climate system. The thermal bipolar seesaw model (Stocker & Johnsen, 2003) is able to explain
most of the first-order variability. It postulates that the state of the Atlantic Meridional Overturning Circulation
(AMOC) determines the hemispheric temperature contrast between the North and the South through heat
flux changes in the Atlantic and the Southern Ocean. The bipolar seesaw is manifested in an Antarctic warming
trend while Greenland is cold, and an Antarctic cooling trend while Greenland is warm (EPICA Community
Members, 2006; WAIS Divide Project Members, 2015). Independent evidence from ocean circulation proxies
(McManus et al., 2004) also emphasize the integral role of the AMOC during the deglaciation, with the period
of Antarctic warming coinciding, within uncertainties, with AMOC reduction.

The response to these large-scale, abrupt changes in the climate system presents a challenge for numerical
climate models. North Atlantic “hosing” experiments under glacial boundary conditions, where the AMOC
is shut off by imposing large freshwater fluxes into the North Atlantic, have shown a range of changes in
Antarctic climate as a result of the AMOC shutdown (Kageyama et al., 2013). While most models indicate a
continent-wide coherent warming, some models (e.g., Timmermann et al., 2010) have produced changes of
opposite signs in coastal areas, implying that regional climate dynamics can dominate the response, at least on
centennial time scales. It is difficult to estimate the long-term response of these models because of the limited
duration of most simulations. Buiron et al. (2012) also present a model that produces a dipole pattern (cooling
in West Antarctica, warming in East Antarctica) in response to a 419-year-long forced AMOC shutdown under
Last Glacial Maximum (LGM) boundary conditions. The mechanism responsible for this behavior appears to be
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atmospheric teleconnections originating from the Tropics. However, in a synthesis of circum-Antarctic climate
records from the last glacial period (Marine Isotope Stage 3), Buiron et al. (2012) cannot find such a dipole
signal. As a benchmark not only for global climate models but also for conceptual models, it is crucial to know
whether all of Antarctica went through the deglacial transition as a single unit.

Temperature proxy records from ice cores drilled throughout all of Antarctica agree to first order on a syn-
chronous, spatially coherent deglacial warming signal (Pedro et al., 2011). There is also evidence for regional
differences superimposed on the continent-wide trend, for example, a slower warming rate in the Atlantic
sector from 16.0 to 14.5 ka BP (Stenni et al., 2011), or an earlier initial warming in West Antarctica compared to
the East Antarctic records. The predominant pattern of warming from roughly 18 ka BP to Antarctic Isotope
Maximum (AIM) 1, followed by a slight cooling during the Antarctic Cold Reversal (ACR) into another warming
up to AIM 0, is common and synchronous to almost all ice core records from Antarctica. Identification of the
AIM features in Antarctic isotope records is given in EPICA Community Members (2006). The isolation caused
by the circumpolar upwelling of old deep water (Toggweiler & Samuels, 1995) and the difficulty of propa-
gating oceanic temperature anomalies across the Antarctic Circumpolar Current (Armour et al., 2016) can
explain why no abrupt climate changes are expected in Antarctica. The only record that appeared to not
support this en bloc behavior is from the Taylor Dome ice core, where a more Greenland-like temperature
evolution was hypothesized (Steig et al., 1998). This interpretation was subsequently challenged by Mulvaney
et al. (2000) who questioned Steig et al. (1998)’s st9810 time scale because of poor agreement of the Taylor
Dome decrease in calcium concentration during the deglaciation in comparison with other ice cores from East
Antarctica. Dissolved calcium is (during the glacial) a proxy for particulate dust (Ruth et al., 2008), mostly of
South American origin, the fine fraction of which is transported to Antarctica and deposited onto the ice sheet
(Lunt & Valdes, 2001). Because the dust source is far removed from the deposition site, it is thought that
changes in wind strength and precipitation in the source region, as well as changing washout by rain during
the transport phase are the main factors influencing dust deposition in Antarctica (Fischer et al., 2007; Lambert
et al., 2008). Thus local deposition effects are second order at most and changes in the dust flux are expected
to be qualitatively similar in all Antarctic ice cores under glacial climate conditions (Schüpbach et al., 2013).
In Grootes et al. (2001), the authors of the st9810 chronology acknowledge inconsistencies in the original time
scale and tie the deep part of the record directly to Vostok 𝛿D variations. On this new time scale, the calcium
decrease during the deglaciation is in agreement with other ice cores; however, by synchronizing 𝛿D,
spatial homogeneity is assumed such that regional differences in climate are suppressed. Furthermore, the
adjusted time scale is up to 7,000 years older than st9810, but the implications of this substantial modification
are not explored.

It is instructive to step back and look at how st9810 was built. For every ice core, there are two separate time
scales, one applying to the ice phase, and one to the gas phase, with the age difference of the two at a spe-
cific depth termed the gas age—ice age difference (Δage). This arises because air is able to mix relatively
freely through the porous firn column and gets trapped in bubbles only at the bottom of the firn, where
the ice is already hundreds to thousands of years old depending on site conditions (Schwander et al., 1988;
Sowers et al., 1989). Ice age time scales in high accumulation sites are typically based on layer counting, but
for most Antarctic ice cores (including Taylor Dome) this is not an option because the annual layers are too
thin for accurate counting. The traditional workaround is to synchronize the gas time scale to a high accumu-
lation rate core (commonly from Greenland) via globally well-mixed gases (Blunier et al., 2007) and estimate
Δage using firn densification models. Δage for Greenland ice cores is on the order of hundreds of years, and
its uncertainty does not contribute much to the total uncertainty in this procedure. Because of smaller accu-
mulation rates, Δage in Antarctic ice cores is generally larger, commonly a few thousand years, and less well
known (Bender et al., 2006). For Taylor Dome, Steig et al. (1998) used cosmogenic beryllium-10 concentrations
(10Be) as a proxy for accumulation rates (under the assumption of constant flux of 10Be from the atmosphere
to the ice; Steig et al., 1996), and 𝛿D for temperature, as inputs into the Herron-Langway densification model
(Herron & Langway, 1980) to estimate Δage. The Grootes et al. (2001) correction to the initial time scale of up
to 7,000 years, based on a comparison with other ice cores, suggests that the ice accumulation rate inferred
from 10Be was overestimated. Snow deposited on Taylor Dome may have blown away, to be deposited else-
where (probably in the Dry Valleys), carrying with it the highly particle-reactive 10Be and dust particles. This
is supported by the analysis of Morse et al. (2007) who determined the accumulation history necessary to
produce the Grootes et al. (2001) time scale. They conclude that accumulation-rate estimates from 10Be and
non-sea-salt sulfate overestimate the actual accumulation rate significantly during the LGM, possibly because
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Figure 1. Map showing the location of the Taylor Glacier (TG) horizontal ice core in the southern McMurdo Dry Valleys,
and Taylor Dome. Ice flowing into Taylor Valley originates on the northern flank of Taylor Dome, on the polar plateau.
The aerial photo shows a close-up of the study site. In the lower left, the trench excavated for the horizontal ice core
is visible. The trench cuts across a band of darker, slightly brown ice, representing the LGM and its high dust content.
The green line represents the across-flow transect with markers indicating the distance scale used for sampling.
Photo by J. Schwander.

of wind scour removing some of the initial snowfall. This somewhat confusing evolution of the Taylor Dome

time scale has led many to believe that Taylor Dome is at best poorly dated (e.g., Jouzel et al., 2001; Morgan

et al., 2002; Masson-Delmotte et al., 2011), yet it continues to be cited as an example of North-South syn-

chronous climate change (e.g., Buiron et al., 2011; Davis et al., 2009; Farmer et al., 2005; Timmermann et al.,

2010). For lack of availability of an updated, consistent chronology, the st9810 time scale is still the de facto

Taylor Dome time scale (Aarons et al., 2016; Carlson & Clark, 2012; Schoenemann et al., 2014; Siddall et al.,

2012). Recent results from another ice core drilled at nearby Talos Dome support the view that the climate

evolution of the Ross Sea sector of Antarctica did not exhibit Greenland-like behavior (Stenni et al., 2011).

The aim of this paper is to revisit the puzzle of the Taylor Dome ice core and to present a new, up-to-date time

scale. We use new data from the ablation zone of Taylor Glacier, a valley glacier formed by ice deposited on

the northern slope of Taylor Dome (Figure 1), to confirm that the Taylor Dome deglacial temperature record

is in phase with the rest of East Antarctica.

The concept of a horizontal ice core is based on the notion that ice buried in the accumulation zone surfaces

again in the ablation zone (Reeh et al., 1991). If a continuous record can be identified, this marginal ice may be a

valuable source for easily accessible large volume samples for paleoclimate studies (Aarons et al., 2017; Bauska

et al., 2016; Petrenko et al., 2009). Ice from the northern flank of Taylor Dome descends eastward through

the Transantarctic Mountains as Taylor Glacier and terminates in Taylor Valley (Kavanaugh & Cuffey, 2009).

We therefore expect to find essentially the same ice that is buried beneath Taylor Dome to be exposed at the

surface on Taylor Glacier. Possible complications include deformation of the ice, contamination because of the

proximity to the surface, and finding too young/old ice if flow speeds are too fast/slow. An initial exploration of

the Taylor Glacier ablation zone using stable water isotopes by Aciego et al. (2007) showed that vast quantities

of glacial and deglacial transition ice are exposed over tens of kilometers. Recent work using atmospheric

gases trapped in bubbles describes well-dated and continuous sections of ice covering the deglaciation and

the LGM (Baggenstos et al., 2017). Here we present new glaciochemical, water-isotope and dust data from

Taylor Glacier covering 49 to 16 ka BP. Section 2 describes the Taylor Glacier sampling and measurement setup

in detail. The Taylor Glacier results, ice dating, and implications for continent-wide deglacial climate change

are discussed in sections 3.1–3.4, while section 3.5 presents the new TD2015 time scale. A Δage and 𝛿
15N

modeling exercise to reconstruct past accumulation rates completes our analysis (section 3.6).
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2. Sampling and Analytical Procedures

Our sampling approach is guided by the data presented in Baggenstos et al. (2017), which establishes tran-
sects and gas age models for Taylor Glacier. All samples used in this study are from a 120-m-long section
on the across-flow transect that was dated using gases to the interval 47.7–14.6 ka BP. The stratigraphy on
Taylor Glacier exhibits deformation features such as folding and irregular thinning typical of glacial ice.
However, the sampling line presented here is continuous and not complicated by folding, as evidenced by
the gas and glaciochemical records. The transect is oriented perpendicular to the flow direction, which is the
preferred sampling orientation since layers of equal age (isochrones) lie parallel to the ice flow direction. The
dip of the layers is approximately vertical, based on gas measurements and visual evidence from a 1.5-m-deep
pit. We adopt the distance registration of the across-flow transect established by Baggenstos et al. (2017),
where our sampling section covers −90 to −210 m on a distance scale whose zero point is tied to a con-
spicuous but arbitrary stratigraphic feature on the glacier surface (Figure 1). The primary measurements are
continuous-flow analysis of non-sea-salt calcium (nssCa), 𝛿18O of ice, and insoluble particle mass over the
full 120-m section. These data are supplemented by discrete measurements of insoluble dust mass and dust
size distribution, as well as other continuous and discrete 𝛿

18Oice measurements performed in a different lab.
Samples were collected in the 2010/2011, 2011/2012, and 2013/2014 field seasons. The ice surface is subhor-
izontal, with no crevasses, but thermal-contraction cracks are pervasive. Wind-blown dust gathers on surface
irregularities and melts into the ice through radiative heating, forming cryoconite holes. The largest depth to
which this surface contamination is observed is 40 cm. All our samples are from 70 to 100 cm depth to avoid
surface contamination artifacts. Some thermal contraction cracks are filled with wind-blown snow, presum-
ably as a result of wintertime katabatic storms that blow fresh snow from the polar plateau into the valleys.
These wind-blown snow layers are up to 3 mm thick, and we estimate that they may contribute up to 1% of
the total sample volume.

2.1. Continuous-Flow Analysis
For the continuous samples, a trench of 50 cm depth was excavated, and a clean (oil-free) electric chainsaw
was used to cut ice sticks with dimensions of 50 cm × 5 cm × 5 cm from the entire length of the trench. The
sampling depth for these samples is 70 to 80 cm. The ice sticks were later trimmed to 50 cm × 3.5 cm × 3.5 cm
using a band saw in McMurdo. Major ion concentrations in the ice were measured at the Ultra Trace Chemistry
Laboratory at the Desert Research Institute. The ice stick samples were melted continuously on a melter head
that divides the melt water into three parallel streams. Elemental measurements were made on melt water
from the innermost part of the core with ultrapure nitric acid added to the melt stream immediately after the
melter head; potentially contaminated water from the outer part of the ice was discarded. Elemental analy-
sis of the innermost melt water stream was performed in parallel on two inductively coupled plasma mass
spectrometers (ICPMS, Element2), each measuring a different set of elements; some elements were analyzed
on both.

The dual state-of-the-art ICPMS setup allows for measurement of a broad range of 30 elements described
in detail elsewhere (McConnell et al., 2002, 2007, 2017). In particular, the measurement of calcium by ICPMS
includes both soluble and insoluble fractions, whereas the traditional measurement technique by ion chro-
matography only registers the soluble fraction. The continuous-flow system also includes a cavity ring-down
water isotope analyser (L2130-i, Picarro Inc.) that measures stable isotope ratios (i.e., 𝛿18O) of the melt water
(Maselli et al., 2013). The effective resolution of this sampling setup is approximately 1 cm. The insoluble par-
ticle count data were measured with an Abakus laser particle counter with an effective measurement size
range of ∼0.8 to 10 μm (Ruth et al., 2008). Both the Abakus and the Coulter counter measurements (described
below) are based on particle volume, and a particle density has to be assumed for the conversion to mass.
This assumed density is 2.5 g/cm3 for both instruments.

2.2. Discrete Samples for Dust Analysis
The same transect was discretely sampled with a PICO ice coring drill (3-in. diameter; Koci & Kuivinen, 1984)
for measurements of insoluble dust. For each sample, a 1-m-deep core was recovered and a cylinder of 2 cm
height was cut from the bottom of the core with a clean hand saw. The sampling spacing is 30 cm from−90 to
−140 m, and 1 m from −140 to −180 m. These samples were sent frozen to the Laboratoire de Glaciologie et
Géophysique de l’Environnement (LGGE), now Institut des Géosciences de l’Environnement (IGE) in Grenoble,
France, for analysis of dust mass and dust size distribution. The ice samples were decontaminated by repeat
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Figure 2. Average dust size distributions from different sections of the
transect. Colors denote sections of increasing age, from youngest (red)
to oldest (purple). There is no indication of any local dust sources.
Measurements made by Benjamin Grente and Jean-Robert Petit at the
Laboratoire de Glaciologie et Geophysique de l’Environnement, Grenoble by
Coulter counter.

washings in ultrapure water. The measurements were performed using a
Multisizer IIe(c) Coulter counter setup in a class 100 clean room. Detailed
decontamination and measurement procedures are described by Del-
monte et al. (2002).

2.3. Additional Measurements of 𝜹18Oice

We subsampled both the continuous ice sticks and the discrete cylindrical
ice samples for stable water isotope analysis. Twenty-five-centimeter-long
slabs of 2- to 3-mm thickness were shaved off of one side of the contin-
uous samples from −90 to −170 m. The same procedure was applied to
all discrete samples. These slabs of ice were later melted in Ziploc bags,
and the meltwater was transferred into 30-ml wide mouth HDPE sampling
bottles, and sent for analysis to the Institute of Arctic and Alpine Research
(INSTAAR). Measurements were performed using a CO2 equilibration sys-
tem (Epstein & Mayeda, 1953) coupled to a Micromass SIRA Series II Dual
Inlet mass spectrometer following well-established procedures. The stated
1-sigma precision of the INSTAAR 𝛿

18O measurements is 0.036‰.

3. Results and Discussion
3.1. Quality of the Dust Record
Patagonia has been identified as the major source of dust in Antarctic ice
cores during the last glacial period (Basile et al., 1997; Delmonte et al., 2017;

Grousset et al., 1992) and changes in the dust flux are attributed to aridity and wind strength in the source
and transport path regions (Lunt & Valdes, 2001). The first-order dust signal throughout Antarctica is quite
uniform, despite large differences in dust concentrations due to widely varying accumulation rates and dust
deposition fluxes. For the Taylor Glacier dust record to be useful as a dating tool, we must show that (a) it has
not been compromised by additional local dust sources either during deposition on the polar plateau or at our
sampling site via cracks or cryoconites, and (b) that the dust signal is qualitatively similar to records from deep
ice cores. Figure 2 shows the dust size distribution of 164 samples averaged in 20 bins. All parts of the record
have a unimodal, close to lognormal distribution with a maximum at ∼2 μm and very few particles larger than
5 μm. This size distribution is characteristic of long-range dust transport and consistent with observations
from, for example, Dome C (Delmonte et al., 2004), EDML (Wegner, 2008), and Talos Dome (Delmonte et al.,
2010), all of which show the same mode around 2 μm in the glacial period. For the Holocene, some studies
(e.g., Albani et al., 2012, in the Talos Dome ice core) have found significant contributions from local sources.
The fact that there are few particles larger than 5 μm in the Taylor Glacier record strongly suggests that the
contribution of local dust sources to the total measured dust load in our samples is insignificant. Aarons et al.
(2017) also measured dust size distributions as well as concentrations on samples from the same sampling
transect on Taylor Glacier, but from a depth of 6 to 7 m where surface contamination can safely be ruled out
since no cracks are observed to penetrate to that depth. During the glacial period, they find few particles
larger than 5 μm, the total mass of which is at least an order of magnitude smaller than the mass of the fine
particle fraction. The dust concentration record is thus not measurably biased by addition of locally sourced
material in the deposition area. The implications of the changes in the dust size distribution with time with
regards to atmospheric transport history are discussed in detail by Aarons et al. (2017).

The raw dust and nssCa records (Figure 3) are highly correlated, as expected since the soluble dust fraction is
mostly composed of nssCa. Insoluble dust mass measured with different techniques on discrete ice samples
and continuous ice samples agree well with each other on the main features, but a more detailed compari-
son is hampered by high levels of noise. The dust mass data from the discrete samples are consistently higher
by approximately 0.1 ppb than the data from the continuous flow. This discrepancy may be explained by
differences in the measurement techniques, for example, in the continuous-flow analysis system, the melt-
water stream is forced through a 10-μm filter, which may also capture a nonnegligible fraction of particles
smaller than 10 μm. Furthermore, the Coulter counter captures a slightly larger range of particle sizes (0.7 to
20.0 μm) than the Abakus. Another aspect to consider is that ice core dust is generally nonspherical, which
affects the Abakus and Coulter counter in different ways (Simonsen et al., 2018). The insoluble dust mass
data from Aarons from Aarons et al. (2017; also determined by Coulter counter) are similarly elevated with
respect to the Abakus data, supporting the idea that the discrepancy is due to measurement techniques.

BAGGENSTOS ET AL. 782



Paleoceanography and Paleoclimatology 10.1029/2017PA003297

Figure 3. Raw data for insoluble dust mass (top), nssCa (center), and 𝛿
18Oice (bottom) from the Taylor Glacier horizontal

ice core. Data from high-resolution continuous-flow analysis is shown in black (top), red (center), and gray (bottom).
Discrete samples for insoluble dust concentration are shown as blue (this study) and orange circles (Aarons et al., 2017).
𝛿

18Oice 25-cm averages (green line) and discrete samples (black circles) measured at the Institute of Arctic and Alpine
Research (INSTAAR) are in excellent agreement with the continuous-flow data.

Nonetheless, the good agreement of insoluble dust mass and nssCa concentrations (correlation coefficient
r = 0.76 for 10-cm averages) gives us confidence to use nssCa as a proxy for long range dust loading. From
here on, we will use only nssCa as a dust proxy to compare with other deep ice core records because Taylor
Dome has a nssCa record but no high-resolution insoluble dust data.

The elevated values for nssCa concentration from−110 to−150 m in the transect are indicative of the LGM. The
shape of the dust record compares favorably with Antarctic deep ice cores, all of which have three distinctive
maxima in dust concentration during the LGM, separated by periods of relatively warm climate and reduced
dust deposition known as Antarctic Isotope Maximum (AIM) 2 and 4. Assuming no hiatuses in the record,
which is well justified given the good agreement of the nssCa record with traditional deep ice cores (Figure 4),
the sections with very low dust loading from −170 to −180 m and −195 to −205 m should then correspond
to AIM 8 and 12, respectively.

3.2. Dating Taylor Glacier
A gas age time scale for Taylor Glacier was developed by Baggenstos et al. (2017) based on synchronization
of gas proxies to the WAIS Divide ice core. The ice age time scale is developed here. Because the thinning
and thus the accumulation rate history of the Taylor Glacier ice is poorly known, it is ineffective to apply firn
densification models to estimate Δage in order to derive the ice age time scale. To create the ice age time
scale, we make the assumption that dust transport to Antarctica is the main factor in determining local dust
deposition fluxes, causing reconstructed dust records from different locations to all look identical to first order.
This allows us to date our transect by synchronizing changes in nssCa concentration to equivalent changes
in the WAIS Divide ice core (supporting information Table S1 and Figure 4). We chose the WAIS Divide ice
core as our reference record because of its demonstrated high dating accuracy and its high-resolution nssCa
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Figure 4. Ice chemistry records on a common time scale. From top to bottom: Taylor Glacier distance-age curve (orange)
synchronized to the WD2014 time scale using nssCa tie points (orange) and volcanic events (black); Taylor Dome
depth-age curve for the new TD2015 time scale (blue, solid) and Steig et al. (1998)’s st9810 time scale (blue, dotted);
EPICA Dome C nssCa (black, Fischer et al., 2007; Wolff et al., 2006), WAIS Divide nssCa (black, Sigl et al., 2016), Taylor
Glacier nssCa (orange), Taylor Dome nssCa on TD2015 time scale (blue, solid), and on st9810 (blue, dotted); stable water
isotopes for TALDICE (black, Stenni et al., 2011), EPICA Dronning Maud Land (black, EPICA Community Members, 2006),
Taylor Glacier (orange), and Taylor Dome (blue) on TD2015 (solid) as well as on st9810 (dotted) for comparison. All nssCa
and water isotope records were binned into 100-year averages. For the isotope records, the faint colored lines represent
the raw data while the bold lines show the binned averages. The pink square highlights the 17.7 ka Mt Takahe
volcanic event.

data (Buizert et al., 2015; WAIS Divide Project Members, 2013; Sigl et al., 2016). In between the tie points we
apply a linear interpolation. Fudge et al. (2014) show that more complex interpolation schemes taking into
account annual layer thicknesses or accumulation rates produce more accurate age models, but since we do
not have good constraints on either annual layer thickness or accumulation rate, we resort to the use of the
traditional, linear method. The difference between the interpolation schemes should be small to negligible if
a large number of tie points can be identified. In addition to the tie points from the nssCa synchronization, we
were able to identify a number of volcanic events that are found in both our record and in the WAIS Divide ice
core, based on distinct sulfur and cadmium anomalies (Table S2). This volcanic synchronization confirms and
strengthens our time scale. Furthermore, the unique chemical fingerprint of the 17.7 k Mt. Takahe eruption
(McConnell et al., 2017) is clearly identified in the record, allowing us to securely constrain the beginning of
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the deglaciation. The resulting distance-age relationship is close to linear from 49 to 17 ka BP, with a hint of a
steepening and thus possibly higher accumulation rates from 17 to 16 ka BP. A comparison with the gas age
time scale shows that the ice age is slightly older than the gas age for the entire transect (Figure 7), as expected
from firn densification. This lends additional support to our dating, since the gas and ice ages were determined
independently from each other. The inferred average annual layer thickness, calculated as horizontal distance
divided by time without correcting for thinning, is 0.35 cm/year.

3.3. 𝜹18Oice

Stable oxygen and hydrogen isotopes of H2O in the ice are commonly used to infer past surface temperatures
at the ice core deposition site (Jouzel et al., 1997). Figure 3 shows 𝛿18Oice measured on discrete and contin-
uous samples from the Taylor Glacier transect. The three records (DRI continuous, INSTAAR continuous, and
INSTAAR discrete) agree very well with each other; after downsampling DRI continuous to the lower resolu-
tion record, r = 0.97 for DRI versus INSTAAR continuous and r = 0.82 for DRI versus INSTAAR discrete. The
absolute values at certain obvious features are identical to the 𝛿

18Oice values measured in the Taylor Dome ice
core (Figure 4; Steig et al., 1998): −39‰ during AIM 12, −40.5‰ during AIM 8, and −44‰ during the LGM.
This close correspondence in the absolute values is a strong indication that the deposition site for Taylor
Glacier is at approximately the same elevation as the Taylor Dome ice core. It also means that small amounts
of snow blown into wintertime cracks and observed in our samples do not significantly alter the large scale
nature of our record. However, the Taylor Glacier 𝛿18Oice record is considerably noisier than 𝛿

18Oice records
from other ice cores, even when 25-cm averages are considered. One reason for this could be the small
amounts of modern snow in our samples; however, modern snow in the area is less depleted in the heavy
isotopologue (Gooseff et al., 2006) and we would expect outliers only on the positive side, which is not what
we observe. Another possibility is that the Taylor Glacier deposition site experiences more decadal variability
than other ice cores precisely because the accumulation rate is very low. In such an arid regime, single snowfall
events contribute a larger fraction of the total snow accumulation, which could explain the increased vari-
ability. A third factor to consider is that postdepositional processes can modify 𝛿

18O values by several ‰ in
low accumulation settings, as shown with modern measurements for a site at Taylor Mouth (a wind-scoured
area near Taylor Dome; Neumann et al., 2005) and at Dome Fuji (Hoshina et al., 2014). Ventilation can redis-
tribute and remove water vapor in the firn, which causes modification of isotope ratios through sublimation
and condensation (Waddington et al., 2002). The lower the accumulation rate, the longer the firn remains near
the surface, where it can be modified by ventilation. On the other hand, even if diffusion causes a significant
change in the 𝛿

18O values, one would expect that such a redistribution through vapor would smooth out the
differences in 𝛿

18O between different layers of ice.

Despite the overall good agreement between the Taylor Glacier and Taylor Dome 𝛿
18Oice records, there are

clear differences: The signature of AIM events in Marine Isotope Stage 3 (∼30 to 60 ka), which are evident in the
EDML and Taylor Dome records, are much less pronounced in our new record. The elevated level of noise may
be masking some of the features. Still, there appears to be less millennial-scale variability in the Taylor Glacier
record. At 27 ka, when the EDML and Taylor Dome 𝛿18Oice shifts to more depleted values, reflecting the coldest
stages of the last glacial period, there is no change in the Taylor Glacier 𝛿18Oice. This absence of a clear glacial
maximum is also observed in the Talos Dome ice core. The magnitude of the AIM 2 peak is slightly smaller
at Taylor Glacier than at Taylor Dome, but it is larger than at EDML (EPICA Community Members, 2006) and
Talos, and comparable to WAIS Divide (WAIS Divide Project Members, 2013). It is not the aim of this paper to
examine what causes the differences in the 𝛿18Oice records, but it is important to note that the main first-order
features of variability in Antarctic climate history are imprinted in the Taylor Glacier record just as in other ice
core records.

3.4. Asynchronous Climate Change at Taylor Dome and the North Atlantic
At Taylor Glacier, 𝛿18Oice starts to increase significantly at approximately 18 ka BP (Figure 4). The timing of
this increase is well constrained via the 17.7 k volcanic event (McConnell et al., 2017, Table S2). 𝛿18O of ice is
typically interpreted as a proxy for the local condensation temperature, but changes in the atmospheric cir-
culation and accumulation rate can also affect the isotopic composition of precipitation (Dansgaard, 1964).
Naturally, changes in temperature, atmospheric circulation and accumulation rate are often convolved, com-
plicating the interpretation of any 𝛿

18Oice record. For our purposes, it is sufficient to recognize that any one
of these factors, and probably all of them, are changing starting at 18 ka BP, and that this change must be
recorded in the Taylor Dome ice core as well because of the proximity of the deposition sites for Taylor Dome
and Glacier. This observation directly contradicts the st9810 time scale, which showed no significant change
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Figure 5. Existing Taylor Dome gas time scales and TD2015 from 0 to 60 ka
BP. Insert shows close-up of the late Last Glacial Maximum (LGM) and the
deglacial transition. There are large differences between individual time
scales, especially from 35 to 55 ka BP, but also during the Holocene. During
the deglacial transition the agreement between time scales is good, thanks
to large and sometimes abrupt changes in all gases.

in 𝛿
18Oice until 15 ka BP. Furthermore, as pointed out by Mulvaney et al.

(2000), the calcium records are also incompatible (Figure 4). Previously,
one could have argued that Taylor Dome was indeed affected by different
air masses and maybe should not have the same dust history as Dome C,
especially if there was some sort of direct North-South Atlantic connection
that determined climate in the western Ross Sea sector. But the new Taylor
Glacier nssCa record is indisputably inconsistent with the st9810 chronol-
ogy, demonstrating that the dust flux history in the Taylor Dome area was
not significantly different from the rest of Antarctica. Our new findings con-
firm that the isotope warming at the start of the deglaciation in the Taylor
Dome area begins at approximately 18 ka BP, just as in other East Antarctic
ice cores.

3.5. TD2015—A New Time Scale for Taylor Dome
Although the validity of the original Taylor Dome ice time scale has been
questioned previously, no updated time scale has yet been created for the
deglaciation and the LGM. The additional, unambiguous evidence from
Taylor Glacier presented here provides motivation to revisit this issue and
produce a new Taylor Dome time scale based on all available information.
We start with the Taylor Dome gas age, for which a number of different
time scales have been published, with most of them only covering a cer-
tain part of the core (Figure 5): The Holocene (Indermühle et al., 1999) and
deglaciation (Smith et al., 1999) CO2 isotope studies both use the st9810
gas time scale, which is based on CH4 and 𝛿

18Oatm synchronization to the
Greenland Ice Sheet Project 2 (GISP2) ice core. Brook et al. (2000) also use
methane and 𝛿

18Oatm measured in Taylor Dome to synchronize to GISP2,
but the resulting time scale is significantly different from st9810, especially

during the Holocene. Indermühle et al. (2000) present a CO2 record from the last glacial period that is on a time
scale built by matching CO2 and CH4 to the Vostok GT4 time scale. Monnin et al. (2004) matches the Holocene
CO2 record from Indermühle et al. (1999) to the Dome C CO2 record. Using new and existing CO2 and CH4 data
from 65 to 35 ka BP, Ahn and Brook (2007) also produced a new gas chronology for Taylor Dome, synchronized
to GISP2. Finally, Lourantou et al. (2010) synchronize the deglacial CO2 record from Smith et al. (1999) to the
GICC05 time scale (Andersen et al., 2006; Rasmussen et al., 2006). The new TD2015 gas age was constructed via
synchronization of the Taylor Dome 𝛿18Oatm signal together with fixed CO2 and CH4 tie points (supplementary
information) to the equivalent record from the WAIS Divide ice core using the “match” algorithm developed
by Lisiecki and Lisiecki (2002).

Unlike for the gas age, there have only been two new publicly available time scales published for the Taylor
Dome ice age since the original st9810: Monnin et al. (2004) for the Holocene and more recently Sigl et al.
(2014) for the last two millennia. We adopt the volcanic tie points of Sigl et al. (2014) from 0 to 153 m depth
(equivalent to present to ∼100 AD), which are based on matching volcanic sulfate peaks to the equivalent
sulfur peaks in the WAIS Divide record. From 153 to 360 m depth, the ice age is estimated by adding the
Monnin et al. (2004) Δage to the gas age at each depth. This procedure creates an inconsistency in the sense
that Δage depends on the accumulation rate, which itself is a derivative of the time scale. Changing the time
scale should thus also change Δage. However, the uncertainties in the modeling of Δage by Monnin et al.
(2004) are expected to be larger than the change due to a small adjustment of the time scale, which is why we
think this approach is justified. Before 16 ka BP, there are no features in the calcium record that could constrain
the dating. We therefore make the assumption of a uniform ACR onset and end: We add two tie points at
the beginning and the end of the ACR identified in the 𝛿

18Oice record (depths and ages in supplementary
information), assuming that these large scale isotope changes are synchronous in all Antarctic ice cores as
suggested by Pedro et al. (2011) and Stenni et al. (2011). In general, the dating in the mid to early Holocene
as well as the late deglaciation is not as well constrained as in the periods where volcanic or calcium ties
are available.

For the early deglaciation and glacial period, we synchronize the Taylor Dome calcium record to our Taylor
Glacier nssCa record. To facilitate the synchronization, we convert Taylor Dome calcium and sodium concen-
trations to nssCa as described in Bigler et al. (2006). Using continuous-flow high-resolution measurements
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Figure 6. Synchronization of the Taylor Glacier (orange) and Taylor Dome
(blue, Steig et al., 2000) nssCa records. Low sampling resolution and missing
data complicate the synchronization. Shown are two options (a) and (b)
along with the nssCa tie points used for both scenarios. Red triangles
indicate the two additional tie points based on 𝛿

18Oice.

from Dome C, they also determined the sodium/calcium ratios in sea salt
and in crustal derived aerosols, which are necessary for the calculation of
nssCa. We adopt their estimates, assuming that the crustal and sea salt
sources are similar for aerosols deposited at Dome C and Taylor Dome.
The correction to Ca is small, less than 2 ppb excluding the LGM, and
less than 5 ppb during the dustiest intervals. The nssCa concentration at
Taylor Glacier and Taylor Dome are very similar, with slightly higher values
for Taylor Glacier. This is somewhat surprising since in continental Antarc-
tica dust deposition is thought to occur mainly through dry deposition
(Mahowald et al., 1999) which should lead to lower nssCa concentrations
at Taylor Glacier because of its higher accumulation rate (still low accumu-
lation overall). However, it is difficult to compare the nssCa concentrations
directly, since the Taylor Glacier data was measured using ICPMS, which is
able to quantify the soluble and insoluble calcium components, whereas
the Taylor Dome data only consists of the soluble part.

A precise synchronization is complicated by two factors: The time res-
olution of the Taylor Dome chemistry record is only approximately one
measurement every few hundred years during the LGM, because of the
very low accumulation rate and a sample spacing/averaging of 0.2 m. In

addition, there are no data available from a crucial part of the record, from 382.48 to 383.5 m depth and from
383.7 to 384.5 m depth. Taking this into account, there are two viable ways to synchronize the two records
(Figure 6): Option (a) requires the accumulation rate to gradually decrease heading into the LGM, reaching a
minimum at 25 to 20 ka BP, and then increase substantially into the early Holocene. For option (b) to work,
accumulation has to fall sharply to extremely low levels at 32 ka BP, probably with significant hiatuses on the
order of a few thousand years, before recovering gradually starting at 25 ka BP. This option has the advantage
that the highest nssCa value measured in Taylor Dome matches the largest peak in Taylor Glacier, which is not
the case for option (a). There are several lines of evidence that make a strong case for option (a): (1) Higher
𝛿

15N at 30 ka than at 25 ka (Figure 8) suggests a thicker firn with higher accumulation rates at 30 ka, consis-
tent with option (a). (2) 𝛿18Oatm does not show any irregularities but follows the atmospheric reference from
30 to 25 ka. If there were a hiatus of several millennia, the densification process would slowly come to a halt.
If this had happened we should see a jump in 𝛿

18Oatm, not the continuous change that we observe. (3) The
chemistry data of the soluble ions Na, Cl, K, and Mg do not have their maximum at the calcium spike, which
suggests that a period of very low accumulation did not cause the calcium spike. (4) Independent estimates
using 10Be (Steig et al., 2000) and SO4 (Morse et al., 2007) agree that the lowest accumulation rate was reached
around 20 ka BP, with higher values around 30 ka BP. Overall, we find that option (a) is better supported by
the available evidence, but is it difficult to completely rule out option (b).

Finally, for the period not covered by our Taylor Glacier record, that is 49 to 60 ka BP, we apply the same manual
calcium matching procedure with WAIS Divide as the reference record. All used tie points were updated to
the WD2014 reference. It is noteworthy that the new Taylor Dome TD2015 time scale is not only significantly
different from st9810 during the glacial period; also in the Holocene the disparity amounts to up to 1,500 years.

The resulting depth-age curves for the gas and ice phase (Figure 7) are almost flat in the LGM because of the
very low accumulation rate. A period of 8,000 years, from 24.5 to 16.5 ka BP, is compressed into 2.8 m depth.
Our best estimate of the maximum Δage is ∼12,000 years (at 378.5 m depth), significantly larger than the
next-largest value of any ice core of 6,500 years that was estimated for the Vostok in the LGM (Veres et al., 2013).
Our estimate is robust owing to good age constraints on both the gas and ice phase: At 378.5 m, CO2 is already
220 ppm, methane is 450 ppb and rising, and 𝛿

18Oatm is >1‰, which excludes any ages older than 15.5 ka BP.
At the same depth, nssCa is 15 to 20 ppb, but elevated nssCa values between AIM 4 and AIM 2 preclude ages
younger than 27 ka BP for the ice phase.

The Taylor Dome 𝛿
18Oice record, on the TD2015 time scale, looks qualitatively similar to isotope records from

other Antarctic ice cores. AIM 2 features prominently during the LGM. Because of the exceptionally low accu-
mulation rate, the time resolution of the isotope record is reduced, making precise comparisons difficult.
Furthermore, because of the long residence time of the firn near the surface, it is possible that ventilation
affected the isotope record considerably. Following AIM 2 there is a gradual but weak (isotope) warming
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Figure 7. Δage, gas, and ice phase records for Taylor Glacier and Taylor Dome. From top to bottom: CO2 concentration
from Taylor Dome (blue, Ahn & Brook, 2007; Smith et al., 1999) and WAIS Divide (black, Marcott et al., 2014); CH4
concentration from Taylor Dome (blue, Brook et al., 2000), Taylor Glacier (orange), and WAIS Divide (black, Buizert et al.,
2015; WAIS Divide Project Members, 2013); 𝛿18Oatm from Taylor Dome (blue, Sucher, 1997), Taylor Glacier (orange), and
WAIS Divide (black, Seltzer et al., 2017); Taylor Dome ice age (blue solid) and gas age (blue dotted) curves; Taylor Glacier
ice age (orange solid) and gas age (orange dotted) curves; Δage for Taylor Dome (blue) and Taylor Glacier (orange)
including an estimate of the uncertainty; nssCa from Taylor Dome (blue) and Taylor Glacier (orange). Taylor Dome
records are on the TD2015 time scale. Δage is plotted on the ice age time scale. Black arrows point to 378.5 m depth
for the gas and ice age. At 378.5 m, the Δage is approximately 12,000 years. Major AIM events and the beginning of the
deglacial transition are highlighted in gray bars.

until 18 ka BP (similar to WAIS Divide), after which the warming rate increases substantially, in sync with the
strong warming in all Antarctic records. As already discussed in Steig et al. (2000), Taylor Dome is unusual
in that almost all of the deglacial isotope warming is accomplished by 14.7 ka BP, during the first half of the
deglaciation. On this particular point we see no disagreement with the original interpretation.

3.6. 𝜹15N Modeling
There are no modern or past analogues for a firn column that takes 12,000 years for fresh snowfall to turn
into ice, as required by our interpretation. The relevant physics may be substantially different from the physics
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Figure 8. Δage modeling for Taylor Glacier and Taylor Dome and a comparison with 𝛿
15N. For both Taylor Glacier and

Taylor Dome, shown are modeled Δage (top), accumulation rate (center), and 𝛿
15N (bottom), along with measurements

of 𝛿15N (Baggenstos et al., 2017; Sucher, 1997). For Taylor Dome, a second accumulation rate history (dashed) was
reconstructed by unthinning the TD2015 time scale using the thinning function from Morse et al. (2007). Major AIM
events and the beginning of the deglacial transition are shown in gray bars.

implicit in firn densification models, which are built and calibrated for present day conditions. For example,
physical processes such as vapor transport may dominate over mechanical deformation as densification
mechanisms under low driving stress on these long time scales. However, as an exercise to illuminate
the possible model limitations, we model Δage using an empirical steady-state firn densification model
(Herron & Langway, 1980) together with 𝛿

15N measurements (Baggenstos et al., 2017) to gain insight into
the firn column during that unusual time. We chose the Herron-Langway model instead of other, more
recent modeling approaches (e.g., Goujon et al., 2003) because it seems to have a more realistic sensitivity
to accumulation variability (Buizert et al., 2015) and because of its simplicity. A site with 12,000 years Δage
and <0.1 cm/year water equivalent accumulation is well outside of the calibration range of any firn den-
sification model (Landais et al., 2006), so the results should be taken with a healthy dose of skepticism.
The Herron-Langway model uses inputs of firn temperature and accumulation rate to predict density-depth
profiles and thus indirectly firn thickness.Δage is approximated as the age of the ice at bubble close-off depth
(close-off density parameterized as in Schwander et al., 1997), and the age of the gas at this depth is assumed
negligible (on the order of a few decades). Firn thickness and accumulation rate then directly determineΔage.
We run the Herron-Langway model in reverse, trying to find the accumulation rate that produces our observed
Δage given a prescribed temperature. The temperature input is averaged over the measuredΔage, represent-
ing an average temperature during the densification process. We convert the Taylor Dome isotope record into
local temperature using 𝛼 = 0.5 ‰ (∘C)−1 as in Steig et al. (2000). We use the same approach to model Δage
for Taylor Glacier. However, we use the Taylor Dome temperature instead of the Taylor Glacier temperature
because of gaps in the Taylor Glacier record and unresolved doubts about whether the Taylor Glacier isotope
record is a good proxy for local temperature (see section 3.3 for details).

The firn thickness can then be used to predict 𝛿15N assuming that gravitational settling is the only process
affecting 𝛿

15N in the firn (Craig et al., 1988; Sowers et al., 1989). The predicted 𝛿
15N can be directly compared to

measured 𝛿
15N in trapped air bubbles. In reality, a number of factors influence 𝛿15N in addition to gravitational

enrichment, most notably thermal diffusion because of temperature gradients (Severinghaus et al., 1998) and
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a convective zone at the top of the firn column because of strong surface winds and high porosity (Kawamura
et al., 2006). These other factors are not generally known for past times. For these reasons the 𝛿

15N calculated
in this way should be viewed as a maximum estimate (at least for Antarctic sites, where thermal diffusion
signals are small or negative).

As expected, the firn model is able to reproduce the observed Δages for Taylor Dome and Taylor Glacier with
arbitrary accumulation rates (Figure 8). The necessary accumulation rates for Taylor Dome are extremely low
during the LGM and of similar magnitude as in Morse et al. (2007). A different approach, using the glaciological
thinning function to un-thin our new TD2015 age model, yields comparable results (dashed line in the figure).
The fact that the modeled accumulation rate is lowest at 30 ka BP and not later is merely reflective of the
fact that we use a steady state model that does not integrate accumulation over time, such that variations
that are smaller than Δage should not be interpreted. The model does a good job of estimating 𝛿

15N before
and after the LGM, but it is unable to reproduce the measured 𝛿

15N signal during the time of extremely low
accumulation for Taylor Dome and also to a slightly lesser degree Taylor Glacier. The discrepancy could be
explained by a substantial convective zone at the top of the firn column (as seen in one modern location with
very low accumulation rates; Kawamura et al., 2013; Severinghaus et al., 2010) or it may be indicative of the
fact that the model is ill-suited for such extreme conditions.

With an accumulation rate of<1 mm/year for several thousand years, hiatuses in the record are to be expected.
But a long-term accumulation hiatus (several millennia) is unlikely because of the good agreement of Taylor
Glacier and Taylor Dome nssCa records during the LGM (Figure 4). Shorter hiatuses on the order of up to 1,000
years are conceivable and possibly even likely in such a low accumulation setting.

4. Conclusions

We present new dust and temperature proxy records from a horizontal ice core on Taylor Glacier that are
incompatible with synchronous North-South climate change in the Taylor Dome region and the North Atlantic
as suggested by Steig et al. (1998). Following Mulvaney et al. (2000), we construct a new ice age time scale for
Taylor Dome by synchronizing it with our well-dated Taylor Glacier record using the dust signal, supported
by the argument that the close proximity of the Taylor Glacier and Taylor Dome deposition sites prohibits
large differences in the dust records. For consistency, we also update the Taylor Dome gas time scale. The new
TD2015 time scale covers 0 to 60 ka BP, and although it still suffers from poor resolution during the LGM and
less than optimal data quality, it is a clear improvement on previous dating efforts. During the LGM, Taylor
Dome experienced a period of extremely low accumulation, along with a Δage of 12,000 years, the underesti-
mation of which led to the initial erroneous interpretation of a synchronous North-South warming. The Taylor
Dome isotope record on the TD2015 chronology shows a similar deglacial transition as the rest of Antarctica.
Nevertheless, an interesting and apparently unique feature of Taylor Dome, that most of the deglacial
warming is complete by 14.7 ka BP (Steig et al., 2000) remains valid in our new chronology.

Our results highlight the difficulty of reconstructing Δage for low accumulation areas. Great care has to be
taken when estimating accumulation rate histories and modelling Δage to transfer the (usually well-known)
gas age time scale to the ice matrix. Ideally, the ice phase can be dated independently by, for example, tephra
layers or dust synchronization. Applying the Δage history from another site, especially a high accumulation
site as done, for example, in Fogwill et al. (2017), is unlikely to yield robust results.

The good quality of the dust data indicates that Taylor Glacier is valuable as a source of large volume samples
for measurements of micro-particles and their isotopes in high temporal resolution for the section presented
(49 to 16 ka BP) and most likely also for other time intervals (Aarons et al., 2017). More work is needed to
establish precise ice age chronologies for the full deglaciation, or the penultimate interglacial, both of which
have been identified and can be accessed at the glacier surface (Baggenstos et al., 2017).

The extremely low accumulation rate during the LGM has implications for our understanding of the hydrology
and atmospheric circulation at that time. It is well known that accumulation can vary significantly on small
spatial scales, for example, Morse et al. (1999) show a large gradient in accumulation across Taylor Dome
at present. There is evidence that during the LGM this gradient was reversed, with moisture bearing storms
arriving mainly from the North, whereas today they reach Taylor Dome from the South (Morse et al., 1998).
This finding is strengthened by the higher reconstructed LGM accumulation rates for Taylor Glacier ice, which
was deposited to the North of Taylor Dome. Another aspect to consider is wind scour from strong katabatic
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winds with possible lee/luv effects around Taylor Dome. Whether this low accumulation anomaly was due
to local topographical effects only or if it is part of a larger regional accumulation anomaly is still unclear. In
this context, it should be noted that snow deposited on Taylor Dome during the LGM could have been blown
away, carrying with it trace constituents such as 10Be and dust. For this reason, a constant-flux assumption for
these species (or equivalently, a spatially invariant flux to the ice) is unwarranted.
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