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ABSTRACT: Concealed damage (CD) is defined as a brown discoloration of the kernel interior (nutmeat) that appears only
after moderate to high heat treatment (e.g.,, blanching, drying, roasting, etc.). Raw almonds with CD have no visible defects
before heat treatment. Currently, there are no screening methods available for detecting CD in raw almonds. Herein, the
feasibility of using near-infrared (NIR) spectroscopy between 1125 and 2153 nm for the detection of CD in almonds is
demonstrated. Almond kernels with CD have less NIR absorbance in the region related with oil, protein, and carbohydrates.
With the use of partial least squares discriminant analysis (PLS-DA) and selection of specific wavelengths, three classification
models were developed. The calibration models have false-positive and false-negative error rates ranging between 12.4 and 16.1%
and between 10.6 and 17.2%, respectively. The percent error rates ranged between 8.2 and 9.2%. Second-derivative preprocessing
of the selected wavelength resulted in the most robust predictive model.
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B INTRODUCTION increased levels of reducing sugars were observed in nuts with
internal browning.6 Similar observations were made in
hazelnuts” and in almonds exposed to simulated rainfall.” In
more recent studies, elevated levels of volatiles related to lipid
oxidation and amino acid degradation were observed in
almonds with CD.® Both lipid oxidation products and protein
degradation products can serve as reactants in the Maillard
browning reaction.

Near-infrared (NIR) spectroscopy is a rapid and effective
method for screening foods for specific chemical and physical
characteristics.” NIR is advantageous as a screening method
because it is nondestructive, can be used on whole foods, and
produces no waste. The NIR spectral region (720—2500 nm) is
ideally suited for foods because it contains absorbance bands
that result primarily from three chemical bonds: C—H (fats, oil,
and hydrocarbons), O—H (water and alcohol), and N—H
(protein). NIR spectroscopy is increasingly considered one of
the more promising in-line detection methods for rapidly
measuring specific chemical properties of food.’ It has been
successfully applied in detecting quality defects in macadamia
kernels,” walnuts,'® chestnut,""'* hazelnuts,'”'* and soybean
seed.”” It has also been employed for food composition
analysis, including oleic and linoleic acid content in peanut

Concealed damage (CD) in raw almonds [Prunus dulcis (Mill.)
D.A. Webb] is defined by the industry as a brown discoloration
of the kernel interior (nutmeat) that appears only after
moderate to high heat treatment (e.g, blanching, drying,
roasting, etc.,), as shown in Figure 1. CD may develop anytime
during harvest when rain occurs or after harvest when kernels
are in windrows or stockpiles and exposed to warm and moist
environments."”” Raw almond kernels with CD have no visible
defects on the interior or exterior surface of the kernel
Additionally, there are no visible signs of CD on the surface of
whole roasted kernels.” CD is frequently associated with a
strong bitter flavor(s) that can result in immediate consumer
rejection.’ Currently, there are no screening methods available
for detecting CD in raw almonds or other nuts affected by CD,
and processors often do not realize nuts are damaged until after
they have been roasted." Under current production practices,
the most common methods for detecting CD involve visual
inspection of roasted almonds after they are split open. Kernels
with a “dark brown” color over ~50% of the interior of the
kernel are considered to have CD.* A similar approach is used
for hazelnuts.” Visual inspection and manual sorting is time-

consuming, subjective, and labor-intensive and cannot be used
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Figure 1. Color development in raw and roasted almonds (120 °C for 90 min) exposed to 5% moisture (control) and 11% moisture (CD).

Pearson was the first to recognize the use of NIR
spectroscopy for the identification of CD in raw almonds™®'’
and evaluated the transmission spectrum from 700 to 1400 nm
in almonds soaked in water and dried but not roasted. In these
studies, almonds were either soaked for 30 min and exposed to
95% relative humidity for 30 h (short moisture) or soaked for
60 min and exposed to 95% relative humidity for 60 h (long
moisture). Almonds were then dried at either 55 or 110 °C.
The higher temperature and shorter soak times produced the
greatest amount of CD. Almonds with CD had enhanced
absorption at 930 nm (oil absorption band). Raw almonds with
CD could be distinguished from normal almonds at an error of
12.4% using principal components of the absorbance, first- and
second-derivative spectra between 1000 and 1300 nm. Pearson
recognized that collecting the NIR spectra over the full
transmission range would be too slow to achieve desired
inspection rates of 40 nuts/s and, therefore, tested the
feasibility of using just six light-emitting diodes at 660, 830,
880, 890, 940, and 950 nm."” These data resulted in a
classification error rate of 14.3% for the validation set. More
recently, Nakariyakul’”*" achieved a higher classification rate
using hyperspectral transmission and focusing on a subset of
absorbing bands (760, 920, 935, and 970 nm) with a false-
negative (fn) error rate of 14.81%. Almonds used in this study
were generated by Pearson, as described above.

Herein, we present the development of a prediction model
for the classification of almonds with CD using reflectance NIR
in the extended range of the NIR spectrum (1125—2153 nm)
and employing data preprocessing and partial least squares
discriminant analysis (PLS-DA). Almonds evaluated in this
study were exposed to controlled humidity environments that
produced an internal nut moisture content of ~5% (control),
8% (mild CD), and 11% (100% CD). The percent CD in the
raw almonds was validated using colorimetry as described
previously.®

Developing a rapid in-line screening method for detecting
CD in raw almonds is a critical step toward improving quality
control measures in almond processing and offers the
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advantage of sorting almonds with CD into product lines that
do not require roasting or other heat treatments.

B MATERIALS AND METHODS

Sample Preparation. Dehulled raw kernels (100 Ibs, var.
Nonpareil) were supplied by the Nickels Soil lab (Arbuckle, CA) in
September 2013. Individual vessels containing ~100 g were exposed to
conditions that produced an internal kernel moisture of 5% (actual 5.4
+ 0.2%), 8% (actual 8.6 &+ 0.7%), or 11% (actual 10.4 + 1.5%) in a
controlled atmosphere (Thermo Scientific, Marietta, OH) at 45 + 2
°C. Under these conditions, CD is observed after 24 h. The moisture
content of the almonds was validated gravimetrically by drying samples
(~1 g) at 95—10S °C under vacuum to a constant weight. Moisture
was determined in triplicate, and the results were averaged.

NIR Reflectance Spectra Measurement. NIR diffuse reflectance
spectra were measured on single whole raw almond kernels using an
extended MicroNIR 2200 spectrometer (JDSU, Milpitas, CA). The
spectral range was collected from 1125 to 2153 nm using sampling
intervals of 8 nm per pixel. The detector used was a 128 pixel uncooled
element InGaAs (JDSU, Milpitas, CA). Reflectance spectra data (R)
were converted to absorbance using the log (1/R) transformation. A
Spectralon SRM-99 diffuse reflectance standard (Labsphere, North
Sutton, NH) was used as white calibration reference. For each
spectrum, 1000 scans with an integration time of 550 us were
averaged.

Data Preprocessing. NIR spectra are complex with broad
overlapping NIR absorption bands, making it often difficult to identify
unique spectral features related to individual chemical components
within a given sample. Therefore, a mathematical treatment
(preprocessing) of NIR spectra is often used to correct for unwanted
systematic sample-to-sample variation (e.g., kernel shape and rough-
ness of kernel surface), to help remove spectral baseline shift and
scattering caused by particle size differences, to reduce band
overlapping, and to enhance spectral differences.”” Data preprocessing
results in relevant NIR spectral data extraction without losing
information while removing unwanted information (e.g., interferences
or noise).”

After the acquisition, NIR spectra were converted to absorbance
and preprocessed using either standard normal variate (SNV) or a
nine-point second-order Savitzky—Golay filter (second-derivative
preprocessing). These two techniques alone and a combination were
compared to determine their effectiveness at removing baseline offsets.
Data preprocessing was performed using R and RStudio (version

DOI: 10.1021/acs jafc.6b01828
J. Agric. Food Chem. 2016, 64, 5958—5962


http://dx.doi.org/10.1021/acs.jafc.6b01828

Journal of Agricultural and Food Chemistry

2

1.5

1

0.5

1120 1220 1320 420 1520

Absorbance (log 1/R)

1620 1720 1820

1920

2020 2120

Wavelength (nm)

Figure 2. Mean SNV preprocessed absorbance spectra of almonds with NCD.
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Figure 3. Comparison of the mean second-derivative (Savitzky—Golay, nine smoothing points) preprocessed spectra of almonds with NCD and CD.

0.98.1102). The following packages were used for preprocessing and
PLS-DA: Chemometrics with R,** signal,** plyr,”® dplyr,”® and caret.”’

Determination of CD by Colorimetry. After NIR spectra were
acquired, the almonds were roasted at 120 °C for 90 min in a
convection oven (Thermo Scientific, Waltham, MA). Almonds were
then split in half along the natural seam, and the color of the internal
kernel was measured using a ColorFlex colorimeter (HunterLab,
Reston, VA) according to methods established previously.® The color
values L* (lightness), C (chroma), and h (hue), according to the CIE
LCh color scale were recorded using a portsize of 0.4 in. with D6S
optical sensor, 0° geometry, and 10° angle of vision. Almonds with CD
(L* < 71) were identified and grouped separately from those with no
concealed damage (NCD; L* > 71).°

Prediction of Almonds with CD. Preprocessed spectra (SNV,
second derivative, and a combination of both) were analyzed using
PLS-DA. Almonds were separated into two groups (NCD and CD)
using colorimetry. The data set (855 almonds) was then randomly
divided into calibration (655 almonds) and validation (200 almonds)
sample sets. NCD and CD almonds were assigned constant values of 0
and 1 for a two-class model, respectively.

For the calibration model, repeated cross-validation was used to find
the best model. Calibration models were evaluated on the basis of the
percentage false positive (% fp), percentage false negative (% fn), and
percentage error rate (% ER). A fn was defined as the percentage of
NCD almonds classified as those with CD, while fp was defined as CD
almonds classified as NCD. The % ER represents the percentage of
total almonds incorrectly classified by the predictive method.™"
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B RESULTS AND DISCUSSION

A representative NIR spectrum (1125—2153 nm) of the NCD
almonds, after SNV preprocessing, is shown in Figure 2. The
spectrum is characterized by broad and unresolved absorption
bands and is similar to spectra for peanut,”® walnut,'

Table 1. Results of the PLS-DA Model Using SNV, Second-
Derivative, and SNV and Second-Derivative Preprocessing

second second
SNV derivative derivative + SNV
(a) Calibration Model
wavelength selected 1408—-1465 1408—1465 1408—1465
(nm) 1902-1959  1692—1740 1692-1740
1902—1959 1902—1959
2064—2104
number of latent 4 7 4
variables
ROC"/% ER 0.908/9.2 0.918/8.2 0.918/8.2
specificity/% fn 0.839/16.1 0.876/12.4 0.840/16.0
selectivity/% fp 0.874/12.6 0.828/17.2 0.894/10.6
(b) Validation Model
% ER 9 7 9
% fp 8 8 9
% fn 11 6

“Area under the receiver operating characteristics.
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Table 2. Comparison of NIR Validation Results between Methods Used in the Classification of Almond with CD

Pearson'’ Nakariyakul*
range (nm) 700—1400 700—1400 (selected wavelength)
% ER 12.4-27.5 5.8
% fp 0.7-5.4 291-341
% fn 11.1-23.8 14.81-62.96

“On the basis of calibration models.

Nakariyakul*' results obtained herein”
700—1400 (selected wavelength) 1125—2153 (selected wavelength)
8.8 8.2-9.2
0.58—1.74 12.4-16.1
31.48—53.70 10.6—17.2

macadamia,” and shea nut."® To enhance spectral features and
compensate for baseline offsets, a second derivative of the
absorbance data, with respect to wavelength, was calculated. In
the second-derivative data, absorbance maxima are converted to
minima (Figure 3). The NIR spectra obtained after applying
the second derivative were characterized by 10 absorption
bands. These bands correlate with the major constituents of
raw almonds: lipid (50%), carbohydrates (~22%), and protein
(~21%).”” The absorption bands between 1165 and 1238 nm,
between 1692 and 1740 nm, and between 2064 and 2104 nm
are associated with lipids. These include the C—H (—CH)
second overtone stretching band (1200—1214 nm),” the C—H
(—=CH,) first overtone stretching band (1700—1724 nm),**'
and the C—H combination band (~2098 nm).*’ The
absorption bands between 1408 and 1462 nm and between
1902 and 1959 nm are associated with the H-OH second
overtone of water'® as well with protein. The absorption bands
between 1692 and 1740 nm and between 2064 and 2104 nm
are associated with the absorption of protein (~1700—1850
nm) and amino acids (~2080 nm), respectively,’” and the
region between 1902 and 1959 nm correlates with water and
amides (~1910—1920 nm).** Additionally, the absorption band
between 2064 and 2104 nm can be associated with the O—H
and carboxylic group (C=0-0) bands of carbohydrates.”’

An overlay of the averaged second-derivative spectra for
almonds classified as NCD and CD is also given in Figure 3.
The main differences between the NCD and CD spectra occur
at 1432, 1457, 1505, 1513, 1708, 1918, 2080, and 2096 nm.
The absorption bands at 1432, 1457, 1505, 1513, and 1918 nm
correspond to protein;>” the absorption band at 1708 nm
corresponds to free fatty acids and oil;'>** and the absorption
bands at 2080 and 2096 nm correspond to carbohydrates.
Almonds with CD present less absorbance in these regions,
indicating that kernels display decreased levels of lipids, protein,
and carbohydrates compared to controls. These results
correspond to observations of King et al,”* who reported
that almonds with CD have lower crude fat (oil) and total
carbohydrates compared to almonds with NCD. Additionally,
we recently demonstrated higher levels of volatiles related to
lipid oxidation and amino acid degradation in almonds with CD
compared to almonds with NCD.® Taken together, these
results indicate the metabolic processes that activate the
degradation of proteins, carbohydrates, and lipids are involved
in the development of CD. The free amino acids, sugars, and
products from the oxidation of lipids would be substrates for
the Maillard reaction and support the hypothesis that the
Maillard reaction is involved in the formation of CD in
almonds.

Initially, multiple PLS-DA models were evaluated using the
full wavelength region from 1125 to 2153 nm after data
preprocessing (SNV, second derivative, and SNV and second
derivative). In general, the best predictive models give low
percentage error rates (ie., the highest percentage of correct
classification). Herein, we found that using the full wavelength
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region resulted in models with high percentage error rates, and
therefore, PLS-DA models were developed using only relevant
portions of the NIR spectra. Table 1 summarize the prediction
performance of the calibration models and validation models,
which were selected because they had the lowest % ER, % fp,
and % fn rates. A large data set (200 samples) was analyzed to
optimize the prediction models. The lowest % ER (8.2%) was
obtained using only second-derivative preprocessing compared
to 9.2% when using SNV preprocessing and 8.2% when using
SNV and second derivative preprocessing. Although the % fp
rate was higher for this model (17.2%) compared to the SNV
(12.6%) and SNV and second-derivative preprocessing
(10.6%), the % fn was significantly lower (12.4%) compared
to these models (16%).

Previous studies employing infrared (IR) spectroscopy to
build models to discriminate differences between CD and NCD
focused on the absorbance range between 700 and 1400 nm’
and selected wavelengths within the 700—1400 nm absorbance
range.””>" Comparisons of these results to results obtained
herein are summarized in Table 2. Although the rates of % fp
were lower across these studies (0.7—5.4%) compared to our
results (12.4—16.1%), the rates of % fn were significantly higher
(11.1-62.96%) than those obtained using our predictive
models (10.6—17.2%). Additionally, the % ER ranged from
5.8 to 27.5%, whereas our predictive models gave a much
narrower range of 8.2—92%. The three PLS-DA models
presented herein offer significant improvements in the
prediction capabilities and are able to identify almonds with
CD with 90.8—91.8% certainty based on calibration models.
Although any of the three models presented could be
considered for further development of a rapid in-line screening
method for detecting CD in raw almonds, the PLS-DA model
based on the second-derivative spectra and using four
wavelength ranges (i.e, 1408—1462, 1692—1740, 1902—1959,
and 2064—2104 nm) gives the lowest rate of % fn and may be
the best choice for further method development.

Our results indicate that these PLS-DA predictive models
offer advantages over previously reported models and that CD
is related to the degradation of lipids, carbohydrates, and
proteins in almonds.
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