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ABSTRACT OF THE DISSERTATION 

 

Planning for sustainable transportation 

through the integration of technology, public policy, and behavioral change: 

A data-driven approach 

 

by 

 

Bo Liu 

Doctor of Philosophy in Urban Planning 

University of California, Los Angeles, 2020 

Professor George M. De Shazo, Co-Chair 

Professor Deepak Rajagopal, Co-Chair 

 

Transportation contributes importantly to the economy and society, but at substantial 

environmental cost. While much progress has been made to increase the energy efficiency of 

transportation systems, their continued expansion is a major threat to global climate change and 

urban air quality. Additional mitigation strategies are needed to reduce the negative 

environmental and public health impacts of transportation. In this dissertation, I tackle the 

complexity of achieving sustainable transportation by addressing questions arise at various 

stages of technology development and deployment.  

The first essay assesses the life cycle environmental impacts of technology pathways that 

convert waste resources into alternative transportation fuels and identifies the most efficient 
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pathways for all US counties with respect to both energy production and climate benefits. I find 

that utilizing these resources in the contiguous US can generate 3.1 to 3.8 exajoules (EJ) of 

renewable energy annually, which would be a net energy gain of 2.4 to 3.2 EJ, and would 

displace GHG emissions of 103 to 178 million metric tons of CO2 equivalent every year.  

The second essay uses machine learning techniques to identify the most powerful 

socioeconomic, demographic, and geospatial predictors for plug-in electric vehicle (PEV) 

adoption across California census tracts. I find that the market penetration of PEVs is generally 

higher in more affluent neighborhoods with many homeowners and highly-educated residents. 

The lack of pro-environment intention and behaviors as well as the proportions of low-income 

households and low-value and high-density housing units negatively associate with PEV 

adoption. I also find that the deployment of workplace charging may be more effective than the 

deployment of public DC fast charging.  

The third essay analyzes the energy and environmental impacts of transit bus electrification 

and identifies strategies for charging infrastructure deployment at public transit agencies in Los 

Angeles County. I find that the transition to battery electric buses would increase particulate 

matter emissions from brake and tire wear in the near term and immediately reduce NOx, CO, 

and GHG emissions. Smart charging would be a critical element in the planning of transit bus 

electrification, as it reduces costs associated with charging infrastructure and electric demand by 

lowering charger needs and shaving peak load.  

In concert, the three essays in this dissertation expand the current literature in multiple 

fields and the findings presented in each of the three essays have important implications for 

research and practices in the area of sustainable transportation at various geographical scales. 
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Planning for sustainable transportation through the integration of technology, 

public policy, and behavioral change: A data-driven approach 

 

Chapter 1: Introduction  

 

Motivation 

Due to high levels of vehicle ownership and use in Organization for Economic Co-

operation and Development (OECD) countries and a rapid growth in both private vehicle 

ownership and freight movement in developing countries, the transportation sector saw a faster 

increase in greenhouse gas (GHG) emissions than any other energy end-use sector globally since 

the early 2000s (IEA, 2015; IPCC, 2015). In both the United States and the State of California, 

transportation is the largest source of GHG emissions – accounting for 28 percent and 40 percent 

of total GHG emissions in 2018, respectively (CARB, 2020; US EPA, 2020). Besides its 

contribution to climate change, transportation also negatively affects air quality in urban areas. 

According to American Lung Association (2018), California has eight of the ten most polluted 

US cities in terms of ozone pollution and seven of the ten most polluted US cities in terms of 

particulate matter. In California, transportation is the major source for a number of air pollutants, 

including ROG1, CO, and NOx (CARB, 2017). Under certain conditions (i.e., sunlight, 

temperature, humidity, etc.), these pollutants chemically react with one another and with 

particulate matter to produce smog, which consists of ozone, particle pollution, and peroxyacetyl 

nitrate. Ozone and particle pollution can cause respiratory diseases and increase the risk of other 

 
1 Reactive Organic Gases (ROG), refer to photochemically reactive chemical gases, composed of non-methane 

hydrocarbons. Retrieved from: https://www.arb.ca.gov/html/gloss.htm#R  

https://www.arb.ca.gov/html/gloss.htm#R
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health threats such as premature death and cardiopulmonary harm (American Lung Association, 

2018). 

Mitigation strategies have addressed the negative environmental and public health impacts 

of transportation, but more are needed. In recent years, researchers have tested alternative 

biomass sources such as agricultural waste and algae as an alternative to food-crop based and 

cellulosic biofuels as transportation fuels. The use of alternative biomass resources avoids 

competition with food production and reduces both deforestation and the amount of land devoted 

to agriculture. In addition, the global levelized cost2 of electricity generation from solar and wind 

has declined significantly since 2010 and all commercially-used renewables – such as solar 

photovoltaic, concentrated solar power, and onshore and offshore wind – are projected to be 

cheaper than fossil fuels by 2020 (IRENA, 2018). While renewable sources of energy are 

generally less reliable than conventionally generated power, advancements in energy storage 

technologies (such as high-capacity batteries) have the potential to greatly relieve the 

intermittency issue of renewables (Braff et al., 2016). Since 2010, the State of California has 

adopted a variety of policies and programs to spur the market growth of electric vehicles. As a 

result, light-duty plug-in electric vehicle (PEV) sales in California reached over 637,000 vehicles 

as of October 2019, which accounts for approximately half of the US market (Alliance of 

Automobile Manufacturers, 2020). In addition, 110 battery electric buses (BEB) were in 

operation and 626 more were on order, awarded, or planned across California public transit 

agencies in 2018 (CARB, 2018). These positive changes in alternative transportation fuels, 

renewable electricity, and transport electrification together lay the foundation for a path to more 

sustainable transportation.  

 
2 Levelized cost is a measure of lifetime costs per unit energy production.  
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In transportation research, emissions are often estimated using the “ASIF” framework 

(IPCC, 2015; Schipper et al., 2000). This framework breaks down transport emissions reduction 

efforts into four categories: (1) Activity: total vehicle, passenger, or freight distance traveled; (2) 

System infrastructure and mode choice: urban form, transport infrastructure, and the resulting 

choice between travel modes; (3) Energy intensity: efficiency variations between vehicle or 

engine designs and driver or operator usage patterns; (4) Fuel emission factor: the amount of 

emissions per unit of fuel consumption. The ASIF framework serves as a foundation for this 

dissertation, which aims to address specific planning, policy and implementation issues 

associated with alternative fuel production and transport electrification.  

The overarching goals of this dissertation are to investigate the impacts of technology (i.e., 

advanced biofuel and propulsion technologies) and public policy on the planning, design, and 

implementation of sustainable transportation, and further to explore how to effectively address 

the barriers to the adoption of clean transportation technologies. Depending on technology 

maturity, policymakers, planners, and the general public may respond differently to various types 

of clean transportation technologies. In addition, stakeholders and implementation-related issues 

vary by specific type of clean transportation technologies. In this dissertation, I tackle the 

complexity of achieving sustainable transportation by developing data-driven analytical 

frameworks, which I use to address questions arose at various stages of technology development 

and deployment.  

 

An Overview of the Three Essays 

The three pieces of research in this dissertation address practical planning, policy, and 

implementation issues associated with alternative fuels and transportation electrification under a 
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multi-modal and multi-scale framework for the transition to sustainable urban transportation. The 

first essay assesses the life cycle environmental impacts of technology pathways that convert 

waste resources into alternative transportation fuels and identifies the most efficient pathways for 

all US counties with respect to both energy production and climate benefits (Liu & Rajagopal, 

2019). The second essay uses machine learning techniques to identify the most powerful 

socioeconomic, demographic, and geospatial predictors for plug-in electric vehicle adoption 

across California census tracts. The third essay identifies barriers to the adoption of battery 

electric buses and outlines potential pathways for a 100 percent electrified transit network in Los 

Angeles County taking into account social, economic and technological constraints. In concert, 

the three essays in this dissertation expand the current literature in multiple fields and provide 

insights for infrastructure and environmental planning at various geographical scales. Table 1-1 

summarizes the main topics, geographical scales, data sources and main methods for each of the 

three essays.  
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Table 1-1. An overview of the three essays 

 Essay One 

(Chapter 2) 

Essay Two 

(Chapter 3) 

Essay Three 

(Chapter 4) 

Main topic area Waste-based biofuels Plug-in electric vehicles Battery electric buses 

Geographical 

scale  

US county level and 

national level 

California census tract 

level 
Los Angeles County 

Major data 

sources 

• The US Billion-ton 

Study 

• The Emissions & 

Generation Resource 

Integrated Database 

• The Life Cycle 

Assessment 

Harmonization Project 

• Literature review 

• The American 

Community Survey 

• IHS Markit electric 

vehicle sales data  

• Alternative Fuel Data 

Center 

• California Department 

of Transportation 

• OpenMobilityData 

• National Transit 

Database 

• American Public 

Transportation 

Association 

• Original equipment 

manufacturers 

• Transit agencies 

Main methods 

• Life cycle assessment 

• Spatial analysis 

• Scenario analysis 

• LASSO regression 

• Monte Carlo sampling 

• Network analysis 

• Scenario analysis 

 

 

In Chapters 2-4, I discuss each of the three essays in details. The three essays are organized 

in the chronological order of technology development and deployment. Chapter 2 focuses on 

technology development and evaluates the environmental impacts of certain technologies before 

entering large-scale deployment. Chapter 3 focuses on the early stage of technology deployment 

and offers insights for how to achieve larger-scale deployment. Chapter 4 focuses on large-scale 

technology deployment and analyzes the infrastructure needs and costs in order to support the 

transition. In Chapter 5, I conclude the dissertation with the most important findings from the 

three essays and the broader implications for urban planning, public policy, and environmental 

studies. 
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Chapter 2: Life cycle energy and climate benefits of energy recovery from wastes and 

biomass residues in the US 

 

Material from: Liu, B., Rajagopal, D. Life-cycle energy and climate benefits of energy recovery 

from wastes and biomass residues in the United States. Nat Energy 4, 700–708 (2019). 

https://doi.org/10.1038/s41560-019-0430-2  

 

Abstract  

Agricultural and forestry residues, animal manure, and municipal solid waste (MSW) are 

replenishable and widely available. But effectively harnessing these heterogeneous and diffuse 

resources for energy and environmental benefits requires a holistic assessment of alternative 

conversion pathways that account for spatial factors. We analyze the potential renewable energy 

production, net energy gain, and greenhouse gas (GHG) emissions reduction for each distinct 

type of waste feedstocks under different conversion technology pathways from a life cycle 

assessment (LCA) perspective. We find that utilizing all available wastes and residues in the 

contiguous US can generate 3.1 to 3.8 exajoules (EJ) of renewable energy, which would be a net 

energy gain of 2.4 to 3.2 EJ, and would displace GHG emissions of 103 to 178 million metric 

tons of CO2 equivalent. For any given waste feedstock in US counties where it is available, no 

single conversion pathway simultaneously maximizes renewable energy production, net energy 

gain, and GHG mitigation, except in rare instances. Maximizing the benefits of waste conversion 

requires attention to: first, the life cycle implications of different technology pathways; second, 

the spatial distribution of waste feedstocks; and third, the local conditions under which waste 

feedstocks will be processed. 

https://doi.org/10.1038/s41560-019-0430-2
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Introduction 

In the new millennium, energy insecurity, global climate change, and stagnant rural 

economies have led to policies supporting domestic biofuels as a renewable alternative fuel in 

more than 60 countries worldwide (FAO, 2008). As a consequence, global production of ethanol 

and biodiesel combined almost quadrupled (from about 35 billion to 135 billion liters) in the 

short span from 2005 to 2016 (REN21, 2017). But these policies had two major flaws. Firstly, 

appropriation of edible crops for biofuel (mainly, corn and sugarcane for ethanol, and soybean, 

canola and palm for biodiesel) was an important factor responsible for food price inflation 

alongside other factors such as rising income that drove to rapid growth in food demand 

(especially meat demand), rising energy prices, adverse weather shocks, currency fluctuations, 

and trade policies (de Gorter et al., 2013; FAO, 2008; Hochman et al., 2014; Tadasse et al., 2016; 

To & Grafton, 2015). The consequences of food price inflation were particularly severe for 

poorer households in developing countries (Runge & Senauer, 2007). Secondly, these crops 

required intensive use of land, water, nitrogen, and other farm chemicals, which meant low, and 

in the worst case, uncertain net environmental benefits (Crutzen et al., 2016; Farrell et al., 2006; 

Lambin & Meyfroidt, 2011; Melillo et al., 2009; Rajagopal & Zilberman, 2008).  

Being widely available and replenishable, wastes and biomass residues from agricultural, 

dairy, forestry and household activities seem to contain the basic attributes of a sustainable 

energy resource in stark contrast to bioenergy from food crops (Campbell & Block, 2010; Tonini 

et al., 2016; Whalen et al., 2017). The US Department of Energy 2016 Billion Ton Study 

estimates an annual availability of 233 million metric tons (MMT) of dry waste in the contiguous 

US (US Department of Energy, 2016). To put this in perspective, the approximately 60 billion 

liters of corn ethanol produced in the US in 2017 required about 150 MMT of corn (assuming a 
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yield of 402 liters of ethanol per MT). Furthermore, wastes and biomass residues can be used to 

derive a number of alternative energy products including electricity, heat, biomethane (or 

renewable natural gas), ethanol, renewable diesel, or bio jet fuel, each through various 

conversion pathways that are at different stages of technical and economic maturity (Campbell & 

Block, 2010; Carreras-Sospedra et al., 2016; de Jong et al., 2015, 2017; Staples et al., 2017; 

Tonini et al., 2016; W.-C. Wang & Tao, 2016). Beyond energy production and mitigating 

climate change, efficient use of wastes and residues is integral to the achievement of sustainable 

development (United Nations, 2018), and to redesigning our economies to minimize material and 

energy throughput, i.e., towards becoming a circular economy (Geissdoerfer et al., 2017; Stahel, 

2016). But at the same time, the sustainable use of these resources hinges on overcoming some 

challenges. The collection, transport and storage of biomass feedstocks are costly and could 

account for over 50% of total cost in the supply chain of bioenergy products (Liu et al., 2017). 

The composition of wastes also varies from one location to another, and their processing requires 

substantial energy inputs. In addition, national-scale policies tend to ignore local trade-offs 

leading to suboptimal use of scarce resources (Laurent & Espinosa, 2015). Effectively harnessing 

the full energetic and environmental potential of this resource, therefore, requires a holistic 

assessment of alternative competing pathways to their utilization taking into account the spatial 

distribution of each specific type of wastes and the local conditions under which they will be 

processed. The majority of previous LCA studies have either focused on a smaller number of 

waste types (Aguirre‐Villegas et al., 2014; Aguirre-Villegas & Larson, 2017; Banks et al., 2011; 

Broun & Sattler, 2016; Campbell & Block, 2010; Macias-Corral et al., 2008; Morris, 2017; Nuss 

et al., 2013; Pressley et al., 2014; H. Wang et al., 2015), certain types of bioenergy products 

(Anex et al., 2010; Baral & Malins, 2014; de Jong et al., 2015, 2017; Iribarren et al., 2012; 
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Tonini et al., 2016), or certain conversion technologies (Astrup et al., 2009; Banks et al., 2011; 

Fruergaard & Astrup, 2011; Gabra et al., 2001b, 2001a; Iribarren et al., 2012; Macias-Corral et 

al., 2008; Møller et al., 2009; Swanson et al., 2010; Tews et al., 2014). Comparing the 

effectiveness and environmental impacts of all feasible conversion pathways for all types of 

wastes from a systems perspective is necessary for policies that address the best use of wastes 

and biomass residues.  

Given this context, the questions motivating this study are the following: first, what factors 

determine the net energy gain and the global warming potential (GWP) of energy recovery from 

waste? Second, which pathways simultaneously maximize renewable energy production, net 

energy gain, and climate benefits for each type of wastes and how does this vary given the spatial 

distribution of their availability (specifically, in the contiguous US3)? Third, what are the 

aggregate energy and climate benefits when all available wastes and biomass residues across the 

contiguous US are dedicated for a specific policy objective such as maximizing renewable 

energy production, maximizing net energy gain, or maximizing climate benefits? These 

questions are aimed at deriving general insights on the optimal use of wastes and biomass 

residues, and also illustrating their overall climate change mitigation potential in the context of a 

large country, specifically the US. To this end, we quantify life cycle GHG emissions and net 

energy gain for fifteen conversion pathways (Table 2-1) and twenty-nine waste feedstocks with 

spatially explicit estimates of waste potential for the US. We find that the source of electricity 

consumed during processing and the environmental footprint of the displaced products are key in 

determining the best use of wastes and biomass residues. The utilization of all available wastes 

 
3 Biomass availability in Alaska and Hawaii were not estimated in the 2016 Billion-Ton Report, thus the two states 

were not included in this analysis. 
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and residues in the contiguous US can generate 3.1-3.8 EJ of renewable energy but deliver only 

2.4-3.2 EJ of net energy gain, and displace 103-178 million metric ton CO2e of GHG emissions. 

For any given waste feedstock in all US counties where it is available, no single conversion 

pathway simultaneously maximizes renewable energy production, net energy gain and GHG 

mitigation, except in rare instances. 
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Table 2-1. Description and attributes of conversion pathways 

Conversion 

pathway 

Abb. 

name 
Description 

Feedstock 

feasibility 

Energy 

input 

Energy 

output 

(main) 

Energy output 

(co-products) 

Displaced 

products 
References 

Combined heat 

and power 

(CHP) 

E1 
Thermal combustion through 

biomass CHP plants  
All 

Electricity, 

heat, diesel 
Electricity Heat 

State power 

grids, natural 

gas-based 

heat  

(Astrup et al., 2009; 

Fruergaard & Astrup, 

2011; Tonini et al., 2016) 

Gasification + 

CHP 
E2 

Syngas is produced via 

gasification and is then 

combusted in gas engines to 

produce electricity and heat 

All 
Electricity,  

heat 
Electricity Heat 

State power 

grids, natural 

gas-based 

heat  

(Nuss et al., 2013; 

Sikarwar et al., 2016; 

Tonini et al., 2016) 

Integrated 

gasification 

combined cycle 

(IGCC) 

E3 

Electricity generation 

through combined gas and 

steam turbines with no heat 

recovery 

All 
Electricity,  

heat 
Electricity  N/A 

State power 

grids 

(Argonne National 

Laboratory, 2016; Nuss 

et al., 2013; Tonini et al., 

2016) 

Anaerobic 

digestion + CHP 
E4 

Biogas is produced via 

anaerobic digestion and is 

then combusted in gas 

engines to produce 

electricity and heat 

Animal manure, 

municipal solid 

waste (MSW) 

Natural 

gas, diesel 
Electricity Heat 

State power 

grids, natural 

gas-based 

heat  

(Aguirre‐Villegas et al., 

2014; Banks et al., 2011; 

Energy research Centre 

of the Netherlands, 2017; 

Fruergaard & Astrup, 

2011; Møller et al., 2009) 

Gasification M1 

Syngas is produced via 

gasification and is then 

upgraded and purified to 

produce methane. 

All 
Electricity,  

heat 
Methane N/A Natural gas  

(Sikarwar et al., 2016; 

Tonini et al., 2016) 

Anaerobic 

digestion  
M2 

Biogas is produced via 

anaerobic digestion and is 

then upgraded and 

compressed for pipeline 

transmission 

Animal manure, 

MSW 

Electricity, 

heat, diesel 
Methane N/A Natural gas  

(Aguirre‐Villegas et al., 

2014; Argonne National 

Laboratory, 2016; 

Fruergaard & Astrup, 

2011; Møller et al., 2009) 

Enzymatic 

hydrolysis + 

fermentation 

Eth1 

Ethanol production via 

pretreatment, enzymatic 

hydrolysis, and fermentation 

Ag and forest 

residues, 

construction and 

demolition (CD) 

waste, MSW 

wood, paper, yard 

trimmings 

Natural 

gas, diesel 

 

 

 

Ethanol Electricity 

Petroleum 

based 

gasoline, 

state power 

grids 

(Anex et al., 2010; 

Argonne National 

Laboratory, 2016; Mu et 

al., 2010) 

Gasification + 

Fischer-Tropsch 

(FT) synthesis 

Rd1 

Gasification to decompose 

biomass into syngas, and FT 

synthesis to convert syngas 

into liquid fuels with the 

Ag and forest 

residues, 

CD waste, MSW 

wood, paper, 

Electricity 
Renewable 

diesel 

Renewable 

gasoline, bio jet 

fuel, methane,  

electricity 

Petroleum 

based diesel, 

gasoline and 

jet fuel, 

(Argonne National 

Laboratory, 2016; de 

Jong et al., 2017; 
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Conversion 

pathway 

Abb. 

name 
Description 

Feedstock 

feasibility 

Energy 

input 

Energy 

output 

(main) 

Energy output 

(co-products) 

Displaced 

products 
References 

presence of catalysts; excess 

steam is used for electricity 

generation 

plastics, yard 

trimmings 

natural gas, 

state power 

grids 

Pressley et al., 2014; 

Swanson et al., 2010) 

Pyrolysis + 

hydroprocessing  
Rd2 

Thermochemical conversion 

of a feedstock into bio-oil, 

bio-char, and pyrolysis gas; 

and integrated with 

hydrocracking and 

hydrotreatment processes for 

liquid fuel production 

Ag and forest 

residues, 

CD waste, 

food waste, MSW 

wood, paper, 

plastics, yard 

trimmings 

Electricity, 

natural gas 

Renewable 

diesel 

Renewable 

gasoline 

 

Petroleum 

based diesel 

and gasoline 

(Iribarren et al., 2012; H. 

Wang et al., 2015) 

Alcohol-to-Jet 

(ethanol) 
Bj1 

Bio jet production with 

ethanol as the intermediate 

product 

Ag and forest 

residues, 

CD waste, MSW 

wood, paper, yard 

trimmings 

Hydrogen, 

electricity 
Bio jet fuel 

Renewable 

diesel, 

renewable 

gasoline 

 

Petroleum 

based diesel, 

gasoline and 

jet fuel 

(Argonne National 

Laboratory, 2016) 

Sugar-to-Jet 

(fermentation) 
Bj2 

Sugar is separated from 

waste feedstock and is then 

converted into hydrocarbon 

or hydrocarbon intermediates 

through fermentation 

Ag and forest 

residues, 

CD waste, MSW 

wood, paper, yard 

trimmings 

Hydrogen Bio jet fuel N/A 

Petroleum 

based jet 

fuel 

(Argonne National 

Laboratory, 2016) 

Pyrolysis-in situ Bj3 

Feedstock is dried, ground, 

and then converted to a 

mixture of bio-oil, gas, and 

char with high temperature 

(above 500 ℃). The 

conversion is continued by 

hydro-deoxygenating the 

bio-oil with hydrogen, which 

is produced through SMR of 

process off-gases 

Forest residues, 

CD waste, MSW 

wood, paper, yard 

trimmings 

Electricity Bio jet fuel 

Renewable 

diesel, 

renewable 

gasoline 

 

Petroleum 

based diesel, 

gasoline and 

jet fuel 

(de Jong et al., 2015, 

2017; Tews et al., 2014) 

Pyrolysis-ex situ Bj4 

Same process as Bj5 except 

that hydrogen is produced 

from SMR of natural gas 

Forest residues, 

CD waste, MSW 

wood, paper, yard 

trimmings 

Hydrogen Bio jet fuel 

Renewable 

diesel, 

renewable 

gasoline 

 

Petroleum 

based diesel, 

gasoline and 

jet fuel 

(de Jong et al., 2015, 

2017; Tews et al., 2014) 

Hydrothermal 

liquefaction 

(HTL)-in situ 

Bj5 

Wet feedstock is converted 

into biocrude under 

temperature of 250-550 ℃ 

(with water as a medium), 

and is then hydro-

deoxygenated with 

Forest residues, 

CD waste, MSW 

wood paper, yard 

trimmings 

Electricity Bio jet fuel 

Renewable 

diesel, 

renewable 

gasoline 

 

Petroleum 

based diesel, 

gasoline and 

jet fuel 

(de Jong et al., 2015, 

2017; Tews et al., 2014) 
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Conversion 

pathway 

Abb. 

name 
Description 

Feedstock 

feasibility 

Energy 

input 

Energy 

output 

(main) 

Energy output 

(co-products) 

Displaced 

products 
References 

hydrogen, which is produced 

through steam methane 

reforming (SMR) of process 

off-gases and also anaerobic 

digestion of wastewater 

HTL-ex situ Bj6 

Same process as Bj3 except 

that hydrogen is produced 

from SMR of natural gas 

Forest residues, 

CD waste, MSW 

wood paper, yard 

trimmings 

Electricity, 

hydrogen 
Bio jet fuel 

Renewable 

diesel, 

renewable 

gasoline 

Petroleum 

based diesel, 

gasoline and 

jet fuel 

(de Jong et al., 2015, 

2017; Tews et al., 2014) 
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Methods 

An overview of conversion technology pathways 

The fifteen conversion technology pathways included in this study can be categorized into 

five groups: electricity pathways (E1-E4), methane pathways(M1-M2), ethanol pathway (Eth1), 

renewable diesel pathways (Rd1-Rd2), and bio jet fuel pathways (Bj1-Bj6). Details about the 

conversion pathways including process description, feedstock feasibility, energy inputs and 

outputs, the co-products, the displaced products, and the references are presented in Table 2-1.  

 

Approach to energy and emissions accounting  

We conducted a life cycle analysis (LCA) to estimate the energy balances and GHG 

emissions associated with the conversion of a given feedstock to the final energy product(s) in 

each county. The different phases of the life cycle that are accounted for include collection of 

waste, transport to the conversion facility, processing (including pre-treatment), transmission and 

distribution, and end use (Figure 2-1). Thornley et al. (2015) showed that different functional 

units would result in varying outcomes when comparing alternative uses of biomass and the 

function unit should correspond with “the actual nature of the research questions” (Thornley et 

al., 2015). Since this study mainly focuses on the optimal use of wastes, the functional unit of 

this LCA is thus one megagram (Mg) of wet waste.  
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Figure 2-1. System boundary for the life cycle analysis of energy and GHG emissions 

 

Energy and emissions from collection and transport of feedstock are estimated based on 

this activity requiring heavy-duty diesel trucks. Feedstock-specific technology data (including 

lower heating values, moisture content, non-biogenic carbon content, energy inputs and outputs 

by conversion pathway) were collected from the literature to calculate energy and emissions 

flows in each phase as well as the overall net energy gains (Argonne National Laboratory, 2016; 

Astrup et al., 2009; Energy research Centre of the Netherlands, 2017; Gabra et al., 2001b; Tonini 

et al., 2016; US EPA, 2016; Williams et al., 2015). Table 2-1 shows additional data sources. 

Losses during transmission and distribution were taken into account (Argonne National 

Laboratory, 2016). Emissions associated with the provision of energy inputs were based on life 

cycle emissions intensities of electricity generation and other fossil-based fuel production (heat, 

natural gas, diesel, hydrogen) (Cooney et al., 2016; Ecoinvent Centre, 2015; Lee et al., 2018). 

Emissions intensities of the production of electricity and fossil-based fuels vary geographically, 

and variation across states in such emissions intensities were taken into account (Supplementary 

Table 2-1). Life cycle GHG emissions intensities of state power grids were estimated by 

multiplying a state’s generation mix from the Emissions & Generation Resource Integrated 

Database (eGRID2016) with life cycle GHG emissions intensities of respective electricity 
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generation technologies from the LCA Harmonization project (NREL, n.d.; US EPA, 2018a). 

Life cycle GHG emissions intensities of petroleum-based fuels (i.e., diesel, gasoline and jet 

fuels) by region were obtained from Cooney et al. (2016). Life cycle GHG emissions intensities 

of natural gas-based heat, hydrogen and natural gas were obtained from Ecoinvent Centre 

(2015), Lee et al. (2018), and NREL (n.d.) respectively. The GWP for non-CO2 GHG is based on 

IPCC AR5 100-year conversion factors (Edenhofer et al., 2011). Supplementary Table 2-1 shows 

the emissions intensities used to calculate both emissions related to energy use in all conversion 

pathways and emissions offset from displacing current electricity generation and petroleum-

based fuel production.  

Comparing the burdens associated with converting a given feedstock to different end 

products does not, however, paint a complete picture of the benefits of choosing one conversion 

pathway over another. The ultimate environmental benefit of any given pathway is also a 

function of the process(es) or product(s) that it displaces. For instance, if conversion of manure 

to renewable natural gas for pipeline injection entails more GHG emissions relative to 

conversion to biogas for onsite power generation, it is plausible that the former is more beneficial 

if electricity from biogas displaces were to clean electricity while renewable natural gas 

displaces diesel used in trucks or displaces fossil natural gas. Figure 2-2 illustrates a simple 

schematic representation of this concept. It shows the conversion of a primary resource into a 

final energy product. Z denotes the life cycle emissions of a given type (say, GHG) from the 

extraction (or harvesting) of the primary resource through conversion to the finished energy 

product. Given this set up, production of bioelectricity will displace a certain amount of (ZNG-E - 

ZB-E) of GHG emissions while production of bio-gasoline will displace a certain amount of (ZO-G 

– ZB-G) of GHG emissions. The greater of these two displacements would represent the better use 
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of biomass from a GHG emissions perspective. Posen et al. (2014) illustrate this idea in the 

context of converting cellulosic biomass to ethanol and displacing gasoline vis-à-vis producing 

bioethylene and displacing fossil-fuel derived ethylene.  

 

 

Figure 2-2. A schematic illustration of the displacement approach 

 

For the handling of co-products, we chose the displacement method over allocation 

methods based on energy or economics for the following reasons: First, the International 

Standards Organization (ISO) advocates the use of the displacement method (International 

Organization for Standardization, 2006) and it has been adopted as the default method in many 

LCA models and biofuel regulation development in the US. Second, many pathways yield a 

number of different types of energy products – electricity, heat, methane, and/or liquid fuels. The 

conventional products to be displaced can easily be defined. Third, distinguishing the main-

product and co-products in this study is mainly for categorizing the pathways into five groups. 

We intended to examine the conversion pathways from a systems perspective, that is, for all 

types of energy products via each conversion pathway instead of the main products only. The 

displacement method represents the idea of system expansion and is more suitable for our 

analysis. Fourth, the characteristics (utility, energy form, etc.) of electricity are different from 
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those of other types of energy products; so is each other type of energy product. Allocation 

simply based on energy content may result in distorted results because various types of energy 

products may have different utilities. In addition, the price ratios for an economic allocation may 

be challenging as some of the energy products from waste conversion may be non-commoditized 

and the prices may fluctuate and vary greatly by geographic location. Net GHG emissions were 

calculated by subtracting displaced emissions from the life cycle emissions of each conversion 

pathway. 

Biogenic CO2 emissions are included throughout life cycles. The GWP of biogenic CO2 

emissions was estimated by multiplying GWPbio indices from the full impulse response functions 

(FIRF) method in a 100-year time horizon and biogenic CO2 emissions based on initial organic 

carbon content in waste feedstock. Agricultural residues and animal feed were assumed to come 

from annual crops, the GWPbio of which is equal to 0. Thus, the GWP of biogenic CO2 emissions 

from agricultural residues and animal manure is 0. Supplementary Table 2-2 shows the method 

and data sources for estimating GWP of biogenic CO2 emissions from forest residues and MSW. 

To be consistent with assumptions made by US EPA (US EPA, 2016), the carbon in three MSW 

feedstocks – plastics, rubber and leather, and textile – was treated as 100 percent fossil carbon. 

The fossil CO2 emissions from the three MSW feedstocks were included in the processing phase 

or the end use phase depending on each specific conversion pathway. Thus, net GWP of a given 

feedstock converted through a given pathway is equivalent to the sum of net GHG emissions and 

the GWP of biogenic emissions. Emissions and energy related to material use (such as enzymes 

and catalysts) are not included in the analysis.  

The basic county-level calculations we performed in order to assess the potentials of energy 

production and life cycle GWP are the following:  
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𝐸𝑃𝑖,𝑗,𝑐 = 𝑊𝑊𝑖,𝑐  ×  ∑ (𝐸𝑂𝑖,𝑗,𝑘𝑘  × (1 − 𝑇𝐷𝑘))                                                                   …  (1) 

𝑁𝐸𝑖,𝑗,𝑐 = 𝐸𝑃𝑖,𝑗,𝑐 −  𝑊𝑊𝑖,𝑐  ×  (∑ 𝐸𝐼𝑖,𝑗,𝑙 +𝑙  𝐸𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛,𝑖 + 𝐸𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 × 𝐷1)                     …  (2)                                          

𝐺𝑊𝑃𝑖,𝑗,𝑐 = 𝑊𝑊𝑖,𝑒  × (𝐸𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛,𝑖 + 𝐸𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 × 𝐷1) × 𝐸𝑚𝑖𝑠𝑠𝐼𝑑𝑖𝑒𝑠𝑒𝑙,𝑐 + ∑ (𝐸𝐼𝑖,𝑗,𝑙 ×𝑙

                                 𝐸𝑚𝑖𝑠𝑠𝐼𝑙,𝑐)) + 𝐸𝑚𝑖𝑠𝑠𝑝𝑟𝑜𝑐𝑒𝑠𝑠 + 𝑊𝑖,𝑗,𝑘 × 𝐸𝑚𝑖𝑠𝑠𝐼𝑑𝑖𝑒𝑠𝑒𝑙,𝑐 × 𝐷2 +

                                 𝐸𝑚𝑖𝑠𝑠𝑒𝑛𝑑𝑢𝑠𝑒 + 𝐺𝑊𝑃𝑖
𝑏𝑖𝑜𝐶𝑂2 − 𝐸𝑃𝑖,𝑗,𝑘 ×  𝐸𝑚𝑖𝑠𝑠𝐼𝑚,𝑐                                     … (3) 

𝐺𝑊𝑃𝑖
𝑏𝑖𝑜𝐶𝑂2 = 𝐺𝑊𝑃𝑏𝑖𝑜,𝑖 × 𝐸𝑚𝑖𝑠𝑠𝑏𝑖𝑜𝐶𝑂2,𝑖                                                                            … (4) 

where,  

EPi,j,c - Renewable energy production (MJ) of feedstock i via conversion pathway j in county c; 

WWi,c - wet weight (kg) of feedstock i in county c; 

EOi,j,k - energy output k (MJ/kg) of feedstock i via conversion pathway j;  

TDk  - transmission and distribution loss of energy output k, 6.5% assumed for electricity, 20% for heat, and 

2% for methane;  

NEi,j,c - net energy (MJ) of feedstock i via conversion pathway j in county c;  

EIi,j,l - energy input l (MJ/kg) of feedstock i via conversion pathway j; 

GWPi,j,c - net GWP (gCO2e) of feedstock i via conversion pathway j in county c;  

Ecollection,i - Energy consumption rate (MJ/kg) of collecting feedstock i;  

Etransport - Energy consumption rate (MJ/kg-km) of transporting feedstock i to conversion facility; 

D1 - Transport distance (km) from temporary storage or collection site to conversion facility, 150 km 

assumed;  

EmissIdiesel,c - life cycle GHG emissions intensity (gCO2e/MJ) of petroleum-based diesel in county c; 

EmissIl,c - life cycle GHG emissions intensity (gCO2e/MJ) of energy input l in county c; 

Emissprocess – direct GHG emissions (excluding biogenic CO2) during processing;  

Wi,j,k - physical weight (kg) of energy output k of feedstock i via conversion pathway j; 

D2 - Transport distance (km) for distribution, 150 km assumed; 

Emissenduse – direct GHG emissions (excluding biogenic CO2) during end use;  

 𝐺𝑊𝑃𝑖
𝑏𝑖𝑜𝐶𝑂2 – GWP (gCO2e) of biogenic carbon in feedstock i 
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EPi,j,k - energy production (MJ) of output k of feedstock i via conversion pathway j; 

EmissIm,c - life cycle GHG emissions intensity (gCO2e/MJ) of energy product m (which output k can 

substitute) in county c; 

GWPbio,i - biogenic CO2 global warming index with full impulse response functions for feedstock i; 

Emissbioco2,i - biogenic CO2 emissions of feedstock i.  

 

For the comparison of conversion pathways, county-level results were first aggregated to 

the national level and by feedstock. Weighted average (by weight) of results by feedstock in each 

of the four broader categories of waste resources were calculated for the comparison by waste 

type. For the current management practices for wastes and residues, we used the same emissions 

accounting method and life cycle framework to estimate the GWP (Supplementary Table 2-3).  

 

Sensitivity analysis 

We conducted a sensitivity analysis of net GHG emissions to explore the impacts of 

emissions intensity of current state power grids and transportation distance. For the sensitivity 

analysis on electricity, two additional electricity generation scenarios were constructed: “cleaner 

power” - assuming a 50% reduction in emissions intensity of power grids in all states; and “fossil 

rollback” - assuming a 50% increase in emissions intensity of power grids in all states. In 

addition, a range of 25 - 150 km was examined to test the sensitivity of transportation distance.   

 

Technical availability of waste resources  

County-level waste availability data were obtained from the base-year estimates under the 

reference scenario in the US DOE’s BT16. BT16 estimates the biophysical potential, the spatial 

distribution, economic constraints, as well as environmental impacts associated with existing and 
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potential biomass resources (US Department of Energy, 2016). Waste resources included in this 

study comprise of four types of wastes: agricultural residues (14 feedstocks, including both 

primary and secondary agricultural residues as defined in BT16), animal manure (2 feedstocks), 

forest residues (4 feedstocks), and municipal solid waste (9 feedstocks). Technical availability 

was defined as the maximum potential of waste resources without taking into account feedstock 

costs. BT16 reports dry weight of waste feedstocks, and wet weight was calculated with moisture 

content to account for collection and transport emissions.  

 

Scenario analysis 

To explore the optimal utilization of waste biomass resources, we developed three 

alternative scenarios: maximum renewable energy production (MEP), maximum net energy 

(MNE), and maximum GHG emissions reduction (MER). For all scenarios, the optimal 

conversion pathway for each feedstock was selected based on the maximum value of energy or 

emissions reduction. Under each scenario, the county-level results were then added up to get the 

potentials of total renewable energy production, net energy, and emissions reduction at the 

national level.  

 

Results and Discussion 

Technical comparison of conversion pathways 

We first estimate renewable energy production, net energy gain, and GHG footprint of 

different conversion pathways on a per unit wet weight basis for various types of wastes. 

Feedstock-level results are depicted in Supplementary Figures 2-1 to 2-3. The methods section 

explains how we first calculate these for each distinct waste biomass source at the US county-
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level, and subsequently, compute a mass weighted-average for each of the four broad categories 

of wastes at the national level. The renewable energy yield across conversion pathways ranges 

from 0.2 to 13.1 gigajoules (GJ) per megagram (Mg) of waste, while the net energy gain ranges 

from -2.4 to 11.6 GJ per Mg (Figure 1a and Figure 1b). It is clear that the energy value of co-

products is critical to achieving positive net energy for a number of conversion pathways and 

waste feedstocks. Except for animal manure-related pathways, all conversion pathways result in 

positive net energy gains and considerable energy return on investment (EROI). For animal 

manure, only anaerobic digestion (M2) yields positive net energy and its EROI is only slightly 

greater than 1. Other available technology pathways for the processing of animal manure require 

a substantial amount of thermal energy inputs to either combust or gasify the feedstock. The net 

GWP across the pathways ranges from -0.9 to 0.7 metric ton (Mt) CO2e per Mg (Figure 1d). As 

with the importance of co-products in net energy gain, emissions avoided by the resulting co-

product(s) displacing a substitute accounts for a substantial portion of the climate benefits for 

most pathways.  

Looking into each broad waste category, for agricultural and forest residues, combined heat 

and power generation (CHP) offers both the greatest net energy gain and climate benefits. For 

MSW, CHP offers the highest net energy gain while anaerobic digestion returns more climate 

benefits than other pathways. When compared with current management practices, all conversion 

pathways result in climate benefits for agricultural residues. As for animal manure, only 

anaerobic digestion producing either methane (M2) or electricity and heat (E4) yields climate 

benefits. This corresponds with previous studies, indicate that anaerobic digestion is the optimal 

conversion pathway for animal manure (Aguirre‐Villegas et al., 2014; Aguirre-Villegas & 

Larson, 2017; Tonini et al., 2016). Although some pathways appear not to contribute to climate 
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change mitigation (i.e., result in positive net GWP), all conversion pathways for forest residues 

yield smaller net GWP relative to burning them on-site. When compared to landfilling without 

any methane flaring or capturing, all conversion pathways for MSW result in smaller negative 

effects on the climate. However, landfilling with methane capture and onsite CHP would greatly 

reduce the GHG emissions of landfilling and become more attractive than renewable diesel 

related conversion pathways (Figure 2-3).  

 

Break-down of GHG emission sources 

Disaggregating the contribution to total GHG emissions from the different stages in the 

production chain shows that emissions during the processing stage, which requires electricity and 

heat input, and credits for avoided emissions attributable to displaced products are key 

determinants of GHG emissions for most conversion pathways (Figure 2-3). This is generally in 

line with results from a number of recent studies, such as de Jong et al. (2017), Pressley et al. 

(2014), and Tonini et al. (2016). For agricultural residues, current management practice (i.e., left 

and decayed on field) entail no GWP due to the fact that the GWPbio index for annual crops is 

zero. Although emissions from growing the crops (with a GWPbio of 0) used as animal feed can 

be neglected, emissions from direct land application of manure mainly consist of methane and 

N2O emissions from animal farm operations. For MSW, the major sources of non-biogenic 

carbon are contained in plastics, rubber and leather, and textiles. For non-electricity pathways, 

non-biogenic carbon in MSW feedstocks is transferred into energy products and eventually 

emitted into the atmosphere as CO2 during end use. This explains a large amount of emissions 

during the end-use stage for these pathways. For electricity-related pathways (E1-E4), non-

biogenic carbon is emitted as CO2 during the processing phase. For other types of MSW 
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feedstocks, biogenic carbon is emitted as biogenic CO2 at various phases. Thus, we treated 

biogenic CO2 as a separate source of GHG emissions.  

 

 

Figure 2-3. Energy, net energy and emissions from waste biomass utilization in the US 
(a) Energy production and net energy by waste type and conversion pathway; (b) Energy return on investment by 

waste type and conversion pathway (the horizontal line refers to an EROI of 1); (c) Life cycle emissions when 

biogenic CO2 is excluded; and (d) Life cycle emissions when biogenic CO2 is included. Electricity pathways: E1 – 

CHP, E2 - Gasification + CHP, E3 - IGCC, E4 - anaerobic digestion + CHP; Methane pathways: M1 – gasification, 

M2 - anaerobic digestion; Ethanol pathway: Eth1 - enzymatic hydrolysis + fermentation; Renewable diesel 

pathways: Rd1 - gasification + FT synthesis, Rd2 - pyrolysis + hydroprocessing; Bio jet fuel pathways: Bj1 - ATJ 
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(ethanol), Bj2 - STJ (fermentation), Bj3 - pyrolysis (in situ), Bj4 - pyrolysis (ex situ), Bj5 - HTL (in situ), Bj6 - HTL 

(ex situ). Business-as-usual practices: BAU1 - left on field (agricultural residues), BAU2 - direct land application 

(animal manure), BAU3 – burning on-site (forest residues), BAU4 – landfilling without methane flaring or capture 

(MSW), BAU5 - landfilling with 75% of methane capture and use for on-site CHP (MSW). See Table 2-1 for 

additional details on conversion pathways.  

 

Sensitivity analysis of emission estimates 

Given that electricity consumption during biomass processing is the major source of energy 

inputs and emissions across most conversion pathways, we conducted a sensitivity analysis on 

the emissions intensities of state power grids. Note that even though biomass processing requires 

significant heat energy, it is typically derived from natural gas, whose emissions intensity is 

much less variable across regions relative to the emissions intensity of electricity. Results show 

that cleaner power grids in general would yield less climate benefits for electricity pathways and 

more climate benefits for non-electricity pathways (Figure 2-4). For cleaner power grids, 

electricity-related pathways would on one hand result in fewer emissions during the processing 

stage, but would on the other hand lead to less climate benefits from the displacement of grid 

electricity. For the majority of non-electricity pathways, electricity is only an input so that 

cleaner power grids would result in less emissions during the processing stage and the overall 

life cycle. For instance, whereas converting agricultural and forest residues into electricity 

through CHP (E1) and biomethane through gasification (M1) appear equally beneficial under 

current conditions, M1 becomes more beneficial when power grids are cleaner. We also 

conducted another sensitivity analysis on transportation distance (Figure 2-5). However, 

distances ranging from 25 to 150 km negligibly affect our GHG emissions results. Thus, we 

assumed 150 km as the transportation distance in order to provide conservative estimates for net 

energy gain and GHG emissions.  
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Figure 2-4. Sensitivity analysis of emission estimates 
Electricity pathways: E1 – CHP, E2 - Gasification + CHP, E3 - IGCC, E4 - anaerobic digestion + CHP; Methane 

pathways: M1 – gasification, M2 - anaerobic digestion; Ethanol pathway: Eth1 - enzymatic hydrolysis + 

fermentation; Renewable diesel pathways: Rd1 - gasification + FT synthesis, Rd2 - pyrolysis + hydroprocessing; 

Bio jet fuel pathways: Bj1 - ATJ (ethanol), Bj2 - STJ (fermentation), Bj3 - pyrolysis (in situ), Bj4 - pyrolysis (ex 

situ), Bj5 - HTL (in situ), Bj6 - HTL (ex situ). 

 

 

Figure 2-5. Sensitivity analysis of GWP on transportation distance 
Electricity pathways: E1 - CHP; E2 - gasification + CHP; E3 - IGCC; E4 - anaerobic digestion + CHP; M1 - 

gasification; M2 - anaerobic digestion; Eth1 - enzymatic hydrolysis + fermentation; Rd1 - gasification + FT 

synthesis; Rd2 - pyrolysis + hydroprocessing; Bj1 - ATJ (ethanol); Bj2 - STJ (fermentation); Bj3 - pyrolysis (in 

situ); Bj4 - pyrolysis (ex situ); Bj5 - HTL (in situ); Bj6 - HTL (ex situ).  

 

Maximizing aggregate energy and climate benefits 

We next describe the maximum energy and climate benefits achievable at a national scale 

through optimal utilization of waste biomass generated in each county within the US taking into 

account spatial variation in the electricity mix. As noted earlier, about 233 MMT of dry waste 

resources are available annually in the contiguous US. The spatial distribution of this total 

resource base is depicted in Figures 2-6 and 2-7. Approximately 25% of this total is concentrated 
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in 115 counties, 50% are in 374 counties, and 75% are in 884 counties. The availability of all 

waste resources combined varies by county and it reaches as high as over 2 million dry Mg in 

Los Angeles County, California (Figure 2-6). Agricultural states in the Pacific West, the 

Midwest and the South in general stand out with more agricultural residues than other regions. 

Counties in the Mountain West and the South are endowed with substantial forest residues. In the 

Mountain West, these forest residues mainly consist of fuel reduction thinning from wildfire 

mitigation, whereas forest residues in the South are mostly mill residues. The availability of 

animal manure corresponds with livestock and poultry production, which is concentrated in 

California and the Midwest. The availability of MSW is concentrated in densely-populated 

regions such as Southern California, Florida, and parts of the Northeast. Overall, however, some 

of the largest metropolitan areas stand out in terms of the availability of total waste resources. 

 

 

Figure 2-6. Distribution of waste resources in the US 
(a) County-level waste production (Mg) in 2015; (b) Distribution of total waste production by the number of 

counties.  

 

 

(a) (b) 
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Figure 2-7. Spatial distribution of technically available biomass potential from waste 

resources 
(a) Agricultural residues; (b) Animal manure; (c) Forest residues; and (d) Municipal solid waste. 

 

Searching for the optimal conversion pathway with respect to all three criteria - renewable 

energy, net energy and GWP, we find that no single pathway exists for any given type of waste 

across all US counties and states, except in rare instances (Table 2-2). Across different types of 

agricultural residues, combined heat and power generation (E1) consistently stands out with 

respect to all three criteria for a substantial fraction of counties and states. As for animal manure, 

no single pathway satisfies all three criteria. For forest residues and municipal wastes, optimal 

conversion pathways that satisfy all three criteria vary by specific waste feedstocks. The 

percentage of locations where there is a single optimal pathway varies substantially.  
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Table 2-2. Synergies between renewable energy, net energy, and GWP at the county and state levels 

  Total number 

of counties 

with feedstock 

available 

All three criteria 

aligned 
Total number 

of states with 

feedstock 

available 

All three criteria 

aligned Optimal 

pathway 
Waste type Feedstock 

Number of 

counties 

Percent 

(%) 

Number 

of states 

Percent 

(%) 

Ag. Residues 

Barley straw 136 52 38 14 5 36 E1 

Citrus residues 118 53 45 9 3 33 E1 

Corn stover 1276 793 62 36 22 61 E1 

Cotton gin trash 815 329 40 17 6 35 E1 

Cotton residues 796 305 38 17 6 35 E1 

Noncitrus residues 1686 795 47 48 20 42 E1 

Oats straw 12 4 33 2 1 50 E1 

Rice hulls 144 77 53 6 3 50 E1 

Rice straw 148 80 54 6 3 50 E1 

Sorghum stubble 191 161 84 9 6 67 E1 

Sugarcane bagasse 29 11 38 3 2 67 E1 

Sugarcane trash 29 11 38 3 2 67 E1 

Tree nut residues 620 234 38 40 14 35 E1 

Wheat straw 696 207 30 32 11 34 E1 

Animal Manure 
Hogs, 1000+ head 934 0 0 37 0 0 - 

Milk cows, 500+ head 639 0 0 44 0 0 - 

Forest Residues 

Primary mill residues  488 178 36 44 12 27 E1 

Secondary mill residues  2418 590 24 49 11 22 E1 

Other forest residues  1256 588 47 35 15 43 - 

Other forest thinnings 304 96 32 11 5 45 E1 

MSW 

CD waste 3109 0 0 49 0 0 - 

Food waste 2792 0 0 48 0 0 - 

MSW wood 3109 2487 80 49 39 80 Bj5 

Paper and paperboard  3109 0 0 49 0 0 - 

Plastics 3109 0 0 49 0 0 - 

Rubber and leather 3109 0 0 49 0 0 - 

Textiles 3109 0 0 49 0 0 - 

Yard trimmings 3066 0 0 49 0 0 - 

Other MSW 3109 0 0 49 0 0 - 
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Since there lacks a single pathway that aligns all three criteria for any given waste 

feedstock across locations, there is a need to consider three distinct scenarios of optimal use of 

biomass wastes – maximum energy production (MEP), maximum net energy (MNE), and 

maximum emissions reduction (MER). For each county in the US, we first select the conversion 

pathway for each type of waste under each of the three scenarios. The national results are the 

aggregation of county-level results. Scenario results suggest that there is substantial benefit from 

utilizing wastes and biomass residues to either displace energy production or reduce GHG 

emissions or both (Table 2-3). As one would expect, MEP results in the highest potential of 

renewable energy production, which totals 3.8 exajoules (EJ), or 3.7% of total US energy 

demand in 2016 (EIA, 2017), and MER results in the highest potential of emissions reduction 

that is 178 MMT CO2e –  2.7% of total US GHG emissions in 2016 (US EPA, 2018b). The MNE 

scenario has the highest potential of net energy as well as a moderate amount of emissions 

reduction (75% of MER). A break-down of scenario results by waste feedstock reveals the 

preferred conversion pathways under each of the three scenarios (Supplementary Table 2-4). 

CHP (E1) is the preferred option for agricultural resides under both the MEP and MNE 

scenarios, while either CHP(E1) or gasification (M1) may maximize GHG emissions reduction 

depending on specific feedstock. For dairy manure, CHP (E1) is the preferred option that 

maximizes renewable energy production, but anaerobic digestion to biomethane (M2) maximizes 

both net energy gains and climate benefits. For forest residues, CHP (E1) results in the largest 

amount of renewable energy and net energy gain, while either HTL with in-situ hydrogen 

production (Bj5) or gasification (M1) maximizes GHG emissions reduction. Different from other 

categories of wastes, optimal use of MSW feedstocks would require a greater number of 

conversion technology pathways depending on the specific feedstock. Non-biogenic carbon in 
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MSW is concentrated in three feedstocks - plastics, rubber and leather, and textiles. Thus, the 

non-biogenic carbon is immediately emitted into the atmosphere when processing those 

feedstocks instead of being stored in landfills. While the inclusion of biogenic CO2 reduces net 

GWP for forest residues and MSW (Figure 2-3), it does not change the ranking of conversion 

pathways under the three scenarios. 

 

Table 2-3. Total renewable energy production, net energy gain, and GWP across scenarios 

Policy 

scenarios 

Renewable 

energy 

production 

Net energy 

gain 
GWP 

EJ Index EJ Index MMT CO
2
e Index 

MEP1 3.8 100% 2.9 89% -103 58% 

MNE2 3.7 96% 3.2 100% -133 75% 

MER3 3.1 81% 2.4 76% -178 100% 

Note: 1MEP: Maximum renewable energy production scenario.  

          2MNE: Maximum net energy gain scenario. 

          3MER: Maximum GHG emissions reduction scenario. 

 

The county-level distribution of renewable energy production, net energy gain, and its 

associated climate benefits also indicates that most counties would lose a relatively small amount 

of energy production potential when switching from the MEP scenario to the MER scenario 

while most counties would see a greater increase in terms of emissions reduction (Figure 2-8). 

Maximizing energy production would result in negative net energy in 125 counties and 

emissions increase in 532 counties (Figure 2-8). Therefore, maximizing either net energy or 

emissions reduction would lead to better utilization of wastes and residues relative to 

maximizing renewable energy. Given that the terms “renewable energy” and “clean energy” tend 
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to often be used interchangeably by policy makers, this analysis shows that there exist potential 

tradeoffs between different criteria relevant to sustainable development. 

 

 

Figure 2-8. County-level renewable energy production, net energy and emissions   
a, b, c - The maximum renewable energy production (MEP) scenario; d, e, f - The maximum net energy (MNE) 

scenario; g, h, i - The maximum GHG emissions reduction (MER) scenario.  

 

 

Conclusions 

Maximizing the benefits of waste conversion requires attention to: first, the life cycle 

implications of different technology pathways; second, the spatial distribution of waste 

feedstocks; and third, the local conditions under which waste feedstocks will be processed. The 
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policy insight that emerges from this analysis is that national mandates such as the US 

Renewable Fuel Standard (RFS) likely do not maximize even renewable energy production, let 

alone environmental benefits. Likewise, renewable portfolio standards, a widely employed 

policy in the electricity sector, could lead to sub-optimal use of waste biomass. In the literature, 

bioenergy and biofuel policies have been analyzed mainly from the perspective of climate 

change mitigation, food security, or cost, but this analysis shows they also do not optimize 

energy production. From a methodological perspective, this analysis illustrates the value of 

combining LCA with spatial analytical techniques for multi-criteria assessment of alternative 

conversion pathways and the identification of hot spots for the refinement of existing energy 

policies. Indexing volumetric targets and mandates as well as financial subsidies for renewable 

energy to life cycle emissions-based performance measures will lead to more sustainable use of 

wastes and biomass residues.  

This study is a first step towards using a common system boundary for a consistent 

comparison of a large variety of waste conversion technologies from the twin perspectives of net 

energy gain and climate benefits. Incorporating non-GHG environmental considerations 

including air quality impacts and fresh water use and water quality impacts, as well as an 

assessment of the levelized life cycle cost of energy for the different pathways are two important 

directions for future research. 

 

Appendix: Supplementary Information 

Supplementary Figures 
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Supplementary Figure 2-1. Renewable energy production and net energy gain by feedstock and conversion pathway 
E1 - CHP; E2 - gasification + CHP; E3 - IGCC; E4 - anaerobic digestion + CHP; M1 - gasification; M2 - anaerobic digestion; Eth1 - enzymatic hydrolysis + 

fermentation; Rd1 - gasification + FT synthesis; Rd2 - pyrolysis + hydroprocessing; Bj1 - ATJ (ethanol); Bj2 - STJ (fermentation); Bj3 - pyrolysis (in situ); Bj4 - 

pyrolysis (ex situ); Bj5 - HTL (in situ); Bj6 - HTL (ex situ).  



  

 

 

3
6

 

 
Supplementary Figure 2-2. EROI by feedstock and conversion pathway 
E1 - CHP; E2 - gasification + CHP; E3 - IGCC; E4 - anaerobic digestion + CHP; M1 - gasification; M2 - anaerobic digestion; Eth1 - enzymatic hydrolysis + 

fermentation; Rd1 - gasification + FT synthesis; Rd2 - pyrolysis + hydroprocessing; Bj1 - ATJ (ethanol); Bj2 - STJ (fermentation); Bj3 - pyrolysis (in situ); Bj4 - 

pyrolysis (ex situ); Bj5 - HTL (in situ); Bj6 - HTL (ex situ).  
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Supplementary Figure 2-3. GWP by feedstock and conversion pathway 
E1 - CHP; E2 - gasification + CHP; E3 - IGCC; E4 - anaerobic digestion + CHP; M1 - gasification; M2 - anaerobic digestion; Eth1 - enzymatic hydrolysis + 

fermentation; Rd1 - gasification + FT synthesis; Rd2 - pyrolysis + hydroprocessing; Bj1 - ATJ (ethanol); Bj2 - STJ (fermentation); Bj3 - pyrolysis (in situ); Bj4 - 

pyrolysis (ex situ); Bj5 - HTL (in situ); Bj6 - HTL (ex situ). 
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Supplementary Tables 

Supplementary Table 2-1. Life cycle GHG emission intensities (gCO2/MJ) of electricity and 

fossil-based fuels 

State 
Electricity 

mix 

Natural 

gas-based 

Heat 

Hydrogen 

Natural 

gas-based 

electricity 

Gasoline 
Jet 

fuels 
Diesel 

Alaska 120.4 64.0 119.0 132.4 99.0 89.0 96.2 

Alabama 120.6 64.0 119.0 132.4 95.2 87.2 90.8 

Arkansas 148.7 64.0 119.0 132.4 95.2 87.2 90.8 

Arizona 119.7 64.0 119.0 132.4 99.0 89.0 96.2 

California 70.4 64.0 119.0 132.4 99.0 89.0 96.2 

Colorado 182.0 64.0 119.0 132.4 96.0 87.9 90.8 

Connecticut 69.2 64.0 119.0 132.4 94.9 88.3 90.1 

District of Columbia 50.0 64.0 119.0 132.4 94.9 88.3 90.1 

Delaware 141.7 64.0 119.0 132.4 94.9 88.3 90.1 

Florida 137.5 64.0 119.0 132.4 94.9 88.3 90.1 

Georgia 132.5 64.0 119.0 132.4 94.9 88.3 90.1 

Hawaii 200.4 64.0 119.0 132.4 99.0 89.0 96.2 

Iowa 136.5 64.0 119.0 132.4 97.2 88.9 92.8 

Idaho 31.0 64.0 119.0 132.4 96.0 87.9 90.8 

Illinois 101.5 64.0 119.0 132.4 97.2 88.9 92.8 

Indiana 227.4 64.0 119.0 132.4 97.2 88.9 92.8 

Kansas 139.9 64.0 119.0 132.4 97.2 88.9 92.8 

Kentucky 244.8 64.0 119.0 132.4 97.2 88.9 92.8 

Louisiana 128.8 64.0 119.0 132.4 95.2 87.2 90.8 

Massachusetts 108.3 64.0 119.0 132.4 94.9 88.3 90.1 

Maryland 123.8 64.0 119.0 132.4 94.9 88.3 90.1 

Maine 51.4 64.0 119.0 132.4 94.9 88.3 90.1 

Michigan 139.8 64.0 119.0 132.4 97.2 88.9 92.8 

Minnesota 127.4 64.0 119.0 132.4 97.2 88.9 92.8 

Missouri 220.5 64.0 119.0 132.4 97.2 88.9 92.8 

Mississippi 129.4 64.0 119.0 132.4 95.2 87.2 90.8 

Montana 148.4 64.0 119.0 132.4 96.0 87.9 90.8 

North Carolina 120.9 64.0 119.0 132.4 94.9 88.3 90.1 

North Dakota 196.8 64.0 119.0 132.4 97.2 88.9 92.8 

Nebraska 164.0 64.0 119.0 132.4 97.2 88.9 92.8 

New Hampshire 42.2 64.0 119.0 132.4 94.9 88.3 90.1 

New Jersey 82.0 64.0 119.0 132.4 94.9 88.3 90.1 

New Mexico 193.4 64.0 119.0 132.4 95.2 87.2 90.8 

Nevada 114.6 64.0 119.0 132.4 99.0 89.0 96.2 

New York 62.4 64.0 119.0 132.4 94.9 88.3 90.1 

Ohio 194.4 64.0 119.0 132.4 97.2 88.9 92.8 

Oklahoma 129.1 64.0 119.0 132.4 97.2 88.9 92.8 

Oregon 44.0 64.0 119.0 132.4 99.0 89.0 96.2 

Pennsylvania 113.9 64.0 119.0 132.4 94.9 88.3 90.1 

Rhode Island 128.2 64.0 119.0 132.4 94.9 88.3 90.1 

South Carolina 84.3 64.0 119.0 132.4 94.9 88.3 90.1 

South Dakota 68.9 64.0 119.0 132.4 97.2 88.9 92.8 

Tennessee 128.3 64.0 119.0 132.4 97.2 88.9 92.8 

Texas 141.1 64.0 119.0 132.4 95.2 87.2 90.8 

Utah 217.5 64.0 119.0 132.4 96.0 87.9 90.8 

Virginia 110.3 64.0 119.0 132.4 94.9 88.3 90.1 

Vermont 5.2 64.0 119.0 132.4 94.9 88.3 90.1 

Washington 26.5 64.0 119.0 132.4 99.0 89.0 96.2 

Wisconsin 173.4 64.0 119.0 132.4 97.2 88.9 92.8 

West Virginia 259.9 64.0 119.0 132.4 94.9 88.3 90.1 

Wyoming 238.9 64.0 119.0 132.4 96.0 87.9 90.8 
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Supplementary Table 2-2. The method and data sources for estimating GWP of biogenic CO2 emissions per Mg of wet forest 

residues and MSW 

 A B C D E F 

Formula   1*(1-A/100)*B/100*(44/12)   C*D 

References 

(US 

Department 

of Energy, 

2016; 

Williams et 

al., 2015) 

(Barlaz, 1998; US 

EPA, 2016; X. 

Wang et al., 2011) 

  

(Cherubin

i et al., 

2011) 
 

Waste 

type 
Feedstock 

Moisture 

content 

(%) 

Initial organic 

carbon content 

in dry weight 

(%)1 

Biogenic CO2 emissions  

(metric ton CO2e/Mg) 

Fossil CO2 

emissions 

(metric ton 

CO2e/Mg) 

GWPbio 

GWP of biogenic 

CO2 emissions 

(metric ton 

CO2e/Mg) 

Forest 

Residues 

Primary mill residues  40 45 0.98 0 0.43 0.42 

Secondary mill residues  40 45 0.98 0 0.43 0.42 

Other forest residues  40 45 0.98 0 0.43 0.42 

Other forest thinnings 40 45 0.98 0 0.43 0.42 

MSW 

CD waste 15 45 1.39 0 0.43 0.60 

Food waste 70 51 0.56 0 0.43 0.24 

MSW wood 50 45 0.82 0 0.43 0.35 

Paper and paperboard  15 41 1.29 0 0.43 0.56 

Plastics2 10 66 0 2.18 0.43 0 

Rubber and leather2 10 85 0 2.81 0.43 0 

Textiles2 15 70 0 2.18 0.43 0 

Yard trimmings 60 46 0.67 0 0.43 0.29 

Other MSW 4 42 1.48 0 0.43 0.64 

Note: 1 median value in a range of estimates from the references 

          2 We assumed that the organic carbon is 100% fossil carbon, which corresponds with EPA (2016). The fossil CO2 emissions of these three feedstocks are 

included either in the processing phase for electricity-related pathways or in the end use phase for other conversion pathways. 
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Supplementary Table 2-3. Key assumptions and data sources for estimating GWP of 

current management practices 

 

Waste 

category 

Current 

management 

practice 

Phases considered in 

life cycles 
GWPbio  References 

Agricultural 

residues 
Left on field 

Biogenic CO2 

emissions 
0 (Cherubini et al., 2011) 

Animal 

manure 

Direct land 

application 

Collection, sand 

recovery, storage, land 

application, biogenic 

CO2 emissions 

0 

(Aguirre‐Villegas et al., 

2014; Aguirre-Villegas 

& Larson, 2017; 

Cherubini et al., 2011) 

Forest 

residues 
Burning on-site 

Biogenic CO2 

emissions 
0.43 

(Cherubini et al., 2011; 

Miner et al., 2014) 

MSW 

landfilling without 

methane capture 

Collection, methane 

leakage, biogenic CO2 

emissions 

0.43 
(Cherubini et al., 2011; 

US EPA, 2016) 

landfilling with 

75% of methane 

captured and 

subsequently used 

for on-site CHP 

Collection, methane 

leakage, biogenic CO2 

emissions, processing 

(i.e., electricity and heat 

generation), 

displacement benefits 

0.43 
(Cherubini et al., 2011; 

Morris, 2017; Tonini et 

al., 2016; US EPA, 2016) 
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Supplementary Table 2-4. Optimal conversion pathways for each type of feedstock under each scenario 

Type of waste 

resources 
Feedstock 

Technically feasible conversion 

pathways 

MEP Scenario MNE Scenario MER Scenario 

Technology 

choice 

Energy 

production 

(PJ) 

Technology 

choice 

Net 

energy 

(PJ) 

Technology 

choice 

Net GWP 

(MMT 

CO2e) 

Agricultural 

residues 

Barley straw E1-E3, M1, Eth1, Rd1, Bj1-Bj2 E1 5.9 E1 5.2 M1 -0.5 

Citrus residues E1-E3, M1, Eth1, Rd1, Bj1-Bj2 E1 20.7 E1 17.7 M1 -1.4 

Corn stover E1-E3, M1, Eth1, Rd1, Bj1-Bj2 E1 1214.3 E1 1075.8 M1 -88.0 

Cotton gin trash E1-E3, M1, Eth1, Rd1, Bj1-Bj2 E1 20.7 E1 18.2 M1 -1.4 

Cotton residues E1-E3, M1, Eth1, Rd1, Bj1-Bj2 E1 45.9 E1 40.4 M1 -3.2 

Noncitrus residues E1-E3, M1, Eth1, Rd1, Bj1-Bj2 E1 34.8 E1 29.8 M1 -2.6 

Oats straw E1-E3, M1, Eth1, Rd1, Bj1-Bj2 E1 0.09 E1 0.08 E1 -0.007 

Rice hulls E1-E3, M1, Eth1, Rd1, Bj1-Bj2 E1 15.8 E1 13.8 E1 -1.1 

Rice straw E1-E3, M1, Eth1, Rd1, Bj1-Bj2 E1 54.8 E1 47.6 E1 -3.8 

Sorghum stubble E1-E3, M1, Eth1, Rd1, Bj1-Bj2 E1 11.6 E1 10.3 E1 -0.8 

Sugarcane bagasse E1-E3, M1, Eth1, Rd1, Bj1-Bj2 E1 51.6 E1 46.2 E1 -3.6 

Sugarcane trash E1-E3, M1, Eth1, Rd1, Bj1-Bj2 E1 13.7 E1 12.3 E1 -1.0 

Tree nut residues E1-E3, M1, Eth1, Rd1, Bj1-Bj2 E1 23.1 E1 20.8 M1 -1.8 

Wheat straw E1-E3, M1, Eth1, Rd1, Bj1-Bj2 E1 173.4 E1 154.3 E1 -13.5 

Animal 

manure 

Hogs, 1000+ head E1-E4, M1-M2 E1 129.9 M2 6.3 M2 -2.8 

Milk cows, 500+ head E1-E4, M1-M2 E1 99.1 M2 3.1 M2 -1.7 

Forest 

residues 

Primary mill residues E1-E3, M1, Eth1, Rd1-Rd2, Bj1-Bj6 E1 10.0 E1 8.8 Bj5 -0.5 

Secondary mill residues E1-E3, M1, Eth1, Rd1-Rd2, Bj1-Bj6 E1 79.1 E1 69.4 Bj5 -3.6 

Other forest residues E1-E3, M1, Eth1, Rd1-Rd2, Bj1-Bj6 E1 234.1 E1 205.3 M1 -8.9 

Other forest thinnings E1-E3, M1, Eth1, Rd1-Rd2, Bj1-Bj6 E1 116.1 E1 103.7 Bj5 -6.2 

 

MSW 

CD waste All Bj5 298.1 Bj5 269.8 M2 -12.2 

Food waste E1-E4, M1-M2, Rd2 M1 70.3 E2 47.5 M2 0.2 

MSW wood All Bj5 163.2 Bj5 148.1 Bj5 -9.7 

Paper and paperboard All E1 167.8 E1 151.3 Eth1 -13.3 

Plastics E1-E4, M1-M2, Rd1-Rd2 E1 540.6 E1 521.2 M1 -11.4 

Rubber and leather E1-E4, M1-M2 E1 50.8 E1 46.5 M1 7.8 

Textiles E1-E4, M1-M2, Rd2 E1 98.6 E1 90.2 M1 10.1 

Yard trimmings All E1 61.3 Eth1 54.7 Eth1 -2.9 

Other MSW E1-E4, M1-M2 E1 14.0 E1 11.6 M2 0.01 

   Total: 3819.7  3230.2  -177.8 

Note: E1 - CHP; E2 - gasification + CHP; E3 - IGCC; E4 - anaerobic digestion + CHP; M1 - gasification; M2 - anaerobic digestion; Eth1 - enzymatic hydrolysis 

+ fermentation; Rd1 - gasification + FT synthesis; Rd2 - pyrolysis + hydroprocessing; Bj1 - ATJ (ethanol); Bj2 - STJ (fermentation); Bj3 - pyrolysis (in situ); Bj4 

- pyrolysis (ex situ); Bj5 - HTL (in situ); Bj6 - HTL (ex situ).   



  

42 

 

References 

Aguirre-Villegas, H. A., & Larson, R. A. (2017). Evaluating greenhouse gas emissions from 

dairy manure management practices using survey data and lifecycle tools. Journal of 

Cleaner Production, 143, 169–179. 

Aguirre‐Villegas, H. A., Larson, R., & Reinemann, D. J. (2014). From waste‐to‐worth: Energy, 

emissions, and nutrient implications of manure processing pathways. Biofuels, 

Bioproducts and Biorefining, 8(6), 770–793. 

Anex, R. P., Aden, A., Kazi, F. K., Fortman, J., Swanson, R. M., Wright, M. M., Satrio, J. A., 

Brown, R. C., Daugaard, D. E., & Platon, A. (2010). Techno-economic comparison of 

biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. 

Fuel, 89, S29–S35. 

Argonne National Laboratory, A. N. (2016). The Greenhouse gases, Regulated Emissions, and 

Energy use in Transportation (GREET) Model (GREET_1_2016). Argonne National 

Laboratory. https://greet.es.anl.gov 

Astrup, T., Møller, J., & Fruergaard, T. (2009). Incineration and co-combustion of waste: 

Accounting of greenhouse gases and global warming contributions. Waste Management 

& Research, 27(8), 789–799. 

Banks, C. J., Chesshire, M., Heaven, S., & Arnold, R. (2011). Anaerobic digestion of source-

segregated domestic food waste: Performance assessment by mass and energy balance. 

Bioresource Technology, 102(2), 612–620. 

Baral, A., & Malins, C. (2014). Assessing the climate mitigation potential of biofuels derived 

from residues and wastes in the European context. 

http://www.theicct.org/sites/default/files/publications/ICCT_biofuels_wastes-

residues_20140130.pdf 

Barlaz, M. A. (1998). Carbon storage during biodegradation of municipal solid waste 

components in laboratory‐scale landfills. Global Biogeochemical Cycles, 12(2), 373–380. 

Broun, R., & Sattler, M. (2016). A comparison of greenhouse gas emissions and potential 

electricity recovery from conventional and bioreactor landfills. Journal of Cleaner 

Production, 112, 2664–2673. 

Campbell, J. E., & Block, E. (2010). Land-use and alternative bioenergy pathways for waste 

biomass. Environmental Science & Technology, 44(22), 8665–8669. 

Carreras-Sospedra, M., Williams, R., & Dabdub, D. (2016). Assessment of the emissions and air 

quality impacts of biomass and biogas use in California. Journal of the Air & Waste 

Management Association, 66(2), 134–150. 

 



  

43 

 

Cherubini, F., Peters, G. P., Berntsen, T., StrøMman, A. H., & Hertwich, E. (2011). CO2 

emissions from biomass combustion for bioenergy: Atmospheric decay and contribution 

to global warming. Gcb Bioenergy, 3(5), 413–426. 

Cooney, G., Jamieson, M., Marriott, J., Bergerson, J., Brandt, A., & Skone, T. J. (2016). 

Updating the US Life Cycle GHG Petroleum Baseline to 2014 with Projections to 2040 

Using Open-Source Engineering-Based Models. Environmental Science & Technology, 

51(2), 977–987. 

Crutzen, P. J., Mosier, A. R., Smith, K. A., & Winiwarter, W. (2016). N2O release from agro-

biofuel production negates global warming reduction by replacing fossil fuels (P. J. 

Crutzen & H. G. Brauch, Eds.; pp. 227–238). Springer. 

de Gorter, H., Drabik, D., & Just, D. R. (2013). How biofuels policies affect the level of grains 

and oilseed prices: Theory, models and evidence. Global Food Security, 2(2), 82–88. 

de Jong, S., Antonissen, K., Hoefnagels, R., Lonza, L., Wang, M., Faaij, A., & Junginger, M. 

(2017). Life-cycle analysis of greenhouse gas emissions from renewable jet fuel 

production. Biotechnology for Biofuels, 10(1), 64. 

de Jong, S., Hoefnagels, R., Faaij, A., Slade, R., Mawhood, R., & Junginger, M. (2015). The 

feasibility of short‐term production strategies for renewable jet fuels–a comprehensive 

techno‐economic comparison. Biofuels, Bioproducts and Biorefining, 9(6), 778–800. 

Ecoinvent Centre. (2015). Ecoinvent v3 database. Ecoinvent Centre. 

Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, 

T., Eickemeier, P., Hansen, G., & Schlömer, S. (2011). IPCC special report on 

renewable energy sources and climate change mitigation. Cambridge University Press. 

EIA. (2017). Monthly Energy Review—July 2017. Office of Energy Statistics. 

https://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf 

Energy research Centre of the Netherlands. (2017). Phyllis2 database for biomass and waste. 

https://www.ecn.nl/phyllis2/ 

FAO. (2008). The State of Food and Agriculture: Biofuels: Prospects, Risks and Opportunities. 

Food and Agriculture Organisation. http://www.fao.org/3/a-i0100e.pdf 

Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O’hare, M., & Kammen, D. M. (2006). 

Ethanol can contribute to energy and environmental goals. Science, 311(5760), 506–508. 

Fruergaard, T., & Astrup, T. (2011). Optimal utilization of waste-to-energy in an LCA 

perspective. Waste Management, 31(3), 572–582. 

Gabra, M., Pettersson, E., Backman, R., & Kjellström, B. (2001a). Evaluation of cyclone gasifier 

performance for gasification of sugar cane residue—Part 1: Gasification of bagasse. 

Biomass and Bioenergy, 21(5), 351–369. 



  

44 

 

Gabra, M., Pettersson, E., Backman, R., & Kjellström, B. (2001b). Evaluation of cyclone gasifier 

performance for gasification of sugar cane residue—Part 2: Gasification of cane trash. 

Biomass and Bioenergy, 21(5), 371–380. 

Geissdoerfer, M., Savaget, P., Bocken, N. M., & Hultink, E. J. (2017). The Circular Economy–A 

new sustainability paradigm? Journal of Cleaner Production, 143, 757–768. 

Hochman, G., Rajagopal, D., Timilsina, G., & Zilberman, D. (2014). Quantifying the causes of 

the global food commodity price crisis. Biomass and Bioenergy, 68, 106–114. 

International Organization for Standardization. (2006). ISO 14040:2006. Environmental 

management-Life cycle assessment-Principles and framework. International Organization 

for Standardization. https://www.iso.org/standard/37456.html 

Iribarren, D., Peters, J. F., & Dufour, J. (2012). Life cycle assessment of transportation fuels 

from biomass pyrolysis. Fuel, 97, 812–821. 

Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the 

looming land scarcity. Proceedings of the National Academy of Sciences, 108(9), 3465–

3472. 

Laurent, A., & Espinosa, N. (2015). Environmental impacts of electricity generation at global, 

regional and national scales in 1980–2011: What can we learn for future energy 

planning? Energy & Environmental Science, 8(3), 689–701. 

Lee, D.-Y., Elgowainy, A., & Dai, Q. (2018). Life cycle greenhouse gas emissions of hydrogen 

fuel production from chlor-alkali processes in the United States. Applied Energy, 217, 

467–479. 

Liu, W., Wang, J., Richard, T. L., Hartley, D. S., Spatari, S., & Volk, T. A. (2017). Economic 

and life cycle assessments of biomass utilization for bioenergy products. Biofuels, 

Bioproducts and Biorefining, 11(4), 633–647. 

Macias-Corral, M., Samani, Z., Hanson, A., Smith, G., Funk, P., Yu, H., & Longworth, J. (2008). 

Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-

digestion with dairy cow manure. Bioresource Technology, 99(17), 8288–8293. 

Melillo, J. M., Reilly, J. M., Kicklighter, D. W., Gurgel, A. C., Cronin, T. W., Paltsev, S., Felzer, 

B. S., Wang, X., Sokolov, A. P., & Schlosser, C. A. (2009). Indirect emissions from 

biofuels: How important? Science, 326(5958), 1397–1399. 

Miner, R. A., Abt, R. C., Bowyer, J. L., Buford, M. A., Malmsheimer, R. W., O’Laughlin, J., 

Oneil, E. E., Sedjo, R. A., & Skog, K. E. (2014). Forest carbon accounting considerations 

in US bioenergy policy. Journal of Forestry, 112(6), 591–606. 



  

45 

 

Møller, J., Boldrin, A., & Christensen, T. H. (2009). Anaerobic digestion and digestate use: 

Accounting of greenhouse gases and global warming contribution. Waste Management & 

Research, 27(8), 813–824. 

Morris, J. (2017). Recycle, Bury, or Burn Wood Waste Biomass? LCA Answer Depends on 

Carbon Accounting, Emissions Controls, Displaced Fuels, and Impact Costs. Journal of 

Industrial Ecology, 21(4), 844–856. 

Mu, D., Seager, T., Rao, P. S., & Zhao, F. (2010). Comparative life cycle assessment of 

lignocellulosic ethanol production: Biochemical versus thermochemical conversion. 

Environmental Management, 46(4), 565–578. 

NREL. (n.d.). The Life Cycle Assessment (LCA) Harmonization Project OpenEI Database. 

https://openei.org/apps/LCA/ 

Nuss, P., Gardner, K. H., & Jambeck, J. R. (2013). Comparative life cycle assessment (LCA) of 

construction and demolition (C&D) derived biomass and US Northeast forest residuals 

gasification for electricity production. Environmental Science & Technology, 47(7), 

3463–3471. 

Posen, I. D., Griffin, W. M., Matthews, H. S., & Azevedo, I. L. (2014). Changing the renewable 

fuel standard to a renewable material standard: Bioethylene case study. Environmental 

Science & Technology, 49(1), 93–102. 

Pressley, P. N., Aziz, T. N., DeCarolis, J. F., Barlaz, M. A., He, F., Li, F., & Damgaard, A. 

(2014). Municipal solid waste conversion to transportation fuels: A life-cycle estimation 

of global warming potential and energy consumption. Journal of Cleaner Production, 70, 

145–153. 

Rajagopal, D., & Zilberman, D. (2008). Environmental, economic and policy aspects of biofuels. 

Foundations and Trends® in Microeconomics, 4(5), 353–468. 

REN21. (2017). Renewables 2017 Global Status Report. Renewable Energy Policy Network for 

the 21st Century. https://doi.org/ISBN 978-3-9818107-6-9 

Runge, C. F., & Senauer, B. (2007). How biofuels could starve the poor. Foreign Affairs, 86, 41–

53. 

Sikarwar, V. S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M. Z., Shah, N., Anthony, E. 

J., & Fennell, P. S. (2016). An overview of advances in biomass gasification. Energy & 

Environmental Science, 9(10), 2939–2977. 

Stahel, W. R. (2016). The circular economy. Nature News, 531(7595), 435. 

Staples, M. D., Malina, R., & Barrett, S. R. (2017). The limits of bioenergy for mitigating global 

life-cycle greenhouse gas emissions from fossil fuels. Nature Energy, 2, 16202. 



  

46 

 

Swanson, R. M., Platon, A., Satrio, J. A., & Brown, R. C. (2010). Techno-economic analysis of 

biomass-to-liquids production based on gasification. Fuel, 89, S11–S19. 

Tadasse, G., Algieri, B., Kalkuhl, M., & Braun, J. V. (2016). Drivers and triggers of 

international food price spikes and volatility (pp. 59–82). Springer, Cham. 

Tews, I. J., Zhu, Y., Drennan, C., Elliott, D. C., Snowden-Swan, L. J., Onarheim, K., 

Solantausta, Y., & Beckman, D. (2014). Biomass Direct Liquefaction Options: 

TechnoEconomic and Life Cycle Assessment. Pacific Northwest National Laboratory 

(PNNL), Richland, WA (US). 

https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-23579.pdf 

Thornley, P., Gilbert, P., Shackley, S., & Hammond, J. (2015). Maximizing the greenhouse gas 

reductions from biomass: The role of life cycle assessment. Biomass and Bioenergy, 81, 

35–43. 

To, H., & Grafton, R. Q. (2015). Oil prices, biofuels production and food security: Past trends 

and future challenges. Food Security, 7(2), 323–336. 

Tonini, D., Hamelin, L., Alvarado-Morales, M., & Astrup, T. F. (2016). GHG emission factors 

for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with 

consequential life-cycle assessment. Bioresource Technology, 208, 123–133. 

United Nations. (2018). Sustainable Development Goals: 17 goals to transform our world (Vol. 

2018). https://www.un.org/sustainabledevelopment/ 

US Department of Energy. (2016). 2016 Billion-Ton Report: Advancing Domestic Resources for 

a Thriving Bioeconomy, Volume 1: Economic Availability of Feedstocks (ORNL/TM-

2016/160). Oak Ridge National Laboratory. 

https://energy.gov/eere/bioenergy/downloads/2016-billion-ton-report-advancing-

domestic-resources-thriving-bioeconomy 

US EPA. (2016). Waste Reduction Model (WARM) User’s Guide version 14. 

https://www.epa.gov/warm/documentation-chapters-greenhouse-gas-emission-and-

energy-factors-used-waste-reduction-model 

US EPA. (2018a). Emissions and Generation Resource Integrated Database (eGRID2016). 

https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid 

US EPA. (2018b). Inventory of U.S. greenhouse gas emissions and sinks: 1990-2016. United 

States Environmental Protection Agency. 

https://www.epa.gov/sites/production/files/2018-

01/documents/2018_complete_report.pdf 

Wang, H., Wang, L., & Shahbazi, A. (2015). Life cycle assessment of fast pyrolysis of municipal 

solid waste in North Carolina of USA. Journal of Cleaner Production, 87, 511–519. 



  

47 

 

Wang, W.-C., & Tao, L. (2016). Bio-jet fuel conversion technologies. Renewable and 

Sustainable Energy Reviews, 53, 801–822. 

Wang, X., Padgett, J. M., De la Cruz, F. B., & Barlaz, M. A. (2011). Wood biodegradation in 

laboratory-scale landfills. Environmental Science & Technology, 45(16), 6864–6871. 

Whalen, J., Xu, C. (Chunbao), Shen, F., Kumar, A., Eklund, M., & Yan, J. (2017). Sustainable 

biofuel production from forestry, agricultural and waste biomass feedstocks. In Applied 

Energy (Vol. 198). https://doi.org/10.1016/j.apenergy.2017.05.079 

Williams, R. B., Jenkins, B. M., & Kaffka, S. (2015). An assessment of biomass resources in 

California, 2013. PIER Collaborative Report. 

http://biomass.ucdavis.edu/files/2015/04/CA_Biomass_Resource_2013Data_CBC_Task3

_DRAFT.pdf 

 

 



  

48 

 

Chapter 3: What neighborhood-level characteristics predict plug-in electric vehicle 

adoption in California? Insights from lasso regression with Monte Carlo sampling 

 

Abstract 

Given California’s relatively clean power grid and high population density, the adoption of 

plug-in electric vehicles (PEVs) yields positive net environmental benefits and contributes to a 

number of environmental and political goals. With the increasing availability of market data, a 

better understanding of PEV adoption behaviors at the neighborhood level will benefit research, 

planning, and policy making in the area of transportation electrification. This study aims at 

quantifying the PEV market growth across California, identifying the most important factors for 

the prediction of neighborhood-level PEV adoption, and estimating the effects of away-from-

home charging infrastructure and high-occupancy vehicle (HOV) lane access. Using a PEV 

market dataset for 2010 to 2018, I find that cumulative new PEV sales in California reached over 

507,000 vehicles by the end of 2018. Although PEV adoption has taken place in 98% of census 

tracts, the growth has been uneven across the California market. Using regularization along with 

Monte Carlo sampling, I am able to select the most powerful predictors and estimate their 

associations with the adoption of PEVs by technology type and price range. I find that 

homeownership and the number of households are strong predictors of PEV adoption, while 

higher-density housing and population density are negatively associated with PEV adoption. 

Other important factors include pro-environment intention and behaviors, education, age, 

income, wealth, employment, and commute patterns. In addition, motivations for adoption and 

preferences for specific PEV technologies vary by neighborhood. I also find that the deployment 

of workplace charging is more effective than the deployment of direct current (DC) fast chargers, 
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and the positive effect of away-from-home charging infrastructure is likely to be stronger as the 

PEV market continues to mature.  

 

Introduction 

Compared to internal combustion engine vehicles (ICEVs), plug-in electric vehicles 

(PEVs) are superior from many public policy and public health perspectives, including locally or 

regionally produced electricity as fuel supply that enhances energy security, higher energy 

efficiency that reduces energy consumption, no tailpipe emissions, and less noise pollution. 

However, from a life cycle perspective, both vehicle manufacturing and electricity generation 

produce substantial emissions (Hawkins et al., 2013; Holland et al., 2016, 2019; IEA, 2019; 

Michalek et al., 2011). Although PEVs have the potential to mitigate climate change, the net 

environmental benefits of PEVs displacing ICEVs vary by location (Holland et al., 2016, 2019). 

Holland et al. (2016) attribute this high geographic variation to the discrepancy in regional 

electricity mix and population density, which affect the environmental impacts of PEVs and 

ICEVs, respectively. For regions with a relatively clean power grid and high population density, 

which describes much of the State of California, promoting PEV adoption contributes to a 

number of environmental and political goals.  

Previous studies have indicated that PEV adoption can be affected by a number of factors, 

including consumer characteristics, regulatory and financial incentives, and the availability of 

charging infrastructure. Using the stated preference approach, researchers found that 

socioeconomic background (for example, education and income levels), attitudes towards PEVs, 

particularly perceived functional barriers (for example, electric range and charging time), 

environmental awareness, and technology-oriented lifestyles are likely to influence the intention 



  

50 

 

to purchase or use PEVs (Hidrue et al., 2011; Egbue & Long, 2012; Carley et al., 2013; 

Hackbarth & Madlener, 2013; Jensen et al., 2013; Plötz et al., 2014; Jansson, Nordlund, et al., 

2017; White & Sintov, 2017; Haustein & Jensen, 2018; Westin et al., 2018; Axsen et al., 2018; 

Carley et al., 2019). However, these studies sometimes yield contradictory results given that 

stated preferences and actual actions do not always align (Coffman et al., 2017) and that 

perceptions and preferences may change over time (Carley et al., 2019). There is a growing body 

of literature exploring the impacts of various policy incentives, including financial incentives 

such as tax credits and rebates (Tal & Nicholas, 2016; DeShazo et al., 2017; Hardman et al., 

2017), non-financial incentives such as charging infrastructure deployment and high-occupancy 

vehicle (HOV) lane access (Hardman, 2019; Mersky et al., 2016; Sheldon & DeShazo, 2017), or 

both types (Bjerkan et al., 2016; Jenn et al., 2018; Münzel et al., 2019; Narassimhan & Johnson, 

2018; Wee et al., 2018). Although the magnitude of estimated effects of policy incentives varies, 

there is a general consensus that financial incentives increase PEV uptake and the effects of non-

financial incentives would depend on local conditions. The varying results are mainly due to the 

differences in analytical techniques, geographic areas, and time spans of data. A third body of 

literature has focused on the assessment of charging infrastructure deployment. Using market 

data, a number of studies have found significant contribution of public charging infrastructure to 

PEV adoption in the US (Narassimhan & Johnson, 2018; Li et al., 2017; Vergis & Chen, 2015), 

Europe (Mersky et al., 2016), China (Ou et al., 2020), and across the globe (Sierzchula et al., 

2014). The majority of these studies did not distinguish among various power levels of chargers, 

although consumers may well respond differently to various power levels (Greene et al., 2020).  

Across the three bodies of literature, there are two major limitations - the availability of 

market data and the choice of geographical scale. Studies focusing on the individual customer 
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level have not captured the neighborhood effects where social learning takes place (Westin et al., 

2018; Carley et al., 2019; Jansson, Pettersson, et al., 2017), whereas focusing on a large 

geographical scale (for example, the country level) risks losing power in predicting sales by 

certain critical factors at the local and regional levels, especially when the market penetration of 

PEVs is low (Sierzchula et al., 2014). Recent studies have also indicated the need for 

differentiating between the two types of PEVs (Carley et al., 2019; DeShazo et al., 2017; 

Narassimhan & Johnson, 2018; Vergis & Chen, 2015; Westin et al., 2018) - battery electric 

vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). These two vehicle technologies 

have intrinsic differences in design. PHEVs are equipped with both an internal combustion 

engine (ICE) and an electric motor, which enable operations in an ICE mode, a full electric 

mode, or a combination of the two. In contrast, BEVs solely rely on an electric powertrain that is 

supported by on-board battery storage and an external electricity supply via battery charging. 

These differences result in varying emissions reduction potentials and charging needs. 

Consumers may also respond differently to the two technologies in terms of motivation to 

purchase and usage patterns. To maximize the environmental and public health benefits of 

transportation electrification and the cost-effectiveness of charging infrastructure deployment, 

future efforts on promoting PEVs would require respective attention to each of these. 

Given the increasing availability of market data in California, a better understanding of 

PEV adoption at the neighborhood level will benefit research, planning, and policy making in a 

number of ways. First, since the net benefits of PEV adoption depend on local conditions 

(Holland et al., 2016, 2019), assessing neighborhood-level PEV adoption behaviors is 

fundamental to strategizing and prioritizing California’s efforts on GHG emissions reduction 

especially in the light-duty transportation sector. Such analyses can also provide more realistic 
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and spatially explicit representations of the zero-emission vehicle transition for air quality 

modeling and health impact assessments, such as those by Wang et al. (2020) and Zhao et al. 

(2019). Second, understanding the PEV market growth across communities and the gaps in PEV 

adoption can help to advance environmental justice because disadvantaged and low-income 

communities are disproportionately affected by the negative externalities of transportation. 

Evaluating the effectiveness and distributional effects of existing PEV policies can inform the 

design and targeting of future policy incentives and investment decisions. Third, understanding 

the geographic concentrations of PEVs will benefit charging infrastructure planning, as it 

prepares electric utilities for potential load increases and grid upgrades in certain areas. It also 

serves as a starting point for travel demand modeling of PEV associated trips or activities, which 

can inform investment decisions on charging infrastructure deployment, especially workplace 

charging and direct current (DC) fast charging. In addition, smaller and more homogeneous 

geographic units, such as census tracts, are often regarded as less biased proxies for individual 

characteristics, such as socioeconomics and living conditions. Given the availability of census 

tract level information from existing surveys, for example, the American Community Survey, it 

is possible to analyze aggregate PEV adoption behaviors in a more cost-effective way.  

The main goals of this study are to quantify the PEV market growth in California, to 

identify the most important factors that are associated with the neighborhood-level PEV 

adoption, and to estimate the effects of away-from-home charging infrastructure and HOV lane 

access. In this study, I define neighborhoods as census tracts within California. I first compile a 

large set of candidate predictor variables that have been reported in the literature, and then use 

regularization along with Monte Carlo sampling to select the most powerful predictors and 

estimate their effects. This approach is used to evaluate the adoption of PEVs by technology type 



  

53 

 

and price range. Results and policy implications are discussed for each vehicle type and across 

vehicle types. This study also explores PEV adoption through the lens of social and 

environmental equity by quantifying growth across various types of communities (by the 

designation of disadvantaged communities and household income quartile). Here, I show that 

homeownership and housing occupancies are strong predictors of PEV adoption, and higher-

density housing and population density negatively associate with PEV adoption. Other important 

factors for predicting PEV adoption include pro-environment intention and behaviors, education, 

age, income, wealth, employment, and commute patterns. In addition, motivations for adoption 

and preferences for specific PEV technology vary by neighborhood. I also find that the 

deployment of workplace charging is more effective than the deployment of DC fast chargers, 

and the positive effects of HOV lane access and the availability of away-from-home charging 

infrastructure are likely to grow substantially as the PEV market continues to mature.  
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Methods 

Monthly new electric vehicle registrations between January 2010 and December 2018 in 

California were obtained from IHS Markit. Their vehicle registration dataset includes vehicle 

make, model, type, the manufacturer’s suggested retail price (MSRP), and the census tract where 

each vehicle was registered. Cumulative new PEV, BEV, and PHEV registrations between 2010 

and 2018 were estimated. I used a MSRP of $40,000 to distinguish between a luxury vehicle and 

an economy vehicle. In this analysis, I hypothesize that income and wealth drive the adoption of 

luxury vehicles, while fuel cost savings and the opportunity to reduce commute time via free 

access to high-occupancy vehicle (HOV) lanes motivate the adoption of economy vehicles. 

Vehicle quantity and share of the fleet were treated as response variables that describe the 

absolute and relative adoption levels, respectively. In this study, I define vehicle share as the 

ratio of cumulative new PEV/BEV/PHEV registrations as of December 2018 to total light-duty 

vehicle registrations in 2018. This ratio, to a large extent, represents the relative adoption that 

takes into account the overall vehicle ownership within a neighborhood. Modeling vehicle 

quantity simulates the addition of PEVs in neighborhoods or the addition of people whose PEV 

ownership may be higher or lower, whereas modeling vehicle share simulates the overall new 

vehicle purchase rate and the substitution between an ICEV and a PEV. Total light-duty vehicle 

registrations by the end of 2018 at the ZIP code level were obtained from the California 

Department of Motor Vehicles. I used the US Department of Housing and Urban Development’s 

ZIP code-to-tract crosswalk file (the 4th Quarter 2018 version) to estimate total light-duty 

vehicles at the census tract level. To address the positive skewness, I applied a fourth root 

transformation to all response variables. Given the use of the fourth-root transformation on the 

response variables, the estimated effects of the predictor variables should be interpreted as 4𝛽𝑖 ∗
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𝑌̂3, which means that the effects of predictor variables would vary depending on current PEV 

adoption. 

In addition, I compiled a large dataset with 338 potential predictor variables representing 

demographic and socioeconomic characteristics, regional road and charging infrastructure, and 

neighborhood “greenness” at the California census tract level (Table 3-1). Census tract level 

demographic and socioeconomic information was extracted from the 2018 American Community 

Survey 5-year Estimates (2013-2018). The ACS estimates describe residential and household-

level characteristics. Besides households, companies, government agencies, or any organizations 

that own vehicle fleets also contribute to PEV adoption. To account for these non-household 

adopters within a neighborhood, the workplace area characteristics from the Longitudinal 

Employer-Household Dynamics Origin-Destination Employment Statistics (LODES, Version 7) 

were used to estimate densities of various job types. The average job densities between 2010 and 

2017 are included as potential drivers for adoption decisions at companies, government agencies, 

and other organizations with vehicle fleets. I estimated population densities, household densities, 

and job densities using the total unprotected land area at the census tract level, which was 

obtained from the US EPA’s Smart Location Database (Ramsey & Bell, 2014). Access to HOV 

lanes and the availability of charging infrastructure are also considered as drivers of PEV 

adoption. I obtained the spatial distribution of HOV lanes from the California Department of 

Transportation (Caltrans). I estimated the aggregate length of HOV lanes within 10-km, 25-km, 

and 50-km radii of the population weighted centroids of each census tract. The availability of 

charging infrastructure was obtained from the US Department of Energy’s Alternative Fuels 

Data Center (AFDC). For each census tract, I estimated the amounts of electric vehicle supply 

equipment (EVSE) by both charger power level (Level 1, Level 2, and DC fast) and access type 
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(public and private) within 10 km, 25 km, and 50 km radiuses of the population weighted 

centroids. California’s Proposition 23 was an unsuccessful 2010 ballot measure to suspend the 

Global Warming Solutions Act of 2006 (also known as the Assembly Bill 32). Sheldon & 

DeShazo (2017) used the vote on Proposition 23 to  represent the “greenness” or “brownness” of 

voter attitudes by neighborhood, where a higher share of “no” votes was assumed to represent 

higher level of pro-environment intention.  

 

Table 3-1. Variable description and data sources 

Variable 

group 
Description Data source 

PEV adoption 

• Cumulative PEV, BEV, PHEV registrations by price 

range 

• The shares of cumulative PEV, BEV, PHEV 

registrations in total light-duty vehicle registrations  

• IHS Markit 

• California DMV 

Demographic 

& 

socioeconomic 

characteristics 

• Age 

• Sex 

• Race 

• Place of birth 

• Education 

• Household  

• Housing 

• Occupation, industry, & worker 

class 

• Commute 

• House heating fuel 

• ACS 5-year 

Estimates (2013-

2018) 

• Average job density by type, 2012-2017 
• LODES (Version 

7) 

Infrastructure 

• HOV lane length (10 km, 25 km, 50 km radiuses) • Caltrans 

• Number of EVSE by power level and access type  

(10-km, 25-km, and 50-km radii) 
• AFDC 

Neighborhood 

“greenness” 
• The proportion of “no” votes on Proposition 23 

• Office of the 

California 

Secretary of State 

   

 

The least absolute shrinkage and selection operator (lasso) is a popular technique for 

simultaneous model selection and parameter estimation in linear regression (Homrighausen & 

McDonald, 2013; Severson et al., 2015; Tibshirani, 1996). The lasso assigns weights to variables 
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for the best possible prediction and imposes a penalty for adding additional variables. When a 

variable does not add enough predictive power, the lasso will set its weight to be 0. Thus, the 

lasso procedure returns models with smaller dimensions and high predictive power. The tuning 

parameter  is critical to controlling the strength of the penalty. As  increases, more coefficients 

are shrunk to zero. The selection of the optimal  is commonly performed via K-fold cross 

validation (Friedman et al., 2010; Homrighausen & McDonald, 2013; Roberts & Nowak, 2014; 

Tibshirani, 1996), in which the dataset is randomly partitioned into K groups. For each iteration 

in a loop, one group of the dataset is treated as the validation set and the rest as the calibration 

set. Mean cross-validated error is then estimated and used as the criterion for the selection of 

optimal . However, due to the randomness in the dataset partitioning, cross validation may 

result in algorithmic instability (Roberts & Nowak, 2014; Xu et al., 2011). Thus, I integrated 

cross validation with Monte Carlo sampling (Severson et al., 2015) for the partitioning to 

enhance stability in both model selection and parameter estimation. The lasso regression was 

performed using the glmnet package (Version 3.0-2) in R (Version 3.6.2). I first randomly split 

the whole dataset into a training dataset (80% of all observations) and a testing dataset (20% of 

all observations). I ran a 10-fold cross validation for 1000 iterations. For each iteration, two  

values were retrieved: lambda.min, which gives the minimum mean cross-validated error; and 

lambda.1se, the largest  that gives the error that is within one standard error of the minimum 

cross-validated error. I then trained the lasso models using the two  values and the whole 

training dataset, which returns two candidate models for each iteration. I estimated root mean 

squared errors of predictions, R2, and adjusted R2 as evaluation criteria for both the training and 

testing datasets. I estimated model selection frequencies for both  types. For each of the two 

groups (lambda.min and lambda.1se), selection criteria include a model dimension of no greater 
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than 50 and the highest selection frequency. Between the two candidate models, I considered the 

model with the higher out-of-sample adjusted R2 to be the final model. Variables selected by the 

final model were further examined using all 1000 candidate models selected by the specific  

type. I analyzed the distributions and variability of coefficient estimates for these variables to 

enhance confidence in interpreting the effects of these variables.  

To better understand the varying effects of the most important variables across vehicle 

categories, I extracted a subset of variables for cross-model comparison. This subset of variables 

includes the ones that were consistently selected by all final models, the more powerful 

predictors (with median coefficient estimates greater than 0.0005) selected by any of the final 

models, and all infrastructure-related variables (such as the quantity of various types of chargers 

and the length of HOV lanes) selected by the final models. I also used this subset of variables to 

draw implications for accelerating PEV adoption especially in disadvantaged and low-income 

communities.   
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Results and Discussion 

Electric vehicle market growth in California: 2010-2018 

Since 2010, the California electric vehicle market has been growing rapidly (Figure 3-1). 

Although hybrid electric vehicles (HEVs) have dominated overall electric vehicle sales, their 

market share of new electric vehicle sales has been decreasing since 2015. In contrast, PEVs 

have gained more popularity and their monthly sales have surpassed HEV sales since 2017. 

Starting in mid-2018, the sales of BEVs alone has exceeded HEV sales and the PHEV sales has 

also begun a toe-to-toe competition with HEV sales. As of December 2018, cumulative new PEV 

sales in California reached over 507,000 vehicles, which accounts for approximately 40.2% of all 

new light-duty electric vehicles sold in the California market. The average annual growth rate of 

PEVs between 2015 and 2018 was 40%, which is 2.7 times as that of HEVs (15%). During the 

same time period, BEVs grew 44% every year on average and PHEVs grew 36% annually. 

Between 2010 and 2018, at least one PEV was sold in 98% of the census tracts in 

California. The highest cumulative PEV sales at the neighborhood level reached 1,538 vehicles 

by the end of 2018, while the same cumulative figure for BEVs was 1,497 and PHEVs was 524 

(Figure 3-2). The California PEV market has been growing unevenly across neighborhoods. 

Although two census tracts consistently have higher sales across all three vehicle categories, the 

majority of the ten census tracts with the highest BEV sales are not aligned with the ones in 

PHEV sales. This suggests consumers respond differently across neighborhoods with respect to 

the two types of PEV technologies. For instance, Santa Clara County Tract 5117.05 in “Silicon 

Valley” is where the Tesla is headquartered, which may explain the vigorously growing BEV 

sales and the stagnant PHEV sales within the neighborhood. 
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Figure 3-1. New EV sales by vehicle type in California, 2010-2018 
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Figure 3-2. Cumulative new PEV sales across California census tracts, 2010-2018  



  

62 

 

Predictive models for PEV adoption 

To understand the variation in neighborhood-level PEV adoption, 18 response variables 

were used to represent all three vehicle categories - PEVs, BEVs, and PHEVs. These response 

variables include the quantity of cumulative sales, its share in total light duty vehicles, and the 

breakdown of the two PEV technologies by price range - luxury vehicles and economy vehicles. 

After the fourth-root transformation, the majority of response variables follow an approximately 

symmetric and normal distribution (Figure 3-3). 

With Monte Carlo sampling and cross validation, the frequency of each unique model 

selected by each specific lambda type was estimated. For example, among PEV models with 

∜Y1 as the response variable, the selected model using lambda.1se has a dimension of 19 and an 

out-of-sample adjusted R2 of 0.79, while the selected model by lambda.min has a dimension of 

19 and an out-of-sample adjusted R2 of 0.80 (Figure 4). Thus, I considered the latter to be the 

final model given its slightly improved prediction performance. All the 18 final predictive 

models have low out-of-sample RMSE and the out-of-sample adjusted R2 ranges from 0.62 to 

0.82 (Table 2). Using lasso, the model dimensions were greatly reduced from 338 potential 

predictor variables to as low as 18 predictor variables. Models for vehicle quantity have 

consistently smaller dimensions than respective models for vehicle share, as the total variation in 

vehicle share is smaller than in vehicle quantity. Coefficient estimates from the final models and 

their estimated ranges as indicated by all 1000 candidate models are discussed in the following 

sections. 
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Figure 3-3. Distributions of response variables 

 

 

 

 

 

Note: Y1 is the number of cumulative new luxury and economy vehicles in thousands.  

Figure 3-4. Model selection for predicting the number of cumulative new PEV luxury and 

economy vehicles in a tract (000s) 
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Table 3-2. Performance of selected predictive models 

Vehicle 

type 

Response 

variablea 
Obs. 

Model 

dimension 

RMSE 

(training) 

R2 

(training) 

Adjusted R2 

(training) 

RMSE 

(testing) 

R2 

(testing) 

Adjusted R2 

(testing) 

PEV 

∜𝑌1 7826 19 0.07 0.80 0.80 0.07 0.80 0.80 

∜𝑌2 7826 19 0.08 0.76 0.76 0.08 0.74 0.74 

∜𝑌3 7826 25 0.07 0.76 0.76 0.06 0.76 0.76 

∜𝑌4 7825b 48 0.05 0.82 0.82 0.04 0.83 0.82 

∜𝑌5 7825b 49 0.05 0.78 0.77 0.05 0.76 0.76 

∜𝑌6 7826 49 0.05 0.76 0.75 0.04 0.78 0.77 

BEV 

∜𝑌1 7826 20 0.07 0.77 0.76 0.07 0.75 0.75 

∜𝑌2 7826 18 0.08 0.74 0.74 0.08 0.72 0.72 

∜𝑌3 7826 29 0.08 0.68 0.67 0.08 0.67 0.66 

∜𝑌4 7825b 36 0.05 0.77 0.77 0.05 0.76 0.76 

∜𝑌5 7825b 49 0.06 0.76 0.76 0.06 0.75 0.74 

∜𝑌6 7826 47 0.06 0.66 0.66 0.06 0.66 0.65 

PHEV 

∜𝑌1 7826 33 0.06 0.74 0.74 0.06 0.74 0.73 

∜𝑌2 7826 27 0.08 0.65 0.64 0.08 0.63 0.62 

∜𝑌3 7826 34 0.06 0.71 0.70 0.06 0.71 0.70 

∜𝑌4 7826 46 0.05 0.73 0.73 0.04 0.74 0.74 

∜𝑌5 7826 48 0.06 0.64 0.64 0.06 0.63 0.62 

∜𝑌6 7826 50 0.05 0.69 0.69 0.04 0.71 0.70 

Note: a Y1 – the number of cumulative new luxury and economy vehicles in thousands; 

            Y2 – the number of cumulative new luxury vehicles in thousands; 

            Y3 – the number of cumulative new economy vehicles in thousands; 

            Y4 – the share of cumulative new luxury and economy vehicles in total light-duty vehicles (%); 

            Y5 – the share of cumulative new luxury vehicles in total light-duty vehicles (%); 

            Y6 – the share of cumulative new economy vehicles in total light-duty vehicles (%); 

          b After using the ZIP code-to-tract crosswalk for the estimation of total light-duty vehicle count at the census tract level I removed Santa Clara County 

Tract 5117.05 due to its unrealistically high vehicle share using the estimated total light-duty vehicle count.  
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PEV adoption 

When predicting neighborhood-level PEV quantity, the final model indicates that housing 

characteristics, employment, income and wealth, education, race, and infrastructure have the 

largest effects (Figure 3-5). The number of households and the number of homeowners within a 

neighborhood have the strongest positive associations with cumulative PEV sales, which 

indicates that the growth of the California PEV market mainly takes place in neighborhoods with 

fewer housing vacancies. The non-existence of variables describing employer characteristics 

shows that employers have not played a role that is as important as households in driving 

neighborhood-level PEV quantity. Civilian workforce size of a neighborhood is also positively 

associated with the PEV quantity.  

Income and wealth have consistently important roles in predicting the overall PEV 

quantity. Neighborhoods with higher shares of households earning more than $200k annually 

and two vehicles available, those with higher shares of housing units valued between $500k and 

$1 million, those with higher shares of residents occupied in management, business, science and 

arts, and those with greater median housing values would generally see a great number of PEVs. 

For neighborhoods with higher shares of low-value owner-occupied housing units ($150k-

$300k) and greater proportions of residents occupied in natural resources, construction, and 

maintenance, the total number of PEVs is generally smaller. The final model also suggests a 

positive association between median household income and the PEV quantity. However, this 

may not always hold true when compared to the coefficient estimates across all 1000 candidate 

models. The uncertain effect of median household income and the consistent effects of the 

relative numbers of highest-income and wealthy residents indicate that the PEV growth has been 

mainly driven by the most affluent households within a neighborhood.  
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In addition, the number of residents who are at least 25 years old the share of well-

educated residents (especially those with bachelor’s or higher degrees) and the relative size of 

foreign-born Asian populations are positively associated with PEV quantity. The PEV models 

also suggest a joint effect from education and gender. The shares of well-educated male residents 

with high-school and above education or college and above education are positively associated 

with the PEV quantity.  

Although there are a greater number of selected predictor variables that represent 

demographic and socioeconomic characteristics, the PEV models also suggest positive effects 

from both the length of HOV lanes within a 10 km radius (𝛽 ∈ [0.00004, 0.0001]) and the 

number of public DC fast chargers within a 50 km radius (𝛽 ∈ [0.00002, 0.00006]). Thus, an 

increase of 10 km in HOV lane length is positively associated with an increase of 0.2-0.5 PEVs 

for a neighborhood with cumulative PEV sales of 500 vehicles and an increase of 1.6-4 PEVs for 

a neighborhood with 1000 vehicles. Similarly, an increase of 100 DC fast chargers is positively 

associated with 1-3 more PEVs for a neighborhood with cumulative PEV sales of 500 vehicles 

and 8-24 more PEVs for a neighborhood with cumulative PEV sales of 1000 vehicles. Our 

results show that these associations are likely to be stronger when the PEV market continues to 

mature.  
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Figure 3-5. Results of models predicting the number of cumulative new luxury and 

economy PEVs (000s) in a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
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By modeling luxury and economy vehicles separately, I find that different predictor 

variables tend to predict luxury and economy PEV sales (Figure 3-6 and Figure 3-7). The final 

luxury PEV model demonstrates a positive effect from mean household income instead of 

median household income and a negative effect from the relative number of households with low 

housing values ($100k-150k), which suggest that the market growth of luxury PEVs has a 

stronger association with the most affluent households within a neighborhood, as expected. The 

final luxury PEV model also shows a positive effect from another variable representing the 

interaction between gender and education - the relative number of college-educated female 

residents.  

In addition to the variables selected by the final PEV model, the quantity of economy PEVs 

is also positively associated with the relative number of residents employed in the manufacturing 

sector, neighborhood-level housing occupancy rate, the size of education-completed female 

population, and the share of households with an annual income between $150k and $200k. The 

quantity of economy PEVs is negatively associated with the relative number of residents 

employed in agriculture, forestry, fishing and hunting, and mining sectors and neighborhood-

level housing vacancy rate. Although the final economy PEV model demonstrates a positive 

association between the quantity of economy PEVs and median household income, the majority 

of the 1000 candidate models suggest that the association is negative. Thus, median household 

income is not a good predictor for neighborhood-level PEV quantity.  

The effects of infrastructure-related variables also vary between luxury and economy 

PEVs. None of these variables was selected by the final luxury PEV model. However, the 

economy PEV quantity is positively associated with the two previously identified variables: the 

length of HOV lanes within a 10 km radius (𝛽 ∈ [0.00005, 0.0001]) and the number of public 
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DC fast chargers within a 50 km radius (𝛽 ∈ [0.00003, 0.0001]). These coefficient estimates 

from the economy PEV models are slightly greater than those in the PEV models. Luxury PEV 

drivers may live in closer proximity to work and household activities and are more likely to have 

access to home charging, so their needs for using HOV lanes and public DC fast chargers are 

much lower than economy PEV drivers. Thus, the access to HOV lanes and the availability of 

public DC fast chargers have stronger associations with the uptake of economy PEVs than luxury 

PEVs.  

Overall, there is a larger number of predictor variables selected by the final economy PEV 

model as compared to the final PEV model and the final luxury PEV model. Our results indicate 

that there is a greater diversity in the motivations to purchase economy PEVs and factors 

predicting PEV adoption vary between luxury and economy vehicles.  
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Figure 3-6. Results of models predicting the number of cumulative new luxury PEVs (000s) 

in a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  



  

71 

 

 

Figure 3-7. Results of models predicting the number of cumulative new economy PEVs 

(000s) in a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
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When predicting neighborhood-level PEV share in total light-duty vehicle stock, 

coefficient estimates from the final model are all within the inter-quartile ranges of respective 

coefficients across all candidate models (Figure 3-8). The final model indicates that variables 

that predict neighborhood-level PEV share include pro-environment intention and behaviors, 

employment, income, wealth, education, housing and commuting patterns, and infrastructure.   

Among the 48 predictor variables selected by the final model, the proportion of residents 

employed in the information sector has the largest positive effect on PEV share whereas the 

largest negative effect comes from the proportion of residents using fuel oil and kerosene for 

house heating. The proportion of residents who voted “no” on Proposition 23 has a positive 

effect on PEV share. Both predictors represent the levels of pro-environment intention and 

behaviors. Thus, neighborhoods with higher levels of pro-environment intention would see 

relatively higher PEV shares and neighborhoods lacking pro-environment behaviors would see 

relatively lower PEV shares. The final model for predicting the PEV share also captured a 

negative effect from the proportion of residents using wood for heating and a positive effect from 

the proportion of residents using utility gas for heating, which indicates that neighborhoods in a 

rural setting would see relatively lower PEV shares in the total light-duty vehicle stock.  

Similar to the prediction of PEV quantity, employment, income and wealth have also 

played important roles in predicting PEV shares. Neighborhoods with greater proportions of 

residents who are employed in the information technology and manufacturing sectors, occupied 

in management, business, science and arts, or self-employed, neighborhoods with higher shares 

of households earning more than $150k annually or owning two vehicles, neighborhoods with 

higher shares of owner-occupied housing units with values greater than $500k, and 

neighborhoods with greater mean household income and greater median housing values would 
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generally have a larger size of PEV stock relative to the total light-duty vehicle stock. In contrast, 

the proportions of residents working in relatively lower-paid industrial sectors (especially 

agriculture, forestry, fishing and hunting, mining, the public sector, transportation and 

warehousing, and utilities) and occupations (especially production, transportation, material 

moving, natural resources, construction, and maintenance), the share of lower-income 

households (especially those earning between $10k and $25k or with no heating available), and 

the share of lower-value owner-occupied housing units (especially those valued between $150k 

and $300k) negatively associate with the PEV share in total light-duty vehicle stock. The models 

also show a negative association between the PEV share and the share of female-householder 

households, which can be explained by the fact that households with female householders on 

average earn less than other types of family households (US Census Bureau, 2019). To a large 

extent, this negative association is aligned with the negative effects of lower incomes. 

Educational attainment rates in higher education and the relative sizes of middle-aged 

populations (age groups between 45 and 54 as well as females between 50 and 54) are positively 

associated with the share of PEVs in total light-duty vehicle stock. The education-related 

variables include the proportions of well-educated and highly-educated residents (with at least 

college-level education), highly-educated residents (with graduate education), educated male 

residents (with at least high-school completion), and well-educated and highly-educated female 

residents. Besides the positive effect of the relative size of foreign-born Asian population, the 

models also indicate relatively smaller effects from three additional variables related to place of 

birth: the relative number of California-born residents (negative), the relative number of foreign-

born US citizens (positive), and the relative number of foreign-born non-US citizens (negative). 

Several housing characteristics also have relatively greater effects in predicting the PEV share. 
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Homeownership in both absolute and relative terms is positively associated with the PEV share. 

The proportions of duplexes, triplexes and quadraplexes in total housing units negatively 

associate with the PEV share. In terms of commuting patterns, the proportion of residents 

commuting for less than 10 minutes is negatively associated with the PEV share while the 

proportion of residents working from home positively associates with the PEV share. For 

residents commuting for less than 10 minutes, they are less likely to drive a PEV due to the 

lower fuel cost savings associated with short commute distances. For residents working from 

home, they are less likely to own a vehicle in general. The PEV share is determined by both the 

PEV adoption and the total vehicle stock in a neighborhood.   

In addition to these attitudinal, socioeconomic and demographic characteristics, the models 

predicting the PEV share have suggested positive effects from three infrastructure-related 

variables, including the number of private Level 1 chargers within a 10 km radius (𝛽 ∈

[0.000005, 0.0002]), the length of HOV lanes within a 10 km radius (𝛽 ∈

[0.000002, 0.00004]), and the number of public DC fast chargers within a 50 km radius (𝛽 ∈

[0.00002, 0.00004]). These coefficient estimates indicate that an increase of 100 private Level 1 

chargers within in a 10 km radius is associated with a percentage point increase of up to 0.008 in 

PEV share for a neighborhood with a cumulative PEV share of 10% and a percentage point 

increase of up to 0.06 for a neighborhood with a cumulative PEV share of 20%. Similarly, an 

increase of 10 km in HOV lane length within a 10 km radius is associated with a percentage 

point increase of up to 0.0002 for a neighborhood with a cumulative PEV share of 10% and a 

percentage point increase of up to 0.001 for a neighborhood with a cumulative PEV share of 

20%. In addition, an increase of 100 public DC fast chargers within a 50 km radius is associated 

with a percentage point increase of up to 0.002 for a neighborhood with a cumulative PEV share 
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of 10% and a percentage point increase of up to 0.01 for a neighborhood with a cumulative PEV 

share of 20%. The positive effect of private Level 1 chargers suggests that the availability of 

Level 1 chargers in workplace remains important for promoting PEV adoption. Both the 

prediction of PEV quantity and the prediction of PEV share demonstrate that HOV lane access 

and the availability of DC fast chargers are essential in promoting PEV adoption in both absolute 

and relative terms.  

When predicting luxury PEV share and economy PEV share separately (Figure 9 and 

Figure 10), I also observed some effects from additional predictor variables that are specific for 

each of the two response variables. Similar to the findings in the modeling of PEV quantity, 

more homeowners, higher attainment rates in higher education, higher levels of income and 

wealth, employment in certain high-paid industries or occupations, and larger middle-aged 

populations are all aligned with higher shares of both luxury PEVs and economy PEVs in total 

light-duty vehicle stock. When predicting luxury PEV share, the final model suggests that certain 

types of organizations also play a role in predicting neighborhood-level luxury PEV adoption. 

The average job density in the manufacturing sector or the wholesale sector between 2010 and 

2017 is positively associated with luxury PEV adoption. When predicting economy PEV share, 

the final model suggests that there are a greater number of variables that represent commuting 

patterns. Neighborhood-level average commute time and the proportion of residents commuting 

for over 60 minutes are positively associated with economy PEV share, whereas the proportions 

of residents commuting for less than 10 minutes, residents driving for less than 10 minutes to 

work, and public transit riders negatively associate with economy PEV share. In contrast, the 

share of public transit riders is the only commute-related variable selected by the final model for 

luxury PEV share. The proportion of residents who voted “no” on Proposition 23 is a predictor 
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of economy PEV share but not luxury PEV share. Although homeownership, education, income, 

wealth, and age have larger effects in predicting the adoption of both luxury PEVs and economy 

PEVs, the level of pro-environment intention only predicts the economy PEV share.  

 

 

Figure 3-8. Results of models predicting the share of cumulative new luxury and economy 

PEVs (%) in the total vehicle stock of a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
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Figure 3-9. Results of models predicting the share of cumulative new luxury PEVs (%) in 

the total vehicle stock of a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
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Figure 3-10. Results of models predicting the share of cumulative new economy PEVs (%) 

in the total vehicle stock of a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
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BEV adoption 

As neighborhood-level preferences for BEVs and PHEVs vary (Figure 3-2), modeling the 

two types of PEVs separately could provide additional insights on PEV adoption in California. 

All three final models for predicting BEV quantity indicate that BEVs have a stronger presence 

in neighborhoods with less housing vacancies, more homeowners, more employed residents, and 

more adults who are at least 25 years old (Supplementary Figures 3-1, 3-2, & 3-3). Previously 

discussed variables including income, wealth, education, age, and residents’ employment status 

in certain occupations or industries remain important in predicting the quantity of BEVs, luxury 

BEVs, and economy BEVs. Although the final models for BEVs and economy BEVs suggest 

that median household income is positively associated with the vehicle quantity, the majority of 

models under both vehicle categories demonstrate a negative association. In contrast, median 

household income and mean household income have consistently positive effects in predicting 

luxury BEVs and the effect of mean household income is 2-3 times greater than that of median 

household income. The median household income of a neighborhood indicates the income level 

of the average household, whereas mean household income of a neighborhood is collectively 

determined by all households across different income levels. A neighborhood with higher mean 

than median income generally indicates there are more affluent households within the 

neighborhood. These differing results on median and mean household income in my models 

indicate that the most affluent households within the more affluent neighborhoods are more 

likely to adopt luxury BEVs, so the neighborhood-level average income level may not be a good 

predictor for the adoption of economy BEVs. In addition, the proportion of Asian residents has a 

relatively large positive effect in predicting the quantity of BEVs and economy BEVs, and the 

proportion of foreign-born Asian residents has a positive yet smaller effect that is consistent 
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across all three BEV categories. Our results show that the relative size of Asian populations has a 

stronger association with the neighborhood-level quantity of BEVs, and especially economy 

BEVs, than any other racial/ethnic groups.   

In terms of infrastructure, the availability of public DC fast chargers has a consistently positive 

effect in predicting the quantity of economy BEVs (𝛽 = 0.0001). That is, holding everything 

else constant, an increase of 100 public DC fast chargers within a 10km radius is associated with 

0.04 more economy BEVs for a neighborhood with cumulative economy BEV sales of 100 

vehicles and 0.32 more economy BEVs for a neighborhood with cumulative economy BEV sales 

of 200 vehicles. The effects are aligned with the role of public DC fast chargers within a 50 km 

radius in predicting the quantity of economy PEVs (𝛽 ∈ [0.00003, 0.0001]). These findings 

indicate that the availability of public DC fast chargers on a regional scale supports the overall 

adoption of economy PEVs and the availability of public DC fast chargers on a local scale 

particularly supports the adoption of economy BEVs.  

When predicting the shares of BEVs in total light-duty vehicle stock, there are also a 

greater number of variables selected by the final models as compared to the final models 

predicting the quantity. The levels of pro-environment intention and behaviors are important in 

predicting BEV shares. The proportion of households using fuel oil and kerosene for heating 

consistently has the largest negative effect across all three vehicle categories, and the relative 

number of residents who voted “no” on Proposition 23 has a relatively large and positive 

association with economy BEV share (Supplementary Figures 3-4, 3-5, & 3-6). Similar to what I 

have observed in the modeling of BEV quantity, income, wealth, education, age, employment, 

and Asian populations also explain the neighborhood-level variations in BEV shares. The roles 

of mean and median household incomes in predicting the shares of luxury BEVs and economy 
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BEVs resemble those in predicting BEV quantity. These findings indicate that the highest-

earning households and the more affluent neighborhoods in general are more likely to adopt 

luxury BEVs than economy BEVs, although economy BEVs are more popular in less affluent 

neighborhoods. Although over half of the models suggest that the number of homeowners has a 

positive association with BEV share and economy BEV share, the ranges of coefficient estimates 

show that homeownership may also negatively associate with the shares of BEVs and economy 

BEVs. Thus, homeownership alone may not predict BEV adoption. However, homeownership 

consistently has a positive association with luxury BEV share, which is also negatively 

associated with the proportion of duplexes and population density. These findings further 

indicate that homeownership and housing type jointly predict BEV adoption and homeowners 

with single-family housing are more likely to substitute an ICEV with a BEV.  

Modeling luxury BEV share and economy BEV share separately have also demonstrated 

the varying motivations for BEV adoption. With respect to infrastructure, the effect of the 

number of public DC fast chargers within a 10 km radius in the prediction of economy PEV 

share is 10 times as its effect in predicting luxury BEV share. Models for predicting economy 

BEV share also demonstrate positive effects from the number of public DC fast chargers on 

broader geographical scales (within both the 25km and 50km radiuses). In addition, models for 

predicting luxury BEV share suggest that the availability of private Level 1 chargers and HOV 

lane access positively associate with luxury BEV share. These results indicate that workplace 

charging, public DC fast charging, and HOV lane access are positively associated with the 

uptake of BEVs. The second major difference between the two sets of models lies in the effects 

of commute time, which predicts economy BEV share but not luxury BEV share. The 

proportions of residents driving alone to work for less than 10 minutes or generally commuting 
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for less than 10 minutes are negatively associated with economy BEV share, whereas the relative 

number of residents commuting for 20-24 minutes in a single-occupancy vehicle positively 

associates with economy BEV share. Our results are consistent with the current state of economy 

BEVs, that is, their limited range does not seamlessly support frequent long-distance travels and 

the savings on fuel costs do not offset their high upfront costs when vehicle usage is low. 

Previous studies showed that these disadvantages of economy BEV technologies affect an 

individual’s attitude towards PEV adoption (Carley et al., 2013, 2019; Jensen et al., 2013). Thus, 

the perceived functional barriers and the revealed preferences are aligned in the adoption of 

economy BEVs. Another major difference between the two vehicle categories is the role of 

organizations in driving the adoption of luxury BEVs. The models for luxury BEV share 

captured three variables that represent employer adoption behaviors (Supplementary Figure 3-5). 

Although households have a much greater contribution to luxury BEV adoption, the average job 

densities in the wholesale and manufacturing sectors positively associate with luxury BEV share 

and the average job density in the health and social assistance sector is negatively associated 

with luxury BEV share.  
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PHEV adoption 

All three sets of models predicting PHEV quantity indicate that greater cumulative PHEV 

sales generally take place in neighborhoods with fewer housing vacancies, more homeowners, 

more employed residents, and more adults. Consistent with previous results, the quantity of 

PHEVs also positively associates with income, wealth, education, middle-aged populations, and 

employment in certain occupations or industries. The proportion of residents employed in the 

information technology sector consistently has a large and positive effect in predicting the 

quantity of PHEVs, luxury PHEVs and economy PHEVs.  

Different from predicting the quantity of PEVs and BEVs, commute-related variables have 

showed importance in predicting the quantity of PHEVs and especially economy PHEVs (Figure 

17 & Figure 19). The proportions of residents driving alone to work and especially those 

commuting for over 45 minutes positively associates with the adoption of economy PHEVs. 

HOV lane access has consistently positive effects in predicting PHEV adoption across all three 

vehicle categories. These results indicate that a longer commute and the opportunity to reduce 

commute time by accessing HOV lanes motivate the adoption of PHEVs. In terms of charging 

infrastructure, the number of public DC fast chargers in the region has a positive yet small effect 

in predicting the number of PHEVs and economy PHEVs, while the number of private chargers 

especially Level 2 chargers positively associates with the number of luxury PHEVs. These 

results are aligned with our previous findings on BEV adoption.  

When predicting PHEV shares in total light-duty vehicle stock, homeownership and 

employment in the information technology sector have consistently strong associations with 

neighborhood-level PHEV adoption in both absolute and relative terms (Supplementary Figures 

3-7 & 3-10). While neighborhood-level average commute time has a large positive effect on 
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economy PHEV share, the neighborhood-level average household size has the largest negative 

effect on luxury PHEV share. Similar to predicting the quantity of PHEVs, a longer commute (as 

represented by the proportions of residents with longer commute time) positively associates with 

economy PHEV share. Both median household income and mean household income have 

consistently positive effects in predicting the share of luxury PHEVs, whereas none of these two 

variables plays a role in predicting the share of economy PHEVs. Our results show that highest-

earning households and the more affluent neighborhoods in general are more likely to adopt 

luxury PHEVs than economy PHEVs, which is aligned with what I observed on BEV adoption. 

In terms of charging infrastructure, the regional deployment of public DC fast chargers has 

a positive association with economy PHEV share. Private chargers (especially Level 1 chargers 

within a 10 km radius, all private chargers with in a 50 km radius, Level 2 chargers within a 50 

km radius) are positively associated with luxury PHEV share. However, the number of public 

Level 1 chargers on a regional scale has a negative effect in the prediction of luxury PHEV 

share. In addition, the availability of HOV lanes has a consistently positive effect on PHEV 

share, luxury PHEV share, and economy PHEV share. The length of HOV lanes within a 10 km 

radius demonstrates a greater positive association with economy PHEV share, while the length of 

HOV lanes within a 50 km radius has a greater positive association with luxury PHEV share.  
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Insights from cross-model comparison 

In this study, I define PEV adoption as in both absolute and relative terms. Taking into 

account both, a cross-model comparison explores the varying effects of the most frequently 

selected and most powerful independent variables in order to offer additional insights on the 

adoption motivations and technology preferences of potential PEV buyers. In summary, the most 

consistent and powerful variables in predicting neighborhood-level PEV adoption include 

homeownership, occupied housing units, pro-environment intention and behaviors, age, 

education, race, income, wealth, employment, and commute patterns (Table 3-3). 

Housing characteristics are the most powerful predictors of PEV adoption. Homeownership 

is generally a strong predictor of PEV adoption, but it is not associated with the uptake of 

economy BEVs. While the number of households within a neighborhood is powerful predictor of 

the quantity of PEVs of all types, housing occupancy rate predicts the adoption economy PEVs 

especially economy BEVs. The effects of the proportion of residents using wood for heating 

suggest that neighborhoods in a rural setting are less likely to have high shares of luxury PEVs 

and economy PHEVs. As demonstrated by the proportion of housing units using fuel oil and 

kerosene for heating and the relative number of residents voted “no” on Proposition 23, the 

levels of pro-environment intention and behaviors associate with economy PEV shares. The 

varying effects indicate that the levels of pro-environment intention and behaviors play a more 

significant role in motivating economy BEV adoption than economy PHEV adoption. 

Besides the large household effects, there are also large population effects on the adoption 

of PEVs. The number of adults who are at least 25 years old positively associates with the 

adoption of luxury PEVs and economy PHEV quantity, whereas the number of female adults 

who are at least 25 years old positively associates with the quantity of economy PEVs and luxury 
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PHEVs. Middle-aged populations have also demonstrated certain preferences that vary by age 

group. The proportion of residents aged between 50 and 54 positively associates with PEV 

shares and the quantity of PHEVs, whereas the relative size of the age group between 45 and 49 

is a predictor of economy PHEV share and economy BEV quantity. In addition, education and 

race have relatively large effects on PEV adoption. Attainment rates in various levels of 

education have varying effects on PEV adoption. The proportion of well-educated and highly-

educated residents positively associates with the adoption of PEVs especially luxury PEVs and 

economy PHEVs. The proportion of educated residents generally explains the adoption of 

economy PEVs especially economy BEVs, whereas the proportion of highly-educated residents 

is a predictor of economy BEV adoption. The relative number of well-educated and highly-

educated male residents have relatively larger association with the adoption of luxury BEVs and 

economy PHEVs. The relative size of Asian populations positively associates with the adoption 

of economy BEVs and the share of luxury BEVs.  

The proportion of highest-earning households positively associates with the adoption of 

PEVs of all types except luxury PHEVs, and the varying effect sizes indicate that highest-

earning households have relatively stronger preferences for luxury BEVs and economy PHEVs. 

Neighborhoods with a greater share of low-income households are less likely to adopt PEVs. 

Neighborhoods with larger proportions of 2-vehicle households would generally have more 

PEVs and greater shares of PEVs, and these neighborhoods have a greater preference for 

economy PEVs. Wealth as represented by housing values also shows consistency in predicting 

PEV adoption. Our results show that neighborhoods with greater proportions of households with 

housing values between $500k and $1 million and greater median housing values drive the 

adoption of PEVs of all types, and households with housing values above $1 million have greater 
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preferences for BEVs and luxury PHEVs. On the other hand, neighborhoods with greater 

proportions of low-value housing units (especially valued between $200k and $300k) or 

housings units with no heating available usually have lower adoption. Thus, it becomes obvious 

that the more affluent neighborhoods are more likely to adopt PEVs as compared to the less 

affluent neighborhoods and the highest-earning households are more likely to adopt BEVs and 

luxury PHEVs. 

The employment status of residents is another set of variables that have demonstrated 

importance in predicting PEV adoption. Neighborhoods with more employed residents are more 

likely to have a larger number of PEVs, especially luxury PHEVs and economy BEVs. Although 

occupational status in management, business, science and arts has a consistently positive effect 

on PEV adoption, employment in other occupations or industrial sectors generally has greater 

power in predicting the adoption of specific types of PEVs. Occupations in production, 

transportation and material moving have a stronger negative effect in the prediction of economy 

BEVs and luxury PHEVs. Employment in the information technology sector has demonstrated a 

strong positive effect in predicting PHEV adoption, whereas employment in the manufacturing 

sector and the professional, scientific, management, and the administrative and waste 

management service sectors have relatively large roles in predicting the adoption of economy 

BEVs. Employment in the transportation, warehousing and utilities sectors has a stronger 

negative effect in predicting the adoption of economy BEVs, although it also negatively 

associates with the shares of luxury PEVs. Employment in the agriculture, forestry, fishing, 

hunting and mining sectors has shown negative effects in predicting the adoption of economy 

PEVs especially economy PHEVs. Long commute time also motivates the adoption of economy 

PHEVs, as the proportion of residents commuting for over 60 minutes has relatively large effects 
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in predicting both the quantity and the share of economy PHEVs. The employment status and 

commute patterns of residents reflect various income levels and travel needs, and the varying 

effects of the selected variables in this group are aligned with the discussions on income and 

wealth as well as the perceived functional barriers and advantages of specific PEV technologies.  

In general, the availability of charging infrastructure and HOV lane access positively 

associate with PEV adoption. The effects also vary by technology. Our results show that 

workplace charging is important in predicting the adoption of luxury PEVs particularly luxury 

PHEVs, and public DC fast chargers have a positive association with the adoption of economy 

BEVs. In addition, the availability of public DC fast chargers on a local scale benefits luxury 

BEVs and the availability of public DC fast chargers on a regional scale supports the adoption of 

economy PHEVs. I also find a negative effect of the regional deployment of public Level 1 

chargers in the prediction of luxury PHEVs, which indicates that the deployment of public slow 

chargers is not an effective strategy in promoting PEV adoption. In terms of HOV lane access, I 

find that this incentive positively associates with the adoption of PHEVs and luxury BEVs. More 

specifically, the availability of HOV lanes on a local scale positively associates with the adoption 

of economy PHEVs and the share of luxury BEVs. In contrast, the availability of HOV lanes on 

a regional scale has a more significant role in predicting the adoption of luxury PHEVs 

comparing to its roles in predicting the shares of luxury BEVs and economy PHEVs.    
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Table 3-3. Coefficient estimates (median values) of selected predictor variables 

 

Variable 

Vehicle quantity (000s) Vehicle share in total light-duty vehicle stock (%) 

Variable 

group 
Luxury Economy Luxury Economy 

 BEV PHEV BEV PHEV BEV PHEV BEV PHEV 

Housing 

Owner-occupied housing units (000s) 0.02 0.02 0.01 0.02 0.001 0.004 -0.0002 0.004 

Households (000s) 0.02 0.01 0.01 0.01 - 0.0001 - - 

Occupied housing units (%) - - 0.0009 0.0005 - - 0.001 0.0006 

Pro-

environment 

intention & 

behaviors 

House heating wood (%) - - - - -0.0003 -0.0005 - -0.00008 

House heating fuel oil (%) - - - - -0.0009 - -0.002 -0.0003 

Proposition 23 no votes (%) - - - - - - 0.0008 0.00009 

Age 

Age 25+ (000s) 0.007 0.005 - 0.003 0.003 0.003 - - 

Female aged 25+ (000s) - 0.0004 0.003 0.002 - - - - 

Male aged 45-49 (%) - - - - - 0.0004 0.001 - 

Age 45-49 (%) - - 0.00008 - - - - 0.0006 

Age 50-54 (%) - 0.0006 - 0.0005 0.0002 0.0004 0.0005 0.0005 

Education 

Bachelor degree & above (%) 0.0008 0.0004 0.00005 0.0003 0.0008 0.001 0.00003 0.0005 

High school & above (%) - - 0.001 0.0004 - - 0.001 0.00005 

Graduate degree (%) - - 0.0007 - - - 0.0006 - 

Male bachelor degree & above (%) 0.0007 0.00008 - 0.0002 0.00003 - - 0.0001 

Race Nonhispanic Asian residents (%) - - 0.0005 - 0.0002 - 0.0002 - 

Income & 

wealth 

Household income 200k+ (%) 0.0009 - 0.0002 0.0004 0.0005 - 0.0001 0.0005 

Female householder (%) -0.0007 - - - -0.0007 -0.0002 -0.0003 -0.0005 

Vehicle ownership 2 (%) - 0.0003 0.0005 0.0006 0.00008 0.00008 0.0003 0.0004 

Housing value 500-1000k (%) 0.0006 0.0005 0.0006 0.0005 0.0004 0.0003 0.0004 0.0003 

Housing value 1000k+ (%) - - - - 0.0004 0.0001 0.0005 - 

Median housing value (000s) 0.00004 0.00002 0.00001 0.000002 0.00005 0.00004 0.000002 0.00002 

Housing value 200-300k (%) -0.0005 -0.0006 -0.0003 -0.0005 -0.0002 -0.0003 -0.0001 -0.0003 

Housing value 150-200k (%) -0.0007 -0.0006 - -0.0007 -0.0003 -0.0002 - -0.0003 

Housing value 100-150k (%) -0.0007 - - -0.0005 -0.0003 -0.00004 - -0.0003 

No house heating (%) - - -0.001 - - - -0.0009 -0.0003 

Employment 

Civilian employment (000s) 0.003 0.01 0.01 0.004 - 0.002 - - 

Occupation MgmBusiSciArt (%) 0.0003 0.0005 0.0001 0.00006 0.0005 0.0003 0.0001 0.0002 

Occupation ProdTransMatMov (%) - -0.0004 -0.001 - -0.00007 -0.0005 -0.0009 -0.0004 
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Variable 

Vehicle quantity (000s) Vehicle share in total light-duty vehicle stock (%) 

Variable 

group 
Luxury Economy Luxury Economy 

 BEV PHEV BEV PHEV BEV PHEV BEV PHEV 

Industry Information (%) - 0.0006 - 0.002 - 0.0009 0.0009 0.002 

Industry Manufacturing (%) - - 0.001 - - - 0.0007 - 

Industry ProfSciMgmAdmWas (%) - - 0.0005 - - - 0.0003 - 

Industry TransWareUtil (%) - - -0.001 - -0.0005 -0.0003 -0.001 - 

Industry AgForFisHun (%) - - -0.0002 -0.0009 -0.0003 - -0.0001 -0.0009 

Workerclass self (%) - - - - 0.0003 0.0007 - 0.0001 

Commute Commute 60min (%) - - - 0.001 - - - 0.0005 

Charging 

infrastructure 

# private L1 chargers 10-km radius - - - - 0.0001 0.0002 - - 

# private chargers 50-km radius - 0.000008 - - - 0.000007 - - 

# private L2 chargers 50-km radius - 0.0000008 - - - 0.0000003 - - 

# public DC fast chargers 10-km radius - - 0.0001 - 0.00002 - 0.00006 - 

# public DC fast chargers 25-km radius - - - - - - 0.00002 - 

# public DC fast chargers 50-km radius - - - 0.00003 - - 0.00006 0.00002 

# public L1 chargers 50-km radius - - - - - -0.00008 - - 

HOV lane 

access 

HOV lane 10-km radius (km) - - - 0.00008 0.00004 - - 0.00004 

HOV lane 50-km radius (km) - 0.00003 - - 0.000006 0.00001 - 0.000005 
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PEV adoption through the lens of social and environmental equity 

Although California policymakers have prioritized disadvantaged4 and low-income5 

communities and households for the state-wide climate investments (SB 5356 and AB 15507), 

there is a wide disparity in the adoption of PEVs between these “priority populations” and other 

communities (Figure 3-11). Disadvantaged communities account for 25% of all census tracts in 

California. However, only 8% of cumulative new PEV sales, 6% of cumulative new BEV sales, 

and 9% of cumulative new PHEV sales in California have taken place within disadvantaged 

communities by the end of 2018. Within disadvantaged communities, the most popular vehicle 

category is economy PHEVs (44%), followed by economy BEVs (25%), luxury BEVs (20%), 

and luxury PHEVs (11%). The average MSRP of these four types of vehicles in disadvantaged 

communities are $32,535, $31,534, $62,377, and $58,225, respectively. Within all other tracts, 

economy PHEVs also have the highest market share (35%), which is followed by luxury BEVs 

(30%), economy BEVs (25%), and luxury PHEVs (10%). The average MSRP of these four types 

of vehicles are $33,043, $63,554, $31,667, and $57,711, respectively.  

As of December 2018, 60% of new PEV adoption in California comes from census tracts in 

the top income quartile, which is followed by the third income quartile (24% of all new PEVs), 

the second income quartile (11% of all new PEVs), and the lowest income quartile (5% of all 

 
4 In California, disadvantaged communities are defined as census tracts with the top 25 percent scores in California 

Environmental Protection Agency’s CalEnvironScreen 3.0 tool.  
5 In California, low-income communities are defined as census tracts with a median household income that is no 

greater than 80 percent of the statewide median income or the threshold designated as low-income in the California 

Department of Housing and Community Development’s 2016 State Income Limits. 
6 SB 535 (De León, Chapter 830, Statutes of 2012) directed the identification of disadvantaged communities and 

required a minimum of 25% of state-wide climate investments to be allocated for benefiting disadvantaged 

communities and a minimum of 10% of investments to be within these communities. 
7 AB 1550 (Gomez, Chapter 369, Statutes of 2016) increased the minimum share of state-wide climate investments 

within disadvantaged communities from 10% in SB 535 to 25% and required at least 5% of investments to be within 

and benefiting low-income communities and households as well as at least 5% of investments for low-income 

communities and households that are within half a mile of disadvantaged communities.  
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new PEVs). A breakdown of PEV adoption by vehicle type and price range indicates that the 

adoption of luxury PHEVs has been much slower than other three vehicle categories across all 

income quartiles. Economy PHEVs are the most popular vehicle category in all three lower 

income quartiles, whereas the quantity of luxury BEVs surpasses that of economy PHEVs within 

tracts in the top income quartile. Within each income quartile, economy BEVs consistently 

account for 25% of all PEVs and luxury PHEVs consistently account for 10% of all PEVs. 

However, the share of luxury BEVs increases as income increases - ranging from 19% in the 

lowest quartile to 34% in the top quartile, and the share of economy PHEVs decreases as income 

increases - ranging from 46% in the lowest quartile to 32% in the top quartile. The preference for 

economy PHEVs in low-income communities are higher than the preference for luxury BEVs.    
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Figure 3-11. Cumulative new PEV sales by socioeconomic status 

 

Since 2010, the state of California has implemented the Clean Vehicle Rebate Project as a 

key effort to incentive PEV adoption. In 2016, the state added additional rebates totaling $2000 

for residents with incomes below 300% of the federal poverty level (Center for Sustainable 

Energy, 2020). Given that the designated assistance for residents of disadvantaged, low-income, 

and moderate-income communities started in 2016, a comparison of growth in PEV adoption 

between December 2015 and December 2018 across census tract groups could offer some 

insights about the effectiveness of the additional financial incentives designated for these 

“priority populations”. During this time period, cumulative PEV adoption increased by 46% 
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annually on average in disadvantaged communities and 40% annually on average in non-

disadvantaged communities (Table 3-4). The average annual growth rate of cumulative BEV 

adoption is similar in both disadvantage communities (44%) and non-disadvantaged 

communities (43%). PHEV adoption in disadvantaged communities has an average annual 

growth rate of 47%, which is 12 percentage points higher than in non-disadvantaged 

communities. A further breakdown by price range indicates that disadvantaged communities 

have seen higher growth rates among all four vehicle categories than non-disadvantaged 

communities. Within disadvantaged communities, the cumulative adoption of luxury PHEVs 

increased by 85% on average each year, which is followed by luxury BEVs (an average annual 

increase of 73%), economy PHEVs (an average annual increase of 42%), and economy BEVs 

(an average annual increase of 31%). Whereas in non-disadvantaged communities, luxury 

PHEVs grew by 78% annually on average, luxury BEVs grew by 64% annually on average, and 

both economy PHEVs and economy BEVs have an average annual growth rate of 28%. 

Although disadvantaged communities have a lower level of cumulative PEV adoption than non-

disadvantaged communities, their consistently higher growth rates across all four vehicle 

categories between 2015 and 2018 indicate that the designated assistance for disadvantaged 

communities has made a difference. Thus, additional and continuous assistance is essential in 

further accelerating PEV adoption in disadvantaged communities.  

Across the income quartiles, the average annual growth rate of cumulative PEV sales 

between 2015 and 2018 ranges from 39% in the top quartile to 45% in the lowest quartile. 

Except for luxury BEVs, average annual growth rates are generally higher in tracts from the 

lowest income quartile and second income quartile than other two income quartiles. These results 

indicate that the additional rebates for low-income and moderate-income communities may have 
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played a role in promoting PEV adoption within these communities. In addition, the average 

annual growth of luxury BEVs is higher in moderate-income communities than low-income 

communities, which is consistent with modeling results in the previous sections showing the 

shares of low-income and low-wealth households limit the growth of luxury BEVs 

(Supplementary Figures 3-3 & 3-6). Given the disparity in the growth rates between low-income 

and moderate-income communities, additional assistance for low-income communities is 

necessary.  

 

Table 3-4. Average annual growth rates of cumulative PEV adoption in 2015-2018 

Vehicle type 
Disadvantaged 

communities 

Non-

disadvantaged 

communities 

Census tracts by income quartile 

1st 

(lowest) 
2nd 3rd 

4th 

(highest) 

PEV 46% 40% 45% 42% 41% 39% 

Luxury PEV 77% 67% 75% 76% 74% 64% 

Economy PEV 37% 29% 38% 33% 31% 27% 

BEV 44% 43% 43% 44% 44% 43% 

Luxury BEV 73% 64% 69% 73% 71% 62% 

Economy BEV 31% 28% 31% 30% 29% 27% 

PHEV 47% 35% 47% 41% 38% 34% 

Luxury PHEV 86% 78% 87% 82% 82% 75% 

Economy PHEV 42% 29% 42% 35% 32% 27% 

 

 

Previous studies have demonstrated that the large-scale adoption of PEVs benefits 

California overall from a GHG mitigation perspective, and it also provides greater net 

environmental benefits (when taking into account health co-benefits) for dense urban areas and 

disadvantaged communities (Holland et al., 2016, 2019; Wang et al., 2020). By comparing the 

most important indicators as suggested by the cross-model comparison, I can identify additional 

strategies for accelerating large-scale adoption of PEVs particularly within disadvantaged and 

low-income communities. As shown in Table 3-5, disadvantaged and low-income communities 
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on average lag behind in a number of areas, including homeownership, attainment rates in higher 

levels of education, income and wealth, and employment status in higher-paid occupations or 

industrial sectors. The average number of homeowners in disadvantaged communities is only 

three-fifths of that in non-disadvantaged communities. The average number of homeowners in 

neighborhoods from the lowest income quartile is less than half of that in neighborhoods from 

the highest income quartile. Another major difference lies in educational attainment rates. The 

average attainment rates in higher levels of education within disadvantaged communities 

resemble those in the lowest-income communities, whereas the average attainment rates in non-

disadvantaged communities are similar to the average attainment rates in communities from the 

third income quartile. On average, less than 15% of residents have at least a bachelor’s degree in 

both disadvantage communities and lowest-income communities, whereas the proportion of such 

residents in the highest-income communities is about 2.8 times greater. Among these six groups 

of communities, the distributions of household income and property values also vary a lot. In 

addition, the more affluent communities generally have higher proportions of residents with 

higher-paid jobs and lower proportions of residents with lower-paid jobs.  

Although the availability of workplace charging surrounding disadvantaged communities is 

greater than other tracts, it does not necessarily mean residents in the disadvantaged communities 

have access to these workplace chargers. These private chargers are more likely to be accessible 

for workers with higher-paid jobs instead of the majority of residents living in the disadvantaged 

communities. Although there are more public DC fast chargers near disadvantaged communities 

as compared to other tracts, Hardman (2018) found that public charging is perceived as less 

preferred than home and workplace charging. 
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Table 3-5. Summary statistics (mean values) for selected predictor variables 

Variable 
Disadvantaged 

communities 

Non-

disadvantaged 

communities 

Census tracts by income quartile 

1st 

(lowest) 
2nd 3rd 

4th 

(highest) 

Owner-occupied housing units (000s) 0.6 1.0 0.5 0.8 1.0 1.2 

Households (000s) 1.4 1.7 1.5 1.6 1.7 1.8 

Occupied housing units (%) 94.1 92.3 91.3 92.0 93.3 94.3 

House heating wood (%) 0.5 2.2 2.3 2.5 1.5 0.7 

House heating fuel oil (%) 0.1 0.3 0.5 0.3 0.2 0.1 

Proposition 23 no votes (%) 63.8 61.7 61.7 61.2 61.6 64.4 

Age 25+ (000s) 3.0 3.4 2.9 3.2 3.5 3.6 

Female aged 25+ (000s) 1.6 1.7 1.5 1.7 1.8 1.8 

Male aged 45-49 (%) 6.3 6.7 5.8 6.3 6.8 7.5 

Age 45-49 (%) 6.3 6.7 5.8 6.3 6.7 7.5 

Age 50-54 (%) 6.1 6.9 5.8 6.3 6.8 7.7 

Bachelor degree & above (%) 14.7 38.5 14.8 23.9 36.0 55.9 

High school & above (%) 66.3 87.5 67.9 79.1 87.9 94.3 

Graduate degree (%) 4.1 15.0 4.4 7.8 12.9 24.1 

Male bachelor degree & above (%) 14.0 38.9 14.5 23.4 35.7 57.5 

Nonhispanic Asian residents (%) 9.0 15.1 8.0 10.7 14.6 20.9 

Household income 200k+ (%) 2.7 13.0 1.8 4.4 9.6 25.9 

Female householder (%) 20.3 11.6 19.7 15.2 11.9 8.3 

Vehicle ownership 2 (%) 32.7 38.5 31.4 36.1 38.6 42.1 

Housing value 500-1000k (%) 19.2 35.8 15.1 24.6 39.2 47.8 

Housing value 1000k+ (%) 2.1 15.3 2.4 3.9 9.0 32.8 

Median housing value (000s) 354.0 612.8 310.8 409.3 550.3 925.6 

Housing value 200-300k (%) 17.5 10.8 19.6 17.9 10.0 2.2 

Housing value 150-200k (%) 8.2 4.0 11.1 6.2 2.2 0.5 

Housing value 100-150k (%) 6.2 2.7 8.8 3.6 1.3 0.5 

No house heating (%) 7.8 2.5 6.8 4.4 2.5 1.4 

Civilian employment (000s) 2.1 2.4 1.9 2.3 2.5 2.6 

Occupation MgmBusiSciArt (%) 21.5 43.1 21.2 30.7 41.7 57.4 

Occupation ProdTransMatMov (%) 20.2 9.8 18.3 14.7 10.5 6.1 

Industry Information (%) 1.9 3.1 1.6 2.3 3.0 4.4 

Industry Manufacturing (%) 10.7 8.6 9.0 8.8 8.7 10.0 

Industry ProfSciMgmAdmWas (%) 10.4 14.0 10.3 11.2 12.8 18.1 

Industry TransWareUtil (%) 7.2 4.6 6.2 5.9 5.1 3.7 

Industry AgForFisHun (%) 4.2 2.0 5.4 2.8 1.4 0.7 

Workerclass self (%) 7.5 8.8 8.1 8.2 8.5 9.0 

Commute 60min (%) 12.5 12.0 11.4 11.5 12.5 13.2 

# private L1 chargers 10-km radius 4.3 3.1 2.7 3.9 3.4 3.7 

# private chargers 50-km radius 871.2 522.6 608.3 613.5 604.2 608.1 

# private L2 chargers 50-km radius 804.7 484.6 563.3 569.0 560.3 561.5 

# public DC fast chargers 10-km radius 38.7 33.4 30.7 34.1 33.1 41.1 

# public DC fast chargers 25-km radius 200.3 137.5 153.2 142.8 144.0 171.8 

# public DC fast chargers 50-km radius 456.3 358.5 332.9 357.9 384.2 455.5 

# public L1 chargers 50-km radius 21.7 30.5 19.9 23.0 28.8 41.5 

HOV lane 10-km radius (km) 56.7 38.7 36.5 47.4 45.0 43.7 

HOV lane 50-km radius (km) 735.6 484.7 510.8 555.8 560.8 558.9 
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Conclusions 

Between 2010 and 2018, cumulative new PEV sales in California reached over 507,000 

vehicles, which accounts for two-fifths of all new electric vehicles sold in the California light-

duty vehicle market. Although PEV adoption has taken place in 98% of census tracts, the growth 

has been uneven across the California market. Although disadvantaged communities account for 

a quarter of all census tracts in California, only 8% of cumulative new PEV sales, 6% of 

cumulative new BEV sales, and 9% of cumulative new PHEV sales have occurred in 

disadvantaged communities. When categorizing California census tracts by median household 

income quartiles, 60% of state-wide PEV adoption has concentrated in the top income quartile 

and only 5% has occurred in the lowest income quartile. By comparing growth rates across 

various types of communities, I find higher growth rates of PEV adoption in disadvantaged and 

low-income communities after the implementation of designated assistance for these 

communities.  

By modeling the absolute and relative PEV adoption levels by the technology type and 

price range, this study identifies the most powerful predictor variables for each of the 18 

response variables. A large volume of cumulative sales is not always aligned with a large 

proportion in the total light-duty vehicle stock. Thus, modeling both the quantity and the share 

offers complementary insights on PEV adoption. The final models have varying dimensions and 

selected variables, which indicates that motivations for adoption and preferences for a specific 

PEV technology vary by community. Although neighborhood-level PEV adoption depends on 

both household and employer decisions, the vast majority of selected predictor variables are 

constructs representing residential characteristics. Thus, households have a much greater 

contribution to the growth of the California PEV market than organizations. In general, the most 
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powerful predictor variables for neighborhood-level PEV adoption can be categorized into five 

groups, including housing characteristics, pro-environment intention and behaviors, demographic 

characteristics, socioeconomic characteristics, and infrastructure.  

The market penetration of PEVs is generally higher in more affluent neighborhoods with 

many homeowners and highly-educated residents. These neighborhoods typically have larger 

proportions of residents employed in the information technology sector or occupied in 

management, business, science and arts, residents with bachelor’s or higher degrees, middle-

aged residents, and households with annual incomes greater than $200K and two vehicles 

available. On the other hand, the lack of pro-environment behaviors and the proportions of low-

income households and low-value and high-density housing units negatively associate with PEV 

adoption. In addition, neighborhood-level preferences for the adoption of BEVs and PHEVs 

vary. For instance, the proportions of Asian populations and foreign-born Asian populations have 

positive associations with BEV adoption, whereas employment in the information technology 

sector have shown a greater positive effect in predicting PHEV adoption.  

When taking into account both technology type and price range, there are additional 

insights on adoption motivations and technology preferences across the four vehicle groups: 

luxury BEVs, economy BEVs, luxury PHEVs, and economy PHEVs. The levels of pro-

environment intention and behaviors play a more significant role in motivating economy BEV 

adoption than economy PHEV adoption. The proportion of residents who are at least 25 years 

old has relatively larger effects in predicting the adoption of luxury BEVs, luxury PHEVs, and 

economy PHEVs. The proportion of residents with at least high school completion positively 

associates with the adoption of economy BEVs and economy PHEVs, whereas the proportion of 

highly-educated residents is a predictor of economy BEV adoption. Highest-earning households 
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have relatively stronger preferences for luxury BEVs and economy PHEVs than economy BEVs. 

Two-vehicle households have demonstrated greater preferences for economy PHEVs and 

economy BEVs. Earnings, travel behaviors and subsequent charging needs vary by occupation, 

industry, and worker class, resulting in varying preferences for specific PEV technology across 

different types of employment status and commute patterns. In addition, long commute time and 

the opportunity to reduce commute time by accessing HOV lanes are associated with the 

adoption of economy PHEVs.  

In this study, I am particularly interested in exploring the roles of away-from-home 

charging infrastructure and HOV lane access in predicting PEV adoption. Holding everything 

else constant, an increase of 10 km in the length of HOV lanes within a 10 km radius is 

associated with an increase of 0.2-0.5 PEVs for a neighborhood with cumulative PEV sales of 

500 vehicles and a percentage point increase of up to 0.0002 for a neighborhood with a 

cumulative PEV share of 10%. Similarly, an increase of 100 public DC fast chargers within a 50 

km radius is associated with 1-3 more PEVs for a neighborhood with cumulative PEV sales of 

500 vehicles and a percentage point increase of up to 0.002 for a neighborhood with a 

cumulative PEV share of 10%. In addition, an increase of 100 private Level 1 chargers within in 

a 10 km radius is associated with a percentage point increase of up to 0.008 in PEV share for a 

neighborhood with a cumulative PEV share of 10%. Thus, the deployment of workplace 

charging may be more effective than the deployment of public DC fast charging, which is 

consistent with previous studies (Hardman et al., 2018). When taking into account both 

technology type and price range, I find that (1) workplace charging is important for the adoption 

of luxury PEVs particularly luxury PHEVs; (2) the availability of public DC fast chargers 

positively associates with the adoption of economy BEVs; (3) public DC fast chargers on a local 
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scale supports luxury BEVs, and public DC fast chargers on a regional scale also supports 

economy PHEVs; (4) the deployment of public slow chargers negatively associates with PEV 

adoption, and thus may not be an effective strategy to incentivize PEV adoption; (5) HOV lane 

access positively associates with the adoption of PHEVs and luxury BEVs. Although this study 

shows a positive effect of HOV lane access in predicting PEV adoption, as Sheldon & DeShazo 

(2017) discussed, the overall impact of allowing PEVs free access to HOV lanes would depend 

on the net environmental benefits as a result of increased PEV adoption and the increased 

congestion costs due to the reduced time savings and reliability.  

From a methodological perspective, this study demonstrates the advantages of integrating 

lasso regression with Monte Carlo sampling in the prediction of neighborhood-level PEV 

adoption. First, model dimension has greatly reduced from 338 potential predictor variables to 

18-50 predictor variables. All the best predictive models have low out-of-sample RMSE and 

relatively high values of out-of-sample adjusted R2 (0.62 - 0.82). This approach maintains a 

reasonable balance between statistical bias and variance. Second, the coupling of Monte Carlo 

sampling reduces the uncertainty that is rooted in the process of cross-validation for parameter 

tuning, which enhances the confidence in interpreting the effects of selected predictor variables. 

Third, this study takes full advantage of census tract level information that is publicly available 

and offers an analytical framework for understanding neighborhood-level PEV adoption in a 

more cost-effective way. Analyzing neighborhood-level aggregate PEV adoption also captures 

the effect of the observability of PEV use, which a number of recent studies have found a 

relatively large positive effect on an individual’s adoption decision (Carley et al., 2019; Jansson, 

Pettersson, et al., 2017; Westin et al., 2018). This study also has a number of limitations. First, 

the modeling framework focuses on predictive power instead of explanatory power, which limits 
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the ability to test causal relationships. However, testing the causal aspects of PEV adoption is not 

the focus of this study. Exploring the causal effects of the most important variables identified in 

this study is one direction of future research. Second, vehicle share in this study is defined as the 

ratio of cumulative new PEV sales to total light-duty vehicle stock due to the lack of data on new 

light-duty vehicle sales, which include both ICEV and EV sales. In addition, the study only 

focuses on the new vehicle market. The accounting for PEV sales in the used vehicle market is 

another direction of future research to assess PEV adoption, especially in disadvantaged and low-

income communities. Lastly, future research may benefit from using a multi-level modeling 

approach that accounts for demographic and socioeconomic characteristics at both neighborhood 

and regional levels, as census tracts are based on geographical boundaries for data collection 

instead of where household activities and social interactions actually take place. 
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Appendix: Supplementary Information 

Supplementary Figures 

 

 

Supplementary Figure 3-1. Results of models predicting the number of cumulative new 

luxury and economy BEVs (000s) in a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
 



  

104 

 

 

Supplementary Figure 3-2. Results of models predicting the number of cumulative new 

luxury BEVs (000s) in a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
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Supplementary Figure 3-3. Results of models predicting the number of cumulative new 

economy BEVs (000s) in a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
 



  

106 

 

 

Supplementary Figure 3-4. Results of models predicting the share of cumulative new 

luxury and economy BEVs (%) in the total vehicle stock of a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
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Supplementary Figure 3-5. Results of models predicting the share of cumulative new 

luxury BEVs (%) in the total vehicle stock of a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
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Supplementary Figure 3-6. Results of models predicting the share of cumulative new 

economy BEVs (%) in the total vehicle stock of a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
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Supplementary Figure 3-7. Results of models predicting the number of cumulative new 

luxury and economy PHEVs (000s) in a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
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Supplementary Figure 3-8. Results of models predicting the number of cumulative new 

luxury PHEVs (000s) in a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
 



  

111 

 

 

Supplementary Figure 3-9. Results of models predicting the number of cumulative new 

economy PHEVs (000s) in a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
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Supplementary Figure 3-10. Results of models predicting the share of cumulative new 

luxury and economy PHEVs (%) in the total vehicle stock of a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
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Supplementary Figure 3-11. Results of models predicting the share of cumulative new 

luxury PHEVs (%) in the total vehicle stock of a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
 



  

114 

 

 

Supplementary Figure 3-12. Results of models predicting the share of cumulative new 

economy PHEVs (%) in the total vehicle stock of a tract  
“X” represents coefficient estimates from the final model, and boxes and whiskers show the range of coefficient 

estimates from all 1000 candidate models.  
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Chapter 4: The use of General Transit Feed Specification data for the regional planning of 

transit bus electrification: A case study of Los Angeles County 

 

Abstract 

Transit bus electrification offers an important opportunity to improve air quality in urban 

communities and contribute to greenhouse gas (GHG) emissions reduction. Besides the high 

upfront costs of battery electric buses (BEBs), the deployment of charging infrastructure remains 

another significant challenge for the wider adoption of BEBs. Through the development of the 

Infrastructure Planning for Electric Buses (IPEB) tool, I designed a data-driven framework to 

model bus fleet turnover, analyze the energy and environmental impacts of transit bus 

electrification, and estimate charging infrastructure needs and costs in Los Angeles County from 

2020 to 2040. I find that California’s Innovative Clean Transit (ICT) regulation and local BEB 

transition commitments would result in a significant increase in electricity demand at transit 

agencies over the next five to ten years. The transition to BEBs would increase particulate matter 

emissions from brake and tire wear in the near term and immediately reduce NOx, CO, and GHG 

emissions. By replacing CNG buses with BEBs at the ten transit agencies I analyzed, Los 

Angeles County could reduce its weekday GHG emissions by 411-473 metric tons in 2025 and 

up to 888 metric tons by 2040. In addition, I find that 100-kW and 200-kW plug-in chargers 

along with the deployment of smart charging could support the full pre-pandemic services for the 

majority of buses across the ten transit agencies, with the exception of six LA Metro buses. 

Smart charging would be a critical element in the planning of transit bus electrification, as it 

reduces costs associated with charging infrastructure and electric demand by lowering charger 

needs and shaving peak load. With certain objectives, such as minimizing total costs and 
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minimizing interference with the provision of transit services, the optimal scheme of charging 

infrastructure deployment can be identified for the cost-effective planning of transit bus 

electrification.  

 

Introduction 

Transit bus electrification offers an important opportunity to improve air quality in urban 

communities and contribute to greenhouse gas (GHG) emissions reduction. Air pollution 

disproportionally affects disadvantaged and low-income communities, where many people live 

close to busy roads with bus routes and freight activity (Chandler et al., 2016). Zero-emission 

buses (ZEB) have no tailpipe emissions and research has shown that life-cycle GHG emissions 

are at least 50 to 70 percent lower than those of diesel or compressed natural gas (CNG) buses 

(Chandler et al., 2016).  

California has adopted a variety of policies and incentive programs, such as the Zero-

Emission Truck and Bus Pilot Commercial Deployment Projects and the Hybrid and Zero-

Emission Truck and Bus Voucher Incentive Project, to spur the growth of the electric vehicle 

market in the medium-duty and heavy-duty vehicle sectors. These incentive programs aim to 

incentivize the adoption of zero-emission vehicles by offsetting the high upfront costs. Vehicle 

purchase costs have decreased over time and ZEB technologies are moving towards lifecycle 

cost parity with conventional bus technologies (Ambrose et al., 2017; CARB, 2018a; Deliali et 

al., 2020; Johnson et al., 2020). As of May 2018, 132 zero-emission buses (110 battery electric 

buses and 22 fuel cell electric buses) are in operation across California and additional 655 zero-

emission buses are on order, awarded, or planned (CARB, 2018b). In December 2018, the 

California Air Resources Board adopted the Innovative Clean Transit (ICT) regulation. The ICT 
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regulation requires a gradual transition to ZEBs by 2040 for all transit agencies in California. 

Table 1 shows the timeline of ZEB purchasing requirements under the ICT regulation (CARB, 

2019). Starting in 2023, transit agencies are required to have increasing fractions of ZEBs in new 

bus purchases, which culminates in a requirement that all new buses be zero-emission in 2029. In 

Los Angeles County, four transit agencies, including the Los Angeles County Metropolitan 

Transportation Authority (LA Metro), Foothill Transit, the Los Angeles Department of 

Transportation (LADOT), and the Santa Monica Big Blue Bus, have committed to a 100 percent 

electric fleet in operation by 2030. Given these state regulations and local commitments, public 

transit buses will be on the leading edge of vehicle electrification in the medium-duty and heavy-

duty vehicle sectors.  

 

Table 4-1. ZEB purchasing requirements under California’s ICT regulation 

Starting datea 

Minimum share 

of ZEBs in new 

bus purchasesa 

Applicable bus 

typea 
Type of transit agenciesa 

January 1, 2023 25% Buses Large transit agenciesc 

January 1, 2026 

25% All busesb Small transit agenciesd 

50% All buses Large transit agencies 

January 1, 2029 100% All buses All transit agencies 

Notes:  a Data source: CARB (2019). 
b All buses include buses, articulated buses (i.e., 54-foot to 60-foot buses with two connected passenger 

compartments), double-deckers, and coaches or motor coaches; 
c Large transit agencies in the South Coast refer to agencies with more than 65 buses in annual maximum 

service; 
d Small transit agencies in the South Coast refer to agencies with 65 or fewer buses in annual maximum 

service.  
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Although both battery electric buses (BEB) and fuel cell electric buses (FCEB) are both 

considered as ZEBs, BEBs are expected to be the primary technology to be widely adopted in 

California given the high costs and limited availability of FCEBs (Ambrose, Pappas, & Kendall, 

2017). Besides the high initial purchase price relative to conventional buses, adding BEBs to a 

transit operator’s fleet requires substantial charging infrastructure investments as well.  In 

concert, high vehicle and infrastructure costs pose a significant challenge to the wider adoption 

of BEBs. In this chapter, my goals are to: (1) review the most recent technology development in 

BEBs and charging infrastructure; (2) analyze charging needs, charging infrastructure costs, and 

grid impact of transit bus electrification in Los Angeles County, taking into account actual fleet 

turnover behaviors and transit bus operations; and (3) provide insights on the regional planning 

of BEB charging infrastructure in the context of a large metropolitan area, like Los Angeles. In 

order to achieve these goals, I developed the Infrastructure Planning for Electric Buses (IPEB) 

tool, which is discussed in details in the methods section.  

Depending on battery capacities and transit vehicle operations, some routes may be served 

by buses operating on a single, slow charge obtained off-duty at a bus depot. Others operating on 

longer or more demanding routes may require on-route fast charging to augment an initial bus 

depot slow charge. The costs associated with charging will vary by the type of charging being 

deployed, the location of charging and its connection to electric utilities, and the daily service 

profile of the BEB fleet. Thus, effective charging infrastructure planning is critical to operating 

transit services with BEBs.  

First, effective charging infrastructure planning helps transit agencies minimize costs 

associated with charging infrastructure and electric demand, and eventually reduce the lifecycle 

costs of BEBs. In addition, charging at bus depots may significantly affect local electric grid 
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infrastructure when a large number of buses are charged simultaneously. On-route fast charging 

will demand very high power for short intervals, which can stress the grid and limit where such 

charging can occur. Understanding the growth and patterns of BEB charging, as well as vehicle 

route and service schedules will prepare the electric utilities for expected load increases and the 

grid upgrades needed to accommodate them.  

In this study, I developed a data-driven analytical framework to support research and 

practice in the area of BEB charging infrastructure planning. I start with the projections of bus 

fleet turnover over time and a review of current technology development in BEB and charging 

technologies, and then estimate the electricity consumption, emissions change, charger needs, 

and charging infrastructure costs based on the projected number of BEBs and transit bus 

operations from 2020 to 2040. In the following section, I describe the methods and data sources 

used for the analysis and the key findings. Finally, I conclude with implications for the energy 

and environmental impacts of transit bus electrification and charging infrastructure planning.  

 

Methods 

I developed the IPEB based on actual bus fleet turnover behaviors and operations at ten 

public transit agencies operating in Los Angeles County (Table 4-2 and Figure 4-1). These 

transit agencies in general are among the largest by fleet size in the County and all publish their 

General Transit Feed Specification (GTFS)static datasets. As demonstrated in Figure 4-2, the 

IPEB consists of three modules: (1) a fleet turnover module, which takes into account historical 

bus retirement schedules and requirements for ZEB purchase under the ICT regulation; (2) a 

transit bus operations module that optimizes vehicle-level operations and estimates daily distance 

traveled at the vehicle level; and (3) an infrastructure planning module that optimizes the 
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deployment of charging infrastructure. Details on each of the three modules are further described 

below. 

 

Table 4-2. Transit agency profiles 

Transit agency 

Service 

area 

(km2)a 

Bus fleet 

size in 

2020b 

Number 

of bus 

depotsc 

Number 

of bus 

routesd 

Target year 

for 100% 

electric fleete 

LA Metro 3675 2,346 11 143 2030 

Foothill Transit 847 376 2 39 2030 

LADOT 1204 321 4 46 2030 

Long Beach Transit 254 224 1 40 2040 

Big Blue Bus  153 195 1 20 2030 

Torrance Transit System 267 63 1 11 2040 

GTrans  104 54 1 5 2040 

Culver CityBus 85 54 1 8 2040 

Glendale Beelines 101 38 1 1 2040 

Norwalk Transit System 96 33 1 6 2040 

Note:  a Data source: the National Transit Database agency profiles 
b Data source: the National Transit Database and the American Public Transportation Association’s Public 

Transportation Vehicle Database 
c Data source: transit agency websites 
d Data source: General Transit Feed Specification static datasets 
e The 2030 target year is based on agency announcements and the 2040 target year is based on the 

requirement in the ICT regulation.   
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Figure 4-1. Bus depots maintained by the ten Los Angeles County transit agencies  
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Figure 4-2. An overview of the IPEB tool 

 

The fleet turnover module. Major data sources include the National Transit Database 

(NTD) and the Public Transportation Vehicle Database (PTVD). Since 1974, the NTD has 

served as the primary source of information on the financial, operating, and asset conditions of 

the US public transit systems. The annual vehicles datasets contain the age distribution of 

revenue fleets by vehicle type for each transit agency. I extrapolated historical bus life-cycle 

years at each transit agency using vehicle age distributions between 2015 and 2019. The 

American Public Transit Association (APTA) maintains the PTVD, which gets updated annually. 

The PTVD complements the NTD vehicles datasets by adding additional vehicle-level details 

such as fuel type, manufacturer, model, and capital costs for each member organization. The 

APTA also maintains a list of transit agencies and service providers by city, county, and state. I 

used this list for the initial screening of transit agencies that provide transit services in Los 
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Angeles County. According to the APTA, there are over 100 regional and local transit operators 

in Los Angeles County. 

I used both data sources to compile the fleet composition for each transit agency in 2020 

(Supplementary Table 4-1), which serves as the baseline for the fleet turnover module. I 

developed three scenarios of fleet turnover: the reference scenario and two BEB adoption 

scenarios. In the reference scenario, vehicle retirement takes place at the end of assumed bus life 

cycles, which are based on historical bus retirement behaviors. The two BEB adoption scenarios 

are based on the fleet turnover schedules in the reference scenario. For agencies that do not have 

a target of a 100 percent electric bus fleet by 2030, I assumed that agencies would meet the 

minimum requirements (25-100% in new purchases) during early years and eventually catch up 

later in order to have a 100 percent electric fleet by 2040. This represents a slow BEB adoption 

in earlier years, which I note as the BEB-slow scenario. Whereas in the BEB-fast scenario, I 

assumed that agencies would either implement a shorter bus life cycle than the reference scenario 

or immediately switch to BEBs whenever vehicle retirement takes place. A shorter life cycle 

results in faster retirement of conventional buses and thus leads to a quicker turnover and BEB 

adoption. For agencies with the target of becoming 100 percent electric by 2030 (i.e., LA Metro, 

Foothill Transit, LADOT, and Big Blue Bus), simply meeting the minimum requirements under 

the ICT regulation will not be enough; they will need to act early as possible. For LA Metro and 

Foothill Transit, given their recent purchases of CNG buses, some buses may have to be retired 

before the typical 12-year minimum service life. Specific assumptions on bus life cycle years for 

each transit agency are listed in Supplementary Table 4-2. 

The transit bus operations module. The major data source for this module is the General 

Transit Feed Specification (GTFS) static datasets obtained from OpenMobilityData, which hosts 
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historical transit data in both GTFS static and GTFS-realtime formats. The GTFS is a 

standardized format that many transit agencies and service providers use to publish their service 

schedules and associated geographic information such as bus stops, routes, and vehicle trips. 

Application developers can use the GTFS datasets to visualize the information across transit 

operators. Given that the majority of transit agencies have reduced service provision during the 

COVID-19 pandemic, I retrieved GTFS datasets that were published between April 2019 and 

November 2019 to represent full pre-pandemic operation.  

In the GTFS format, vehicle movement is organized around a number of key concepts, 

including shapes, trips, stop times, stops, routes, and blocks. A trip is made of one or many 

shapes that define the path of vehicle movement during a trip. Thus, the distance of a trip can be 

estimated by the total length of all shapes within a trip (Eq. 1). The start time of a trip is the 

arrival time of a bus at the first stop of a trip, and the departure time at the last stop gives the end 

time of a trip. Thus, the time difference between the end time of a trip and the start time of its 

subsequent trip within the same block represents the dwell time of a bus at a stop in between two 

consecutive trips. The potential for the deployment of on-route charging is based on these bus 

dwell times. A trip may be as long as an entire route or a portion of a route, depending on where 

the first stop of the trip is along the route. A block consists of a sequence of trips assigned to a 

single bus (Eq. 2). 

According to the GTFS datasets for the ten Los Angeles County transit agencies, the total 

number of blocks does not always match the total number of vehicles in service. In other words, 

a block as specified in the GTFS datasets may not always be interpreted as a vehicle. This is 

because transit agencies may specify blocks for GTFS in four possible ways: (1) a vehicle runs 

one block (for instance, GTrans and Culver CityBus); (2) a vehicle runs multiple blocks, and a 
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vehicle ID can be retrieved from a block ID (for instance, LA Metro, Torrance Transit System, 

Culver CityBus, and Glendale Beeline); (3) a vehicle runs multiple blocks, but there is no direct 

link between a block and a vehicle (for instance, Foothill Transit, LADOT, and Long Beach 

Transit); and (4) there is no block information (for instance, Big Blue Bus and Norwalk Transit 

System). To address these varying ways of assigning blocks and vehicles, I developed an 

algorithm to optimize block-to-vehicle matching. This algorithm first chains blocks by matching 

the end stop of a block and the start stop of another block while ensuring the shortest time 

interval between the start time of the next block and the end time of a block. This step accounts 

for the fact that a vehicle may continue moving onto the next block right after completing the 

first block without returning to the bus depot. After the first-round of chaining, there are 

remaining blocks that are not perfectly aligned with one another. In other words, no end stop 

matches any of the start stops. This could be because a vehicle runs a block and then returns to 

the depot before starting the next block. To account for this situation, the algorithm continues 

with another round of chaining by only matching blocks by the chronological order. After the 

two rounds of chaining, the block-to-vehicle assignments are optimized. The optimization results 

were verified against the number of vehicles operated in maximum service (VOMS) at each 

agency. When no block information was available, I ran a trip-to-block optimization, the 

algorithm for which is the same as the first-round of block-to-vehicle optimization (i.e., matching 

both stops and times) as trips within a block are connected by the same nodes (i.e., the last stop 

of a trip or the first stop of a trip). I assumed the maximum vehicle dwell times between two trips 

are 20 minutes. When the dwell time is greater than 20 minutes, the trip-to-block matching stops 

and then the algorithm moves on to the chaining of the next set of trips. After both the trip-to-

block optimization (when needed) and the block-to-vehicle optimization, revenue distance 
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traveled of a bus can be estimated by aggregating the length of all trips that are assigned to the 

bus (Eq. 3). To account for non-revenue “deadhead miles”, which are the distances traveled with 

no passengers on board between a depot and a bus stop or when changing routes, I estimated the 

daily average deadhead-distance-to-revenue-distance ratios for each agency using the NTD 2019 

service dataset. These agency-level ratios were then used to estimate the total distance traveled 

for each vehicle (Eq. 4). The equations for estimating the vehicle-level total distance traveled are 

the following: 

 

𝑇𝑟𝑖𝑝𝑗,𝑖 =  ∑ 𝑆ℎ𝑎𝑝𝑒𝑖,𝑚
𝑚
1                                                                                                …Eq. (1) 

𝐵𝑙𝑜𝑐𝑘𝑘,𝑗 =  ∑ 𝑇𝑟𝑖𝑝𝑗,𝑖
𝑖
1                                                                                                  ...Eq. (2) 

𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑙,𝑘 =  ∑ 𝐵𝑙𝑜𝑐𝑘𝑘,𝑗
𝑗
1                                                                                              ...Eq. (3) 

𝑇𝑂𝑇_𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑙,𝑘 =  𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑙,𝑘 ∗ (1 +  𝑅𝑙)                                                                   ...Eq. (4) 

where,  

𝑇𝑂𝑇_𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑙,𝑘 - total distance traveled by Vehicle k at Agency l; 

𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑙,𝑘 - revenue distance traveled by Vehicle k at Agency l; 

𝑅𝑙 - the average deadhead-distance-to-revenue-distance ratio at Agency l; 

𝐵𝑙𝑜𝑐𝑘𝑘,𝑗 - distance traveled by Vehicle k in Block j; 

𝑇𝑟𝑖𝑝𝑗,𝑖 - the length of Trip i within Block j; 

𝑆ℎ𝑎𝑝𝑒𝑖,𝑚 - the length of Shape m within Trip i. 

 

For transit agencies with multiple depots, the transit operations module also optimizes the 

vehicle-to-depot allocation. I developed an algorithm to calculate the driving distances between 

each depot and the first stop of a vehicle using the openrouteservice API. The process of vehicle-
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to-depot allocation then assigns each vehicle to a depot according to the minimum distance. 

When a depot reaches its parking capacity, it is removed from the allocation process and other 

vehicles continue to be assigned to other depots according to the new minimum distance. The 

location and parking capacity of each bus depot was either obtained from transit agency websites 

and reports or manually verified using the satellite imagery on Google Maps. In Los Angeles 

County, there are three multi-depot transit agencies: LA Metro (11 bus depots), Foothill Transit 

(2 bus depots), and LADOT (4 bus depots). The vehicle-to-depot allocation process was applied 

to LA Metro and LADOT. Foothill Transit’s GTFS data include bus depot information in the 

service identification numbers, which can be directly used to identify vehicle-to-depot allocation 

without the need to run the allocation process.  

The infrastructure planning module. The module relies on outputs from the first two 

modules and a review of the most recent development in both BEB vehicle and charging 

technologies. The technology review provides additional inputs to the infrastructure planning 

module, including: (1) the original equipment manufacturer (OEM) claimed range and battery 

size for each available BEB model, which are used to estimate average BEB fuel economy 

(km/kWh) by bus type and length; and (2) the charger power levels and efficiencies of each type 

of charging infrastructure. According to an interview with the operations team at the Foothill 

Transit (R. Cordero, personal communication, November 29, 2018), OEMs tend to claim the 

highest possible electric range in optimal, rather than typical, operating conditions . To account 

for this, I applied a coefficient of 0.7 to all OEM-claimed ranges to reflect the actual operating 

conditions. The coefficient is based on actual testing results from Foothill Transit.  

With estimates of both fuel economy and required total vehicle distance (revenue plus non-

revenue service distance) traveled, I could then estimate daily electricity consumption at the 
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vehicle level. In addition, with emission rates of criteria air pollutants and GHGs obtained from 

the EMission FACtor (EMFAC) model, I could also estimate the avoided tailpipe emissions. The 

California Air Resources Board maintains the EMFAC model, which estimates on-road mobile 

vehicle emissions of major criterial pollutants and GHGs at various geographical scales in 

California. I obtained emission rates of PM2.5, PM10, NOx, CO, CO2, CH4, and N2O from the 

latest version of the model, i.e., EMFAC2017 (v1.0.3). The avoided tailpipe emissions in a given 

year are estimated via multiplying projected electric vehicle kilometers traveled (eVKT) by the 

differences in projected emission rates (g/km) between a BEB and a CNG bus of that year in Los 

Angeles County. Details on specific emission rates over time can be found in Supplementary 

Table 4-3. Depot-level and/or agency-level estimates are aggregated from vehicle-level 

estimates.   

The main focus of the infrastructure planning module is to estimate charger needs, costs, 

and grid impact (i.e., load profiles of BEB charging events) when deploying the three types of 

charging infrastructure: at-depot plug-in charging, on-route conductive charging, and on-route 

wireless charging. The analysis on charging needs and grid impact is based on the BEB 

quantities in future years (i.e., Module 1 outputs), daily vehicle distance traveled (i.e., Module 2 

outputs), average BEB fuel economy under actual operating conditions, and charger power levels 

and efficiencies. Given that transit services peak during weekdays, I estimated daily charging 

needs and load profiles for weekdays to show the highest electrical loads over the course of a 

week. Specific assumptions on the deployment of each type of chargers are listed in Table 4-3. 

For agencies with multiple bus depots, I assume electrification takes place depot by depot. 

This assumption is based on LA Metro’s strategy to fully electrify their Division 8 and 9 depots 

as a first step of the transition to a 100 percent electric fleet. At each depot, when only a portion 
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of buses are projected to be electric at a certain year, electrification was assumed to start with 

buses traveling the longest distances for the estimation of the greatest charging needs. To 

estimate the potential load profiles, I designed two charging scenarios: (1) the unmanaged 

charging scenario, in which I assume that charging for all BEBs starts simultaneously with at-

depot plug-in chargers; and (2) the managed charging scenario, where I assume charging is 

managed by a smart charging management system that queues the charging of BEBs in order to 

minimize the number of chargers needed and to reduce the peak load. For the managed charging 

scenario, I use a bin-packing8 algorithm to estimate the maximum number of chargers needed 

within a fixed charging time period (i.e., between 9pm and 6am the next day). In Los Angeles 

County, the two electric utilities implement time-of-use (TOU) electric rates for their 

commercial customers. The lowest evening rates start at 8pm within the Los Angeles Department 

of Water and Power (LADWP) territory, while the Southern California Edison (SCE) starts 

charging the lowest evening rates at 9pm. Among the ten transit agencies included in the study, 

there are 15 bus depots located within the SCE territory and 9 bus depots located within the 

LADWP territory. To be consistent, I assume charging at all 24 bus depots starts at 9pm. To 

avoid interfering with service provision during the morning peak hours, I assume at-depot 

charging would have to be completed by 6am the next day under the managed charging scenario. 

When charging cannot be completed with a standard slow charger (at 100-kW power level) 

within the available time period, fast chargers (at 200-kW power level) would be deployed. I 

assume the charging efficiency of plug-in chargers to be 91.4 percent based on actual testing 

results from the National Renewable Energy Laboratory(L. Eudy & Jeffers, 2018a, 2017; 

Johnson et al., 2020). Under the managed charging scenario, when charging for certain buses 

 
8 Fitting objects of different sizes into bins of the same size. 
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(i.e., the ones with the longest daily distances traveled) cannot be completed before 6am next 

day, I assume that on-route overhead charging will be deployed to complement at-depot plug-in 

charging. Thus, the charging needs under the unmanaged charging scenario will be solely based 

on the use of 100-kW plug-in chargers at the depot, whereas charging under the managed 

charging scenario may be completed by a number of slow plug-in chargers, a number of faster 

plug-in chargers, and a number of on-route overhead chargers. Total charging infrastructure costs 

are based on the unit costs of each type of chargers and the number of chargers needed under 

each of the two charging scenarios. For each bus depot, hourly load profiles are estimated under 

each charging scenario and each BEB turnover scenario.  

 

Table 4-3. BEB charging infrastructure assumptions 

Category 
At-depot plug-in 

charging 

On-route 

overhead 

charging 

References 

Charger power (kW) 100/200 325 
(ICF, 2019; Johnson et al., 

2020) 

Charging efficiency 91.4% 91.4% 
(L. Eudy & Jeffers, 2018a, 

2017; Johnson et al., 2020) 

Charger capital costs 

($ per charger) 
40,000/50,000 495,636 

(ICF, 2019; Johnson et al., 

2020) 

Charger installation 

costs ($ per charger) 
17,050 202,811 (Johnson et al., 2020) 

Charger maintenance 

costs ($ per charger) 
48,000/66,000 216,000 

(ICF, 2019; Johnson et al., 

2020) 

Charger total costs 

($ per charger) 
105,050/133,050 914,447 

Based on the above three 

categories 

Charging period 9pm-6am 
Whenever 

needed 
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Results and Discussion 

The current state of BEB and charging technologies 

Although a growing number of conventional bus manufacturers have announced plans for 

new BEB production lines, there are currently four manufacturers that dominate the BEB market 

in the US: Build Your Dream (BYD), Proterra, GreenPower, and New Flyer (Supplementary 

Table 4-4). With a continuous monitoring and evaluation of Proterra buses purchased and 

operated by Foothill Transit, researchers at the National Renewable Energy Laboratory (NREL) 

found that the fuel economy of 11-meter BEBs ranges from 0.69 to 0.84 km per kWh and the 

fuel economy of 12-meter BEBs ranges from 0.72 to 0.80 km per kWh during the evaluation 

period from 2014 to 2019 (L. Eudy et al., 2016; L. Eudy & Jeffers, 2017, 2018b, 2018c, 2019a, 

2019b, 2020). Based on BEB testing results across six transit agencies in the US, Deliali et al. 

(2020) estimated the average fuel economy of 0.61 km per kWh, which did not account for bus 

types and length.  

Based on the specifications I obtained directly from these manufacturers (Supplementary 

Table 4-4), I estimated the range and average energy consumption rate under typical operating 

conditions by bus type and length (Table 4-4). Taking into account the typical operating 

conditions, BEBs can be operated for up to 371 km after one full charge and average fuel 

economy ranges from 0.32 to 0.90 km per kWh. Larger buses such as double-deckers and 

articulated buses have greater gross vehicle weight and more passenger capacities, thus they 

consume more energy when in operation. This study only distinguishes between articulated and 

other transit buses. As shown in Table 4-4, the average fuel economy of buses in the first five 

categories range from 0.32 to 0.90 kWh per mile with a medium value of 0.54. In addition, 12-

meter buses are the most common ones that transit agencies operate in the County. Thus, I 
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assume a fuel economy of 0.32 km per kWh for articulated buses and 0.54 km per kWh for all 

other buses in the estimation of daily electricity consumption. NREL’s fuel economy estimates 

were based on two Proterra models, while the estimates in Table 4-4 were based on all available 

models and manufacturers.  

 

Table 4-4. Range and average fuel economy of BEBs under typical operating conditions 

Bus type 
Length 

(m) 

Number of 

available 

models 

Electric range 

(km) 

Average fuel economy* 

(km/kWh) 

Bus  

9 2 154-197 
0.90 

(0.04) 

11 8 84-270 
0.59 

(0.02) 

12 13 84-371 
0.54 

(0.02) 

Double-decker 14 2 197-259 
0.50 

(0.08) 

Articulated bus 18 5 62-259 
0.32 

(0.02) 

Conversion - 2 169-225 
0.56 

(0.14) 

Note: * Numbers in parenthesis are standard errors.  

 

Currently, there are three types of charging available for BEBs: plug-in charging, overhead 

charging (including roof-mounted and inverted pantographs), and inductive charging (Figure 3). 

The power of currently available plug-in chargers ranges from 50 to 200 kW, and an overhead 

conductive charger has a power level between 175 and 600 kW. The most advanced wireless 

charger to date may charge a bus with the highest power of 250 kW (NASEM, 2020). Plug-in 

charging is by far the most common and the cheapest option for BEB charging. For plug-in 
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charging, BEBs are usually charged at night while they are parked at the depots. This reduces 

fuel costs when time-of-use electricity rates are in place. However, this type of charging may 

require BEBs to be equipped with large batteries in order to operate on longer routes, which 

increases the initial vehicle costs for long-range BEBs. On-route charging such as pantographs 

and inductive charging offers the benefit of opportunity charging, which reduces the need for 

large battery packs and allows for extended range throughout the day. These two types of 

charging are significantly costlier than standard plug-in charging and often require additional 

effort and expenses for permitting and right-of-way leases or purchases. Given the high costs of 

wireless chargers, the lack of interoperability among wireless charger providers, and limited 

availability of wireless charging models, I consider only overhead conductive charging as the 

option for on-route charging when needed.  

 

 

Figure 4-3. Currently available BEB charging infrastructure 
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Projected eVKT, energy consumption and tailpipe emissions reduction 

According to the definitions in the ICT regulation, there are six large transit agencies (a 

fleet size of 65 or more buses) and four small transit agencies (a fleet size of less than 65 buses) 

in the County. The fleet size of transit bus services at these agencies ranges from 33 to 2,446 

buses, and the total number of buses with all ten agencies combined is 3,804.  

Across the ten transit agencies, 53 BEBs are currently in operation (Table 4-5). When 

agencies meet the minimum requirements in the ICT regulation (i.e., the BEB-slow scenario), 

there would be 1,346 BEBs in 2025 and 3,600 BEBs in 2030. When agencies seek to accelerate 

this BEB transition (i.e., the BEB-fast scenario), there would be 1,588 BEBs by 2025 and 3,663 

BEBs by 2030. Among the ten agencies, a bus may be assigned with the same schedules and 

trips every weekday and the vehicle assignment may also vary by day. Depending on each 

agency’s operation schedules, a bus may be assigned to run multiple trips on the same route 

every day, and a bus could also be assigned for trips on different routes. At the vehicle level, a 

bus may be operated for as long as 633 km on a typical weekday.  

As a result of public transit bus electrification, total weekday daily eVKT in the County 

would increase to 290-333 thousand km by 2025 and continue to grow to 627 thousand km by 

2040 (Figure 4-4a). With the potential growth of BEBs under both adoption scenarios, the 

regional electricity demand for transit bus operations on a weekday would increase to 639-719 

MWh in 2025 and 1280 MWh in 2030 (Figure 4-4b). Among the transit agencies, LA Metro has 

the highest electricity consumption with 438-497 MWh in 2025 and 881 MWh starting in 2030, 

which is followed by Foothill Transit with a daily electricity demand of 61-70 MWh in 2025 and 

107 MWh in 2030.  
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Currently the vast majority of buses operated in Los Angeles County are CNG buses. 

Along with the transition to BEBs, there are emission changes in both the near term and longer 

term (Figure 4-5). Given the added vehicle weight due to the battery packs, BEBs are projected 

to have greater particulate matter emissions from break wear and tire wear as compared to CNG 

buses in the near term. Although there are no tailpipe emissions of particulate matter during the 

operation of BEBs, the significant portion of emissions from break wear and tire wear would 

result in an increase in both PM10 and PM2.5 emissions in the region. In the longer term, when 

BEB vehicle technology improves with similar weights to CNG buses, there will be net benefits 

in the reduction of particulate matter emissions. For the other two criteria pollutants (NOx and 

CO) and GHGs, the transition to BEBs would immediately yield positive net environmental 

benefits. The daily reduction of NOx emissions ranges from 87-100 kg in 2025 to 188 kg in 

2040, and CO emissions would reduce by 9-10 metric tons daily in 2025 and the amount doubles 

in 2040. By replacing CNG buses with BEBs at the ten transit agencies, the county could reduce 

its weekday GHG emissions by 411-473 metric tons in 2025 and up to 888 metric tons by 2040.  
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Table 4-5. Projected numbers of BEBs in operation and BEB shares by agency  

Transit agency Bus type 

 BEB-slow scenario BEB-fast scenario 

2020 2025 2030 2040 2025 2030 2040 

Num

. 

% Num. % Num. % Num.  % Num. % Num.  % Num.  % 

LA Metro* 

Bus 0 

0 

549 

35 

2076 

100 

2076 

100 

731 

42 

2076 

100 

2076 

100 
Articulated 

bus 
0 305 370 370 305 370 370 

Foothill Transit 

Bus 33 

9 

114 

38 

346 

100 

346 

100 

128 

42 

346 

100 

346 

100 
Articulated 

bus 
0 30 30 30 30 30 30 

LADOT* Bus 4 1 159 50 321 100 321 100 186 58 321 100 321 100 

Long Beach Transit 

Bus 10 

4 

115 

51 

163 

79 

211 

100 

115 

51 

171 

82 

211 

100 
Articulated 

bus 
0 0 13 13 0 13 13 

Big Blue Bus 

Bus 0 

0 

43 

33 

167 

100 

167 

100 

43 

33 

167 

100 

167 

100 
Articulated 

bus 
0 21 28 28 21 28 28 

Torrance Transit 

System 
Bus 0 0 0 0 32 51 63 100 0 0 53 84 63 100 

GTrans  Bus 6 11 6 11 6 11 54 100 16 30 16 30 54 100 

Culver CityBus Bus 0 0 4 7 15 28 54 100 10 19 26 48 54 100 

Glendale Beeline Bus 0 0 0 0 16 42 38 100 0 0 20 53 38 100 

Norwalk Transit 

System 
Bus 0 0 0 0 17 52 33 100 3 9 26 79 33 100 

Total 53  1346  3600  3804  1588  3663  3804  

Note: *LA Metro and LADOT currently have BEBs on order or being delivered. Additional BEBs were assumed to be in operation starting in 2021. 
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Figure 4-4. Projected weekday daily eVKT (a) and electricity consumption (b) in 2025-2040 
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Figure 4-5. Projected weekday daily emissions change in 2025-2040  
 (a) PM10, (b) PM2.5, (c) NOx, (d) CO, (e) GHGs.  
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Charging infrastructure needs and grid impact 

Given that the ten transit agencies have varying timelines for the transition to BEBs, load 

profiles are estimated for the first year that the bus fleet becomes 100 percent electric (i.e., 2030 

or 2040). These facility-level load profiles are estimated to offer insights for the longer-term grid 

impact fully electrified bus fleets. 

Among all ten transit agencies, there are six LA Metro buses that have a long daily VKT 

requirements that cannot be fully charged by a 100-kW or 200-kW plug-in charger at the depot 

within the time period between 9pm and 6am the next day. Thus, on-route charging is required to 

provide additional energy so that service is not compromised. The charging needs for the six 

buses were analyzed separately as on-route charging needs (Table 4-6) that are in concurrent 

with the deployment of smart charging and 200-kW plug-in chargers under the managed 

charging scenario. For the six buses, information on trip-level stop time and location was 

compiled for the screening of potential siting of on-route chargers and the estimation of energy 

provision through these chargers. I estimated the dwell time of each vehicle on each trip end, and 

the siting of on-route chargers was based on the trip end (i.e., a stop) that a vehicle has the 

greatest total dwell time within a day. The analysis takes into account the time of the moving 

parts of a pantograph reaching the bus or the time of moving parts of a bus reaching the 

pantograph, which I assumed to be 2 minutes each time when an on-route charging event takes 

place. Thus, the actual possible on-route charging time would be less than the total vehicle dwell 

time. Results in Table 5 indicate that these six buses would be supported by both a plug-in 

charger at the depot and an overhead charger at the identified bus stop. There are three unique 

stop IDs identified through the process, which indicates that LA Metro would require at least 
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three additional on-route chargers (Figure 4-6) to support these six buses besides the deployment 

of smart charging and 200-kW chargers. 

 

 

Figure 4-6. Recommended locations for the installation of on-route overhead chargers  
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Table 4-6. On-route charging needs for six LA Metro buses 

Vehicle 

ID 
Division 

Stop 

ID 

Total 

weekday 

dwell time 

at the 

stop (min) 

Num. of 

trips 

arriving 

at/leaving 

this stop 

Total actual 

possible 

charging 

time at the 

stop (min) 

Total daily 

electricity 

required 

for service 

(kWh) 

Obtainable 

electricity 

via on-route 

chargers 

(kWh) 

Electricity to 

be obtained 

via plug-in 

chargers at 

the depot 

Required 

charge time 

between 9 

pm and 6 

am (min) 

501010 15 30001 145 9 127 1707 629 1078 708 

910010 9 30019 80 5 70 1836 347 1490 978 

910020 9 30019 87 4 79 1681 391 1290 847 

910050 9 30005 89 4 81 1693 401 1292 848 

910080 9 30019 86 5 76 1979 376 1603 1052 

910510 18 30019 85 4 77 1742 381 1361 893 
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Load profiles and charging infrastructure costs are discussed in the contexts of a large 

transit agency (LA Metro), a medium-sized transit agency (Foothill Transit), and a small transit 

agency (Culver CityBus). Results for other transit agencies are shown in Supplementary Figures 

4-1 to 4-7.  

The peak loads would occur at the beginning of the assumed charging time period, given 

that the largest number of buses are charged simultaneously at the assumed 9pm start. After 

certain buses get fully charged, the electric load would gradually decrease until 0 when all buses 

are fully charged. The overall charging time at a depot depends on when the last bus completes a 

full charge. When charging is unmanaged, the electrical load at LA Metro bus depots would peak 

at 14.8 - 24.5 MW in 2030 (Figure 4-7). Under the unmanaged charging scenario, only charging 

at Division 3 and Division 7 can be completed before 6am of the next day. Buses assigned for 

the longer distances would require longer charging times. At these two depots, the longest daily 

distances are shorter than those at other depots, thus the overall charging needs would be lower 

and the overall charging time would be shorter.  At all other bus depots, a full charge for certain 

buses may continue until noon or as long as 3pm in the afternoon because some buses at these 

depots run very long distances, which result in higher energy demand and longer overall 

charging time. Thus, the sole deployment of slow plug-in chargers would probably not be able to 

fully support the bus operations at the majority of LA Metro facilities in the unmanaged charging 

scenario. In contrast, the peak loads under the managed charging scenario can be reduced by up 

to 63%. Under this scenario, the peak load at the depot level ranges from 6.6 to 19.2 MW. 

Foothill Transit maintains two bus depots in Arcadia and Pomona. By 2030, I estimate that the 

electrical load under the unmanaged charging scenario would peak at 16.9 MW and 11.6 MW at 

each of the two facilities, respectively. Under this charging scenario, the provision of services 
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may be affected given that a full charge for certain buses would not be completed until 1pm the 

next day. When smart charging and fast plug-in chargers are deployed, the peak loads would be 

reduced to 10.8 MW (i.e., a 36% decrease) at the Acadia facility and 5.1 MW (i.e., a 56 % 

decrease) at the Pomona facility. Culver CityBus is a small transit agency that manages one bus 

depot. By 2040, the daily charging electric load at Culver CityBus would range from 2.2 MW 

under the managed charging scenario to 5.4 MW under the unmanaged charging scenario. 

Although all buses can be fully charged by 4am under the unmanaged charging scenario, the 

peak load would be 1.5 times higher than that under the managed charging scenario. 

A major difference between the two charging management scenarios is whether to deploy 

smart charging, which could potentially reduce costs in two ways. First, it reduces the maximum 

number of chargers needed by queuing the charging of all buses instead of having them charged 

at the same time. Some buses are operated for shorter distances and do not require 9 hours to be 

fully charged. The sharing of chargers through an energy management system has the potential 

to reduce capital investments on charging equipments. In addition, the use of smart charging 

reduces peak load and thus reduces electricity costs when peak demand charges are in place. 

With unmanaged charging, LA Metro would need 2,135 100-kW chargers when 100 percent 

electrification takes place and charging for some buses may last until noon, which may interfere 

with service provision. With smart charging, LA Metro would require 859 100-kW chargers, 181 

200-kW chargers, and three 325-kW on-route overhead chargers in total, compared with 2,135 

100-kW chargers for weekday services in the unmanaged scenario. The total charging 

infrastructure costs under the unmanaged charging scenario is estimated to be $224.3 million 

over a 12-year charger life cycle, while the total charging infrastructure costs under the managed 

charging scenario is $117.1 million, which is 48% less than the unmanaged charging scenario. 
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Although the software and hardware costs of smart charging are not included, it is very likely 

that the total infrastructure costs under the managed charging scenario could remain significantly 

lower than those under the unmanaged charging scenario.  

In 2030, Foothill Transit would require 285 100-kW chargers under the unmanaged 

charging scenario, resulting in estimated charging infrastructure costs of $30.0 million. With 

managed charging, 103 100-kW chargers and 28 200-kW chargers would be required and total 

charging infrastructure costs would reduce to $14.5 million. I find that all Foothill Transit buses 

could be fully supported by plug-in chargers at the depots with no need for additional 

deployment of on-route chargers. However, Foothill Transit installed two on-route overhead 

chargers in 2015 (Hanlin et al., 2018). The future charging infrastructure costs on the 

deployment of plug-in chargers would be lower than my estimates, given that one on-route 

overhead chargers can serve multiple buses.  

For a small transit agency like Culver CityBus, the deployment of smart charging would be 

critical in reducing costs for the transition to BEBs. In 2040, smart charging could cut down 

charger needs by 59%, from 54 100-kW chargers under the unmanaged charging scenario to 22 

100-kW chargers under the managed charging scenario. The reduced charger needs would lead 

to estimated cost savings of $3.4 million on charging infrastructure deployment. I estimate that 

there would be no need for 200-kW plug-in chargers or on-route overhead chargers at Culver 

CityBus.  
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Figure 4-7. Projected charging load profiles at LA Metro facilities in 2030 
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Figure 4-8. Projected charging load profiles at Foothill Transit facilities in 2030 
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Figure 4-9. Projected charging load profiles at Culver CityBus in 2040 

 

Conclusions 

California policymakers have implemented the ICT regulation to require transit agencies to 

gradually transition to ZEBs by 2040. Besides the high upfront costs of BEB purchases, the 

deployment of charging infrastructure remains another significant challenge for the wider 

adoption of BEBs. This study differs from previous studies that used fixed assumptions about 

vehicle distances traveled and/or fixed charger-to-vehicle ratios in order to estimate charger 

needs and the environmental impacts of BEB adoption. Through the development of the 

Infrastructure Planning for Electric Buses (IPEB) tool, this study takes a more realistic approach 

by examining actual fleet turnover and transit service operating characteristics. 

In this chapter, I explored a number of existing datasets, including the National Transit 

Database, the APTA’s Public Transportation Vehicle Database, GTFS static datasets from ten 
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transit agencies that provide service in Los Angeles County. With this agency and vehicle-level 

information as well as the ICT regulation, I was able to model fleet turnover and analyze bus 

fleet operations with an evidence-based, data-driven approach. Results from these data analytics 

activities serve as a foundation to the IPEB tool and the analysis of energy and environmental 

impacts of BEB adoption, and more importantly, charging infrastructure planning particularly 

with respect to charger needs and costs.  

In Los Angeles County there are 53 BEBs currently in operation at four transit agencies. 

Given the ICT regulation and other local vehicle transition commitments, the potential growth of 

BEBs in the transit bus fleets at the ten transit agencies examined here would result in a 

significant increase in electricity demand over the next five to ten years. Although there are no 

tailpipe emissions, the increased vehicle weight of BEBs due to the carrying of heavy battery 

packs would result in greater particulate matter emissions from brake and tire wear in the near 

term. As for NOx, CO, and GHG emissions, the transition to BEBs brings about positive 

environmental changes right away. By replacing CNG buses with BEBs at the ten transit 

agencies I analyzed, Los Angeles County could reduce its weekday GHG emissions by 411-473 

metric tons in 2025 and up to 888 metric tons by 2040.  

This study has demonstrated the technical feasibility of transit electrification at major 

transit agencies in Los Angeles County, taking into account transit bus service schedules and the 

current state of BEB vehicle and infrastructure technologies. I find that 100-kW and 200-kW 

plug-in chargers along with the deployment of smart charging could support the full pre-

pandemic services for the majority of buses across the ten transit agencies, with the exception of 

six LA Metro buses. When the physical space at a bus depot limits the large-scale deployment of 

plug-in chargers, on-route charging may remain important in supporting fleet operation. In 
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addition, on-route charging can serve multiple buses and may increase resilience when power 

outages occur (Linscott & Posner, 2020). Another potential advantage of deploying on-route 

charging is that it allows for the sharing of charging infrastructure among transit agencies and 

may reduce charging infrastructure costs on a regional scale. The impacts of charging 

infrastructure sharing among transit agencies is a direction for future research.  

This study also showed the highly variable electric grid impacts of deploying standard 

plug-in charging at bus depots with and without smart charging – due to a flattened load versus a 

maximum load. As demonstrated in the estimated load profiles and charging infrastructure costs, 

smart charging would be a critical element in the planning of transit bus electrification at the 

facility level. First, it reduces charger needs by queuing the charging of all buses instead of 

having them charged at the same time. Thus, it reduces capital investments on charging 

equipments. In addition, the use of smart charging significantly reduces peak load and thus 

reduces electricity costs when additional demand charges are in place.  

From a methodological perspective, I developed an analytical framework for optimizing 

trip-to-block assignment, block-to-vehicle assignments, and vehicle-to-depot allocation in order 

to minimize deadheading. I also proposed the use of trip-level vehicle dwell time for the siting 

and analysis of on-route charging deployment. The ultimate grid impact of transit bus 

electrification is determined by a number of factors: the actual siting of charging equipment (at-

depot versus on-route), the connectivity of charging (conductive versus inductive), the speed of 

charging (standard versus fast charging), the type of BEB technologies (long-range versus short-

range), and connection to the utility grid. With certain objectives, such as minimizing total costs 

and minimizing interference with transit services, the optimal scheme of charging infrastructure 

deployment can be identified for the cost-effective planning of transit bus electrification.  



  

 

 

1
5
4

 

Appendix: Supplementary Information 

Supplementary Tables 

Supplementary Table 4-1. Transit bus fleet age distribution in Los Angeles County, 2020 

Transit agency Bus type 
Years old 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17+ Subtotal 

LA Metro 

Bus 0 295 0 0 0 350 550 0 150 0 91 91 258 0 0 0 18 273 2076 

Articulated 

bus 
0 0 0 0 0 0 0 0 0 0 0 0 0 96 95 158 0 0 370 

Foothill Transit 

Bus 0 44 32 30 106 0 0 14 14 30 0 0 10 0 63 0 0 0 346 

Articulated 

bus 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 30 

LADOT Bus 0 5 0 20 29 54 0 31 129 5 0 24 0 5 19 0 0 0 321 

Long Beach 

Transit 

Bus 0 0 40 10 0 8 0 31 33 0 0 25 0 15 0 36 0 13 211 

Articulated 

bus 
0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 13 

Big Blue Bus 

Bus 0 0 26 20 5 15 13 45 0 0 24 0 0 0 10 0 9 0 167 

Articulated 

bus 
0 0 0 0 0 7 0 0 0 0 21 0 0 0 0 0 0 0 28 

Torrance Transit 

System 
Bus 0 0 0 0 0 24 0 0 9 20 10 0 0 0 0 0 0 0 63 

GTrans Bus 0 0 0 5 0 1 0 0 0 0 18 17 0 0 0 13 0 0 54 

Culver CityBus Bus 0 0 0 0 18 0 6 0 16 4 0 6 0 0 0 0 0 4 54 

Glendale Beeline Bus 2 0 0 0 11 0 0 10 4 0 0 10 0 0 0 1 0 0 38 

Norwalk Transit 

System 
Bus 0 0 1 2 4 0 0 12 2 0 3 6 0 0 0 1 0 2 33 

Total 3804 
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Supplementary Table 4-2. Bus life cycle assumptions across scenarios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note:  a In order to achieve the goal of 100% electric fleet by 2030, some buses have to be retired before the end of the 12-year minimum service life.  

b In the APTA’s PTVD, Long Beach Transit has laid out plans for BEB purchases in 2021-2025, which determines the near-term bus retirement schedules. 

Transit agency Bus type 

Historical bus 

life cycle 

(years) 

Reference 

scenario bus 

life cycle 

(years) 

BEB-slow 

scenario bus 

life cycle 

(years) 

BEB-fast 

scenario bus 

life cycle 

(years) 

LA Metro 
Bus 16-18+ 16 10-16a 10-14a 

Articulated bus 14+ 16 10-16a 10-14a 

Foothill Transit 
Bus 15+ 14 10-14a 10-14a 

Articulated bus - 14 14 14 

LADOT Bus 16 14 14 14 

Long Beach Transit 
Bus 13-16+ 16 14-16b 12-14b 

Articulated bus - 14 14 12 

Big Blue Bus 
Bus 14-16+ 14 14 12 

Articulated bus - 14 14 12 

Torrance Transit System Bus - 14 14 14 

GTrans Bus 15+ 14 14 14 

Culver CityBus Bus 15-18+ 14 14 14 

Glendale Beeline Bus 14-16 16 16 14 

Norwalk Transit System Bus 16+ 16 16 14 



  

 

 

1
5
6

 

Supplementary Table 4-3. Emission rates for Los Angeles County in EMFAC2017 (v1.0.3) 

Year 

BEBa CNG bus 

PM 2.5 

(g/km) 

PM10 

(g/km) 

PM2.5 

(g/km) 

PM10 

(g/km) 

NOx 

(g/km) 

CO 

(g/km) 

CO2 

(g/km) 

CH4 

(g/km) 

N2O 

(g/km) 

GHGsb 

(g/km) 

2020 0.035 0.085 0.026 0.066 0.79 28.76 1234.37 4.18 0.25 1418.09 

2021 0.035 0.085 0.026 0.066 0.51 29.75 1237.60 4.04 0.25 1417.68 

2022 0.035 0.085 0.025 0.066 0.30 30.51 1240.04 3.93 0.25 1417.00 

2023 0.035 0.085 0.025 0.066 0.30 30.51 1240.02 3.93 0.25 1416.98 

2024 0.035 0.085 0.025 0.066 0.30 30.52 1240.49 3.93 0.25 1417.53 

2025 0.035 0.085 0.025 0.066 0.30 30.52 1240.53 3.93 0.25 1417.58 

2026 0.035 0.085 0.025 0.066 0.30 30.52 1240.53 3.93 0.25 1417.58 

2027 0.035 0.085 0.025 0.066 0.30 30.53 1240.86 3.93 0.25 1417.97 

2028 0.022 0.061 0.025 0.066 0.30 30.50 1239.92 3.93 0.25 1416.87 

2029 0.022 0.061 0.025 0.066 0.30 30.50 1239.93 3.93 0.25 1416.89 

2030 0.022 0.061 0.025 0.066 0.30 30.50 1239.78 3.93 0.25 1416.72 

2031 0.022 0.061 0.025 0.066 0.30 30.50 1240.07 3.93 0.25 1417.07 

2032 0.022 0.061 0.025 0.066 0.30 30.50 1240.06 3.93 0.25 1417.05 

2033 0.022 0.061 0.025 0.066 0.30 30.50 1240.01 3.93 0.25 1417.00 

2034 0.022 0.061 0.025 0.066 0.30 30.50 1240.00 3.93 0.25 1416.99 

2035 0.022 0.061 0.025 0.066 0.30 30.50 1240.00 3.93 0.25 1416.99 

2036 0.022 0.061 0.025 0.066 0.30 30.50 1240.00 3.93 0.25 1416.99 

2037 0.022 0.061 0.025 0.066 0.30 30.50 1240.00 3.93 0.25 1416.99 

2038 0.022 0.061 0.025 0.066 0.30 30.50 1240.00 3.93 0.25 1416.99 

2039 0.022 0.061 0.025 0.066 0.30 30.50 1240.00 3.93 0.25 1416.99 

2040 0.022 0.061 0.025 0.066 0.30 30.50 1240.00 3.93 0.25 1416.99 

Note: a Emission rates of NOx, CO, CO2, CH4, N2O for BEBs are 0. EMFAC2017(v1.0.3) have BEB particulate matter emission rates until 2028. The emission 

rates in 2029-2040 are assumed to be the same as those in 2028. PM emissions are from tire wear and break wear.  
b GHG emissions rates are the weighted sum of CO2, CH4, and N2O emission rates using the 100-year global warming potentials from the 

Intergovernmental Panel on Climate Change’s Fifth Assessment Report (AR5). 
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Supplementary Table 4-4. Bus specifications from major BEB manufacturers in the US (as 

of November 2020) 

OEM Model Bus type 
Length 

(m) 

Max. 

range 

(km) 

Battery 

size 

(kWh) 

Charging 

Power 

level 

(kW) 

BYD 

k7m bus 9 220 180 

80/ 

200 

k9s bus 11 346 352 

k9mc bus 12 285 352 

k11 articulated 18 370 652 

C10MS double-decker 14 370 446 

Proterra 

ZX5 bus 11 386 440 

75/ 

150/ 

250/ 

500 

ZX5 bus 12 529 660 

XR bus 11 195 220 

E2 bus 11 377 440 

XR bus 12 190 220 

E2 bus 12 370 440 

E2 max bus 12 528 660 

GreenPower  

EV250 bus 9 282 210 50/ 

100/ 

200 

EV350 bus 12 322 430 

EV550 double-decker 14 282 478 

New Flyer  
Xcelsior 

CHARGE 

bus 11 121 160 

50/ 

90/ 

100/ 

125/ 

150/ 

175/ 

300/ 

450/ 

600 

 

bus 11 161 213 

bus 11 257 311 

bus 11 314 388 

bus 12 121 160 

bus 12 161 213 

bus 12 185 267 

bus 12 257 311 

bus 12 314 388 

bus 12 362 466 

articulated 18 89 213 

articulated 18 113 267 

articulated 18 137 320 

articulated 18 217 466 

Gillig 
 

bus 12 241 444 - 

Lightening eMotors  conversion - 322 322 - 

Complete Coach Works ZEPS conversion - 241 403 - 
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Supplementary Figures 

 

 

Supplementary Figure 4-1. Projected charging load profiles at LADOT facilities in 2030 
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Supplementary Figure 4-2. Projected charging load profiles at Long Beach Transit in 2040 

 

 

Supplementary Figure 4-3. Projected charging load profiles at Big Blue Bus in 2030 
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Supplementary Figure 4-4. Projected charging load profiles at Torrance Transit System in 

2040 

 

 

Supplementary Figure 4-5. Projected charging load profiles at GTrans in 2040 
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Supplementary Figure 4-6. Projected charging load profiles at Glendale Beeline in 2040 

 

 

Supplementary Figure 4-7. Projected charging load profiles at Norwalk Transit System in 

2040 
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Chapter 5: Conclusions 

Transportation contributes importantly to the economy and society, but at substantial 

environmental cost. While much progress has been made to increase the energy efficiency of 

transportation systems, their continued expansion is a major threat to global climate change and 

urban air quality. Additional mitigation strategies are needed to reduce the negative 

environmental and public health impacts of transportation. Depending on technology maturity, 

policymakers, planners, and the general public may respond differently to various types of clean 

transportation technologies. Stakeholders and implementation-related issues also vary by specific 

type of clean transportation technologies. In this dissertation, I tackle the complexity of 

achieving sustainable transportation by developing data-driven analytical frameworks. I use 

these frameworks to address questions arise at various stages of technology development and 

deployment for the transition to sustainable transportation. More specifically, I investigate: (1) 

the life cycle energy and environmental impacts of fifteen advanced biofuel production pathways 

across the US (Chapter 2); (2) the most powerful socioeconomic, demographic, and geospatial 

predictors for plug-in electric vehicle adoption across California neighborhoods (Chapter 3); and 

(3) the energy and environmental impacts of transit bus electrification and strategies for charging 

infrastructure deployment at public transit agencies in the context of a large metropolitan area 

(Chapter 4). In concert, the three essays in this dissertation expand the current literature in 

multiple fields and the findings presented in each of the three essays have important implications 

for the planning, design, and implementation of sustainable transportation at various 

geographical scales. 

First, the production of advanced biofuels remains important in the transition to sustainable 

transportation, especially before we overcome major barriers to large-scale transportation 
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electrification. With a particular focus on wastes and biomass residues, I find that utilizing these 

resources in the contiguous US can generate 3.1 to 3.8 exajoules (EJ) of renewable energy 

annually, which would be a net energy gain of 2.4 to 3.2 EJ, and would displace GHG emissions 

of 103 to 178 million metric tons of CO2 equivalent every year. Maximizing the benefits of 

energy recovery from waste requires attention to the life cycle implications of various 

technology pathways, the spatial distribution of waste feedstocks, and the local conditions under 

which waste feedstocks will be processed.  

Second, national mandates such as the US Renewable Fuel Standard (RFS) likely do not 

maximize even renewable energy production, let alone environmental benefits. Likewise, 

renewable portfolio standards, a widely employed policy in the electricity sector, could lead to 

sub-optimal use of waste biomass. In the literature, bioenergy and biofuel policies have been 

analyzed mainly from the perspective of climate change mitigation, food security, or cost, but 

my analysis shows they also do not optimize energy production. It is important to combine life 

cycle assessment with spatial analytical techniques for multi-criteria assessment of technology 

pathways and the identification of hot spots for the refinement of existing energy policies. 

Indexing volumetric targets and mandates as well as financial subsidies for renewable energy to 

life cycle emissions-based performance measures will lead to more sustainable production of 

advanced biofuels.  

Third, a revealed preference approach using vehicle registration data and neighborhood-

level characteristics from existing data sources can help policymakers and planners better 

understand the adoption of plug-in electric vehicles (PEV) in a cost-effective way. Although 

PEV adoption has taken place in 98% of census tracts in California between 2010 and 2018, the 

growth has been uneven across the California market. Using lasso regression and Monte Carlo 
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sampling, I find that the market penetration of PEVs is generally higher in more affluent 

neighborhoods with many homeowners and highly-educated residents. These neighborhoods 

typically have larger proportions of residents employed in the information technology sector or 

occupied in management, business, science and arts, residents with bachelor’s or higher degrees, 

middle-aged residents, and households with annual incomes greater than $200K and two vehicles 

available. The lack of pro-environment intention and behaviors as well as the proportions of low-

income households and low-value and high-density housing units negatively associate with PEV 

adoption. The deployment of workplace charging may be more effective than the deployment of 

public DC fast charging. The deployment of public slow chargers negatively associates with 

PEV adoption, and thus may not be an effective strategy to incentivize PEV adoption. Although 

high occupancy vehicle (HOV) lane access positively associates with PEV adoption, the overall 

impact of allowing PEVs free access to HOV lanes would depend on the net environmental 

benefits as a result of increased PEV adoption on one hand, and the possible degradation of HOV 

lane operations due to increased HOV lane traffic that reduces time savings and reliability on the 

other. 

Fourth, neighborhood-level PEV adoption behaviors in California vary by vehicle 

technology and price range. For instance, pro-environment intention and behaviors play a more 

significant role in predicting the adoption of economy battery electric vehicles (BEVs) than 

economy plug-in hybrid electric vehicles (PHEVs). The proportion of residents with at least high 

school completion positively associates with the adoption of economy BEVs and economy 

PHEVs, whereas the proportion of highly-educated residents is a predictor of economy BEV 

adoption. Highest-earning households have relatively stronger preferences for luxury BEVs and 

economy PHEVs than economy BEVs. Two-vehicle households have demonstrated greater 
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preferences for economy PHEVs and economy BEVs. Earnings, travel behaviors and subsequent 

charging needs vary by occupation, industry, and worker class, resulting in varying preferences 

for specific PEV technology across different types of employment status and commute patterns. 

Long neighborhood average commute times and the opportunity to reduce commute time by 

accessing HOV lanes appears to motivate the adoption of economy PHEVs.  

In addition, effective planning of charging infrastructure deployment is critical to the 

successful transition to battery electric buses (BEBs) at public transit agencies. Using the 

Infrastructure Planning for Electric Buses (IPEB) tool that I developed, I find that California’s 

Innovative Clean Transit regulation and local BEB transition commitments would result in a 

significant increase in electricity demand at transit agencies over the next five to ten years. The 

transition to BEBs would increase particulate matter emissions from brake and tire wear in the 

near term and immediately reduce NOx, CO, and GHG emissions. With projected electrification 

efforts at ten public transit agencies that I analyzed, Los Angeles County could reduce its 

weekday GHG emissions by 411-473 metric tons in 2025 and up to 888 metric tons by 2040. 

Plug-in chargers along with the deployment of smart charging could support the full pre-

pandemic services for the majority of buses across the ten transit agencies, with the exception of 

six LA Metro buses. Smart charging would be a critical element in the planning of transit bus 

electrification, as it reduces costs associated with charging infrastructure and electric demand by 

lowering charger needs and shaving peak load. With certain objectives, such as minimizing total 

costs and minimizing interference with the provision of transit services, the optimal scheme of 

charging infrastructure deployment can be identified for the cost-effective planning of transit bus 

electrification. 
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Overall, I take a data-driven approach in this dissertation and apply systems thinking to the 

interdisciplinary and applied research. This dissertation not only benefits future research in the 

area of sustainable transportation, but also exemplifies potential strategies for improving 

planning practices and policy making across multiple geographical scales.  

 

 

 

 

 




