Lawrence Berkeley National Laboratory
 LBL Publications

Title

Meson Exchange in the Reaction $\mathrm{K}++\mathrm{p} \circledR^{\circledR} \mathrm{K}^{*}+\mathrm{N}^{*}$
Permalink
https://escholarship.org/uc/item/7594322h

Authors

Goldhaber, Gerson
Chinowsky, William
Goldhaber, Sulamith
et al.
Publication Date
1965-05-01

University of California

Ernest O. Lawrence Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

MESON EXCHANGE IN THE REACTION

 $\mathrm{K}^{+}+\mathrm{p} \rightarrow \mathrm{K}^{*}+\mathrm{N}^{*}$Berkeley, California

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Technical Information Division UNIVERSITY OF CALIFORNIA
 Lawrence Radiation Laboratory Berkeley, California

ERRATUM

SUBJECT: UCRL-10799, "Meson Exchange in the Reaction, $K^{+}+p \rightarrow K^{+}+N^{*}, "$ G. Goldhaber, W. Chinowsky, S. Goldhaber, W. Lee, and T. O'Falloran, May 13, 1964; published in Phys. Letters $\underline{6}$, 62 (1963). \because

The coupling constant g_{K} * for the $\mathrm{K}^{+} \pi^{-}$mode is missing a Clebsh-Gordan coefficient of $(2 / 3)^{1 / 2}$. In Fig. 4, curves A and B should accordingly be scaled down by a factor $2 / 3$. The form factor we have introduced to fit the data is still required. However, the best $\cdot:$ fit now occurs for $\Lambda=2.9 \mathrm{~m}_{\pi}\left(\right.$ or $\left.\Lambda^{2}=0.165 \mathrm{GeV}^{2}\right)$ instead of $\Lambda=2.6 \mathrm{~m}_{\pi}$ as quoted earlier.

We wish to thank Professor J. D. Jackson for bringing this omission to our attention

UNIVERSITY OF CALIFORNLA
 Lawrence Radiation Jaboratory Berkeley, Celifornia

Contract No. W-7405-eng-48

MESON EXCHANGE IN THE REACTION $\mathrm{K}^{+}+\mathrm{p} \rightarrow \mathrm{K}^{*}+\mathrm{N}^{*}$
Gerson Goldhaber, William Chinowsky, Sulamith Goldhaber, Wonyong Lee, and Thomas O'Halloran

May 13. 1963

Moon Exchange in the Reaction $K^{+}+p \rightarrow K^{*}+\mathbb{N}^{*}(t)$
Gerson Goldhaber, William Chinowsky, Sularniti Golahaber, Wonyong Lee, ${ }^{t}$ and Thomas O'Halloran

Physics Departrnent and Lawreace Radlation Laboratory University of Callfornla, Berkeloy, California

$$
\text { May 13, } 1963
$$

In the study of the four-particlefinal states of the $K^{+} p$ interaction at $1.96 \mathrm{BeV} / \mathrm{c}^{1}$ we find that these states are predominantly produced via "double resonance" production, i.e. . $\mathrm{K}^{+}+\mathrm{p} \rightarrow \mathrm{K}^{*}(890)+\mathrm{N}_{33}^{*}$ (1238). Moreover, the experimental data support a spin-zero meson exchange, prosumably a pion, for small four-momentum transfers $\left\langle\Delta^{2} \leqslant 25 m_{\pi}^{2}\right.$). The experiment was carried out ${ }^{2}$ in the Brookhaven National Laboratory 20-inch hydrogen bubble chamber ${ }^{3}$ exposed In the Brookhaven-Yale separated beam. ${ }^{4}$

The four particles produced in the reaction $K_{p}^{+} \rightarrow K \pi N \pi$ are in the $\mathrm{T}=1$ state and occur in five possible charge combinations, viz. : (1) $\mathrm{K}^{+} \pi^{-} \mathrm{p} \pi^{+}$. (2) $\mathrm{K}^{0} \pi^{0} \mathrm{p}^{+}{ }^{+}$, (3) $\mathrm{K}^{0} \pi^{+} \mathrm{n}^{+}$, (4) $\mathrm{K}^{+} \pi^{1}{ }^{0} \pi^{+}$, and (5) $\mathrm{K}^{+} \pi^{0} \mathrm{p} \pi^{0}$ 。 Of these only the first three are accesalble to unique dentification in the bubble chamber. We present in Table I the observed cross sections for these reactions. Also shown in the table are the branching ratios expected on the assumption that the nucleon and pion are always produced in an isotopic spin $T=3 / 2$ state, and that the K meson and pion are always produced in a $T \approx 1 / 2$ state. It is seen that the data are in good agreement with the branching ratios. In fact, the $T=1 / 2$ and $T=3 / 2$ states can be ldentified with the well-known ${ }^{6} K^{*}(890)$ and $\mathrm{N}^{*}(1238)$ resonances, respectively.

It is thus indicated that "double resonance" production, which corresponds to "quasi-two-particle" production, plays an important role in these processes.

Wo have found it convenient to represent the four-particle production processes discussed here in terms of the production of a pair of "two-particle composites" with Invariant maseses m_{x} and my (in the overall c.m. system). The kinematical limits in this representation are particularly simple, namely, they form a right angle isosceles triangle for which the length of each leg is given by $Q=W-\sum_{i=1,4} n_{i}$. Here W is the total energy in the overall $c . m$. system and $m_{i}, 1=1,4$ are the masses of the four outgoing particles.

The phase-space distribution is given by $\phi \propto \frac{l}{W^{\prime}} \int k_{x} k_{y} p_{0} d m_{x} d m \cdot y^{\theta}$ where the integral extends over the triangle (see Fig. 1) which we will call phase-space triangle (PST). Here k_{x} and k_{y} are the momenta in the $c . m$. of the composites x and y, respectively, and p_{0} is thoir momentum in the overall c.m. system. It is noteworthy that along each of the three sides of the PST one of the factors in the integrand vanishes.

There are three ways (channels) in which the final-state particles can be "paired" off into two-particle composites for each of the charge states (1), (2), and (3). Direct evidence for double-resonance production follows from the detalls of the events in charge state (1), which represents the largest sample of events, and permits unamblguous assignment of the resonancestates.

In Figures la, b, and c, we show the diatribution of events for the various possible "two particle" composites in charge state (1), viz:

$$
\begin{align*}
& K^{* 0}\left(K^{+}+\pi^{-}\right)+N_{33}^{*+}\left(p+\pi^{+}\right) \tag{la}\\
& \left(K^{+}+\pi^{+}\right)+N_{33}^{* 0}\left(p+\pi^{-}\right) \tag{lb}\\
& \rho^{0}\left(\pi^{+}+\pi^{-}\right)+\quad\left(p+K^{+}\right) \tag{1c}
\end{align*}
$$

The corresponding three PST's, as well as the projections on the respective mass axes, are also shown together with the calculated pháse-space distributions. Chemnel (la) corresponds to double-resonance production.

Defining events with $840 \leqslant M_{K^{+}}{ }^{\prime} * * 940$ to 110 within the K^{*} resonance and evente with $1130 \cdots \mathrm{M}_{\mathrm{p} \pi^{+}}+1300$ to lie within the N_{33}^{*} rasonance, wo find 64% of all the events to lie within the double resonance, yielding a cross section $O\left(K^{*} N^{*}\right)=1.1 \pm 0.2 \mathrm{mb}$. Charnel (1 b) correaponds to single resonance formation in the pr^{*}. channel. This is a small effect and occurs in only about 10% of the events. (See Pig. Lb.) No evidence for a resonance in the $K \pi T=3 / 2$ systemis observed. In channel (lc), ρ^{0} production is energetically possible but la atrongly suppressed by phase-space factors. No evidence for p^{0} production was observed, neither is there any evidence for a positivematrangenese Hyperon ($\mathrm{K}^{+} \mathrm{p}$) in the $\mathrm{I}=1$ state. It is noteworthy that the reflection of the dominant resonances for channel (la) do not give rise to appreciable deviations from phate-space predictions in the other two channels.

In an earlier communication we have shown the spin and parity of the K^{*} to be 1^{-}. from the observed anisotropy in the angular distribution of the K^{*} decay products. ${ }^{1}$ As was pointed out this distribution, for small momentum trangfers, is in a_{t} reement with the predictions of the one-pion-exchange model (OPE). According to this model the angular distribution of the outgoing K meson, in the K° rest sybtern with respect to the incoming K direction, is simply $f(a)=\cos ^{2} a$, independent of the $K^{\%}$ production angle. In Fig. 2 we show a scattex diagram of the distribution of cosa plotted against the square of the four-momontum transfer Δ^{2}. Those distributions of events with $\Delta^{2} \leqslant 25 \mathrm{~m}_{\pi}^{2}$, shown in the projected plot (II) of Fig .2 , are in excellent agreoment with the prediction for single-pion exchange. A least-squares fit of the form $f(a)=a+b \cos a+c \cos ^{2} a$ yielda $a=0.1 \pm 0.4, b=0.07 \pm 0.08$, and
$c=1.0 \pm 0.14$. For larger Δ^{2}, the distribution becomes more isotroplc. The Ift in thia case gives a $=1.11 \pm 0.18, b=-0.06 \pm 0.23$, and $c=1.0 \pm 0.5$. Thia Inclicates that the one-pion exchange dominates the reaction up to a value of $\Delta^{2} \approx 25 \mathrm{~m}_{\pi}^{2}$, while othor diagrams contribute when the momentum transfer becomes larger.

For further corroboration of the role of the one-pion exchange, we show in Fig. 3 the distributions in the Trelman-Xang angle. ${ }^{8}$ Thie distribution is in agreement with leotropy both for the lower- and higher-momontumtransfer events، This result is consistent with the exchange of a spin-zero particle, but provides no Independent evidence for it.

Finally, we compare the experimental differential crose section in the c.m. system for the double-resonance region with the resulta of a calculation based on the one-pion-exchange model. The calculation due to S. Borman ${ }^{9}$ takes explicit account of the spins 1 and $3 / 2$ of the two resonances produced. The calculated differential cross section is

$$
\begin{align*}
& \left.\left\langle\left.\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right|_{c, m} \frac{6}{6 \mathrm{~m}^{* 2} M^{* 2} W^{2}} \frac{\mathrm{~g}_{\mathrm{K}^{*}}^{2}}{4 \pi} \frac{\mathrm{~g}_{N^{*}}^{2}}{4 \pi}\right| \frac{1}{\Delta^{2}+\mathrm{m}_{\pi}^{2}}\right|^{2} \\
& \times\left\{\left[\Delta^{2}+\left(\mathrm{m}^{*}+\mathrm{m}\right)^{2}\right]\left[\Delta^{2}+\left(\mathrm{m}^{*}-\mathrm{m}\right)^{2}\right]\right\}\left\{\left[\Delta^{2}+\left(M^{*}+M\right)^{2}\right]^{2}\left[\Delta^{2}+\left(M^{*}-M\right)^{2}\right]\right\} \tag{6}
\end{align*}
$$

where the coupling constants
and

$$
\mathrm{g}_{\mathrm{K}}^{2} * / 4 \pi=\Gamma_{\mathrm{K}}^{*} \mathrm{~m}^{* 2} / \mathrm{p}_{\mathrm{K}}^{3} \approx 1.8 \quad \text { (for } \mathrm{K}^{+} \pi^{*} \text { mode only) }
$$

$\mathrm{N}_{\mathrm{N}} / \mathrm{N}^{(1)} \mathrm{N}$
are determined from the decay of the K^{*} and N^{*} respectively.
and $\quad \delta=\left(\frac{\left(W^{2}+A^{* 2}-m^{* 2}\right)^{2}-4 M^{* 2} w^{2}}{\left(W^{2}+M^{2}-m^{2}\right)^{2}-4 M^{2} w^{2}}\right)^{1 / 2} \cdot \frac{1}{\left(M^{*}+M\right)^{2}-m_{\pi}^{2}}$

Here W is the total c.m. energy; m^{*}, M^{*}, m, and M are the masses of the K^{*}, N^{*}, K, and N, respectively: and P_{K} and p_{N} are the momenta of the K^{*} and N^{*} decay products in their respective c.m. systems. In this equation the last two factors in brackets result from summing over finalstate spin directions of the K^{*} and N^{*} respectively.

The experimental distribution, including all double-resonance events, ${ }^{10}$ is shown in Fig. 4. The three solid curves A, B, and C represent attempte to fit the data with pion-exchange models. ${ }^{11}$ Curve B is obtained by evaluating Eq. (6) with $\Delta^{2}=-\mathrm{rr}_{2}^{2}$ in the spin factors so that the momentumtransfer dependence is contained only in the propagator, viz.: $1 /\left(\Delta^{2}+n_{\pi}^{2}\right)^{2}$. The resulting equation corresponds then to the form originally proposed by Chew and Low. ${ }^{12}$ Curve A gives the results of evaluating Eq. (6), Including the proper spin factors: Comparison with the experimental data shows that this calculation gives too high a value for the cross section and does not reproduce the experimental angular distribution. To obtain a quantitative fit to the data we multiply Eq. (6) by a form factox, $\mathrm{F}^{2}\left(\Delta^{2}\right)$. The exact choice of this form factor is somewhat arbitrary. ${ }^{13}$ We have chosen a one-parameter expression bimilar to the nucleon form factor with the condition that $F\left(\Delta^{2}\right) \rightarrow 1$ as $\Delta^{2} \rightarrow-m_{\pi}^{2}$, viz.: $F\left(\Delta^{2}\right)=\left(\Lambda^{2}-m_{\pi}^{2}\right) /\left(\Lambda^{2}+\Delta^{2}\right)$. By adjusting the parameter Λ, we have obtained the fit shown in Fig. 4, Curve C. The resulting value of Λ is $\Lambda=2.6 \mathrm{~m}_{\pi}$. It should be re-emphasized here that agreement with the OPE model is expected to hold only up to Δ^{2} of $25 \mathrm{~min}^{2}$ we therefore consider the apparent fit to the data for $\Delta^{2} \geqslant 25 \mathrm{~m}_{\pi}^{2}$ somewhat fortuitous.

We wish to take this opportunity to thank the many menabers of the stafi of the Brovinaven detional Laboratory for their very helpful attitude in making this experiment possible. In particular, wo would like to express our appreciation to Dr. HAldred Blewett, Dr. Hu\&h Brown, Dr. Ed Mart, Dr. Ralph Shutt, Dr. James Sanford, Mr. Julius Spiro, Dr. Medford Webster, and the ACS operating crew. We also wish to thank Dr. Samiel Berman and Dr. Hans-Peter Duerr, Dr. Gyo Takeda, and Mr. Betram Schwarzchild for a number of helpful discussions. Finally, this work would not have been possible without the active help andinterest of Lawrence Radiation Laboratory scaning, measuring, and compuine persomel.

Table I. Cross sections for the various charge-state combinations in the reaction $\mathrm{K}^{+}+\mathrm{p} \rightarrow \mathrm{K} \pi \mathrm{p}$ at $1.96 \mathrm{BeV} / \mathrm{c}$

Charse combination	K^{*}	N^{*}	$\begin{gathered} \mathcal{J} \text { exptl. } \\ (\mathrm{mb}) \\ \hline \end{gathered}$	Number of everts observed	Number of events correctec ${ }^{\text {a }}$	$\begin{aligned} & \text { Probat } \\ & 1-\text { spia } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { bility irom } \\ & \text { composition } \\ & \text { Normalized } \end{aligned}$	$\begin{gathered} \text { Experimertal } \\ \frac{\text { resitit }}{\text { Hormatizet }} \end{gathered}$
(1)	$K^{+}{ }^{-}$	$2 \pi^{+}$	1.7 ± 0.2	435	435	$1 / 2$	1	1
(2) (2')	$\begin{aligned} & K^{3} \pi^{3} \\ & K^{0} \pi^{i} \end{aligned}$	$\left.\begin{array}{l}\rho \pi^{+} \\ p \pi^{\circ}\end{array}\right\}$	$1.3 \pm 0.2\}$	110	330	$\left.\begin{array}{l} 1 / 4 \\ 1 / 9 \end{array}\right\}$	0.72	0.76 ± 0.15
(3)	$K^{0} \pi^{+}$	$\mathrm{nF}{ }^{+}$	0.33 ± 0.1	27	31	1/18	0.11	0.19 ± 0.05
(3	$\mathrm{K}^{+} \pi^{0}$	na^{+}	Unmeasurable	---	---	1/36	0.06	---
(2)	$K^{+}{ }^{\circ}$	$2 \pi^{\circ}$	Unmeasurable	---	---	1/13	0.11	---

${ }^{3}$ Corrections for tife "invisible" decay modes of the \mathbb{i}^{0} have been made.

אQOTNOHES

† Work done under the aumpices of tho U.S. Atomic Energy Commision.
Apresent addreas: Physice Department, Columbia University, New York, N. Y.
${ }^{1}$ W. Chinowaky, G. Goldhaber, S. Goldhaber, W. Lee, and T. O'Halloran, Phys. Rev. Lettors 9, 330 (1962).
${ }^{2}$ In this work we utilized a modification of the geometrical reconstruction (PANG) and kinernatical fitting (icck) programs of the Alvarez Group: J. P. Berge, F. T. Solmitz, and H. D. Taft, Rev. Sci. Instr. 32, 538 (1961); A.. HI. Rosenfeld and J. M. Snyder, Rev. Sci. Instr. 33, 181 (1962).
${ }^{3}$ R. I. Louttit, ia Proceedings of the International Conference on Instrumen-
tationfor Fing-Eneryy Phyaice, Bersaley, California, September, 1960 (Interscience Publishors me., New York, 1961), p. 117.
${ }^{4}$ C. Baltay, J. Sandweiss, J. Sanford, H. Brown, M. Webster, and S Yamamoto, in Proceedings of the High-Energy Instrumentation Confer ćnce. CERN, 1962 (to be published).
${ }^{5}$ It must be noted that experimentally we observe a superposition of (2) and (2'). The agreement between the observed cross-section ratios and the expected values from isotopic spin combinations asaumes no interference between the two reactions.
${ }^{6}$ M. H. Alaton, L. W. Alvarea, P. Eberhard, M. L. Good, W. Graziano, H. K. Ticho, and S. G. Vojcicki, Phys. Rev. Letters 6, 300 (1961).
${ }^{7}$ Here wo are plotting the actual Δ^{2} valuea computed for each event. In the
subsequent discussion, however, we use a "quasi particle" approximation for the resonances in which the cosine of the K^{*} production angle $\cos \theta_{K^{*}}$ is uniquely related to Δ^{2}. We have checked this procedure with a scatter plot of Δ^{2} versus $\cos { }^{\theta} K^{*}$, and find the events to lie within a narrow band along the curve corresponding to definite resonance masses.

8
S. B. Treiman and C. N. Yang, Phys. Rev. Letters 8, 140 (1962).

9
Samuel Berman (Stanford University), private communication. .
10 There is very little evidence for nonresonant background in the double resonance region. If we consider the channel la we can ascribe the events to $\mathrm{K}^{* 0}+\mathrm{N}^{*++}, 64 \% ; \mathrm{K}^{+}+\pi^{-}+\mathrm{N}^{*++}, 25 \% ; \mathrm{K}^{* 0}+\mathrm{p}+\pi^{+}, 5 \%$ and $\mathrm{K}^{+}+\pi^{-}+\mathrm{p}+\pi^{+}$ nonresonant, 6%.
${ }^{11}$ We have also calculated the differential cross section, using the equations of Salzman and Salzman [Phys. Rev. 120, 599 (1.960)]. We get results consistent with curve A, Fig. 4, when we take into account the p-wave nature of both resonances.

12
G. F. Chew and F. E. Low, Phys. Rev. 113, 1640 (1959).
${ }^{13}$ Recent analysis of data on pion production in $\mathrm{p}-\mathrm{p}$ collisions has also shown the necessity of introducing a form factor into the OPE model in order to fit the experimental differential cross-section data. See, for example, E. Ferrari and F. Selleri, Nuovo Cimento 27, 1450 (1963).

FIGURE CAPTYONS

Fig. 1. Scatter diagrams of the effective moss distributions for the various two-particle composites in the reaction $K^{+}+p \rightarrow \mathbb{K}^{+} \pi^{-} p \pi^{+}$. The triangles dellneate the kinematical liraits; the dashed curves on 1 the mass projections correspond to phase-space calculations without dynamic effects. It should be noted that the scale for mass projection is not the same in (a) as in (b) and (c).
Fig. 2. A scatter plot of the four-momentum transfer aquared, Δ^{2}, versus tho $K \pi$ scattering angle a. The events shown are those lying inside the "double-resonance rectangle" whose mass limits are given in the text. Flere the angle a 10 defined as the angle between the incoming and outgoing K meson, both in the $K^{*} \mathrm{c} . \mathrm{m}$. system. The projections of the distributions in cosa are given below the scatter plot, in region 1 for $\Delta^{2}>25 \mathrm{~m}_{\pi}^{2}$ and in region II for $\Delta^{2} \leqslant 25 \mathrm{~m}_{\pi}^{2}$. The projection on the Δ^{2} axis is shown on the right. The curves correspond to a fit with $f(a)=a+b \cos a+c \cos a$. The coefficiente for the two regions are given in the text.

Fig. 3. The Treiman-Xang angle distribution. The definitions of the angles, which correspond to a test for symmetry around the exchange particle axis, are given on the figure. The shaded region corresponds to the "double-resonance rectangle" whose mase limits are given in the text. The data are folded around the $0^{\circ}-180^{\circ}$ axis. which takes into account parity conservation in strong interaction.

Fig. 4. The differential cross section for events lying in the "doubleresonance rectangle" region. Curves A, B, and C refer to the OPE reaction, (A) as given in Eq. (6), (B) with the spin factors
evaluated on the meise shell, and (C) with a form factor, but with the spin factors evaluated in the phyelcal region. The Δ^{2} scale In thes figure was computed by taking the masses of the K^{*} and N^{*} an fixed at their respective resonance values.

MLB-1790

Fig. 1

Fig. 2

Fig. 3

MU-30148

Fig. 4

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

48

B 5 and

