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Wormhole Hamiltonian Monte Carlo

Shiwei Lan,
Department of Statistics University of California, Irvine

Jeffrey Streets,
Department of Mathematics University of California, Irvine

Babak Shahbaba
Department of Statistics University of California, Irvine

Abstract

In machine learning and statistics, probabilistic inference involving multimodal distributions 

is quite difficult. This is especially true in high dimensional problems, where most existing 

algorithms cannot easily move from one mode to another. To address this issue, we propose 

a novel Bayesian inference approach based on Markov Chain Monte Carlo. Our method can 

effectively sample from multimodal distributions, especially when the dimension is high and the 

modes are isolated. To this end, it exploits and modifies the Riemannian geometric properties 

of the target distribution to create wormholes connecting modes in order to facilitate moving 

between them. Further, our proposed method uses the regeneration technique in order to adapt the 

algorithm by identifying new modes and updating the network of wormholes without affecting 

the stationary distribution. To find new modes, as opposed to redis-covering those previously 

identified, we employ a novel mode searching algorithm that explores a residual energy function 

obtained by subtracting an approximate Gaussian mixture density (based on previously discovered 

modes) from the target density function.

Introduction

In Bayesian inference, it is well known that standard Markov Chain Monte Carlo (MCMC) 

methods tend to fail when the target distribution is multimodal (Neal 1993; 1996; Celeux, 

Hurn, and Robert 2000; Neal 2001; Rudoy and Wolfe 2006; Sminchisescu and Welling 

2011; Craiu, R., and Y. 2009). These methods typically fail to move from one mode to 

another since such moves require passing through low probability regions. This is especially 

true for high dimensional problems with isolated modes. Therefore, despite recent advances 

in computational Bayesian methods, designing effective MCMC samplers for multimodal 

distribution has remained a major challenge. In the statistics and machine learning literature, 

many methods have been proposed address this issue (Neal 1996; 2001; Warnes 2001; 

Laskey and Myers 2003; Hinton, Welling, and Mnih 2004; Braak 2006; Rudoy and Wolfe 

2006; Sminchisescu and Welling 2011; Ahn, Chen, and Welling 2013). However, these 

methods tend to suffer from the curse of dimensionality (Hinton, Welling, and Mnih 2004; 

Ahn, Chen, and Welling 2013).
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In this paper, we propose a new algorithm, which exploits and modifies the Riemannian 

geometric properties of the target distribution to create wormholes connecting modes in 

order to facilitate moving between them. Our method can be regarded as an extension of 

Hamiltonian Monte Carlo (HMC). Compared to random walk Metropolis, standard HMC 

explores the target distribution more efficiently by exploiting its geometric properties. 

However, it too tends to fail when the target distribution is multimodal since the modes 

are separated by high energy barriers (low probability regions) (Sminchisescu and Welling 

2011).

In what follows, we provide an brief overview of HMC. Then, we introduce our method 

assuming that the locations of the modes are known (either exactly or approximately), 

possibly through some optimization techniques (e.g., (Kirkpatrick, Gelatt, and Vecchi 1983; 

Sminchisescu and Triggs 2002)). Next, we relax this assumption by incorporating a mode 

searching algorithm in our method in order to identify new modes and to update the network 

of wormholes.

Preliminaries

Hamiltonian Monte Carlo (HMC) (Duane et al. 1987; Neal 2010) is a Metropolis algorithm 

with proposals guided by Hamiltonian dynamics. HMC improves upon random walk 

Metropolis by proposing states that are distant from the current state, but nevertheless have a 

high probability of acceptance. These distant proposals are found by numerically simulating 

Hamiltonian dynamics, whose state space consists of its position, denoted by the vector θ, 

and its momentum, denoted by a vector p. Our objective is to sample from the distribution of 

with the probability density function (up to some constant) π(θ). We usually assume that the 

auxiliary momentum variable p has a multivariate normal distribution (the same dimension 

as θ) with mean zero. The covariance of p is usually referred to as the mass matrix, M, 

which in standard HMC is usually set to the identity matrix, I, for convenience.

Based on θ and p, we define the potential energy, U(θ), and the kinetic energy, K(p). We 

set U(θ) to minus the log probability density of θ (plus any constant). For the auxiliary 

momentum variable p, we set K(p) to be minus the log probability density of p (plus any 

constant). The Hamilto nian function is then defined as follows:

H θ, p = U θ + K p

The partial derivatives of H(θ, p) determine how θ and p change over time, according to 

Hamilton's equations,

θ
.

= ∇pH θ, p = M−1p
p. = − ∇θH θ, p = − ∇θU θ

(1)

Note that M−1p can be interpreted as velocity.

In practice, solving Hamiltonian's equations exactly is difficult, so we need to approximate 

these equations by discretizing time, using some small step size e. For this purpose, the 

leapfrog method is commonly used. We can use some number, L, of these leapfrog steps, 
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with some stepsize, e, to propose a new state in the Metropolis algorithm. This proposal is 

either accepted or rejected based on the Metropolis acceptance probability.

While HMC explores the target distribution more efficiently than random walk Metropolis, 

it does not fully exploits its geometric properties. Recently, (Girolami and Calderhead 2011) 

proposed a new method, called Riemannian Manifold HMC (RMHMC), that improvs the 

efficiency of standard HMC by automatically adapting to the local structure. To this end, 

they follow (Amari and Nagaoka 2000) and propose Hamiltonian Monte Carlo methods 

defined on the Riemannian manifold endowed with metric G0(θ), which is set to the Fisher 

information matrix. More specifically, they define Hamiltonian dynamics in terms of a 

position-specific mass matrix, M, set to G0(θ). The standard HMC method is a special 

case of RMHMC with G0(θ) = I. Here, we use the notation G0 to generally refer to a 

Riemannian metric, which is not necessarily the Fisher information. In the following section, 

we introduce a natural modification of G0 such that the associated Hamiltonian dynamical 

system has a much greater chance of moving between isolated modes.

Wormhole Hamiltonian Monte Carlo

Consider a manifold M endowed with a generic metric G0(θ). Given a differentiable curve 

θ(t) : [0, T] → M one can define the arclength along this curve as

ℓ θ ≔ ∫
0

T

θ
.

t TG0 θ t θ
.

t dt (2)

Under very general geometric assumptions, which are nearly always satisfied in statistical 

models, given any two points θ1, θ2 ∈ M there exists a curve θ(t) : [0, T] → M satisfying 

the boundary conditions θ(0) = θ1, θ(T) = θ2 whose arclength is minimal among such 

curves. The length of such a minimal curve defines a distance function on . Euclidean space, 

where G0, (θ) ≡ I, the shortest curve connecting θ1 and θ2 is simply a straight line with the 

Euclidean length ∥θ1 − θ2∥2.

As mentioned above, while standard HMC algorithms explore the target distribution more 

efficiently, they nevertheless fail to move between isolated modes since these modes are 

separated by high energy barriers (Sminchisescu and Welling 2011). To address this issue, 

we propose to replace the base metric G0 with a new metric for which the distance 

between modes is shortened. This way, we can facilitate moving between modes by creating 

“wormholes” between them.

Let θ1 and θ2 be two modes of the target distribution. We define a straight line segment, 

vW ≔ θ2 − θ1, and refer to a small neighborhood (tube) of the line segment as a wormhole. 

Next, we define a wormhole metric, GW (θ), in vicinity of the wormhole. The metric GW 

(θ) is an inner product assigning a non-negative real number to a pair of tangent vectors 

u, w:GW θ u, w ∈ ℝ+. To shorten the distance in the direction of vw we project both u, w to 

the plane normal to vW and then take the Euclidean inner product of those projected vectors. 

We set vW
∗ = vW vW  and define a pseudo wormhole metric GW

∗  as follows:
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GW
∗ u, w ≔ u − u, vW

∗ vW
∗ , w − w, vW

∗ vW
∗

= uT I − vW
∗ vW

∗ T w

Note that GW
∗ ≔ I − vW

∗ vW
∗ T is semi-positive definite (degenerate at vW

∗ ≠ 0). We modify this 

metric to make it positive definite, and define the wormhole metric GW as follows:

GW = GW
∗ + ∊vW

∗ vW
∗ T = I − 1 − ε vW

∗ vW
∗ T (3)

where 0 < ε << 1 is a small positive number.

To see that the wormhole metric GW in fact shortens the distance between θ1 and θ2, consider 

a simple case where θ(t) follows a straight line: θ(t) = θ1 + vWt, t ∈ [0, 1]. In this case, the 

distance under GW is

dist θ1, θ2 = ∫
0

1
vW

T GW vW dt = ∊ vW ≪ vW

which is much smaller than the Euclidean distance.

Next, we define the overall metric, G, for the whole parameter space of θ as a weighted sum 

of the base metric G0 and the wormhole metric GW,

G θ = 1 − m θ G0 θ + m θ GW (4)

where m(θ) ∈ (0, 1) is a mollifying function designed to make the wormhole metric GW 

influential in the vicinity of the wormhole only. In this paper, we choose the following 

mollifier:

m θ ≔ exp − θ − θ2 + θ − θ2 − θ1 − θ2 F (5)

where the influence factor F > 0, is a free parameter that can be tuned to modify the extent 

of the influence of GW : decreasing F makes the influence of GW more restricted around 

the wormhole. The resulting metric leaves the base metric almost intact outside of the 

wormhole, while making the transition of the metric from outside to inside smooth. Within 

the wormhole, the trajectories are mainly guided in the wormhole direction vW
∗ :G θ ≈ GW , so 

G(θ)−1 ≈ GW
−1 has the dominant eigen-vecto vW

∗  (with eigen-value 1/ε >> 1), thereafter v ~ 

N(0,G(θ)−1 tends to be directed vW
∗ .

We use the modified metric (4) in RMHMC and refer to the resulting algorithm as 

Wormhole Hamiltonian Monte Carlo (WHMC). Figure 1 compares WHMC to standard 

HMC based on the following illustrative example appeared in the paper by (Welling and Teh 

2011):
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θd ∼ N θd, σd
2 , d = 1, 2 .

xi ∼ 1
2N θ1, σx

2 + 1
2N θ1 + θ2, σx

2 .

Here, we set θ1 = 0, θ2 = 1, σ1
2 = 10, 1, σx

2 = 2, and generate 1000 data points from the above 

model. In Figure 1, the dots show the posterior samples of (θ1, θ2) given the simulated data. 

While HMC is trapped in one mode, WHMC moves easily between the two modes. For this 

example, we set G0 = I to make WHMC comparable to standard HMC. Further, we use 0.03 

and 0.3 for ∈ and F respectively.

For more than two modes, we can construct a network of wormholes by connecting any 

two modes with a wormhole. Alternatively, we can create a wormhole between neighboring 

modes only. In this paper, we define the neighborhood using a minimal spanning tree 
(Kleinberg and Tardos 2005).

The above method could suffer from two potential shortcomings in higher dimensions. First, 

the effect of wormhole metric could diminish fast as the sampler leaves one mode towards 

another mode. Second, such mechanism, which modifies the dynamics in the existing 

parameter space, could interfere with the native HMC dynamics in the neighborhood of a 

wormhole, possibly preventing the sampler from properly exploring areas around the modes 

as well as some low probability regions.

To address the first issue, we add an external vector field to enforce the movement between 

modes. More specifically, we define a vector field, f(θ, v), in terms of the position parameter 

and the velocity vector v = G(θ)−1p as follows:

f θ, v ≔ exp − V θ DF U θ v, vW
∗ vW

∗

= m θ v, vW
∗ vW

∗

with mollifier m(θ) := exp{−V (θ)/(DF)} , where D is the dimension, F > 0 is the influence 

factor, and V (θ) is a vicinity function indicating the Euclidean distance from the line 

segment vW,

V θ ≔ θ − θ1, θ − θ2 + ∣ θ − θ1, vW
∗ ∣ ∣ θ − θ2, vW

∗ ∣ (6)

The resulting vector field has three properties: 1) it is confined to a neighborhood of each 

wormhole, 2) it enforces the movement along the wormhole, and 3) its influence diminishes 

at the end of the wormhole when the sampler reaches another mode. Such a vector field acts 

as an external driving force on the sampler. In high dimensions, this approach works more 

effectively than the wormhole metric discussed above.

After adding the vector field, we modify the Hamiltonian equation governing the evolution 

of as follows:

θ
.

= v + f θ, v (7)
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We also need to adjust the Metropolis acceptance probability accordingly since the 

transformation is not volume preserving. (More details are provided in the supplementary 

file.) Figure 2 illustrates this approach based on sampling from a mixture of 10 Gaussian 

distributions with dimension D = 100.

To address the second issue, we allow the wormholes to pass through an extra auxiliary 

dimension to avoid their interference with the existing HMC dynamics in the given 

parameter space. In particular we introduce an auxiliary variable θD+1 ~ N (0, 1) 

corresponding to an auxiliary dimension. We use θ ≔ θ, θD + 1  to denote the position 

parameters in the resulting D + 1 dimensional space ℳD × ℝ. θD+1 can be viewed as random 

noise independent of θ and contributes 1
2θD + 1

2  to the total potential energy. Correspondingly, 

we augment velocity v with one extra dimension, denoted as v ≔ v, vD + 1 . At the end of the 

sampling, we project θ  to the original parameter space and discard θD+1.

We refer to MD × {−h} as the real world, and call MD × {+h} the mirror world. Here, h 
is half of the distance between the two worlds, and it should be in the same scale as the 

average distance between the modes. For most of the examples discussed here, we set h = 

1. Figure 3 illustrates how the two worlds are connected by networks of wormholes. When 

the sampler is near a mode θ1, − ℎ  in the real world, we build a wormhole network by 

connecting it to all the modes in the mirror world. Similarly, we connect the corresponding 

mode in the mirror world, θ1, + ℎ , to all the modes in the real world. Such construction 

allows the sampler to jump from one mode in the real world to the same mode in the mirror 

world and vice versa. This way, the algorithm can effectively sample from the vicinity of a 

mode, while occasionally jumping from one mode to another.

The attached supplementary file provides the details of our algorithm (Algorithm 1), along 

with the proof of convergence and its implementation in MATLAB.

Mode Searching After Regeneration

So far, we assumed that the locations of modes are known. This is of course not a realistic 

assumption in many situations. In this section, we relax this assumption by extending our 

method to search for new modes proactively and to update the network of wormholes 

dynamically. In general, however, allowing such adaptation to take place infinitely often 

will disturb the stationary distribution of the chain, rendering the process no longer Markov 

(Gelfand and Dey 1994; Gilks, Roberts, and Sahu 1998). To avoid this issue, we use the 

regeneration method discussed by (Nummelin 1984; Mykland, Tierney, and Yu 1995; Gilks, 

Roberts, and Sahu 1998; Brockwell and Kadane 2005).

Informally, a regenerative process “starts again” probabilistically at a set of times, called 

regeneration times (Brockwell and Kadane 2005). At regeneration times, the transition 

mechanism can be modified based on the entire history of the chain up to that point without 

disturbing the consistency of MCMC estimators.
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Identifying Regeneration Times

The main idea behind finding regeneration times is to regard the transition kernel T(θt+1|θt) 

as a mixture of two kernels, Q and R (Nummelin 1984; Ahn, Chen, and Welling 2013),

T θt + 1 ∣ θt = S θt Q θt + 1 + 1 − S θt R θt + 1 ∣ θt

where Q(θt+1) is an independence kernel, and the residual kernel R(θt+1|θt) is defined as 

follows:

R θt + 1 ∣ θt =
T θt + 1 ∣ θt − S θt Q θt + 1

1 − S θt
, S θt ∈ 0, 1

1, S θt = 1

S(θt) is the mixing coefficient between the two kernels such that

T θt + 1 ∣ θt ≥ S θt Q θt + 1 , ∀θt, θt + 1 (8)

Now suppose that at iteration t, the current state is θt. To implement this approach, we first 

generate θt+1 using the original transition kernel θt+1|θt ~ T (·|θt). Then, we sample Bt+1 

from a Bernoulli distribution with probability

r θtmθt + 1 = S θt Q θt + 1

T θt + 1 ∣ θt
(9)

If Bt+1 = 1, a regeneration has occurred, then we discard θt+1 and sample it from the 

independence kernel θt+1 ~ Q(·). At regeneration times, we redefine the dynamics using the 

past sample path.

Ideally, we would like to evaluate regeneration times in terms of WHMC's transition kernel. 

In general, however, this is quite difficult for such Metropolis algorithm. On the other 

hand, regenerations are easily achieved for the independence sampler (i.e., the proposed 

state is independent from the current state) as long as the proposal distribution is close 

to the target distribution (Gilks, Roberts, and Sahu 1998). Therefore, we can specify 

a hybrid sampler that consists of the original proposal distribution (WHMC) and the 

independence sampler, and adapt both proposal distributions whenever a regeneration is 

obtained on an independence-sampler step (Gilks, Roberts, and Sahu 1998). In our method, 

we systematically alternate between WHMC and the independence sampler while evaluating 

regeneration times based on the independence sampler only.

To this end, we follow (Ahn, Chen, and Welling 2013) and specify our independence 

sampler as a mixture of Gaussians located at the previously identified modes. More 

specifically, T(θt+1|θt), S(θt) and Q(θt+1) are defined as follows to satisfy (8):

T θt + 1 ∣ θt = q θt + 1 min 1, π θt + 1 q θt + 1

π θt q θt
(10)
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S θt = min 1, c
π θt q θt

(11)

Q θt + 1 = q θt + 1 min 1, π θt + 1 q θt + 1

c (12)

where q(·) is the independence proposal kernel, which is specified using a mixture of 

Gaussians with means fixed at the k known modes prior to regeneration. The covariance 

matrix for each mixture component is set to the inverse observed Fisher information (i.e., 

Hessian) evaluated at the mode. The relative weights are initialized as 1/k and updated at 

regeneration times according to the number to times each mode has been visited. Algorithm 

2 in the supplementary file shows the steps for this method.

Identifying New Modes

When the chain regenerates, we can search for new modes, modify the transition kernel 

by including newly found modes in the mode library, and update the wormhole network 

accordingly. This way, starting with a limited number of modes (identified by some 

preliminary optimization method), WHMC could discover unknown modes on the fly 

without affecting the stationarity of the chain.

To search for new modes after regeneration, as opposed to frequently rediscovering the 

known ones, we propose to remove/down-weight the known modes using the history of the 

chain up to the regeneration time and run an optimization algorithm on the resulting residual 
density, or equivalently, on the corresponding residual energy (i.e., minus log of density). 

To this end, we fit a mixture of Gaussians with the best knowledge of modes (locations, 

Hessians and relative weights) prior to the regeneration. The residual density function could 

be simply defined as πr(θt+1) = π(θt+1) − q(θt+1) with the corresponding residual potential 
energy as follows,

Ur θ = log ∂r θ + c = − log π θ − q θ + c

where the constant c > 0 is used to make the term inside the log function positive. To avoid 

completely flat regions (e.g., when a Gaussian distribution provides a good approximation 

around the mode), which could cause gradient-based optimization methods to fail, we could 

use the following tempered residual potential energy instead:

Ur θ, T = − log π θ − exp 1
T log q θ + c

where T is the temperature. Figure 4 illustrates this concept.

When the optimizer finds new modes, they are added to the existing mode library, and the 

wormhole network is updated accordingly.
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Empirical Results

In this section, we evaluate the performance of our method, henceforth called Wormhole 

Hamiltonian Monte Carlo (WHMC), using three examples. The first example involves 

sampling from mixtures of Gaussian distributions with varying number of modes and 

dimensions. In this example, which is also discussed by (Ahn, Chen, and Welling 2013), 

the locations of modes are assumed to be known. The second example, which was originally 

proposed by (Ihler et al. 2005), involves inference regarding the locations of sensors in a 

network. For our third example, we also use mixtures of Gaussian distributions, but this time 

we assume that the locations of modes are unknown.

We evaluate our method's performance by comparing it to Regeneration Darting Monte 

Carlo (RDMC) (Ahn, Chen, and Welling 2013), which is one of the most recent algorithms 

designed for sampling from multimodal distributions based on the Darting Monte Carlo 

(DMC) (Sminchisescu and Welling 2011) approach. DMC defines high density regions 

around the modes. When the sampler enters these regions, a jump between the regions 

will be attempted. RDMC enriches the DMC method by using the regeneration approach 

(Mykland, Tierney, and Yu 1995; Gilks, Roberts, and Sahu 1998). However, these methods 

tend to fail in high dimensional spaces where modes are isolated, small and hard to hit.

We compare the two methods (i.e., WHMC and RDMC) in terms of Relative Error of 

Mean (REM) proposed by (Ahn, Chen, and Welling 2013). The value of REM at time t 

is REM t = θ t − θ∗
1 θ∗

1, which summarizes the in approximating the expectation of 

variables across all dimensions. Here, θt+1* is the true mean and θ t  is the mean estimated 

by MCMC samples collected up to time t. We examine REM(t) as a function of t until 

a pre-specified time representing a given computational budget (Ahn, Chen, and Welling 

2013; Anoop Korattikara 2014). Because RDMC uses standard HMC algorithm with a flat 

metric, we also use the baseline metric G0 ≡ I to make the two algorithms comparable. Our 

approach, however, can be easily extended to other metrics such as Fisher information.

Mixture of Gaussians with Known Modes

First, we evaluate the performance of our method based on sampling from K mixtures 

of D-dimensional Gaussian distributions with known modes. (We relax this assumption 

later.) The means of these distributions are randomly generated from D-dimensional uniform 

distributions such that the average pairwise distances remains around 20. The corresponding 

covariance matrices are constructed in a way that mixture components have different density 

functions. Simulating samples from the resulting D dimensional mixture of K Gaussians 

is challenging because the modes are far apart and the high density regions have different 

shapes.

The left panel of Figure 5 compares the two methods for varying number of mixture 

components, K = 5, 10, 15, 20, with fixed dimension (D = 20). The right panel shows the 

results for varying number of dimensions, D = 10, 20, 40, 100, with fixed number of mixture 

components (K = 10). For both scenarios, we stop the two algorithms after 500 seconds 

and compare their REM. As we can see, WHMC has substantially lower REM compared to 
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RDMC, especially when the number of modes and dimensions increase. As we can see, in 

dimensions above 20, RDMC is trapped in a subset of modes.

Sensor Network Localization

For our second example, we use a problem previously discussed by (Ihler et al. 2005) and 

(Ahn, Chen, and Welling 2013). We assume that N sensors are scattered in a planar region 

with 2d locations denoted as xi i = 1
N . The distance Yij between a pair of sensors (xi, xj) 

is observed with probability π(xi, xj) = exp(−∥xi − xj∥2/(2R2)). If the distance is in fact 

observed (Yij > 0), then Yij follows a Gaussian distribution N (∥xi − xj, δ2) with small δ; 

otherwise Yij = 0. That is,

Zij = I Y ij > 0 ∣ x ∼ Binom 1, π xi, xj

Y ij ∣ Zij = 1, x ∼ N xi − xj , σ2

where Zij is a binary indicator set to 1 if the distance between xi and xj is observed.

Given a set of observations Yij and prior distribution of x, which is assumed to be uniform 

in this example, it is of interest to infer the posterior distribution of all the sensor locations. 

Following (Ahn, Chen, and Welling 2013), we set N = 8, R = 0.3, δ = 0.02, and add three 

additional base sensors with known locations to avoid ambiguities of translation, rotation, 

and negation (mirror symmetry). The locations of sensors form a multimodal distribution (D 
= 16).

Figure 6 shows the posterior samples based on the two methods. As we can see, RDMC 

very rarely visits one of the modes (shown in red in the top middle part); whereas, WHMC 

generates enough samples from this mode to make it discernible. As a result, WHMC 

converges to a substantially lower REM (0.02 vs. 0.13) after 500 seconds.

Mixture of Gaussians with Unknown Modes

We now evaluate our method's performance in terms of searching for new modes and 

updating the network of worm-holes. For this example, we simulate a mixture of 10 D-

dimensional Gaussian distributions, with D = 10, 100, and compare our method to RDMC. 

While RDMC runs four parallel HMC chains initially to discover a subset of modes and 

to fit a truncated Gaussian distribution around each identified mode, we run four parallel 

optimizers (different starting points) using the BFGS method. At regeneration times, each 

chain of RDMC uses the Dirichlet process mixture model to fit a new truncated Gaussian 

around modes and possibly identify new modes. We on the other hand run the BGFS 

algorithm based on the residual energy function (with T = 1.05) to discover new modes for 

each chain. Figure 7 shows WHMC reduces REM much faster than RDMC for both D = 

10 and D = 100. Here, the recorded time (horizontal axis) accounts for the computational 

overhead for adapting the transition kernels. For D = 10, our method has a substantially 

lower REM compared to RDMC. For D = 100, while our method identifies new modes over 

time and reduces REM substantially, RDMC fails to identify new modes so as a result its 

REM remains high over time.
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Conclusions and Discussion

We have proposed a new algorithm for sampling from multi-modal distributions. Using 

empirical results, we have shown that our method performs well in high dimensions.

Although the examples discussed here use a flat base metric I, with the computational 

complexity of O D , our method can be easily extended to more informative base metric, 

such as Fisher information with the computational complexity of O D3 , to adapt to the local 

geometry.
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Figure 1. 
Comparing HMC and WHMC in terms of sampling from a two-dimensional posterior 

distribution with two isolated modes (Welling and Teh 2011).
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Figure 2. 
Sampling from a mixture of 10 Gaussian distributions with dimension D = 100 using 

WHMC with a vector field f(θ, v) to enforce moving between modes in higher dimensions. 

Dashed lines show the minimal spanning tree.
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Figure 3. 
Illustrating a wormhole network connecting the real world to the mirror world (h = 1). As an 

example, the cylinder shows a wormhole connecting mode 5 in the real world to its mirror 

image. The dashed lines show two sets of wormholes. The red lines shows the wormholes 

when the sampler is close to mode 1 in the real world, and the magenta lines show the 

wormholes when the sampler is close to mode 5 in the mirror world.
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Figure 4. 
Left panel: True energy function (red: known modes, blue: unknown modes). Right panel: 

Residual energy function at T = 1.05.
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Figure 5. 
Comparing WHMC to RDMC using K mixtures of D-dimensional Gaussians. Left panel: 

REM (along with 95% confidence interval based on 10 MCMC chains) for varying number 

of mixture components, K = 5, 10, 15, 20, with fixed dimension, D = 20. Right panel: REM 

(along with 95% confidence interval based on 10 MCMC chains) for varying number of 

dimensions, D = 10, 20, 40, 100, with fixed number of mixture components, K = 10.
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Figure 6. 
Posterior samples for sensor locations using RDMC (left) and WHMC (right). Squares show 

the locations of reference sensors, point clouds show the marginal distributions, and circles 

show the corresponding modes.
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Figure 7. 
Comparing WHMC to RDMC in terms of REM using K = 10 mixtures of D-dimensional 

Gaussians with D = 20 (left panel) and D = 100 (right panel).
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