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Interference Effects in Rotational State Distributions; 

* Propensity and Inverse Propensity 

' . . :j: 

Clyde W. McCurdy and William H. Miller 

Department of Chemistry, and Materials and Molecular 
Research Division of the Lawrence Berkeley Laboratory, 

University of California, Berkeley, CA 94720 

Abstract 

Semiclassical scattering theory has been used to investigate 

interference effects in rotational state distributions for inelastic 

atom-diatom collisions. The ~j = even selection rule for homonuclear 

molecules is seen semiclassically to be an interference effect, and when 

this symmetry is weakly broken--i.e., an "almost homonuclear" molecule, 
. ' 

one for which the odd anisotropy is much smaller than the even anisotropy--

,' the interference persists in the form of a propensity rule, 'cr (odd ~j) << 

a (even ~j). If the odd anisotropy is sufficiently large, however, one 

can see an inversion of the normal propensity, i.e., it can happen that 

a (odd ~j) >a (even ~j). It is suggested that rotationally state 

selected experiments which resolve this interference structure would be 

an extremely sensitive measure of the anisotropy in the interaction 

potential. 

*This work was done with support from the U. S. Energy Research and 

Development Administration. 
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I. Introduction 

The primary effect of quantum mechanics in atomic and molecular 

collision processes is to provide an interference structure about the 

results given by classical mechanics. There are many examples of this, 

perhaps the best known one being the interference (and rainbow) structure 

i 1 . . 1, 2 seen n e ast1c atom-atom scatter1ng. 

Classical S-matrix theory3 is a semiclassical approach that adds the 

quantum principle of superposition (i.e., interference) to classical 

mechanics in a general and correct manner and is thus able to describe 

quantum interference effects in complex--i.e., inelastic and reactive-­

collision processes. The first application4 of classical S-matrix theory, 

in fact, showed that there is an interference structure in internal state 

distributions.--e. g., the distribution of final vibrational or rotational 

states after an inelastic or reactive collision--quite analogou$ to the 

1 2 interference features in the angular distribution for elastic scattering~ ' 

The physical origin of this interference in internal state distributions 

is precisely the same as that of interference in elastic scatteri~g: 

in both cases there is more than one classical trajectory which leads to 

the specific final state (a specific final internal state or.a specific 

scattering angle), and the net amplitude for the transition is the sum 

of amplitudes related to each such trajectory; interference between these 

several classical trajectories results when the net amplitude is squared 

to obtain cross sections. 

The interference features in inelastic and reactive scattering are 

5 often quenched, however, because experimental measurements are rarely 

' . 
. I. 

... 

·' I 

·. 
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state-selected, and anything less than measurements of completely specified 

initial and final states involves some averaging that tends. to wash out 

the interference structure. (For elastic atom-atom scattering there are 

no internal states, so that the differential cross section is the 

complete measurement in this case.) 

In this paper we discuss an interference effect in rotationally inelastic 

scattering that i.s often not quenched by av~raging. To see its origin, 

consider rotational excitation of a homonuclear diatomic molecule, e.g., 

N2, by collision with an atom. As is well known, quantum mechanics only 

allows an even change in the rotational quantum number j. This selection 

rule, llj = even, 3c 6 is a,lso obtained rigorously in classical S-matrix theory ' 

where it appears as an interference effect; i.e., classical trajectories 

with odd llj exist but destructive interference causes the net amplitude 

for them to be zero. Section II reviews this in more detail. 

The interesting situation arises for an "almost homonuclear" diatomic 

molecule, i.e., a heteronuclear diatomic for which the odd anisotropy 

is much smaller than the even anisotropy. In this case odd llj transitions 

are diminished by destructive interference 'but yet have finite cross 

sections. This propensity, or weak selection rule is oftennot quenched 

by averages over impact parameter or the initial and final m-components 

of the rotational state, and has been observed and noted in some calculations. 7 

It is clear that it cannot be properly described by a completely classical 

theory which does not include interference. 7 ' 8 

This paper reports calculations we have carried out, using classical 

S-matrix theory, to illustrate and characterize this propensity rule by 

systematically varying the relative amounts of the even and odd anisotropies 
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of representative interaction potentials. Section III describes the· 

results of these calculations. 

One particulary interesting, and unexpected effect seen in the 

calculations is the discovery of an "inverse propensity" effect. As 

noted, if the odd anisotropy is zero (i.e., a homonuclear molecule), 

odd ~j transitions have zero cross section, and not surprisingly, 

increasing the odd anisotropy increases the cross section for odd 8j 

transitions. This can continue until the cross sections for odd 8j 

are actually larger than those for even 8j transitions. For a given 

value of the anisotropy one can sometimes see both the usual propensity 

(enhanced even ~j transitions) for small 8j and the inverse propensity 

(enhanced odd 8j tran!:iitions) for large 8j. It is clear that experiments 

that are sufficiently state-selected to observe these effects would be 

extremely useful in obtaining quantitative information about the. 

anisotropy of the interaction potential. 

: . 
• • 

• 
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II. Qualita'tive Discussion 

To see the semiclassical origin of the selection and propensity rules 

3c 
it is sufficient to consider rotational excitation of a plane rotor. 

The classical Hamiltonian for such a system is 

p2 2 
H(P,R,j,q) = 2~ + Bj + V(R,q) (2.1) 

where (P,R) are the momentUm and coordinates for the translational degree of 

freedom (with reduced mass~), and (j,q) are the action~angle variables for 

th~ rotational degree of freedom; B is the rotation constant for the rotor. 

The action variable j is the classical counterpart to the rotational quantum 

number. 

The semiclassical expression for the probability of the jl + j 2 
3 

rotat:f..onal transition i(> 

(2. 2) 

where the classical S-matrix element (i.e., the transition amplitude) 

is given by 

' (2. 3) 

(units being used such that h = 1), where ¢ is the action integral 

¢(j 2,j1 ) =-ldt [R(t) ddt P(t) + q(t) :t j(t)] (2.4) 
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and j
2

(q
1

, jl) is the final value of the rotational angular momentum that 

results from a classical trajectory with the following initial conditions: 

(2.5a) 

R(t ) = R (an arbitrarily large value) 
· 1 max (2.5b) 

(2.5c) 

E is the total energy of the system. q
1 

is evaluated at the root of the 

equation 

(2.6) 

and the sum in Eq. (2.3) is a sum of such terms over all values of q1 in 

the interval (0, 2TI) that satisfy Eq. (2.6). The reader may consult 

~arlier work3 for more details of this semiclassical theory. 

One knows that j 2 (q1) (dropping the argument jl for notational· 

simplicity) is a periodic function in the interval (0, 2TI)beca~se q
1 

and q1 + 2n is the same physical initial condition. (In the present 

example, the angle variable q is the orientation angle of the rotor.) 

If the rotor is homonuclear (i.e., V(R,q) "' V(R,q+'lr)), however, then 

ql and q1 + TI are also the same physical initial condition since a rotation 

by TI interchanges the two identical ends of the rotor. The function 

j 2 (q1) is thus periodic in the interval (O,n), as shown in Fi~ure 1. 

In the simplest generic case, therefore, Eq. (2~6) will have 4 roots, 

.. " 
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as indicated graphically in Figure 1, so that the S-matrix element will 

• 
have 4 terms, 

.. 
(2. 7) 

each term being of the form in Equation (2.3). The first and third 

terms, however, are not independent; the only difference between the 

t t j t · f h" h th t constructed ~s that - (3 ) wo ra ec or~es rom w ~c ese erms are ~ q
1 

= 

q
1 

(l) + TI, and for all values of time t one thus has 

(2. Sa) 

(2. 8b) 

j (3) (t) = j (1) (t) (2.8c) 

(2.8d) 

It then follows that 

= ' . 
(2. 9) 

• 
and 



or 

<f>. • 
(3) 

J2,Jl 

so that 

where 

s (3) 

j2,j 1 

.6j ... j ~j 
2 1 
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... <t> . (l) 
- 1T(j2-jl) ' . j2,jl 

(2.10) 

= s. j 
(1) 

J2' 1 
e 

-i1T.6j 
(2 .11) 

The second and fourth terms in Eq. (2.7) are related in a similar way,· 

-i1T.6j 
e 

so that the net S-matrix element is 

' (2.12) 

.(2.13) 

The rigorous selection rule is thus apparent for the homonuclear case: 

= 0 .6j odd (2•14a) 

.6j even (2.14b) 

which we again emphasize is a direct consequence of interference. 

• 'It 

• 

i • 

• 
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Consider now what happens if a small odd anisotropy is introduced 

in the potential V(R,q) (e.g., a small term proportional to cosq): the 

shape of the function j 2 (q
1

) will be slightly perturbed and cease to be 

identical in the intervals (O,n) and (n,2n), as seen in Figure 1. The 

first and third terms in Eq. (2.7) will thus not cancel identically for 

odd 6j as before, although there will still be considerable destructive 

interference if the symmetry of j 2 (q
1

) is only slightly perturbed. The 

transition probability for odd ~j transitions, though still small, will 

now be finite. 

The degree to which the symmetry of j
2

(q
1

) about n is broken is 

directly related to the amount of odd anisotropy in the interaction 

potential. In the next section we present some sample calculations 

which show the propensity effects as a function of relative magnitudes 

of the even and odd anisotropies in the potential. 
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III. Example Calculations 

a. The Helicity Conserving Approximation. 

To keep the calculations as simple as possible we decided to carry 

9 10 them out within the framew,prk of the "j conserving" approximation ' z . 

that has been used recently in quantum mechanical coupled channel calcula-

tions and found to be reasonably accurate in a number of cases (particularly 

so for integral cross sections that are averaged over initial and final 

m-components of the rotational states). Although there may be cases for 

which this approximation is inadequate, it should suffice to demonstrate 

the'interference effects in rotational excitation that were discussed in 

the previous section. 

The complete (classical) Hamiltonian in the helicity representation 

for an atom-rigid rotor system has been given before11 and is 

p2 2 
H(P,R,j,q,K,qK) =-- + Bj + V(R,y) 

2il 

(3.1) 

where (R,P) are the coordinate and momentum for relative translational 

motion, (j,q) are the action-angle variables for the rotational degree 

of freedom, and (K,qK) are the action angles for the helicity; i.e., 

K is the component of total angular momentum along the relative coord±nate 

vector, K = j.i and qK is the angle variable conj~ugate to it. J is the 

total angular momentum, which is conserved, and B ~s the rotation 

constant for the rotor. y is the angle between the center of mass 

coordinate vector and the vector along the rotor, 

• 

• 

' . 
• 
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" " cosy = r•R 

and is given in terms of the canonical variables by11 

I 2 21 
cosy = V 1-K /j cosq (3.2) 

The helicity-or j -conserving approximation9•10 is to assume that z . 

K is conserved, for which it is necessary to replace the Hamiltonian in 

Eq._ (3.1) by one that· does not involve the angle qK. The most obvious 

way to do this is simply to average_H in Ect·. (3.1) over qK (this 

corresponds to taking the diagonal matrix elements of the Hamiltonian 

. h . 10) h b h i i b k operator ~n quantum mec an~cs , w ere y t e quant ty n square rae ets 

in Eq. (3.1) is replaced by 

(Augustin and Rabitz12 have also noted that this is the c~assical version 

of the "j conserving" approximation.) More recently, however, arguments 
z 13,14 

have been presented, with numerical examples to support them, that 

2 the term in square brackets, the orbital angular momentum R, , should be 

taken as a constant and all reference to the total angular momentum J 

discarded. We have done this. Thus the classical Hamiltonian we have 

used is 

H(P,R,j ,q) + (3.3a) 

Furthermore, since we have only considered transitions with jl = 0~ only 

the case K = 0 need be treated, so that Eq. (3.2) becomes 
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cosy = cosq 

i.e., 

y = q (3.3b). 

This approximate Hamiltonian, Eq. (3.3h one recognizes as the same as 

that for the plane rotor discussed in Section II with the addition of 

the centrifugal term .R-
2

/2llR2• 

The classical S-matrix elements obtained from the Hamiltonian in 

Eq. (3.3) depend parametrically on 1, S. j (1), and in terms of them 
J2' 1 

the cross section for the jl -+ j 2 transition is 

. , 

in practice this sum is taken as an integral which is evaluated by 

quadrature· 

b. The Initial Value Representation. 

From the qualitative discussion in Section II it is clear that 

(3.4) 

typical S-matrix elements in the present example will have four terms 

contributing to them. Fo~ quantitative purposes it would be necessary 

to use a uniform asYmptotic approximation3 for them, rather than the 

primitive semiclassical approximation discussed in Section II. Although 

uniform asymptotic expressions for this situation have been discussed,
15 

. 4 
it seemed simpler to us to employ the initial value representation. This 

' ... 

-., -· 
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integral representation for the classical S-matrix has the advantage that 

if it is evaluated directly (i.e., numerically) it automatically "uniformizes" 

the result in an approximate fashion. It has been seen in a number of 

4 16 examples ' to be quite accurate for processes that are not strongly 

classically forbidden, i.e., that have transition probabilities not too 

small, ~ 10-2• 

The initial value representation for the classical S-matrix is4 

S. j = (2TI) -l 
J2' 1 

(3.5) 

where ¢ and j 2 (q
1
,j

1
) are the same quantities as in Section II,, and. q1 

is the initial phase in Eq. (2.5d); similarly the final phase q2 is 

defined as 

q = ~im [q(t) - 2Bj(t) ~R(t)/P(t)] 
2 t-+<X> 

The integral over q1 was evaluated by fitting the functions (suppressing 

the argument j
1

) j 2 (q
1
), q

2
(q

1
), and ¢(q) + q1 [j 2 (q1)-j 1 ]-~which are 

1 ·. 
all periodic in th~ integral (0,2TI)--to Fourier series. Typically "' 32 

classical trajectories were run at equally spaced increments·of q
1 

to 

generate a thirty-two. term Fourier expansion for them. Using these 

Fourier series for the functions involved, the integrand of Eq. (3.5). 

could then be accurately evaluated at any value of q1 , allowing one to 

use a high order quadrature to evaluate the integral without requiring 

a large number of classical trajectories to be run. 
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c. Interaction Potential and Results. 

An anisotropic Lennard-Jones potential, 

where 

v
0

(R) = E[(R /R)
12

- 2(R /R) 6] m m 
(3.6) 

qualitatively represents many atom-diatom systems and is a useful form 
j . 

without a large number of arbitrary parameters. It is convenient to 

measure energy in units of £ and distance in units of R • For the 
m 

translational energy E and the rotation constant B we have used 

E/£ = 150 

B/£ = 0.1 

The anisotropy parameters a1 and a2 are the variables of interest 

to explore the interference effects discussed in Section II. 

The first set of calculations are with anisotropy parameters 

and illustrate the rigorous selection rule for the homonuclear case 

(a1 = 0) and the weak selection, or propensity rule, for the almost 

homonuclear (a1 = 0.15 case. Figure 1 .shows the rotational.quantum 

(3.7a) 
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number function j 2 (q1
); as discussed irt Section II it is identical in the 

intervals (O,TI) and (TI,2TI) for the homonuclear case and slightly distorted 

when this synunetry is broken. The cross sections for these two cases are 

shown in Figure 2 and are a clear illustration of the interference effect 

being discussed. In this calculation rotational excitation to j 2 = 16 

is classically allowed for low orbital angular momentum i, and one 

sees in Figure 2 that the propensity rule persists even into the classically 

forbidden region j 2 > 16. 

Interference effects of this type have been seen in the calculations 

17 of Thaddeus and Green for the case of He + CO collisions. The interference 

nature of these effects was pointed out by Augustin and Miller, 7 who also 

showed that although a purely classical calculation (the usual quasi-

classical Monte Carlo method) cannot reproduce the interference structure, 

· it can reproduce the average rotational excitation spectrum well. The 

inability of purely classical calculations to describe these interference 

effects 8 has also been discussed by Brumer. 

Before carrying out these calculations we had expected that the 

interference structure would be quenched as the odd anisotropy parameter 

a
1 

is increased relative to the even anisotropy parameter a
2

• Although 

this does happen eventually, interesting things are observed before the 

interference is quenched completely. 

Figure 3 shows the cross sections for the values a
1 

= 0.3 and 0. 4, 

still with a1 = ~.2. One notes two distinct regions of behavior: for 

small j 2 the ordinary propensity rule is observed, but at large j
2 

the 

situation is reversed, odd Qi transitions are enhanced. The cross 

sections for the still larger valuesof the odd anisotropy a
1 

= 0.7 and 0.8, shown 
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in Figure 4, show the inverse propensity even at small j2, and after a 

transition region show the usual propensity at the largest values of j~. 

Calculations with other combinations of a
1 

and a 2 show the same qualitative 

behavior if a 2 is increased while holding a
1 

constant. 

This rather surprising behavior can be understood in terms of the 

same arguments about interfering trajectories that were used to describe 

the ordinary propensity effects in the almost homonuclear case (a1 << a 2) 

in Section II. Since in the present example the interference between 

trajectories 1 and 2 and between 3 and 4 causes no observable interference 

structure--either it is quenched by the sum over ~ or does not vary 

~ignificantly with j 2--it is useful to group terms 1 and 2 and terms 

3 and 4 of Eq. (2.7) together, 

s. . = s. j 
(I) 

+ sj . 
(II) 

J 2 ,Jl J2' 1 2,]1 

where 

s . 
(I) 

= s. . (1) 
+ s. j 

(2) 
j2,Jl J2,Jl J 2' 1 

s. . (II) 
= s. . 

(3) 
+ sj . 

(4) 

J2,Jl J2,Jl 2,]1 

(3.8) 

The two terms in Eq. (3.8) are complex numbers and may thus be written as 

s. . 
(I) ~ i<PI 

= Pr e 
J2,Jl 

s. j 
(II) ~ i<j>II 

= Pir e 
]2. 1 

' 
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t' 0 

where p
1 

and p
11 

are non-oscillatory; thus 

where 

As discussed before, if a
1 

= 0 (the homonuclear limit) one has 

so that Eq. (3.9) becomes 

2 
jsj . I = 2p[l + cos(~~j)] 

2,]1 

(3.9) 

(3.10a) 

(3.10b) 

from which the rigorous selection rule follows. As a1 increases, p1 

and p11 are no longer equal, and also the phase difference 6~ varies 

from that_ in Eq. (3.10b). In fact our computational results indicate 

that for a2 = 1.2 the phase difference varies with ~j and a
1 

approximately 

as 

(3.11) 

0.4 and j 2 = 12, therefore, 
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.. 
M> ::: -7T~j + 7T 

i.e., the interference is exactly out of phase with that predicted by the 

ordinary propensity (which sterns from M> = - 7T~j). The dependence of M> 

on a1 and ~j in Eq. (3.11) qualitatively explains all the interference 

behavior observed in our calculations. 

Eventually, however, the interference structure is quenched for 

a 2 « a1 . This is shown in Figure 5 for the case a
1 

= 1. 0 and a 2 = 0. 5. 
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IV. Concluding Remarks 

Semiclassical theory provides a natural and useful way to understand 

quantum interference effects in internal state distributions. These are 

completely analogous to the interference effects in angular distributions 

for elastic (or inelastic) scattering which .3re also usefully described 

semiclassically. 

The model calculations described in Section III show that interesting 

interference structure in rotational state distributions need not be . . 

quenched by sums over orbital angular momentum and averages over the 

initial and ·final m components of the rotational states. Semiclassical 

theory provides a convenient means of calculating these cross sections 

(although this could also have been done quantum mechanically). As in 

• elastic scattering, however, the most important contributions of semi-

classical theory is the insight into the physical origin of the quantum 

effects that it provides. 

The most unexpected effect seen in this example is that the interference 

structure need not be quenched as soon as the weak selection rule (small 

cross sections for odd ~j transitions) is violated. Experimental 

observations of these interference effects would be quite exciting. 
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Figure~tions 

1. The final rotational quantum numbf,:!r as a function of the initial 

phase of the rotor. The potential function is that in Eq. (3.6), 

and the orbital angular momentum £ = 10. The solid curve corresponds 

to the homonuclear case a
1 

= 0, a
2 

1.2; this curve is identical 

in the intervals (O,'TT) and (TI,2'TT). The dotted curve is the "almost 

homonuclear" case a
1 

0.15, a 2 = 1.2. The dashed line indicates 

the graphical solution :for the four roots ·of the equation j 2 (q1 ) = 10. 

2. Cross sections for rotationally inelastic transitioris jl = 0 ~ j 2 . 

The potential function is given in Eq. (3.6). The solid line connects 

values for the homonuclear case a
1 

= 0, a~ = 1.2, and the dashed line 

the values for the "almost homonuclear" case a
1 

0.15, a 2 = l. 2. 

~· Same as Fig. 2 except the anisotropy parameters are (a
1

,a
2

) = 

(0.3,1.2) (solid line) and (a
1

,a
2

) = (0.4,1.2) (dashed line). 

4. Same as Fig. 2 except the anisotropy parameters are (a
1

,a
2

) = (0.7,1.2) 

(solid line) and (a
1

,a
2

) = (0.8,1.2) (dashed line). 

5. Sa~e as Fig. 2 except the anisotropy parameters are (a
1

,a
2

) (1.0,0.5). 
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