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Abstract

Essays in FinTech and Behavioral Economics

by

Dingyue Liu

This dissertation consists of two essays studying decision making in FinTech, and one

essay on decision making in education.

The first chapter explores swapping decisions on decentralized exchanges (DEX).

With the increasing adoption of DEX platforms, new Layer 2 (L2) blockchain alternatives

o↵er better scalability and lower fees than the Ethereum blockchain (L1), yet the relative

security of L2 is uncertain. Using a structural model and a novel dataset, we estimate

investor preferences for blockchain security between mainnet (L1), and two main L2

networks, Polygon and Optimism. We find that traders anticipate a 0.68% (3.29%)

chance of losing transaction value when trading on Polygon (Optimism) compared to

L1, significantly higher than the transaction fees (0.01%-0.3%) charged on each trade.

Our findings provide empirical evidence of the trade-o↵ between scalability, security, and

decentralization, a major challenge for blockchain networks.

The second chapter investigates default settings on DEX. DEX prices update contin-

uously after each swap, causing potential price shifts for users awaiting execution. Users

set a slippage tolerance to limit acceptable price increases, but this can either expose them

to sandwich attacks or cause transaction failures. We analyze the impact of slippage tol-

erance settings on the health of Uniswap and Sushiswap ecosystems. A recent Uniswap

change replaced the static default slippage setting (0.5%) with a dynamic one based on

market conditions to reduce sandwich attacks. We find that this change significantly re-

duces trader losses by approximately 54.7%, with an even more pronounced e↵ect (90%)

x



for traders following the default settings. We also propose further improvements for these

settings.

The final chapter examines student decision-making, specifically the impact of a gam-

ified leaderboard on engagement and procrastination. Procrastination is common among

students, particularly with assignments. Gamification, incorporating game-like elements

into education, shows promise in addressing this issue. Our results indicate that students

in the treatment group complete assignments faster, suggesting the leaderboard positively

influences study behaviors. While the overall class performance e↵ect is not significant,

transfer students and male students exposed to the leaderboard achieve higher course

grades than their peers in the control group.
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Chapter 1

Estimating Investor Preferences for

Blockchain Security

with Nir Chemaya

1.1 Introduction

Liquidity pools are innovations in decentralized finance (DeFi). They allow for the

exchange of crypto assets without the traditional centralized limit-order-book mechanism.

Investors deposit tokenized assets into smart contracts.1 They then exchange tokens

from these pools according to the terms prescribed by a mechanism that determines

the swapping price of each transaction. Uniswap is currently the largest liquidity pool

protocol in DeFi, with a daily volume of roughly $2 billion, and total liquidity of $5

billion.2

Traditionally, most liquidity pools operate on the Ethereum blockchain, also known

1A smart contract is a self-executing contract with the terms of the agreement between buyer and
seller being directly written into lines of code on the blockchain.

2Data source: https://defillama.com/dexs as of July 5, 2024.
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Estimating Investor Preferences for Blockchain Security Chapter 1

as the Layer 1 (L1). However, the DeFi landscape is evolving, and liquidity pool pro-

tocols like Uniswap have expanded their support to Layer 2 (L2) blockchains, such as

Polygon and Optimism. These L2 blockchains address Ethereum’s scalability challenges

by o↵ering lower gas fees and faster transaction processing,3 making them an appealing

option for traders.

Ethereum’s scalability is limited to processing 15-30 transactions per second, result-

ing in high gas fees. Gas fees are paid for the validation service made by the validators

(miners). When only a small number of transactions can be validated in a given block,

this can potentially creating blockchain congestion and generate high fees, as described

by Sokolov (2021). In December 2021, the gas fees for swapping transactions in Ethereum

were on average $93.30.4 Conversely, L2 blockchains like Polygon can handle up to 10,000

transactions per second with minimal gas fees. Traders are highly sensitive to network

fees and may postpone or abandon transactions when fees are high, a phenomenon docu-

mented in Easley et al. (2019). Similarly, the study by Cong et al. (2023a) reveals that L2

scaling solutions o↵er substantial reductions in operating costs (gas fees), enhanced data

accuracy, and promote decentralization by decreasing market concentration and fostering

increased participation.

L2 blockchains o↵er traders an alternative blockchain network to execute transactions

with improved conditions that could incentivize them to transition exclusively to these

platforms. However, the degree to which traders migrate to L2 will depend significantly

on their perceptions of the relative security provided by L2 and the original L1. A

major concern in moving from L1 to L2 blockchain is the security of transactions and

asset ownership. Assessing the actual risks of trading in L2 networks compared with L1

3Speed of settlement/validation of the transactions also known as Finality.
4Gas fees for swapping are determined by the gas price and the number of gas units the smart contract

uses to execute the transaction. In December 2021, the average gas price was 94 gwei. Data source:
Etherscan data from swapping transactions on Uniswap.

2



Estimating Investor Preferences for Blockchain Security Chapter 1

involves many di↵erent aspects, so this is not as straightforward to identify.

We divide the risks into three main categories. First, there are smart contract risks

– there could be a bug in the code or hacking that a↵ects the contract, or admin key

access, all of which could contribute to a centralization problem. The second risk relates

to the use of wrapped ether tokens when trading in L2 pools. Wrapped tokens represent

blockchain native tokens issued on a non-native blockchain, and the use of warped tokens

thus includes liquidity risk.5 Finally, there are validation risks that depend on the par-

ticular blockchain’s validation (consensus) technology. The main risk of the validation

process, known as a 51% attack,6 occurs when someone or a group of people takes control

of more than half of the validation authority of a blockchain network, thereby enabling

them to create and manipulate transactions. To tackle Ethereum’s scalability challenge,

L2 solutions employ distinct validation mechanisms that expedite the validation process.

However, this increased speed comes with potential risks.

It is di�cult to determine how much riskier L2 blockchains are compared to L1

blockchains. One approach to estimating traders’ perception of this risk is through

surveys, but this method can be costly and may encounter validity issues due to the

anonymous nature of users within the blockchain ecosystem. In our research, we propose

an alternative approach by analyzing trading data from liquidity pools. This method

captures traders’ behavior and decisions, o↵ering insights into their beliefs about risk.

Our inspiration for this approach comes from previous studies that have used market

prices to reveal subjective beliefs. The core idea is that prices convey valuable information

about people’s perceptions, and by employing economic models, we can estimate these

5Native tokens are often used to pay gas fees or stake in DPoS systems. Ether (ETH) on Ethereum
is an example of a native token.

6There have been several 51% attacks on blockchain networks. For example, there was an attack
described in Garratt and van Oordt (2023), on Bitcoin Gold in May 2018. A more detailed explanation
of these attacks in di↵erent blockchain validation technologies are provided in Sayeed and Marco-Gisbert
(2019).

3



Estimating Investor Preferences for Blockchain Security Chapter 1

subjective views. For instance, past research has evaluated the value of statistical life

(VSL) by comparing wages between riskier and safer jobs as discussed in Viscusi and

Aldy (2003). The wage di↵erence between these jobs reveals workers’ beliefs about the

value of their lives and the compensation they require to undertake risks. Likewise,

prediction markets leverage prices to reveal subjective beliefs about the likelihood of

events as seen in Wolfers and Zitzewitz (2006). This approach has also been applied to

financial inquiries, such as explaining the equity premium puzzle by incorporating agents’

subjective beliefs as Cecchetti et al. (2000) discuss.

By adopting this approach, we have developed a model that allows us to estimate

traders’ preferences for blockchain security using trading data. Our results shed light on

how traders may consider risk and adjust their behavior.

We use detailed data with more than five million transactions on L1 pools and more

than 14 million transactions on L2 pools. The total swapping value of these transactions

add up to more than $358 billion dollars. The data includes di↵erent kinds of pools

with di↵erent token types (WETH/ETH, WBTC, UCSD, USDT, DAI) and L2 networks

(Polygon and Optimism). We collected more than one year’s worth of data with a

significant variation in gas prices. Transactions largely sort in a systematic pattern;

specifically, we observed larger transactions in L1 and smaller transactions in the L2

network. We wished to understand why traders still use L1 if the L2 has higher scalability

and lower fees. And why did transactions sort in this way?

We first checked whether these results are due to the pool size,7 and we found that this

does not fully explain the sorting pattern. With the liquidity pools pricing mechanism,

each transaction directly impacts the exchange rate based on the size of the transaction

relative to the pool’s size. As the pool’s liquidity increases, this e↵ect decreases. However,

a larger transaction leads to greater impact. L1 pools exist longer than L2 pools; they also

7Pool size refers to the amount of liquidity in the pool.
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have higher liquidity during this time, thus o↵ering better exchange rates in relatively

large transactions. In relatively small transactions, the price e↵ect is low in both pools,

and it is less expensive to trade in L2. We calculate the optimal monetary switching

point for traders to trade on the L1 network instead of the L2 network, considering the

exchange rate and gas fees. Empirical data supports the notion that traders switch to

L1 earlier than predicted.

As security considerations related to L2 could significantly influence traders’ behavior,

we employ a structural model to capture these concerns. This model helps bridge the

gap between monetary predictions about traders’ transition to L2 and the empirical

evidence, particularly regarding the threshold for switching. We’ve determined that

other explanations, such as price accuracy, liquidity concentration, adoption costs, and

the benefits of holding assets on the original blockchain (L1), fall short in fully accounting

for the observed divergence between theoretical predictions and actual behavior.

According to our model, traders anticipate a 0.68% and 3.29% probability of incurring

a transaction value loss when trading on Polygon and Optimism, respectively, compared

to L1. This risk perception is considerable, especially when juxtaposed with the transac-

tion fee range of 0.01% - 0.3% levied by Uniswap for each trade. To our best knowledge,

this is the first study that quantifies traders’ beliefs about these security considerations

using trading data from DeFi platforms. Our methodology can be expanded to estimate

trader perceptions on other DeFi or payment platforms.

The rest of the paper is organized as follows: Section 1.2 introduces Decentralized ex-

changes, L2 Implementations and Constant Product Market Maker (CPMM). Section 1.3

and Section 1.4 describe the proposed model and methodology. Section 1.5 introduces

our data and provides summary statistics, Section 1.6 provides results, and Section 1.7

concludes.

5
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1.2 Decentralized Exchanges (DEX)

Most trading markets in the financial system are based on the traditional limit-order-

book mechanism, in which buyers and sellers bid prices via a centralized organization

that matches their bids. For years, cryptocurrencies and digital assets have mainly

traded in centralized exchanges (CEX) such as Coinbase, which works with the limit-

order book. Decentralized exchange (DEX) platforms have recently entered the crypto

market, o↵ering traders new decentralized options to trade. Since then, there has been a

significant surge in the use of DEX protocols, as observed by Makridis et al. (2023). The

most common DEX protocols are liquidity pools.

Liquidity pools are contracts that enable agents to provide liquidity (tokens/assets)

to a smart contract on the blockchain. Traders can trade tokens/assets from these pools

using a pricing rule written in the code. Most of these pools use a “bonding curve”

pricing rule, which is a function of the supply of tokens/assets in the pool and is also

known as Constant Product Market Maker (CPMM). These pools incentivize agents to

provide liquidity and become liquidity providers by giving them a swapping fee for each

swapping action from the pool. These swapping fees are around 0.01% - 1%, depending

on the protocol and tokens/assets of the pool. Most pools have two tokens/assets that

traders can swap.

The most prominent DEX platforms are Uniswap, Sushiswap, Balancer, and Ban-

cor. This paper will focus on the Uniswap protocol, which is the largest one available.

Most of these protocols work on the Ethereum blockchain (the L1 network). Recently,

some liquidity-pool protocols such as Uniswap have started to support L2 networks, such

as Polygon, Optimism, Arbitrum and Celo.8 The Uniswap protocol was initiated in

November 2021 and December 2021 to support swapping on the Optimism and Polygon

8Due to data limitations, we could not collect data from Arbitrum network. Celo is in its early stage,
so we only show our analysis from Polygon and Optimism networks.
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Estimating Investor Preferences for Blockchain Security Chapter 1

networks. We use Polygon and Optimism for our analysis as the alternative L2 networks

for Ethereum (L1).

Recently, many researchers have explored DEX platforms in various directions. Some

works (see, e.g., Lehar and Parlour, 2021; Barbon and Ranaldo, 2021) compare the vari-

ous aspects of CEX and DEX platforms, such as liquidity provision, absence of arbitrage,

price e�ciency, and transactions cost. Additionally, many papers (e.g., Park, 2021; Cap-

poni and Jia, 2021) have introduced the CPMM mechanism and discussed its properties

and conceptual flaws. We instead explore how agents decide which network to use on

DEX platforms, as well as the security aspect of those decisions.

1.2.1 L2 Implementations and Security

Measuring the actual risks of trading in L2 networks compared to L1 involves many

di↵erent aspects and so it is di�cult to identify. First, to trade in DEX, traders need to

use a smart contract that involves some risks of having a bug in the code, hacking into

the smart contract, and admin keys access, which could create a centralization problem,

as mentioned in Tsankov et al., 2018; Schär, 2021. Integrating Uniswap methods (codes)

with di↵erent blockchain networks and token types can create di↵erent security risks.

The second risk of trading in L2 compared with L1 is the use of wrapped ether tokens

when trading in L2 pools. Wrapped tokens represent blockchain native tokens issued

on a non-native blockchain. While using the L2 network, traders must use the wrapped

tokens of Ether (Ethereum native token) to trade this token in L2. These wrapped

tokens include liquidity risk, which depends on the wrapped token-issuing mechanism

(Caldarelli, 2021). The recent case of the Ronin network hack, which led to the loss of

more than $600M, contributed to shedding light on these risks.9

Finally, the validation risks depend on the blockchain’s validation (consensus) tech-

9Data Source: BBC: https://www.bbc.com/news/technology-60933174

7



Estimating Investor Preferences for Blockchain Security Chapter 1

nology. To address the scalability problem of Ethereum (L1), L2 solutions use a di↵erent

validation mechanism, which allows them to provide higher scalability and lower gas

fee. Vitalik Buterin, one of the co-founders of Ethereum, already has identified that

the biggest challenge of blockchain networks is achieving a decentralized payments sys-

tem with high scalability and security. The main problem is that there is a trade-o↵

between the three (decentralized, scalability, and security), and there is no technology

that includes all the features together (known as the blockchain trilemma or scalability

trilemma).10

With that in mind, L2 implementations try to provide higher scalability and lower

fees, but this has some drawbacks. There are many di↵erent L2 solutions, each using a

di↵erent approach. In our paper, we will focus on Polygon and Optimism, given our data

set. Polygon is a side chain network with its native token (Matic) and validation mech-

anism (Proof-of-Stake), which means that the security is separate from the L1 network.

Polygon is pegged to the Ethereum blockchain system, and users can transfer tokens

from Polygon to Ethereum and vice versa using a bridge (see Thibault et al. (2022)).

Optimism uses a di↵erent L2 solution approach called optimistic rollups. In a rollup

system like Optimism, transaction execution is moved to L2, and the data from these

transactions are published on L1. Every Optimism transaction has two costs: An L2

(execution) fee and an L1 (data posting) fee. Most of the time, these fees are significantly

lower than on the L1. Optimistic rollups use an ”optimistic” validation approach in which

the aggregators (who execute transactions on L2 and post them on L1) do not ask for

proof of validity for each transaction execution. It means that the network supposes that

the aggregators’ transactions are valid. Another group of players, called verifiers, are

monitoring the data published by the aggregators to deter any issues. A more detailed

explanation of L2 implementations is provided in Thibault et al. (2022).

10See BIS (2022); Makarov and Schoar (2022)
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The bottom line is that L2 solutions use a di↵erent validation process than L1; there-

fore, it is di�cult to tell how much riskier they are than L1. This paper aims to shed

some light on how trades react to the trade-o↵ between scalability, security, and decen-

tralization.

1.2.2 Constant Product Market Maker (CPMM)

Another di↵erence between CEX and DEX, besides being decentralized, is the pricing

mechanism; in CEX, the asset price is determined by the bids of the buyers and sellers,

while in most DEX platforms it is determined by the pricing formula called the constant

product market maker (CPMM). The CPMM formula works so that the product of the

amount of tokens X and Y in the pool must remain the same. Let’s consider a liquidity

pool that contains x tokens of token X and y tokens of token Y [following the notation

of Barbon and Ranaldo (2021)]. The CPMM pricing rule means that for any time t the

product of the available tokens (X and Y) in the pool equals a constant k, which can be

expressed as

xtyt = k

The amount of both tokens in the pool at time t determines the current pool price

Pt which can be expressed as

Pt =
yt
xt

Let f denote the protocol swapping fee which goes for the liquidity providers and

' = 1�f is what left for the trader to swap. If at time t+1 a trader wants to swap �(x)

tokens X for getting Y tokens, we can calculate how many tokens Y �(y) she will get.

CPMM states that

k = (xt + '�x)(yt ��(y))

9
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Solving for �(y):

�(y) = yt
'�x

xt + '�x

Further we can calculate the price of this swap,

P t(�x, yt, xt) =
�y

�x
=

'yt
xt + '�x

This formula’s convexity relation implies that once traders have more demand for

token X relative to token Y, the supply of this token in the pool will decrease, and thus

its swapping price will increase. Additionally, this also implies that larger transactions

have a larger price impact. However, the price impact would be small when the pool size

is relatively large to the transaction size, as shown in Lehar and Parlour (2021).

These are essential properties of the liquidity pools that traders need to know. Once

a trader can trade the same tokens X and Y in di↵erent networks, L1 or L2, the pool’s

size on each network could have a di↵erent price e↵ect, one factor which will determine

where the trader will choose to trade. The following section provides an extended model

which allows the trader to pick which network they are willing to trade in.

1.3 Model

We follow the notations of Barbon and Ranaldo (2021) with an extension where trades

can choose which network (i) they are willing to trade on.

Let i denote the blockchain network type, i = 1 is Ethereum (L1) network and i = 2 is

Polygon or Optimisim (L2) network. Let X denote token 1, and Y denote token 2. fi =

The protocol swapping fees at the network i and 'i = 1 � fi is what left for the trader

to swap. Ti,t = the gas fee of swapping in network i at time t.

Given that the gas fee is paid by native tokens (Matic for Polygon and Ether for

10
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Ethereum and Optimisim) for each network,11 we will calculate these fees in US dollars

units in our data analysis to have one unit of account. By the CPMM, we can calculate

how many tokens Y �yi trader will get when she trades on network i, which can be

expressed as:

�yi = yi,t
'i�x

xi,t + 'i�x
(1.1)

Let Pi,t represents the price of making a transaction of value �x for swapping token

Y on network i.

Pi,t(�x, xi,t, yi,t) =
�yi
�x

=
'iyi,t

xi,t + 'i�x
(1.2)

To scale our model so that we have only one unit of account for each transaction

(token 1 - token 2) or (token 2 - token 1), we calculate the total value left for the trader

after the swapping in token 2 units,12 which can be expressed as,

Pi,t(�x, xi,t, yi,t) · (�x)

To explain how agents behave in an environment where they can choose which net-

work they are willing to trade, we specify a model in which agents need to maximize

their utility when choosing between swapping in the L1 network (ETH) or L2 network

(POLY or Optimisim). This maximization problem should consider two main aspects:

how many token Y(X) traders get from swapping token X(Y) on each network and how

many gas fees they pay. On top of that, we can add a behavioral parameter of traders’

beliefs about the security of each network.

11Gas fees in the Optimisim are paid by Ether tokens. For more info: https://www.optimism.io/
12We will later convert them to US dollar values to have one unit of account.
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Representative agent maximization problem:

max
i=0,1

{i·⇡1·u(P1,t(�x, x1,t, y1,t)·�x�T1,t)+(1�i)·⇡2·u(P2,t(�x, x2,t, y2,t)·�x�T2,t)} (1.3)

Where T it is the gas fees in each network at time t, Pi,t(�x, xi,t, yi,t) represents how many

token Y(X) traders get from swapping token X(Y) on each network (a function both of

the transaction size �x and the pool size (xi,t, yi,t) in each network), and ⇡i traders’

beliefs of the probability of not losing ones’ transaction wealth in network i, everything

is scaled to be in US dollars units.13

Thus, our representative agent would choose network i if and only if

⇡i · u(Pi,t(�x, xi,t, yi,t) ·�x� Ti,t) � ⇡j · u(Pj,t(�x, xj,t, yj,t) ·�x� Tj,t)

We assume our representative agent is risk-neutral and maximizes the expected pay-

o↵.14

u(v) = v

There are two networks, L1 (Ethereum) and L2 (Polygon or Optimism), the agent

chooses L2 network if and only if

⇡L2 · (PL2,t(�x, xL2,t, yL2,t) · (�x)� TL2,t) � ⇡L1 · (PL1,t(�x, xeth,t, yL1,t) · (�x)� TL1,t)

13Our data resource allow us to convert everything to US dollars value and have one unit of account.
14There is strong evidence from many di↵erent researchers, as summarized in BIS (2022), that most

of the traders in the crypto markets are risk-seeking. Assuming that the representative agent is risk
neutral is a conservative assumption for our belief elicitation.

12
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Let w = �x and P i,t = P i,t(�x, xi,t, yi,t) we can further write:

⇡L2 · (w · PL2,t � TL2,t) � ⇡L1 · (w · PL1,t � TL1,t)

(⇡L2 · PL2,t � ⇡L1 · PL1,t)w � ⇡L2 · TL2,t � ⇡L1 · TL1,t

w  ⇡L2 · TL2,t � ⇡L1 · TL1,t

⇡L2 · PL2,t � ⇡L1 · PL1,t

w  ⇡L1 · TL1,t � ⇡L2 · TL2,t

⇡L1 · PL1,t � ⇡L2 · PL2,t

w =
⇡L1 · TL1,t � ⇡L2 · TL2,t

⇡L1 · PL1,t � ⇡L2 · PL2,t
(1.4)

This is the representative agent’s threshold transaction size in which she will switch

from the L2 network to L1.15

Consider when ⇡i in each network are equal, meaning there’s no security concerns of

L2 relative to L1, w? represents the optimal threshold at which the representative agent

should switch from trading in the L2 network to Ethereum. At any given time t with

given pools sizes and gas fees, we can calculate the theoretical w?, which we will discuss

in more detail in Section 1.6.1.

w⇤ =
TL1,t � TL2,t

PL1,t � PL2,t
(1.5)

When the representative agent’s empirical threshold, ŵ, is smaller than w?, it means

agents are switching to Ethereum even though it is less profitable. Section 1.6.3 will

provide a comparison between ŵ and w? and a robustness test to check if ŵ is statistically

significantly smaller than w?. This deviation will be captured by the security parameter

in our model. We can estimate the representative agent’s beliefs on security, the chance

15Alternative interpretation for the representative agent will be that traders have di↵erent trading
needs, but the representative agent can capture as the marginal trader that all traders with larger
(smaller) trading need trade on L1 (L2) networks.
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of losing the transaction value when trading on L2 compared to on L1, as,

SL2,L1 = 1� ˆ⇡L2

ˆ⇡L1
= 1� P2,t(ŵ, x2,t, y2,t) · ŵ � T2,t

P1,t(ŵ, x1,t, y1,t) · ŵ � T1,t
(1.6)

this will be discussed in Section 1.6.3.

1.4 Methodology

This section delves into our methodological approach when estimating agents’ beliefs

about security using trading data from a decentralized exchange platform. First, we

focused on traders’ decisions from decentralized exchanges to estimate preferences for

blockchain security, mainly because this is the most extensive data set available on DeFi

with millions of transactions.16 This data set allows us to get the most updated informa-

tion based on high-frequency decisions from the traders that capture some hidden infor-

mation about their preferences for blockchain security. Using our model and empirical

data, we will measure traders’ preferences. This section covers our main methodological

choices and the step-by-step estimation process of traders’ security beliefs.

1.4.1 Representative agent

In our model, we have incorporated a representative agent. The primary reason for

this selection is our classification model, which estimates the agents’ empirical switching

points using a logistic classification model. This will be covered in more detail in Sec-

tion 1.6.2. Given that our classification model gives us the aggregate empirical swathing

16Another possible way to estimate security concerns can be through long-term investments, such
as providing liquidity to the liquidity pools. However, this will also mean having fewer data points
(much fewer liquidity providers than traders). Additionally, liquidity providers update their position less
frequently than trading data, which could be less informative when evaluating that security measurement
on a daily basis.
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point, we need our model to follow the same logic.

To ensure robust insights from traders’ decisions, we require an extensive data set of

transactions that can provide reliable results for the logistic model with high accuracy

(low false positives and false negative rates). This generates a trade-o↵, as a large number

of observations is crucial for the success of the logistic model, but on the other hand,

can reduce accuracy in di↵erent parts of the model. Therefore, as explained below, we

needed to make methodological decisions about our data set and estimation method.

1.4.2 Pools and Blockchains Networks Selections

We followed this selection process: first, we collected trading data from all networks

and pools in Uniswap V3 protocol,17 and we identified some key features of the pools,

like average transactions per day, tokens involved, pool transaction fee, etc. We decided

only to focus on Polygon and Optimism as the L2 networks because they were the biggest

available during our sample period. Then, we sorted pools that were only available both

on L1 and L2, shared the same liquidity pool fee, and shared the same token types.

Finally, we chose from only pools with more than 200 average daily transactions and a

minimum of 70 or more transactions per day. This selection process allows us to focus on

pools with enough transaction data to give reliable results for our logistic classification

model to estimate the empirical switch point. Also, this selection process allows drop

pools with less stable/familiar token types that have a lot of price manipulation and

generate a lot of noise.

17Uniswap V2 only operates on Ethereum (L1), and there are no pools available on L2 networks.
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1.4.3 Frequency of Estimation

We decided to estimate the security beliefs daily, given our date set. We observed

that most of the pools have low amount of transactions per hour to run the logistic model

hourly and get robust results. However, this means that we needed to use the average

daily gas price for our model, which can reduce the model’s accuracy given that those

prices vary over the day; this is one of the limitations and trade-o↵ decisions we were

forced to make. In addition, we took the liquidity available for trade as a sticky during

the day without allowing this to change when liquidity providers change their positions

(use the starting liquidity in a given day for calculation), which also reduced the model

accuracy. Given the consistency of the gap between the representative agent’s threshold

and the empirical one in our result, this suggests that this methodology decision has a

low impact on accuracy.

1.4.4 Uniswap V2/V3

Our model is based on Uniswap V2 (Adams et al., 2020), where traders can trade from

the pool without liquidity restrictions. However, Uniswap V3 (Adams et al., 2021) works

in di↵erent mechanisms, providing liquidity with some price limits. Unfortunately, we

cannot analyze our data with the new V3 mechanism due to data limitations. However,

Chemaya and Liu (2024) shows that the V2 model can provide highly accurate results

for V3 data, especially in the top big pools with high accuracy, 98% of the transactions

have less than 0.01% price deviation. In Section 1.6.4, we test our data set accuracy

using the V2 model and get very high predictive power to ensure this will not impact our

main results.
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1.4.5 Estimation process

1. We collected all Uniswap V3 trading data for our sample period.

2. Following the selection methodology in Section 1.4.2, we only analyze pools that

meet our selection requirements, guaranteeing the accuracy of our analysis and

reducing noise.

3. Each day, we calculate the average sweeping fees in US dollars on all our networks,

representing the daily average gas costs to swap that traders paid in each network.

Our model captures these gas costs as TL2,t for Polygon and Optimism and TL1,t

for Ethereum.

4. For each day, we collected the initial liquidity available in each pool at the beginning

of the day, which is captured as xi,t, yi,t.

5. Based on the daily gas prices data and the liquidity available, we use our model

for every two identical pools on L1 and L2 and calculate the representative agent’s

theoretical threshold w⇤.

6. Using empirical data that capture traders’ decisions about which network they

decided to trade, we use our classification model covered in Section 1.6.3 to calculate

the representative agent’s empirical threshold ŵ. We also use bootstrap to construct

the 95% CI for ŵ.

7. Finally, using Equation 1.6 from our model we estimate the representative agent’s

daily beliefs on security, which is the relative chance of losing the transaction value

when trading on L2 compared to L1.
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1.5 Data

This paper collects transactions from a total of 21 liquidity pools on the Uniswap V3

protocol,18 including 8 in the L1 network (ETH) and 13 in L2 network (6 in POLY, 7 in

OPT), following the selection process covered in Section 1.4.2.

These pools allow traders to trade the same token types in L1 and L2 (POLY and

OPT) and have a su�cient amount of transactions per day. These pools jointly contribute

63% of the transactions on the Uniswap when considering pools that are available for

trades to trade the same pair of tokens on L1 and L2.19 Six di↵erent tokens are swapped

in these pools (DAI, USDC, USDT, WMATIC/MATIC, WBTC, WETH/ETH), and the

pool fee ranges from 0.01% to 0.3%.

Our main analysis will focus on three liquidity pools, with one from the three networks

(ETH, POLY, OPT). Each of the three pools have the same pair of tokens (USDC and

WETH/ETH),20 and have the same protocol swapping fees f1 = f2 = 0.05%. Those

pools are the biggest ones in our data set and contribute more than 50% of the daily

transactions. Utilizing blockchain explorer services (Uniswap Data Extractooor),21 we are

able to track each and every Erc-20 tokens transactions that happened in the liquidity

pools.22 We collected data from December 22, 2021, the launch date of the Polygon

network pool, until December 31, 2022.23

18The Uniswap protocol is a peer-to-peer system designed for exchanging cryptocurrencies (ERC-20
Tokens).https://docs.uniswap.org/protocol/introduction

19Many pairs of tokens are network specific and can be traded only on one of the networks. For
example, on 12/05/2022, only 53.36% of the transactions on Ethereum pools were with tokens that were
available on L2 (Data source Uniswap Data Extractooor); there was a similar situation with L2 pools:
only 55.39% (46.56%) of the transactions on POLY(OPT) pools were with tokens that were available on
L1.

20The Ether (ETH) tokens on the L2 blockchains are wrapped tokens (WETH).
21https://www.uniswap.shippooor.xyz/
22The ERC-20 introduces a standard for Fungible Tokens, in other words, they have a

property that makes each token be exactly the same (in type and value) as another token.
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/

23Optimism pool lunching day was one month before on 11/12/2021.
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Within this 12 months period, we obtained a total of 2, 789, 976 swapping transactions

(exchange between USDC and WETH/ETH) from L1 ETH network, 4, 991, 764 swapping

transactions from L2 POLY network, and 4, 323, 672 swapping transactions from L2 OPT

network.24 That is a total of more than 12 million swapping transactions, which resulted

in a sum of $237 billion. The distributions of the amount swapped in the three platforms

di↵er during the time of interest (Figure 1.1). We modified the magnitude of the values

for large numbers, so this graph is more readable. All transactions with a value greater

than 10,000 dollars are over-written to 10,000 (for this graph only). We observe that the

L2 distribution is right-skewed for most smaller transactions (on POLY less than $923,

on OPT less than $64). On the other hand, the majority of the transactions on L1 ETH

are larger than $5, 002, five to a hundred times more than on L2.

Figure 1.1: Histogram of swapping values between USDC and WETH on three platforms

24ETH Contract address: 0x88e6a0c2ddd26feeb64f039a2c41296fcb3f5640.
POLY Contract address: 0x45dda9cb7c25131df268515131f647d726f50608.
OPT Contract address: 0x85149247691df622eaf1a8bd0cafd40bc45154a9.
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We also calculated the daily mean gas fee for swapping in each network.25 During

this time period, the average daily mean gas fee for swapping was $22.93 on L1, $0.559

on OPT, and $0.030 on POLY.

Figure 1.2: Time series of gas fee

We also collected data on the daily size of the three liquidity pools from Uniswap.

ETH’s pool had a higher pool size during our observation dates, with an average of

$277.6M, while the average size of POLY was $13.40M, and the average size of OPT was

only $4.72M. Figure 1.3 is the time series presentation of the three liquidity pools’ size

during this time period.

1.6 Results

This massive trading data from liquidity pools capture traders’ behavior and deci-

sions. In this section, we will use our model to analyze that data and estimate traders’

25Data Source: Etherscan, Polyscan & Optimistic.etherscan.
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Figure 1.3: Time series of pool size

preferences for blockchain security. We will mainly discuss the result from the three pools

introduced in Section 1.5, which are the biggest ones in our data set. We will first show

details of estimating the security of the POLY (L2) network relative to ETH (L1) using

POLY & ETH, USDC/WETH 0.05% pools; then we will show results from OPT (L2)

network and other pools.

We estimate traders’ belief in security by studying behavior deviation from monetarily

optimal decisions. In Section 1.6.1, we calculate the monetarily optimal switching point

W ⇤, as a function of liquidity pool size and transaction fee. Section 1.6.2 presents our

empirical strategy for finding the actual switching point Ŵ from the data. Section 1.6.3

summarizes the security concern from W ⇤ and Ŵ based on our model while Section 1.6.4

cover why alternative explanations are unlikely to explain our main results. Finally

Section 1.6.5 further shows our model’s generalizability to other networks and pairs of

tokens in di↵erent pools.
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1.6.1 Monetarily optimal switching point W ⇤

Why do traders still use L1 if the L2 has higher scalability and lower fees? The

exchange rate of a swapping transaction in the liquidity pool is determined by the liquidity

pool size and the size of the transaction itself (recall Equation 1.2 in the model section).

The higher liquidity in L1 makes L1 pools have a lower price impact, o↵ering better

exchange rates for relatively big transactions. On the other hand, if the transaction size

is relatively small, the price e↵ect in both pools is low; considering L1 has a higher gas

fee, it would then be cheaper to trade in L2. Given pool size and gas fee at a low swapping

size, it would be cheaper to swap on L2; at some switching point, it would be optimal to

switch to swap on L1.

Take April 11th, an arbitrary day, as an example: the ETH, USDC/WETH 0.05%

pool size is $322.93M, and the POLY, USDC/WETH 0.05% pool size is $18.58M. The

mean gas fee is $27.37 per swapping transaction on ETH, and $0.02 per swapping trans-

action on POLY. Following Equation 1.2, while also taking into consideration the gas

fee, we calculate the total value left for the trader after the swapping. As shown in

Figure 1.4,26 it is better to swap on Polygon at first, and then better on Ethereum once

the swapping value becomes larger (to be exact, once the swapping value is larger than

$16, 442).

We calculate this monetarily optimal switching point W ⇤ for all dates in our data,

and get Figure 1.5.

1.6.2 Empirical switching point Ŵ

The monetarily optimal switching point W ⇤ can explain some reasoning behind

traders trading on both platforms and separated in a certain way, yet empirical data

26Using R package ggforce (Pedersen, 2021).

22



Estimating Investor Preferences for Blockchain Security Chapter 1

Figure 1.4: Total value left for the trader after swapping

supports that traders are switching to L1 for much lower transactions.

In order to find the representative agent’s empirical threshold from the data, given

that we are facing a binary classification problem, we implement a binary logistic model.27

A binary logistic model states that the probability of outcome Y belongs to class y

given predictor W equal to a logistic function.

Pr(Y = 1|W ) =
e�0+�1W

1 + e�0+�1W

There are two classes, transaction is on L2 (Y = 1), and transaction is on Ethereum

(Y = 0). Our predictor W is the transaction value (in Dollar unit). It is a linear model

27A competing method is linear discriminant analysis, a linear method in classification, see Ap-
pendix A.1 for more discussion.
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Figure 1.5: Monetarily optimal switching point W ⇤
P,E

as the logit, or log-odds, is linear in W.

log(
Pr(Y = 1|W )

1� Pr(Y = 1|W )
) = �0 + �1W

We report the the summary of the logit regression result using 2022/4/11 data in

Table 1.1.28 The coe�cient for W (Transition value) is negative, meaning the higher

the transaction value is, the lower the log odd, that is, the lower the probability of this

transaction is on L2 (and higher probability is on Ethereum). Both the interception and

the coe�cient for W are statistically significant.

To find the empirical threshold value Ŵ , we obtain �̂0 and �̂1 from the regression,

28Using R (R Core Team, 2020), and R package texreg (Leifeld, 2013).
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Logit Regression
(Intercept) 1.72⇤⇤⇤

(0.02)
Transaction value �1.278e�4⇤⇤⇤

(in Dollar) (2.822e�6)
AIC 18401.68
BIC 18417.62
Log Likelihood �9198.84
Deviance 18397.68
Num. obs. 21364
⇤⇤⇤

p < 0.001; ⇤⇤
p < 0.01; ⇤

p < 0.05

Table 1.1: Binary Logistic Model result: 2022/4/11 data

and the best threshold probability P̂ r(Y = 1|W ).29

Ŵ =
1

�̂1

(log(
P̂ r(Y = 1|W )

1� P̂ r(Y = 1|W )
)� �̂0)

Figure 1.6 shows a time series of the calculated Ŵ . On 2022/4/11, this empirical

threshold is $3, 469.

1.6.3 Estimating belief on security

Our structure model captures traders’ security concerns about L2. This security con-

cern can explain the gap between the switching point from the pure monetary prediction

W ⇤ and empirical Ŵ . Figure 1.7 is a direct comparison of the two time series in one

graph. The shaded area around the blue line represent the area of 95% confidence interval

obtained by running bootstrap on the transaction data.30

Notice that the monetarily optimal switching point W ⇤ is always above the empirical

threshold Ŵ . This is consistent with our prediction of the model. The intuition is

29See Appendix A.2 for more details.
30Using R package boot (Davison and Hinkley, 1997).
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Figure 1.6: Empirical switching point ŴP�E

as follows, due to the security concerns, people would switch from trading in Polygon

network to Ethereum network earlier, thus the gap we observe from empirical evidence

and model prediction, that is, the gap of Ŵ and W ⇤.

As defined in Section 1.3, SL2,L1, our estimator of the representative agent’s beliefs

on security, is the chance of losing the transaction value when trading on L2 compared to

on L1. SL2,L1 should be greater than 0, as the probability of not losing ones’ transaction

wealth in L1 network should always be smaller than on L2 network, since Layer-2 network

building on Layer-1 network. The calculation confirms this as the estimator is always

greater than 0.

Here in Figure 1.8, the y axis is SL2,L1 = SP,E; the higher the estimator, the more

security concerns our representative agent holds on the Polygon network. The mean of

the analysis time period is 0.751%, suggesting that in this period, on average, agents think
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Figure 1.7: Monetarily Optimal Threshold W ⇤
P,E

vs Empirical Threshold ŴP,E

there is 0.751% more chance of losing transactions on Polygon compared to Ethereum.

The median is 0.554%.

The ratio is significantly di↵erent from 0 (greater than 0), as its 95% confidence

interval, obtained by running bootstrap on the transaction data, never cover 0.

1.6.4 Investigating Alternative Factors to Explain the Results

In this section, we will explore alternative explanations that could account for the ob-

served gap between the monetary optimal switching point and the empirical one. Specif-

ically, we will closely examine potential explanations related to factors such as price

accuracy, adoption cost, and the advantages of owning assets on L1. However, we find

that these explanations are less likely to account for the observed gap, as the available
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Figure 1.8: Estimated Security Parameter

data does not provide strong support for them.31

Moreover, taking into account the blockchain trilemma, as discussed in Section 1.2.1,

which highlights the trade-o↵ between scalability and security, users who transition to

more scalable networks like L2 should be mindful of this trade-o↵. In light of this, we

assert that security assumes a pivotal role in explaining the observed gap and our research

findings.

31An additional argument could be that our data includes some trade-washing and price manipulation
transactions, which can generate noise that might explain the observed gap, as described in Amiram et al.
(2021); Cong et al. (2023b); Victor and Weintraud (2021). To address this, we conducted a robustness
check, focusing only on users who trade two or fewer transaction per day, as they are less likely to engage
in this price manipulation act. This analysis yielded similar results, as detailed in the Appendix A.6.

28



Estimating Investor Preferences for Blockchain Security Chapter 1

Price Accuracy

One argument suggests that the gap between the monetary optimal switching point

and the empirical one may be attributed to di↵erent prices across networks. However, our

data indicates that prices across networks, particularly in large pools with well-known

tokens, are equal between L1 and L2. Figure 1.9 plots the time series of WETH price

relative to USDC in the 0.05% fee liquidity pool for all three platforms. Prices across L1

ETH, L2 POLYGON, and L2 OPTIMISM are almost identical such that the time series

overlaps.

Figure 1.9: WETH/USDC price in 0.05% fee liquidity pool

This suggests that arbitrageurs operate across layers, potentially holding L2 and L1

accounts and periodically transferring funds between networks to avoid incurring cross-

chain costs. This concept resembles arbitrageurs trading on both centralized exchanges

(CEX) and decentralized exchanges (DEX), where moving funds from DeFi to CeFi
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can be costly. The presence of arbitrageurs across networks weakens the argument that

traders do not monitor prices across networks, and the potential gap could be due to

monitoring costs.

However, if this were the case, we would anticipate greater price volatility between

networks, and the security parameter might exhibit more noise or even negative values. In

light of our model, when prices on L1 are more favorable than L2, price inaccuracy should

manifest as a lower security parameter and potentially even as negative values, signifying

that L2 is more secure than L1. Nevertheless, our data consistently demonstrates positive

security parameters, indicating the accuracy and consistency of exchange prices on L2 in

comparison to L1.

Liquidity concentration

Lehar et al. (2023) suggests that lower gas fees lead liquidity providers (LPs) to

manage their positions on V3 pools more actively on L2 networks. This will reduce the

liquidity available for traders on L2 pools in a given price range.32 Caparros et al. (2023)

shows that lower gas fees on Polygon allow LPs to update their positions more frequently

than on Ethereum (L1). Given our data and methodology restrictions, we could not

consider this in our model. Still, we run the following robustness test to ensure that this

is not the primary driver of our main results. Given the large number of transactions we

observe, we can check the predictive power of our V2 model vs. the empirical execution

price on V3 data considering the LP positions, following the methodology in Chemaya

and Liu (2024).

32Another direction could be for sophisticated traders to strategically execute small transactions on
L2 to push LPs and arbitrageurs to update prices in the pool and reduce the trader’s price impact. If
this is the case, our results will contradict this argument. We observe a much higher gap between the
empirical and theoretical switching points on Optimism than Polygon. If gas costs are much lower on
Polygon, it should yield the opposite results based on this argument.
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d̃ within 33

Network Size of Txn Txn 34 0.5% 1% 5%

Ethereum all 2,745,838 99.96% 99.97% 99.98%

Polygon
 $3, 994 3,989,514 99.7% 99.8% 99.85%
> $3, 994 \  $52, 010 35 914,176 99.7% 99.7% 99.82%
> $52, 010 5,568 99.3% 99.6% 99.80%

Optimism
 $983 3,288,508 96.4% 98.4% 99.20%
> $983 \  $11, 826 36 991,095 92.9% 95.9% 98.5%
> $11, 826 34,520 75.7% 84.6% 93.6%

Table 1.2: Percentage of transactions’ d̃ within threshold.

Table 1.2 suggests that liquidity was available for traders to trade in L2 networks even

for more significant transactions than the theoretical switching point range value (we

calculate the min and max of those values during our sample period). Some transactions

(the ones that fail in the classification model) indeed execute significant transactions on

L2, and the predicted price is still high in those cases, with most of the transactions

having less than d̃ = 0.5% price deviation. This suggests that liquidity supply e↵ects due

to LPs managing their positions can’t explain the observed gap.

Adoption Cost

The use of L2 solutions entails an adoption cost initially, which may influence users’

transition from L1 to L2. To adopt L2 solutions, users need to transfer funds from L1 to

L2 (involving bridging mechanisms) and create a new wallet on L2, requiring familiarity

with the L2 network. Although L2 solutions aim to streamline the process by enabling

the use of the same digital wallet and wallet ID across L1 and L2 networks, the adoption

33d̃ is the absolute percentage deviation of V2 model predictions for swap outcome from the actual
exchange outcome of the V3 data. Methodology adopted from Chemaya and Liu (2024).

34Taking transactions between Jan 1st, 2022, and Dec 31st, 2022.
35minw⇤

P,E
and maxw⇤

P,E
during the analysis period.

36minw⇤
O,E

and maxw⇤
O,E

during the analysis period.
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cost may still be substantial for certain users, depending on users’ level of sophistication

and familiarity with these systems.

Given that our model employs a representative agent framework, it might overlook

this adoption cost concern, and it is possible that small users find the adoption cost

relatively a↵ordable while wealthier users face higher barriers. To assess this argument,

we conduct analyses on a subset of the data, namely, on wallets that traded on both

L1 and L2 during the period of analysis. This allow us to examine whether users who

hold funds in both L1 and L2 exhibit the same pattern of smaller transactions on L2 and

relatively larger ones on L1, as well as whether their switching point is lower than the

optimal one.

Table 1.3 gives an overview of the subset data. 17,246 unique wallet addresses

swapped on both ETH and POLY for the USDC/WETH 0.05% pools. Together they

contribute to about 5%-7% of the total transactions we observed in this period, and

about 1%-6% of the total transaction value on each platform.

We then conduct the same analysis as in Section 1.6.3 to obtain the mean (median)

estimated security parameter. Our findings not only support that individual users follow

the same patterns as our representative agent, but also highlight that the representative

agent result is a lower bound of this security estimate, thereby weakening the adoption

cost argument. A similar plot to Figure 1.8 can be found in Appendix A.3 for this subset

data, Figure A.6.

Finally, we test whether the observed gap captures the slow adoption of the L2 net-

works, which should disappear over time when more traders adopt those networks. Fig-

ure A.13 in Appendix A.7 shows data that while the security estimation on Polygon has

slow movement, there was massive adoption on Polygon with many new users joining the

network.
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DEX # TXN
(%)

Total Volume
(%)

Mean Estimated
Security Parameter

(Median)

Full
ETH 2,789,976 $220,065,992,854
POLY 4,991,764 $12,401,731,851 0.751%

(0.554%)

Subset
ETH

142,538
(5.1%)

$2,119,468,116
(1.0%)

POLY
346,088
(6.9%)

$ 697,737,558
(5.6%)

1.672%
(1.250%)

Table 1.3: Subset Data for users that swap on both ETH and POLY

Benefit of Owning Assets on L1 vs. L2

In addition to the liquidity risk associated with holding tokens on L2, which is one

of the security concerns we highlight, our model assumes that tokens on L2 and L1 are

essentially the same. However, it is plausible that tokens possess di↵erent utility values.

Users may utilize their tokens on L1 in other DeFi applications that generate higher

returns compared to L2, thereby providing additional value to L1 tokens and potentially

explaining the observed gap.

Nevertheless, it is worth noting that numerous DeFi applications are currently avail-

able on L2, including DEX platforms and lending protocols, o↵ering a diverse range

of financial options that can occasionally yield higher returns than holding tokens on

L1. For example, our data reveals that providing liquidity on L2 generates higher daily

returns compared to L1 (Figure 1.10). Despite this, liquidity providers still exhibit a

preference for providing liquidity on L1. This behavior reinforces our security concern,

as it suggests that the switching cost from L1 to L2 may be relatively low compared to

the higher returns from providing liquidity on L2, yet liquidity providers still choose L1

as their preferred option.
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Figure 1.10: Fee collected per dollar liquidity for USDC-WETH 0.05% liquidity pool

1.6.5 Generalization

The analysis conducted in the above sections can be generalized to other L2 network,

and also other liquidity pools with di↵erent tokens.

We first look at the corresponding pool in Optimism mentioned in Section 1.5. Ap-

pendix A.4 documented the corresponding Figure 1.7 and Figure 1.8 for this same pair

of tokens and same protocol swapping fees, but comparing Optimism and Ethereum.

Similar to our results from swapping behavior in the Polygon pool case, again, there’s

always a gap between the empirical threshold and monetarily optimal threshold in Fig-

ure A.7. The estimated security parameter for Optimism of this token pair (Figure A.8)

has more fluctuation, and on average, higher security concerns from the representative

agent compared to Polygon (mean is 3.53% and median is 2.64%). We will discuss this

di↵erence between Polygon and Optimism later.
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To further verify our model, we performed the same exercise to 5 other token pairs

on Polygon and 6 other token pairs on Optimism. These pools have di↵erent tokens

involved, and also have various protocol swapping fees. Table 1.4 summarizes all the

liquidity pools we have analyzed.

Pool fee L2 Polygon L2 Optimism
DAI/USDC 0.01 0.01
DAI/WETH 0.05
MATIC/WETH 0.3
USDC/USDT 0.01 0.01
USDC/WETH 0.05 0.05
USDC/WETH 0.3 0.3
USDT/WETH 0.05
WBTC/WETH 0.05 0.05

Table 1.4: List of liquidity pool analyzed

Some of these pools were not available until recently; in order for us to compare our

model result across di↵erent pools and networks, we take the intersection of period of

time for all pools, which is August 5, 2022 to December 31, 2022, a period of 149 days.

Appendix A.5 provides the histogram of swapping values and the estimated security

parameter for these additional 11 pools. All previous analysis is replicated, as we observe

the histogram of swapping values sort in the same way as we previously introduced, with

small transactions in L2 and large transactions in L1. Moreover, the gap between the

empirical threshold and monetarily optimal threshold are all robust, and the estimated

security parameters are also similar (within the same network).

Based on each day’s trading volume in each pool, we assign a weight to calculate

the weighted mean of the security parameter SL2,L1 for the two L2 platforms. The

weighted mean for Polygon is 0.68%, and for Optimism is 3.29%, meaning that the

representative agent believed that there is 0.68% more chance of losing transactions on

Polygon compared to Ethereum, while there is 3.29% more risk on Optimism compared
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to Ethereum.

As one might notice from Appendix A.5, there’s more fluctuation and worse security

estimator for Optimism than Polygon; indeed, as shown in Figure 1.11, the Optimism’s

weighted mean is significantly greater from Polygon’s at 95% level. This suggests traders

believe that the Optimism network is less secure than Polygon. A security incident

where attackers stole $15 million in OP governance tokens in June 2022 could support

this result.37

Alternative explanations are that perhaps the ”optimistic” approach in the validation

process of optimistic rollups reduces the reliability from a trader’s point of view. Another

possible explanation is that the Community of the Polygon network is much greater than

the Optimism, which generates more reliability of the traders in the Community and less

about the technology behind it. But this is speculation and a topic for future research.

Figure 1.11: Weighed Mean of Estimated Security Parameter

37Data source: https://www.coindesk.com/tech/2022/06/09/15m-of-optimism-tokens-stolen-by-an-
attacker-after-wintermute-sent-wrong-wallet-address/
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1.7 Summary

The primary focus of our analysis of this novel trading environment in DEX platforms

is to quantify traders’ belief about security issues regarding L2 compared to L1. To

do so, we analyzed trading data using a structural model. Our model calculates the

monetarily-optimal switching point for traders to trade on the L1 network instead of L2.

Empirical data supports the idea that traders use L1 for lower transactions even though

it is less expensive to trade on L2. We argue that security concerns have a critical role

in explaining this gap.

Our model reveals that, on average, traders anticipate a 0.68% (3.29%) chance of

losing transaction value when trading on Polygon (Optimism) compared to L1, which

is a substantial risk considering the (0.01%-0.3%) transaction fees charged per trade.

Our analysis utilized a large and diverse dataset that incorporated various gas prices,

di↵erent types of tokens, and two L2 networks (Optimism and Polygon). Despite this

variation, we consistently obtained similar results, which highlight the robustness of our

findings. Moreover, we have rigorously established that alternative explanations such as

price accuracy, liquidity concentration, adoption costs, and the advantages of holding

assets on L1 are less influential in explaining the observed preference for L1 over L2. We

also develop preliminary insights on the impact of L2 solutions to the financial inclusion

of DEX. L2 solutions allow traders with low stakes to enter a market with a low-gas-fee

environment. The number of swapping transactions on L2 is much higher than on L1,

and these are mostly small-size transactions. The high gas fees in L1 do not allow traders

with a small budget to trade when gas fees are high relative to their small transactions.

Our work can be seen as empirical evidence of the trade-o↵ between scalability, security,

and decentralization, which is the biggest challenge of blockchain networks.

Looking forward, our novel methodology can be applied to other L2 net- works,
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allowing researchers to estimate traders’ security concerns across di↵erent networks in

DEX platforms. The long-term e↵ect of the introduction of the L2 networks is yet to be

explored. Will concerns about security be reduced when L2 has been in existence longer?

DeFi markets should be explored further, and we invite more researchers to study this

new environment.
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Chapter 2

The Power of Default: Measuring

the E↵ect of Slippage Tolerance in

Decentralized Exchanges

with Nir Chemaya, Robert McLaughlin, Nicola Ruaro, Christopher Kruegel,

& Giovanni Vigna

2.1 Introduction

Nudge theory suggests that small environmental features can capture attention and

influence behavior and decision-making, as argued by Thaler and Sunstein (2008). The

phenomenon of the default e↵ect, whereby people tend to stick with the default deci-

sion, is a well-known example of this theory. This e↵ect occurs when individuals are

presented with a choice, and the decision architecture suggests a default option. When

individuals do not actively choose an alternative, the default option is the one they ulti-

mately end up with. As a result, the likelihood of that particular decision being selected
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is higher in comparison to the other available options. Given that the default decision

can significantly impact people’s choices, policymakers must select the optimal default

to promote greater social welfare. There is a wealth of evidence on the default e↵ect,

particularly in the realm of financial decisions. To enhance welfare, policymakers have

implemented measures such as adjusting default choices, as demonstrated by the “Save

More Tomorrow” program (Thaler and Benartzi, 2004).

We can find many default settings in many di↵erent Decentralized Finance (DeFi)

platforms. For example, many Decentralized Exchanges (DEX) platforms have a default

slippage tolerance setting for traders. This slippage tolerance protects the user in case

there is a change in the expected exchange rate, i.e., the smart contract will execute

the transaction only if the traders obtain, at a minimum, a specified quantity of tokens.

Additionally, it can protect users from “sandwich attacks,” which is a price manipulation

tactic wherein an attacker strategically influences market prices to exploit traders on

DEX platforms. We will describe this in detail in the following sections.

The slippage tolerance setting must be chosen carefully. By choosing higher slippage

tolerance values, traders increase the potential profit for sandwich attacks, which makes

them more vulnerable to such attacks. Consequently, it is imperative that traders choose

a slippage tolerance that is not too high. Conversely, choosing lower slippage tolerance

values raises the likelihood that the transaction fails because of price movement caused

by normal, but unanticipated, trades from other users. When the the slippage toler-

ance threshold is exceeded, no swap will be performed, but the user must still pay gas

fees. Therefore, traders must carefully consider these trade-o↵s when deciding on their

preferred slippage levels.

Ethereum currently carries the highest Total Value Locked (TVL) among blockchains

in the DeFi ecosystem, and on which Uniswap is the most prominent DEX platform, as

measured by TVL (defillama, 2023). Initially, Uniswap set the default slippage tolerance
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at 0.5%. However, on March 16th, 2023, the Uniswap protocol implemented a modifica-

tion to its default slippage tolerance mechanism. This new approach takes into account

estimated network fees and the size of traders’ transactions to compute a customized

slippage for each trade (Uniswap, 2023b). Depending on the specific trade and market

conditions, this new default can range from 0.1% to 5%. The primary objective of this

modification is to reduce the impact of sandwich attacks that leverage price manipulation.

Fortunately, other DEX protocols like Sushiswap (Sushiswap, 2021), have maintained the

default slippage tolerance at 0.5%. This allows us to use Sushiswap as a control when

we are conducting our analysis for the impact of Uniswap’s new default settings.

To understand how this dynamically determined slippage tolerance impacts the ecosys-

tem, we performed a large-scale measurement. More precisely, we analyzed all the trans-

actions executed on Uniswap and Sushiswap protocols on the Ethereum blockchain in the

month of March 2023 – amounting to approximately 5 million swap transactions – from

which we infer the slippage tolerance setting of 1,187,141 Uniswap and 19,111 Sushiswap

swaps.

The results of our analysis using new measurement approaches provided several in-

sights, which are the contributions of this paper:

1. We developed a methodology for utilizing data from the Ethereum public transac-

tion queue (the mempool) to infer traders’ decision-making regarding slippage in

trading. By employing this technique, we examine the existence of a default ef-

fect in DEX platforms. Our findings reveal that 24% of Uniswap transactions and

67% of Sushiswap transactions adhere to the default slippage tolerance o↵ered by

the protocols. This demonstrates the substantial impact of the protocols’ default

settings on trading behavior.

2. We evaluate the e↵ectiveness of Uniswap’s recently introduced slippage mechanism
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in terms of the benefits it provides to the traders’ welfare. Notably, our findings

indicate that the adoption of Uniswap’s new default slippage setting leads to a

substantial reduction in traders’ losses by approximately 54.7%. We conducted

a robustness check to ensure that this e↵ect is primarily observed in users who

follow the default, i.e., defaulters. We found that this is indeed the case, with

an approximate 90% reduction in losses for defaulters’ welfare. Considering that

default users are still su↵ering losses from sandwich attacks, this underscores the

potential for further improvement of the default settings.

2.2 Background

2.2.1 Decentralized Exchanges

DEX platforms have emerged as a new option for traders in the cryptocurrency

market, enabling them to engage in decentralized trading activities without relying on

the conventional centralized order book mechanism such as the one that Coinbase op-

erates (Coinbase, 2023). Many DEX platforms use liquidity pools, which are smart

contracts that allow agents to provide liquidity in the form of tokens or assets on the

blockchain. Most pools have liquidity for two tokens/assets and enable users to exchange

between them. Traders exchange tokens or assets from these pools using a pricing rule

specified in the smart contract code. One of the most commonly used pricing rule in

these liquidity pools is the Constant Product Market Maker (CPMM), which is deter-

mined by the supply of tokens or assets in the pool (Xu et al., 2023). Liquidity providers

are incentivized to engage in these pools by receiving a fee from each swap action, which

typically ranges from 0.01% to 1%, depending on the protocol and the tokens/assets

in the pool. Considering the predominant trading volume observed on the Ethereum
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blockchain, this work focuses exclusively on the analysis of DEX data on the Ethereum

blockchain. Uniswap is currently the largest DEX protocol in DeFi, with a daily volume

of roughly $1 billion and total liquidity of $2 billion (Uniswap, 2021) on the Ethereum

blockchain.1

2.2.2 Sandwich Attacks

Despite their popularity, users of DEX platforms regularly su↵er from sandwich at-

tacks, an issue which is endemic to the ecosystem. A sandwich attack is a price ma-

nipulation tactic wherein an attacker strategically influences market prices, which forces

unassuming traders into accepting higher-than-necessary prices.

In Ethereum, pending transactions are first sent into a public queue, the mempool,

before they are executed. A malicious user (Mallory) can observe these pending trans-

actions and exploit them using the sandwich attack pattern. During a sandwich attack,

Mallory monitors public transactions queued in the mempool and strategically inserts

two of her own transactions immediately before and after the victim’s transaction. These

transactions are commonly referred to as front-running and back-running, respectively.

Attackers, by using this tactic, can gain a massive profit depending on the trade size and

market conditions. The total annual profit extracted by sandwich attackers is approxi-

mately over $100 million annually (Qin et al., 2022).

For instance, consider a scenario where Alice intends to trade 10 of token A for 1

token B, which, in this example, is the expected exchange price in the liquidity pool

if her transaction is executed next. Alice’s transaction is sent to the mempool and

awaits execution by a block producer. Mallory observes Alice’s pending transaction, and

strategically inserts a large swap immediately before Alice’s, which raises the exchange’s

price significantly. Alice’s transaction then executes after Mallory’s, but with a worse

1Data source: https://uniswap.org/ on March 16, 2023 (only Ethereum).
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price due to the CPMM pricing rule (for example, assume that she now receives only 0.8

B tokens). Finally, Mallory will execute another large swap in the opposite direction of

exchange, restoring the un-manipulated exchange price. This results in Mallory earning

a profit of 0.2 B tokens at Alice’s expense. A prototypical sandwich attack is shown

in more detail in Figure B.3 in Appendix B.4. Mallory may also choose to generate

“multi-meat” sandwich attacks, wherein a single attack, i.e., a pair of front-running and

back-running transactions, targets multiple victims simultaneously. This is illustrated in

Figure B.4 in Appendix B.4.

2.2.3 Related Work

Extensive research has been conducted on DEX platforms from various perspectives,

providing valuable insights into their functioning. Notably, several studies (Lehar and

Parlour, 2021; Barbon and Ranaldo, 2021) have focused on comparing centralized ex-

change (CEX) and decentralized exchange (DEX) platforms, analyzing crucial factors

such as liquidity provision, absence of arbitrage, price e�ciency, and transaction costs.

Additionally, a significant body of literature (Park, 2021; Capponi and Jia, 2021) has

been devoted to investigating the Constant Product Market Maker (CPMM) mechanism,

examining its properties, and identifying conceptual flaws.

Among the identified flaws, one prominent concern highlighted in Park’s work (Park,

2021) is the vulnerability of traders to sandwich attacks. Numerous papers have delved

into the concept of sandwich attacks, discussing their empirical existence (Daian et al.,

2020; Zhou et al., 2021; Lehar and Parlour, 2023; Züst, 2021; Qin et al., 2022; Torres

et al., 2021).

The work by Heimbach and Wattenhofer (2022) is particularly relevant to our re-

search. They introduced a model called the “Sandwich Game,” which is based on game
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theory and allows traders to protect themselves against sandwich attacks by selecting an

optimal slippage protector. The authors propose a dynamic slippage approach, wherein

the algorithm calculates an optimal slippage protector that reduces the probability of

sandwich attacks without significantly increasing the likelihood of transaction failures.

Building upon this, our paper focuses on the actual slippage decisions made by traders

and their default e↵ects within this environment. Specifically, we explore the behavior of

users adhering to the default slippage decision and examine the e↵ects of altering this de-

fault within the Uniswap protocol. In line with the spirit of Heimbach and Wattenhofer’s

model, Uniswap transitioned from a constant slippage approach to a more dynamic one.

We shed light on the e↵ectiveness of this new slippage methodology and propose potential

avenues for further improvement.

2.3 Model

In this section, we summarize some key properties of the Constant Product Market

Maker (CPMM) pricing formula, which is used by several DEX applications, including

Uniswap and SushiSwap. This will allow us to formalize traders’ slippage decisions in

DEX CPMM applications and to provide a straightforward model for estimating slippage

decisions based on mempool data.

2.3.1 Transaction Model

Let’s consider a liquidity pool that contains x tokens of token X and y tokens of

token Y (following the notation of Barbon and Ranaldo (2021)). The CPMM pricing

rule specifies that for any time t, the product of the available tokens (X and Y) in the
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pool equals a constant k, which can be expressed as

xtyt = k (2.1)

Let f denote the percentage fee that is subtracted from each swap’s payment and

remitted to the liquidity providers. Then, ' = 1� f is the percentage left for the trader

to swap. If at time t+ 1 a trader wants to swap �x quantity of tokens X for Y tokens,

we can calculate how many tokens Y that trader will receive, �(y). CPMM states that

k = (xt + '�x)(yt ��(y)) (2.2)

For illustration, the amount �(y) received when paying �(x) is:

�(y) = yt
'�x

xt + '�x
(2.3)

DEX applications commonly allow users to specify either �x, the exact amount to

pay, or �y, the exact amount desired. The unspecified quantity is computed on-demand,

according to the equations above. In order to disambiguate the user-specified value and

the computed value, we write the given value as either �x or �y and the computed value

as either �(x) or �(y).

To protect the trader from sandwich attacks and price manipulations, DEX plat-

forms, such as Uniswap, allow traders to define a maximum slippage percentage �. From

this percentage, the application derives either a minimum amount received, �(y), or a

maximum amount paid, �(x).

This means that if there is any change in the expected exchange rate due to a change

in the pools – possibly due to sandwich attacks – the smart contract will execute the

transaction only if the trade meets this threshold. For illustration, the minimum amount
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received (�(y)) is computed as:

�(y) = (1 + �)�1�(y)

= (1 + �)�1 ⇤ yt ⇤
' ⇤�x

xt + ' ⇤�x
.

(2.4)

This CPMM pricing formula is used by both Uniswap V2 and Sushiswap (Adams

et al., 2020). Some liquidity pools in Uniswap use the newer V3 model (Adams et al.,

2021), which is slightly more nuanced. This model allows liquidity providers to bound

the price range in which their liquidity is usable by the pool – if the price moves outside

of the user’s configured range, their deposits are removed from market-making activities.

We will address this di↵erence more in Section 2.4.

A user who wants to perform a swap on a DEX typically proceeds as follows: The

user first accesses the DEX user interface – in the case of Uniswap and Sushiswap, this

UI is a (regular) web application. The user specifies the token they wish to sell, the

token they wish to receive, and either an exact amount paid, �x, or an exact amount to

receive, �y.

At this point, the user can either accept the default option and follow the slippage

decision suggested by the DEX protocol, or manually specify their preferred slippage

percentage, �. The DEX application will then compute �(y) or �(x) using the current

DEX state.

Finally, the user reviews, signs, and transmits the transaction to the Ethereum mem-

pool, where it queues for execution. This is typically done with the help of a browser

extension, such as Metamask (2023). Note that the transaction includes the computed

value �(y) or �(x), but the value � is not encoded within the transaction. In the fol-

lowing section, we explain how we determine (estimate) the value � by observing the

Ethereum mempool.
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2.3.2 Estimating the Slippage Tolerance Decision

A user’s choice of � has an important impact on the transaction’s execution. However,

this value is not broadcast to the network. Thus, we use the following method to recover

the user’s original choice.

We derive the slippage percentage � using Equation 2.4:

� = �(y)/�(y)� 1 (2.5)

While the values of �(y) and �(x) can be immediately read from the transaction,

the values of �(y) and �(x) are not encoded within the transaction.

For the CPMM pricing rule, computing �(y) and �(x) requires knowing what the

state of the DEX was when the application generated the swap transaction.

Consequently, we first estimate when the transaction was generated. By monitoring

the Ethereum mempool, we record the timestamp t at which the transaction was first

broadcast.2 We then look up the DEX state as of timestamp t, which we use to compute

either �(x) or �(y), and finally compute �.

2.4 Methodology Evaluation

Researchers often deal with a trade-o↵ between data accuracy and the cost of achiev-

ing it (Hummel et al., 2011; Evans and Crawford, 2000; Muradian et al., 2019; Bastos

et al., 2021). Sometimes, due to limitations in data availability, computation power, or

labor resources, researchers need to compromise on accuracy to conduct their research.

2Prior work observed that the amount of time to propagate a transaction across the peer-to-peer
mempool network is small (200 milliseconds) compared to the block interval (12 seconds) (Wang et al.,
2021). As we only require accuracy to within the block interval, time t will su�ce as an estimate for the
transaction generation time.
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This trade-o↵ can be observed in various data sets and research environments, including

financial markets (Abowd and Schmutte, 2019).

The initial versions of Uniswap (V1 and V2) use the simplest form of the Constant

Product Market Maker, as described in Adams et al. (2020). These versions have been

the main focus of theoretical studies on liquidity pools, as evident in works like Lehar

and Parlour (2021); Capponi and Jia (2021); Park (2023).

Uniswap V3, introduced on May 5th, 2021, brought significant updates, allowing

liquidity providers to o↵er liquidity with specific price limits. Consequently, the bonding

curve is now only locally defined, and the impact of trade size on prices depends on the

overall distribution of liquidity positions, rather than just the aggregated liquidity levels,

as described in detail in Adams et al. (2021) and Barbon and Ranaldo (2021). Researchers

analyzing transaction prices and applying economic models for V3 data must collect not

only transaction data, but also the distribution of liquidity positions for each pool, which

poses challenges due to the additional resources and time required.

This chapter, among other empirical paper in this rapidly growing literature (Lehar

and Parlour, 2021; Lo and Medda, 2022; Xia et al., 2021; Malinova and Park, 2023;

Chemaya and Liu, 2023) needs to address an important question, to find optimal ana-

lytical approaches that ensure the most e↵ective analysis balancing accuracy and costs

of analysis.

To simplify data analysis and overcome limitations, some studies, such as Chemaya

and Liu (2023), have employed V2 models to analyze V3 data. Using V2 models for V3

data analysis o↵ers advantages in terms of simplicity and data collection. These models

enable straightforward estimation of pool liquidity using solely historical trading data

(without the necessity for liquidity positions), a concept elaborated upon in the next

section with the introduction of our model. However, a vital question remains: while it

is simpler and easier to analyze V3 data using a V2 model, what level of accuracy do we

49



The Power of Default: Measuring the E↵ect of Slippage Tolerance in Decentralized Exchanges
Chapter 2

potentially sacrifice by employing this approach?

This section aims to assess the e↵ectiveness of using V2 models for V3 data analysis

and estimate the associated measurement error. We argue that the V2 model showed

remarkable accuracy, accurately predicting the V3 data in 97.1% of transactions, with

a deviation of less than 0.1%. Moreover, we observed that highly active pools with a

significant number of trades, such as the top 10 pools, demonstrated even higher accuracy,

with 99.6% of transactions falling within a 0.1% deviation. On the other hand, less active

pools, like the bottom 4000, performed less optimally, with only 89.5% accuracy. This

highlights the limitations of using V2 models for smaller pools or markets.

2.4.1 Measurement setup

Following the notation described in Section 2.3.1. Imagine a researcher has a dataset

of V3 transactions of a particular pool, but without information about the liquidity

positions in the pool. We will use this transaction data and apply the V2 model, assuming

that the liquidity available in the pool has no limitations and follows V2 rules.

To do this, we take pairs of consecutive transactions from the V3 dataset. Suppose

we have three consecutive transactions T1, T2, T3. Using the pricing rule of V2, we can

calculate the amount of liquidity available in the pool with information of T1, T2. This

allows us to predict the exchange rate for the next transaction in line (T3) – meaning,

if a trader were to trade a certain amount of token X or Y, what they would receive in

exchange for the transaction. This prediction is based on V2’s assumptions.

Next, we compare these V2 predictions for T3 with the actual exchange rates from

the V3 data. By doing this comparison, we gain insights into how well the V2 model

performs when applied to V3 data.

Suppose at time t = 0, a liquidity pool containing x0 amount of token X and y0
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amount of token Y. Then three transactions were executed in this block with the following

amounts: {�x1,�y1}, {�x2,�y2}, {�x3,�y3}. �xt < 0 & �yt > 0 means traders are

giving up �yt for �xt from the liquidity pool,3 and vice versa.

Using the CPMM pricing rule and the transactions, we can estimate the initial pool

values assuming v2 model x̂0, ŷ0, and k̂ as follows:

k = (x0 +�x1)(y0 +�y1) (2.6)

k = (x0 +�x1 +�x2)(y0 +�y1 +�y2) (2.7)

Given {�x1,�y1}, {�x2,�y2}, one can solve this system of equations, and estimate

x0, y0, and k. The close form solution can be written as:

x̂0 = ��y2�x1(�x1 +�x2)

�y2�x1 ��y1�x2

ŷ0 =
�y1�x2(�y2 +�y1)

�y2�x1 ��y1�x2

k̂ = ��y2�y1�x1�x2(�y2 +�y1)(�x1 +�x2)

(�y2�x1 ��y1�x2)2

Without loss of generality, assume �x3 < 0 & �y3 > 0, that is, the third transaction

from the trader prospective is giving up token Y, and swap out token X from the liquidity

pool.

k = (x0 +�x1 +�x2 +�x3)(y0 +�y1 +�y2 +�y3) (2.8)

Given {�x1,�y1}, {�x2,�y2}, and {�y3}, one can estimate �̂x3 using the estimated

3Please note that traders paid an additional liquidity pool fee directly to the liquidity provider, but
this fee is not included in the �x value in this model.
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x̂0, ŷ0, and k̂ from the above calculation.

�̂x3 =
k̂

(ŷ0 +�y1 +�y2 +�y3)
� (x̂0 +�x1 +�x2) (2.9)

Denote the distance of �̂x3 from the realized �x3 as d,

d = �̂x3 ��x3 (2.10)

and define d̃ as the absolute percentage deviation.

d̃ =
|d|
�x3

=
|�̂x3 ��x3|

�x3
(2.11)

Where the estimated �̂x3 is the result from assuming V2, and the realized �x3 is

from V3.

d̃, measuring how well using V2 models towards V3 data, is the metric of interest. A

higher d̃ denotes worse estimation, while a low d̃ shows e↵ectiveness of using V2 models

for V3 data analysis.

2.4.2 Measurement result

We collect one year of swapping transaction data on Ethereum chain on Uniswap

V3, from January 1st, 2022, to December 31st, 2022.4 14,257,238 transactions have been

collected, resulting in a $467,289,312,828 total transaction value.

For each of these transaction, our dataset contains transaction hash, timestamp, log

index within a block, Pool ID, wallet hash that originate the transaction, and information

about Token 0, Token 1. We then conduct our calculation of estimated x̂0, ŷ0, and k̂ for

each transaction, based on the antecedent two transactions validated in the same pool.

4Data source: https://www.uniswap.shippooor.xyz/
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There are 6,147 distinct pools that host transactions in this one year period. However,

the majority of the transactions concentrated in a limited number of pools. In fact, 60%

of of the transactions occurred in the top 50 pools; this number increase to 90% when

we consider the top 500 pools, ranked by pool activeness. A more detailed break down

can be found in Table 2.1, and a CDF is provided in Figure 2.1. Notice that these top

pools with most transactions are the ones with a higher liquidity, especially those in the

top 10 to top 50, as shown in Figure 2.2.

Figure 2.1: CDF of transactions, ordered by activeness of Pool

For each transaction that has two antecedents, one can calculate d̃, the deviation of

the estimated �̂x3 from the realized �x3. Figure 2.3 shows the CDF of deviation from

all transactions, for which almost all the deviation is less than 0.1%. The median of d̃ is

8.20e�10, meaning the majority of d̃ is extremely small. As shown in Table 2.1, 97.1% of

the deviation is less than 0.1%, and 99.1% of the deviation is less than 1%.

Furthermore, given that the more active pools are the ones with higher liquidity, we
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Figure 2.2: Pools with more txn are the ones with higher liquidity

Figure 2.3: CDF of deviation for all transaction in 2022 on ETH on Uniswap
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plot the same CDF by activeness of pool in Figure 2.4. The line represents the Top

10 pools, first-order stochastic dominance the Top 50 pools (exclude Top 10), which

first-order stochastic dominance the Top 200, and so on. Indicates accuracy was higher

in active pools with substantial transaction volume and liquidity, while inactive pools

performed less e↵ectively.

Table 2.1 provides a more in depth look at the accuracy rate for each case. Moving

from the left to right of the table, the percentage of transactions that satisfy the maximum

threshold deviation increases as expected. From the top of the table to the bottom, the

accuracy rate drops. Once more, these findings reveal that accuracy was greater within

pools displaying higher levels of transaction volume and liquidity.

d̃ within
Txn % 0.0001% 0.01% 0.1% 1% 5%

All Pool 14,257,238 100% 82.6% 93.4% 97.1% 99.1% 99.7%

Top 10 Pool 6,014,850 42.2% 88.3% 98.1% 99.6% 99.9% 99.96%
Top 50 Pool 8,562,026 60.1% 85.3% 96.5% 99.0% 99.8% 99.9%
Top 200 Pool 11,273,324 79.1% 83.4% 94.9% 98.2% 99.6% 99.9%
Top 500 Pool 12,909,947 90.6% 82.7% 94.0% 97.6% 99.4% 99.8%
Bottom 4000 87,493 0.6% 81.6% 86.6% 89.5% 93.4% 96.4%

Table 2.1: Percentage of transactions’ d̃ within threshold.

In summary, using simpler V2 models for analyzing Uniswap V3 data has clear advan-

tages in terms of ease and accuracy. The V2 model showed impressive accuracy, correctly

predicting V3 data in 97.1% of transactions, with deviations of less than 0.1%. The model

performed even better in active pools with high transaction volumes and liquidity. For

the remainder of the chapter, we will be utilizing the V2 model on analysis.
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Figure 2.4: CDF of deviation, by activeness of pool

2.5 Empirical Evaluation

2.5.1 Experimental Setup

To perform our study, we require two types of data: first, the timestamp when a

transaction entered the public mempool, and, second, a complete record of all Uniswap

and Sushiswap DEX swaps that were executed on the blockchain.

To address both needs, we run an Ethereum node in archive mode using Go-Ethereum

(Foundation, 2023) version 1.11.2. The node is hosted in the western United States and is

served by a high-bandwidth Internet connection. In order to increase mempool visibility

and decrease transaction propagation latency, we increased the number of peer-to-peer

connections from 100 to 500.

We ran our data collection from March 1, 2023, 00:00 UTC to April 1, 2023, 00:00

UTC, and examined all 33,108,538 transactions within blocks 16,730,072 through 16,950,602.
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We used a simple script to record the arrival time of each transaction in the mempool,

which satisfies our timestamping needs outlined in Section 2.3.2.

Swaps generated through the Uniswap and Sushiswap web apps begin by invoking

a router contract. As implied by the name, the router contract routes a user’s swaps

through the protocol, making use of at least one, but possibly several, liquidity pools.

Importantly, the router enforces a DEX user’s slippage tolerance setting. Third-party

DeFi applications and bots commonly perform swaps by directly interacting with liquidity

pools, foregoing the Uniswap or Sushiswap router entirely. We find all router-based swaps

by retrieving all confirmed transactions within the study window, which we then filter

down to only transactions sent to one of the known router contracts. We then use

our knowledge of the router’s application binary interface (ABI) to extract the swap’s

parameters – �x or �y and �(y) or �(x). We find that 81.7% of swaps on Uniswap use

exactly one liquidity pool, so, for simplicity of calculation, we only consider router-based

swaps that use exactly one liquidity pool. We also infer the total dollar value of the

amount swapped by aggregating several on-chain price oracles.

2.5.2 Mempool Observation

Our Ethereum node observed 32,586,069 transactions queued in the mempool. Af-

ter filtering these down to only transactions within the study window that invoke the

Uniswap or Sushiswap routers, we uncover 1,640,182 router-based transactions. We

present the arrival rate in Figure 2.5.

Our Ethereum node captured 1,617,820 (98.6%) of the router-based transactions while

they were queued for execution. The remaining router-based transactions were not ob-

served in the mempool, but did get included in the blockchain. This may be due to either

failure to propagate through the mempool network, or use of a private transaction relayer
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Figure 2.5: Observed hourly transaction rate. Note the use of a log scale to show detail.

such as Flashbots-Protect (Flashbots, 2023). Transactions broadcast through private re-

layers circumvent the mempool and are privately sent directly to block producers. This

shows that our mempool observation is broadly e↵ective and, thus, our analysis is truly

representative of the ecosystem.

2.5.3 Inferring Slippage Tolerance Decisions

Router-based swap transactions include either �x (the exact amount the user would

like to pay) or �y (the exact amount the user would like to receive).5

We begin with the subset of transactions observed in the mempool – 1,586,378

Uniswap and 31,442 Sushiswap. The following transactions are then also removed. First,

for simplicity, we discard transaction that use multiple liquidity pools – 294,412 Uniswap

and 8,103 Sushiswap. Second, we discard transactions that transfer tokens which inter-

fere with the liquidity pool the trader would like to use. For illustration, some tokens

5We find that it is much more popular to specify �x – accounting for 91.0% and 96.3% of all Uniswap
and Sushiswap router-based transactions, respectively.
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charge a tax upon each transfer from one address to another. A token can then imme-

diately sell the tax on Uniswap to immediately convert it a more stable currency, which

is deposited into a treasury. When this occurs it is di�cult to infer the slippage, as we

would need to reason about each token’s arbitrary behavior. We discard any transactions

which demonstrate this behavior – 64,682 Uniswap and 0 Sushiswap. Third, we discard

transactions that are not using the router to perform a swap – for example, providing

liquidity to a pool, buying NFTs, etc. – 173 Uniswap and 3,611 Sushiswap. Fourth, we

discard malformed transactions – 279 Uniswap and 129 Sushiswap. This leaves 1,231,615

Uniswap and 19,765 Sushiswap transactions.

In total, we can infer the slippage decisions for 1,187,141 (96.4%) Uniswap and 19,111

(96.7%) Sushiswap router-based transactions observed in the mempool. In swap trans-

actions for which slippage inference failed, we were unable to derive an expected swap

price, �(y) or �(x), at the time of transaction generation. This was either because the

pool did not have enough liquidity to support the user’s desired quantity of tokens, or

because, upon inspection, our timestamp of the transaction’s arrival in the mempool fell

after the timestamp of the block in which it was executed – possibly due to network

latency or clock drift. We draw the most popular slippage settings over the time window

in Figure 2.6, trimmed to 0% to 2% to show detail. For a wider range of percentages,

see Figure B.1 in the Appendix B.3.

We immediately observe the following two oddities. First, we occasionally infer a

negative slippage setting – this accounts for 2.6% of Uniswap and 4.4% of Sushiswap

transactions. To illustrate how this might occur, consider a transaction that specifies

�x. In this situation, we use Equation 2.5 to derive the slippage. Negative values

occur whenever �(y) > �(y) – i.e., whenever the user requires a minimum amount

received that exceeds what the DEX can remit. These transactions have a very low

success rate – only 6.9% and 14.7% for Uniswap and Sushiswap, respectively. Second, we
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Figure 2.6: Inferred router slippages over time. Color is drawn on a log scale to show
detail. Each colored cell counts the number of swaps in a slippage range at a segment of
time.

occasionally infer slippage settings that are extremely high (50% and over) – however,

the Uniswap and Sushiswap user interfaces both cap slippage to 50%. This accounts

for 1.0% of Uniswap and 0.6% of Sushiswap transactions. Both of these oddities may

plausibly indicate either a flaw in the transaction generation software, an incorrectly

inferred transaction generation time, or simply spam. Nevertheless, these transactions

have relatively small prevalence, and are likely not representative of a web app user – so

we are confident that their exclusion does not significantly impact the results.

2.5.4 Default E↵ect on Slippage Tolerance

We now examine the default e↵ect on slippage choices in Uniswap and Sushiswap

exchanges. This can be seen intuitively in Figure 2.6: we can see a clear, bright line at

the default slippage setting, 0.5%. This default was active for Uniswap up to March 16th,

and for Sushiswap throughout the entire study window.

Table 2.2 details the percentage of inferred slippage choices at various percentages.

We see a preference for the default setting in both cases.

In the case of Uniswap, we also observe a preference for round numbers (10%, 5%,
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etc.), both in Table 2.2 and in Figure 2.6. Figure B.1, in the Appendix B.3, plots a

version of Figure 2.6 with a wider y-axis range, from 0% up to 25% – here we can also

observe a clear round number preference.

We do not attempt to distinguish between human- and bot-originated transactions,

so we cannot be sure of exactly which transactions are representative of human decision-

making when faced with a default. However, we can observe a significant aggregate

change in slippage settings after Uniswap altered its default on March 16, 2023.

Initially, the implementation was carried out in a soft manner, resembling a “testing

period” that lasted from March 16th to the 20th. This testing period is evident in our

data and can be observed in Figure 2.6. On March 16, there was a noticeable decrease

in decisions with a 0.5% slippage rate. This is shown by the yellow line disappearing.

Afterward, it appeared again for a few days during the soft launch, but then it disappeared

once more.

Slippage Setting
10% 5% 2% 1% 0.5% 0.1%

Uniswap 6 7.3% 7.1% 2.2% 4.7% 24% 2.1%
Sushiswap 1.1% 1.0% 1.9% 5.1% 67% 2.5%

Table 2.2: Prevalence of various slippage settings in router-based swaps.

From March 21st onward, after the default fully was changed, we see only 4.7% of

Uniswap transactions use the old default: 0.5%. Moreover, we see a six-fold increase (to

11%) in the percentage of transactions using 0.1% slippage, a soft minimum in the new

default’s “auto” calculation. This gives confidence that users are, in fact, following the

default.

Following this, we label which transactions are most likely using the default slippage

6Before March 16, 2023.
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setting. This must be done in two parts, before and after the default was changed. In

the case of the former, the computation is straightforward: we label all transactions

with a slippage between 0.45% and 0.55% as using the default. The latter case is more

involved. In brief, Uniswap’s default slippage setting is computed by taking the gas cost

the user pays to perform the swap, in US dollars, divided by the transaction volume, in

US dollars. The resulting value is then bounded to within the range [0.1%, 5%]. Both

the numerator and denominator are subject to market fluctuations: gas fees are natively

paid in Ether, not dollars, and the transaction volume is specified by the user in units

of tokens. Uniswap converts both values to dollars by consulting the Uniswap DEX

for spot prices. For each transaction, we derive an estimated default slippage setting

by recreating the computation using historical data and market conditions. Then, we

label a transaction as using the default if its inferred slippage setting is within 20% of

our estimated default. The technical details of this approach are described in Uniswap

(2023a).

2.5.5 Traders’ Welfare Post Modification of Uniswap’s Default

Slippage Setting

In the following analysis, we assess the adjustment made to the default slippage setting

within the Uniswap decentralized exchange (DEX) protocol on March 16, 2023. Our main

goal is to evaluate whether traders are benefiting or su↵ering from this modification,

i.e., if their welfare is increased or decreased. This evaluation encompasses two key

aspects: the losses of traders a↵ected by sandwich attacks and the losses incurred due to

unnecessary failed transactions, both of which are considerations when determining the

optimal slippage tolerance.

To conduct this evaluation, we gathered data from both the Uniswap and Sushiswap
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protocols for the month of March 2023 – not limiting ourselves to only the “o�cial”

routers – which yielded approximately 5 million transactions. We divided our data anal-

ysis into three distinct time periods to assess the welfare impact of this new method.

The first period covers the time before the modification, from March 1st to 15th. The

second period corresponds to the “testing period” from March 16th to 20th. Finally, the

third period focuses on the time after Uniswap adopted the new slippage protector, from

March 21st to 31st.

Notably, during our data collection period, Sushiswap maintained a fixed 0.5% default

slippage option, whereas Uniswap implemented the dynamic one. This distinction enables

us to use Sushiswap as a reference point for control purposes in our analysis, especially

due to the major similarity of both platforms.7

We focused exclusively on pools with tokens that had high liquidity to avoid price

inaccuracies that could a↵ect our aggregate analysis. We discovered that tokens with

low liquidity tend to have very inaccurate price oracles,8 leading to erratic results when

converting to US Dollar value ($). We further filter the data set to include only the

most active pools that had swap activity every day in March. This approach enables

us to minimize the influence of noise generated by pools that were only available before

or after the change, and it minimizes the influence of bots conducting pump-and-dump

schemes (Cernera et al., 2023). Finally, our filtered data covers approximately 2.25 million

transactions, accounting for around 47% of the total transactions. It includes 824 unique

pools, which is approximately 4.4% of the total unique pools 18,877. This indicates that

the majority of the transactions on the protocols are conducted pools with high liquidity

and consistent trading activity. A more detailed information about our swap data set

7Sushiswap is a forked version of Uniswap, and both platforms work very similarly. More information
can be found here:Liu et al. (2022); Yaish et al. (2023)

8We calculate the minimum Total Value Locked (TVL) within the specified window for each token.
We then select only pools that have both tokens ranked in the top 1,000 from this list, which we classify
as tokens with high liquidity.
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can be find in Table B.4 in Appendix B.2

2.5.6 Loss from Sandwich Attacks

Our detection method for sandwich attacks – detailed in Appendix B.1 – draws on

earlier studies by Lehar and Parlour (2023); Züst (2021); Qin et al. (2022); Torres et al.

(2021).

Using this method we identify total of 36,158 successful attacks in our data, with

33,612 attacks occurring on Uniswap and 2,546 attacks on Sushiswap. Table 2.3 presents

the quantity and daily rate of successful attacks detected.

Next, we analyze the financial impact and quantify the losses incurred due to the

attacks on both Uniswap and Sushiswap. By examining the value of assets lost during

these attacks, we can gain a comprehensive understanding of the implications of the

default slippage change and its e↵ectiveness in mitigating losses.

We then conducted the following analysis in order to assess the financial impact of

the attacks. For each attacked swap, we calculated the di↵erence between the trader’s

outcome with and without the attack, and standardized to a dollar amount. Following

our previous discussion on methodology, we employed the V2 model due to its straight-

forwardness. Collectively, all attacks on Uniswap and Sushiswap resulted in a total loss

of $16,584,438 for traders in March. On average, each swap that was attacked incurred a

loss of $458.7, with a median loss of $69.6. The breakdown of these loss figures by DEX

and time period can be found in Table 2.4.

In order to better evaluate the e↵ect of the implementation of dynamic slippage, we

aimed to directly compare Uniswap and Sushiswap across all periods, while mitigating

the influence of di↵ering trade sizes in di↵erent periods. To achieve this, we standardized

the loss by the total value swapped. For each day in March, we calculated the total loss
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Time Period Number of
Attacks
Detected

Average Attacks
Per Day

Uniswap
Mar 1st - 15th 23, 299 1, 553.27 (100%)
Mar 16th - 19th 3, 214 803.5
Mar 20th - 31st 7, 099 591.58 (38.09%)

Sushiswap
Mar 1st - 15th 1, 297 86.47 (100%)
Mar 16th - 19th 464 116.0
Mar 20th - 31st 785 65.42 (75.66%)

Table 2.3: Attacks Detected.

Time
Period

Mean Percentile Daily Total

25th 50th 75th

Uniswap
Mar 1st - 15th $565 $33 $89 (100%) $298 $877,936 (100%)
Mar 16th - 19th $292 $21 $47 $138 $234,874
Mar 20th - 31st $277 $23 $51 (56.8%) $134 $163,807 (18.7%)

Sushiswap
Mar 1st - 15th $250 $22 $50 (100%) $146 $ 21,596 (100%)
Mar 16th - 19th $119 $16 $30 $73 $ 13,764
Mar 20th - 31st $167 $18 $36 (72.9%) $75 $ 10,934 (50.6%)

Table 2.4: Loss from Attacks.
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from attacks per $100 swapped on each DEX, which we plot in Figure 2.7.

The y-axis in the figure represents the loss per $100 swapped, where a value of 0.02

signifies that the loss from an attack would account for 0.02% of the swapped value. On

the left-hand side of the figure, we have Uniswap, while Sushiswap is on the right-hand

side. It is important to note that the range of the y-axis di↵ers between the two plots,

with values for Uniswap mostly below 0.05% and Sushiswap reaching up to 0.25%.

The colored lines in the figure represent the weighted mean for each period. The red

line corresponds to the pre-launch period from March 1st to March 15th, while the purple

line represents the period after the full launch. For Sushiswap, the two colored lines

are nearly level, suggesting no significant impact from the change of the default slippage

setting on Uniswap. However, a noticeable gap is observed for Uniswap. This gap is

statistically significant as shown with the non-overlapping dashed line, which represent

the 95% confidence interval. This result confirms that after the deployment of dynamic

slippage, traders experienced reduced losses due to sandwich attacks, resulting in a more

favorable trading environment on Uniswap.
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Figure 2.7: Loss from sandwich attacks per $100 on Uniswap vs Sushiswap.
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2.5.7 Loss from Unnecessary Failures

We further investigated the impact of dynamic slippage from the perspective of ad-

ditional losses resulting from unnecessary failures due to potential tighter slippage. By

scanning the mempool information, we identified all transactions in our data set that

failed due to triggered slippage protection, recording the gas losses incurred from these

swaps. An overview of the number of swaps that failed due to triggered slippage and the

total gas losses in March can be found in Table 2.5.

Failed
Swaps

Failed due to
slippage
protector

Gas Loss

Uniswap 18,136 7,928 (43.7%) $77,813.8
Sushiswap 876 777 (88.7%) $ 1,643.0

All 19,012 8,705 (45.8%) $79,456.8

Table 2.5: Failed Swaps that triggered Slippage Tolerance.

Interestingly, losses due to attacks measures 200 - 300 times greater than gas paid

upon failure.

2.5.8 Cumulative Impact on Traders’ Welfare

Finally, we calculate the total welfare loss, i.e., taking into account both the loss from

sandwich attacks and gas losses for unnecessary failed transactions, for each protocol

before and after the modification of Uniswap as shown in Table 2.6. We find that overall,

Uniswap’s new default slippage setting leads to a substantial reduction in traders’ losses

(54.7%) while in Sushiswap, the reduction is only 4.9%.

Next, we investigate the impact on users who follow the default, i.e., defaulters.

We managed to classify defaulters for 20, 477 Uniswap and 7, 919 Sushiswap transac-
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tions. 9 We will use these groups of transactions that follow the default settings to check

if we can observe the same e↵ect or even a greater one in the Uniswap default users. For

robustness checks, we will compare it to Sushiswap default users as our control group.

This allows us to conduct the same analysis as before, but only on the default users, as

shown in Table 2.6. Before the change, default users on both platforms experienced a

similar loss, approximately 0.13% of transaction value, which is much higher than the

losses of the average user, which are 0.037% in Uniswap and 0.081% in Sushiswap. This

implies that attackers may target these 0.5% default users regardless of which protocol

they are using. The results show that the e↵ect on Uniswap defaulters was much greater,

with a 90% reduction in traders’ losses, while for Sushiswap defaulters, there was almost

no change at all, with only a 4.9% reduction. These findings suggest that DeFi protocols,

such as Sushiswap, should consider changing their default settings to a new mechanism

similar to the one utilized by Uniswap.

Loss
per
$100

Users Before After Change

Uniswap
All 0.0371 0.0168 54.7% decrease
Defaulter 0.1366 0.0137 90.0% decrease

Sushiswap
All 0.0816 0.0706 13.5% decrease
Defaulter 0.1369 0.1302 4.9% decrease

Table 2.6: Cumulative Impact on Traders’ Welfare

9We were only able to classify transactions for which we managed to infer their slippage tolerance
decisions (as described in section 4.3), and these were executed in pools that met our consistency and
liquidity availability restrictions, (as described in section 4.5).
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2.5.9 Potential For Further Improvement

Selecting the correct slippage tolerance for a transaction requires balancing the risk

of overpaying and the risk of failure due to unexpected, small price movement. We have

shown that Uniswap’s new automatic default slippage tolerance setting improves the risk

of the former with little-to-no additional risk to the latter. Research on further improving

this setting must answer the following questions:

1. Exactly how close to zero can the slippage setting be set before being too small?

We provide a partial answer to this through Figure 2.8, which shows the CDF of

the realized slippage percentage in which each transaction incurred. The figure

shows that 81.0% of all transactions actually experienced zero slippage – i.e., no

unexpected price movement occurred whatsoever. Moreover, this percentage grows

slowly. This suggests that unexpected price movement may be less common than

previously believed, potentially allowing for even smaller slippage settings than the

soft minimum of Uniswap’s new default (which is 0.1%).

2. Which dynamic slippage mechanism is the optimal one to achieve the highest wel-

fare for traders? The idea of having a dynamic slippage mechanism to determine a

customized slippage for each trade is important and could indeed improve traders’

wealth and reduce sandwich attacks, as we showed in our analysis. Given that

default users are still experiencing losses from sandwich attacks with little-to-no

additional cost from unnecessary transaction failures, it can highlight the potential

for future improvement.
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Figure 2.8: Realized slippage in successful Uniswap transactions.

2.6 Conclusions

In this study, we examined the impact of slippage tolerance settings on the health of

the decentralized exchange (DEX) ecosystem, focusing on the default slippage tolerance

o↵ered by various platforms.

We observed that a significant proportion of transactions, 24% in Uniswap and 67%

in Sushiswap, respectively, adheres to the default slippage settings provided by the pro-

tocols. This indicates the substantial impact of default options on users’ choices and

highlights the importance of selecting optimal defaults to promote greater social welfare.

Additionally, we evaluated the e↵ectiveness of Uniswap’s recent modification to its

default slippage mechanism. By analyzing traders’ data, we assessed the benefits of

the new default setting in terms of traders’ welfare. Our results indicated a substantial

reduction in traders’ losses, approximately 54.7% (and 90.0% for default transactions).

This demonstrates the potential of dynamic slippage mechanisms to improve the overall

trading experience and protect users from malicious activities. Considering that default
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users are still encountering losses due to sandwich attacks, without incurring significant

additional costs from unnecessary transaction failures, this suggests that there is room

for improvement in the default settings.

The significance of our research highlights the necessity for rigorous academic explo-

ration of default settings within the DEX and decentralized finance (DeFi) domains. By

comprehending the implications of default options and introducing innovative approaches

to enhance security and traders’ welfare, we can actively contribute to the development

and long-term sustainability of the DeFi ecosystem.
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Chapter 3

Motivating Academic Success: The

Role of Leaderboards in Shaping

Student Study Behaviors

with Anna Jaskiewicz, Ruth Morales, & Caroline J. Zhang

3.1 Introduction

Leaderboards, which visually display real-time rankings and o↵er instant performance

feedback, have been widely implemented across a variety of contexts. These include

athletic competitions (e.g., golf, tennis, chess, etc.), web-based educational platforms (e.g.

Khan Academy, Coursera, Doulingo, LeetCode, etc.), ride-sharing mobile applications

(Ai et al., 2023) and platforms for public contributions (Chen et al., 2017). These tools are

intended to motivate individuals by gamifying experiences and to enhance engagement

across activities. However, leaderboards have also been found to lead to a decline in

performance in other contexts, such as high school classrooms (Bursztyn and Jensen,
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2015; Bursztyn et al., 2019). This has been attributed to disclosure of real names and

identities on the leaderboard, which subsequently discouraged some individuals from

further competition. Nonetheless, these results do not necessarily imply that leaderboards

as such are an unreliable incentive tool. It may simply be that certain settings are

particularly sensitive to specific leaderboard features, such as lack of anonymity.

In this paper, we explore if an anonymized leaderboard can e↵ectively incentivize

students to enhance their study behaviors and achieve greater academic success. The

field experiment is conducted in the context of an undergraduate Economics course at

a large public university in California. We leverage an online autograding platform

through which students submit their weekly self-paced assignments. Within the treat-

ment group, students have access to a leaderboard that ranks them based on submission

time, conditional on successfully completing their assignment. Within the the control

group, students do not have such access to the leaderboard.

We find that the implemented leaderboard positively shapes students’ study behav-

iors. First, we report that exposure to the leaderboard reduces assignment completion

times. These e↵ects are substantial in magnitude, with an over 15 hour and a nearly

20 hour reduction for the first two treated assignments. The e↵ects persist–although

smaller–throughout the quarter. Second, we also find that treated transfer students and

treated male students experience an improvement in their overall course grade by a letter

grade (e.g., from B� to B). This is particularly relevant given that transfer students

encounter unique challenges when adapting to a new academic environment, which could

hinder their ability to achieve the grade they desire.

We contribute to several lines of work. First, we extend to the literature directly

evaluating how leaderboards as well as other ranking systems a↵ect e↵ort provision.

Past research in this space has largely relied on public (non-anonymous) leaderboards

to generate su�cient social pressure to impact behavior (Bursztyn and Jensen, 2015;
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Bursztyn et al., 2019; Gill et al., 2019; Hudja et al., 2022). We focus on a leaderboard

that is anonymous, i.e., it does not reveal true identities of participants and instead relies

on confidential pseudonyms selected by participants themselves.

Second, we contribute to the scholarship documenting the various ways of gamifying

academic assessments and the e↵ects of such gamification (Markopoulos et al., 2015;

Chang andWei, 2016; Subhash and Cudney, 2018; Dichev and Dicheva, 2017; Buckley and

Doyle, 2014). While the leaderboard itself already introduces an element of gamification,

we amplify this by enabling students to design their own playful pseudonyms that are

displayed on the leaderboard instead of their real names.

Third, we extend the line of work on procrastination in the academic context Schiming

(2012); Hen and Goroshit (2018); Dewitte and Schouwenburg (2002). We show that a

leaderboard which ranks individuals based on not only submission accuracy but also

submission speed can be an e↵ective tool at reducing procrastination.

Fourth, we contribute to the literature exploring how symbolic rewards a↵ect be-

haviors. Prior scholarship has documented that interventions such as thank you cards

are successful at increasing e↵ort provision and improving performance (Bradler et al.,

2016; Kosfeld and Neckermann, 2011). Despite the fact that in our setting one’s rank

is not associated with any “real” rewards, such as extra course credit, the leaderboard

still induces a significant behavioral change. In consequence, achieving a high rank on a

leaderboard may also act as symbolic reward.

Finally, past research documented that interventions such as mentoring programs can

help individuals from groups underrepresented in the field of Economics at relatively later

stages of their career, i.e. post graduation (Ginther et al., 2020; Ginther and Na, 2021).

We show that leaderboards have heterogeneous e↵ects across student subgroups and may

thus be used as tools that potentially help foster diversity within the profession at earlier

career stages (pre-graduation).
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The remainder of this paper is structured as follows: Section 3.2 introduces the back-

ground information and outlines the general setup of the field experiment. Section 3.3

o↵ers an overview of the collected data and conducts a balance check. Section 3.4 delin-

eates our hypotheses, while Section 3.5 describes our identification strategy. Section 3.6

presents the main findings of our analysis. Finally, Section 3.7 provides a conclusion and

discusses the implications of our results.

3.2 The Experiment

3.2.1 Setting

We conducted the experiment within an undergraduate Economics course taught at

a large public university in California. The university is designated as Hispanic serving;

it also hosts a non-trivial number of transfer students from the local community college

as well as international students.

The economics course is required for all prospective Economics majors and covers top-

ics such as probability and probability distributions, sampling and sampling distributions,

and hypothesis testing. The course is o↵ered every quarter throughout the academic year

but tends to achieve its highest enrollment levels in the Fall quarter, which is when we

carried out the study. The course is usually taught by graduate student instructors, and

students are split into sections capped at 50.

In Fall 2023, when we carried out the experiment, there were 642 students enrolled

across 15 di↵erent sections. As this is an introductory pre-major course, enrolled students

predominantly consist of sophomores and juniors. Majority of enrollments are typically

finalized before the first day of instruction but a small number of students tend to drop

the class or join from wait list during the first week of the quarter. To account for this,
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we recruited participants during the second week of the quarter.

3.2.2 Excel Assignments

The final course grade is calculated based on student’s performance on a number of as-

sessments: a midterm and a final exam, short lecture quizzes, group activities performed

in class, self-paced homework modules, and online Excel assignments.

Online Excel assignments are short applied projects which students solve using Mi-

crosoft Excel. Excel assignments typically are due on Friday each week of class, with a

penalty-free grace period extending until Sunday at midnight. Prompts for each Excel

assignment are released to students periodically throughout the quarter. Data used in

each assignment is unique to each student and is generated using a custom-built R script.

The data is made available to students through a website administered by the instructors

(see Appendix C.1 for a screenshot of the assignment download site). The release and

due times for all assignments were made available to students in advance.

Each Excel assignment is graded out of 5 points and frequently involves both compu-

tational and graphing questions. Assignments are self paced in the sense that students

can spend as much time as they wish working on them as long as the grace period has not

elapsed. Additionally, students can submit assignments multiple times and only the score

achieved on their last submission counts towards the course grade calculation. Usually,

students have around 10-14 days to work on each Excel assignment, i.e. there is 10-14

day gap between the time when a prompt is made available to students and the time

when grace period finishes.

Performance on Excel assignments can substantially impact a student’s course grade

as seven best scores across nine assignments in total contribute 28% of the overall grade.

To assist students as they work on Excel assignments, experienced peer helpers employed
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by the department hold weekly o�ce hours dedicated specifically to answering questions

on each week’s Excel assignment. Students enrolled in the course also receive general

Excel instruction during weekly discussion sections led by graduate student teaching

assistants.

3.2.3 Leaderboard

Excel assignments are submitted by students through an online autograding platform,

which allows for immediate feedback on performance on the computational part of the

assignment.1 The platform allows instructors to include a leaderboard as a separate

subpage feature of each assignment page (a leaderboard is by default hidden unless it is

explicitly enabled).

We customize the leaderboard on the platform so that it ranks all submissions by

the submission time among the class members, i.e., the earlier the submission time, the

higher the rank on the leaderboard. At the same time, we constrain the leaderboard to

only rank those who receive a full score on the autograded (computational) part of the

assignment. For example, if Alice and Bob both receive a full score, and Alice submits

earlier, then Alice will appear higher on the leaderboard than Bob. A student will appear

at the bottom of the leaderboard if the student’s submission scores less than a full score

on the autograded part of the assignment.

In place of actual student names, the leaderboard displays student-selected leader-

board pseudonyms. This is done for two reasons: first, to preserve confidentiality of

each student’s performance of the assignments, and second, to further gamify the experi-

ence for students by enabling them to select playful names they enjoy using and identify

with. Students get to input their leaderboard pseudonym upon submitting their Excel

1Students are required to submit their solutions to computational and graphing problems separately.
While the autograding platform provides instant feedback on performance on the former, the latter are
graded manually after the grace period elapses.
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assignment. As leaving the leaderboard pseudonym blank would cause a submission not

to be processed, students are informed that if at any point they no longer wish their

leaderboard pseudonym to be uniquely identified, they can type Optout Otter as their

leaderboard pseudonym instead.

It is important to note that after they submit their Excel assignment, students are

not automatically redirected to the leaderboard page but instead need to navigate to it

intentionally. Figure 3.1 presents an illustrative screenshot of the leaderboard as viewed

from the student perspective.

3.2.4 Recruitment and Randomization

We conducted the study in the Fall quarter of academic year 2023/2024. The re-

cruitment process took place during the second week of classes, to mitigate the e↵ect of

students joining the class from the wait list or dropping the class during the first week of

classes. During in-person lectures, we distributed consent forms to students, along with a

survey requesting basic demographic information. To encourage participation, students

were informed that they would be entered into a lottery for a $25 gift card, with odds

of winning estimated at approximately 1 in 50. It is important to note that apart from

the lottery drawing, there were no other incentives provided to the participants, such as

extra credit for class.

Of the 642 students enrolled in the course, 425 consented to participate in our study.

Students were randomly divided into a treatment group and a control group. We decided

to further split treated students into 50-student leaderboards to allow for relatively high

mobility potential along the leaderboard and relatively high familiarity with others on

the same leaderboard. Consequently, participants were randomly assigned to one of eight

mutually exclusive and collectively exhaustive groups, each linked to a unique course page
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on the autograding platform. Of these, seven groups were designated as treatment groups

and had access to the leaderboard, thereby di↵erentiating them from the control group,

which did not have access to the leaderboard.

For all Excel assignments, students assigned to the control group received standard

prompts which outlined the requirements of each assignment and did not mention the

leaderboard in any way. In addition to the standard prompts, students assigned to the

treatment group received extra instructions which provided an overview of the leader-

board setup. In particular, the instructions explained how the leaderboard ranks indi-

vidual student submissions, where to find it on the online submission platform, and how

to select pseudonyms for the leaderboard.2

3.3 Data

Our data were sourced from four principal channels: the demographic survey com-

pleted by students immediately following their consent to participate in the experiment,

the platform for Excel assignment submissions, and the course instructor’s records. The

demographic survey provided basic demographic information about the students, such as

age, gender, international status, and transfer status. Information regarding the Excel

assignment submissions was collected directly from the autograding platform. Lastly, the

course instructor’s records provided information on the overall grades students achieved

in the course.
2Appendix C.2 contains the exact text delivered to the treatment group within the instructions for

their Excel assignments.
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3.3.1 Balance Check

Our sample consists of 425 students, with 236 assigned to the treatment group (i.e.,

with access to the leaderboard) and 189 students assigned to the control group (i.e.,

without access to the leaderboard). Table 3.1 provides a summary of the demographic

characteristics of students in both the treatment group (Column 1) and control group

(Column 2). Slightly over 40% of the students in our sample are male, about a half are

transfer students, and over 90% are either sophomores or juniors. We report no statistical

di↵erence between the treatment group and the control group across nearly all demo-

graphic characteristics, except for Hispanic/Latino and International status (marginally

significant).

3.3.2 Excel Assignment Submissions

For our outcome variables, we leverage information on various aspects of students’

submissions for the nine Excel assignments, including the assignment release time and

submission time, assignment scores, and leaderboard ranks.

Across the nine Excel assignments, we focus on student performance on assignments 2

through 7. This is because the prompt for Excel assignment 1 is released in the very first

week of classes, prior to when students are introduced to the leaderboard. Moreover, the

first assignment is designed to be straightforward, primarily to acquaint students with

the autograding platform. For these two reasons, we anticipate no significant di↵erence

between the treatment and control groups in terms of completion times. As such, the

first assignment also serves as a placebo test to verify the comparability of the treatment

and control groups at the outset of the study.

Furthermore, recall that only the best seven scores on the nine Excel assignments

count towards to the final course grade. Therefore, a student may choose to delay or
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altogether skip the submission for the last two assignments if they manage to achieve full

marks on the initial seven assignments. Consequently, we omit assignments 8 and 9 from

our primary analyses to account for this behavior.

3.4 Hypotheses

In this section, we develop our hypotheses within the context of the field experiment’s

framework.

Hypothesis 1 (Immediate Submission E↵ect). Following their initial exposure to

the leaderboard, students in the treatment group will submit the subsequent Excel as-

signment more promptly than their counterparts in the control group.

After submitting their first Excel assignment, students in the treatment group will

encounter the leaderboard for the first time. We anticipate that this initial engagement

with the leaderboard–as well as the novelty of the leaderboard–will motivate students to

improve their rank for the second assignment (if their original position is low) or to main-

tain their original rank (if their original position is high). Consequently, we hypothesize

that students interacting with the leaderboard will, on average, finish Excel assignment

2 more quickly than their counterparts in the control group.

Hypothesis 2 (Persistent Submission E↵ect). Students in the treatment group will

consistently complete their Excel assignments faster than students in the control group

throughout the academic quarter.

A new leaderboard is created for each Excel assignment, a deliberate design choice to
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provide all students in the treatment group with a clean slate for each assignment. This

mechanism serves to motivate students as everyone can rank highly on a new leader-

board, regardless of their prior rank. Accordingly, we hypothesize that the leaderboard

will continue to a↵ect assignment competition times throughout the quarter, i.e., from

the second through the seventh Excel assignment. In other words, we anticipate that

the leaderboard will have a lasting impact on students’ study behaviors, beyond just the

immediate e↵ect posited in Hypothesis 1.

Hypothesis 3 (Academic Performance E↵ect). The leaderboard will not only pos-

itively a↵ect assignment completion times but will also improve the overall performance

in the class, leading to a higher final course grade.

The e↵ects of leaderboard exposure may extend beyond just Excel assignments. Stu-

dents may develop a habit of initiating their work on various tasks early on. For example,

students may start studying for a test earlier than they otherwise would have. Similarly

to the benefits associated with starting Excel assignments ahead of time, this may provide

students with more opportunities to seek (and receive) more assistance from instructors

and Teaching Assistants, leading to better performance overall. At the same time, be-

cause the treatment is not associated with any financial incentives or extra academic

credits, we do not expect these e↵ects to be very high in magnitude. Therefore, we ex-

pect the leaderboard intervention to exert a moderate indirect e↵ect on students’ final

course grades.

Hypothesis 4 (Heterogeneous E↵ects on Di↵erent Demographic Groups). The

leaderboard will have heterogeneous academic performance e↵ects across di↵erent demo-

graphic groups.

82



Motivating Academic Success: The Role of Leaderboards in Shaping Student Study Behaviors
Chapter 3

Di↵erent demographic groups may respond to the leaderboard di↵erently. We expect

students who have prior experiences with various types of leaderboards, e.g. through

gaming platforms or athletic events, to be more strongly a↵ected than students who do

not have such experiences. We observe in the data we collected through the demographic

survey that male students more frequently report being engaged in video games and

sports. Thus, we expect the e↵ects of the leaderboard to be concentrated among male

students.

In addition, our field experiment takes place at a university with a substantial popula-

tion of transfer students from community colleges. Transfer students may be particularly

responsive to interventions that encourage engagement. We hypothesize that the leader-

board will have stronger e↵ects among transfer students than non-transfer students.

3.5 Identification

In this section, we specify our identification strategy.

To estimate the average treatment e↵ect of exposure to a leaderboard on study habits,

we first estimate the following OLS regression model:

Y j

i
= ↵ + �Treati + �Xi + ✏ij (3.1)

where Y j

i
denotes the number of hours taken by student i to submit their Excel

assignment j calculated as the di↵erence between the time when the assignment prompt

is released and the time when student i makes their last submission for assignment

j 2 {1, 2, . . . , 7}. Treati is a binary indicator equal to one if a student is assigned to

the treatment group (i.e., exposed to the leaderboard) and equal to 0 if a student is
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assigned to the control group (i.e., not exposed to the leaderboard). Therefore, �, which

is the main parameter of interest, indicates the e↵ect of being assigned to treatment on

assignment completion time. Xi is vector of demographic controls that include student’s

gender, age, race, ethnicity, major, transfer and international status. Wild-bootstrap

standard errors are clustered at the level of enrollment section. The model is estimated

separately for assignments one through seven, with assignment one being treated as a

placebo as it was released prior to initial exposure to the leaderboard.

Furthermore, to estimate the average treatment e↵ect of the leaderboard intervention

on students’ academic performance, i.e., the final course grade, we then estimate the

following regression model:

Yi = ↵ + �Treati + �Xi + ✏i (3.2)

where Yi denotes student i’s final course grade operationalized either as a z-transformation

of the overall number of points accumulated by student i throughout the duration of the

class or as the raw number of points accumulated by student i throughout the duration

of the class.

To allow for heterogeneous e↵ects by transfer status and gender, we also estimate sup-

plementary regression models in which we include interaction terms between a student’s

treatment assignment as well as their transfer status and gender.

3.6 Results

In this section, we present the results from our field experiment. We first examine

the e↵ect of the leaderboard intervention on students’ assignment completion times. We

then examine the impact of exposure to a leaderboard on students’ academic performance.
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Finally, we end with a discussion of heterogeneous e↵ects on transfer and male students.

Figure 3.2 plots the average assignment completion times separately for the treated

leaderboard group (purple line) and the non treated no leaderboard group (orange line)

across assignments 1 through 7. It is worth noting here that Figure 3.2 merely shows

the raw means across the treatment and control groups and does not include any de-

mographic controls. The average completion times for students in the treatment group

fall consistently below the average submission times of students in the control group.

The only exception is Excel Project 1 which was released prior to the initial exposure

to the leaderboard and can be therefore considered a placebo. This provides suggestive

evidence in support of both Hypothesis 1 (Immediate Submission E↵ect) and Hypothesis

2 (Persistent Submission E↵ect).

Figure 3.3 provides the e↵ects of being assigned to treatment on assignment comple-

tion time estimated using Equation 3.1. Recall that completion time is defined as the

di↵erence between the last submission time and assignment release time. The e↵ects

are estimated separately for assignments 1 through 7. For assignment 1, we observe

no statistical di↵erence in assignment completion times between the treatment and the

control group. As explained before, this is intuitive as assignment 1 can be interpreted

as a placebo. In the case of subsequent Excel assignments, exposure to the leaderboard

is associated with a statistically significant reduction in assignment completion time for

all assignments except for assignment 6. The prompt for assignment 6 was released

soon before the midterm exam. Given that the midterm exam score has a larger impact

on the overall course grade than an individual Excel assignment, students might have

prioritized preparing for the midterm and simultaneously postponed completing the as-

signment. The e↵ects on assignments 2, 3, 4, 5, and 7 are substantial in magnitude.

Notably, in the case of Excel Assignment 2, being assigned to the treatment group re-

sulted in a over 15-hour reduction in assignment completion time, which corresponds
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to over half a day. The strong immediate e↵ect of the leaderboard on assignment 2

completion time provides support for Hypothesis 1. This e↵ect, although decreasing in

magnitude, persists throughout the quarter. Even in the case of assignment 7 (the last

assignment we consider, which is due almost two months after the initial exposure to the

leaderboard), the reduction in completion time is still significant (over 10 hours). The

persisting e↵ect of the leaderboard on completion time provides evidence for Hypothesis

2.

Is the leaderboard also associated with a better performance in the class overall?

Table 3.2 presents the e↵ects of the treatment (leaderboard) on z-transformed final course

grades, estimated using Equation 3.2. We report no significant e↵ects of the treatment on

total course grades (Columns 1 and 2). Although going against Hypothesis 3, these results

are not surprising. When the sample as a whole is considered, exposure to the leaderboard

may be too light-touch of an intervention to result in a change in behavior extending

beyond assignment completion times, which would subsequently improve the final course

grades. It is unlikely that all students in the sample respond to the treatment in the

same way, which could a↵ect the overall treatment e↵ect. However, certain demographic

groups may be more sensitive to exposure to the leaderboard than others. Therefore,

in columns 3 through 8, we explore whether the leaderboard has di↵erent e↵ects on

subgroups of students.

There appears to be substantial treatment heterogeneity for transfer/non-transfer

students as well as male/female students, as put forward in Hypothesis 4. Columns 3 and

4 provide the coe�cient estimates when the baseline model in Equation 3.2 is extended by

adding an interaction term between a student’s transfer status and treatment assignment.

Transfer students assigned to the treatment group appear to achieve higher overall course

grades relative to their peers assigned to the control group.3 This finding is particularly

3P-values from the F-test for joint significance significant at the 10% level.
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important given that transfer students are often considered as being at a higher risk of

attrition from the major track than non-transfer students due to the additional challenges

associated transitioning from another school. Similarly, columns 5 and 6 provide the

coe�cient estimates when the baseline model in Equation 3.2 is extended by adding an

interaction term between a student’s gender and treatment assignment. Male students

assigned to the treatment group tend to achieve higher overall course grades as compared

to their peers assigned to the control group.4 These e↵ects are non-trivial in magnitude.

To put this is more context, we replicate the analyses presented in the previous table

with raw final course grade as the outcome (as opposed to z-transformed course grades).

Table 3.3 presents the e↵ects of the treatment on the final course grade when the final

course grade is operationalized as the raw number of points accumulated throughout the

course across all assignments. As being assigned to the treatment increases the overall

course grade by around 3 points for transfer students, the e↵ect is large enough to move

up a letter grade (e.g., from B- to B).

3.7 Conclusion

We conducted a field experiment in a large undergraduate Economics course to in-

vestigate whether gamifying online Excel assignments through implementation of leader-

boards will a↵ect assignment completion times and overall course performance. Our

results indicate that students assigned to the treatment group exhibit faster assignment

completion times, suggesting that the leaderboard positively alters students’ study be-

haviors. At the same time, while we do not find significant e↵ects of the leaderboard on

performance in the class in the context of the entire sample, we report that transfer stu-

dents as well as male students exposed to the leaderboard achieve higher overall course

4P-values from the F-test for joint significance marginally significant at the 10% level.
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grades than their peers in the control group. These results are particularly interesting

given that the intervention (leaderboard) is light-touch (i.e., students are not required

to check the leaderboard) and costless (i.e., implementing the leaderboard on the assign-

ment submission platform requires no additional fees as well as minimal e↵ort upfront

and virtually no e↵ort associated with maintenance).

Our study, like all studies, has its limitations. First, we capped the leaderboards

at 50 students which we hoped would create a su�cient potential for mobility along

the leaderboard without alienating the low performers. However, future work should

explore more closely the relationship between leaderboard size and leaderboard e↵ects to

arrive at a more precise optimum. Second, in our study we did not have the technical

infrastructure to automatically redirect students to the leaderboard upon assignment

submission, nor did we have access to the information on if and how frequently individual

students chose to inspect the leaderboard. Future research may experiment with various

leaderboard settings, while attempting to collect more data on how students interact with

the leaderboard. Third, our study was limited to a single class. It would be interesting

to explore if leaderboards implemented in several courses at once crowd each other out

or amplify each other’s e↵ect.

Despite these limitations, our findings still provide important insights into how leader-

boards can be used as incentives to shape behaviors. More narrowly, our results can be

directly used to guide how instructors design their assignments with the goal of promot-

ing engagement within digital learning spaces and fostering positive study habits among

students.
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Figure 3.1: Screenshot of the leaderboard as viewed from the student perspective
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Figure 3.2: Average Completion Times for Treatment (Leaderboard) Group
and Control (No Leaderboard) Group Across Assignments 1 Through 7

Notes: Purple circles denote raw mean completion times for students in the treatment group (no
controls included). Orange triangles denote raw mean completion times for students in the control
group (no controls included). Whiskers denote 90% confidence intervals. Assignment 1 provides a

placebo test (no expected di↵erence between treatment and control group). Completion time is defined
as the di↵erence between assignment release time and the last submission made by the student.
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Figure 3.3: Regression Estimates of the Treatment E↵ect (Leaderboard Expo-
sure) on Completion Times Across Assignments 1 Through 7

Notes: Circles denote coe�cients estimated using equation (1). Whiskers denote 90% confidence
intervals. * denotes significance at the 10% level, ** denotes significance at the 5% level, and ***
denotes significance at the 1% level. Controls include student’s gender, age, race, ethnicity, major,

transfer and international status. Wild-bootstrap standard errors are clustered at the level of
enrollment section. Assignment 1 provides a placebo test (no expected di↵erence between treatment

and control group).
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Table 3.1: Balance Check Across Treatment (Leaderboard) and Control (No Leader-
board) Groups

(1)
Leaderboard

Mean
(Std.)

(2)
No Leaderboard

Mean
(Std.)

(3)
Mean Di↵.
(1) - (2)

Male
0.413
(0.496)

0.421
(0.495)

-0.008

Transfer
0.504
(0.518)

0.481
(0.501)

0.023

Age 18 to 20
0.778
(0.416)

0.760
(0.429)

0.019

Age 21 to 24
0.209
(0.407)

0.213
(0.411)

-0.004

Age 25 or more
0.013
(0.114)

0.027
(0.164)

-0.014

Major Econ
0.565
(0.497)

0.546
(0.499)

0.019

Major Econ/Acc
0.400
(0.491)

0.383
(0.487)

0.018

Major Other
0.022
(0.146)

0.049
(0.217)

-0.028

Major Undecided
0.013
(0.114)

0.022
(0.147)

-0.009

Hispanic/Latino
0.135
(0.342)

0.208
(0.407)

-0.073*

Race White
0.509
(0.501)

0.443
(0.498)

0.066

Race Black
0.057
(0.231)

0.049
(0.217)

0.007

Race Asian
0.344
(0.476)

0.372
(0.485)

-0.028

Race Other
0.091
(0.289)

0.137
(0.344)

-0.045

Year Freshman
0.039
(0.194)

0.044
(0.205)

-0.005

Year Sophomore
0.430
(0.496)

0.432
(0.497)

-0.001

Year Junior
0.509
(0.501)

0.497
(0.501)

0.011

Year Senior
0.022
(0.146)

0.027
(0.164)

-0.006

International
0.087
(0.282)

0.153
(0.361)

-0.066*

N (Students) 236 189

94



Motivating Academic Success: The Role of Leaderboards in Shaping Student Study Behaviors
Chapter 3

Table 3.2: E↵ect of Treatment (Leaderboard) on z-Transformed Final Course Grades

(1) (2) (3) (4) (5) (6)

Leaderboard
0.032
(0.104)

-0.022
(0.096)

-0.132
(0.116)

-0.198
(0.116)

-0.114
(0.152)

-0.178
(0.145)

Transfer
-0.709***
(0.136)

-0.588***
(0.190)

-0.394**
(0.180)

Leaderboard * Transfer
0.344**
(0.154)

0.364**
(0.157)

Male
-0.051
(0.129)

-0.092
(0.158)

-0.250
(0.166)

Leaderboard * Male
0.350**
(0.148)

0.373**
(0.147)

Additional Controls - X - X - X
Observations 413 413 413 413 413 413
Number of students
(cluster section level)

31 31 31 31 31 31

Notes: Significant at the *10%, **5%, and ***1% levels. Robust standard errors for
clustered data in parentheses. Constants not displayed. Additional Controls: Age,
Hispanic/Latino, Race, Major, International Student.
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Table 3.3: E↵ect of Treatment (Leaderboard) on Raw Final Course Grades (%)

(1) (2) (3) (4) (5) (6)

Leaderboard
0.438
(0.144)

-0.304
(1.322)

-1.820
(1.610)

-2.739
(1.604)

-1.570
(2.100)

-2.452
(1.995)

Transfer
-5.300**
(2.432)

-9.780***
(1.880)

-8.119***
(2.619)

-5.432**
(2.481)

Leaderboard * Transfer
4.740**
(2.120)

5.026**
(2.167)

Male
-0.619
(1.782)

-0.704
(1.774)

-1.270
(2.180)

-3.457
(2.287)

Leaderboard * Male
4.830**
(2.040)

5.150**
(2.026)

Additional Controls - X - X - X
Observations 413 413 413 413 413 413
Number of students
(cluster section level)

31 31 31 31 31 31

Notes: Significant at the *10%, **5%, and ***1% levels. Robust standard errors for
clustered data in parentheses. Constants not displayed. Additional Controls: Age,
Hispanic/Latino, Race, Major, International Student.

96



Appendix A

Appendix for ”Estimating Investor

Preferences for Blockchain Security”

97



Appendix for ”Estimating Investor Preferences for Blockchain Security” Chapter A

A.1 Linear Discriminant Analysis

A competing method of binary logistic regression is linear discriminant analysis, a

linear method in classification. While the relative e�ciency of linear discriminant analysis

(LDA) is superior to binary logistic regression (BLR) if the LDA’s assumptions are met

(Efron, 1975), the assumption of normality is hard to meet with our data. In one predictor

(W ) case, the LDA assumes that W |Y = k ⇠ N(µk, �2), that is, the predictor given a

di↵erent class, follows a normal distribution with di↵erent mean and variance. We test

this assumption and found the predictor is far from normal distributed through Skewness-

kurtosis graph (Cullen et al., 1999).1

1Using R package fitdistrplus (Venables and Ripley, 2002).
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Figure A.1: Skewness-kurtosis graph, for Ethereum transactions

Figure A.2: Skewness-kurtosis graph, for Optimism transactions

Figure A.3: Skewness-kurtosis graph, for Polygon transactions
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A.2 Threshold the predicted probability

After obtaining the logit regression, we can predict the class (transaction is on L2

or Ethereum) by thresholding the predicted probability. For example, one might predict

Y = 1 (on L2) for any transaction value whose predicted probability is greater than 0.5.

Or, if we are being conservative in predicting transaction value to be in Ethereum, we

could predict Y = 1 (on L2) for any transaction value whose predicted probability is

greater than 0.1.

To evaluate the classification performance under di↵erent threshold probability, one

can construct confusion matrix and pin down the threshold probability that obtain a low

false positive rate (FPR, the fraction of negative examples that are classified as positive,

which in our study is the portion of transaction on Ethereum that are classified as on

L2) while also maintaining a low false negative rate (FNR, the portion of transaction on

L2 that are classified as on Ethereum). We want to choose the probability threshold that

is closest to (FPR, FNR) = (0, 0). There are many ways to determine which threshold

probability corresponds to the smallest distance, but we calculate the euclidean distance

between each point of (FPR, FNR) and (0, 0). Figure Figure A.4 and Figure A.5 show the

ROC curve and optimal threshold selection for 2022/4/11 data.2 The optimal threshold

for that day is 77.91%, meaning when predicting platform, only when the Pr(Y = 1|W ) >

77.91%, we category the transaction to be on L2.

2Using R package ROCR (Sing et al., 2005).
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Figure A.4: Example ROC curve (2022/4/11 data)

Figure A.5: Example FPR, FNR graph (2022/4/11 data)
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A.3 Wallets that swap on both ETH and POLY

Figure A.6: Estimated Security Parameter for subset data
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A.4 Generalization Optimism

Figure A.7: Monetarily Optimal Threshold W ⇤
O,E

vs Empirical Threshold ŴO�E

Figure A.8: Estimated Security Parameter, O,E
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A.5 Generalization all other pairs

Figure A.9: Histogram of 5 other pairs from Polygon and Ethereum

Figure A.10: Histogram of 6 other pairs from Optimism and Ethereum
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Figure A.11: Estimated Security parameter S for 5 other pairs from Polygon and
Ethereum

Figure A.12: Estimated Security parameter S for 6 other pairs from Optimism and
Ethereum
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A.6 Trade-washing

To address the potential concerns on trade-washing and price manipulation transac-

tions, we conducted a robustness check. This involved analyzing a subset of wallets that,

on average, conducted two or fewer transaction per day during the period of analysis.

These wallets are less likely to be involved in acts of price manipulation.

Table A.1 provides an overview of the subset data. We conducted the same analysis

as in Section 1.6.3 to determine the mean (median) estimated security parameter. The

findings indicate that trade-washing and price manipulation transactions cannot explain

the observed gap. If anything, this suggests that our representative agent result is only

a lower bound of the security estimate parameter.

DEX # TXN
(%)

Total Volume
(%)

Mean Estimated
Security Parameter

(Median)

Full
ETH 2,789,976 $220,065,992,854
POLY 4,991,764 $12,401,731,851 0.751%

(0.554%)

Subset
ETH

1,584,914
(56.8%)

$60,484,738,063
(27.5%)

POLY
1,255,020
(25.1%)

$ 2,401,452,530
(19.4%)

1.443%
(1.136%)

Table A.1: Subset Data for users that average daily transaction  2
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A.7 Adoption of the L2 networks

Figure A.13: Estimated Security Parameter vs. Log of # New Users on Polygon
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B.1 Detection of Sandwich Attacks on Decentralized

Exchanges

In this paper, we address the issue of sandwich attacks in liquidity pools by presenting

a straightforward measurement approach to identify and detect such attacks using trading

data from DEX platforms. Our approach builds upon previous research, including studies

by Lehar and Parlour (2023); Züst (2021); Qin et al. (2022); Torres et al. (2021).

Specifically, we use the following rules for identifying attacks:

(A) At least two swaps TM1 and TM2 are included in the same block and swap assets

in the same liquidity pool.

(B) TM1 and TM2 have di↵erent transaction hashes.

(C) TM1 and TM2 swap in di↵erent directions.

(D1) TM1 and TM2 are initiated by the same wallet.

(D2) Input amount of TM1 equals output amount of TM2, or output amount of TM1 equals

input amount of TM2.

Additionally, we have the following rules for identifying successful attacks:

(E) At least one additional swap TA is included in the same block that swapped assets

in the same liquidity pool.

(F) TA executes between TM1 and TM2.

(G) TA and TM1 swap in the same direction.

(H) If more than one swap executes between TM1 and TM2, then TM1 should swap in

the same direction as all additional swaps, TA, TB, etc.
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Rule (A) considers only attacks that are fully executed within the same block. It

should be noted that a sandwich attack can still be successful even if TM1 and TM2 are

located in di↵erent blocks. However, attackers prefer to have TM1 and TM2 placed in the

same block to minimize the risk of compromising their profits and allowing other users

to benefit from them.

Some transactions perform two swaps on the same liquidity pool but in opposing

directions. 1 We adopt rule (B) from Torres et al. (2021), which ensures that we do not

identify such transactions as a sandwich attack.

The contributions of our method can be summarized into two primary aspects. Firstly,

we expand the detection capabilities of sandwich attacks to encompass multi-meat at-

tacks, wherein a single attack targets multiple victims simultaneously. Such attacks

involve the inclusion of at least two victims (referred to as layers/meat slices in the sand-

wich) within a single sandwich attack. To illustrate, a sandwich attack involving three

victims is commonly referred to as a multi-meat attack with three layers. Conversely, a

sandwich attack involving only one layer is commonly referred to as a single-meat attack.

Notably, we observed a total of more than 6,000 instances of multi-meat attacks (6.3%

of the successful attacks) in Uniswap and Sushiswap in March (Table B.1).

Secondly, we introduce more flexible rules for analyzing attackers’ decisions regarding

“cash back,” thereby facilitating enhanced detection of a wider range of attacks. The

concept of “cash back” refers to the choice of tokens in which the attacker wishes to retain

their profits (Token A or B). Previous studies have employed heuristics that restrict the

attacker from retaining their profit exclusively in Token B or Token A.

For example, in Figure B.3, the malicious attacker decides to withdraw 0.2 Tokens B as

1Rule (B) removes the noise of misidentified attacks due to the use of aggregator apps which collect
several users’ swaps into the same transaction. For example, Tokenlon (2022) does such an aggregation.
For these apps, it is possible for our rules erroneously classify transactions as attacks when two users
intend to swap in opposite directions using the same pool.
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Meat Layer Attacks Percentage

1 102,248 93.7%
2 5,116 4.7%
3 1,100 1.0%

� 4 156 0.6%

Table B.1: Layers of Sandwich Attack.

their profit. However, in real-world scenarios, attackers may have liquidity constraints or

specific preferences for other tokens, which can influence their decision-making process.

To address this, we have introduced more flexible rules for the “cash back” decision,

allowing attackers to choose any combination of tokens.

In previous studies, only (D2), or modified versions of (D2), are used. In our study,

(D1) and (D2) do not need to be satisfied at the same time: only one of the two needs to

be satisfied. By adding (D1), we are able to address the “cash back” issue as mentioned

above.

Out of the total 109,120 successful attacks we detected, most of the attacks satisfied

(D1) and (D2) at the same time. However, by adding Rule (D1), we detect more attacks

than by just using Rule (D2) alone (see Table B.2).

Satisfy
D1

Satisfy
D2

Number of
successful
attacks

Percentage of
successful
attacks

Yes Yes 72,624 66.6%
Yes No 33,989 31.1%
No Yes 2,507 2.3%

Table B.2: Number of attacks satisfy Rule D1 and D2.

Some other examples of common heuristics used in other works include:

(E)0 Exactly one swap TA is executed between TM1 and TM2.
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Block Size Number of
successful
attacks

3 (Rule I) 78,885
4 18,552

� 5 11,683

Table B.3: Expansion from common heuristics.

(I) Consider blocks that contain exactly three transactions.

(J) TM1 is the first executed transaction for the traded liquidity pool in a block.

Rule (I) will omit almost 30k successful attacks (see Table B.3).
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B.2 Swap Data
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Uniswap
Number of

Swaps
Total
value

traded ($)

Number of
Unique
Pools

All data
(March 1st to March
31st)

4,612,958
(100%)

17,687
(100%)

Filtered data
(Pools with top 1000
tokens)

2,253,712
(48.9%)

2153
(12.2%)

Filtered data
(Pools with top 1000
tokens)
(Also appear
everyday)

2,096,498
(45.4%)

5.32⇥ 1010 721
(4.1%)

Sushiswap
Number of

Swaps
Total
value

traded ($)

Number of
Unique
Pools

All data
(March 1st to March
31st)

219,412
(100%)

1,190
(100%)

Filtered data
(Pools with top 1000
tokens)

184,686
(84.2%)

401
(33.7%)

Filtered data
(Pools with top 1000
tokens)
(Also appear
everyday)

167,358
(76.3%)

6.64⇥ 108 103
(8.7%)

Table B.4: Swap Data Overview.
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Exchanges” Chapter B

B.3 Additional plots

Figure B.1: Inferred router slippages over time, larger range. Color is drawn on a log
scale to show detail. Each colored cell counts the number of swaps in a slippage range at
a segment of time.
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Exchanges” Chapter B

Figure B.2: Inferred router slippages over time, larger range. Color is drawn on a log
scale to show detail. Each colored cell counts the number of swaps in a slippage range at
a segment of time.
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Exchanges” Chapter B

B.4 Sandwich attack

B.4.1 Sandwich attack

Figure B.3: Sandwich attack example: the transactions introduced by Mallory before
and after Alice’s transaction result in a worse exchange for Alice and a profit for Mallory.

Depicting a scenario where Mallory observes transactions of both Alice and Bob in the

mempool, thereby enabling the execution of a multi-meat attack as shown in Figure B.4.

Such attacks involve the inclusion of two or more victims (referred to as layers/meat

slices in the sandwich) within a single sandwich attack.

Figure B.4: Single versus multi-meat attacks.
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Appendix for ”Motivating Academic Success: The Role of Leaderboards in Shaping Student Study
Behaviors” Chapter C

C.1 Excel Assignment download site

Figure C.1: Screenshot of the assignment download site
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Appendix for ”Motivating Academic Success: The Role of Leaderboards in Shaping Student Study
Behaviors” Chapter C

C.2 Excel Assignment extra infomation for treat-

ment group

• When uploading the Excel spreadsheet to [the autograding platform], you will be

prompted to provide a name for the leaderboard. A leaderboard is a tool that

allows you to monitor accuracy and timing of your submission relative to others in

the class.

• You can pick your own leaderboard name, please make sure it is appropriate and

respectful, given that the leaderboard is visible to other students in the class.

• DO NOT use your real name as your leaderboard name. If you accidentally use

your real name as your leaderboard name, submit again, the original leaderboard

entry will be deleted.

• The leaderboard will NOT a↵ect your course grade at all. If you don’t want your

leaderboard name to be uniquely identified, you can type Optout Otter as your

leaderboard name.

• DO NOT leave the leaderboard name blank, your submission will not be processed.

• DO NOT share your leaderboard name with other students. A student’s leader-

board name is known only to that particular student and course instructors.

• Leaderboard ranks all submissions by the SUBMISSION TIME among the class

members. The earlier the submission, the higher the rank. Note though, the

leaderboard ONLY ranks those who got FULL SCORE on the autograder part of

the assignment. For example, if you and another student both got a full score, and

you submitted earlier, your leaderboard name will appear higher on the leaderboard
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than the other student’s. Please notice that your leaderboard name would appear

at the bottom of the leaderboard if your submission scored less than FULL SCORE

on the autograder part of the assignment.

• After your submission, click on ”Leaderboard” on the ”Autograder Results page”

to check the ranking.
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