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Interference Effects in Rotational State Distributions;

*
Propensity and Inverse Propensity

o _ , s
Clyde W. McCurdy and William H. Miller
Department of Chemistry, and Materials and Molecular

Research Division of the Lawrence Berkeley Laboratory,
University of California, Berkeley, CA 94720

Abstract

Seoiclassical ecatte;ing theo;y Has been~used to.inveetigate
lpcerfe;ence effectsvin rotatiooal-state distribotions for inelastic
atom—dlatoﬁ collieloos. The AJ = even selectlon rule for homonuclear
_molecules is seeo sem1c1a531cally to be an 1nterference effect, and when
VthlS syﬁmecry 1s weekly broken——1 e., an aloost homonuclear molecule,
Hone for whlch the odd anlsotropy is much smaller than the even anisotropy--
‘tﬁe 1nterference persists in the form of a propen81ty rule, g (odd Aj) <<
o (even Aj). If the odd anisotropy is sufficiently large, however, one
can see an inversion of the normal propensity, i. e., it can happen‘that
o (odd A3) > o (even Aj) It is suggested that ro;ationally state
selected experimentsnwhich resolve‘this lnterference‘etructure would be.
an exfremely sensitive measufe of the anieotropy in the inferaction |
potential, | |

*This work was done with support from the U. S. Energy Reseerch and

Development Administration.



I. vIntroduction

The.primary effect of quantum mechanics in atomic'and'molecular
collision processes is to provide an interference struéture_about the
results given bylclassical mechanics. There are many eaamples of this,
perhaps the best known one being the interference (and rainbow) structure
seen in elastic atom—atom scattering.™’

Clas51ca1 S-matrix theory3 is a semiclassical approach that adds the.
quantum principle of superposition (i.e., interference) to classical
mechanics in a general and correct manner and is thus able to describe
' quantum interference effects in complex——i.e., inelastic and reactive-—:
collision‘processes.. The first application4 of class1cal S-matrix theory,
Jin fact, showed that there is an 1nterference structure in internal state
-distributions——e g., the distribution of final vibrational or rotational
vstates after an inelastic or reactive collision--quite analogous to.the _
interference features in the angular distribution for elastic scattering 1,2
The phy81cal origin of this 1nterference in internal state distributions
is precisely the same as that of interference in elastic scattering:
in both cases there is more than one classical trajectory nhich leads to
the specific final state (a specific final internal state or,a specific
scattering angle), and the net amplitude for the transition is the sum
of amplitudes related to each such trajectory; interference between these
several classical trajectories results when the net amplitude is squared
to obtain_cross sections. | |

The interference features in inelastic and reactive scattering are

5 K o ’
often quenched,” however, because experimental measurements are rarely
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state-selected, and anything less than measurements of completély specified

initial and final states involves some averaging that tends to wash out.

the_interferegce structure. (For elastic atom—atoﬁ scattering there afe
no internal states, so that the differential cross section is thé
compléte measurement in this case.)

In this paper we discuss an interferencé effect inxrdtationally inelastic
scattéring that is often not quenched by averaging. To see its origin;
conside:‘rotational excitation of a homonuclear diatomié molecule, é.g.,

NZ’ by collision with an atom. As is well known, quantum mechanics only

‘allows an even change in the rotational quantum number j. This selection

rule, Aj = even, is also obtained rigorously in classical S-matrix theory3c’6

where it appears as an interference effect; i.e., classical trajectories

Vith odd Aj exist but destructive interférence causes the net émplitude
for them to‘be Zero. Section,IIvreviews this in morévdetail. |

| The interesting situation arises for an "almost homonuclear" diatomic
molecule, i.e., a heteronuclear diatomic for which the odd anisotropy
is much smaller than the even anisotropy. In this case odd Aj transitions
are diminished by destructive interference but yet have finite cross
sectioﬁs. This propensity, or weak selectibn rule is often not qugnched
by averagés over impact parameter or the initial and finél m—-components

of the rotational state, and has been observed and noted in some caléulatiohs.

’It is clear that it cannot be properly described by a completely classical

theory which does not include interference.7’

This paper reports calculations we have carried out; using classical

S-matrix theory, to illustrate and characterize this propensity rule by

systematically varying the relative amounts of the even and odd anisotropies



of representative interacfibn~potentiéls. Seétion III déscriﬁes the
results ofvthese célculdtions.‘

| One pérfiéulary intéresting, and unexpected effect seen in the
calculatioﬁs is the discovery.of an "inverse propensityﬁ‘éffect. As
noted, if the odd anisotropy is zero (i.e., a hoﬁonucleér.moiecﬁle);
‘_odd Aj.transiﬁioﬁs have zéro cross section, and not surprisingly,
iﬁcreasiﬁé the odd anisotropy increases the cross section for odd Aj
’tfénsifiohs. This can continue until the cross sectioné for odd AJ
are‘actually 1argér than those for even Aj transitions. Fof a given
vélue'of tﬁe anisotroﬁy one can sometimes see both the usﬁal propénsiﬁy

(enhanced even Aj transitions) for small Aj and the inverse propensity

(enhanced odd Aj transitions) for large Aj. It is clear that expefiments-

"that are sufficiently state-selected to observe these effects wquld‘Be
extremely useful in obtaining quantitative information about the.

anisotropy of the interaction potential.
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II. Qualitative Discussion

To see the semiciassical_origiﬁubf the seigction and propensity rules
it is sufficient to considgr rotational excitation of a plane rotor;3c
The classical Hamiltonian for such a system is

p% 2 ‘ ’

H(P,R,3,9) = 57 + BIT + V(R,q) , o : (2.1)
where (P,R) are the momentum and goordinates for the trénslational degree of
freedom (with reduced mass u), and (j,q) are fhe‘agtionvAnélelvariables for
the rotational degree of freedom; B is the rotation coﬁstanﬁ for the rotor.
The action variable j is the classical counterpart to ﬁhe rotational quantum
number.

The semiclassical expres51on for the probability of the jl -+ JZ

3
rotational transition is

12 - ' (2.2)

P, .. =1s, .,
329, Tyl

where the classical S-matrix element (i.e., the transition amplitude)

is given by

BJz(ql,j) e : " -
]. exP[1¢(stJl)] ’ (2-3) .

jz’jl .Z[ZTH

(units being used such that h = 1), where ¢ is the action-integfél.

' ¢(j2,jl) =-£ dt [R(t) P(t) + q(t) j(t)] ., | (2.‘4)'



-6 .

and jz(al’.jl) is the final value of the rotational éngﬁlarvﬁOmehtﬁm that

results from a classical trajectory with the following iﬁitial conditions:

j(;i)'= jl (an integer)v R o - , (Z.Sa)

R(-tl) max

R (an arbitrarily large value)‘ ' ' '  ‘ _ (2.5b)

~Voue-s8] o | (2.5¢)

P(t))

Ca(e) =3 2By WRGED/RGE) 5 @5

' E_is the total energy of the system. El is evaluated at the root of the

equation
i;Q;»3)) = 3, (an integer) - | S (2.8)

and the sum in Eq. (2.3) is a sum of such terméiéver ail values of El in . : E
the iqtervalv(O, Zﬁ) that satisfy Eq. (2.6). The reader may consult
éarlier'work3 for more details of this semiclassicai thebry; |
One knows that jz(al) (dropping the argument ji for notationai‘
simplicity) is a ?eriodic function in':he interval (O,IZF)fbecaﬁsé 51
and 51 + Zn is the same physical initial condition. '(In';he preseﬁt
example, the angle variable q is the orientation anglé_of the fétora)-
If the rotor is homonucléaf”(i.e., V(R,q) = V(R,q+ﬂ)j, hbWéver,’then
51 and 51 + T are also the samevphysical initial'condition'sinceva ropaﬁﬁon . : |
by T interchanges the fwo identical ends 6fvthe rotor. The fﬁnction‘ - . |
jz(al)'is thus periodicvin the interval (0,m), as shown iﬁ Figufe 1. . _ : ;

In the simplest generic case, therefore, Eq. (2.6) will have 4 roots, _ ' :



as indicated graphically in Figure 1, so that the S-matrix element will

have 4 terms,

(1) @, @ LW G

+S, . S, + S, ,
3g03y - g3y 35031

IS R N

each term being of the form in Equation (2.3). The first and third

terms, however, are not independent; the only difference between the

(3) _

two trajectories from which these terms are constructed is that El

(1)

ql .+ T, and for all values of time t one thus hés
R ey = RW (o) | o  (2.8a)
P(3)(t)n= P(l)(t) - h S :: (2.8b)
i®w =3P '- D (@.80)
)= qPwyer . o e (2>.8d) |

It then follows that

4Pa) 3P @) |
Sy ‘I-~<_11=<'1'1(3) = f—aafff.]al=al_(1_) PR (21.»9.)
‘and |
05,5, F ZZdt =@ 5 P.‘3" ®) + q(3‘)(t:) 3 4j_(3)(t)1:
- - Kch_ P w £ W+ @ R IOy
=o, W g Edtij(l)(t) :

jz’jl 0



.or
G) . @ iy T ey
Y500, " Papes, MY - (2:10)
so that
(3) Q -imay o g |
S = S. e - > (2'11)
where
A3 = 3,73, :

The ‘second énd fourth terms in Eq. (2.7) are related in a similar way,"

(4)

S, . =5 . 2) e“:mAj ’ : ' S (2.12)
123) 32033 | o

so that the net S-matrix element is
s, go=m@re™hy s W By eay
2231 IR P Iz2dy 7 |

.

The‘rigorous selection rule is-thus apparent for the homonuclear case:

S, . =0 , Aj odd : S - (2.14a)
jz’Jl . . . : .

@,

s @
35034 APYRIY

= 2(S ) , Aj even ' (2.14b)

' which we again emphasize is a direct consequence of interference.



Considef now Qhat happens if a small odd anisotropy.is introduced
in the potential V(R,q) (e.g., a small term proportional to cosq) the
shape of the function jz(ql) will be sllghtly perturbed and cease to be
1dentica1 in the intervals (O,W) and (n,2w), as seen in Figure 1. The
first end>third terms in Eq.'(2;7) will bbbs not cancel identieaily for
odd Aj as before, although therelwill still be considerable deetructive
interference if the symmetry of Jz(ql) is only slightly perturbed The
transition probability for odd Aj tran51tlons, though still small will
now be finite.

The-degree to Whieh the symmetry of jz(al) about 7 is broken is.
directly related to the amount of‘odd anisotropy in the interactien
potential. In ;he nexb.section we present some samplé calculations
which show the‘prepensity effects as a function of relative magnitudes

of the even and odd anisotropies in the potential.

k-3
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III. Example Calculations

a. The Hellcity Conserving Approximation.

To keep the calculations as simple as possible we decided to carry
them out within the framework of the "j conserving" approximation9 »10
.that has been used recently in quantum mechanical coupled channel calcula—
tions and found to be reasonably accurate in a number of cases (particularly
so for integral cross sectlons that are averaged overvinitial and final
m—components of the rotational states). Although there may be cases for
which this approximation is inadequate, it should suffice to demonstrate
the'interference effects in rotational excitation that were discussed in

the previous section. |

The complete (classical) Hamiltonian in the helicity representation

for an atom-rigid rotor system has been given before11 and is

)2 E
ax 2u

+ (%! [J2 K2+32 2 4 2 V22 Vi2-i? cosq, ], (3.1)

2

H(P,R,j,q,K, + Bj™ + V(R,Y)

where (R,P) are the coordinate and momentum for relative translational.
motion, (j,q) are the action-angle variables for the'rotational degree

of freedom, and (K,qK) are the action angles for the heiicity; i;e,,

K is the component of total angular momentum along the reiative-coordinated
vector, K = 3-& and U is the angle variable con%ugate to-it. J is the |
total angular momentum, which is conserved,_and B is the rotation

constant for the rotor. vy is the angle between the center of mass

coordinate vector and the vector along the rotor,
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A A
cosy = r*R s

and is given in terms of the canonical variables by11

cosy = V1-K°/4° cosq C : o (3.2)

9,1
’ is to assume that

- The helicity-or jz—conserviﬁg approximatidn
K is conserved, for which it is necessary to replace the'Hamiltonian in

Eq..(3.1) by one that does not involve the angle Qg+ The most obvious

. way to do this is simply to average H in Eq. (3.1) over qp (this

corresponds to taking the diagonal matrix»elements of‘the Hamiltonian
operator in quantum mechanicslo), Qﬁereby thg quantity in square brackets
in Eq. (3.1) is replaced by

32 + 32 - %1 .
(Augustin and Rabitzlz have also noted that.this is the classical version
of the "jz conserviéfg.;fproximation.) More recently, however, arguments
have been presented, ’ with numerical examples to support them, that
the term in square brackets, the orbital angular momentum 22, should be
taken as a constant ahd'all reference to the totél angular momentum J
discafded. We have done this. Thus'the classical Hamiltonian‘we have

used is

. . P2 22 2 . ) o |
H(P,R,j,q) = 'é'ﬁ + ——7 + Bj + V(R,Y) . - ‘ (3.3a)
o ar®

Furthermore, since we have only considered transitions with jl = 0, only

 the ‘case K = 0 need be treated, so that Eq. (3.2).beéomes



-12-

cosy = cosq >
i.e., , '

Y = q . . . . ‘ ', "“ : ' ) . (3. 3b) . ‘,-
This approximate Hamiltonian, Eq. (3.3), one tecognizes as the same as
that for the plane rotor discussed in Section II with the addition of
the centrlfugal term £ /2uR2

The classical S-matrix elements obtained from the Hamiltonian in
Eq. (3.3) depend parametrlcally on %, S j ), . and in terms of them

: J22dy

the cross section for the 31 > j2 transition is

o s f‘:(zzu) sy 4 @] ;- (3.4)

2 -1 k (23 +l) =0 2*J l : L -

in practice this sum is taken as an integral which is evaiuated by ?
‘quadrature - i

b. The Initial Value Representation.

From the qualitative discussion in Section II it is clear that ' . , | ﬂ
typical S-matrix elements in the present example will have four terms . :

o : _ ¢

contributing to them. For quantitative purposes it would be necessary

to use a uniform asymptotic approx1mation3

for them, rather than the
primitive semiclassical approximation discussed in Seetion II. Although ' v f
uniform asymptotic expressions for this situation have been discussed,15

it seemed simpler to us to employ the initial value representation.4 This !
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integral representation for the classical S-matrix has the advantage that:

if it is evaluated directly (i.e., numerically) it automatically "uniformizes"
the result in an approximate'fashion. It has been seen in a number of
examplesa’16 to be quite accurate for processes that are not strongly

classically forbidden, i.e., that have transition probabilities not too

> —2.

small, < 10

The initial value representation for the classical S-matrix is

, 2 13q,,(q,,3,)
= —1 . 2 1 l Li . - .

where ¢ and jz(al,jl) are the same quantities as in Section II’~and»§1

is the initial phase in Eq. (2.5d); similarly the final phase 62 is

" defined as

d, = %im [q(t) - 2Bj(t) WR(£)/P(L)]
o0
The integral over 51 was evaluated by fitting the functions (suppressing
the argument j,) Jz(ql), qz(ql), and ¢(q1) + qltjz(ql)'jl]f*WhiCh are
all périédié in thé‘integral'(O,ZH)——to Fourier series. Typically 32

classical trajectories were run at equally spaced incfementsof-a1 to

generate a thirty-two term Fourier expansioh for them. Using these

Fourier series for the functions involved, the integrand of Eq. (3.5)
could'then be acéurately'evaltated at any value of 51’ allowing one toA
use a high order quadrature to evaluate the integral without requiring

a large number of classical trajectories to be rum.
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- ¢. Interaction Potential and Results.

An anisotropic Lennard-Jones potential,

V(R,Y).= VO(R) [1+ alPl(cosY)-+ a2P2(cosY)]v

where

VR = el® /R - 2@ /0%,

qualitativély represents many atom-diatom systems{and is a useful fo
_ _ y v ; ,

without a large number of arbitrary parameters. It is convenient to

measure energy in units of € and distance in units of‘Rm. For the

translational energy E and the rotation constant B we have used
E/E: = 150
B/e = 0.1 .

The anisotropy parameters a; and a, are the variables of interest

to explore the interference effects discussed in Section II.

The first set of calculations are with anisotropy;paﬁameters.

al =0.15

' a, = 1.2 R

and illustrate the rigorous selection rule for the homonuclear case
(al = 0) and the weak selection, or propensity rule, for the almost

homonuclear (al = 0.15 case. Figure 1 shows the'rotatiohal4quantum

| (3.7a)

(3.6)

rm

(3.7b)
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number function jz(al); as discussed in Section II it is identical in the -

intervais (0,m) and (m,27) for the homonuclear case and slightly distorted
when this symmetry is broken. The cross sections for these two cases are
shown in Figure 2 and are a clear illustration of the intérference effect
béing‘discussedlv_ln this calculation rotational excitation to j2 =}6 

is classically allowed for low orbital angular momentum £, and one

sees in Figure 2 that the.propensity rule persistsAeven into the classically

L

forbidden region j, > 16,

Interference effects of this type have been seen in the calculatioms

of Thaddeus and Green17 for the case of He + CO collisions. The interference

nature of these effects was pointed out by-Augustin and Miller,7 who also
showed that although a purely classical calculation (the usual quasi-

classical Monte Carlo method) cannot reproduce the interference structure,

it can reproduce the average rotational excitation Spectrum-well. The

inability of pufely classical calculations>to describe these interference
effects has also been discussed by Brumer.8 |
Before.carrying out these calculations we had expected that the

interference structuré would be quenched as the odd anisotropy parameter
a; is increased relative to the even anisotropy parameter a,. Al;hough
this does happen eventually, interesting things are 6bse:ved before the _
intérfereﬁce is quenched completely.

Figure 3 shb%é the cross sections for the values a, = 0.3 and.O.%,
still with a; = }.2. One notes two distinct reg?ons of behavior: fbr

small j2 the ordinary propensity rule is observed, but at large j2 the

situation is reversed, odd Aj transitions are enhanced. The cross

sections for the still larger valuesof the odd anisotropy a = 0.7 and 0.8,

shown



=16~

in Figure 4, show the inverse propensity even at small jg» end after a

transition region show the usual propensity at the largest values of jz',

Calculations with other combinations of a, and a, show the same qualitative

1 2

behavior if a, is increased while holding a; constant.

This rather surprising behavior can be understood in terms of the

same arguments about interfering trajectories that were used to describe

the ordinary propensity effects in the almost homonuclear case (al <<_a2)s

in Section II. _Since in the present example the ihtérference'between

trajectories 1 and 2 and between 3 and 4 causes no observable interference

structure-—either it is quenched by-thé sum over % or does not vary
significantly with jz--it is useful to group terms 1 and 2 and terms

3 and 4 of Eq. (2.7) together,

¥ . I - .
| + sz’jl s o ‘,‘ (3-8)

S, . =85,
3p03;  dp0d;
where

S . ‘I) = 5 (1) + S

(2)

an ., ®, )

P . ; . . S -

The two terms in Eq. (3.8) are complex numbers and may thus be written as

.

s (D) b i¢1
APYREY

(I1) L ei¢11

S. =
iyedy = P11 ’
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where P; and p;q are non-oscillatory; thus

iv.. 2

Y ’i$1 L III

2 _ |
|s "= 1lpp"e “4+py e

ip0dy

= p * bpp + 2oyt cos(A8) (3.9

where
A¢ = ¢II - ¢I .
As discussed before, if a; = 0 (the homonuclear limit) one has

pI = pII =p ‘ _ . (3.108)

Ad = -mA§ ., e (3.10b)

so that Eq. (3.9) becomes

555,17 = 201+ cos@p1

from which the rigorous selection rule followé. As a; increases, Py

and pyq are no longer equal, and also the phasé differénce Ad varies

from that in Eq. (3.;Ob). In fact our computational rgsults indicatg

that for a, = 1.2 the phase difference varies with Aj and 3, approximately

as

8 = -mhj (L+ .2 a) . | - (3.11)

For a; = 0.4 and j2 = 12, therefore,
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v,

Ap = -TAj + 7 ,

i.e., the interference is exactly out of phase with that predicted by the
ordinary propensity (which stems from A$ = - wAj). The dépendence of Ad

on a, and Aj in Eq. (3.11) qualitatively explains all the interference

1

behavior observed in our calculations.

Eventually, however, the interference structure is quenched for

a, << ai. This is shown in Figure 5 for the case,al'= 1.0 and az = 0.5.
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IV. Concluding Remarks

Semiclassicai theory provides a natural and uséftl way to uﬁderstand
quantum intefférence effects in internal state distributions. These are
completely analogous to the interference effects in aﬁguiar distributions
for elastic (or inelastic) scattering which are aléo usefully described
semiclassically.

Thevmodel calculations described in Section ITI show that interesting

interference structure in rotational state distributions need not be

quenched by sums over orbital angular momentum and averages over the

initial and final mvcomponents of the rotational states. Semiclassical
theor& provides a convenieﬁt means of célculating theée cross seétions
(although this could also have been done quantum mechanica;ly). As in
elastic scattering, however, the most important contributions of semi-
classical. theory is.the insight into the physical origin of the quantum
effécts_that it provides.

The most_unéxpec;ed effect seen in this example is that the interference
structure need not be quenched as soon as’ the weak selection rule (small
cross sections for odd Aj transitions) is violated. vExpefimental

observations of these interference effects would be quite exciting.
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Figure Captions

1. The final rotational quantum number as a function of the initial-
.phase of the foﬁo:. The potential function is that in Eﬁ. (3.6),
énd the orbital angular mgmentum 2 = 10. The soiid cur&e'corresponds
1 0, a, = 1.2; this cufveAis identical

in the intervals (0,T) and (m,2m). The dotted curve is the "almost

to the homonuclear case a

homonuclear" case a; =.0,15, a, = 1.2. Thg dashed line indicates
the graphical solutioﬂ}for the four roots;of the equation jz(al) = 10,

2. Cross secﬁidns for rotagionally inelastic transitions ji =0 - j2.
The potential function is given in Eq. (3.6). .The solid line connects
values fo£ the'homonuclear case a, = 0, a, % 1.2, and the dashed line
the values for the "almost homonuclear" case a, = 0.15, a, = 1.2.

3. Same as Fig. 2 except the anisotropy parameters are.(al;a2j1=

:.(0.3;1.2) (solid line) and>(al;a2) = (0.4,1.2) (dashed line).
4, Same as Fig. 2 except the anisotropy parameters are (él,az) =-<0.7,l.2)

(solid line) and (al,az) = (0.8,1.2) (dashed 1ine).

5. Same as Fig. 2 except the anisotropy parameters are (al,az) = (1.0,0.5).
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