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ABSTRACT OF THE THESIS

Hamilton-Jacobi Reachability Estimation in Reinforcement Learning

by

Milan Ganai

Master of Science in Computer Science

University of California San Diego, 2024

Professor Sicun Gao, Chair

Recent literature has proposed approaches that learn control policies with high perfor-

mance while maintaining safety guarantees. Synthesizing Hamilton-Jacobi (HJ) reachable sets

has become an effective tool for verifying safety and supervising the training of reinforce-

ment learning-based control policies for complex, high-dimensional systems. Previously, HJ

reachability was limited to verifying low-dimensional dynamical systems – this is because

the computational complexity of the dynamic programming approach it relied on grows expo-

nentially with the number of system states. To address this limitation, in recent years, there

have been methods that compute the reachability value function simultaneously with learning

control policies to scale HJ reachability analysis while still maintaining a reliable estimate of

x



the true reachable set. These HJ reachability approximations are used to improve the safety, and

even reward performance, of reinforcement learning (RL) based control policies and can solve

challenging tasks such as those with dynamic obstacles and/or with lidar-based or vision-based

observations. We first introduce the framework for HJ reachability estimation in reinforcement

learning. Then, we review the recent developments in the field of HJ reachability estimation

research for reliability in high-dimensional systems. Subsequently, we present a new framework

called Reachability Estimation for Safe Policy Optimization that employs HJ reachability estima-

tion for stochastic safety-constrained reinforcement learning and provide safety guarantees and

optimal convergence analysis.
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Chapter 1

Introduction

As autonomous control systems are deployed in the real world, there is a growing need

to develop methods with rigorous safety guarantees. Verification-based approaches relying on

control theoretic functions have been in the forefront among studied solutions. However, the

large uncertainty and complex nature of real world dynamics limits the practical application of

many of these approaches.

Hamilton-Jacobi (HJ) reachability analysis is a rigorous tool that verifies the safety

and/or liveness of a dynamic system [8, 24]. For a specified model and target set, HJ reachability

analysis is typically used to compute the set of initial states from which the system can reach

a goal despite bounded disturbance. For safety analysis, HJ reachability can provide the set

of initial states from which the system may be forced into the failure set despite best-case

efforts (the complement of this set of initial states is, therefore, the safe set). This verification

method provides guarantees on the safety properties of a system and the approach generalizes to

various difficult problem settings. These include problems with nonlinear dynamics, reach-avoid

problems with time-varying goals or constraints [41], problems that must be robust to bounded

system uncertainties or disturbances [20, 23], and finding other certificate functions [46].

HJ reachability computation is based on finding a viscosity solution for the Hamilton-

Jacobi-Bellman partial differential equation (HJBPDE) corresponding to a specified dynamics

model and target set. Proposed approaches have accomplished this by discretizing the state
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space and using dynamic programming mechanisms [10]. However, this approach has been

practically deployed on systems with at most 6 dimensions [22]. The main challenge is that the

computational complexity of these approaches is exponential in the state dimensions, rendering

them intractable in relatively large dimension systems.

To address this issue on the curse of dimensionality, past works have proposed approaches

that make strong assumptions such as convexity, order preserving dynamics, and mixed monotone

systems [33, 34, 50] or exploit the system’s structure [21, 41, 58, 59, 72, 74]. However, these

approaches still do not necessarily scale well with the complexity encountered in the learning-

based controls. Furthermore, they still require access to the model for active sampling and/or

computation of gradients of the dynamics.

In this thesis, we focus on a recent line of work that learns the HJ reachability value

function in conjunction with learning control policies. Particularly, recent approaches like [4, 42]

demonstrated how to learn a discrete-time value function solution of the HJBPDE via a recursive

Bellman formulation. These value functions describe the maximum reachability violation or

reward (depending on the usage) that a particular control policy achieves from each state. This

form of learning has opened a new direction of research in which the learned reachability

value function can directly be incorporated in reach-avoid problems [56] and safety-constrained

reinforcement learning [43,99]. While learning a certificate has been implemented for other safety

verification functions (e.g. control barrier functions), significant benefits of learning reachability

value functions include a) the ability to guarantee convergence to a valid solution of the HJBPDE

of a particular control policies’ dynamics, and b) not having to perform hyperparameter tuning

for the loss function. Learned reachability value functions for learned control policies have been

demonstrated to be effective in various challenging problems [42, 43, 54, 56, 99].
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Figure 1.1. A layout of this thesis on approaches using HJ reachability for learning-based
controls. In Chapters 2 and 3 we review background and survey papers in HJ reachability
estimation. In Chapter 4 we present a novel Reachability Estimation for Safe Policy Optimization
algorithm.

1.1 Motivations and Overview

While there are several recent surveys on related topics, none discuss the rapidly growing

literature on HJ reachability for learned controls. Bansal et al.’s 2017 survey [8] reviews HJ

reachability methods for high-dimensional reachability analysis (examples shown up to 10D) and

includes a brief discussion on reachability analysis that use neural networks to solve HJBPDEs.

Nonetheless, the approaches presented in the survey may not necessarily scale to the complexity

encountered in systems controlled primarily with learned-based policies (>20D). Chen et al.

2018 [24] presents approaches to scale HJ reachability verification through system decomposition

of nonlinear dynamics and applications in unmanned airspace management, but does not discuss

learning-based HJ reachability techniques. The 2021 survey by Althoff et al. [6] covers methods

that find a guaranteed overapproximation of the reachability set via set propagation; however,

it leaves to future work HJ reachability methods for online verification of partially known

environments, as well as systems involving neural networks. The recent survey by Dawson et

3



al. [35] covers topics on neural certificates – this class includes learning-based Lyapunov and

Barrier functions [16, 17, 44, 76]. In this review we aim to provide an overview of estimating

(i.e. via learning) HJ reachability specifically for learned controls. A schematic of the classes of

methods we discuss in this thesis can be seen in Fig. 1.1. We structure this thesis in the following

manner:

• In Chapter 2, we formally introduce reinforcement learning and HJ reachability analysis

and discuss approaches that use traditional HJ reachability for learned control.

• In Chapter 3, we survey the recent progress made in learning-based HJ reachability

estimation.

• In Chapter 4, we present a novel Reachability Estimation for Safe Policy Optimization

algorithm for stochastic safety-constrained reinforcement learning with safety guarantees

and optimal convergence analysis.

• In Chapter 5, we discuss the limitations of HJ reachability estimation approaches and lay

out new research directions for future works in using HJ reachability estimation.

1.2 Acknowledgement

Chapter 1 has been submitted for publication of the material in “Hamilton-Jacobi Reach-

ability in Reinforcement Learning: A Survey,” M. Ganai; S. Gao; S. Herbert, 2024. The thesis

author was the primary investigator and author of this paper.
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Chapter 2

Background

2.1 Markov Decision Processes

A Markov decision process (MDP) is defined asM := ⟨S,A,P,r,γ⟩, where

• S ⊆ Rn and A⊆ Rma are the state and action spaces respectively,

• P : S ×A×S → [0,1] is the transition function capturing the environment dynamics,

• r : S ×A→ R is the reward function associated with each state-action pair,

• γ is a discount factor in the range [0,1),

• SI ⊆ S is the initial state set,

• ∆0 : SI → (0,1] is the initial state distribution, and

• π : S×A→ [0,1] is a stochastic policy that is a distribution capturing an action distribution

given a state. Actions are sampled from this policy and affect the environment defined by

the MDP.
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In unconstrained RL, the goal is to learn an optimal policy π∗ maximizing expected discounted

sum of rewards, i.e.

π
∗ = argmax

π
E

s∼∆0
V π

r (s),where (2.1)

V π
r (s) := E

ξ∼π,P(s)
[ ∑
st∈ξ

γ
tr(st ,at)]. (2.2)

Note: ξ ∼ π,P(s) indicates sampling trajectory ξ for horizon T starting from state s

using policy π in the MDP with transition model P, and st ∈ ξ is the tth state in trajectory ξ .

Similarly, s′ ∼ π,P(s) indicates sampling the next state after state s using policy π with transition

model P. We will use the notation s′ to mean by default the next (sampled) state after the state s.

2.2 Dynamical Systems and HJ Reachability

In this thesis, we will consider continuous, fully observable dynamics that are either

deterministic or stochastic with bounds. Consider a dynamical system f : S ×A×D→ S:

ds
dt

= f (s,a,d) (2.3)

in which the state is s ∈ S ⊆Rn, the control (also known as action) is a ∈A, and the disturbance

is d ∈ D, where A⊆ Rma and D ⊆ Rmd are compact sets. We assume f is Lipschitz continuous

in s and uniformly bounded. We also assume that the control and disturbance signals a(·) and

d(·) are measurable [32]. In most cases, the works we cover either do not have a disturbance

variable, or model disturbance as a random sampled value. If there is no disturbance, then the

dynamical model is simply f : S ×A→ S.

Consider a Lipschitz surface function h : S → R≥0 which is the safety loss function that

maps a state to a non-negative real value, which is called the constraint value, or simply cost.

Note that h(s) = 0 if and only if there is no constraint violation at state s.

The failure set F is the set of states for which there is an instantaneous constraint

6



violation. Formally, the failure set is defined as the super-zero level set of h. In particular,

s ∈ F ⇐⇒ h(s)> 0. (2.4)

On the other hand, a target set is the set of states for which it is desirable to reach, and it can

be similarly defined. We will explore target sets in more depth in reach-avoid problems in

Section 3.2.

For a deterministic dynamics, it is possible to determine if an initial state will lead to

failure despite optimal actions. Then, the value function V : S×R→R and associated reachable

setR(F , t) are defined as:

V (s, t) := sup
d(·)

inf
a(·)

sup
τ∈[t,T ]

h(sτ) (2.5)

R(F , t) := {s ∈ S : V (s, t)> 0} (2.6)

In effect, this optimization over the action signal minimizes the maximum possible

reachable violation starting from any point in the state space. If the control never enters the

failure set when starting from state s, the value function will be zero. Otherwise, the value

function will be strictly positive. In the case of a finite horizon in time interval t ∈ [0,T ], dynamic

programming can obtain the optimal control and value function. Specifically, this will be the

solution to the time-dependent terminal-value Hamilton-Jacobi-Bellman variational inequality

(HJBVI) [4]:

0 = max
{

h(s)−V (s, t),
∂V
∂ t

+min
a∈A

max
d∈D

∇sV⊤ f (s,a,d)
}
,

V (s,T ) = h(s),∀s ∈ S (2.7)

Now as T → ∞, if V converges to a fixed solution then V (s, t) will be independent of t.

Thus the time parameter can be dropped to obtain the optimal value function V (s).

7



2.3 Traditional HJ reachability analysis for learned controls

We first briefly discuss traditional HJ reachability analysis techniques for reinforcement

learning-based control. Recent papers propose approaches that evaluate the safety (or probe

the safe space) of learning-based control by analytically computing solutions of the dynamics’s

HJBVI. These methods require having access to or reconstructing the system’s model dynamics.

With a model, approaches can compute gradients of the dynamics at any given state.

The work of [40] uses model-based HJ reachability analysis in conjunction with Bayesian-

inference techniques to create a safety framework that can incorporate an arbitrary learning-based

control algorithm. While there are no safety concerns, it permits a learned control policy to

optimize for a particular task. Otherwise, it defaults to a safe policy computed via solving the

HJBPDE. The safety choice of picking between these two policies is determined via safety

analysis refined through Bayesian inferences from online data, particularly using Gaussian

processes.

The work of [57] is a model-based approach based on backward reachability. In particular,

it iteratively uses backward reachability from the final goal state to construct a set of initial state

distributions under some approximate model dynamics. Then, at each iteration, it proposes using

model-free methods to acquire a policy to get from an initial state (sampled uniformly from a

growing backward reachable set) to the goal.

Another work [3] makes inferences about disturbances to perform reachability analysis.

Particularly, the work uses Gaussian processes to construct the disturbance set from previous

observations of the dynamics. This is used to solve the HJBPDE and compute an optimally safe

control and safety value function. Then, a safe framework can be defined using any safety-aware

learned (task-solving) control and this optimally safe control and safety value function. Namely,

whenever the value function satisfies some safety threshold, then the safety-aware learned control

is deployed. Otherwise, the default optimally safe controller is used.

We will primarily discuss learning-based methods for obtaining the HJ reachability value

8



function via reinforcement learning. We term this technique as HJ reachability estimation.

2.4 Acknowledgement

Chapter 2 has been submitted for publication of the material in “Hamilton-Jacobi Reach-
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Chapter 3

Survey of HJ Reachability Estimation
Methods

In this chapter, we will survey learning-based methods for Hamilton-Jacobi reachability

estimation. We organize the chapter as follows:

• In Section 3.1, we demonstrate how to learn HJ reachability online to acquire reinforcement

learning-based control.

• In Section 3.2, we survey various HJ reachability-based/-inspired methods that solve

reach-avoid tasks.

• In Section 3.3, we review approaches for model-free safe reinforcement learning in both

deterministic and stochastic dynamics scenarios.

• In Section 3.4, we examine HJ reachability estimation-based methods that address robust-

ness and uncertainty issues found in real world environments.

3.1 Learning Reachability in Model-free Settings

Overcoming the computational complexity of traditional HJ reachability analysis methods

requires a scalable approach to acquire the HJ reachability value function. The recent literature

has proposed a new direction of approximating the HJ reachability value function through

learning-based approaches in the face of unknown dynamics. In particular, similar to a reward or
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cost critic, an HJ reachability function can be learned in an online, recursive fashion. Within

the RL framework, we can construct algorithms that obtain reachable sets via a data-driven,

sampling-based manner that is 1) generalizable, since there is no need for direct access to the

dynamics, and 2) scalable, in part due to the guaranteed convergence to a unique value function

solution with gamma contraction mapping.

3.1.1 Bellman formulation

To learn an estimation of the HJ reachability value function in an online fashion, the

value function must be equivalently defined with a backup operator in the form of the recursive

Bellman update.

In particular, the works of [4, 42] demonstrate that the discrete approximation of (2.7)

with no disturbances is:

V (s, t) = max
{

h(s),min
a∈A

V (s+ f (s,a)∆t, t +∆t)
}

(3.1)

Furthermore, as T → ∞, if V converges, then V does not change with respect to time, so

it satisfies the Bellman equation:

V (s) = max{h(s),min
a∈A

V (s+ f (s,a)∆t)} (3.2)

= max{h(s),min
a∈A

V (s′)} (3.3)

where s′ is the next state after s in the trajectory. Using this Bellman reformulation, the

HJ reachability value function of the optimal control can be learned using the recursive dynamic

programming approach known as value iteration. Notice that if this method is used to obtain

a value function and optimal policy in a stochastic setting (i.e. the transition function and/or

the policy is probabilistic) it would return a value function capturing the expected maximum

cost along a trajectory sampled from the policy and transition function. This is not useful or
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well-defined for hard constraint tasks since a stochastic policy will likely enter a violation with

some non-zero probability when starting from most states.

Nonetheless, it is still possible to use the Bellman recursive formulation for acquiring the

HJ reachability value function to learn a meaningful tool for stochastic MDPs and policies using

a special cost function [1, 43]. Consider the binary indicator cost function 1h(s)>0 which returns

1 if there is a constraint violation at state s, and returns 0 otherwise. In this setting, the optimal

control π : S×A→ [0,1] is the one that minimizes the likelihood of entering the set of constraint

violation states along the trajectory under the stochastic MDP with transition likelihood function

P. Formally, in the discrete-time setting, the optimal control and its associated value function

φ : S → [0,1], called the reachability estimation function (REF), are defined by [1, 43]:

φ(s) := inf
π(·|·)

E
ξ∼π,P(s)

sup
st∈ξ

1h(s)>0 (3.4)

Although the value function is defined for stochastic dynamics (notice the expectation

over the sampled trajectories), [43] exploits the binary nature of the instantaneous cost indicator

function to create a Bellman recursive formulation of the REF:

φ(s) = max
{
1h(s)>0, min

π(·|s)
E

s′∼π,P(s)
φ(s′)

}
(3.5)

When this value function is learned for a particular control it can provide information on the

probability that the control at any given state will reach a violation.

3.1.2 Discounted HJ value function for RL

Temporal difference learning is a preeminent class of model-free reinforcement learning

algorithms that estimates the value function for a particular control policy. In other words, the

value function V π(s) with Bellman operator Bπ (i.e. the operator that defines the recursive

Bellman formation), should be estimated for a particular control policy π . This can be done by
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iteratively updating the value function with the temporal difference rule using trajectory samples

collected online. At update k, for learning rate α , the temporal difference rule is [85, 86, 92]:

V π
k+1(s)←V π

k (s)+α(BπV π
k (s)−V π

k (s)). (3.6)

In order to guarantee convergence to the unique solution of the Bellman equation,

the Bellman operator Bπ must induce a gamma contraction mapping in the space of value

functions [36]. In general, time-discounting in the Bellman formulation of the value function

enables the reachable set to be estimated as a fixed point in a contraction mapping [4].

To address this, the approach found in [4] proposes a modified discounted optimal control

value function. For the defined cost function h : S →R≥0, the optimal control and value function

are defined by:

V (s) := inf
π(·)

sup
t≥0

h(st)e−λ t (3.7)

for some discount rate λ ∈ R>0.

Similar to the non-discounted Bellman formulation, this value function and its optimal

control can be obtained by solving the Hamilton-Jacobi-Bellman variational inequality [4]:

0 = max
{

h(s)−V (s, t),min
a∈A

∇sV⊤ f (s,a)−λV (x)
}

(3.8)

This has the discrete-time solution:

V (s) = max{h(s),min
a∈A

γV (s′)} (3.9)

where γ = e−λ∆t is the discount factor. The authors demonstrate the gamma contraction mapping

for this discounted Bellman formulation for γ ∈ (0,1), and thereby guarantee that temporal

difference learning will converge to the unique value function solution.

The work of [42] proposes a different Bellman formulation for learning an estimation of
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the HJ reachability value function:

V (s) = (1− γ)h(s)+ γ max{h(s),min
a∈A

V (s′)} (3.10)

While this is not an exact discrete-time solution of the HJBVI in (3.8), the work of [42] proves

this provides a tighter gamma contraction mapping than (3.9), and therefore temporal difference

learning can converge to the value function solution faster. Notice that using the cost function

as the binary indicator function 1h(s)>0 in lieu of h(s) would make (3.9) and (3.10) become

identical Bellman formulations.

Using the discounted Bellman formulations, HJ reachability can be incorporated into

reinforcement learning problems. In [42], the authors use the HJ reachability value function as

the critic and the policy optimization algorithm REINFORCE [95] to solve control problems in

environments like the lunar lander and the 18-dimensional jumping half-cheetah.

3.2 Solving Reach-Avoid Problems

Reach-avoid problems form a class of environments in which the goal is to control the

agent to reach a target set of states while simultaneously avoiding a failure set of states [9, 12, 41,

69, 73]. We have previously discussed how HJ reachability has been used to solve the avoidance

problem. Recent literature has demonstrated how to combine the reach problem and the avoid

problem in HJ reachability simultaneously, as well as how to combine HJ reachability with other

control theoretic functions to solve the reach-avoid problem in the online setting.

3.2.1 Learning HJ Reach-Avoid Value Function

The work of [41] establishes how to formally define reach-avoid problems. Specifically,

the problem seeks to find the optimal control such that given a starting state, the agent can reach

the target set of states T while avoiding the failure set of states F . They define two cost functions
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l : S → R and g : S → R such that for any state s ∈ S:

l(s)≤ 0 ⇐⇒ s ∈ T

g(s)> 0 ⇐⇒ s ∈ F
(3.11)

Then with deterministic MDP, in discrete time, for a finite horizon time T , a payoff

function for a deterministic control policy π : S →A can be defined as:

Vπ(s,T ) = min
t∈[0...T ]

max
{

l(st), max
τ∈[0...t]

g(sτ)

}
(3.12)

The outer maximum considers the possibility of ever reaching the target set. The inner maximum

ensures that, during the time taken to reach the target set, there are no states in the trajectory that

are in the failure set. Thus, for a given time T , if there exists a time t when the agent reaches a

state st in the target set while avoiding the failure set, then the payoff function will be at most

l(st)≤ 0 and therefore non-positive. However, if the agent always enters the failure set before

the target set, then at any time t, there would always exist a time w ∈ [0...t] such that g(sw)> 0,

and therefore the payoff is positive. Step-wise noise disturbance can be considered within the

payoff function, and a dynamic programming value iteration approach to obtaining the payoff

function for a particular control can be formulated [41].

Consider infinite horizon (i.e. T → ∞). For the sake of simplifying notation, we can

define:

Vπ(s) = lim
T→∞
Vπ(s,T ) (3.13)

As shown in a subsequent work [56], the optimal control and its associated value function

can then be defined as the one that minimizes the payoff function of (3.12):

V (s) = inf
π(·)
Vπ(s). (3.14)
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Observe that the sign of the payoff function can tell us if the control signal starting from

state s will satisfy the reach-avoid condition. So, if and only if V (s) ≤ 0, then there exists a

control that can solve the reach avoid problem starting from state s.

Now, just as in the case for model-free learning of the HJ reachability function in Sec-

tion 3.1.2, it is possible to learn the optimal HJ reach-avoid function. [56] provides a discounted

(recall the importance of gamma contraction mapping) reach-avoid Bellman formulation suitable

for learning online with temporal difference learning. Specifically,

V (s) = (1− γ)max{l(s),g(s)}

+ γ max
{

min
{

l(s),min
a∈A

V (s′)
}
,g(s)

} (3.15)

where s′ is the next state produced by the MDP upon taking action a from state s.

With this recursive reformulation of the value function, [56] uses the standard RL

algorithm Deep Q-Network (DQN) [75] to obtain the corresponding optimal control policy.

They test this algorithm on environments such as an attack-defense game with two Dubins cars,

and the Lunar Landing environment.

3.2.2 Combing Reachability with Control Lyapunov for Stabilize-Avoid
Problems

Within the class of reach-avoid problems are the stabilize-avoid problems, in which the

goal is to find a control that avoids the failure set while stabilizing toward the target set. If the

target set consists of equilibrium points, then standard reach-avoid algorithms can be used to

solve the stabilize-avoid problems. However, in many cases, the target set may additionally

consist of non-equilibrium points. To use the reach-avoid algorithms in the stabilize-avoid

problem in this general case, the set of equilibrium points must be extracted from the target

set. This extraction is difficult and may even be impossible if such a set does not exist. HJ

reachability-inspired approaches can be combined with the control Lyapunov function to solve
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Stabilize-Avoid problems.

In the work of [83], the stabilize-avoid problem is formulated as a constraint optimization

problem. Particularly, for a deterministic MDP and using the cost functions l : S → R≥0 and

g : S → R with properties of (3.11), the undiscounted value function for policy π is defined

along the trajectory as:

V l,π(s) :=
∞

∑
t=0

l(st) (3.16)

where {st}, t ∈ Z≥0 is the trajectory under π starting from state s = s0. Furthermore, the optimal

control problem is defined as:

min
π

V l,π(s)

s.t. g(st)≤ 0,∀t ≥ 0
(3.17)

Under some assumptions based on bounding the cost function l and its dynamics under control

π by some state measure, [83] proves that V l,π is a Lyapunov function. They also convert the

constraint problem into the epigraph form [14]:

min
z

z

s.t. 0≥min
π

max
{

max
t∈Z≥0

g(st),V l,π(s)− z
} (3.18)

In effect, z acts as the accumulated l cost budget, and the goal is to minimize the maximum

needed cost budget and ensure the agent avoids entering the failure set where g(s)> 0. The RHS

of the constraint in this epigraph form can be learned as a value function parameterized by both

the state and the cost budget. Namely, [83] learns this optimal control value function by applying

a recursion similar to (3.15):

V (s,z) = min
a∈A

max{g(s),V (s′,z− l(s))}. (3.19)
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The algorithm uses a standard policy gradient approach to learn this value function online, and

then in a subsequent stage solves the problem of (3.18) by training via regression a neural

network z(s) that minimizes V (s,z(s)). This approach has been used to solve various complex

stabilize-avoid problems including a 17 dimension F16 fighter jet [51] ground collision avoidance

in a low-altitude corridor.

3.3 Model-free Safe RL

Safe reinforcement learning is a setting in which the goal is to maximize some cumulative

rewards while constraining the costs (i.e. constraint violations) along a trajectory [15,45,48,103].

In previous sections, the problems were reduced to optimizing a single (potentially composite)

value function. However, in safe reinforcement learning, the problem generally requires keeping

track of two separate value functions, one for rewards and another for costs, and optimizing a

composite expression involving both value functions. The reward value function V π
r is specifically

defined as the discounted cumulative rewards found in Section 2.1. However, the cost value

function’s definition is determined by the specific optimization framework.

Traditionally, safe reinforcement learning was solved within the constrained Markov

decision process (CMDP) framework [7] in which the cost value function was the discounted

cumulative costs similar to the reward value function:

V π
c (s) := E

ξ∼π,P(s)
[ ∑
st∈ξ

γ
th(st)] (3.20)

Then, for some environment-defined positive cost threshold χ , the CMDP-constrained optimiza-

tion takes the form:

max
π

E
s∼∆0

[V π(s)]

s.t. E
s∼∆0

[V π
c (s)]≤ χ

(CMDP)
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Various approaches have been proposed to solve Safe RL in this framework. Trust-

region approaches [2,97,98,102] try to guarantee monotonic improvement in performance while

ensuring constraint satisfaction. Primal-dual approaches [37,67,77,88] use Lagrangian relaxation

of the constraints to optimize an expression involving the reward and cost value functions. Outside

of these two classes exist approaches like constraint-rectified policy optimization (CRPO) [96],

which takes a policy gradient update step toward improving V π
r if constraints are satisfied

at a particular iteration, otherwise it takes steps to minimize V π
c . This approach guarantees

convergence to optimum under certain assumptions.

The main drawback of the CMDP framework is its lack of rigorous guarantees of

persistent safety. This is because the framework permits some positive amount of constraint

violations (χ > 0), and so it cannot be used for state-wise constraint optimization problems.

Another issue is that choosing a cost threshold χ for an environment requires tuning and/or prior

familiarity with the environment. To address this, recent literature has proposed methods of

using the safety guarantees provided by Hamilton-Jacobi reachability to redefine the problem

into a constrained optimization within feasible (i.e. constraint-satisfying) states. We explore

recent algorithms with frameworks for the deterministic and stochastic dynamics cases.

3.3.1 Deterministic Safe RL

When the MDP is deterministic, the HJ reachability value function can be learned online

through the Bellman update from (3.10). Specifically, for a control policy π , define the HJ

reachability value function recursively as:

V π
h (s) = (1− γ)h(s)+ γ max{h(s),V π

h (s′)} (3.21)

The reachability value function is used to probe whether a state is within the feasible set.

This is the set of states starting from which the agent will never enter the failure (i.e. constraint

violating) set(s) along its trajectory. Formally, for a particular control π , and its associated
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reachability value function V π
h , the feasible set is defined as:

Sπ
f := {s ∈ S : V π

h (s) = 0} (3.22)

Some papers refer to this feasible set as the safe set, and is the complement of R(F)

from (2.6). By learning the reward value function V π
r and reachability value function V π

h , a

recent approach [19] solves safe control tasks by considering the two cases of whether a state is

feasible or not and learning a different control for each case. Similar to the CRPO algorithm,

during training, if the state is in the feasible set (with some tolerance ε) then an action is

taken from the control that optimizes V π
r and that control is updated. Otherwise if the state

is infeasible, then an action is taken from the ”safe” control which minimizes the maximum

reachable violation, i.e. V π
h , and this safe control is updated. This technique falls within the

broader class of shielding [40], which is discussed in more detail in Section 3.4 This approach

is notable for solving a high-dimensional, vision-based autonomous racing environment called

Learn-to-Race [52].

However, to fully address the problems of CMDP (lack of safety guarantees stemming

from tolerance of some constraint violation), environment-specific cost thresholds/tolerance

should be avoided altogether. Instead, the recent literature [43, 99] has moved toward learning

optimal (largest) feasible sets. The largest feasible set can be defined as:

S f := {s ∈ S : ∃π,V π
h (s) = 0} (3.23)

In other words, the largest feasible is the set of states for which there exists a control policy that

ensures no constraint violations along a trajectory starting from those states. The largest feasible

set can also be written as:

S f =
⋃
π

Sπ
f (3.24)

By obtaining or having access to this largest feasible set, the hope is that the algorithms can learn
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controls that overcome the conservative behavior seen in other control/energy-based approaches

like CBFs [66, 70].

Let the binary function 1s∈S f indicate whether a state is in this largest feasible (returning

1) or not (returning 0). Then, the work of [99] proposes a novel optimization framework that

considers optimization under two scenarios depending on whether the state is in S f , assuming

one has access to this oracle 1s∈S f . In particular, if state s∈ S f , the goal would be to optimize for

maximum reward value function starting from that state under the constraint that the trajectory

continues to persistently remain within the feasible set (and thereby incur no future violations).

On the other hand, if the state s /∈ S f , then the goal is to find a control that minimizes the maxi-

mum reachable violation starting from that state. Formally, this optimization called Reachability

Constrained Reinforcement Learning (RCRL) can be expressed as:

max
π

E
s∼∆0

[V π
r (s) ·1s∈S f −V π

h (s) ·1s/∈S f
]

s.t. V π
h (s)≤ 0,∀s ∈ SI ∩S f .

(RCRL)

The Lagrangian of (RCRL) can be formulated as:

L(π,λ ) = E
s∼∆0

[V π
r (s) ·1s∈S f −V π

h (s) ·1s/∈S f
]

+
∫
S f∩SI

λ (s)V π
h (s)ds

(3.25)

The main challenge in solving this optimization is being able to acquire the largest

feasible set. To overcome this, [99] solves their optimization by providing guarantees in stochastic

gradient descent optimization of the policies, critics, and Lagrangian multiplier via the stochastic

approximation theory framework established in [13, 30], and used in [31].

[99] proposes finding a saddle point of the surrogate Lagrangian optimization of (RCRL)

as:

min
π

max
λ

E
s∼∆0

[−V π
r (s)+λ (s)V π

h (s)] (3.26)
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The idea behind this formulation is that λ (s) will eventually converge to a finite value for feasible

states and diverge for infeasible states [67]. Recall that for feasible states s, V π
h (s) = 0, so the

optimization becomes simply minimizing−V π
r (s) regardless of the magnitude of λ (s). However,

for infeasible states, V π
h (s)> 0, so the optimization minimizes −V π

r (s)+λV π
h (s) for very large

λ . Notice, however, that since the Lagrangian multiplier diverges for infeasible states, −V π
r (s)

can be ignored. So, the optimization is effectively minimizing V π
h (s).

If λ (s) is the Lagrangian multiplier for the optimal control, then solving the surrogate

Lagrangian optimization in (3.26) is equivalent to solving the Lagrangian of (3.25). [99]

demonstrates this can be achieved primarily by configuring the learning rate schedules of the

learned networks. Say, the critics maintain a step size schedule of {ζ1(k)}, the policy maintains

a step size schedule of {ζ2(k)}, and the Lagrangian multiplier maintains a step size schedule of

{ζ3k} for iteration k. Then, based on stochastic approximation theory [13, 30], if:

∑
k

ζi(k) = ∞ and ∑
k

ζi(k)2 < ∞,∀i ∈ {1,2,3}

and ζ3(k) = o(ζ2(k)),ζ2(k) = o(ζ1(k))

(3.27)

then it is possible to prove that the updates of the critic, policy, and Lagrangian multiplier will

result in convergence of the local optimal policy of RCRL almost surely (i.e. with likelihood 1).

The reward and cost critic networks have a faster learning rate schedule than the policy networks

and therefore converge to the current policy’s optimal value functions. The Lagrangian multiplier

network has a learning schedule slower than the policy network and therefore can be thought

of as capturing the overall trends of feasibility. If during training there was a policy that was

able to make a particular state in its feasible set, then λ (s) will capture that information. If in

the future, the policy no longer makes the state in the feasible set, the Lagrangian multiplier

will increase and thereby penalize the policy. Using this approach, [99] is able to solve hard

constraint problems in the Safety Gym [77] environment with static hazards and obstacles.
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3.3.2 Stochastic Safe RL

Under a stochastic MDP, HJ reachability can still be a useful tool for guaranteeing

optimal control with safety guarantees. We present in Section 3.1.1 how recent works define a HJ

reachability value function called the Reachability Estimation Function (REF) for a binary cost

function 1h(s)>0 under stochastic dynamics. The optimal REF captures the minimum likelihood

of entering the set of constraint violation states. In effect, the REF is the likelihood that a state is

infeasible – we will therefore use the phrase likelihood of feasibility to mean 1−φ(s) and the

likelihood of infeasibility to mean φ(s).

The work of [43] proposes to use the REF function in defining the optimization formula-

tion. In particular, in place of the deterministic feasibility indicator 1s∈S f they use the likelihood

of feasibility 1−φ(s), and instead of the deterministic infeasibility indicator 1s/∈S f
they use the

likelihood of infeasibility φ(s). Note these feasibility sets are the largest/optimal.

However, simply replacing the indicator function with φ(s) in the optimization of

(RCRL) will not be a valid construction for the stochastic case since V π
h is not well defined for

stochastic dynamics. [43] addresses this by using the cumulative cost function V π
c as defined in

the CMDP framework in (3.20). In particular, they replace V π
h with V π

c in (RCRL).

In the constraint, V π
c (s)≤ 0 is satisfied if and only if persistent safety (i.e. no constraint

violations along the trajectory) is guaranteed for that state under control policy π . Therefore,

V π
c (s)≤ 0 can be used as a valid measure for constraining the agent to remain within the feasible

set.

Furthermore, V π
c provides important safety guarantees when the agent is in the infeasible

set. Specifically, [43] proves that an optimal control minimizing V π
c can verifiably enter the

feasible set when starting in the infeasible set if there exists a control given sufficient time.

Intuitively, consider that V π
c (s) is the (average) cumulative cost of a trajectory starting at s

(ignore the discount factor by making say γ = 1). If the control enters the feasible set, V π
c (s) is

finite since there will be a point after will no more costs are accumulated. Otherwise if the control
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remains in the infeasible set, then V π
c (s) is infinite since there will always be costs accumulated

at some points in the trajectory. Thus, if there exists a control that enters the feasible set at state s,

then the minimum cumulative cost for a policy starting from state s is finite, and thus the optimal

control minimizing V π
c (s) will enter the feasible set. [43] provides a proof along these lines with

consideration to the discount factor γ ∈ [0,1).

Using the REF and the cumulative cost value function, [43] proposes an optimization

formulation for safety constraint reinforcement learning that works for both stochastic and

deterministic environments. Formally, their optimization called Reachability Estimation for Safe

Policy Optimization (RESPO) can be expressed as:

max
π

E
s∼∆0

[V π
r (s) · (1−φ(s))−V π

c (s) ·φ(s)]

s.t. V π
c (s)≤ 0, w.p. 1−φ(s),∀s ∈ SI.

(RESPO)

To learn the value function online, they create a discounted Bellman formulation to

ensure gamma contraction mapping to demonstrate convergence to the solution (Section 3.1.2).

Thus, they define a discounted Bellman formulation of the REF as:

φ(s) = max{1h(s)>0,γ min
a∈A

E
s′∼P(s,a)

φ(s′)} (3.28)

The Lagrangian of (RESPO) is formulated as:

E
s∼∆0

[
[−V π

r (s)+λ ·V π
c (s)] · (1−φ(s))+V π

c (s) ·φ(s)
]

(3.29)

Similar to (RCRL), the main challenge in solving RESPO is obtaining the optimal REF.

[43] proposes solving this problem via the stochastic approximation theory framework [13, 30].

Similar to (3.27), say the learning rates of the critic value functions, the policy, REF, and
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lagrangian multiplier are {ζ1(k)}, {ζ2(k)}, {ζ3(k)}, and {ζ4(k)} respectively. Then if:

∑
k

ζi(k) = ∞ and ∑
k

ζi(k)2 < ∞,∀i ∈ {1,2,3,4}

and ζi(k) = o(ζi−1(k)),∀i ∈ {2,3,4}
(3.30)

then [43] guarantees that the updates of the various learnable parameters will result in the policy

network converging to the local optimal policy of RESPO almost surely. The reasoning is

mostly similar to that of RCRL [99] except for the stochastic nature of the dynamics and φ . In

particular, since the learning rate schedule for the REF φ is slower than that of the policy, [43]

guarantees that φ will be the REF of the most optimal policy to the extent that the lagrangian

multiplier λ allows (since λ is technically finite). RESPO learns stochastic policies that solve

safety constrained problems in the Safe PyBullet framework [47], MuJoCo [91], and Safety

Gym [77] in which there are various moving/movable obstacles in addition to stationary regions.

Furthermore, [43] demonstrates how RESPO can incorporate and prioritize multiple hard and

soft constraints to solve a multi-drone tunnel navigation environment. More details on this

approach is explained in Chapter 4.

3.4 Robustness and real-world settings

While most of the applications of Hamilton-Jacobi Reachability we discussed so far solve

problems in simulation, there has also been a line of work on learning verifiably safe controls in

real-world settings. The main challenge in real-world settings is the presence of nondeterministic

disturbances at each step. Take for instance quadrupedal robot control: the optimal control

problem can be formulated as getting to region B in the fastest way possible, but other factors to

consider include the presence of some unknown amount of wind or uncertain terrain.

The recent literature solves this primary by constructing a safety filter [53] criterion

∆ : S ×Π×Q → {0,1} dependent on the state s ∈ S, the task solving (i.e. performance

optimizing) control πt ∈Π, and backup optimally safe q-value function Qu ∈Q. They can then
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define a composite policy πsh that uses the safety filter criterion ∆ to decide whether to use

the task-solving control πt or the backup optimally safe policy πu corresponding to Qu. This

approach of using the backup safe policy to override the tasking-solving policy is known as the

least restrictive control law or shielding in [5, 40] and also examined in [25, 64].

Hamilton-Jacobi reachability estimation methods have been used in constructing the

safety filter criterion and/or the backup optimally safe policy. For instance, based on the work

of [40], it is possible to construct the optimally safe q-value function in a Bellman formulation

similar to that in (3.8):

Qu(s,a) = (1− γ)h(s)+ γ max
{

h(s),min
a′∈A

Qu(s′,a′)
}

(3.31)

and define the safety filter criterion with an indicator function as:

∆(s,πt ,Qu) := 1
{

Qu(s,πt(s))≤ ε
}

(3.32)

for some threshold ε . Then the composite policy can be formally constructed as:

π
sh(s) =


πt(s), ∆(s,πt ,Qu) = 1

πu(s), otherwise
(3.33)

3.4.1 Fully Learning-based control for Real-World Deployment

Using this framework, it is possible to acquire policies that are (almost) ready to be

deployed in real-world scenarios. One difficulty in deploying these algorithms is that learned

control often struggles to generalize in new, unseen environments in the real world. To address

this distributional shift between the simulation-based training data and the real-world testing

data, the work of [55] proposes a technique based on encouraging the generalization capabilities

of the learned policies. They develop a 3-tiered approach: learning control policies in Simulation,
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fine-tuning in a Lab, and then transferring the policies into the Real World. When training

in Simulation, they use the HJ reachability-based shielding approach trained on RGB image

vision-based observations. They augment this with a learning framework that optimizes for the

diversity of robot learning behavior following the works of [38, 78]. The goal behavior in the

simulation phase is to be able to reach the specified target through various paths. This can be

done by conditioning the policy by some random latent variable representing a learned ”skill”

(i.e. taking a specific path to the target). By learning various ways (skills) to solve the problem,

they can encourage the generalization capabilities of the learned control.

Subsequently, during the fine-tuning phase in the Lab environment, they can learn a prior

distribution from which to sample the latent variables so as to find the best ”skills,” which were

already learned in the simulation phase, needed to solve in some new lab environments. [55]

proposes doing this by leveraging the PAC-Bayes Control framework [39, 68, 93] to certify the

generalization of the corresponding posterior distribution. Overall, this approach was tested on

hardware experiments with the quadrupedal robot in real world indoor spaces.

3.4.2 Learning-based Control Shielded with Forward Reachability in
Real-world Deployment

While learning-based control has the benefit of being scalable, the learned policy may

not be accurate for all points in the state space and in general lacks intrinsic guarantees of safety.

The work of [54] addresses this problem by combining HJ reachability estimation and traditional

HJ reachability analysis. While they use a shielding framework similar to [40, 55], they learn

a backup optimally safe controller that is disturbance aware and then define a new composite

policy that includes the task solving policy πt , the safe controller πu, and an additional safe

control policy based-on locally computing the forward reachability set.

To obtain the disturbance-aware backup controller, recent work considers the problem

of obtaining a safe control policy that is resilient to the worst-case disturbance at each step.

Specifically, while learning a control πu to solve the problem, [54] proposes simultaneously
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treating the disturbance as an antagonist controlled with policy πd . Then, in the typical game

theoretic, adversarial fashion, the goal is to find a saddle point between both πu and πd . Formally,

the optimal controls and associated value function can be defined with the Bellman formulation:

V (s) = (1− γ)h(s)+ γ min
πu

max
πd

E
u,d

max
{

h(s),V (s′)
}

(3.34)

The optimal control policies for this formulation are learned via the off-policy reinforcement

learning algorithm Soft Actor-Critic algorithm [49].

While these learned controls cannot provide intrinsic safety guarantees, [54] constructs

a composite policy that guarantees safety for H horizon steps. In particular, they linearize

dynamics of the nominal local trajectory starting from state s obtained from the learned control.

Then at some point s′ along the trajectory, they use a linear quadratic regulator approach to

obtain a locally linear tracking policy K(s′− s) for H time into the future. Subsequently, they

can define a safety criterion ∆ : S ×Π×Z≥0. ∆(s,πt ,H) = 1 if after applying one step of the

task policy πt , tracking policy K can maintain safety under any disturbance for time horizon H –

this is verified via forward HJ reachability analysis. Else ∆(s,πt ,H) = 0. So, for a given state

st and future time step τ ∈ {0...H} along the nominal trajectory starting from st , the composite

policy can be defined as:

π
sh(st+τ) =



π t(st), ∆(st+τ ,π
t ,H) = 1

K(st+τ − st), ∆(st+τ ,π
t ,H) = 0∧ τ ∈ {1...H}

πu(st), otherwise

(3.35)

Using this policy, [54] tests on a small robot car with uncertain dynamics.
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Chapter 4

Iterative Reachability Estimation for Safe
Reinforcement Learning

4.1 Introduction

Ensuring safety is important for the practical deployment of reinforcement learning

(RL). Various challenges must be addressed, such as handling stochasticity in the environments,

providing rigorous guarantees of persistent state-wise safety satisfaction, and avoiding overly

conservative behaviors that sacrifice performance. We propose a new framework, Reachability

Estimation for Safe Policy Optimization (RESPO), for safety-constrained RL in general stochastic

settings. In the feasible set where there exist violation-free policies, we optimize for rewards

while maintaining persistent safety. Outside this feasible set, our optimization produces the

safest behavior by guaranteeing entrance into the feasible set whenever possible with the least

cumulative discounted violations. We introduce a class of algorithms using our novel reachability

estimation function to optimize in our proposed framework and in similar frameworks such as

those concurrently handling multiple hard and soft constraints. We theoretically establish that our

algorithms almost surely converge to locally optimal policies of our safe optimization framework.

We evaluate the proposed methods on a diverse suite of safe RL environments from Safety Gym,

PyBullet, and MuJoCo, and show the benefits in improving both reward performance and safety

compared with state-of-the-art baselines.
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4.2 Stochastic Hamilton-Jacobi Reachability for Reinforce-
ment Learning

Classic HJ reachability considers finding the largest feasible set for deterministic en-

vironments. In this section, we apply a similar definition in [1, 84] and define the stochastic

reachability problem.

4.2.1 Persistent Safety and HJ Reachability for Stochastic Systems

The instantaneous safety can be characterized by the safe set Ss, which is the zero level

set of the safety loss function h : S 7→ R+
0 . The unsafe (i.e. violation) set Sv is the complement

of the safe set.

Definition 1. Safe set and unsafe set: Ss := {s ∈ S : h(s) = 0},Sv := {s ∈ S : h(s)> 0}.

We will write 1s∈Sv as the instantaneous violation indicator function, which is 1 if the

current state is in the violation set and 0 otherwise. Note that the safety loss function h is

different from the instantaneous violation indicator function since h captures the magnitude of

the violation at the state.

It is insufficient to only consider instantaneous safety. When the environment and policy

are both deterministic, we easily have a unique trajectory for starting from each state (i.e. the

future state is uniquely determined) under Lipschitz environment dynamics. In classic HJ

reachability literature [8], for a deterministic MDP’s transition model Pd and deterministic policy

πd , the set of states that guarantees persistent safety is captured by the zero sub-level set of the

following value function:

Definition 2. Reachability value function V π
h : S 7→ R+

0 is: V π
h (s) := maxst∈τ∼πd ,Pd(s) h(st).

However, when there’s a stochastic environment with transition model P(·|s,a) and policy

π(·|s), the future states are not uniquely determined. This means for a given initial state and

policy, there may exist many possible trajectories starting from this state. In this case, instead of
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defining a binary function that only indicates the existence of constraint violations, we define the

reachability estimation function (REF), which captures the probability of constraint violation:

Definition 3. The reachability estimation function (REF) φ π : S 7→ [0,1] is defined as:

φ
π(s) := E

τ∼π,P(s)
max
st∈τ

1(st |s0=s,π)∈Sv.

In a specific trajectory τ , the value maxst∈τ 1(st |s0=s,π)∈Sv will be 1 if there exist constraint

violations and 0 if there exists no violation, which is binary. Taking expectation over this binary

value for all the trajectories, we get the desired probability. We define optimal REF based on an

optimally safe policy π∗ = argminπ V π
c (s) (note that this policy may not be unique).

Definition 4. The optimal reachability estimation function φ∗ : S 7→ [0,1] is: φ∗(s) := φ π∗(s).

Interestingly, we can utilize the fact the instantaneous violation indicator function pro-

duces binary values to learn the REF function in a bellman recursive form. The following will be

used later:

Theorem 1. The REF can be reduced to the following recursive Bellman formulation:

φ
π(s) = max{1s∈Sv, E

s′∼π,P(s)
φ

π(s′)},

where s′ ∼ π,P(s) is a sample of the immediate successive state (i.e., s′ ∼ P(·|s,a ∼

π(·|s))) and the expectation is taken over all possible successive states.
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Proof.

φ
π(s) := E

τ∼π,P(s)
max
st∈τ

1sπ
t ∈Sv

= E
τ∼π,P(s)

max{1s∈Sv , max
st∈τ\{s}

1sπ
t ∈Sv}

= max{1s∈Sv , E
τ∼π,P(s)

max
st∈τ\{s}

1sπ
t ∈Sv}

= max{1s∈Sv , E
s′∼π,P(s)

E
τ ′∼π,P(s′)

max
st∈τ ′

1sπ
t ∈Sv}

= max{1s∈Sv, E
s′∼π,P(s)

φ
π(s′)}

Note that we use the notation τ ∼ π,P(s) to indicate a trajectory sampled from the MDP with

transition probability P under policy π starting from state s, and use the notation s′ ∼ π,P(s) to

indicate the next immediate state from the MDP with transition probability P under policy π

starting from state s. The third line holds because the indicator function is either 0 or 1, so if it’s

1 then φ π(s) = Eτ∼π,P(s) 1 = 1 else φ π(s) = Eτ∼π,P(s)maxst∈τ\{s}1sπ
t ∈Sv .

Definition 5. The feasible set of a policy π based on φ π(s) is defined as: Sπ
f := {s ∈ S : φ π(s) =

0}.

Note, the feasible set for a specific policy is the set of states starting from which no

violation is reached, and the safe set is the set of states at which there is no violation. We will

use the phrase likelihood of being feasible to mean the likelihood of not reaching a violation, i.e.

1−φ π(s).

4.2.2 Comparison with RCRL

The RCRL approach [99] uses reachability to optimize and maintain persistent safety in

the feasible set. Note, in below formulation, S f is the optimal feasible set, i.e. that of a policy
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argminπ V π
h (s). The RCRL formulation is:

max
π

E
s∼d0

[V π(s) ·1s∈S f −V π
h (s) ·1s/∈S f

], subject to V π
h (s)≤ 0,∀s ∈ SI ∩S f . (RCRL)

The equation RCRL considers two different optimizations. When in the optimal feasible

set, the optimization produces a persistently safe policy maximizing rewards. When outside

this set, the optimization produces a control minimizing the maximum future violation, i.e.

argminπ V π
h (s). However, this does not ensure (re)entrance into the feasible set even if such a

control exists.

RCRL performs constraint optimization on V π
h with a neural network (NN) lagrange

multiplier with state input [67]. When learning to optimize a Lagrangian dual function, the NN

lagrange multiplier should converge to small values for states in the optimal feasible set and

converge to large values for other states. Nonetheless, learning Vh provides a weak signal during

training: if there is an improvement in safety along the trajectory not affecting the maximum

violation, V π
h remains the same for all states before the maximum violation in the trajectory.

These improvements in costs can be crucial in guiding the optimization toward a safer policy. And

optimizing with Vh(s) can result in accumulating an unlimited number of violations smaller than

the maximum violation. Also, a major issue with this approach is that it’s limited to deterministic

MDPs and policies because its reachability value function in the Bellman formulation does

not directly apply to the stochastic setting. However, in general stochastic settings, estimating

feasibility cannot be binary since for a large portion of the state space, even under the optimal

policy, the agent may enter the unsafe set with a non-zero probability, rendering such definition

too conservative and impractical.
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4.3 Iterative Reachability Estimation for Safe Reinforce-
ment Learning

In this paper, we formulate a general optimization framework for safety-constrained RL

and propose a new algorithm to solve our constraint optimization by using our novel reachability

estimation function. We present the deterministic case in Section 4.3.1 and build our way to the

stochastic case in Section 4.3.2. We present our novel algorithm to solve these optimizations,

involving our new reachability estimation function, in Section 4.3.3. We introduce convergence

analysis in Section 4.3.4.

4.3.1 Iterative Reachability Estimation for Deterministic Settings

All state transitions and policies happen with likelihood 0 or 1 for the deterministic

environment. Therefore, the probability of constraint violation for policy π from state s, i.e.,

φ π(s), is in the set {0,1}. According to Definition 4, if there exists some policy π such that

φ π(s) = 0, we have φ∗(s) = 0. Otherwise, φ∗(s) = 1. Notice that this captures definitive

membership in the optimal feasible set φ∗(s) = 1s∈Sπs
f

, which is the feasible set of some safest

policy πs = argminπ V π
c (s). Now, we divide our optimization in two parts: the infeasible part

and the feasible part.

For the infeasible part, we want the agent to incur the least cumulative damage (discounted

sum of costs) and, if possible, (re)enter the feasible set. Different from previous Reachability-

based RL optimizations, by using the discounted sum of costs V π
c (s) we consider both magnitude

and frequency of violations, thereby improving learning signal. The infeasible portion takes the

form:

max
π

E
s∼d0

[−V π
c (s)]. (4.1)

For the feasible part, we want the policy to ensure the agent stays in the feasible set and

maximize reward returns. This produces a constraint optimization where the cost value function
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is constrained:

max
π

E
s∼d0

[
V π(s)

]
, subject to V π

c (s) = 0,∀s ∈ SI. (4.2)

The following propositions justify using V π
c as the constraint.

Proposition 1. The cost value function V π
c (s) is zero for state s if and only if the persistent safety

is guaranteed for that state under the policy π .

Proof. (IF) Assume for a given policy π , the persistent safety is guaranteed, i.e. h(st |s0 = 0,π) =

0 holds for all st ∈ τ for all possible trajectories τ sampled from the environment with control

policy π . We then have:

V π
c (s) := E

τ∼π,P(s)
[∑
st∈τ

γ
th(st)] = 0.

(ONLY IF) Assume for a given policy π , V π
c (s) = 0. Since the image of the safety loss

function h(s) is non-negative real, and V π
c (s) is the expectation of the sum of non-negative real

values, the only way V π
c (s) = 0 is if h(st |s0 = 0,π) = 0, ∀st ∈ τ for all possible trajectories τ

sampled from the environment with control policy π .

We define here S f := Sπs
f , the feasibilty set of some safest policy. Now, the above two

optimizations can be unified with the use of the feasibility function φ∗(s):

max
π

E
s∼d0

[
V π(s) · (1−φ

∗(s))−V π
c (s) ·φ∗(s)

]
, subject to V π

c (s) = 0,∀s ∈ SI ∩S f . (4.3)

Unlike other reachability based optimizations like RCRL, one particular advantage in

Equation 4.3 is, with some assumptions, the guaranteed entrance back into feasible set with

minimum cumulative discounted violations whenever a possible control exists. More formally,

assuming infinite horizon:
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Proposition 2. If ∃π that produces trajectory τ = {(si), i ∈N,s1 = s} in deterministic MDP

M starting from state s, and ∃m ∈N,m < ∞ such that sm ∈ Sπ
f , then ∃ε > 0 where if discount

factor γ ∈ (1− ε,1), then the optimal policy π∗ of Equation 4.3 will produce a trajectory

τ ′ = {(s′j), j ∈N,s′1 = s}, such that ∃n ∈N,n < ∞, s′n ∈ Sπ∗
f and V π∗

c (s) = minπ ′V π ′
c (s).

In other words the proposition is stating for some state s, if there is a policy that enters its

feasible set in a finite number (m−1) of steps, then by ensuring discount factor γ is close to 1 we

can guarantee that the optimal policy π∗ of Main paper Equation 4.3 will also enter the feasible

set in a finite number of steps with the minimum cumulative discounted sum of the costs. Note

that π∗ will always produce trajectories with the minimum discounted sum of costs whether the

state is in the feasible or infeasible set of the policy by virtue of its optimization which constrains

V π
c .

Proof. We consider two cases: (Case 1) m = 1 and (Case 2) m > 1.

Case 1 m = 1: In this case, there exists a policy π in which the the current state s is in

the feasible set of that policy. By definition, that means that in a trajectory τ sampled in the

MDP using that policy, starting from state s, there are no future violations incurred in τ . Thus

V π
c (s) = 0. Since π∗ incurs the minimum cumulative violation, V π∗

c (s) = 0 trivially. Therefore,

s, the first state of the trajectory, is in the feasible set of π∗.

Case 2 m > 1: Since policy π∗ produces the minimum cumulative discounted cost

for a given state s, the core of this proof will be demonstrating that the minimum cumulative

discounted cost of entering the feasible set (call this value HE) is less than the minimum

cumulative discounted cost of not entering the feasible set (call this value HN), and therefore π∗

will choose the route of entering the feasible set.

The proof will proceed by deriving a sufficient condition for HE < HN by establishing

bounds on them.

We place an upper bound on the minimum cumulative discounted cost of entering the

feasible set HE . Since ∃π that enters the feasible set in m−1 steps, entering the feasible set can
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be at most the highest possible cost that π incurs. Since the maximum cost at any state is Hmax,

the upper bound is the discounted sum of m−1 steps of violations Hmax, or

HE <
Hmax(1− γm−1)

(1− γ)

We place a lower bound on the minimum cumulative discounted cost of not entering

the feasible set HN . In this case, say in the sampled trajectory, the maximum gap between any

two non-zero violations is w. By definition, the trajectory cannot have an infinite sequence

of violation-free states since the trajectory never enters the feasible set. Therefore w is finite.

Now recall Hmin is the lower bound on the non-zero values of h. So the minimum cumulative

discounted cost of not entering the feasible set must be at least the cost of the trajectory with a

violation of Hmin at intervals of w steps. That is:

Hmin(γ
w)

(1− γw)
< HN

Now HE < HN will be true if the upper bound of HE is less than the lower bound of HN .

In other words HE < HN is true if:

Hmax(1− γm−1)

(1− γ)
<

Hmin(γ
w)

(1− γw)
(4.4)

Rearranging, we get:
Hmax

Hmin
<

(1− γ) · (γw)

(1− γm−1) · (1− γw)
(4.5)

Let’s define the RHS of the Inequality 4.5 as the function υ(γ). Consider γ ∈ (0,1). It

is not difficult to demonstrate that υ(γ) in this domain range is a continuous function and that

left directional limit limγ→1− υ(γ) = ∞. This suggests that there is an open interval of values

for γ (whose supremum is 1) for which Hmax/Hmin < υ(γ) and so HE < HN . So we establish

that ∃ε > 0 such that for γ ∈ (1− ε,1), we satisfy the sufficient condition HE < HN so that the
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optimal policy will enter its feasible set.

Thus, we prove that if there is a policy entering its feasible set from state s, then there is

a range of values for γ that are close enough to 1 ensuring that the optimal policy of Main paper

Equation 4.3 will enter its feasible set in a finite number of steps with minimum discounted sum

of costs.

4.3.2 Iterative Reachability Estimation for Stochastic Settings

In stochastic environments, for each state, there is some likelihood of entering into the

unsafe states under any policy. Thus, we adopt the probabilistic reachability Definitions 3 and 4.

Rather than using the binary indicator in the optimal feasible set to demarcate the feasibility and

infeasibility optimization scenarios, we use the likelihood of infeasibility of the safest policy. In

particular, for any state s, the optimal likelihood that the policy will enter the infeasible set is

φ∗(s) from Definition 4.

We again divide the full optimization problem in stochastic settings into infeasible and

feasible ones similar to Equations 4.1 and 4.2. However, we consider the infeasible formulation

with likelihood the current state is in a safest policy’s infeasible state, or φ∗(s). Similarly,

we account for the feasible optimization formulation with likelihood the current state is in a

safest policy’s feasible set, 1−φ∗(s). The complete Reachability Estimation for Safe Policy

Optimization (RESPO) can be rewritten as:

max
π

E
s∼d0

[V π(s) · (1−φ
∗(s))−V π

c (s) ·φ∗(s)], s.t., V π
c (s) = 0, w.p. 1−φ

∗(s),∀s ∈ SI.

(RESPO)

In sum, the RESPO framework provides several benefits when compared with other

constrained Reinforcement Learning and reachability-based approaches. Notably, 1) it maintains

persistent safety when in the feasible set unlike CMDP-based approaches, 2) compared with
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other reachability-based approaches, RESPO considers performance optimization in addition

to maintaining safety, 3) it maintains the behavior of a safest policy in the infeasible set and

even reenters the feasible set when possible, 4) RESPO employs rigorously defined reachability

definitions even in stochastic settings.

4.3.3 Overall Algorithm

We describe our algorithms by breaking down the novel components. Our algorithm

predicts reachability membership to guide the training toward optimizing the right portion of

the optimization equation (i.e., feasibility case or infeasibility case). Furthermore, it exclusively

uses the discounted sum of costs as the safety value function – we can avoid having to learn the

reachability value function while having the benefit of exploiting the improved signal in the cost

value function.

Optimization in infeasible set versus feasible set.

If the agent is in the infeasible set, this is the simplest case. We want to find the optimal

policy that maximizes −V π
c (s). This would be the only term that needs to be considered in

optimization.

On the other hand, if the agent is in the feasible set, we must solve the constraint

optimization maxπ V π(s) subject to V π
c (s) = 0. This could be solved via a Lagrangian-based

method:

min
π

max
λ

L(π,λ ) = min
π

max
λ

(
E

s∼d0
[−V π(s)+λV π

c (s)]
)
.

Now what remains is obtaining the reachability estimation function φ∗. First, we address

the problem of acquiring optimal likelihood of being feasible. It is nearly impossible to accurately

know before training if a state is in a safest policy’s infeasible set. We propose learning a function

guaranteed to converge to this REF (with some discount factor for γ-contraction mapping) by

using the recursive Bellman formulation proved in Theorem 1.
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We learn a function p(s) to capture the probability φ∗(s). It is trained like a reachability

function:

p(s) = max{1s∈Sv,γ · p(s
′)},

where Sv is the violation set, s′ is the next sampled state, and γ is a discount parameter

0≪ γ < 1 to ensure convergence of p(s). Furthermore, and crucially, we ensure the learning rate

of this REF is on a slower time scale than the policy and its critics but faster than the lagrange

multiplier.

Bringing the concepts covered above, we present our full optimization equation:

min
π

max
λ

L(π,λ ) = min
π

max
λ

(
E

s∼d0

[
[−V π(s)+λ ·V π

c (s)] · (1− p(s))+V π
c (s) · p(s)

])
. (4.6)

We show the design of our algorithm RESPO in an actor-critic framework in Algorithm 1.

Note that the V and Vc have corresponding Q functions: V π(s) = Ea∼π(·|s)Q(s,a) and V π
c (s) =

Ea∼π(·|s)Qc(s,a). We use operator ΓΘ to indicate the projection of vector θ ∈Rn to the closest

point in compact and convex set Θ ⊆ Rn. Specifically, ΓΘ = argmin
θ̂∈Θ
||θ̂ − θ ||2. ΓΩ is

similarly defined.
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Algorithm 1. RESPO Actor Critic
Require: Randomly initialized policy πθ ’s parameters θ0, reward critic Q’s parameters η0, cost

critic Qc’s parameters κ0, REF p’s parameters ξ0, Lagrange multiplier λ ’s parameters ω0,
horizon T

Require: Convex projection operators ΓΘ and ΓΩ, and reward and cost critic learning rate ζ1(k),
policy learning rate ζ2(k), REF learning rate ζ3(k), lagrange multiplier learning rate ζ4(k)

1: for k = 0,1,2, ... do
2: for i = 0,1,2, ... do
3: Sample trajectories τi : {(s j,a j,s′j,r j,h j)} ∼ πθ

4: Rew. Update ηk+1 =ηk−ζ1(k)∇ηQ(st ,at) · [Q(st ,at)−(r(st ,at)+γQ(st+1,at+1))]
5: Cost Update κk+1 = κk−ζ1(k)∇κQc(st ,at) · [Qc(st ,at)− (h(st)+γQc(st+1,at+1))]
6: Policy Update θk+1 =

7: ΓΘ

(
θk − ζ2(k)γ t

[
− Q(st ,at)[1 − p(st)] + Qc(st ,at)[λ (1 − p(st)) +

p(st)]

]
∇θ logπθ (at |st)

)
8: REF Update ξk+1 = ξk−ζ3(k)∇ξ p(st) · [p(st)−max{1h(st)>0,γ p(st+1)}]
9: Lagrange multiplier Update ωk+1 = ΓΩ

(
ωk−ζ4(k)Qc(st ,at)(1− p(st))∇ωλ

)
10: end for
11: end for

4.3.4 Convergence Analysis

We provide convergence analysis of our algorithm for Finite MDPs (finite bounded state

and action space sizes, maximum horizon T , reward bounded by Rmax, and cost bounded by

Hmax) under reasonable assumptions. We demonstrate our algorithm almost surely finds a locally

optimal policy for our RESPO formulation, based on the following assumptions:

• A1 (Step size): Step sizes follow schedules {ζ1(k)}, {ζ2(k)}, {ζ3(k)}, {ζ4(k)} where:

∑
k

ζi(k) = ∞ and ∑
k

ζi(k)2 < ∞,∀i ∈ {1,2,3,4}, and ζ j(k) = o(ζ j−1(k)),∀ j ∈ {2,3,4}.

The reward returns and cost returns critic value functions must follow the fastest schedule

ζ1(k), the policy must follow the second fastest schedule ζ2(k), the REF must follow the second

slowest schedule ζ3(k), and finally, the lagrange multiplier should follow the slowest schedule
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ζ4(k).

• A2 (Strict Feasibility): ∃π(·|·;θ) such that ∀s ∈ SI where φ∗(s) = 0, V πθ
c (s)≤ 0.

• A3 (Differentiability and Lipschitz Continuity): For all state-action pairs (s,a), we assume

value and cost Q functions Q(s,a;η),Qc(s,a;κ), policy π(a|s;θ), and REF p(s,a;ξ ) are contin-

uously differentiable in η ,κ,θ ,ξ respectively. Furthermore, ∇ωλω and, for all state-action pairs

(s,a), ∇θ π(a|s;θ) are Lipschitz continuous functions in ω and θ respectively.

Theorem 2. Given Assumptions A1-A3, the policy updates in Algorithm 1 will almost surely

converge to a locally optimal policy for our proposed optimization in Equation RESPO.

We first provide an intuitive explanation behind why our REF learns to converge to the

safest policy’s REF, then a proof overview, and then the full proof.

Intuition behind REF convergence

The approach can be explained by considering what happens in the individual regions

of space. Consider a deterministic environment for simplicity. As seen in Figure 4.1, there

are two subsets of the initial state space: a safest policy’s ”true” feasible set ShI and REF

predicted feasible set SpI , and they create 4 regions in the initial state space SI: W = ShI ∩SpI ,

X = ShI∩SpI , Y = ShI∩SpI , Z = ShI∩SpI . Consider a point during training when the lagrange

multiplier λ is sufficiently large. For states inW , the set of correctly classified infeasible states,

the algorithm will simply minimize cumulative violations V πθ
c (s), and thereby remain as safe

as possible since the policy and critics learning rates are faster than that of REF. X , which is

the set of infeasible states that are misclassified, is very small if we ensure the policy and REF

are trained at much faster time scales than the multiplier and so when the agent starts in true

infeasible states, it will by definition reach violations and therefore be labeled as infeasible. In

Y , the set of truly feasible states that are misclassified, the algorithm also minimizes cumulative

violations, which by the definition of feasibility should be 0. It will then have no violations and

enter the correctly predicted feasible set Z . And when starting in states in Z , the algorithm will
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Figure 4.1. The predicted feasible set converges to a safest policy’s feasible set since the
misclassified regions X and Y are corrected over time.

optimize the lagrangian, and since the multiplier λ is sufficiently large, it will converge to a

policy that optimizes for reward while ensuring safety, i.e. no future violations, and therefore

the state will stay predictably feasible in Z . In this manner, REF’s predicted feasible set will

converge to the optimal feasible set, and the agent will be safe and have optimal performance in

the feasible set and be the safest behavior outside the feasible set. Thereby, the algorithm finds a

locally optimal solution to the proposed optimization formulation.

Proof Overview

We show our algorithm convergence to the optimal policy by utilizing the proof frame-

work of multi-time scale presented in [13, 30, 31, 99]. Specifically, we have 4 time scales for (1)

the critics, (2) policy, (3) REF function, and (4) lagrange multiplier, listed in order from fastest

to slowest. The overview of each timescale proof step is as follows:

1 We demonstrate the almost sure convergence of the critics to the corresponding fixed point

optimal critic functions of the policy.

2 Using multi-timescale theory, we demonstrate the policy almost surely converges to a

stationary point of a continuous time system, which we show has a Lyapunov function

certifying its locally asymptotic stability at the stationary point.
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3 We demonstrate the almost sure convergence of the REF function to the REF of the policy

that is safe insofar as the lagrange multiplier is sufficiently large.

4 We demonstrate the almost sure convergence of the lagrange multiplier to a stationary

point similar to the proof in the policy timecale.

Finally, we demonstrate that the stationary points for the policy and lagrange multiplier form a

saddle point, and so by local saddle point theorem we almost surely achieve the locally optimal

policy of our proposed optimization.

Proof Details

Proof. Step 1 (convergence of the critics Vη and Vκ updates): From the multi-time scale

assumption, we know that η and κ will convergence on a faster time scale than the other

parameters θ , ξ , and ω . Therefore, we can leverage Lemma 1 of Chapter 6 of [13] to analyze the

convergence properties while updating ηk and κk by treating θ , ξ , and ω as fixed parameters θk,

ξk, and ωk. In other words, the policy, REF, and lagrange multiplier are fixed while computing

Qπθk (s,a) and Q
πθk
c (s,a). With the Finite MDP assumption and policy evaluation convergence

results of [86], and assuming sufficiently expressive function approximator (i.e. wide enough

neural networks) to ensure convergence to global mininum, we can use the fact that the bellman

operators B and Bc which are defined as

B[Q](s,a) = r(s,a)+ γ E
s′,a′∼π,P(s)

[Q(s′,a′)]

B[Qc](s,a) = h(s)+ γ E
s′,a′∼π,P(s)

[Qc(s′,a′)]

are γ-contraction mappings, and therefore as k approaches ∞, we can be sure that Q(s,a;ηk)→

Q(s,a;η∗)=Qπθk (s,a) and Qc(s,a;κk)→Qc(s,a;κ∗)=Q
πθk
c (s,a). So since ηk and κk converge

to η∗ and κ∗, we prove convergence of the critics in Time scale 1.

Step 2 (convergence of the policy πθ update): Because ξ and ω updated on slower
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time scales than θ , we can again use Lemma 1 of Chapter 6 of [13] and treat these parameters

are fixed at ξk and ωk respectively when updating θk. Additionally in Time scale 2, we have

||Q(s,a;ηk)−Q(s,a;η∗)|| → 0 and ||Qc(s,a;κk)−Qc(s,a;κ∗)|| → 0 almost surely. Now the

update of the policy θ using the gradient from Equation 4.6 is:

θk+1 = ΓΘ[θk−ζ2(k)(∇θ L(θ ,ξk,ωk)|θ=θk)]

= ΓΘ[θk−ζ2(k)[γ t [−Qη(st ,at)[1− pξk
(st)]

+Qc(st ,at)[λω(1− pξk
(st))+ pξk

(st)]]∇θ logπ(at |st ;θ)|θ=θk ]]

= ΓΘ[θk−ζ2(k)(∇θ L(θ ,ξk,ωk)|θ=θk,η=η∗,κ=κ∗+δθk+1 +δθε)]

where

δθk+1 = ∑
si,ai

[
d0(s0)P

πθk (si,ai|s0)γ
i[−Qη(si,ai)[1− pξk

(si)]

+Qc(si,ai)[λω(1− pξk
(si))+ pξk

(si)]]∇θ logπ(ai|si;θ)|θ=θk

]
−γ

t [−Qη(st ,at)[1− pξk
(st)]+Qc(st ,at)[λω(1− pξk

(st))+ pξk
(st)]]

·∇θ logπ(at |st ;θ)|θ=θk

and

δθε = ∑
si,ai

d0(s0)P
πθk (si,ai|s0)

[
−γ

i[−Q(si,ai;ηk)[1− pξk
(si)]+Qc(si,ai;κk)[λω(1− pξk

(si))+ pξk
(si)]]

·∇θ logπ(ai|si;θ)|θ=θk

+γ
i[−Qπθk (si,ai)[1− pξk

(si)]+Q
πθk
c (si,ai)[λω(1− pξk

(si))+ pξk
(si)]]

·∇θ logπ(ai|si;θ)|θ=θk

]
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Lemma 1: We can first demonstrate that δθk+1 is square integrable. In particular,

E[||δθk+1||2|Fθ ,k]

≤ 2||∇θ logπ(a|s;θ)|θ=θk1π(a|s;θk)>0||2∞ ·
(
||Q(s,a;ηk)||2∞ · ||1− pξk

(s)||2∞

+ ||Qc(s,a;κk)||2∞ ·
[
||λω ||2∞ · ||1− pξk

(s)||2∞ + ||pξk
(s)||2∞

])
≤ 2

||∇θ π(a|s;θ)|θ=θk ||2∞
min{π(a|s;θk)|π(a|s;θk)> 0}

·
(
||Q(s,a;ηk)||2∞ · ||1− pξk

(s)||2∞

+ ||Qc(s,a;κk)||2∞ ·
[
||λω ||2∞ · ||1− pξk

(s)||2∞ + ||pξk
(s)||2∞

])

Note that Fθ ,k = σ(θm,δθm,m≤ k) is the filtration for θk generated by different independent tra-

jectories [30]. Also note that the indicator function is used because the expectation of ||δθk+1||2

is taken with respect to Pπθk and Pπθk (s,a|s0) = 0 if π(a|s;θk) = 0. From the Assumptions on

Lipschitz continuity and Finite MDPs reward and costs, we can bound the values of the functions

and the gradients of functions. Specifically

||∇θ π(a|s;θ)|θ=θk ||
2
∞ ≤ K1(1+ ||θk||2∞),

||Q(s,a;ηk)||2∞ ≤
Rmax

1− γ
,

||Qh(s,a;κk)||2∞ ≤
Hmax

1− γ
,

||λω ||2∞ ≤ λmax,

||1− pξk
(s)||2∞ ≤ 1,

||pξk
(s)||2∞ ≤ 1

where K1 is a Lipschitz constant. Furthermore, note that because we are sampling, π(a|s;θk)

will take on only a finite number of values, so its nonzero values will be bounded away from

47



zero. Thus we can say

1
min{π(a|s;θk)|π(a|s;θk)> 0}

≤ K2

for some large enough K2. Thus using the bounds from these conditions, we can demonstrate

E[||δθk+1||2|Fθ ,k]≤ 2 ·K1(1+ ||θk||2∞) ·K2(
Rmax

1− γ
·1+ Hmax

1− γ
· (λmax ·1+1))< ∞

Therefore δθk+1 is square integrable.

Lemma 2: Secondly, we can demonstrate δθε → 0.

δθε = ∑
si,ai

d0(s0)P
πθk (si,ai|s0)

[
γ

i[(Q(si,ai;ηk)−Qπθk (si))[1− pξk
(si)]

+(−Qc(si,ai;κk)+Q
πθk
c (si,ai))[λω(1− pξk

(si))+ pξk
(si)]

]
∇θ logπ(ai|si;θ)|θ=θk

]
≤ ∑

si,ai

d0(s0)P
πθk (si,ai|s0)

[
γ

i[(Q(si,ai;ηk)−Q(si,ai;η
∗))[1− pξk

(si)]

+(−Qc(si,ai;κk)+Qc(si,ai;κ
∗))[λω(1− pξk

(si))+ pξk
(si)]

]
∇θ logπ(ai|si;θ)|θ=θk

]
≤ ∑

si,ai

d0(s0)P
πθk (si,ai|s0)

[
γ

i[||Q(si,ai;ηk)−Q(si,ai;η
∗)||[1− pξk

(si)]

+ ||−Qc(si,ai;κk)+Qc(si,ai;κ
∗)||[λω(1− pξk

(si))+ pξk
(si)]

]
∇θ logπ(ai|si;θ)|θ=θk

]

And because we have ||Q(s,a;ηk)−Q(s,a;η∗)|| → 0 and ||Qc(s,a;κk)−Qc(s,a;κ∗)|| → 0

almost surely, we can therefore say δθε → 0.

Lemma 3: Finally, since ∇̂θ Jπ(θ)|θ=θk is a sample of ∇θ L(θ ,ξk,ωk)|θ=θk based on the

history of sampled trajectories, we conclude that E[δθk+1|Fθ ,k] = 0.

From the 3 above lemmas, the policy θ update is a stochastic approximation of a
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continuous system θ(t) defined by [13]

θ̇ = ϒΘ[−∇θ L(θ ,ξ ,ω)] (4.7)

in which

ϒΘ[M(θ ]
∆
= lim

0<ψ→0

ΓΘ(θ +ψM(θ))−ΓΘ(θ)

ψ

or in other words the left directional derivative of ΓΘ(θ) in the direction of M(θ). Using the

left directional derivative ϒΘ[−∇θ L(θ ,ξ ,ω)] in the gradient descent algorithm for learning

the policy πθ ensures the gradient will point in the descent direction along the boundary of

Θ when the θ update hits its boundary. Using Step 2 in Appendix A.2 from [30], we have

that dL(θ ,ξ ,ω)/dt = −∇θ L(θ ,ξ ,ω)T ·ϒΘ[−∇θ L(θ ,ξ ,ω)] ≤ 0 and the value is non-zero if

||ϒΘ[−∇θ L(θ ,ξ ,ω)]|| ̸= 0. Now consider the continuous system θ(t). For some fixed ξ and ω ,

define a Lyapunov function

Lξ ,ω(θ) = L(θ ,ξ ,ω)−L(θ ∗,ξ ,ω)

where θ ∗ is a local minimum point. Then there exists a ball centered at θ ∗ with a radius ρ such

that ∀θ ∈Bθ∗(ρ) = {θ |||θ −θ ∗|| ≤ ρ}, Lξ ,ω(θ) is a locally positive definite function, that is

Lξ ,ω(θ)≥ 0. Using Proposition 1.1.1 from [11], we can show that ϒΘ[−∇θ L(θ ,ξ ,ω)]|θ=θ∗ = 0

meaning θ ∗ is a stationary point. Since dL(θ ,ξ ,ω)/dt ≤ 0, through Lyapunov theory for

asymptotically stable systems presented in Chapter 4 of [60], we can use the above arguments to

demonstrate that with any initial conditions of θ(0) ∈Bθ∗(ρ), the continuous state trajectory of

θ(t) converges to θ ∗. Particularly, L(θ ∗,ξ ,ω)≤ L(θ(t),ξ ,ω)≤ L(θ(0),ξ ,ω) for all t > 0.

Using these aforementioned properties, as well as the facts that 1) ∇θ L(θ ,ξ ,ω) is a

Lipschitz function (using Proposition 17 from [30]), 2) the step-sizes of Assumption on steps

sizes, 3) δθk+1 is a square integrable Martingale difference sequence and δθε is a vanishing
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error almost surely, and 4) θk ∈Θ,∀k implying that supk ||θk||< ∞ almost surely, we can invoke

Theorem 2 of chapter 6 in [13] to demonstrate the sequence {θk},θk ∈Θ converges almost surely

to the solution of the ODE defined by Equation 4.7, which additionally converges almost surely

to the local minimum θ ∗ ∈Θ.

Step 3 (convergence of REF pξ updates): Since ω is updated on a slower time scale that

ξ , we can again treat ω as a fixed parameter at ωk when updating ξ . Furthermore, in Time scale

3, we know that the policy has converged to a local minimum, particularly ||θk−θ ∗(ξk,ωk)||= 0.

Now the bellman operator for REF is defined by

Bp[p](s) = max{1s∈Sv ,γ E
s′∼π,P(s)

[p(s′)]}.

We demonstrate this is a γ contraction mapping as follows:

|Bp[p](s)−Bp[p̂](s)|

= |max{1s∈Sv ,γ E
s′∼π,P(s)

[p(s′)]}−max{1s∈Sv,γ E
s′∼π,P(s)

[p̂(s′)]}|

≤ |γ E
s′∼π,P(s)

[p(s′)]− γ E
s′∼π,P(s)

[p̂(s′)]|

= γ| E
s′∼π,P(s)

[p(s′)− p̂(s′)]|

≤ γ sup
s
|p(s)− p̂(s)|= γ||p− p̂||∞

So we can say that p(s;ξk) will converge to p(s;ξ ∗) as k→ ∞ under the same assumptions of

the Finite MDP and function approximator expressiveness in Step 1. Therefore, πθk will also

converge to π⋄ = πθ∗(ξ ∗,ωk) as k→ ∞. And because πθ is the sampling policy used to compute

p, p(s;ξ ∗) = pπθ∗(ξ∗,ωk)(s;ξ ∗) = p⋄(s).

Notice that π⋄ is a locally minimum optimal policy for the following optimization (recall
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λω is treated as constant in this timescale):

min
π

E
s∼d0

E
a∼π(·|s)

[
−Qπ(s,a) · [1− p⋄(s)]+Qπ

c (s,a) · [(1− p⋄(s))λω + p⋄(s)]
]

and therefore also locally minimum optimal policy for optimization:

min
π

E
s∼d0

E
a∼π(·|s)

[
−Qπ(s,a)+Qπ

c (s,a) · [λω +
p⋄(s)

(1− p⋄(s))
]

]
, if p⋄(s)> 0

E
s∼d0

min
π

E
a∼π(·|s)

[
Qπ

c (s,a)
]

, if p⋄(s) = 0

Since p⋄(s)
(1−p⋄(s)) ≥ 0, and the Q functions are always nonnegative, we can know that π⋄ is

at least as safe as (i.e., its expected cumulative cost is at most that of) a locally optimal policy for

the optimization:

min
π

E
s∼d0

E
a∼π(·|s)

[
−Qπ(s,a)+Qπ

c (s,a)λω

]
(4.8)

As λω approaches λmax, which in turn approaches ∞, the local minimum optimal policies of

Equation 4.8 approach those of the optimization π△ = argminπ Es∼d0 Ea∼π(·|s)Qπ
c (s,a)λω =

argminπ Es∼d0 Ea∼π(·|s)Qπ
c (s,a). Therefore, the feasible set of the REF p⋄ will approach that of

the REF pπ△ .

Step 4 (convergence of lagrange multiplier λω update): Since λω is on the slowest time

scale, we have that ||θk−θ ∗(ω)|| = 0, ||ξk−ξ ∗(ω)|| = 0, and ||Qc(s,a;κk)−Q
πθk
c (s,a)|| = 0

almost surely. Furthermore, due to the continuity of ∇ωL(θ ,ξ ,ω), we have that

||∇ωL(θ ,ξ ,ω)|θ=θk,ξ=ξk,ω=ωk
−∇ωL(θ ,ξ ,ω)|θ=θ∗(ωk),ξ=ξ ∗(ωk),ω=ωk

||= 0 almost surely. The
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update of the multiplier using the gradient for Equation is:

ωk+1 = ΓΩ[ωk +ζ4(k)(∇ωL(θ ,ξ ,ω)|θ=θk,ξ=ξk,ω=ωk
)]

= ΓΩ[ωk +ζ4(k)(Qc(st ,at ;κk)[1− p(st ;ξk)]∇ωλω |ω=ωk)]

= ΓΩ[ωk +ζ4(k)(∇ωL(θ ,ξ ,ω)|θ=θ∗(ωk),ξ=ξ ∗(ωk),ω=ωk
+δωk+1)]

where

δωk+1 =−∇ωL(θ ,ξ ,ω)|θ=θ∗(ωk),ξ=ξ ∗(ωk),ω=ωk
+Qc(st ,at ;κk)[1− p(st ;ξk)]∇ωλω |ω=ωk

=−∑
si,ai

d0(s0)P
πθk (si,ai|s0)[Q

πθ∗
c (si,ai)[1− pξ ∗(si)]∇ωλω |ω=ωk ]

+Qc(st ,at ;κk)[1− p(st ;ξk)]∇ωλω |ω=ωk

=−∑
si,ai

d0(s0)P
πθk (si,ai|s0)[Q

πθ∗
c (si,ai)[1− pξ ∗(si)]∇ωλω |ω=ωk ]

+ [Qc(st ,at ;κk)[1− p(st ;ξk)]−Q
πθk
c (st ,at)[1− p(st ;ξk)]+

Q
πθk
c (st ,at)[1− p(st ;ξk)]−Q

πθk
c (st ,at)[1− p⋄(st)]+

Q
πθk
c (st ,at)[1− p⋄(st)]]∇ωλω |ω=ωk

=−∑
si,ai

d0(s0)P
πθk (si,ai|s0)[Q

πθ∗
c (si,ai)[1− pξ ∗(si)]∇ωλω |ω=ωk ]

+ [(Qc(st ,at ;κk)−Q
πθk
c (st ,at))[1− p(st ;ξk)]+

Q
πθk
c (st ,at)[p⋄(st)− p(st ;ξk)]+

Q
πθk
c (st ,at)[1− p⋄(st)]]∇ωλω |ω=ωk ]

Now, just as in the θ update convergence, we can demonstrate the following lemmas:

Lemma 4: δωk+1 is square integrable since

E[||δωk+1||2|Fω,k]≤ 2 · Hmax

1− γ
·1 ·K3(1+ ||ωk||2∞)< ∞
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for some large Lipschitz constant K3. Note that Fω,k = σ(ωm,δωm,m≤ k) is the filtration for

ωk generated by different independent trajectories [30].

Lemma 5: Because ||Qc(st ,at ;κk)−Q
πθk
c (st ,at)||∞→ 0 and ||p⋄(st)− p(st ;ξk)||∞→ 0

and Q
πθk
c (st ,at)[1− pξ ∗(st)]∇ωλω |ω=ωk is a sample of Qπθ∗

c (si,ai)[1− pξ ∗(si)]∇ωλω |ω=ωk , we

conclude that E[δωk+1|Fω,k] = 0 almost surely.

Thus, the lagrange multiplier ω update is a stochastic approximation of a continuous

system ω(t) defined by [13]

ω̇ = ϒΩ[−∇ωL(θ ,ξ ,ω)|θ=θ∗(ω),ξ=ξ ∗(ω)] (4.9)

with Martingale difference error of δωk and where ϒΩ is the left direction derivative defined

similar to that in Time scale 2 of the convergence of θ update. Using Step 2 in Appendix A.2

from [30], we have that

dL(θ ∗(ω),ξ ∗(ω),ω)/dt

=∇ωL(θ ,ξ ,ω)|θ=θ∗(ω),ξ=ξ ∗(ω)
T ·ϒΩ[∇ΩL(θ ,ξ ,ω)|θ=θ∗(ω),ξ=ξ ∗(ω)]≥ 0

and the value is non-zero if

||ϒΩ[∇ωL(θ ,ξ ,ω)|θ=θ∗(ω),ξ=ξ ∗(ω)]|| ≠ 0.

For a local maximum point ω∗, define a Lyapunov function as

L(ω) = L(θ ∗(ω),ξ ∗(ω),ω∗)−L(θ ∗(ω),ξ ∗(ω),ω)

Then there exists a ball centered at ω∗ with a radius ρ ′ such that ∀ω ∈Bω∗(ρ
′) = {ω|||ω −

ω∗|| ≤ ρ ′}, L(ω) is a locally positive definite function, that is L(ω)≥ 0. Also,

dL(ω(t))/dt =−dL(θ ∗(ω),ξ ∗(ω),ω)/dt ≤ 0 and is equal only when
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Figure 4.2. We compare the performance of our algorithm with other SOTA baselines in Safety Gym
(left two figures), Safety PyBullet (middle two figures), and Safety MuJoCo (right two figures).

ϒΩ[∇ωL(θ ,ξ ,ω)|θ=θ∗(ω),ξ=ξ ∗(ω)] = 0, so therefore ω∗ is a stationary point. By leveraging

Lyapunov theory for asymptotically stable systems presented in Chapter 4 of [60] we can

demonstrate that for any initial conditions of ω ∈Bω∗(ρ
′), the continuous state trajectory of

ω(t) converges to the locally maximum point ω∗.

Using these aforementioned properties, as well as the facts that 1) ∇ωL(θ ∗(ω),ξ ∗(ω),ω)

is a Lipschitz function, 2) the step-sizes of Assumption on steps sizes, 3) {ωk+1} is a stochas-

tic approximation of ω(t) with a Martingale difference error, and 4) convex and compact

properties in projections used, we can use Theorem 2 of chapter 6 in [13] to demonstrate the

sequence {ωk} converges almost surely to a locally maximum point ω∗ almost surely, that is

L(θ ∗(ω),ξ ∗(ω),ω∗)≥ L(θ ∗(ω),ξ ∗(ω),ω).

From Time scales 2 and 3 we have that L(θ ∗(ω),ξ ∗(ω),ω) ≤ L(θ ,ξ ,ω) while from

Time scale 4 we have that L(θ ∗(ω),ξ ∗(ω),ω∗)≥ L(θ ∗(ω),ξ ∗(ω),ω). Thus,

L(θ ∗(ω),ξ ∗(ω),ω) ≤ L(θ ∗(ω),ξ ∗(ω),ω∗) ≤ L(θ ,ξ ,ω∗). Therefore, (θ ∗,ξ ∗,ω∗) is a local

saddle point of (θ ,ξ ,ω). Invoking the saddle point theorem of Proposition 5.1.6 in [11], we can

conclude that π(·|·;θ ∗) is a locally optimal policy for our proposed optimization formulation.

4.4 Experiments

Baselines. The baselines we compare are CMDP-based or solve for hard constraints. The

CMDP baselines are Lagrangian-based Proximal Policy Optimization (PPOLag) based on [88],

Constraint-Rectified Policy Optimization (CRPO) [96], Penalized Proximal Policy Optimization

(P3O) [101], and Projection-Based Constrained Policy Optimization (PCPO) [98]. The hard

constraints baselines are RCRL [99], CBF with constraint ḣ(s)+ν · h(s) ≤ 0, and Feasibile
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Actor-Critic (FAC) [67]. We classify FAC among the hard constraint approaches because we

make its cost threshold χ = 0 in order to better compare using NN lagrange multiplier with

our REF approach in RESPO. We include the unconstrained Vanilla PPO [81] baseline for

reference.

Benchmarks. We compare RESPO with the baselines in a diverse suite of safety

environments. We consider high-dimensional environments in Safety Gym [77] (namely Point-

Button and CarGoal), Safety PyBullet [47] (namely DroneCircle and BallRun), and Safety

MuJoCo [91], (namely Safety HalfCheetah and Reacher). We also show our algorithm in a

multi-drone environment with multiple hard and soft constraints.

4.4.1 Main Experiments in Safety Gym, Safety PyBullet, and MuJoCo

We compare our algorithm with SOTA benchmarks on various high-dimensional (up

to 76D observation space), complex environments in the stochastic setting, i.e., where the

environment and/or policy are stochastic. Particularly, we examine environments in Safety Gym,

Safety PyBullet, and Safety MuJoCo. The environments provide reward for achieving a goal

behavior or location, while the cost is based on tangible (e.g., avoiding quickly moving objects)

and non-tangible (e.g., satisfying speed limit) constraints. Environments like PointButton require

intricate behavior where specific buttons must be reached while avoiding multiple moving

obstacles, stationary hazards, and wrong buttons.

Overall, RESPO achieves the best balance between optimizing reward and minimizing

cost violations across all the environments. Specifically, our approach generally has the highest re-

ward performance (see the red lines from the top row of Figure 4.3) among the safety-constrained

algorithms while maintaining reasonably low to 0 cost violations (like in HalfCheetah in Fig-

ure 4.5). When RESPO performs the second highest, the highest-performing safety algorithm

always incurs several times more violations than RESPO – for instance, RCRL in PointButton

or PPOLag in Drone Circle. Non-primal-dual CMDP approaches, namely CRPO, P3O, and

PCPO generally satisfy their cost threshold constraints, but their reward performances rarely
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exceed that of PPOLag. RCRL generally has extremes of high reward and high cost, like in

BallRun, or low reward and low cost, like in CarGoal. FAC and CBF generally have conservative

behavior that sacrifices reward performance to minimize cost.

0 2 4 6 8
1e6

10

0

10

20

30

CarGoal Cumulative Rewards
PPOLag
RCRL
FAC
RESPO (ours)
CBF
Vanilla PPO
CRPO
P3O
PCPO

0 2 4 6 8
1e6

0

10

20

PointButton Cumulative Rewards

0 2 4 6 8
1e6

0.0

1.0

2.0

3.0

×103 BallRun Cumulative Rewards

0 2 4 6 8
1e6

0.0

0.2

0.4

0.6

0.8

1.0
×103 DroneCircle Cumulative Rewards

0 2 4 6 8
1e6

0

20

40

60

CarGoal Cumulative Costs

0 2 4 6 8
1e6

0.0

0.5

1.0

1.5

×102 PointButton Cumulative Costs

0 2 4 6 8
1e6

0.0

0.5

1.0

1.5

2.0

2.5
×102 BallRun Cumulative Costs

0 2 4 6 8
1e6

0

10

20

30

40

DroneCircle Cumulative Costs

Figure 4.3. Comparison of RESPO with baselines in Safety Gym and PyBullet environments. The plots
in the first row show performance measured in rewards (higher is better); those in second row show cost
(lower is better). RESPO (red curves) generally achieves the best balance of maximizing reward and
minimizing cost.

4.4.2 Hard and Soft Constraints

We also demonstrate RESPO’s performance in an environment with multiple hard and

soft constraints. The environment requires controlling two drones to pass through a tunnel one at

a time while respecting certain distance requirements. The reward is given for quickly reaching

the goal positions. The two hard constraints involve (H1) ensuring neither drone collides into

the wall and (H2) the distance between the two drones is more than 0.5 to ensure they do not

collide. The soft constraint is that the two drones are within 0.8 of each other to ensure real-world

communication. It is preferable to prioritize hard constraint H1 over hard constraint H2, since

colliding with the wall may have more serious consequences to the drones rather than violations

of an overly precautious distance constraint.

Our approach, in the leftmost of Figure 4.4, successfully reaches the goal while avoiding

the wall obstacles in all time steps. We are able to prioritize this wall avoidance constraint over
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Figure 4.4. Comparison of algorithms in Hard & Soft Constraints multi-Drone control. Starting
at gold circles, drones must enter the tunnel one at a time and reach green stars. Trajectory colors
correspond to time. RESPO reaches goal, satisfies hard constraints, and usually respects soft
constraints.

the second hard constraint. This can be seen particularly in between the blue to cyan time period

where the higher Drone makes way for the lower Drone to pass through but needs to make a drop

to make a concave parabolic trajectory to the goal. Nonetheless, the hard constraints are almost

always satisfied, thereby producing the behavior of allowing one drone through the tunnel at a

time. The soft constraints are satisfied at the beginning and end but are violated, reasonably, in

the middle of the episode since only one drone can pass through the tunnel at a time, thereby

forcing the other drone into a standby mode.

4.4.3 Ablation Studies

We also perform ablation studies to experimentally confirm the design choices we made

based on the theoretically established convergence and optimization framework. We particularly

investigate the effects of changing the learning rate of our reachability function as well as

changing the optimization framework. We present the results of changing the learning rate for

REF in Figure 4.6 while our results for the ablation studies on our optimization framework can

be seen in Figure 4.7.

In Figure 4.6, we show the effects of making the learning rate of REF slower and faster

than the one we use in accordance with Assumption 1. From these experiments, changing the

learning rate in either direction produces poor reward performance. A fast learning rate makes the

REF converge to the likelihood of infeasibility for the current policy, which can be suboptimal.

But a very slow learning rate means the function takes too long to converge – the lagrange

multiplier may meanwhile become very large, thus making it too difficult to optimize for reward
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Figure 4.5. Comparison of RESPO with base-
lines in MuJoCo. Higher rewards (first row plots)
and lower costs (second row plots) are better. In
HalfCheetah, RESPO has highest reward among
safety baselines, with 0 violations. In Reacher,
RESPO has good rewards, low costs.
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Figure 4.6. Ablation study on the learning
rate of REF. Higher rewards (first row plots)
are better; lower costs (second row plots) are
better. When changing REF’s learning rate to
violate timescale assumptions, REF produces
suboptimal feasible sets.

returns. In both scenarios, the algorithm with modified learning rates produces conservative

behavior that sacrifices reward performance.

In Figure 4.7, we compare RESPO with RCRL implemented with our REF and PPOLag

in the CMDP framework with cost threshold χ = 0 to ensure hard constraint satisfaction. The

difference between RESPO and the RCRL-based ablation approach is that the ablation still

uses V π
h instead of V π

c . The ablation aproach’s high cumulative cost can be attributed to the

limitations of using V π
h – particularly, the lower sensitivity of V π

h to safety improvement and its

lack of guarantees on feasible set (re)entrance. PPOLag with χ = 0 produces low violations but

also very low reward performance that’s close to zero. Naively using V π
c in a hard constraints

framework leads to very conservative behavior that sacrifices reward performance. Ultimately,

this ablation study experimentally highlights the importance of learning our REF and using value

function V π
c in our algorithm’s design.
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Figure 4.7. Ablation study on optimization framework. Top row plots show performance
measured in reward (higher is better). Bottom row plots show cost (lower is better). This
demonstrates both REF and V π

c are crucial in our design and work in tandem to contribute to
RESPO’s efficacy.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Start

Feasible Set

Infeasible Set

RESPO (ours)
RCRL
Safe set boundry

Figure 4.8. Comparison of the trajectories in the Double Integrator Environment of an agent
controlled by RCRL (in red) and our proposed algorithm RESPO (in green) when starting from
the safe but infeasible set. Our approach actively enters the feasible set (blue region), while
RCRL fails to do so.
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4.4.4 Double Integrator

We use the Double Integrator environment as a motivating example to demonstrate how

performing constrained optimization using solely reachability-based value functions as in RCRL

can produce nonoptimal behavior when the agent is outside the feasiblity set. Double Integrator

has a 2 dimensional observation space [x1,x2], 1 dimension action space a ∈ [−0.5,0.5], system

dynamics is ṡ = [x2,a], and constraint as ||s||∞ ≤ 5. Particularly, we make the cost as 1 if

||s||∞ > 5, and 0 otherwise to emphasize the importance of capturing the frequency of violation

during training.

We train an RCRL controller and RESPO controller in this environment, and the results

are visualized in Figure 4.8. The color scheme indicates the learned reachability value across

the state space while the black line demarcates the border of the zero level set. We present the

behavior of the trajectories of RCRL and RESPO. Because the RCRL optimizes for reachability

value function when outside the feasible set, it simply minimizes the maximum violation, which

as can be seen does not result in the agent reentering the feasible set since it is uniformly equal

to or near 1 in the infeasible set. This is since it permits many violations of magnitude same or

less than that of the maximum violation. On the other hand, RESPO optimizes for cumulative

damage by considering total sum of costs, thereby re-entering the feasible set.

4.5 Discussion and Conclusion

In summary, we proposed a new optimization formulation and a class of algorithms

for safety-constrained reinforcement learning. Our framework optimizes reward performance

for states in least-violation policy’s feasible state space while maintaining persistent safety as

well as providing the safest behavior in other states by ensuring entrance into the feasible set

with minimal cumulative discounted costs. Using our proposed reachability estimation function,

we prove our algorithm’s class of actor-critic methods converge a locally optimal policy for

our proposed optimization. We provide extensive experimental results on a diverse suite of
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environments in Safety Gym, PyBullet, and MuJoCo, and an environment with multiple hard and

soft constraints, to demonstrate the effectiveness of our algorithm when compared with several

SOTA baselines.
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Chapter 5

Limitations and Future Works

5.1 Current Limitations

Hamilton-Jacobi reachability estimation has demonstrated great performance in a variety

of problem formulations, even scaling up to vision-based data while providing some forms of

safety guarantees. Nonetheless, there are some limitations to these approaches.

Like most learning-based approaches, acquiring the HJ reachability estimation value

functions requires obtaining many samples to compute a good estimation. This may be difficult

to do when trying to guarantee safety in an online framework where the number of attempts

is limited. Furthermore, while recent works can guarantee convergence to the optimally safe

control and value function as shown in [43, 99], learning-based methods have issues including

catastrophic forgetting [79] that make it difficult to guarantee safety within a limited number of

training steps/samples.

The valid definition and formulation of the HJ reachability estimation may also be

limited in the possible behaviors that it can capture. For instance, when learning the reachability

formulation, [4,42] had to define it in a discounted Bellman formulation. One way this was done

was by defining a different optimal control problem as in (3.7) that incorporated discounted

costs. However, the exact Bellman formulation (shown in (3.9)) to solve this had a loose gamma

contraction mapping, thereby taking longer to converge to the value function solution. The

other, most frequently used approach from (3.10) was defining a different Bellman formulation
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which had a tighter gamma contraction mapping – while this is a good approximation of the true

Bellman formulation solution, it is not an exact reachability value function solution. Furthermore,

in either case, the optimal control was redefined with discounting so the optimal control may

potentially be in conflict with the true undiscounted optimal control.

Another limitation is that the reachability value functions, especially those learned via the

Bellman formulation, are rigorously defined only for deterministic dynamics or non-deterministic

dynamics with known bounds [4]. Methods like those found in [54, 100] that consider stochastic

noise/disturbance require learning an additional model or disturbance policy. Probabilistic

reachability approaches meant for stochastic environments such as [1, 26, 27, 43, 80, 89] can only

use HJ reachability when the cost function is redefined in a binary manner. Other stochastic

reachability approaches require direct access to some form of a dynamics or control model like a

probabilistic density function of the adversary’s predicted control [94].

Also, as explored in [43], when the agent is outside the feasible set, the reachability value

function does not guarantee reentrance back into the feasible set. In particular, the control may

incur a potentially infinite number of costs smaller than the maximum cost along the trajectory.

This can be addressed by creating a new cost function.

Finally, learning HJ reachability in a model-free manner is limited by assumptions of the

online learning of the Bellman formulation. In particular, there exist novel HJ Bellman variational

inequalities such as the Control Barrier Value Function variational inequality (CBFVI) [28]

whose solutions are provably both a HJ reachability value function and a Control Barrier Function.

The discrete-time solution of the CBFVI is similar to that found in (3.9) but requires γ ≥ 1.

However, if we want to learn the value function online via Bellman recursion, we need to ensure

gamma contraction mapping which requires γ ∈ [0,1). Because there is no feasible overlap in

the solution space for γ , learning a Control Barrier Function with HJ reachability estimation

online remains an open challenge.
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5.2 Future Works

HJ reachability estimation for learning-based control is a rapidly growing field and has

much more to offer. Future work includes addressing concerns about its limitations as well as

extending new topics in reinforcement learning and HJ reachability.

One important domain in learned control is single lifetime reinforcement learning [18] or

lifelong learning [90] in which the goal is to solve a task without resetting the environment. In

the safety version of this setting, the algorithms need to be able to learn controls on the go while

not terminating or entering a deadly state. In this scenario, safety is a priority during exploration

– thus there remains the open problem of ensuring safety and goal reachability during the training

process or from data so as to safely complete the task in one trial.

Another topic to explore is HJ reachability estimation in the Koopman-Hopf frame-

work [82]. The Hopf formula for HJ reachability analysis is an approach proposed to solve

high-dimensional tasks [29, 34, 61] but is limited to linear time-varying systems. Koopman

theory [63, 71] is a mechanism of mapping nonlinear dynamics into some linear dynamics in a

very high-dimensional latent space. There has been some work on using Koopman and reacha-

bility analysis together [62], but the work of [82] is novel in proposing to combine the Hopf

reachability framework and Koopman theory to solve problems up to 10-dimensions. There has

been recent work improving the scalability of Koopman-based methods through learning-based

mechanisms [65, 87]. This leaves room for future research in further scaling Koopman-Hopf

reachability analysis and applying this technique to learning-based control.
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