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22q11.2 deletion syndrome (22q11DS) is associated with elevated
levels of impulsivity, inattention, and distractibility, which may be
related to underlying neurobiological dysfunction due to haploin-
sufficiency for genes involved in dopaminergic neurotransmission
(i.e. catechol-O-methyltransferase). The Stop-signal task has been em-
ployed to probe the neural circuitry involved in response inhibition (RI);
findings in healthy individuals indicate that a fronto-basal ganglia
network underlies successful inhibition of a prepotent motor
response. However, little is known about the neurobiological sub-
strates of RI difficulties in 22q11DS. Here, we investigated this using
functional magnetic resonance imaging while 45 adult participants
(15 22q11DS patients, 30 matched controls) performed the Stop-
signal task. Healthy controls showed significantly greater activation
than 22q11DS patients within frontal cortical and basal ganglia
regions during successful RI, whereas 22q11DS patients did not show
increased neural activity relative to controls in any regions. Using the
Barratt Impulsivity Scale, we also investigated whether neural dys-
function during RI was associated with cognitive impulsivity in
22q11DS patients. RI-related activity within left middle frontal gyrus
and basal ganglia was associated with severity of self-
reported cognitive impulsivity. These results suggest reduced engage-
ment of RI-related brain regions in 22q11DS patients, which may be
relevant to characteristic behavioral manifestations of the disorder.

Keywords: fronto-basal ganglia, impulsivity, response inhibition,
velocardiofacial syndrome

Introduction

Chromosome 22q11.2 Deletion Syndrome (22q11DS), also
known as DiGeorge/velocardiofacial syndrome, is a recurrent
genetic mutation caused by a microdeletion on the long arm of
chromosome 22. Associated physical features are variable, but
often involve craniofacial, cardiovascular anomalies, immuno-
deficiency, short stature, and hypocalcemia (Shprintzen et al.
1978; Ryan et al. 1997; Scambler 2000; Guyot et al. 2001). Indi-
viduals with 22q11DS also have a characteristic cognitive
profile, involving impairment in nonverbal reasoning, working
memory, and arithmetic, as well as difficulties with inhibitory
control (Swillen et al. 1997; Bearden et al. 2001; Henry et al.
2002). The syndrome is also highly penetrant for Attention
Deficit-Hyperactivity Disorder (ADHD), with ∼40% of patients
diagnosed with the disorder (Green et al. 2009); of those, the
vast majority are diagnosed with the inattentive subtype (Nik-
lasson et al. 2001; Antshel et al. 2007). These symptoms

appear to be continuously distributed in 22q11DS patients, as
even those that do not meet clinical diagnostic criteria for
ADHD show substantially elevated rates of impulsivity, inatten-
tion, and distractibility relative to healthy controls (Antshel
et al. 2008; Furniss et al. 2011).

The known genetic etiology of this syndrome makes it an
ideal model to study the neural basis of inhibitory control defi-
cits. The Go/No-Go and Stop-signal cognitive paradigms are the
most commonly used tasks for measuring the neural basis of
response inhibition (RI), with some additional evidence that
these measures of inhibitory control correlate with self-reported
trait impulsivity in healthy individuals (Logan et al. 1997;
Enticott et al. 2006). Research on the neural circuitry underlying
RI has implicated a fronto-basal ganglia loop, which includes the
inferior frontal cortex and subthalamic nucleus (Aron and Pol-
drack 2006; Aron et al. 2007). Models of basal ganglia function
suggest that the subthalamic nucleus is active during the inhi-
bition of already-initiated responses through the “hyperdirect”
fronto-subthalamic pathway, as the time to inhibit can be as brief
as 120 ms (Alexander and Crutcher 1990; Mink 1996; Nambu
et al. 2002; Aron and Poldrack 2006).

To our knowledge, only one prior fMRI study of RI has been
conducted in individuals with 22q11DS; this study found that
patients exhibited greater activation than healthy controls in left
parietal regions during performance of a Go/No-Go task
(Gothelf et al. 2007), which was interpreted as reflecting com-
pensatory recruitment for executive dysfunction. It is important
to note that adolescent 22q11DS patients were evaluated in this
previous cross-sectional study; thus, neural differences captured
during this malleable age range may include variance attribu-
table to rapidly changing developmental neural trajectories. It
remains unclear whether this pattern of compensatory activity is
observed in an adult 22q11DS sample, and further whether this
difference generalizes to other RI tasks. The Stop-signal task
offers several advantages over other paradigms for investigating
RI. An important advantage, given that the task is designed to
result in roughly equal proportions of failed and successful inhi-
bition trials, is that it controls for difficulty and allows for differ-
ent conditions to be directly contrasted, thereby avoiding the
confound of the “oddball effect,” or effects related to infrequent
trial types (Rubia et al. 2003; Aron and Poldrack 2005).

It is not yet known whether abnormal activation in
RI-associated brain circuitry is associated with the symptoms
of impulsivity seen in 22q11DS individuals. Early detection of
neural vulnerability markers of impulsivity could potentially
reduce the clinical severity and functional impairment caused
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by these symptoms. Using functional magnetic resonance
imaging (fMRI), we investigated underlying neural activity in
22q11DS patients compared with healthy controls during RI,
as measured using the Stop-signal task. We hypothesized that
22q11DS patients would show abnormal recruitment of brain
regions critical for inhibitory control (i.e. prefrontal cortical
and basal ganglia regions) during task performance. We also
queried whether neural activity within RI-related regions is
associated with trait impulsivity in adult 22q11DS patients.

Materials and Methods

Participants
The total sample consisted of 45 (15 22q11DS and 30 healthy) adults
(18–38 years old). 22q11DS participants consisted of individuals with a
molecularly confirmed diagnosis of 22q11.2 deletion syndrome re-
cruited from an ongoing longitudinal study at the University of Califor-
nia, Los Angeles (UCLA). Healthy controls were recruited from this
study and from the Consortium for Neuropsychiatric Phenomics (CNP)
at UCLA. Exclusion criteria for all study participants included the fol-
lowing: neurological or medical condition that might affect perform-
ance, insufficient fluency in English, substance or alcohol abuse and/
or dependence with the past 6 months, any contraindications to scan-
ning, and left-handedness (further details are provided in Supplemen-
tary Materials). The Structured Clinical Interview for DSM-IV Axis I
Disorders [SCID; (First 1997)] was used to ensure that healthy controls
did not meet criteria for any current major mental disorder (see Sup-
plementary Materials and Thakkar et al. 2013 for additional details of
inclusion/exclusion criteria). Demographic information for 22q11DS
patients and matched controls are presented in Table 1.

All participants underwent a verbal and written informed consent
process. The UCLA Institutional Review Board (IRB) approved all
study procedures and informed consent documents.

Procedure
After screening and neuropsychological assessment, participants took
part in a behavioral training session immediately prior to a 1-h scan. In
the behavioral testing session, participants received training on the
Stop-signal task in the form of one initial demo and a trial run before
completing the experiment run while inside of the scanner. Stimulus
presentation and timing of all stimuli and response events were
achieved using Matlab (Mathworks) and the Psychtoolbox (www.
psychtoolbox.org, Brainard 1997) on an Apple Powerbook. For the
experiment block administered in the scanner, each participant viewed
the task through MRI-compatible goggles and responded with his or
her right hand on an MR-compatible button box in the scanner.

Measures

Stop-signal Task
Participants completed a tracking version of the Stop-signal task,
which enabled isolation of activation associated with the inhibition of
an already-initiated motor response, and calculation of an individua-
lized measure of inhibitory control (stop-signal reaction time, SSRT).
In this task, participants were instructed to respond quickly when a
“go” stimulus was presented on the computer screen (which consisted
of leftward or rightward pointing arrows), except on the subset of
trials where the “go” stimulus was followed by a “stop” signal (a
500-Hz tone presented through headphones), in which case partici-
pants were instructed to withhold their response. The onset of the
stop-signal, or stop-signal delay (SSD), was adjusted according to the
participant’s performance—such that the SSD decreased following a
successful inhibition (making the next trial more difficult) and in-
creased following a failed inhibition (making the next trial easier)—
which ensured that subjects successfully inhibited on ∼50% of stop
trials. A complete description of the task and fMRI acquisition par-
ameters is presented in Supplementary Materials.

Barratt Impulsiveness Scale
The Barratt Impulsiveness Scale (BIS) Version 11 (Patton et al. 1995) is
a 30-item questionnaire assessing aspects of impulsivity. The BIS-11 is
a versatile and widely used measure of impulsivity that has been
applied to various clinical groups, including those with ADHD (Malloy-
Diniz et al. 2007; Crunelle et al. 2013). We used the revised, 2-factor
scoring method of the BIS, which has been offered as an alternative
multidimensional structural representation of impulsivity (Reise et al.
2013). The revised method of scoring the BIS results in 2 correlated
factors: 1) Cognitive Impulsivity, reflecting difficulties in attentional
control, concentration, careful and deliberate thinking, and planning
(e.g. “not a steady thinker,” “no self-control/concentration,” and “not
planful”), and 2) Behavioral Impulsivity (with some cognitive
elements), which reflects acting impulsively, changing jobs, moving re-
sidences relatively often, and a scattered quick-paced cognitive tempo
(e.g. “extraneous racing thoughts,” “acts impulsively,” and “changes,
moves around”). For both scales, higher scores reflect higher levels of
trait impulsivity.

Neurocognitive Measures
Supervised clinical psychology doctoral students or PhD staff adminis-
tered a comprehensive neurocognitive battery assessing multiple
domains of cognitive functioning. IQ data were acquired for all
22q11DS patients and controls using the Wechsler Abbreviated Scale
of Intelligence (WASI; Wechsler 1999) or the Wechsler Adult Intelli-
gence Scale (WAIS-IV, Wechsler 2008).

Behavioral data Analysis
Stop-signal task data were analyzed as has been previously described
(Congdon et al. 2010, 2012) and as detailed in the Supplementary
Materials. Briefly, SSRT was estimated using the quantile method
(Band et al. 2003), with longer SSRT values reflecting poorer inhibitory
control. Additional performance measures included mean and stan-
dard deviation of reaction time (RT) on Go trials, percent inhibition on
Stop trials, and percent correct on Go trials.

To examine differences between the 2 groups (22q11DS vs. controls)
with regard to demographics and trait impulsivity, we conducted inde-
pendent t-tests for continuous variables or χ2 tests for categorical vari-
ables. Pearson correlations were conducted to assess the relationship
between demographics and Stop-signal task performance. To examine
group differences with regard to Stop-signal task performance, we then
conducted ANCOVAs for each behavioral measure, with group as a fixed
factor, and any demographic measure that showed a significant relation-
ship with Stop-signal performance included as a covariate. All analyses
were conducted using SPSS software v. 21 (IBM).

Table 1
Demographic and clinical characteristics of study participants

22q11.2
Participants
(n= 15)

Control
participants
(n= 30)

P

Age (years, ± SD) 22.5 (5.4) 23.0 (4.4) 0.72
Participant education (years, ± SD) 12.1 (1.1) 14.6 (1.7) <0.001
Parental education 16.0 (3.6) 14.7 (1.7) 0.30
Gender (N, % female) 6 (40%) 12 (40%) 1.00
Ethnicity (N, % Latino) 2 (13%) 2 (37%) 0.10
Full Scale IQ (mean ± SD)a 75.7 (14.5) 123.9 (12.4) <0.000001
Barratt Impulsivity Scale: Cognitive
Impulsivity (mean ± SD)b

8.00 (2.19) 6.09 (1.56) 0.03

Psychotropic medication (N, none/
antidepressant/psychostimulant/
antianxiety, /antipsychoticc

7/5/3/2/1 29/0/1/0/0 NA

abased on 2-subtest Wechsler Abbreviated Scale of Intelligence (Vocabulary and Matrix
Reasoning).
bCognitive Impulsivity measures were available for 23/30 control participants.
cThree 22q11DS participants were prescribed multiple psychotropic medications.
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fMRI data Analysis
Analyses were performed using tools from the FMRIB software library
(www.fmrib.ox.ac.uk/fsl), version 5.0 (Smith et al. 2004), and prepro-
cessing steps are outlined in Supplementary Materials. For each
subject, Stop Successful-Go, Go-Null, and Stop Unsuccessful-Stop Suc-
cessful contrasts were computed, and the output from the subject-
specific analyses was then analyzed using a mixed-effects model with
FLAME for between-group comparisons. Group-level statistics images
were thresholded with a cluster-forming threshold of z > 2.3 and a
cluster probability of P < 0.05, corrected for whole-brain multiple com-
parisons using Gaussian random field theory.

Follow-up analyses were conducted in order to assess the relation-
ship between neural activity within predefined regions of interest
(ROIs) and symptoms of impulsivity within 22q11DS patients. We con-
ducted this analysis within the patient group only as the range of
scores was fairly restricted within the subset of controls that completed
the measure. We focused on the BIS Cognitive Impulsivity subscore
(for details, see Reise et al. 2013) given that 1) the Cognitive Impulsiv-
ity subscale captures difficulties in attentional control, and 2) ADHD di-
agnoses in 22q11DS are primarily of the inattentive subtype (Niklasson
et al. 2001; Antshel et al. 2007). Mean percent signal change was ex-
tracted from 8 predefined ROIs, selected based on visual inspection of
the group contrast and previous literature (Aron and Poldrack 2006;
Aron et al. 2007; Congdon et al. 2010; Swick, Ashley and Turken 2011;
Bari and Robbins 2013), which included the right inferior frontal gyrus
(triangularis and opercularis, separately), right and left middle frontal
gyrus, right caudate, right and left thalamus, and right putamen. ROIs
were defined using the FSL Harvard-Oxford probabilistic atlas (thre-
sholded at 25%); we then intersected these anatomically defined masks
with our group-level Stop Successful-Go contrast in order to isolate
voxels within anatomically defined regions that were significantly
active during RI. These anatomically defined ROIs were then used to
extract average percent signal change values corresponding to a 1-s
stimulus convolved with a double-gamma HRF from the Stop
Successful-Go contrast in 22q11DS patients alone (following Mumford
and Poldrack 2007). Residuals were calculated by regressing percent
signal change and Cognitive Impulsivity values on age and gender.
Using SPSS, percent signal change residuals were then correlated with
Cognitive Impulsivity residuals. Given the exploratory nature of these
analyses, we did not correct for multiple comparisons. Finally, we con-
ducted a follow-up analysis to rule out the effect of education on fMRI
results given the difference in education between groups (see Sup-
plementary Materials).

RESULTS

Behavioral Results

Demographic and Clinical Characteristics
As shown in Table 1, control and 22q11DS groups were
matched on all demographic factors except for participant edu-
cation and IQ. Among the 22q11DS patients, 33% (5 of 15) had
a diagnosis of ADHD.

Demographic Associations with Task Performance
For the 2 groups combined, there was a significant relationship
between percent correct on Go trials and age (r = 0.38,
P = 0.01), with older participants having higher accuracy than
younger participants. There was also a negative relationship
between SSRT and years of education (r =−0.42, P = 0.005)
and a positive relationship between percent correct on Go
trials and years of education (r = 0.62, P < 0.001), such that
those with higher levels of education had shorter SSRT values
(indicating better inhibitory control) and higher accuracy on
Go trials. There were no significant differences between
gender and task performance (all P’s≥ 0.59) or ethnicity and
task performance (all P’s≥ 0.11).

Between-group Comparisons of Stop-Signal Task Performance
As shown in Table 2, there were no significant differences in
SSRT or percent total inhibition on Stop trials, after controlling
for age and education level, suggesting comparable RI per-
formance between groups. However, there were significant
differences in median RT on Go trials and percent correct on
Go trials, with controls showing faster RT and higher accuracy
on Go trials when compared with 22q11DS patients.

Between-group Comparisons of Barratt Impulsiveness Scale:
Cognitive Impulsivity
As shown in Table 1, there were significant differences in Cogni-
tive Impulsivity between groups, with 22q11DS patients showing
significantly elevated Cognitive Impulsivity scores relative to con-
trols, even after controlling for age and years of education.

fMRI Results

Successful Stopping
Activation was seen in a broad set of brain regions during suc-
cessful RI in our sample of healthy controls (Stop Successful-
Go contrast), consistent with previous studies (e.g. Aron and
Poldrack 2006; Congdon et al. 2010). As illustrated in Table 3
and Figure 1a, activation was seen in bilateral inferior and
middle frontal gyri, superior frontal gyrus, middle temporal
gyrus, insula, putamen, caudate, thalamus, and occipital
cortex. RI-related activation in 22q11DS patients (Stop
Successful-Go contrast) was seen in the bilateral middle tem-
poral gyrus and right insula. A direct comparison between con-
trols and 22q11DS patients for the Stop Successful-Go contrast
revealed significantly increased activation in controls relative
to 22q11DS patients in bilateral inferior and middle frontal
gyri, superior frontal gyrus, putamen, caudate, thalamus, occi-
pital cortex, and right middle temporal gyrus. In contrast, there
were no regions showing greater activation for 22q11DS
patients when compared with controls for successful RI.

Response Initiation
When responding to Go stimuli (Go-Null contrast), healthy
controls engaged a broad set of regions, consistent with pre-
vious studies (Aron and Poldrack 2006; Congdon et al. 2010),
with activation seen in the bilateral middle temporal gyrus,
temporal-occipital cortex, anterior cingulate cortex, and left
primary motor cortex (Fig. 1b, Table 3). In patients, the Go
process (Go-Null contrast) was associated with activation in
the right cerebellum, left primary motor cortex and right
putamen. A direct group comparison for the Go-Null contrast
revealed greater activation in the bilateral occipital cortex and
left parieto-occipital cortex in controls relative to 22q11DS

Table 2
Behavioral Performance on Stop Signal task: 22q11DS participants and healthy controls

Stop signal fMRI task:
Behavioral results

22q11.2 Participants
(N= 15)

Control participants
(N= 30)

F P

Median Go RT (ms, ±SD) 567.0 (169.0) 440.8 (81.3) 7.2 0.01
Go Trials: % Correct (%,
±SD)

74.2% (6.3) 92.5% (11.4) 15.3 0.0003

Stop Trials: % Inhibition
(%, ±SD)

52.1% (12.4) 49.6% (10.2) 1.1 0.30

SSRT RT (ms, ± SD) 211.60 (81.6) 167.9 (71.7) 0.0 0.99

Note: As age and level of participant education were associated with task performance, we
covaried for these demographic variables in group comparisons of task performance variables.
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patients. Again, there were no regions showing greater acti-
vation for 22q11DS patients compared with controls for the
response initiation contrast.

Inhibitory Failure
There were no regions showing significant activation for the
Stop Unsuccessful-Stop Successful contrast (i.e., activation
associated with inhibitory failure) in either healthy controls
or 22q11DS patients alone. A direct group comparison for
the Stop Unsuccessful-Stop Successful contrast revealed
greater activation in 22q11DS patients relative to controls in
left middle frontal gyrus, right inferior and middle frontal
gyrus, and right caudate and thalamus (Fig. 1c, Table 3).
There were no regions showing greater activation for con-
trols when compared with 22q11DS patients for inhibitory
failure.

Relationship Between Inhibition-Related Activation and
Cognitive Impulsivity
To determine whether Cognitive Impulsivity is associated with
RI-related activation, we tested the correlation between the
Cognitive Impulsivity subscore from the revised 2-factor
scoring of the BIS-11 (Reise et al. 2013) and percent signal
change from our set of anatomically defined ROIs, controlling

for the effects of age and gender (Fig. 2). Our ROIs included
the right inferior frontal gyrus (triangularis), right inferior
frontal gyrus (operculum), bilateral middle frontal gyrus, right
caudate, bilateral thalamus, and right putamen.

Cognitive impulsivity was significantly associated with acti-
vation in 4 of these ROIs. Left middle frontal activation was sig-
nificantly negatively correlated with Cognitive Impulsivity: r
(11) =−0.590, P = 0.017, with a relationship strength, as
indexed by η2, of 0.35 (Fig. 2a). Activation in the right
putamen was significantly negatively correlated with Cognitive
Impulsivity: r(11) =−0.578, P = 0.019, η2 = 0.33 (Fig. 2b). Acti-
vation in the right caudate was significantly negatively corre-
lated with Cognitive Impulsivity: r(11) =−0.529, P = 0.032,
η2 = 0.28 (Fig. 2c). Activation in the left thalamus was signifi-
cantly negatively correlated with Cognitive Impulsivity: r
(11) =−0.512, P = 0.037, η2 = 0.26 (Fig. 2d). Thus, activity in
left middle frontal gyrus, right putamen, right caudate, and left
thalamus during RI was significantly inversely correlated with
Cognitive Impulsivity in 22q11DS patients.

Discussion

The present study was the first, to our knowledge, to investi-
gate Stop-signal performance in adults with 22q11.2 deletion

Table 3
Regions of activation for healthy controls and 22q11DS patients during successful stopping, response initiation, and inhibitory failure (Stop Successful-Go, Go-Null, and Stop Unsuccessful-Stop Successful
contrasts, respectively)

Trial
type

Contrast Region Voxel
#

Max
Z-Score

Max X
(mm)

Max Y
(mm)

Max Z
(mm)

Successful Stopping
Controls

Paracingulate gyrus, Right inferior/middle/superior frontal gyrus, angular gyrus, intraparietal sulcus 14 827 6.45 66 −32 2
Left insular cortex, orbitofrontal cortex, inferior frontal gyrus, middle/superior temporal gyrus, caudate,
pallidum, accumbens, putamen

6231 5.5 −66 −26 6

Bilateral occipital cortex 4878 4.8 16 −96 −6
Right orbitofrontal cortex, pallidum, caudate, accumbens, putamen 600 3.77 10 6 4
Posterior cingulate cortex 426 3.66 18 −30 −4

22q11DS Patients
Right middle/superior temporal gyrus, supramarginal gyrus, angular gyrus 2372 4.58 60 −30 0
Left middle/superior temporal gyrus, supramarginal gyrus 1609 4.34 −56 −36 8
Right insular cortex, frontal operculum, frontal orbital cortex, inferior frontal gyrus (pars triangularis) 509 4.13 36 16 −2

Controls > 22q11DS Patients
Right frontal pole, superior/middle/inferior frontal gyrus, anterior cingulate gyrus 2419 5.07 16 12 64
Posterior cingulate gyrus, bilateral caudate, putamen, thalamus, pallidum, left accumbens 1951 4.09 8 −2 12
Left occipital cortex, inferior/middle temporal gyrus, lingual gyrus 1665 3.91 −8 −80 −40
Left middle/superior frontal gyrus, frontal pole 1173 4.26 −40 24 44
Right occipital cortex, inferior temporal gyrus, 1132 4.47 40 −68 −44
Precuneus, cuneus, occipital cortex 898 4.27 10 −76 52
Right middle/superior temporal gyrus 683 4.44 54 −26 −8
Left occipital cortex, angular gyrus, supramarginal gyrus, superior parietal lobule 587 5.37 −46 −50 46

Go Process
Controls

Left temporal-occipital fusiform gyrus, insular cortex, central opercular cortex 9441 5.46 14 −64 −48
Right superior temporal gyrus, supramarginal gyrus, parietal operculum cortex 1949 5.57 68 −32 18
Anterior cingulate cortex, supplementary motor cortex 1212 3.99 0 6 38
Right middle temporal gyrus, occipital cortex, angular gyrus 1107 5.66 56 −66 6
Left occipital cortex 990 4.74 −48 −70 −8
Left putamen, pallidum, thalamus 470 3.98 −28 −4 −10

22q11DS Patients
Left precentral gyrus, postcentral gyrus, superior frontal gyrus, supramarginal gyrus 582 3.93 −46 −20 60
Left thalamus, putamen, pallidum 401 3.28 −12 −18 10

Controls > 22q11DS Patients
Left occipital cortex, middle temporal gyrus, angular gyrus 1007 4.19 −40 −84 22
Right occipital cortex, middle temporal gyrus 987 3.92 56 −66 6

Inhibitory Failure
22q11DS Patients > Controls

Right inferior/middle frontal gyrus 514 3.74 36 24 32
Left inferior/middle frontal gyrus 357 3.58 −38 16 40
Right thalamus, caudate, putamen 352 3.42 8 −4 14

Note: Coordinates for location of maximum activation of significant clusters in MNI space.
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syndrome, a recurrent genetic mutation associated with sub-
stantially elevated rates of ADHD, and high rates of behavioral
dysregulation, impulsive behavior, and distractibility (Baker
and Vorstman 2012). During RI, patients with 22q11DS failed
to show significant activity within brain regions typically
associated with successful inhibition on the Stop-signal task,
such as inferior frontal and basal ganglia regions. Additionally,
exploratory analyses revealed that neural activity in the left
middle frontal gyrus, left thalamus, and right striatum was
negatively correlated with self-reported Cognitive Impulsivity
symptoms in 22q11DS patients, as measured by the BIS. Taken
together, these findings suggest a pattern of reduced neural en-
gagement during RI in 22q11DS, and that this dysfunction
associated with real-world cognitive impulsivity. These find-
ings provide initial evidence suggesting a neurobiological sub-
strate for inhibitory control deficits in 22q11DS.

Successful Response Inhibition
Consistent with previous reports in healthy adults (Garavan
et al. 1999; Braver et al. 2001; Aron and Poldrack 2006; Aron
et al. 2007), herewe found that RI was associated with activation
in bilateral inferior and middle frontal gyri, insula, parietal
cortex, and basal ganglia regions. Our sample of healthy con-
trols thus serves as a valid comparison group, to which we can
compare our sample of 22q11DS patients in order to examine
potential deficits in inhibition-related neural activation.

In contrast to the healthy adults in our sample, when inhi-
bition of a motor response was required, 22q11DS patients
only showed significant activation in the bilateral middle tem-
poral gyrus and right insula. Activation in the middle temporal
gyrus is expected, given the binaural presentation of the Stop-
signal tone (Aron and Poldrack 2006), and was also seen in
controls. Similarly, activation in the right insula, a region

Figure 1. fMRI activity maps during performance of the Stop-signal task. Blue maps represent control activity, green maps represent 22q11DS patient activity, and red maps
represent the between-group contrast of Controls > 22q11DS patients. Brain orientations are labeled such that S = superior, I = inferior, P = posterior, and A= anterior; R = right
and L = left. (a) Activation maps represent the contrast of Stop Successful-Go, to investigate activity related to successful stopping. (b) Activation maps represent the contrast of
Go-Null, to investigate activity related to response initiation. (c) Activation maps represent the contrast of Stop Unsuccessful-Stop Successful, to investigate activity related to
inhibition failure.
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Figure 2. Relationship between response inhibition-related neural activity and cognitive impulsivity in 22q11DS. The X-axis values represent the residuals of the Cognitive
Impulsivity subscore of the Barratt Impulsivity Scale and the Y-axis values represent the residuals for percent signal change during Stop Successful-Go within the following
anatomically defined ROIs (after adjusting for age and years of education), which are displayed next to the corresponding plot: (a) left middle frontal gyrus, (b) right putamen, (c)
right caudate, and (d) left thalamus. In the partial regression, the residuals (or errors of prediction) represent the parts of our variables of interest that are not predicted by age or
gender. Brain orientations are labeled such that S = superior, I = inferior, P = posterior, and A = anterior; R = right, and L = left.
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commonly engaged during RI, was expected and consistent
with activation seen in controls. Direct group comparisons
confirmed that 22q11DS patients show significantly less en-
gagement of regions typically active during RI (i.e. bilateral
inferior and middle frontal gyrus, and subcortical structures in-
cluding caudate, putamen and thalamus), relative to controls,
despite performance being calibrated on these trials such that
both groups successfully inhibit responses 50% of the time.

RI-associated neural abnormalities have been reported in
multiple clinical populations with impulse control difficulties,
particularly those with ADHD. Indeed, a fronto-striatal deficit
hypothesis of ADHD has been proposed based on the number
of studies consistently showing reduced activation in frontal and
basal ganglia regions implicated in inhibitory control processes
in children and adolescents with ADHD (Durston et al. 2003;
Schulz et al. 2004; Tamm et al. 2004; Dickstein et al. 2006;
Epstein et al. 2007). Although fewer studies have investigated RI
in adults with ADHD, a recent meta-analysis (Hart et al. 2013)
and a comprehensive review by Cubillo et al. (2012) converge
on a pattern of reduced activation in the inferior frontal cortex
and insula, cingulate, and striatal regions during RI in adults
with ADHD when compared with healthy controls. There is, in
addition, some evidence for more diffuse-immature activation
of the brain in children with ADHD relative to typically develop-
ing controls during RI, which is manifested in over-activation of
other brain regions (Ma et al. 2012). We did not observe such a
pattern in our sample, which is consistent with the interpret-
ation that this is a marker of developmental delay, which even-
tually normalizes (Brydges et al. 2013). However, we cannot
rule out the possibility that we did not observe such over-
activation due to limited power. Overall, our findings of reduced
RI-related activation in 22q11DS adults during task performance
converge remarkably well with findings in children and adults
with idiopathic ADHD, suggesting a shared underlying neural
substrate for RI deficits. However, future investigations compar-
ing patients diagnosedwith idiopathic ADHDdirectly to 22q11DS
patients with and without a diagnosis of ADHD are needed to
directly test this.

To our knowledge, there has been only one prior fMRI inves-
tigation of RI in 22q11DS patients. Specifically, Gothelf et al.
(2007) examined neural activation during performance of a Go/
No-Go task in an adolescent sample of 22q11DS patients, when
compared with typically developing controls and controls with
developmental disability. Using a block design, these authors
examined activation during Go/NoGo when compared with Go
conditions, revealing greater left parietal activation in the
22q11DS group when compared with both typically developing
and developmentally disabled controls. The authors interpreted
these findings as consistent with a pattern of compensatory acti-
vation, in which 22q11DS patients compensate for executive
dysfunction via increased recruitment of parietal regions. In con-
trast, using an event-related fMRI design of the Stop-signal task,
we report here less activation in stopping-related brain regions
in a sample of 22q11DS adults when compared with controls. In
addition, while we found decreased activation in RI-related
regions in 22q11DS patients relative to controls for the inhibition
of a motor response, we found increased activation in 22q11DS
patients compared with controls in several regions when failing
to inhibit a motor response. We do not consider these findings
inconsistent with those of Gothelf et al. (2007), since the Stop-
signal design allows for the isolation of the each of these pro-
cesses, as opposed to combining activity across these conditions

in the Go/No-Go task. Other methodological issues, including
differences in task demands and the age of the study partici-
pants, may also account for differences in our findings.

While the broader literature of RI-related neural activation in
other neurogenetic syndromes is limited, one fMRI investi-
gation of RI found reduced activity in cortical and subcortical
structures in Williams Syndrome individuals compared with
age and gender-matched typically developing control subjects,
supporting the pattern of reduced neural engagement found in
our 22q11DS sample (Mobbs et al. 2007). Similarly, adolescent
males with Fragile X Syndrome showed reduced activation in
prefrontal and basal ganglia regions compared with controls
during RI using a Go/No-Go task (Hoeft et al. 2007). In con-
clusion, the pattern of activation differences in 22q11DS
patients relative to controls depends on a number of factors,
and a complete understanding of neural deficits that contribute
to inhibitory control deficits associated with these disorders of
distinct genetic origin require additional studies in larger
samples. In particular, translational studies in which RI deficits
are compared across transgenic mouse models of these dis-
orders could provide novel insights into the underlying mol-
ecular mechanisms.

Response Initiation
Consistent with previous research (Mink 1996; Liddle et al.
2001; Mostofsk et al. 2003; Aron and Poldrack 2006), the “Go”
network identified in our sample of healthy adults implicates
the fronto-striatal-pallidal pathway in response initiation.
When compared with controls, 22q11DS patients showed less
activity in the bilateral occipital cortex and left parieto-occipital
cortex when initiating a motor response. This difference may
reflect decreased neural activity during visual processing of the
arrow stimulus and the arrow direction for 22q11DS patients
when compared with controls (Haxby et al. 1991; Malach et al.
1995), an interpretation that is supported by behavioral per-
formance data on the Stop-signal task, with patients showing
poorer performance on Go trials compared with controls.

Inhibitory Failure
In contrast to the pattern observed for RI and initiation pro-
cesses, 22q11DS patients showed greater activation within
bilateral frontal gyri, the right caudate and thalamus, when
failing to inhibit a motor response, when compared with con-
trols. This contrast indexes activation during trials where the
inhibition process was initiated, but unsuccessful, and there-
fore encompasses activation associated with the RI process, as
well as activation associated with error processing, conflict de-
tection, and response initiation. As activation in 22q11DS
patients was seen in regions that are part of a RI-related
network, as opposed to a medial frontal error processing
network (e.g., Ridderinkhof et al. 2004), our results suggest a
delayed or ineffectual inhibition process in the patients, which
is reflected by increased activation during failed, when com-
pared with successful, trials—when compared directly to the
pattern of activation observed in healthy controls.

Summary of fMRI Findings
Our findings of altered neural activity in 22q11DS patients
compared with healthy individuals during RI, response
initiation, and when failing to inhibit a motor response pro-
vides evidence for an overall impairment in executive function
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processes, which may be related to common neurobiological
mechanisms. An initiated response is suggested to involve
the fronto-striatal-pallidal “direct pathway,” whereas when in-
hibiting a response this pathway is blocked via discharges
through the “hyperdirect” fronto-subthalamic pathway, or
throughthe“indirect” fronto-striatal-palladal-subthalamicpathway
(Alexander and Crutcher 1990; Mink 1996; Nambu et al. 2002).
The Stop-signal task allows for the isolation of activity related to
these cognitive components of RI.

The absence of behavioral differences in our primary measure
of RI (SSRT) led us to conclude that stopping performance was
comparable between 22q11DS patients and controls, suggesting
that the reported difference in fMRI activation between groups
was due specifically to engagement of stopping-related brain
regions, as opposed to potential confounds of task-associated
differences (including differences in difficulty experienced or
number of trials). In addition, a follow-up analysis showed that
the fMRI findings were not accounted for by group differences
in education. Furthermore, to confirm that differences in brain
activation during performance of Go trials were not driving the
observed differences in successful inhibition, we examined
group differences for the Go-Null contrast, and found that
there were no differences between groups for this contrast in
any stopping-related region. Overall, our results suggest that at
least 2 pathways in this common fronto-basal ganglia loop are
compromised during different executive function processes,
response initiation and RI, in 22q11DS patients.

RI-Related Activity and Self-Reported Cognitive
Impulsivity
The BIS-11 was originally designed as a measure of total trait
impulsivity (Patton et al. 1995), with impulsivity defined as the
predisposition to respond to internal and external events
without regard to the potential consequences (Moeller et al.
2001). The original questionnaire was constructed to assess a
global score, in addition to 3 subscales of impulsivity: cogni-
tive, motor, and nonplanning. However, following exploratory
and confirmatory factor analyses in a large community sample,
a revised factor structure has been recently proposed, in which
this multidimensional trait is represented as 2 factors, Cogni-
tive Impulsivity and Behavioral Impulsivity (Reise et al. 2013).
In our present investigation, we chose to focus on the revised
Cognitive Impulsivity subscore, given previous literature on
the phenotypic expression of ADHD in 22q11DS, which
suggests that ADHD symptomatology in 22q11DS patients is
characterized by inattention, rather than hyperactive or impul-
sive symptoms (Niklasson et al. 2001; Antshel et al. 2007).

Our preliminary findings of an association between
RI-related activation and trait impulsivity, as measured with
the Cognitive Impulsivity sub-scale of the BIS-11, suggest that
reduced engagement of neural circuitry relevant to RI has
potential clinical significance for 22q11DS patients. While the
BIS is a self-report measure that reflects the subjective view
that an individual possesses of his/her own behavior, and is
therefore not equivalent to a clinical diagnosis of ADHD, elev-
ated scores on this measure correlate strongly with clinical di-
agnoses of ADHD (Malloy-Diniz et al. 2007).

Genetics and Impulsivity in 22q11DS
Elevated levels of impulsivity, inattention, and distractibility in
22q11DS may be related to underlying neurotransmitter

dysfunction in these patients (Fallgatter and Lesch 2007).
Notably, the deleted region includes the catechol-O-
methyltransferase (COMT) gene, which codes for an enzyme
important for prefrontal cortical dopamine metabolism
(Lachman et al. 1996; Egan et al. 2001). Previous research
suggests that 22q11DS patients exhibit abnormal neural re-
cruitment of attention- and inhibition-related brain regions de-
pending on COMT genotype (Gothelf et al. 2007), and
dopaminergic function has been implicated in trait impulsivity
in the general population (Cools et al. 2007; Cole et al. 2012).
A recent study in healthy adults found that a functional poly-
morphism of the COMT gene (i.e. Met homozygosity at the
Val158Met locus) was associated with impulsivity related to
non-planning (Soeiro-De-Souza et al. 2013). Taken together,
these findings suggest that dopaminergic dysfunction resulting
from COMT haploinsufficiency may be related to behavioral
manifestations of inattention and impulsivity in patients with
22q11DS (Shashi et al. 2006). Given the sample size, the
current study was under-powered for genetic analyses, but this
is an important area warranting further study in larger,
consortium-based samples. Given its known genetic etiology
this syndrome provides an ideal model for the investigation of
genes related to cognitive impulsivity.

Implications
Impulsivity is a multidimensional construct that characterizes
multiple psychiatric disorders and has serious functional con-
sequences (Swann et al. 2005). The findings reported here are
broadly relevant for the study of disorders involving impulsive
behavior, including ADHD, addiction, and personality dis-
orders. First, we utilized a dimensional approach to study trait
impulsivity, rather than a categorical ADHD diagnosis, which
allows us to capitalize on the full range of variation as opposed
to focusing on a subset of impaired patients. This approach is
in agreement with the RDoC initiative, which aims to promote
innovative methods for characterizing psychopathology based
on dimensions of observable behaviors or neurobiological
measures rather than traditional diagnostic systems. Indeed,
previous research using maternal ratings of attention problems
and neurobiological data from children with symptoms of hy-
peractivity and impulsivity suggests that ADHD diagnoses are
better characterized from a dimensional view (Shaw et al.
2011; Lubke et al. 2009). Second, given that 22q11DS patients
exhibit deficits primarily related to the domain of Cognitive Im-
pulsivity, we focused our analysis on this particular dimension,
as opposed to the behavioral/motor impulsivity features.
A similar approach can be used for studying other populations
exhibiting impulsive behaviors, with a more targeted investi-
gation of the specific symptom dimension of interest. Finally,
this study sought to characterize the neurobiology of inhi-
bition, with the goal of investigating RI-related neural activity
as a potential endophenotype for disorders involving impulsiv-
ity. The identification of inhibition as an endophenotype for
impulsivity can also be applied to investigations in animal
models of 22q11DS, in order to better understand the contri-
bution of genetics, neurotransmitter function, and neural func-
tion on impulsivity across species.

Limitations
The primary limitation of our study is the small sample size.
Although 22q11DS is the most common microdeletion
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syndrome, it is estimated to occur in 1 in 4000 to 6000 live
births, rendering a substantial challenge for subject ascertain-
ment at a single site. As such, although our sample size is large
relative to the existing literature examining neural circuitry in
22q11DS, our results should be considered preliminary until
replicated. Second, given the lack of prior evidence regarding
relationships between trait impulsivity measures and RI-related
activation in this population, we tested our hypothesis in a se-
lection of 8 anatomically defined ROIs, known to play a role in
RI, and did not correct for multiple comparisons. Although the
relationship across activation in ROIs associated with trait im-
pulsivity is consistent across ROIs, and in line with our group
difference results, caution is warranted in drawing conclusions
based on the uncorrected nature of these results, which
require replication. Finally, 22q11DS patients differed in
overall cognitive abilities from healthy controls; however, Stop-
signal task difficulty level was equated across subjects, making
it ideal for use in a clinical population (Aron and Poldrack
2005).

Conclusions
We examined the neural correlates of RI in a sample of
22q11DS adults in order to avoid age-related confounds associ-
ated with the development of inhibitory control and associated
neural activation (Hart et al. 2013). Relative to healthy adults,
we found that during RI patients with 22q11DS showed
reduced engagement of fronto-striatal regions typically in-
volved in stopping a behavioral response. Furthermore, in
exploratory analyses, we report the novel association between
reduced activation in key RI-related regions and increased trait
Cognitive Impulsivity in 22q11DS. Our preliminary findings
provide a characterization of neural abnormalities in 22q11DS
during RI, and suggest RI as a potentially valuable endopheno-
type for identifying impulse-related dysfunction in 22q11DS.

Supplementary Material
Supplementary material can be found at: http://www.cercor.oxford-
journals.org/
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