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Abstract Disorders in calcium, phosphorus, and

parathyroid hormone (PTH) are common in chronic

kidney disease (CKD) and may be associated with

poor outcomes including a higher rate of CKD

progression and increased death risk. Although these

abnormalities have been examined extensively in

patients with CKD stage 5 who are receiving chronic

maintenance dialysis, they have not been studied to the

same extent at earlier stages of CKD, in spite of the

much larger numbers of patients in the early CKD

population. We summarize the available literature on

outcomes associated with bone and mineral disorders

in patients with CKD not yet receiving maintenance

dialysis. We have reviewed novel data linking fibro-

blast growth factor 23 (FGF-23) to phosphorus and

vitamin D homeostasis. More rapid CKD progression

is linked to hyperphosphatemia and its associated

hyperparathyroidism and vitamin D deficiency.

Hence, hyperphosphatemia may play a central role in

the diverse disorders characterizing CKD. We provide

a brief overview of the available treatment recom-

mendations for bone and mineral disorders, with an

emphasis on areas needing further research.
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Introduction

Disorders of mineral and bone metabolism are

common in patients with chronic kidney disease

(CKD) [1] and have been implicated as a novel risk

factor in the high mortality seen in patients receiving

maintenance hemodialysis (MHD) therapy [2, 3].

Several abnormalities are grouped under the currently

preferred term of CKD mineral and bone disorder

(MBD), [4] including secondary hyperparathyroidism

(SHPT), renal osteodystrophy, disorders of vitamin D

metabolism, hyperphosphatemia, hypo- and hyper-

calcemia, and vascular calcification. While several of

the abnormalities characterizing CKD-MBD develop

during earlier stages of CKD, the outcomes associ-

ated with these abnormalities, along with the

potential benefits of their treatment, are much less

thoroughly studied in this patient population. The few

studies that examined CKD-MBD at earlier stages of

CKD have indicated that the adverse outcomes

associated with hyperphosphatemia and SHPT in

CKD stage 5 are also present at these earlier stages.

Furthermore, in patients with CKD who are not yet

on dialysis (hereinafter referred to as CKD) mortality

is not the only outcome of interest; in these patients

the impact of various risk factors on progression of

CKD deserves to be assessed separately.

This review examines the available literature on

the association between abnormalities of CKD-MBD

and outcomes in the CKD population. While out-

comes associated with abnormalities in phosphorus,

calcium, and PTH metabolism, including the novel

link via FGF-23 will be discussed separately, they

often occur simultaneously, and need to be addressed

as such in clinical practice. Treatment recommenda-

tions in CKD are limited by the paucity of clinical

trials, but suggestions for future research are provided

based on potential benefits suggested by observa-

tional data.

Hyperphosphatemia in CKD

Phosphorus is an essential building block of the human

body as a component of the bony skeleton, adenosine

triphosphate, nucleic acids, phospholipid membranes

and blood and urinary buffers [5]. A complex regula-

tory system ensures the maintenance of phos-

phorus homeostasis under usual circumstances [6].

The kidneys play a pivotal role in this system as the

main organs responsible for phosphorus excretion, and

abnormalities affecting phosphorus are one of the

centerpieces of CKD-MBD.

The FGF-23 axis

As the glomerular filtration rate (GFR) decreases

several changes occur that affect phosphorus balance,

the most important ones being a decrease in calcitriol

level due to deficient 1a hydroxylation [7] (and with

consequently lower intestinal calcium absorption,

hypocalcemia, and stimulation of PTH production)

and a decrease in the filtered amount of phosphorus

(with consequent hyperphosphatemia, hypocalcemia

and stimulation of PTH and fibroblast growth factor-

23 [FGF-23] production) [8 9]. The higher PTH

levels will enhance urinary clearance of phosphorus

by lowering proximal tubular reabsorption, thus

ensuring normal plasma levels, albeit at the expense

of secondary hyperparathyroidism (the classical

trade-off hypothesis [10]), and also a higher FGF-

23 level, which in itself inhibits the 1-a hydroxylation

of 25-OH-vitamin D, resulting in further lowering of

calcitriol levels and more stimulation of PTH

production (Fig. 1) [11, 12]. This regulatory mech-

anism is unable to compensate for phosphorus

retention once the GFR falls below approximately

40 ml/min; this is when a subtle rise in serum

phosphorus occurs, albeit mostly without manifest

hyperphosphatemia [5]. Frank hyperphosphatemia

becomes common once patients with CKD reach

the need for dialysis where the lack of substantial

kidney function combined with the inefficiency of

thrice weekly dialysis treatments in facilitating phos-

phorus clearance [13] result in a persistent positive

phosphate balance unless the amount of absorbed

phosphorus is diminished.

Outcomes associated with serum phosphorus

levels in CKD

Much attention has focused on hyperphosphatemia

and its consequences in dialysis patients [3], even

though they represent only a minority of all patients

with CKD [14]. The lesser attention devoted to this

issue in patients with CKD may be explained by the
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lack of available data sources, but also by the

differences in the bone–mineral milieu between

patients with CKD and those on dialysis: as detailed

above, serum phosphorus levels in patients with CKD

are in general much lower until CKD reaches stage 5.

In vitro data suggest that the phenotypic transforma-

tion of aortic smooth muscle cells into osteoblast-like

cells that is thought to be involved in the soft tissue and

cardiovascular calcification mediated by hyperphos-

phatemia occurs at ambient phosphorus concentrations

of about 6 mg/dl and above [15]. Such elevated plasma

phosphorus levels are unusual in CKD, and it is hence

possible that the cardiovascular effects of hyperphos-

phatemia are more subtle at earlier stages of CKD, and

thus more difficult to detect. A distinct challenge in

CKD is the presence of competing end points: while

mortality is still of major interest, progression of CKD

is also regarded as a separate end point and is in fact the

main focus of nephrologists’ clinical practice.

Mortality and phosphorus level in CKD

Following several studies showing a significant

association between hyperphosphatemia and mortal-

ity in dialysis patients [2, 3], three studies have

examined the same issue in patients with CKD, and

one in a non-CKD population (Table 1). Kestenbaum

et al. [16] examined 3,490 US veterans with CKD

and showed that higher phosphorus was associated

with higher mortality. The second study was a

secondary analysis from the Modification of Diet in

Renal Disease (MDRD) study: Menon et al. [17]

examined 839 mostly non-diabetic patients and

showed an association between higher phosphorus

and all-cause and cardiovascular (CV) mortality, but

the associations were not statistically significant. The

third study, by Voormolen et al. [18], examined 448

patients with CKD stage 4–5 and found a hazard ratio

for all-cause mortality of 1.62 (95% CI: 1.02–2.59)

associated with a 1-mg/dl higher phosphorus level.

The fourth study was by Tonelli et al. [19], who

examined 4,127 participants with normal kidney

function enrolled in the Cholesterol and Recurrent

Events study, and showed that higher plasma phos-

phorus level was associated with higher all-cause

mortality, CV mortality, fatal or non-fatal myocardial

infarction, and new onset congestive heart failure.

The putative mechanism(s) behind the observed

associations could be the calcification-inducing

effects of phosphorus on the vascular bed [15, 20],

or the concomitant deleterious effects of other factors

linked to hyperphosphatemia, such as secondary

hyperparathyroidism [3].

Phosphorus and progression of CKD

Three observational studies have examined the asso-

ciation between higher phosphorus and progression

of CKD (Table 1). We examined the association

between phosphorus level and the incidence of

dialysis or doubling of serum creatinine in 985 male

US veterans with CKD and found that higher

phosphorus was associated with a higher incidence

of the renal end point (Fig. 2); a 1-mg/dl higher

phosphorus level was associated with an adjusted

hazard ratio of 1.29 (95% CI: 1.12–1.48, P \ 0.001)

[21]. A second study by Norris et al. [22] examined

risk factors for progression of CKD in 1,094 black

patients enrolled in the African American Study of

Fig. 1 Mechanism of action whereby fibroblast growth factor-

23 and parathyroid hormone participate in the regulation of

phosphorus and activated vitamin D metabolism
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Hypertension and Kidney Disease (AASK) and found

phosphorus level to be one of several independent

predictors of progressive CKD. The third study by

Voormolen et al. [18] described an association

between higher serum phosphorus levels and faster

decline in renal function (by examining slopes of

estimated GFR) in 432 patients with CKD. The

plausibility of these findings is strengthened by the

results of studies in patients with CKD [23, 24] and in

laboratory animals [25–27], which showed an atten-

uation of the progression of CKD after dietary

restriction of phosphorus. Several mechanisms could

be responsible for the observed associations: renal

parenchymal calcification, a deleterious effect of

SHPT, hemodynamic alterations, and derangements

in cellular energy metabolism have been suggested as

plausible explanations [27–29].

Treatment of hyperphosphatemia in CKD

The rationale for lowering phosphorus level in CKD

is not necessarily to treat frank hyperphosphatemia

(given the relative infrequency of it), but rather to

treat secondary hyperparathyroidism. Given the asso-

ciation of higher phosphorus levels with mortality

and progression of CKD, it is also possible that

lowering plasma phosphorus may be beneficial in

lowering these outcomes, but this would have to be

proven in clinical trials first.

Strategies to lower plasma phosphorus in CKD

include dietary phosphate restriction and the appli-

cation of medications that inhibit the intestinal

absorption of phosphorus. Dietary protein restriction

(with concomitant restriction of phosphate intake) is

already one of the strategies applied to alleviate

progression of CKD [30]. Medications that inhibit the

absorption of phosphorus include phosphate binders

(calcium, magnesium, iron and lanthanum salts, and

sevelamer hydrochloride) and inhibitors of intestinal

mucosal phosphate transport (nicotinamide [31])

(Table 2). None of these medications has been

formally approved for therapy of hyperphosphatemia

in CKD; thus, their ‘‘off-label’’ use would be based

on data and experience drawn mostly from dialysis

patients. It is also worth remembering that the

application of either one of the above treatments

should be applied with the understanding that there is

currently no consensus about what an ideal plasma

phosphorus level should be in CKD. The K/DOQI

(Kidney Disease Outcomes Quality Initiative) guide-

lines on bone and mineral disorders recommend a

plasma phosphorus concentration of 2.7–4.5 mg/dl

[8], which in fact corresponds to what is currently

regarded as the ‘‘normal’’ range of plasma phospho-

rus, but it does not address the results of more recent

studies that suggest a graded increase in the risk of

adverse outcomes associated with higher levels of

phosphorus, even within this ‘‘normal’’ range

(Table 1). One could also argue that it is not only

the plasma phosphorus level that should serve as a

therapeutic target in CKD, but also the plasma PTH

level and/or the amount of phosphorus excreted in the

urine. Further research is warranted to clarify these

issues. Another issue worth discussing is the safety of

the calcium containing medications in CKD; we will

discuss this topic in the following section.

Serum calcium level and calcium intake in CKD

Before the early-to-mid 1980s hyperphosphatemia was

managed with aluminum-containing phosphorus bind-

ers and dietary phosphorus restriction [32]. Following

the emergence of data on the untoward consequences

of aluminum-based binders (dementia, refractory

anemia, and osteomalacia) [33, 34], calcium-based

Fig. 2 Hazard ratio (95% confidence interval) of the compos-

ite outcome of end stage renal disease and doubling of serum

creatinine associated with quartiles of serum phosphorus,

unadjusted and after adjustment for age, race, systolic and

diastolic blood pressure, diabetes, smoking status, estimated

glomerular filtration rate, serum albumin, calcium, bicarbonate,

blood urea nitrogen, hemoglobin, 24-h urine protein, and use of

calcium-containing phosphate binders and angiotensin-con-

verting enzyme inhibitors/angiotensin II receptor blockers. The

group with serum phosphorus 3.3–3.8 mg/dl served as a

reference. Based on data presented in Schwarz et al. [21]

Int Urol Nephrol (2008) 40:427–440 431
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medications became the binders of choice. These

agents also offered the added benefit of further

suppressing parathyroid hormone production [35].

Subsequently, vascular calcification was described to

be prevalent in MHD, and it was found to be associated

with poor survival in these patients [36, 37]. Once

vascular calcification was found to be associated with

higher serum calcium level and higher calcium intake

[37–39], and once higher serum calcium levels were

also associated with higher mortality [2, 3] in CKD

patients receiving MHD, the use of calcium-containing

binders in this patient population diminished, although

their role continues to be a matter of intense debate

[40].

Contrary to studies of patients receiving MHD,

observational studies in CKD have in general failed

to establish an association between higher serum

calcium levels and coronary calcification [41–45].

The reason for the discrepant findings between

studies in CKD and those examining MHD patients

are unclear. One explanation could be the better

calcium homeostasis provided by residual kidney

function and the lack of additional calcium intake

from dialysate sources in CKD; hypercalcemia is

in fact uncommon, even in advanced stages of

CKD [1].

Compared with MHD patients, much less is known

about the role of calcium intake in CKD. A recent

small clinical trial in patients with CKD compared

coronary calcification in untreated hyperphosphatemic

patients and in patients treated with calcium carbonate

or sevelamer hydrochloride [46]. This study showed

less progression of coronary calcification with calcium

carbonate compared with untreated patients, but the

progression was lowest in the group treated with

sevelamer hydrochloride; this latter group also showed

no significant changes in blood lipid levels [46]. It thus

appears from this study that untreated hyperphospha-

temia portends a poor prognosis, which can be

improved by the administration of a calcium-contain-

ing phosphate binder. The finding of an even better

outcome associated with using a non-calcium-con-

taining binder may suggest that calcium could have

had an additional deleterious effect that diminished its

benefit of phosphate lowering. Further studies would

be needed to clarify outcomes in the context of using

other phosphate binders, including calcium-contain-

ing products with a lower absorbable calcium-load,

and also different non-calcium-containing binders in

order to differentiate between the potential effects

of some binders that are unrelated to phosphate

lowering [47].

Table 2 Phosphorus binders that may be used off-label in a chronic kidney disease population not on dialysis

Pros Cons

Calcium carbonate (TumsTM) Most inexpensive, antacid properties useful

for reflux and peptic ulcer disease

High calcium load

Calcium acetate (PhosLoTM) Relatively inexpensive, less GI calcium

absorption compared with Ca carbonate

May contribute to calcium load and worsens

vascular calcification

Aluminum hydroxide (AmphogelTM) Most effective/potent binder, inexpensive Aluminum toxicity. Should not be used as

maintenance treatment

Sevelamer-HCl (RenagelTM) Calcium and metal-free binder; may have

ancillary benefits beyond phosphorus

control, such as lipid lowering, uric acid

lowering, anti-inflammatory effect

Expensive, may worsen metabolic acidosis

and hyperchlorhydria, GI symptoms such

as diarrhea. High pill burden

Sevelamer carbonate (RenVelaTM) Calcium and metal-free binder; may have

ancillary benefits beyond phosphorus

control (see above), no metabolic acidosis.

Improved GI tolerance

Probably expensive. Limited/no post-

marketing experience

Lanthanum carbonate (FosrenolTM) No calcium load. Low pill burden Long-term safety of lanthanum accumulation

unknown. Not allowed in liver disease.

Chalky taste

Magnesium based (MagnebindTM) No calcium load. Anti-constipating Potential for hypermagnesemia, diarrhea

Trivalent iron-containing binders No calcium load Limited information available

Niceritrol (inhibitors of intestinal

phosphate transport)

Different mechanism of action, inexpensive Poorly tolerated. Limited data available as a

binder
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Secondary hyperparathyroidism in CKD

Elevated PTH levels develop early in the course of

CKD and progressively rise with advancing stages of

this disease [1, 48–53]. SHPT develops as a result of

a combination of events: deficiency of 1,25-dihy-

droxycholecalciferol (1,25(OH)2D) [1, 7], decreased

expression of the vitamin D receptor [54] and the

calcium-sensing receptor [55], hyperphosphatemia

[56], hypocalcemia [57], and PTH resistance [58]

are believed to contribute to it. More recently,

fibroblast growth factor 23 (FGF-23) has emerged

as a new regulator that may also play an important

role in PTH regulation (Fig. 1) [11]. In addition to

these CKD-specific factors, PTH levels are also

influenced by various demographic [59, 60], anthro-

pometric [61], and co-morbidity characteristics [62].

Secondary hyperparathyroidism is associated with

a variety of complications including bone disease

[63–66], uremic pruritus [67], refractory anemia [68],

and cognitive and sexual dysfunction [69, 70]. In

patients receiving MHD, SHPT has been associated

with increased cardiovascular morbidity [48, 71–73]

and mortality [2, 3]. The association of SHPT with

mortality or with progression of kidney disease in

CKD has not been well characterized. In a recent

study of 515 male patients with CKD stages 3–5

(none receiving MHD), higher PTH level was

associated with increased all-cause mortality (Fig. 3);

a serum intact PTH level of [65 pg/ml (compared

with B65 pg/ml) was associated with an adjusted

hazard ratio for all cause mortality of 1.59 (95% CI:

1.02–2.49) [74]. Interestingly, the higher risk of

mortality in this study was already evident at PTH

levels above the upper limit of the normal range

([65 pg/ml). Currently, the K-DOQI bone and min-

eral metabolism guidelines recommend an intact PTH

level of 70–110 pg/ml for patients with CKD stage 4

[8]. This is an opinion-based guideline, and the

results of the above study suggest that higher PTH

levels, even within this range, could be associated

with worse mortality; further research will be needed

to clarify what the ideal treatment targets should be

for SHPT. The lack of a lower threshold level for

mortality risk in the above study is also in contrast to

studies in MHD patients, in which the association of

PTH level with mortality was U-shaped [3, 75]. A

significant proportion of the higher mortality seen

with lower PTH levels in MHD patients was,

however, related to confounding by markers of

malnutrition and inflammation [3], which themselves

have been linked to higher mortality [76, 77].

The mechanism behind the higher mortality

observed in patients with higher PTH remains

speculative. Elevated PTH levels have been shown

to cause a wide range of cardiovascular, metabolic,

hematologic, and immunologic abnormalities. These

include lower cardiac contractility, myocardial cal-

cium deposition, hypertrophy and fibrosis and

vascular calcification, [78] mitral annular calcifica-

tion, [79] impaired insulin sensitivity [80] and

glucose intolerance, [81] abnormal lipid metabolism,

[82] bone marrow fibrosis [68] with ineffective

erythropoiesis [83–85], and abnormal immune func-

tion [86]. Animal models showed that PTH increases

myocardial calcium content and adversely affects

energy utilization in myocardial tissue [87] and that it

could play a role in myocardial fibrosis [88], impaired

vasodilatation [89], and blood pressure-independent

wall thickening of the intramyocardial arterioles [90].

In a population-based cross-sectional study, a higher

PTH level was predictive of coronary heart disease

[91]. It is important to emphasize that the link

between SHPT and mortality in CKD remains

associative; a cause–effect relationship can only be

proven by clinical trials showing a benefit from

lowering PTH levels. Thus far, we are unaware of any

plans for such trials.

Fig. 3 Hazard ratios of all-cause mortality associated with

different levels of intact parathyroid hormone level, unadjusted

(Model 1), and after adjustment for case mix variables (age,

race, body mass index, systolic and diastolic blood pressure,

smoking status, comorbidity index, diabetes mellitus and use of

activated vitamin D, calcium containing and non-calcium

containing phosphate binders; Model 2), and case mix

variables plus laboratory parameters (estimated glomerular

filtration rate, calcium, phosphorus, albumin, cholesterol,

hemoglobin, white blood cell count, percentage of lympho-

cytes in white blood cells and 24-h urine protein; Model 3).

Based on data presented in Kovesdy et al. [74]
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Progression of CKD and SHPT

The effect of SHPT on the progression of CKD is

unclear. Animal studies have suggested that PTH

may have an effect on podocytes [92, 93], which

express PTH receptors [94, 95]. In a remnant kidney

model PTH accelerated progression of CKD in

animals that received a high protein diet, and

parathyroidectomy attenuated the increase in serum

creatinine [96]. Data in humans on the role of SHPT

in the progression of CKD are even sparser. The

study by Kovesdy et al. [74] detailed above found a

significant association with a higher MHD initiation

rate only in unadjusted models, but this association

became nonsignificant once adjusting for confound-

ing variables. No prospective trials have examined

whether lowering PTH levels in CKD can retard the

progressive loss of kidney function.

Treatment of SHPT in CKD

The complex pathophysiology of SHPT (vide supra)

offers several options for correcting this abnormality.

We have already discussed the potential role of

phosphorus lowering in the treatment of SHPT in the

section about phosphorus control; this benefit could

be directly related to a phosphorus-lowering effect in

the case of non-calcium-containing medications, with

an added calcium-related effect provided by calcium-

containing binders. Treatment of SHPT remains,

nevertheless, an ‘‘off-label’’ indication for phosphate

binder medications. In common practice secondary

hyperparathyroidism in MHD has been managed by

the provision of supplemental calcium (in the form of

oral supplementation and through dialysate calcium)

and active vitamin D; the latter initially in the form of

synthetic calcitriol (in the US) and alfacalcidol (in

Europe) [97–99], and more recently in the form of

various analogs of activated vitamin D such as

paricalcitol, doxercalciferol [100], and maxacalcitol

[101]. Our armamentarium was further diversified

with the recent introduction of the first calcium-

sensing receptor agonist, cinacalcet [102]. Yet

another therapeutic option could be the supplemen-

tation of 25(OH) vitamin D [103], the levels of which

are low in patients with CKD [104], and the

administration of which was able to suppress PTH

production in vitro by virtue of direct stimulation of

the vitamin D receptor and a slow tissue-level 1a
hydroxylation [105]. Current guidelines recommend

routine assessment of 25(OH) vitamin D and its

replacement in the case of deficiency (Table 3) [8].

Mortality and activated vitamin D in CKD

In spite of the above plethora of various therapeutic

options, presently only activated vitamin D and its

analogs are explicitly approved as a treatment for

SHPT in CKD. Administration of activated vitamin D

and its analogs in MHD patients has been associated

with improved survival compared with patients not

receiving such treatments [3, 106, 107]. Similar

studies in patients with CKD have not been available

until recently. In a study of 520 male patients with

CKD the administration of 0.25 mcg/day of oral

calcitriol was associated with significantly better all-

cause mortality, even after adjustment for multiple

potential confounders [108]. The multivariable

adjusted incidence rate ratio of all-cause mortality in

Table 3 Recommended supplementation schedule for 25(OH)

vitamin D deficiency and insufficiency in CKD stages 3 and 4.

Adapted from the National Kidney Foundation Clinical

Practice Guidelines for Bone Metabolism and Disease in

Chronic Kidney Disease [8]

Serum 25(OH) level,

ng/ml (nmol/l)

Definition Ergocalciferol dose (Vitamin D2)

\5 (12) Severe vitamin D deficiency 50,000 IU/week orally 9 12 weeks; then

monthly OR 500,000 IU as single

intramuscular dose

5–15 (12–37) Mild vitamin D deficiency 50,000 IU/week 9 4 weeks, then 50,000

IU/month

16–30 (40–75) Vitamin D insufficiency 50,000 IU/month orally
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treated versus untreated patients was 0.35 (0.23–0.54,

P \ 0.001) and for combined death and dialysis

initiation it was 0.46 (0.35–0.61); this study also

found a non-significant trend between calcitriol treat-

ment and a lower incidence of end stage renal disease

(ESRD) [108]. The above benefits were present in all

the studied subgroups, including patients with lower

pre-treatment PTH, and higher calcium and phospho-

rus levels. Similar findings were reported in another

study examining the association of calcitriol therapy in

mostly male patients with CKD [109].

The mechanism of action behind the higher

survival associated with activated vitamin D therapy

in the aforementioned studies remains unclear. As

detailed earlier in this article, SHPT in itself is

associated with higher cardiovascular morbidity

[48, 71] and mortality [2, 3], which could explain

why suppression of PTH concentrations with acti-

vated vitamin D would lead to lower mortality. The

impact of activated vitamin D treatment may never-

theless be much wider ranging. The vitamin D

receptor is ubiquitous, and its stimulation with

vitamin D analogs has been shown to directly impact

on the cardiovascular system by inhibiting the

production of proteins implicated in arterial calcifi-

cation [110–112], by stimulating the production of

proteins that are inhibitors of arterial calcification

[110, 113], by inhibiting the production of cytokines

that are involved in calcification and atheroma

formation [114, 115] and stimulating the production

of cytokines that are inhibiting it [116, 117], and by

preventing thrombosis [118]. Furthermore, activated

vitamin D deficiency was associated with higher all-

cause and cardiovascular mortality in a large cohort

of hemodialysis patients [119], and lower 1,25(OH)2

vitamin D levels have been associated with worsened

coronary calcification [120], also suggesting a PTH-

independent link between vitamin D and survival.

In spite of the uniformity of the observational

studies in MHD and at the earlier stages of CKD, and

in spite of the plausible mechanisms of action

detailed above, there have been no attempts to

examine the benefit of activated vitamin D in

randomized controlled trials. It is also unclear, as

detailed above, how much of the benefit observed

with activated vitamin D therapy can be ascribed to

the lowering of PTH, and thus it is unclear whether

similar benefits can be expected from other types of

therapy.

Activated vitamin D therapy and progression

of CKD

The application of activated vitamin D in CKD has

been subject to concerns over their potential to hasten

the decline of kidney function [99], which has been

attributed to hypercalciuria and nephrocalcinosis,

although hyperphosphatemia could also play a role

[21]. Studies employing lower (non-hypercalcemic)

doses of calcitriol did not show worsened renal

outcomes [121]; in fact, one study indicated a

tendency towards slower progression of CKD in a

group treated with 0.25 mcg/day of calcitriol com-

pared with placebo [122]. A study of 520 male

patients with CKD examined the association between

calcitriol therapy and the incidence of ESRD, and

found a tendency towards a lower incidence of ESRD

in the calcitriol-treated group [108], which raises the

possibility of a renoprotective effect. Such an effect is

indeed conceivable since therapy with paricalcitol, a

selective vitamin D analog, has been shown to lower

proteinuria [123]. The mechanism of a renoprotective

effect from activated vitamin D could be related to

their inhibition of cell proliferation [124] and

inflammation [125, 126], or to suppression of renin

production [127]. Prospective studies examining the

renoprotective effect of activated vitamin D have not

yet been performed in patients with CKD.

Conclusions

The various disorders that characterize CKD MBD

are common in CKD. Recent evidence suggests that

both hyperphosphatemia and SHPT are associated

with deleterious outcomes in CKD, similar to what

has been described in patients receiving MHD. The

impact of hypercalcemia and calcium intake on

outcomes in CKD is still unclear. Lowering plasma

phosphorus levels in CKD can be beneficial in

treating SHPT, and could become an additional

therapy to lower mortality and to alleviate progres-

sive loss of kidney function. Treatment of SHPT with

calcitriol is associated with lower all-cause mortality,

and may also have a renoprotective effect.

Several questions remain unanswered. It is unclear

what the net benefit is from therapeutic agents that

treat one aspect of CKD-MBD while worsening

another. Such effects could occur when treating
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hyperphosphatemia with calcium-containing binders

(which could have the undesirable effect of hyper-

calcemia), or when treating SHPT with activated

vitamin D (undesirable effects: hypercalcemia and

hyperphosphatemia) or calcium receptor sensitizing

agents (undesirable effect with cinacalcet in CKD:

hyperphosphatemia [128]). It is also unclear what

outcomes are associated with the use of 25(OH)

vitamin D in the treatment of SHPT in CKD. More

research is desirable to strengthen the conclusions of

observational studies linking CKD-MBD to unfavor-

able outcomes in CKD, and randomized controlled

trials will be needed before any of the therapies

mentioned can be recommended as a means of

improving mortality or progression of kidney disease

in CKD.
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