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“Someone once told me that time was a predator that stalked us all our

lives. But I rather believe that time is a companion who goes with us on

the journey and reminds us to cherish every moment, because they’ll

never come again. What we leave behind is not as important as how we

lived… after all, Number One, we’re only mortal.” (Captain Jean-Luc

Picard, USS Enterprise (NCC-1701-D), United Federation of Planets)”
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COMPUTER SCIENCE

Abstract

The advent of high-throughput sequencing has radically altered the theory and practice

of biology. Massive volumes of sequence data have necessitated commensurate advances

in computational approaches to biological analysis; methods for the assembly of shot-

gun sequencing data into complete genomes, transcriptomes, and metagenomes have

been particularly foundational in enabling downstream study. More recently, sketching

methods have allowed classification and comparison to scale to hundreds of thousands of

samples.

This dissertation extends that work by exploring streaming implementations of several

core approaches. First, we introduce a method for single-pass construction of the compact

de Bruijn graph, with support for novel methods of dynamic assembly graph analysis.

Next, we explore the saturation behavior of streaming sequence sketches, and introduce

a novel sketch we call draff which uses Universal k-mer Hitting Sets to represent the

shape of assembly graphs. Finally, we introduce several pieces of research software for

sequence comparison, transcript annotation, and phylogenetic tree building, which show-

case accessible, open access design philosophies. We also introduce the goetia library

and toolset for efficient de Bruijn graph algorithms in C++ and Python.
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Introduction

Motivation

Large-scale genome sequencing is a paradigm-shifting technology for biology of the 21st

century. Since the sequencing of the human genome was declared complete in April of

2003, genomics has been a core part of the public conscience and rapidly grown as a tool

for biological research. What started as a small-scale molecular biology method for un-

derstanding individual genes grew into projects mapping out the genomes of most major

model organisms in great functional detail, sequencing entire populations of microbes

from the environment, mapping hundreds of thousands of individual human genomes,

and producing draft sequences for hundreds of thousands of species across the entire tree

of life; as of 2021, the National Center for Biotechnology Information (NCBI) stored over

36 petabytes of raw sequencing information in its Sequence Read Archive (SRA), with

many times that volume not submitted.

Background

1
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Streaming Algorithms

Streaming, or online, algorithms are those that process data in the stream model: a

stream of data is fed to the algorithm, one observation at a time in the order of arrival,

and each item is processed at most once. Alternatively, we can say that a streaming

algorithm makes at most one pass over the input data. The stream may either be finite

or infinite; when we conceptualize by number of passes, we generally are considering

finite streams. A closely related group is the semi-streaming algorithm, which are those

that make few passes over the data, typically two or less. These algorithms are of course

concerned with finite streams of data.

Streaming approaches find the most use when data is too large to fit in main memory; for

example, when working with massive network traffic data one may only be concerned with

some properties of the underlying graph which itself is much too large for main memory,

necessitating streaming approaches that drill down specifically to those properties. In a

genomics context, we might be interested in analyzing a set of sequencing reads without

generating intermediate files or making multiple passes over large text files of sequences.

The data stream model was initially formalized by researchers at Digital Systems Re-

search Center (1). They define a data stream as “a sequence of data items x1 . . . xi . . . xn

such that the items are read once in increasing order of the indices i”; this definition

has persisted to today. Their work further parameterized a computational model by the

number of passes P , with work built on this definition sometimes referring to algorithms

where P > 1 categorized as semi-streaming. While there is a paucity of surveys consid-

ering streaming algorithms in general, several focus on more specific applications while

giving some generalized overview of streaming models. In (2), streaming algorithms for

massive graphs are explored. (3) explores the streaming model in contrast to traditional
2
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database management approaches, and further subdivides streaming methods: approxi-

mate query processing, sliding window approaches which consider only recent elements of

a stream, sampling and “synopsis” approaches for when the rate of a stream is too high,

and the tradeoffs between batching, sampling, and sketching. Data Streams: Algorithms

and Applications (4) is a textbook survey of broader data stream problems, of which

streaming algorithms are a subset.

Streaming in Omics

With omics data generation continuing to accelerate, interest in streaming approaches

has grown. There are a number of advantages to a transition to streaming approaches in

omics:

The “Data Deluge” Even with per-base sequencing costs stabilizing, the number of

sequences generated by various institutions worldwide keeps growing at a geoemetric rate.

However, the actual cost of the sequencing itself is dwarfed by the cost of the computing

and downstream analysis of the data (5). Furthermore, the adoption of cloud-computing

has shifted the computing costs for many institutions from a fixed to a variable-cost

model; this model incentivizes minimizing intermediate file storage and efficient algo-

rithms that are more easily distributed in a principled, independent way. Streaming

approaches can reduce I/O and bandwidth mid-stream while transferring data to cloud

services; they can help remove intermediate files that increase variable costs; and they

can help decompose problems for distribution across disparate cloud systems. Streaming

thus helps address both data volume and shifting funding models.
3
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Real-time Sequencing Strategies While Next Generation Sequencing (NGS) tech-

nology operates in a massively parallel fashion, real-time single-molecule sequencing tech-

nologies like nanopore sequencing are slowly gaining primacy. In this new paradigm,

polynucleotide molecules are moved through a pore and observed one base at a time,

meaning that the process of sequencing itself is made streaming. These technologies

allow much longer sequence lengths, and as their error rates decrease, it is expected

they will supplant NGS technologies. As real-time sequencing becomes the norm, so will

streaming algorithms that can analyze sequence as soon as they are available from the

machine. Indeed, these sorts of approaches are already being developed, with algorithms

for pathogen detection (6), barcode demultiplexing (7), and basecalling (8) already pub-

lished.

Data Accessibility Streaming can act as a data accessibility multiplier. Institutions

with limited resources benefit greatly from reduced storage requirements, as storage can

represent a significant up-front cost. Reduced data requirements may also translate to

reduced network requirements, which helps with accessiblity in locations where network

access is at a premium. Finally, streaming approaches often go hand-in-hand with sketch-

ing approaches, further reducing computational requirements and helping to bring omics

analysis to individual users.

Sequence Assembly: A Fundamental Problem in Genomics

Assembly refers to the reconstruction of a set of hidden sequences Gh from some set

of fragments R of length L randomly sampled from Gh, with Gh being the underlying

genome or transcriptome of an organism (or organisms) being sequenced. The intro-

duction of shotgun sequencing in 1979 (9, 10) created a concrete need for algorithmic
4
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solutions to the assembly problem, the first complexity analysis of a simplified sequence

assembly problem having already been carried out in 1978 (11). The first simple genome

assembler came later on in 1988, using a greedy overlap-layout-consensus (OLC) ap-

proach (12). The simplest approach, which (11) described, is casting it as the NP-

Complete shortest common supersequence (SCS) problem. This approach is inadequate

for actual samples, as genomes are plagued by repetitive sequence: tandem repeats (the

same substring repeated back-to-back many times), interspersed repeats (from structures

like transposable elements), and paralogs (genes which are repeated within a genome).

Overlap detection is further complicated by error intrinsic to the sequencing process. Re-

gardless of origin, these repeat classes all introduce a major challenge to assembly, and

as pointed out in (9), break the SCS assumption of parsimony and drive the majority of

work in the field.

de Bruijn Graphs, Assembly Graphs, and their Uses

Although other approaches exist (12, 13), almost all modern assemblers rely on the

assembly graph paradigm. Broadly, a graph is built with sequence fragments as the nodes

and overlaps between them as the edges, and simplified to remove transitive redundancy.

Appropriate traversals on this graph yield sequences from Gh (14). The method of

construction and structure further leads to two formulations of the assembly graph: the

string graph (15) and de Bruijn graph. While the string graph method is commonly

used (16–18) and important, in this work I focus on the de Bruijn graph method; both

methods are bounded by the same complexity constraints (19), though each has its own

practical and theoretical advantages.

A de Bruijn graph (dBG) G(k,Σ) is a directed graph defined by its nodes, which are a

set of fixed-length sequences of length k over an alphabet Σ, and its edges, which exist
5
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when the sequences of a pair of nodes share a length k − 1 suffix and prefix. These

length-k sequences are referred to as k-mers, and the terms nodes and k-mers may be

used interchangeably. This means that G(k,Σ) has a maximum number of nodes ∥Σ∥k

and each node has a maximum in and out degree of ∥Σ∥. If we define pre(ni) to be

the length k − 1 prefix of some node ni ∈ G and suf(ni) to be the length k − 1 suffix,

the out-neighbors of ni can be discovered by querying {suf(ni) + s, ∀s ∈ Σ} and the

in-neighbors accordingly: that is to say, in this construction, known as the node-centric

de Bruijn graph, the edges are implied by the set of nodes, and it is only necessary to

use an efficient set data structure to implement a basic dBG.

Let δin(v) be the in-degree of a node v, and δout(v) be the out-degree of a node v. A node

v where δin(v) > 1 or δout(v) > 1 is a decision node, and its associated k-mer a decision

k-mer.

de Bruijn graphs have been used to great effect in genomics applications since they were

first applied to them (14). The principle advantage of the dBG is its simplification of the

process of overlap detection between sequences: k-mers can stored as hashed integers for

faster querying, and length k − 1 overlaps can be discovered by using the same method

as edge detection. Hence, when a collection of sequences sampled from an underlying

larger set of sequences is broken down into its constituent k-mers as a dBG, all k-mer

overlaps are known implicitly. This property, and the methods extending it, can be used

for genome assembly, sequence classification and comparison, genomic variant discovery,

and full graph-based alignment.

Compact de Bruijn Graphs

While the standard de Bruijn graph is a useful abstraction, in practice, most implemen-

tations only use it as an intermediate representation. The reasons are twofold: firstly,
6
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because genomic dBGs tend to consist of many linear paths of k-mers with in- and out-

degree of 1, such graphs contain large quantities of redundant k-mers; secondly, because

k-mers are exact substrings over a sliding window on the input sequences, each error or

point mutation in an input sequence can introduce up to k new nodes in the graph. As

a result, even low error and polymorphism rates in moderate sized data produce graphs

with hundreds of millions or billions of nodes.

These problems are addressed by the compact(ed) de Bruijn Graph (cDBG). In the

cDBG, paths of the form v0 . . . vi . . . vn, where δin(v1..n−1) and δout(v1...n−1) are exactly 1,

are merged into single nodes; that is, linear paths are reduced to single nodes defined

by their sequence, and the ends of these sequences may be either tips (that is, they

have degree zero) or decision k-mers. This representation preserves the implicit edge

definition, while avoiding the high overhead of storing redundant k-mers.

The compacted nodes, and their associated sequences, are referred to as unitigs. A unitig

that can not be extended in either direction is a maximal unitig: this is, δin(v0) = 0 or

v0 is a decision node, and δout(vn) = 0 or vn is a decision node. The term unitig was first

introduced in (20), where the process of forming unitigs was referred to as “condensation.”

Compaction and compact or compacted de Bruin graph have since become the accepted

terms. The most basic process of compaction was earlier described and implemented for

the Velvet assembler (21), the first mainstream de Bruijn graph assembler; here it was

introduced as a lossless graph simplification method.

There are a variety of data models for representing the cDBG. The simplest is a flat

collection of unitigs; edges can be inferred by storing only the unitig ends, which corre-

spond to the decision k-mers and tips, and querying these ends for neighbors. How this

subset of k-mers is stored can vary by implementation, with simpler models using a hash

table directly (22, 23), and later work transitioning to succinct data structures like the
7
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FM-Index (24). Regardless, a key observation is that the compact de Bruijn graph is de-

fined by its set of decision k-mers, which, along with the formalization of the node-centric

de Bruijn graph (25) (where edges are stored implicitly, as defined previously), brings

about the concept of Navigational Data Structures for assembly (26). (26) provides a

good background survey of the methods used for navigational data structures up until

2015; since then, considerable work has gone into augmenting the graph with additional

information, such as the colored compact de Bruijn graph, which is beyond the scope of

this work.

Notably, the succinct data structures, while offering query and storage efficiency, are

not straightforward to use in a dynamic fashion. Simpler membership structures, like

the hash tables used in (21, 23) or Bloom filters (27), allow dynamic insertion of new

k-mers, and hence edges, using the node-centric model. Dynamic data structures that

allow efficient insertion and query are key to enabling streaming approaches.

Conclusion

The rapid and growing generation of sequence data, the advent of real-time sequencing

technologies, and the need for accessible genomics analysis for a wide range of consumers

can be partially addressed by the adoption of streaming approaches. While some methods

have already been adapted for streaming, de Bruijn graph compaction, a key component

of assembly pipelines, has not; further, sublinear methods remain uncommon. Here, we

will first focus on adapting compaction for streaming, and show how this new paradigm

also enables novel analysis methods for assembly graph structure. Then, building on

that work, we will explore preliminary sub-linear approaches for filtering sequences prior

to compaction and further downstream analysis. Our goal is to provide a framework

for more streaming methods to build on in the future: we hope that, as technology
8
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and algorithms improve, we will eventually see the evolution of end-to-end streaming

pipelines, from sequencing instrument to biological inquiry.
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Chapter 1

Streaming Construction of the

Compact de Bruijn Graph

Chapter Authors Camille Scott and C. Titus Brown

Abstract

Traditionally, approaches for sequence fragment analysis such as assembly have been off-

line; assembly, in particular, has been a process in which all data is first loaded into

memory (generally, a graph abstraction) before further processing to extract contigs. As

the volume of available data increases, and constantly updating data streams become

ubiquitous, it is advantageous to consider on-line, or streaming, approaches which view

the data as a stream of observations which are used to update an analysis or knowl-

edge representation as they are integrated. Here, we present a streaming approach to

construction of the compact de Bruijn Graph, a common assembly graph abstraction.
10
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The procedure is described theoretically, and a reference implementation is explored on

several example data sets.

Background

Context

Developments in high-throughput sequencing technology have made genomics, transcrip-

tomics, metagenomics, and their variants core methods for biological inquiry. These

sequencing technologies work by randomly sampling short fragments, or reads, from the

underlying pool of DNA (or RNA) at a high redundancy, after which computational

methods are used to assemble an approximation of the original sequence. While early

methods directly computed overlaps between shallowly-sampled fragments (28), deep se-

quencing has necessitated the development of more clever data structures and algorithms

for assembly. Assembly graphs are one such abstraction (9, 14, 25), and are used as an

intermediate representation in most extant assemblers; the de Bruijn graph (15, 18, 29,

30) is a core method for constructing assembly graphs.

In the de Bruijn graph methods, reads are broken down into substrings of length k, or

k-mers, from which the unique representatives become the nodes in the graph. Edges are

defined when nodes have k-mers with exact overlaps of length k−1; this implicit definition

of edges obviates the need for explicit overlap computation, making de Bruijn graphs

well-suited to deep sequence experiments with short reads (see 1). While this property

greatly improves the time scaling of the assembly problem, the de Bruijn graph suffers

from extremely high storage requirements due to the explicit enumeration of k-mers. To

address this, it is often compacted by the contraction of linear paths of non-branching
11
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k-mers, forming the compact de Bruin graph (20).

A number of approaches for generating the compact de Bruijn Graph are already estab-

lished. BCALM2 generates a compact de Bruijn Graph from short reads in parallel using

ranked minimizers (25), building on their previous work on de Bruijn graph representa-

tion and compaction (31). TwoPaCo generates the cDBG from a collection of previously

assembled genomes using a two-pass Bloom-filter approach to iteratively eliminate posi-

tions in the input genomes as potential decision k-mers (32). Bifrost efficiently constructs

the colored cDBG using blocked Bloom filters and and minimizer indexing (33), while

Cuttlefish uses finite-state automata to efficiently model the colored cDBG (34). Re-

gardless of the method for generating the graph, extant approaches share a paradigm:

they are off-line algorithms, algorithms which require access to the entire sample be-

fore proceeding with compaction, and make multiple passes over the data. In contrast,

streaming (or online) algorithms view their data as a sequence of observations, and make

one or fewer passes over that stream (35), while semi-streaming algorithms aim for a

small, constant number of passes, generally two or fewer (36). Streaming approaches

have several advantages: they minimize hard disk access, which aids in efficiency; they

are often able to produce results opportunistically, as soon as they are available; they

offer the potential for feedback between the data stream and the processing; and often,

they are suited for handling streams of infinite length.

Here, we explore an implementation of a streaming de Bruijn graph compactor. Our

implementation builds the compact de Bruijn graph opportunistically from a stream of

sequence fragments, in one pass over the data. While semi-streaming de Bruijn graph

compactors have been previously published (37, 38), our implementation produces a

compact de Bruijn graph in one pass.
12
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Definitions

For some string s, let s[i] be the symbol at position i, 0-indexed, s[i : j] be the substring

of s starting at position i and not including position j, and len(s) be the length of s. If s

has length L, the k-mers of s are given by kmers(s) = {s[i : i+ k] | 0 ≤ i < L− k+ 1} ;

that is, all length k substrings of s. Let pre(s) = s[0 : k−1] and suf(s) = s[L−k+1 : L],

that is, they yield the suffix and prefix of s.

We then define a de Bruijn graph as Gk,Σ = (N,E), where N is a set of k-mers over

alphabet Σ and E is the set of length k-1 exact overlaps between k-mers in N ; that is,

E = {eu→v | suf(u) = pre(v)∀u, v ∈ N}. For convenience, assume Σ = {A,C,G, T}).

Given a set of sequences S, the de Bruijn graph Gk(S) has N =
∪

s∈S kmers(s). Note that

our edge definition admits edges even when the corresponding (k + 1)-mers containing

the two overlapping k-mers are not present in any sequence in S; this is the node-

centric de Bruijn graph, where edges are defined implicitly by the set of known nodes.

The in-neighbors and out-neighbors of a node u can then be discovered by querying

{suf(u) + σ∀σ ∈ Σ} and {σ + pre(u)∀σ ∈ Σ} in Gk, respectively. Let δ−(u) and δ+(u)

yield these in-neighbors and out-neighbors.

Now let S be an ordered stream of sequences rather than a set. S[t] is then the tth se-

quence in the stream, and Gk(S)[t] is the de Bruijn graph with N =
∪

s∈S[0:t+1] kmers(s).

The total number of sequences in S may or may not be known. We refer to the position

t in the stream as the time. time may be analogous to actual observation time or simply

position within a file, depending on the source of the stream.

The compact de Bruijn graph (cDBG) is built from the de Bruijn graph by converting

non-branching paths of k-mers into single nodes. Define C(Gk) = (Nc, Ec) as the compact

de Bruijn graph built from Gk; for brevity, we call it Ck. A node (k-mer) u ∈ Gk is a
13
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decision node (k-mer) if |δin(u)| > 1 or |δout(u)| > 1; that is, if its in-degree or out-degree

is greater than one. Nd is the complete set of decision nodes in Gk. Consider a connected

path p = {u0, u1, ..., uL} ∈ Gk. p is a unitig if none of its nodes are decision nodes, and

p cannot be further extended in either direction; a unitig in Ck is a unitig node. The

complete set of unitig nodes will be called U , and we define Nc = Nd ∪ U . The edges Ec

of the cDBG are then {eu→v | suf(u) = pre(v)∀u, v ∈ Nc}. Note that this implies that,

while decision nodes may be neighbors, unitig nodes may not.

A unitig node with no neighboring decision nodes is an island; a unitig node with decision

nodes on either side is full; and a unitig node with a decision node on only one side is

a tip. The edge-case where pre(v) = suf(v) for a unitig v is called a circular unitig. As

with the de Bruijn graph, we refer to the cDBG at time t as Ck[t].

Methods

Broadly, the underlying de Bruijn graph is implemented as a simple set. Sequences are

broken down into constituent k-mers and hashed, and if a sequence contains any k-mers

not previously observed, the cDBG is updated from the sequence. The minimum set of

traversals is made from the new k-mers to find newly introduced decision k-mers which

split existing unitigs and extensions of existing unitigs, and new unitigs are added when

necessary.

The next sections describe the compaction process and implementation in detail.
14
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Construction of the de Bruijn Graph

The de Bruijn graph is implemented as a simple set of k-mers. As such, it can be updated

in a streaming fashion with no additional methods: a new sequence st from SS is broken

down into its constituent k-mers and hashed using a rolling hash scheme (39), with new

k-mers being added to the set and existing k-mers being incremented if a counting data

structure is in use. The node-centric model saves memory by eliding edge storage at the

cost of requiring a seed sequence to begin traversal.

While the implementation supports several probabilistic data structures taken from the

khmer (40, 41) package, the reference implementation uses an exact hash set provided by

the parallel-hashmap library (42). This limits the practical application to moderately-

sized assembly graphs due to memory overhead.

cDBG Data Structure

The cDBG data structure consists of two maps: first, a basic hash table of known decision

nodes Nd, and a map from k-mer hashes of the ends of unitig paths to the unitig nodes U .

These two structures are sufficient to define the entire cDBG: neighbors of decision nodes

are necessarily tips in U , and island unitigs can be discovered from their tips. Note that

unlike in the standard unitig model, where decision k-mers are the ends of unitigs, we

store decision k-mers as their own nodes; this is an implementation detail, and standard

unitigs can be trivially deduced by joining our unitig nodes with their neighboring decision

nodes. Unitig nodes store the hashes of their ends for reverse indexing, a 64-bit unsigned

node ID, a 64-but unsigned component ID, the full sequence of their path in the dBG,

and a meta attribute corresponding to their type: tip, full, circular, or decision. The

component ID is not strictly necessary for compaction functionality and is currently only
15
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    Unitig Node

left end hash
right end hash
node ID
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type meta

k-mers in dBG backend

cDBG node structures

phmap: k-mer hash ⇒ pointer

    
    Decision Node

k-mer hash
node ID
sequence

phmap: end k-mer hashes ⇒ pointer
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left end hash
right end hash
node ID
sequence
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Figure 1.1: goetia cDBG Storage Model Unitigs are indexed by the hash value of
their end k-mers; these are stored in a parallel-hashmap linking the hash values to the
unitig pointers. Decision k-mers are index in their own hashmap by their k-mer hashes.
Both store their sequences; in practice, for memory efficiency, we could store only the end
k-mers to seed traversal, but we choose to store the entire unitig to be able to quickly
write the cDBG to disk.

used for the analysis function that finds connected components.

Mutations to the cDBG

The streaming compact de Bruijn graph can be defined by its decision k-mers and the

k-mers terminating its current unitigs. While unitigs are subject to mutation throughout

streaming construction (splitting and merging), decision nodes within the cDBG are never

deleted once created, a property which can be exploited during graph construction.

In the following sections, a new k-mer in Gt is a k-mer not present in Gt−1; that is, a

k-mer first introduced in fragment t. A new decision k-mer is a new k-mer which is also

a decision k-mer. An induced decision k-mer is a k-mer which is not newly introduced,
16
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but became a decision k-mer at time t. A new unitig node is a unitig comprising only new

k-mers. An existing unitig node is split when one its k-mers becomes an induced decision

k-mer, and two unitig nodes are merged when a path of new k-mers exists between two

of their tip k-mers. Given a sequence st ∈ SS, the segments of st are the paths of new

k-mers in st, terminated at existing k-mers and new decision k-mers. Now, we will define

the ways in which a segment can mutate the cDBG.

Inserting New Sequences and Finding New Segments

The first step to updating the cDBG with a new sequence is to insert its k-mers into

the dBG and divide its new k-mers into their constituent segments. Once we have the

segments, we use them to update the state of the cDBG. Alg. 1 describes this procedure:

segment paths are split on existing k-mers and new decision k-mers. Only the first and

last k-mers in a segment, and new decision k-mers, are able to induce an existing k-

mer to become a decision k-mer, and thereby potentially split an existing unitig. Alg.

2 lays out the procedure for handling these k-mersr; see also lemma 1.0.1. With this

procedure defined, we are able to update the cDBG from the new segment. We attempt

to induce decision k-mers from the first and last k-mers in the segment and split unitigs

if necessary; if the first or last k-mer is not a new decision k-mer and does not match

up to an existing unitig tip (corr. 1.0.2.1), we search for induced decision k-mers only

in the direction away from the segment. If neither end of the segment matches to an

existing unitig, we produce a new island unitig with just the segment. The full procedure

is detailed in 3.
17



CHAPTER 1. STREAMING CDBG CONSTRUCTION

Algorithm 1: FindSegments
Data: dBG Gk,t−1, sequence stream SS
Input: sequence st ∈ SS
Result: A list ℓ of new segments from st, set of new decision k-mers δ
U ←− kmers(st)
P ←− ∅
for u ∈ U do

P.append(G.query(u))
G.insert(u)

p←− False
v ←− U [0]
segment←− ∅
for v ∈ U , q ∈ P do

if q = True then
if p ̸= False then

segment←− {u}
if G.lneighbors(v) > 1 ∥ G.rneighbors(v) > 1 then

if v ̸= U [0] then
ℓ.append(segment)

segment←− {v}
δ.insert(v)

else if p = True then
ℓ.append(segment)
segment←− ∅

u←− v
p←− q

if q = True then
ℓ.append(segment)

return ℓ, δ

Algorithm 2: InduceDecisionKmers
Data: dBG Gk,t−1, cDBG C(Gk,t−1)
Input: k-mer u which can induce decision k-mers, set ∆ of new k-mers to ignore
for v ∈ G.neighbors(u) do

if v /∈ ∆ and IsDecision(v) then
C.NewDecisionNode(v)
C.SplitUnitig(v)
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Algorithm 3: InsertSegment
Data: dBG Gk,t−1, cDBG C(Gk,t−1)
Input: list of k-mers comprising segment from st ∈ SS, set of new decision

k-mers δ, set of all new k-mers ∆
l, r ←− True
if segment.first ∈ δ then

C.NewDecisionNode(segment.first)
InduceDecisionKmers(segment.first,∆)

else if G.lneighbors(segment.first) /∈ C.U then
InduceLeftDecisionKmers(segment.first,∆)

else
l ←− False
C.ExtendUnitig(G.lneighbors(segment.first), segment)

if segment.last ∈ δ then
C.NewDecisionNode(segment.last)
InduceDecisionKmers(segment.last,∆)

else if .rneighbors(segmen.last) /∈ C.U then
InduceRightDecisionKmers(segment.last,∆)

else
r ←− False
C.ExtendUnitig(G.rneighbors(segment.last), segment)

if l = r = True then
C.NewUnitig(segment)
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Splitting Existing Unitigs from Induced Decision k-mers

Splitting an existing unitig is the most costly and common operation. When an existing

k-mer µ is induced as a decision k-mer, we must traverse into the dBG until finding a

hash which links to the unitig in the cDBG. If the induced decision k-mer is a tip, we will

discover the unitig immediately: this is an edge case we refer to as clipping, in which the

unitig is shortened and its tip reindexed. Otherwise, µ has exactly two neighbors which

are not new from which we can traverse into the existing unitig. We traverse through

unitig k-mers until stopping at either a tip or an element of T , checking the index as we

go. The discovered unitig is then split according the to the induced decision k-mer.

Correctness

Lemma 1.0.1 (Inducers’ Lemma). A decision k-mer can only be induced by a new

decision k-mer in st or the first or last k-mers in a new segment of st.

Proof. Consider an existing non-decision k-mer µ /∈ st. An existing k-mer in st cannot

induce µ to be a decision k-mer: if so, µ would already be a decision k-mer. Now consider

a new k-mer ν in the fragment which is not the first or last k-mer of a segment. In order

for ν to induce µ to be a decision k-mer, µ must be a neighbor of ν; because ν is not an

end k-mer, it already has in-degree and out-degree at least one, from the new k-mers on

either side of it. Now consider an end k-mer of a new segment: it has at least one new

k-mer as its neighbor, and possibly an existing k-mer µ as its other neighbor. If µ is an

in-neighbor of ν, and already has out-degree of one, then ν can induce µ while being a

non-decision k-mer; this exists for the case where µ is an out-neighbor as well.

20



METHODS

Lemma 1.0.2 (Splitting Lemma). An existing unitig node can only be split by an induced

decision k-mer.

Proof. An existing unitig is, by definition, composed of existing non-decision k-mers. A

new k-mer cannot split an existing unitig, also by definition: if the k-mer were part of

the unitig, it would not be new. Thus, in order to split a unitig, we must convert an

existing k-mer into a decision k-mer.

Corollary 1.0.2.1 (Tip Corollary). If a k-mer µ which is the first or last k-mer of a new

segment has a neighbor ν which is not a unitig tip, then ν must be an induced decision

k-mer.

Graph Metrics

In order to analyze the compact de Bruijn graph during construction, we optionally

gather a number of metrics during the stream. The counts of the unitig node types

described in Definitions (see 1) are taken whenever a CDBG mutation is performed via

appropriate incrementation and decrementation atomic counters; we also track the types

of mutations performed, including unitig splits, merges, extensions, clips, and deletions.

Counts of unique k-mers are tracked when new k-mers are inserted into the dBG storage

backends. These metrics are essentially “free” to compute, and so can be tracked with

each sequence insertion.

Other, more advanced metrics are more expensive, and must be taken at larger intervals

for performance. Timing for advanced metrics is determined by a tunable k-mer interval,

which is described in more detail in Chapter 2. Briefly, the fundamental unit of time is

the k-mer, instead of the inserted sequence, to correct for varying sequence lengths, with

the interval size I generally set at some value much larger than the sequence length; for
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most results shown here, the interval is 1, 000, 000 k-mers. The actual number of k-mers

between measurements is actually I+ε, where ε ≤ L, so as to insert complete sequences.

We save the above count metrics to disk (or output stream) at every interval, as the

required disk access is trivial to write a single row of JSON formatted integers. The

two less granular metrics are the histogram of unitig lengths and the number and sizes

of connected components. The unitig length histogram is calculated by enumerating all

unitigs and incrementing the appropriate histogram counter. As this does not require

traversal, and in the majority of cases the number of unitigs is far less than the number

of unique k-mers, this can be done efficiently, and so is performed at a modulus of the

interval count (every 5 intervals for the results shown here).

Connectivity is much more resource intensive. First, we perform a breadth-first traversal

of the complete cDBG, starting from the map of unitig ends and removing all ends in

a connected component from the traversal queue until all unitigs are exhausted. The

cDBG is, like the underlying dBG, node-centric, so finding unitig neighbors requires

hashing the extensions of the k-mers at each unitig end. We then sample the sizes of

all discovered components using reservoir sampling (43), by default taking a sample of

10, 000 components. This operation grows in complexity with the number of nodes and

edges in the cDBG, and hence with the number of unique k-mers in the underlying

dBG, though it is at least bounded by the maximum node degree ∥Σ∥. To account for

this growth, we back off the number of intervals between traversal using the exponential

growth function with r = 0.8; that is, when the number of intervals between ticks during

the stream is {1.08m∥m ∈ 0 . . . N}, where N is the number of measurement occurrences.

Because the graphs tend to converge on stable topologies later in the stream, we find

that this balances measuring the interesting changes in the cDBG while being frugal with

computation time.
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Analysis Parameters

Results for streaming compaction were generated with goetia at commit a874e71d65 us-

ing the command goetia cdbg build -K 31 -S PHMapStorage -H FwdLemireShifter

--interval 5000000 --track-cdbg-metrics --pairing-mode split. Streaming

solid filtration was performed with goetia solid filter -K 31 -S ByteStorage -H

CanLemireShifter -x 2e9 -N 4 -C 3 -P 0.8 --pairing-mode split; that is, reads

are admitted if 80 of their k-mers have an abundance greater than or equal to 3 at the

time of observation.

Benchmarking was performed on a system with an AMD Ryzen 9 5900X CPU, 64GB

of RAM, and a SATA SSD. The download connection speed as measured with the

speedtest-cli package (44) is approximately 300Mbit/s (~37MiB/s), which, in our

tests, is faster than the FTP download speed for FASTA files from the ENA. The down-

load stream tests were performed in serial to avoid interference between test runs.

Samples for analysis were selected from the European Nucleotide Archive (ENA). Acces-

sions with library_source of TRANSCRIPTOMIC and GENOMIC were first subselected from

the complete list of sample accessions; then, these were further reduced to those from the

species Caenorhabditis elegans, Mus musculus, Drosophila melanogaster, Saccharomyces

cerevisiae, and Home sapiens. Three accessions were randomly selected for each species

and each library source.

Results
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Implementation: the goetia library and tools

The streaming compactor is implemented in the goetia (45) package, which is hosted

on GitHub and available under the MIT license. It includes implementations of several

exact and probabilistic k-mer sets and counters, pluggable hashing methods for those

counters, de Bruijn graph implementations built on top of those counters, streaming

file processing and parsing utilities, and the core streaming compaction implementation.

This functionality is implemented as a C++ library, which can be installed as a shared

library via bioconda (46). High-performance Python bindings are provided using cppyy

(47), which are used in a corresponding Python library to provide a command line inter-

face (CLI), analysis tools, and unit testing. Unit tests are performed using a library of

pytest fixtures called the debruijnal-enhance-o-tron (48). These fixtures randomly

generate common assembly graph features parameterized by K, sequence lengths, and

other constraints, allowing us to unit test compaction correctness in a manner simi-

lar to fuzzing. The dBG generators in the debruijnal-enhance-o-tron are implemented

as an interface over a user-supplied dBG implementation, which means they bootstrap

correctness-checking of the basic dBG and storage implementations as well.

The cDBG can be constructed as sequences are downloaded in

real time

A key advantage of streaming methods is the ability to bypass writing the input data to

disk. While streaming approaches are often more computationally complex than offline

approaches, particularly when exact solutions are required, they can be valuable tools

for pipeline construction when scaling is less of a concern, for example with smaller

data or when running on serverless architectures. Here, we show that our streaming
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compaction prototype functions at speeds practical for use as a prefilter for sequences

directly downloaded from a remote source; that is, we can compact sequences at a rate

commensurate with the speed of many sequence archives, with disk access only occurring

when writing assembly graph metrics and saving the final resulting compact dBG. This

prototype implementation struggles with memory scaling for large genomes, and as such,

we have limited the input read data sets to samples with less than 100 million fragments.

When reading sequences from the ENA using curl, goetia cdbg compacts at rates

ranging from 2 to 5 MiB/s. These are approximately the download rates from the ENA

on the test connection. Compaction rates are largely dictated by the chosen de Bruijn

graph parameter K, the error rate of the sequencing experiment, and the polymorphism

rate of the sequence being sampled. The latter parameters drive the number of the

decision nodes in the assembly graph: the more decision nodes in the assembly graph,

the more fragmented, and the more graph operations required per insert.

While these rates are sufficient for compacting directly downloaded sequence, the com-

paction rate is not the only important factor. In particular, memory requirements, which

are also driven by the number of decision nodes (as well as the number of unique k-mers),

are often the limiting factor. With exact counting backends, memory use grows as addi-

tional k-mers are added to the de Bruijn graph; non-exact, fixed-memory backends can

help alleviate this issue, at the cost of producing a compacted dBG not necessarily exactly

equivalent to the actual cDBG. For exact backends, we have the option to terminate the

compaction process when memory limits are increased. Assuming randomized ordering

of the stream, the resulting cDBG will be equivalent to one built by downsampling the

input sequences.
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Figure 1.2: Streamed compaction data rates of various samples. Paired-end
samples were streamed directly from the European Nucleotide Archive (ENA) using the
curl command. The data rates were measured using the pv command as follows: curl
-sL [URL] | pv -tbn 2>> [RESULTS] 1>> [OUTPUT]. [OUTPUT] is a unix pipe read by
goetia cdbg build; data rates were aggregated at 5 second intervals between both the
left and right hand sample results. Higher data rates correspond to higher compaction
rates and better performance. Performance here is bottlenecked by either the download
bandwidth or the compaction rate, whichever is slower. SAMEA3894957 is an outlier
here, with a higher download rate at the time of testing, and being a relatively small S.
cerevisiae genome.
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Streaming Compaction Performance is Dominated by dBG Con-

struction

To assess the performance of streaming compaction in bioinformatics pipelines, we com-

pare it to two other streaming k-mer methods: only hashing the k-mers in the input

sequences with the same underlying hash function, and building the de Bruijn graph

with the same storage backend. k-mer hashing is performed in dozens of existing pro-

grams, and here, regularly exceeds 40 million k-mers per second, or 600 thousand se-

quences per second. de Bruijn graph construction is mostly determined by the speed

of the insert operation on the underlying storage backend. With the exact backend

using parallel-hashmap, we approach 10 million k-mers per second or 100 thousand

sequences per second; note that the hashing task is a subset of the dBG construction

task. Compaction hovers around 3 million k-mers per second, or 50 thousand sequences

per second. Fig. 1.3 shows the full results of this test. We show results in both k-mers

per second and sequences per second, but the underlying timing in our implementation

is based on k-mers, as sequence length varies between samples.

Compaction tends to be more than an order of magnitude slower than only hashing,

and about three times slower than dBG construction. As dBG insertion is a subset of

the compaction task, insertion speed is a top candidate for optimization. goetia also

does little in the way of optimizing string operations, such as bit packing or efficiently

allocating memory with freelists, suggesting considerable room for improvement over the

existing prototype. Finally, this implementation is single-threaded. A storage backend

using minimizer partitioning is included in the goetia library, which has the potential

to enable multithreading in future versions, but we consider this currently outside the

scope of this work; some details on this backend can be found in Appendix A.
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Figure 1.3: Streaming processing rates of k-mer hashing. dBG construction,
and compaction. Processing rates in k-mers per second and sequences per second of
increasingly complex dBG tasks. Each point is the rate result from a distinct transcrip-
tomic sample. Higher values correspond to higher data rates and better performance.

Streaming Methods Yield New Approaches for Studying Se-

quence Data and Assembly Graphs

Streaming construction of the cDBG intuitively enables dynamic analysis of the graph.

Fig. 1.4 demonstrates this capability on several Homo sapiens transcriptomes. Each of

the three samples shows distinct growth metrics, with the two Poly-A selected samples,

on the left and right, sharing the most similarity, and the middle, high-coverage rRNA-

depleted sample standing out. All three samples, as shown in the top row, have the

highest proportion of unitigs in the range of 50-100bp. They also all show the slopes of

their length proportions flattening out as more sequence is added, which we interpret as

approaching having observed most of the core sequence content of the underlying sample.

We expect to see this “saturation” behavior when most of the cDBG topology has been
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filled in: once the core structural k-mers have been observed, we mostly accumulate

error (49). We can further explore these unitig distributions by comparing them to

their associated graph topologies demonstrated in the bottom row. The middle, rRNA-

depleted sample has almost no unitigs longer than 100bp. It also has a much higher

proportion of island unitigs (those disconnected from any other unitig) compared to its

Poly-A selected counterparts, and its number of island unitigs follows the distinctive

saturation curve. These observations suggest that this sample is dominated by many

low-abundance transcripts, and also that most of the underlying sequence that there is

to observe has been accounted for; the former is what we might expect given rRNA-

depletion’s affinity for many more RNA species (50), and the latter is supported by

its higher coverage in comparison to its sister samples. We can also assume that any

assembly of this cDBG will necessarily be highly fragmented.

In contrast, the two Poly-A selected samples show very few islands, while also showing

distinctive peaks followed by flattening in their proportions of longer unitigs. Addition-

ally, their numbers of “full” and “tip” unitigs remain highly correlated: we could expect

this behavior when a bubbles are consistently being introduced to the graph, which result

from sequence error in the presence of higher regional coverage.

Fig. 1.5 demonstrates the accumulation of decision nodes as the dBG is compacted.

Most samples demonstrate the saturation behavior previously discussed. As additional

sequence is added to the graph, decision nodes make up a higher proportion of the cDBG.

Eventually, decision node proportion stabilizes.
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Figure 1.4: Dynamic metrics of the compact de Bruijn graph during construc-
tion. cDBG metrics for transcriptomes of three human samples. The left and right
columns are Poly-A selected samples of 14-28M sequences; the middle column is a large
rRNA-depleted sampled (see (51) for its details). The horizontal axis is the normalized
position within the stream. In the top row, we show a compressed distribution of unitig
lengths, binning unitigs into six categories, with the smallest possible unitig naturally
being of size K. In the bottom row, we show the absolute counts of unitigs of four different
types based on connectivity: “full”, where both ends are decision k-mers; “tips”, where
one end is a decision k-mer; “islands,” which are connected to nothing; and “decision,”
which correspond to decision k-mers. See 1 for definitions of all node types.
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Figure 1.5: Decision node saturation as a proportion of all nodes in the cDBG.
The proportion of decision nodes was calculated by dividing the number of decision
nodes at the given time by the summed number of decision and unitigs nodes. Position
in stream is the k-mer position and normalized by the end position of each sample.
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Figure 1.6: Number of components and growth of largest component in tran-
scriptomic samples.
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Streaming Compaction Can Participate in Pure-streaming

Pipelines

Another key advantage of streaming approaches is the ability to build analysis pipelines

with minimal intermediate data. Aside from the size of the raw reads themselves, which

can be considerable, many programs output hundreds of gigabytes of intermediate files,

reducing the accessibility of those methods where storage space is at a premium. For

some analyses, streaming construction of the cDBG can avoid storing the input reads

entirely: reads can be streamed directly from the SRA or ENA to streaming-enable

quality control software such as Trimmomatic (52) or FASTX (53) for trimming and

filtering, optionally through a pre-filter such as digital normalization (49, 54), and then

compacted. To support these workflows, goetia implements a set of streaming filters:

currently, a solidity filter which passes through reads with a set proportion of their k-

mers with counts over a solid threshold, and a reimplementation of digital normalization

using our library’s efficient sequence parsing and storage backends.

Fig. 1.7 shows the results of a small pure-streaming compaction pipeline on the same

three human RNA-seq samples as Fig. 1.4. These samples were run through the goetia

streaming solidity filter with the resulting sequences piped directly into the streaming

compactor. Briefly, the streaming solidity filter inserts the k-mers from input sequences

into a de Bruijn graph with a Count-min Sketch backend, a fixed-memory approximate

membership query (AMQ) datastructure with a known false-positive rate. Sequences

pass the filter if a given proportion of their k-mers have a multiplicity greater than a

given threshold. Here, the solidity threshold was set at 2 observations (-C 2) with a

required proportion of 0.8 (-P 0.8). Filtering for solid sequences reduces the number

of erroneous k-mers and is a common simplification tactic for compaction and assembly.
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Figure 1.7: Component metrics of three Homo sapiens RNA-seq samples in
solidity pipeline. RNA-seq data was compacted in a streaming manner, first with no
pre-filter, and then with the goetia filter solid pre-filter. The sequences that passed
the solidity filter were piped directly into the compaction program. These three samples
represent a variety of coverage levels and two different selection methods.
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Figure 1.8: Fragmentation metrics of Homo sapiens RNA-seq samples in so-
lidity pipeline. RNA-seq data was compacted in a streaming manner, first with no
pre-filter, and then with the goetia filter solid pre-filter. Columns one and two
show unitig length proportions of the raw and solid-filtered samples, respectively. The
third column shows the difference between the solid and raw proportions at normalized
time points: negative values here mean that solid filtering reduced the proportion at that
point in the stream, and positive values mean it increased it.
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Here, we make several observations: first, that solidity filtering drastically reduces the

number of components and unique k-mers in the assembly graph; second, that it helps

alleviate the number of nodes connected to a single, large component often observed in

RNA-seq samples, particularly in those with Poly-A selection; and third, that the slopes

of the component unique k-mer accumulation are increasingly flattened and demonstrate

more “saturation” behavior when compared to raw sequence. The latter observation can

be explained by both the removal of single-occurrence k-mers introduced by sequencing

error and the domination of RNA-seq samples by very low-abundance sequence. Note

also how the maximum component size of the middle, rRNA-depleted sample remains on

par with the two Poly-A selected samples, even while having orders of magnitude more

individual components.

Fig. 1.8 revisits the unitig length histograms of the three human samples. In all cases,

solidity filtering reduces the proportion of the shortest unitigs (those of length k to

length 50) while increasing the proportion of of longer unitigs; in other words, cDBG

fragmentation is reduced. In the rRNA-depleted sample in particular, the comparative

proportion of the smallest unitigs, compared to the raw sample, reduces as the stream

is consumed. In absolute terms (middle column), this proportion stabilizes compared

to the raw sample (left column). We expect the proportion of length 50 − 100 unitigs

to drop and stabilize throughout a stream, as these are unitigs which will, when first

observed, be “seeded” by individual reads – that is, the read length is less than 100, and

further legitimate sequence within the same component should serve to either extend

these unitigs linearly or split them with decision k-mers caused by splice variants. We

also observe that all classes of unitigs demonstrate more stabilizing behavior, with relative

proportions becoming more correlated over time, compared to their raw counterparts; the

better, higher-coverage regions of the assembly graph are more dominant in solid-filtered
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samples, with low-coverage and erroneous sequence mostly skipped.

Discussion

We introduce a novel streaming approach for the construction of the compact de Bruijn

graph. We describe that methodology of a prototype implementation of this approach

which attempts to minimize graph traversals during the mutation of existing unitigs,

allowing for useable streaming compaction on samples of “reasonable” size. Our approach

values avoiding disk access in particular, trading for higher memory usage; instead, we

help alleviate memory constraints by enabling integration into streaming pre-filtering

pipelines which help reduce the number of unique k-mers in a stream. We see two clear

avenues for future work: first, on reducing memory requirements by fully embracing

AMQ data structures as k-mer storage backends, as our reference implementation chose

exact backends for simplicity; and second, enabling multithreading through the use of

our partitioned storage backends, described in Appendix A. AMQ backends introduce

a tradeoff between accepting erroneous unitigs as a result of traversals through paths

created by false-positive k-mers and increasing the complexity of the implementation by

tracking these false positives in a streaming manner. We believe that the latter solution

is made tractable by an extra filter in the decision k-mer induction step, but have avoided

the implementation in this work in favor of exploring dynamic assembly graph behavior.

We further show that streaming compaction allows a new suite of tools for analysing the

effects of coverage and genomic complexity on assembly graph construction. Future work

will explore sub-linear approaches to compaction making use of this saturation behavior.

Chapter 2 dives into this property in context of streaming sketch algorithms, and provides

a possible sub-linear pre-filter compaction that could be added to a pipeline including
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error correction, solidity filtering, and in-silico normalization. Streaming approaches

are inherently amenable to this sort of flexibility in data processing pipelines; avoiding

intermediate state, in combination with low-memory approaches enabled by sketching

and AMQ methods, makes parameter sweeps that add and remove pipeline stages more

tractable for the average bioinformatician.

While we have focused on second-generation high-throughput sequence technologies, we

believe streaming compaction could eventually find use when integrated with recent-

generation single-molecule real-time sequence technology. In particular, we hope to

someday explore sub-linear compaction approaches that communicate with SMRT in-

struments live. As SMRT sequencers gain market share and increased software tooling,

research in streaming methods will necessarily need to follow in order to keep up with

the data deluge and help alleviate the complexities of deploying sequencers both in the

field and in clinical settings. We hope this work provides inspiration on what is possible

with these technologies.
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Chapter 2

Streaming Signature Saturation

Chapter Authors Camille Scott and Luiz Irber

Introduction

In the previous chapter, we showed that streaming de Bruijn graph compaction opens

new avenues for exploring assembly graph architecture. In particular, we can directly

explore architecture as a function of coverage by tracking changes to the graph over

time. Many metrics tend toward stability as more sequence is consumed, suggesting an

avenue for sub-linear approaches. Sub-linear algorithms are those which produce a result

without examining an entire data stream. Such algorithms, in general, are concerned with

property testing: producing a yes or no answer as to whether input data satisfies some

constraint (55). For most such problems, an exact solution is clearly impossible in sub-

linear time; however, with fields where data generation outpaces data analysis, quickly

producing approximate solutions can be preferable to slowly producing exact solutions.
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The “data deluge” of genomics has made the field a prime candidate for approximate

and probabilistic approaches, with many such methods developed and improved upon

in recent years (56, 57). Sketching approaches, especially those built on MinHash, have

received considerable attention for the ability to efficiently classify and cluster many large

samples in low memory.

In this work, we perform a preliminary exploration of sketching for intra-sample com-

parison. We focus on the stability of sketches during the data stream, where refer to

high stability as saturation. The authors of Mash point out the potential of comparing a

stream to a known database and terminating after meeting a classification threshold (58).

Here, we explore the potential of comparing a series of sketches of a stream to themselves

during construction. Our expectation is to observe saturation behavior in these streams,

opening the door for a sub-linear method without the need for a reference database. We

implement a set of tools for streaming sketch analysis in the goetia software (45) and

demonstrate its use with MinHash and FracMinHash sketches, and with a novel type of

sketch tailored to saturation detection we refer to as the Draff sketch.

Methods

The Draff Sketch

The draff sketch is, in brief, a fixed-length vector where each position corresponds to the

number of unique W -mers from a sequence sample that map to a k-mer in a Universal

k-mer hitting set UHS(W, k). The universal k-mer hitting set (UHS) is a set of k-mers

from an alphabet Σ where any possible sequence of length W over Σ must contain a

k-mer from the set (59). Universal k-mer hitting sets are an improvement over classic
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minimizer schemes, in that they are pre-computed and hence fixed-length any set of input

sequences, and that they are smaller than minimizer schemes over the same W and k.

The draff sketch takes advantage of this fixed-length property to produce compressed

representations that are comparable between samples. Each k-mer in the set is assigned a

position in the sketch vector and a storage backend; the backend can be any k-kmer data

structure that can count unique members, with our reference implementation supporting

exact sets, Bloom filters, and HyperLogLog (60) counters. For each sequence st in the

sequence stream S, each W -mer from st is assigned to a k-mer from the hitting set, with

the k-mer with the smallest hash value being chosen if there is mere than one. The

W -mer is then added to the counting backend associated with the assigned k-mer. The

sketch vector is computed by querying the number of unique W -mers associated with

each k-mer in the UHS.

The size of the sketch depends on the parameters W and k. Sketches built from a larger

underlying UHS (which will be those with larger values of k) will have a higher resolution;

that is, were theoretical hitting sets be developed with values up to W = k, the resulting

sketch would converge to a bit vector with length equal to ∥Σ∥W , or in other words, a

position for every W -mer. Practical values of k for which we have precomputed hitting

sets are k = {7, 8, 9, 10} with W values up to 200. For example, the UHS with W = 31

and k = 9 has 41, 346 hitting k-mers and hence the draff sketch has this same length.

W -mers and k-mers are hashed simultaneously using a rolling hash scheme (39). To

efficiently track the minimum k-mer for determining a hitting k-mer, we use an ascending

minima scheme (61). When using full set backends such as the Bloom filter or exact sets,

the data structure is inherently a partitioned de Bruijn Graph; this partitioning scheme

also allows for straightforward multithreading support.
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sourmash MinHash Sketches

For comparison, we make use of the MinHash sketch for genomics (58) as implemented

in the sourmash package (62), as well as the FracMinHash sketch further built on in

sourmash (63). MinHash sketching is related to shingling and minimizer schemes. For

some sketch size N , length k, and random hash function f , the k-mers from sequences

st ∈ S of a sequence stream are hashed with f and the N hashes with lowest value kept;

hence, these methods are sometimes referred to as bottom sketches. The resulting set

of size N is the MinHash sketch, and sketches can be compared to each other with the

Jaccard similarity methods. The closely related FracMinHash extends MinHash to non-

fixed sizes. Instead of keeping the bottom N hashes, a cutoff hash value proportional to

the size of the hash space is chosen, and all hash values less than this cutoff are kept.

Thus, the FracMinHash grows in proportion to the input data, and represents a random

sample of k-mers with probability of the cutoff value divided by the maximum hash value.

While this means FracMinHashes have unbounded growth, it also allows implementation

of additional operations such as containment queries.

Timing and Distance Metrics

As our methods rely on measuring changes in our underlying sketches throughout a

stream, robustly determining when and how to make these measurements is fundamen-

tal. The fundamental unit of time in our framework is the observed k-mer: time t is

incremented for each k-mer in the stream. As such, a single sequence fragment s covers

an len(s)−K +1-length time window in the stream. Using k-mers instead of sequences

makes time deltas comparable between samples with different sequence lengths and input

sequences over varying size, for example, those that have been subjected to quality or
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abundance trimming. Timing of distance measurements and windowed operations is per-

formed at a parameterized frequency interval I. The time t is compared to the previous

recorded time tp; when t − tp ≥ I, the queued measurement operations are performed

and tp is set to t. The implementation of this system is done at the parsing level. When

a new sequence si ∈ S is parsed, and its k-mers consumed by the underlying analyzer

(sketch, dBG, filter, compactor, or otherwise), t is incremented by len(s) −K + 1 and

the prior comparison made. If I is exceeded, parsing yields to metrics operations. In

this system, the actual length of measurement deltas will differ from I by some positive

value ϵ; however, I ≫ L, generally exceeding 500, 000, so ε is trivial. Excepting a small

ε allows sequence consumers to benefit from the entire connected path of k-mers from a

fragment s when necessary.

Let the time points corresponding to these intervals be referred to as i0 . . . ij . . . iN , where

N is the k-mer time length of the stream, and the sketch associated with these time points

as A0 . . . Aj . . . AN . During streaming sketching, the distance functions δ(Aj, Aj+1) are

called between sketches at successive intervals, and the result dj added to the distance

list ∆ = {d0 . . . dj . . . dN−1}. When our sketch is a sourmash Min-hash sketch, δ is

1 − Jaccard, where Jaccard is the Jaccard similarity. For the draff sketch, δ can be

any standard distance function: we commonly use the Euclidean, cosine, correlation, and

Canberra (64) distances.
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Results

Rolling Signature Distances Display Saturation Behavior

Fig. 2.1 demonstrates saturation behavior of FracMinHash sketches on a transcriptomic

sample taken from the MMETSP project (65, 66). The y-axis shows the Jaccard dis-

tances dj between the sketches at measurement intervals ij and ij−1. Each line represents

a different measurement interval length I, that is, successively lower measurement fre-

quencies. Clearly, successive comparisons require normalization by sampling interval;

expected distance between successive sketches is necessarily conditioned on the size of

the underlying set of sequences (transcripts or chromosomes) and the error rate of the

sequence instrument. For all sampling intervals, the successive distances (similarities)

converge toward 1: the further into the stream, the more new k-mers within a sampling

window are dominated by sequencing error. The middle plot compares each the sketch at

each time point ij to the final sketch at point tN . Here, we hope to see the distance curve

climb steeply, then become more linear upon saturation; that is, its derivative should be-

come constant. In the rightmost plot, to help remove the effects of erroneous k-mers, we

instead compare to a sketch built from an assembled and processed transcriptome from

the sample. Here, the curve much more dramatically flattens, but does not approach 1.

Visually, we can see that the transition occurs at a similar point in the stream as in the

middle plot, which lends support to our saturation hypothesis.

Fig. 2.1 showed FracMinHash sketches, which, while allowing greater sensitivity, have

unbounded size. For streams of sequence fragments, as opposed to assembled genomes,

this property becomes problematic, with sketches growing to unwieldy sizes due to low-

coverage and erroneous k-mers. Figs. 2.2 and 2.3 show distance curves for regular
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Figure 2.1: Sketching distance curves showing saturation of a transcriptomic
sample. Sourmash FracMinHash sketch at scaled = 1000, K = 31, computed on a 21.5
million read transcriptomic sample. Left: Distance (1.0 − Jaccard) between successive
sketches, computed at varying sampling intervals. Middle: Distances between sketches
at given time intervals and the final sketch. Right: Distances between sketches at given
time intervals and the downstream sequences as assembled with Trinity in (66).
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Figure 2.2: Streaming Jaccard Similarity of digitally-normalized sourmash-
MinHash signatures. MinHash sketches computed with sourmash using K = 31 and
N = 25000. Distances are 1.0-Jaccard similarity between successive sketches, computed
at an interval of 2000000 k-mers. Digital normalization is used as a pre-filter to the sketch
stream, with each curve representing a difference coverage cutoff C. Higher coverage
thresholds admit more sequences, causing the lower-threshold streams to saturate more
slowly at a given relative position in the stream.
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Figure 2.3: Streaming Jaccard Similarity of sourmash-MinHash signatures.
Distance curves of the same samples as in Fig. 2.2 at digitally-normalized maximum
coverage of 20.
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MinHash sketches with size N = 25000. As we can see, the standard MinHash sketch also

shows saturation behavior. The lower-coverage RNA-Seq samples, for example the top-

right sample with approximately 1.4m sequences, show saturation at relative positions

much further into the stream, and also show a wider spread between the different coverage

levels of digital normalization. For the 70m sequence whole-genome sample of C. elegans,

in the bottom left, change in distance stabilizes much sooner. We posit two reasons for

this: firstly, the (average) coverage of this sample is much higher than the relatively

smaller RNA-seq sample; and secondly, the genomic sample has more unique k-mers

than the RNA-seq sample, with k-mer cardinality many orders of magnitude higher than

the size of the MinHash sketch. The latter point is of great importance, as clearly, very

large MinHash sketches will be necessary to detect significant differences in the sketch

throughout the stream.

The Draff Sketch Shows Improved Saturation Behavior over

MinHash

draff sketches show similar saturation behavior when successive distance measurements

are made. Fig. 2.4 shows this on a selection of WGS and RNA-seq samples. The left

panel shows the cosine distance between sketches rapidly flattening early in the stream,

as in the MinHash examples. However, distances with the draff sketches can be measured

at many more significant digits than the MinHash sketches, providing more sensitivity;

to help highlight behavior later in the stream, on the right, we show these distances on a

log scale. We can see that distances continue to reduce at a small, but steady, rate, with

some exceptions. Periodicity suggests some of the samples may have technical artifacts,

with the log scale amplifying their effects.

Fig. 2.5 shows distances between the sketch at a given point and the final sketch of the
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Figure 2.4: Streaming cosine distance of draff sketches. Draff sketches computed
with W = 31, K = 9. On the y-axis, cosine distance calculated between successive
sketches; on the x-axis, normalized time in number of k-mers. On the left are the exact
cosine distances; on the right, we show them on a log scale. As in 2.3, these are digitally
normalized to a maximum coverage of 20.
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Figure 2.5: MinHash and draff streaming distances as compared to representa-
tive sketches. draff sketches with W = 31, K = 9 and MinHash sketches with K = 31,
N = 25000 are compared. The distances are between the sketch at a given time point
and the final sketch in the stream, as in the middle plot of Fig. 2.1.
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stream for MinHash and draff. Here, the draff sketch shows its greater utility for the

saturation problem. For a sketch to best capture stability de novo, we expect distance

from the sketch of the final stream to have an inflection point that occurs when the

underlying sampled sequence has been observed and new fragments transition to mostly

introducing error. The signal for the MinHash sketches is dominated by error, and they

fail to capture this effect. We posit that MinHash sketches of sufficient size should

act similarly to the draff sketch; however, MinHash sketches are bound by worst-case

O(log(n)) insertion time, which imposes scaling challenges on MinHash, whereas insertion

into the draff sketch is always O(1) (for the implemented exact and AMQ backends).

The Draff Sketch Enables Novel Dimensional Analyses of As-

sembly Graphs

Because the Draff sketch is, intuitively, a compressed “snapshot” of k-mer space, in the

form of vector of feature counts as opposed to the set of specific k-mer hashes in MinHash

sketches, we are able use some more traditional numeric approaches with them. In Fig.

2.6, we view the stream of sketches as a matrix with each row a draff sketch corresponding

to measurement times i0 . . . iN . We then perform a Principle Component Analysis (PCA)

along a length-10 sliding window of the rows, and extract the explained variance of the top

two components for each window. In this way, we reduce the change in the compressed “k-

mer space” over time to a 2-dimensional representation. This offers a different view on the

saturation behavior. Rather than distances between successive sketches decreasing and

then stabilizing, we instead see the variance of a slice of sketches decreasing; moreover,

a reduction in explanatory power of the top 2 components can be interpreted as the

locations of new unique k-mers becoming more diffuse as we progress through the stream.

This provides further support for our saturation model where changes in the stream post-
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saturation are dominated by erroneous k-mers.

Discussion

We introduce a new sketch tailored for streaming saturation detection, which we call

draff, leveraging universal hitting sets, and explore sketch saturation on it and MinHash

sketches. Both methods show stability of distances when successively compared in a

stream, suggesting a method for calling saturation of a sample in a streaming context

de novo. The draff sketch has especially desirable properties for the task: a high level of

granularity in the face of large numbers of unique k-mers; constant-time insertion even

for large sketches; and canonical stability in self-similarity.

There are many avenues to explore here in the future. There is the need to formally

describe the relationship between sketch size, sequence error rate, and sample size in the

context of self-similarity. There is necessarily a multiple-testing problem to correct for

which has not been studied here, as well as more specific limitations on comparing highly-

similar MinHash sketches: for MinHashes of size N , the shortest distance we can compute

between them is 1− (N − 1)/(N + 1), and whether this distance has any significance is

dependent on the size of the underlying genome. draff sketches avoid this problem by

accounting for all unique k-mers, but better determining these limitations for this usage

is of interest. For draff, comparing the effectiveness of different distance metrics would

be highly valuable, as here we only explore the cosine distance.

The previous issues directly relate to developing functions for calling saturation. Potential

functions include: a specific distance cutoff, under which we immediately terminate; a

distance cutoff where we terminate after the mean distance of a sliding window meets the

threshold; measuring the variance of distances over a sliding window, wherein we try to
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Figure 2.6: Top-two principle components of sliding window over streaming
draff sketches. Rather than computing distance metrics between successive pairs of
sketches, Principle Component Analysis was run over a sliding window of 10 sketches
at a time and explained variance of the top two components extracted. Each point is a
PCA window proceeding through the sample.
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more directly measure the stability of the sketches; or other statistical moments on the

stream of distances. We briefly explored the behavior of the draff sketch in W -mer space

via Principal Component Analysis, which opens up another potential set of methods for

calling saturation.

Finally, there is the question of integrating this streaming method with the streaming

compaction described in Chapter 1. Streaming saturation detection is a natural pre-filter

for streaming compaction, providing a potential sub-linear solution for construction of

an inexact compact de Bruijn graph. The downstream effects on the resulting cDBG are

of particular interest, as well as the results of including the method along with sequence

error correction, solidity filtering, and digital normalization in pure-streaming pipelines.

Future work would focus on these pipelines holistically.
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dammit 2.0: an open, accessible

transcriptome annotator

Chapter Authors Camille Scott and N. Tessa Pierce

dammit was a project that grew out of work from early on in my PhD on de novo RNA-

seq assembly of the sea lamprey, Petromyzon marinus. The project eventually lead to

a publication making use of version of the resulting transcripts and annotations (67),

though a publication concerning the re-assembly itself was abandoned. Being somewhat

unsatisfied that the project did not produce a first-author publication, and having pro-

duced a significant amount of code for munging annotations, I decided to put it together

into a piece of software, that I somewhat affectionately named dammit as a nod to the

many inherent irritations involved in downstream sequence analysis. Some weeks into

putting the software together, and close to a useable prototype, a Friend Of The Lab

who will go unnamed tweeted the project’s GitHub page and suggested people use it,

resulting in a userbase and the necessity to maintain it. Eventually, it was used in a
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number of projects, and another member of the lab, N. Tessa Pierce, took on some work

in maintenance and improvement. With an established userbase and some difficulties

with the underlying workflow system, we decided to rewrite a version 2.0 of the project

using Snakemake. Considering the amount of work that went into writing and maintain-

ing the software, and its apparent usefulness to some in the community, I decided to

include it as part of this dissertation.

Abstract

dammit is a automated de novo transcriptome annotation pipeline designed with the

express purpose of being easy to install and configure. While a number of annotation

protocols and software pipelines already existed when dammit was first conceived, they

tended to be unapproachable to beginners. dammit automates database download and

preparation, as well as dependency installation; it need only be installed as a Python

package via PyPI or conda, after Snakemake is used internally to manage environments

for each annotation step. Annotation is achieved through homology searches against

protein databases, hidden Markov model and covariance model profile searching for pro-

tein domains and non-coding RNAs, gene model prediction, completeness assessment,

and orthology searches against user databases. dammit uses mostly easily available soft-

ware such as hmmer and Infernal, occasionally making use of less well-known software

in the pursuit of performance. The resulting annotations are collected and merged into

a Generic Feature Format Version 3 (GFF3) file, with annotation summaries added to

FASTA headers. dammit also exposes a suite of simple command line tools for file for-

mation conversion, homology filtering, metrics, and FASTA munging.
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Introduction

RNA-seq is now a foundational tool for genomics. Reference-based RNA-seq enables

researchers to characterize gene expression levels under differing conditions, while de

novo assemblies of RNA-seq data provide a useful resource for researchers attempting to

characterize the gene content of an organism, especially in non-model systems (68). Im-

portantly, due to its cost-effectiveness, transcriptome assembly is an accessible option for

labs with limited resources; whereas a complete de novo genome assembly requires high

coverage and often long reads to properly characterize genic content, a transcriptome

assembly is often sufficient to discover expressed transcripts of interest. Annotation is

generally the first step downstream of assembly, and annotators often make for complex

and unwieldy software. Due to their tendency to rely on a variety of third-party software

and databases, they can be difficult to install and configure, especially for those with

limited bioinformatics expertise. To make matters worse, many annotators trade per-

formance for familiarity in their supporting software; for example, while many aspiring

bioinformaticians may be familiar with BLAST (69), its relatively lackluster performance

when comparing many transcripts to a large reference database can be a burden to labs

with limited computational resources.

dammit addresses these issues by fully embracing a philosophy of openness and acces-

sibility. The authors contend that truly open scientific software must also maximize

accessibility and availability: tools with cumbersome installation processes, cloud-based

solutions that rely on stable centralized hosting, and tools that only run on a limited

selection of operating systems and hardware are compromised in their support of open

science. Hence, we rely on performant, well-tested open source third-party tools; imple-

ment our core software in a well supported language environment; and use the stable,
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easily accessible conda ecosystem for distribution. dammit provides a solution for users

wanting automated local installation, good performance, and ease-of-use.

Methods

Implementation

dammit is written in Python and uses tools within the ecosystem. The first version

was written using pydoit (70), with each step in the database preparation and anno-

tation process decomposed into a pydoit task, allowing for easy dependency tracking

and resume capability. Version 2 is a complete rewrite using Snakemake (71); while

the underlying pipeline remains mostly the same, the pydoit tasks have been converted

into reusable Snakemake wrappers and the command line interface (CLI) wraps the

Snakemake CLI. Snakemake is widely used within the field and has a rapidly growing

community. Furthermore, it enables first-class support of High Performance Compute

(HPC) system schedulers, a collection of reusable wrappers to make tasks portable, and

automated per-task environment management.

The dammit CLI exposes a number of subcommands. The core run subcommand wraps

Snakemake and executes the pipeline which is defined in the associated snakefiles. A

config subcommand allows reporting and editing configuration options globally and

per-project; all configuration is done through standard YAML files, with global config-

uration and temporary storage adhering to the XDG Base Directory Specification (72).

The remaining subcommands implement various format parsing and transformation, fil-

tering, and statistical functions, which are then leveraged in the Snakemake pipeline. For

example, dammit rename-fasta parses an input FASTA file and renames the headers in
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a standardized format, optionally with a user-supplied regular expression; this subcom-

mand is also the first task run by the annotation pipeline. This allows users to make use

of the internal dammit tooling independently of annotation.

File parsing is implemented in the companion library ope (73). This library provides

parsing support for GFF3, HMMER and Infernal tabular output, MAF, and TransDe-

coder FASTA, returning the parsed data in pandas DataFrames (74, 75) for use within the

Python data science ecosystem. dammit provides converters to output the corresponding

DataFrames as GFF3.

dammit is primarily developed and tested on 64-bit Linux and distributed via conda. We

currently require a minimum of Python 3.7.

All documentation is written in Markdown and managed with MkDocs. Documentation

can be accessed at the dammit Github Pages site (76).

Operation

The core subcommands of the program are dammit run annotate and dammit run

databases. These commands support a --pipeline argument which specifies which

subset of the possible databases to use; the available options are “default,” “quick,” “full,”

and “nr.” The “default” pipeline uses all the databases and programs described the fol-

lowing sections except for uniref90 and nr. “full” adds uniref90 to this pipeline, and

nr uses the NCBI non-redundant protein database, which is particularly large. “quick”

excludes HMMER, Infernal, and the OrthoDB conditional reciprocal best LAST tasks.

dammit run database will download and prepare the databases necessary for the given

--pipeline argument. Preparation includes steps such as running hmpress on Pfam-A

or lastdb on FASTA collections. dammit run annotate runs the selected pipeline on
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the input transcriptome; this task will fail if the associated database preparation has not

been performed.

Hardware requirements vary mostly with the databases used for annotation and their

preparation. Database preparation for a default run can be completed in under 16 GB of

RAM, with the most intensive step being LAST’s lastdb; preparation including uniref90

or nr uses considerably more RAM. Advanced users can make detailed adjustments to

LAST’s parameters with the config file to reduce RAM and run-time.

Annotation is less RAM intensive than the database preparation step, instead requiring

more CPU time. gnu-parallel (77) is used to help scale HMMER, Infernal, and LAST. A

default run splits the input file across multiple cores on a single machine. Advanced users

can pass the appropriate Snakemake profile arguments for cluster execution following the

Snakemake documentation (78). A typical run can be completed in less than 12 hours on

a machine with 8 cores; once again, adding uniref90 or nr greatly increases the required

time.

Use Cases

Database Preparation

Annotation necessarily requires a number of databases. dammit automates the retrieval

and preparation of its databases with the dammit run databases subcommand. Run-

ning this subcommand checks for their presence by default; with the --install flag,

they will be downloaded and prepared. dammit uses the following databases:

Pfam-A: Profile hidden markov models for searching protein domains with hmmer (79).
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Rfam: Covariance models for searching RNA secondary structure with Infernal (80).

OrthoDB: Hierarchical collection of protein ortholog groups (81).

BUSCO: Collections of core genes for major domains of life. dammit can use any of

the available BUSCO databases; we recommend choosing one from a clade closely related

to your target species (82).

uniref90: A comprehensive collection of most known proteins clustered at 90% se-

quence similarity (83).

nr: The entire non-redundant protein sequence database from the NCBI (84).

Databases are stored in the users home directory by default (in ~/.local/share/dammit),

and the location can be changed either with the --database-dir flag or by setting a

DAMMIT_DB_DIR environment variable.

Annotation Pipeline

dammit run annotate takes a “standard” FASTA file as input. First, the FASTA head-

ers are renamed and a mapping between the original and new names is output; this

avoids the issues that some programs have with certain characters in the header lines.

Then, a basic set of sequence statistics are gathered, such as the number of transcripts,

the k-mer redundancy, and the GC percent. BUSCO (82) is run in transcriptome

mode to assess completeness using whichever BUSCO database is specified by the user.

TransDecoder.LongOrfs (85) then finds open reading frames and produces a set of basic

protein translations; these translations are used to search against Pfam-A with hmmer
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(86), which are then fed into TransDecoder.Predict to get a final set of gene model

predictions. Infernal (87) is used to search Rfam for ncRNAs. OrthoDB and optionally

uniref90 or nr are searched using LAST (88) If the user supplies any custom protein

databases, they are searched for orthologs using Conditional Reciprocal Best Hits (90)

as implemented in shmlast (91).

An example annotation run on the file cdna.fa with the user-supplied protein database

pep.fa might look like so:

dammit run annotate cdna.fa --user-databases pep.fa --busco-group eukaryota

--n_threads 2

This will create a new folder called cdna.fa.dammit, which can be changed with

the --output flag. This folder contains the files cdna.fa.dammit.gff3 and

cdna.fa.dammit.fa with the main results, along with many intermediate files.

The GFF3 file contains the aggregated results, with coordinates in transcript space;

this file can be furthered interrogated downstream with other analysis packages or

viewed with an explorer such as IGV (92). The GFF3 uses terms compliant with the

Sequence Ontology Project (93). dammit also outputs a new FASTA file with summary

annotation information in each header line.
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shmlast: An improved

implementation of Conditional

Reciprocal Best Hits with LAST

and Python

Chapter Authors Camille Scott

DOI https://doi.org/10.21105/joss.00142

shmlast originally grew out of the dammit annotation project. Primarily, it aims to

reimplement Conditional Reciprocal Best Hits algorithm, using the python data science

ecosystem and the efficient LAST aligner. It also includes the classic Reciprocal Best Hits

algorithm, which seems often-implemented in hacky scripts that ride along with various

annotation projects, but rarely implemented in standalone, maintained software. It was
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originally a component of dammit, but the program has clear use as a standalone tool,

and so was separated into its own project. The program was published in JOSS at the

above referenced DOI.

Summary

Conditional Reciprocal Best Hits (CRBH) was originally described by Aubry et al.(90)

and implemented in the crb-blast package. CRBH is a method for finding orthologs

between two sets of sequences which builds on the traditional Reciprocal Best Hits (RBH)

method; it improves RBH by finding an expect-value cutoff per alignment length, and

then selecting non-reciprocal alignments which meet the minimum threshold.

Unfortunately, the original implementation uses the relatively slow NCBI BLAST+ (69),

and is implemented in Ruby, which requires users to leave the Python-dominated bioinfor-

matics ecosystem. shmlast makes CRBH available to users in Python, while also greatly

improving performance by using the LAST aligner (89) for initial homology searches.

Other improvements include outputting the list of cutoffs generated by its model along

with a plot of the decision boundary to aid in quality control, as well as using gnu-parallel

(77) to parallelize execution across multiple cores or nodes in a cluster environment.

Methods

RBH is a relatively old method for determining orthologs between two sequence

databases. Orthology is distinguished from sequence similarity by descent; while two

sequences with high similarity are likely to have structural of functional homology,

they are orthologous if they share a common ancestor sequence. It is difficult to know
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for sure whether two sequences are orthologs, but orthologous groups of sequences

are critical for a variety of analyses surrounding structure, function, and evolution,

and particularly, for annotation. As such, many methods have been developed for

separating high-similarity alignments from their orthologous counterparts. RBH is the

regal elder of these methods, and although it is simplistic compared to newer clustering

and graph-based methods, it remains in wide use due to its low false-positive rate and

ease of implementation. It is performed as follows: given two sets of sequences A and

B, sequences ai ∈ A and bj ∈ B are Reciprocal Best Hits if bj has the highest scoring

sequence alignment in B for ai and ai has the highest scoring sequence alignment in A

for bj. ai and bj then have a high probability of being orthologs.

While this method works well for finding orthologs between two sets of proteins from

different species, it is less effective for annotating newly assembled transcriptomes from

existing protein databases. Transcriptomes are confounded by alternative splicing, caus-

ing several transcripts to share subsequences, which may prevent RBH detection between

a translated transcript and its protein, even when an orthology relationship exists. Aubry

et al., and this implementation, circumvent that problem by first using the reciprocals to

establish a score cutoff for each alignment length, and then keeping any alignment which

passes that cutoff. This prevents alignments with high-likelihood of being orthologs based

on sequence identity from being discarded due to the high specificity of RBH.

Performance

shmlast benefits immensely from the use of LAST over BLAST. It scales well by using

gnu-parallel, and can be distributed across clusters for particularly large runs.
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Figure 4.1: Performance comparison with Schizosaccharomyces pombe as the query tran-
scriptome and Nematostella vectensis as the target proteome.
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Figure 4.2: CRBH model generated from the performance comparison. Hits with scores
above the blue dotted line will be kept.
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SuchTree: Fast, thread-safe

computations with phylogenetic

trees

Chapter Authors Russell Y. Neches and Camille Scott

DOI https://doi.org/10.21105/joss.00678

SuchTree was a project that grew out of Russell Neches’s frustration with the scaleabiltiy

of extant phylogenetic tree libraries. At the time, we were collaborating and coworking

quite often, which naturally ended up with me helping writing the software. SuchTree is

a prime example of the openness and accessibility goals of dammit, while also conforming

to UNIX principles of software development: it does a handful of tasks, very efficiently,

in a way that can be easily composed with other tools in its ecosystem. The library was

published in JOSS at the above referenced DOI.
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Summary

Python has several packages for working with phylogenetic trees, each focused on some-

what different aspects of the field. Some of the more active projects include :

• DendroPy, a multi-purpose package for reading, writing, manipulating, simulating

and analyzing phylogenetic trees in Python (94)

• ete3, a package for analysis and visualization of phylogenetic trees with Python or

command line tools (95)

• Pylogeny, an analytical tool for reshaping and scoring trees with GPU support via

the BEAGLE library (96)

• The Bio.Phylo subpackage in biopython collects useful tools for working with

common (and not so common) file formats in phylogenetics, along with utilities for

analysis and visualization (97)

• The skbio.tree module in scikit-bio is a base class for phylogenetic trees pro-

viding analytical and file processing functions for working with phylogenetic trees

(98)

Each of these packages allow trees to be manipulated, edited and reshaped. To make this

possible, they must strike a balance between raw performance and flexibility, and most

prioritize flexibility and a rich set of features. This is desireable for most use cases, but

computational scaling challenges arise when using these packages to work with very large

trees. Trees representing microbial communities may contain tens of thousands to tens

of millions of taxa, depending on the community diversity and the survey methodology.

SuchTree is designed purely as a backend for analysis of large trees. Significant advan-

tages in memory layout, parallelism and speed are achieved by sacrificing the ability to
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manipulate, edit or reshape trees (these capabilities exist in other packages). It scales to

millions of taxa, and the key algorithms and data structures permit concurrent threads

without locks.

SuchTree supports co-phylogenies, with functions for efficiently extracting graphs and

subgraphs for network analysis, and has native support for igraph and networkx.

In addition to the software itself, the repository includes a collection of 51 curated

co-phylogenies gathered from the literature grouped into three categories by the type

of ecology (frugivory, parasitism and pollination), and two collections of simulated co-

phylogenies grouped by the type of simulation (independent evolution and perfect coevo-

lution).
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Figure 5.1: Two phylogenetic trees of 54,327 taxa were constructed using different meth-
ods (approximate maximum likelihood using FastTree (99, 100) and the neighbor
joining agglomerative clustering method). To explore the different topologies of the
trees, pairs of taxa were chosen at random and the patristic distance between each pair
was computed through each of the two trees. This plot shows 1,000,000 random pairs
sampled from 1,475,684,301 possible pairs (0.07%). The two million distances calcula-
tions required about 12.5 seconds using a single thread.
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Conclusion

In this dissertation, we have demonstrated methods for steaming compaction of the de

Bruijn graph and dynamic assembly graph analysis, and explored approaches for sub-

linear sequence analysis with sketches. Streaming approaches offer a new perspective on

de novo sequence analysis: firstly, by providing new ways of analyzing the structure of our

sequencing data, and secondly, by broadening the ways we can build analysis pipelines as

a whole. We further demonstrate several pieces of software that follow a design pattern

favoring greater accessibility. dammit works to build a transcriptome annotation pipeline

using state of the art workflow approaches, while providing commonly used utilities

in the form of small command line tools. shmlast works to improve the accessibility

of an existing tool by rewriting it to use the Python ecosystem and exposing its core

functionality as a library. Both prioritize ease-of-use and teachability, and have been used

in a workshop setting with novice bioinformaticians. We then demonstrate SuchTree,

which provides an efficient phylogenetic tree library by adopting the UNIX philosophy of

simple, limited-purpose tools. The core software product for this dissertation, goetia,

provides a rich library in both the Python and C++ ecosystems, along with a set of

command line tools, that is easily installable through the widely adopted conda package

manager.

The common thread is prioritization of community: streaming methods that strive to
72



SUMMARY

be workable when storage space is limited, composability through open source code

and software distribution, and reproducibility through workflow systems. The document

itself was written and compiled by building on the aggiedown (101) package and Manubot

citation processor (102). By adopting these principles, we hope that this work can be

reused, remixed, and extended in the years to come.
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The goetia Library and Software

goetia is an open source software package implementing the methods described in this

dissertation. It comprises three main components: 1. A C++ library, libgoetia, which

implements k-mer storage and hashing, de Bruijn graph traversal, file and stream se-

quence parsing, sketch construction, and sequence filtering;2 2. A set of Python bindings

for libgoetia, generated with cppyy (47), which expose the library in a user friendly

form; 3. A Python library implementing asynchronous interaction with libgoetia’s

various processors, the goetia command-line interface, and a suite of unit tests.

All code is released under the MIT license and hosted on GitHub (45). The package is

distributed via the conda ecosystem on the bioconda channel (46). Due to the complexity

of the build process introduced by cppyy, the package is not currently distributed on

PyPI; distribution on PyPI may be explored in the future if the effort appears worthwhile.
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libgoetia

The C++ library is responsible for the “heavy lifting” of the package. To enable com-

posibility and efficiency, it makes much use of of templating and the curiously-recurring

template pattern (CRTP) to avoid virtual function calls. The library is organized into

namespaces by purpose.

Hashing

k-mer hashing is a core bottleneck in de Bruijn graph construction, as well as many

sketching algorithms. Because of the centrality of hashing, many of goetia’s classes

are parameterized by hashing method. Hashing capability is modularized; the basic

interfaces simply accept k-mer sequences and produce integers, and additional, more

advanced interfaces support efficient rolling hashing and neighbor-searching.

Hash types

The types of hash values are templated to allow composability and flexibility. The core

type is Hash, which is parametrized with a value_type for the underlying integer to

be used. Casting to value_type or calling value() on a Hash object will return the

underlying integer. Generally, this is assumed to be uint64_t, which is the default, but

larger (or smaller) integers can be substituted. Next is type Canonical, which like Hash

takes a value_type, but actually stores two values: the forward and reverse-complement

hash values. When a Canonical is cast to value_type or hash its value() method

called, it returns to smaller of its forward and reverse-complment hash values.
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Building on the two foundational hash types is Kmer. This is parameterized by a hash

type corresponding to the interface of Hash, and stores a std::string corresponding to

the k-mer associated with the hash value. Related is the Shift: this also takes a hash

type template parameter, as well as a non-type parameter of type bool for its direction.

A shift stores a hash value and a single char symbol representing the single base from the

dBG alphabet Σ that was added to the k−1 suffix (or prefix) of the Shift’s predecessor.

Finally, the Partitioned and Wmer templates are used for minimizer schemes. A

Partitioned models an underlying hash value with hash_type and an abritrary

associated uint64_t partition ID, which may be calculated via minimizer, universal

hitting set, or other methods. Wmer stores a Hash along with a Partitioned to model

the hash value of a full length W -mer, the hash value of its associated minimizer k-mer,

and the partitioned ID of that minimizer k-mer.

Hashers

W and k-mer hashing algorithms are built on a standard interface for roll hash functions

useful for k-mer hashing. The foundation for this interface is the HashShifter, which

takes as a template parameter a shift policy implementing the specific rolling hashing

algorithm, and requires the following methods be defined on this policy:

• get(): Return the current hash value.

• shift_right(char, char), shift_left(char, char): Remove a character from

the current state and hash in a new character.

• hash_base(char *): Hash an entire k-mer (set the starting state before shifting).

• static hash(char *): Statelessly hash an entire k-mer.

HashShifter is also templated with an Alphabet, which may be one of the plain
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nucleotides {A,C,G, T}, called DNA_SIMPLE, the plain nucleotides plus {N}, called

DNAN_SIMPLE, and the full IUPAC defined nucleotide alphabet IUPAC_NUCL. The

alphabet classes define their own validation and complementation methods.

There are specialized policies for: the Lemire rolling hash algorithm, for both Hash

and Canonical (ie, strand-aware and canonical k-mer versions), and the rolling UHS

minimizer shifter, which yields Wmer objects with their associated hitting k-mers instead

of plain Hash objects.

Finally, to help build toward de Bruijn graph traversal, there is the HashExtender tem-

plate. The HashExtender has the hash state via its parent HashShifter while also adding

a character ring buffer to track the current k-mer of its hash, which we call the cursor.

It extends the HashShifter::shift_left and HashShifter::shift_right methods to

update this buffer, and also implements the left and right_extensions interfaces for

generating the ∥Σ∥ possible prefix or suffix neighbors of a k-mer.

k-mer Storage

Storage classes implement efficient k-mer collections. All follow a base interface named

Storage, which takes a template parameter value_type for the type of the hashed k-mers

to be stored. The interface defines the following core methods:

• insert(value_type): Insert an item into the collection, incrementing the associ-

ated counter if supported, and returns true if the item is newly observed.

• insert_and_query(value_type): Perform an insert and return the count after

insertion.

• query(value_type): Retrieve the existence or count of the item.

• n_unique_kmers(): Report the number of unique elements in the collection.
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• reset(): Remove all elements from the collection and return to default state.

Collections implementing the interface also define the following traits:

• is_counting: Whether the collection supports abundance counts or only behaves

as a set.

• is_probabilistic: Whether the collection tracks items exactly or with error.

• bits_per_slot: Number of bits used per item, for bit-vector based data structures.

• params_type: Tuple for the parameter types needed to instantiate the class.

• default_params: Default parameters to use if not supplied.

goetia provides a number of data structures implementing this interface.

Basic Storage Classes

Bloom filter: BitStorage A Bloom filter is a probabilistic, sub-linear space data

structure for set membership testing. It uses reduced space at the cost of a small,

predictable false positive rate, with no false negatives. Memory usage is fixed; it is

parameterized by size of its underlying bit vector and a number of hash functions, the

two of which together decide the false positive rate (103). It is not possible the enumerate

the members of a Bloom filter. The Bloom filter code is a modified version of that in the

khmer (104) library.

Count-min sketch: NibbleStorage and ByteStorage A Count-Min sketch (103)

is another probabilistic, sub-linear space data structure. It operates similarly to the

Bloom filter, but stores an approximate count of its items instead of simple presence.

NibbleStorage uses 4-bit counters, while ByteStorage uses 8-bit counters. These too

are modified versions of the those found in khmer.
78



K-MER STORAGE

Sparsepp Hash Set: SparseppSetStorage An exact set representation using the

Sparsepp hash table (105). Sparsepp is an iteration on Google’s sparsehash (106), and

provides a highly memory-efficient set with fast O(1) insertions and queries.

parallel-hashmap: PHMapStorage Another exact set representation using the

parallel-hashmap library (42). Written by the same authors as a successor Sparsepp,

it is an essentially unilateral improvement. It uses SIMD instructions for internal

probing and is optionally thread-safe. PHMapStorage is the recommended (and default)

exact store.

Counting Quotient Filter: QFStorage A probabilistic sub-linear space data struc-

ture developed as a unilateral improvement over Count-min Sketches (107). It makes use

of SIMD instructions to speed up rank-and-select operations and has good cache locality,

the latter a significant weakness of Bloom filters and CM sketches. These advantages are

achieved at a considerable increase in implementation complexity.

Partitioned Storage

The PartitionedStorage exposes the same interface as the basic Storage, but sup-

ports partitioning the underlying data into disjoint sets. The API is agnostic to the

method of partitioning; all that is required is a number of partitions and an additional

parameter specifying the partition in which to store an item while inserting and querying.

The PartitionedStorage is template-parameterized with one of the formerly described

storage classes, and a number of data structures equal to the number of partitions are

constructed. Thus, care must be taken when using underlying storage classes with a

fixed, pre-allocated amount of memory, so as to not over-allocate available system mem-
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ory. The expected partitioning method for k-mers are minimizer methods, particularly

the Universal k-mer Hitting Set (UHS), which is part of the hashing functionality.

Partitioned storage offers several advantages, at the cost of increased processing time

spent on determining partitions. For storages with poor cache locality, an appropriately-

determined partitioning methodology can reduce cache misses during query and graph

traversal. Partitioning also allows fine-grained per-partition locking of the dBG, and thus

efficient parallel algorithms. Both these advantages necessitate locality-sensitive parti-

tioning methods such as minimizer and UHS schemes. UHS schemes used for partitioning

are described in 2.

de Bruijn Graphs

The goetia::dBG and goetia::PdBG classes build on the Storage, PartitionedStorage,

and hashing classes to implement functional de Bruijn graphs. The core dBG and PdBG

interface defines:

• insert(std::string): to hash and add an individual k-mer to the graph via the

underlying Storage class.

• insert_and_query(std::string): To add a k-mer and return its count post-

insertion.

• query(std::string): to retrieve the current presence or count of a k-mer.

• insert_sequence(std::string: To insert the k-mers of a sequence into the graph,

along with a number of overloads for returning hashes, returning the set of new

k-mers, return the vector of counts, and so on.

dBG and PdBG inherit the functionality of the HashShifter, HashExtender, and
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UnitigWalker classes, the latter of which is described below; hence, dBG also is capable

of traversing itself.

The cDBG class is templated on a dBG type, and hence a HashShifter type, and imple-

ments the storage and retrieval of unitigs in its associated de Bruijn graph. The cDBG class

only manages the unitigs via their tips and the decision k-mers; the compacted graph is

build using the StreamingCompactor class, which puts together all the prior functional-

ity. Its primary public interface is simply the insert_sequence method, which adds a

sequence to the underlying de Bruijn graph and appropriately updates the unitigs in the

cDBG that the sequence intersects.

de Bruijn Graph Traversal

The apex of the HashShifter and dBG hierarchy is the UnitigWalker. It uses the

functionality of the HashExtender to walk a dBG that is bound to it and extract unitigs.

It reports detailed state information its primary interfaces in the form of the Walk class,

which defines:

• kmer_type start: A Kmer representing the start point of the traversal.

• vector<Shift> path: A vector of Shift representing the path taken by the traver-

sal.

• TraversalState end_state: An enum holding the reason a traversal was termi-

nated.

From this information, a walk can be converted to a unitig via its to_string method.

TraversalState can have the following values:

• STOP_FWD: There was no neighbor to traverse to (in or out-degree of zero).
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• DECISION_FWD: Traversal stopped at a decision k-mer with in/out degree greater

than one in the direction of traversal.

• DECISION_BKW: Traversal passed through a decision k-mer with degree greater than

one in the opposite direction of traversal, and so backed off by one k-mer.

• STOP_SEEN: Traversal stopped because it hit a k-mer already seen in this traversal:

ie, it formed a perfect loop.

• STOP_MASKED: Traversal stopped because it hit a k-mer in the explicit set of pro-

vided k-mers to stop at.

• STOP_CALLBACK: Traversal stopped because it was ordered to by a bound callback

function.

• BAD_SEED: Traversal did not start in the first place because the start k-mer was not

the underlying de Bruijn graph.

• GRAPH_ERROR: Some fatal error in the graph topology occurred.

• STEP: Traversal was able to successfully take a step (a single neighbor in the direc-

tion of traversal with no reverse decision node).

The UnitigWalker itself defines filter_nodes, which takes a list of extensions from

HashExtender and removes those that are not in the associated graph and in_neighbors

and out_neighbors to wrap filter_nodes with the current cursor of HashExtender.

For movement around the graph, it defines:

• step_left, step_right: Attempt to take a single step in the given direction, and

return a resulting TraversalState and list of neighbors.

• walk_left, walk_right: Repeatedly step in the given direction and continue until

a stop state is reached, returning a Walk.

• walk: Walk bidirectionally and return both walks.
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The dBG and PdBG classes inherit from this class as a mixin, and so all this functionality

(and state) is also found on a given dBG object. UnitigWalker can be instantiated with

an existing dBG or PdBG by passing a pointer to its constructor.

Sketches

Currently, two types of sequence sketches are supported. The first is a MinHash

sketch as implemented in sourmash. goetia::SourmashSketch wraps a MinHash *

exported by the sourmash rust core; this can be extracted from the Python MinHash

object in sourmash via FFI and passed on to the goetia C++ wrapper. The second

is goetia::UnikmerSketch, which is the draff implementation. This is a template

parameterized with a Storage backend and a Hash type. Both these sketches implement

insert_sequence as their primary public facing interface.

Sequence Parsing and Processors

goetia provides FastxParser which wraps the kseq FASTA/Q parser; its primary

public API is the next method which returns a goetia::Record object with at-

tributes for the sequence header, the sequence itself, and the quality score, if present.

goetia::SplitPairedReader bundles two FastxParser objects and parses and

validates paired samples.

goetia::FileProcessor is a CRTP base-class that wraps a sequence parser, iterates the

steam, and handles the resulting sequences in a generic fashio. The constructor takes an

integer interval for stream timing; the advance method iterates the parser and handles

the emitted sequences until the interval is exceeded, returning the number of parsed
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sequencees, elapsed time (number of k-mers), and a bool value for whether the parser

has been exhausted.

Clients derive FileProcessor to implement sequence handling. InserterProcessor

takes a class with an insert_sequence method as a template parameter, calling

insert_sequence on every sequence in the stream. This is used to build and compact

dBGs and update sketches. Similarly, goetia::FilterProcessor has a template

argument that expects a class implementing a filter_sequence method, which should

return a bool indicating whether a sequence passes some critera; this is used, for

example, for the solid filter and digital normalization implementations.
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Colophon

This document is set in EB Garamond, Source Code Pro and Lato. The body text is set

at 11pt with lmr.

It was written in R Markdown and LATEX, and rendered into PDF using aggiedown and

bookdown.

This document was typeset using the XeTeX typesetting system, and the University

of California Thesis class. Under the hood, the elements of the document formatting

source code have been taken from the Latex, Knitr, and RMarkdown templates for UC

Berkeley’s graduate thesis, and Dissertate: a LaTeX dissertation template to support the

production and typesetting of a PhD dissertation at Harvard, Princeton, and NYU

The source files for this thesis, along with all the data files, have been organised into a

repository which is available at https://github.com/camillescott/dissertation. A

hard copy of the thesis can be found in the University of California Davis library.

This version of the thesis was generated on 2022-03-18 18:19:52. The repository is cur-

rently at this commit:

The computational environment that was used to generate this version is as follows:

_r-mutex 1.0.1 anacondar_1 conda-forge

appdirs 1.4.4 pypi_0 pypi
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attrs 21.4.0 pypi_0 pypi

bwidget 1.9.14 h694c41f_1 conda-forge

bzip2 1.0.8 h0d85af4_4 conda-forge

c-ares 1.18.1 h0d85af4_0 conda-forge

ca-certificates 2021.10.8 h033912b_0 conda-forge

cairo 1.16.0 he43a7df_1008 conda-forge

cattrs 1.10.0 pypi_0 pypi

cctools_osx-64 973.0.1 h2b735b3_10 conda-forge

certifi 2021.10.8 pypi_0 pypi

charset-normalizer 2.0.12 pypi_0 pypi

clang 13.0.1 h694c41f_0 conda-forge

clang-13 13.0.1 default_he082bbe_0 conda-forge

clang_osx-64 13.0.1 h71a8856_0 conda-forge

clangxx 13.0.1 default_he082bbe_0 conda-forge

clangxx_osx-64 13.0.1 heae0f87_0 conda-forge

click 8.0.4 pypi_0 pypi

compiler-rt 13.0.1 he01351e_0 conda-forge

compiler-rt_osx-64 13.0.1 hd3f61c9_0 conda-forge

curl 7.82.0 h9dce1e3_0 conda-forge

errorhandler 2.0.1 pypi_0 pypi

expat 2.4.7 h96cf925_0 conda-forge

font-ttf-dejavu-sans-mono 2.37 hab24e00_0 conda-forge

font-ttf-inconsolata 3.000 h77eed37_0 conda-forge

font-ttf-source-code-pro 2.038 h77eed37_0 conda-forge

font-ttf-ubuntu 0.83 hab24e00_0 conda-forge

fontconfig 2.13.96 h676cef8_2 conda-forge
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fonts-conda-ecosystem 1 0 conda-forge

fonts-conda-forge 1 0 conda-forge

freetype 2.10.4 h4cff582_1 conda-forge

fribidi 1.0.10 hbcb3906_0 conda-forge

gettext 0.19.8.1 hd1a6beb_1008 conda-forge

gfortran_impl_osx-64 9.3.0 h9cc0e5e_23 conda-forge

gfortran_osx-64 9.3.0 h18f7dce_15 conda-forge

gmp 6.2.1 h2e338ed_0 conda-forge

graphite2 1.3.13 h2e338ed_1001 conda-forge

gsl 2.7 h93259b0_0 conda-forge

harfbuzz 3.1.1 h159f659_0 conda-forge

icu 68.2 he49afe7_0 conda-forge

idna 3.3 pypi_0 pypi

isbnlib 3.10.10 pypi_0 pypi

isl 0.22.1 hb1e8313_2 conda-forge

jbig 2.1 h0d85af4_2003 conda-forge

jinja2 3.0.3 pypi_0 pypi

jpeg 9e h0d85af4_0 conda-forge

jsonschema 4.4.0 pypi_0 pypi

krb5 1.19.3 hb98e516_0 conda-forge

ld64_osx-64 609 hd77a64a_10 conda-forge

lerc 3.0 he49afe7_0 conda-forge

libblas 3.9.0 13_osx64_openblas conda-forge

libcblas 3.9.0 13_osx64_openblas conda-forge

libclang-cpp13 13.0.1 default_he082bbe_0 conda-forge

libcurl 7.82.0 h9dce1e3_0 conda-forge
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libcxx 13.0.1 hc203e6f_0 conda-forge

libdeflate 1.10 h0d85af4_0 conda-forge

libedit 3.1.20191231 h0678c8f_2 conda-forge

libev 4.33 haf1e3a3_1 conda-forge

libffi 3.4.2 h0d85af4_5 conda-forge

libgfortran 5.0.0 9_3_0_h6c81a4c_23 conda-forge

libgfortran-devel_osx-64 9.3.0 h6c81a4c_23 conda-forge

libgfortran5 9.3.0 h6c81a4c_23 conda-forge

libgit2 1.3.0 h5d72689_1 conda-forge

libglib 2.70.2 hf1fb8c0_4 conda-forge

libiconv 1.16 haf1e3a3_0 conda-forge

liblapack 3.9.0 13_osx64_openblas conda-forge

libllvm13 13.0.1 h64f94b2_2 conda-forge

libnghttp2 1.47.0 hca56917_0 conda-forge

libopenblas 0.3.18 openmp_h3351f45_0 conda-forge

libpng 1.6.37 h7cec526_2 conda-forge

libssh2 1.10.0 hd3787cc_2 conda-forge

libtiff 4.3.0 h17f2ce3_3 conda-forge

libwebp-base 1.2.2 h0d85af4_1 conda-forge

libxml2 2.9.12 h93ec3fd_0 conda-forge

libzlib 1.2.11 h9173be1_1013 conda-forge

llvm-openmp 13.0.1 hcb1a161_1 conda-forge

llvm-tools 13.0.1 h64f94b2_2 conda-forge

lz4-c 1.9.3 he49afe7_1 conda-forge

make 4.3 h22f3db7_1 conda-forge

manubot 0.5.3 pypi_0 pypi
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markupsafe 2.1.1 pypi_0 pypi

mpc 1.2.1 hbb51d92_0 conda-forge

mpfr 4.1.0 h0f52abe_1 conda-forge

ncurses 6.3 he49afe7_0 conda-forge

openssl 3.0.0 h0d85af4_2 conda-forge

packaging 21.3 pypi_0 pypi

pandoc 2.9.2.1 0 conda-forge

panflute 1.12.5 pypi_0 pypi

pango 1.48.10 h056538c_2 conda-forge

pcre 8.45 he49afe7_0 conda-forge

pcre2 10.37 ha16e1b2_0 conda-forge

pip 22.0.4 pyhd8ed1ab_0 conda-forge

pixman 0.40.0 hbcb3906_0 conda-forge

pybase62 0.4.3 pypi_0 pypi

pyparsing 3.0.7 pypi_0 pypi

pyrsistent 0.18.1 pypi_0 pypi

python 3.10.2 hea1dfa3_4_cpython conda-forge

python_abi 3.10 2_cp310 conda-forge

pyyaml 6.0 pypi_0 pypi

r-askpass 1.1 r41h28b5c78_2 conda-forge

r-assertthat 0.2.1 r41hc72bb7e_2 conda-forge

r-backports 1.2.1 r41h28b5c78_0 conda-forge

r-base 4.1.1 h65845f3_1 conda-forge

r-base64enc 0.1_3 r41h28b5c78_1004 conda-forge

r-bh 1.75.0_0 r41hc72bb7e_0 conda-forge

r-bitops 1.0_7 r41h28b5c78_0 conda-forge
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r-bookdown 0.24 r41hc72bb7e_0 conda-forge

r-boot 1.3_28 r41hc72bb7e_0 conda-forge

r-brew 1.0_6 r41hc72bb7e_1003 conda-forge

r-brio 1.1.2 r41h28b5c78_0 conda-forge

r-bslib 0.3.1 r41hc72bb7e_0 conda-forge

r-cachem 1.0.6 r41h28b5c78_0 conda-forge

r-callr 3.7.0 r41hc72bb7e_0 conda-forge

r-catools 1.18.2 r41h9951f98_0 conda-forge

r-cli 3.0.1 r41h9951f98_1 conda-forge

r-clipr 0.7.1 r41hc72bb7e_0 conda-forge

r-clisymbols 1.2.0 r41hc72bb7e_1003 conda-forge

r-codetools 0.2_18 r41hc72bb7e_0 conda-forge

r-colorspace 2.0_2 r41h28b5c78_0 conda-forge

r-commonmark 1.7 r41h28b5c78_1002 conda-forge

r-covr 3.5.1 r41h9951f98_0 conda-forge

r-cowplot 1.1.1 r41hc72bb7e_0 conda-forge

r-cpp11 0.4.0 r41hc72bb7e_0 conda-forge

r-crayon 1.4.1 r41hc72bb7e_0 conda-forge

r-credentials 1.3.1 r41hc72bb7e_0 conda-forge

r-crosstalk 1.1.1 r41hc72bb7e_0 conda-forge

r-curl 4.3.2 r41h28b5c78_0 conda-forge

r-desc 1.4.0 r41hc72bb7e_0 conda-forge

r-devtools 2.4.2 r41hc72bb7e_0 conda-forge

r-diffobj 0.3.5 r41h28b5c78_0 conda-forge

r-digest 0.6.28 r41h9951f98_0 conda-forge

r-dplyr 1.0.7 r41h9951f98_0 conda-forge
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r-dt 0.19 r41hc72bb7e_0 conda-forge

r-ellipsis 0.3.2 r41h28b5c78_0 conda-forge

r-evaluate 0.14 r41hc72bb7e_2 conda-forge

r-fansi 0.4.2 r41h28b5c78_0 conda-forge

r-farver 2.1.0 r41h9951f98_0 conda-forge

r-fastmap 1.1.0 r41h9951f98_0 conda-forge

r-fontawesome 0.2.2 r41hc72bb7e_0 conda-forge

r-fs 1.5.0 r41h9951f98_0 conda-forge

r-generics 0.1.0 r41hc72bb7e_0 conda-forge

r-gert 1.4.1 r41hcc5dd4e_1 conda-forge

r-ggplot2 3.3.5 r41hc72bb7e_0 conda-forge

r-gh 1.3.0 r41hc72bb7e_0 conda-forge

r-git2r 0.28.0 r41h829d76c_1 conda-forge

r-gitcreds 0.1.1 r41hc72bb7e_0 conda-forge

r-glue 1.4.2 r41h28b5c78_0 conda-forge

r-gtable 0.3.0 r41hc72bb7e_3 conda-forge

r-highr 0.9 r41hc72bb7e_0 conda-forge

r-htmltools 0.5.2 r41h9951f98_0 conda-forge

r-htmlwidgets 1.5.4 r41hc72bb7e_0 conda-forge

r-httpuv 1.6.3 r41h9951f98_0 conda-forge

r-httr 1.4.2 r41hc72bb7e_0 conda-forge

r-ini 0.3.1 r41hc72bb7e_1003 conda-forge

r-isoband 0.2.5 r41h9951f98_0 conda-forge

r-jquerylib 0.1.4 r41hc72bb7e_0 conda-forge

r-jsonlite 1.7.2 r41h28b5c78_0 conda-forge

r-knitr 1.35 r41hc72bb7e_0 conda-forge
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r-labeling 0.4.2 r41hc72bb7e_1 conda-forge

r-later 1.2.0 r41h9951f98_0 conda-forge

r-lattice 0.20_45 r41h28b5c78_0 conda-forge

r-lazyeval 0.2.2 r41h28b5c78_2 conda-forge

r-lifecycle 1.0.1 r41hc72bb7e_0 conda-forge

r-magrittr 2.0.1 r41h28b5c78_1 conda-forge

r-markdown 1.1 r41h28b5c78_1 conda-forge

r-mass 7.3_54 r41h28b5c78_0 conda-forge

r-matrix 1.3_4 r41hc2c5f09_0 conda-forge

r-memoise 2.0.0 r41hc72bb7e_0 conda-forge

r-mgcv 1.8_38 r41hf27e4f0_0 conda-forge

r-mime 0.12 r41h28b5c78_0 conda-forge

r-munsell 0.5.0 r41hc72bb7e_1004 conda-forge

r-nlme 3.1_153 r41h749f5a1_0 conda-forge

r-openssl 1.4.5 r41hfc1e889_1 conda-forge

r-pillar 1.6.4 r41hc72bb7e_0 conda-forge

r-pkgbuild 1.2.0 r41hc72bb7e_0 conda-forge

r-pkgconfig 2.0.3 r41hc72bb7e_1 conda-forge

r-pkgload 1.2.3 r41h9951f98_0 conda-forge

r-plogr 0.2.0 r41hc72bb7e_1003 conda-forge

r-plyr 1.8.6 r41h9951f98_1 conda-forge

r-praise 1.0.0 r41hc72bb7e_1005 conda-forge

r-prettyunits 1.1.1 r41hc72bb7e_1 conda-forge

r-processx 3.5.2 r41h28b5c78_0 conda-forge

r-promises 1.2.0.1 r41h9951f98_0 conda-forge

r-ps 1.6.0 r41h28b5c78_0 conda-forge
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r-purrr 0.3.4 r41h28b5c78_1 conda-forge

r-r6 2.5.1 r41hc72bb7e_0 conda-forge

r-rappdirs 0.3.3 r41h28b5c78_0 conda-forge

r-rcmdcheck 1.4.0 r41h785f33e_0 conda-forge

r-rcolorbrewer 1.1_2 r41h785f33e_1003 conda-forge

r-rcpp 1.0.7 r41h9951f98_0 conda-forge

r-rematch2 2.1.2 r41hc72bb7e_1 conda-forge

r-remotes 2.4.1 r41hc72bb7e_0 conda-forge

r-reshape2 1.4.4 r41h9951f98_1 conda-forge

r-rex 1.2.0 r41hc72bb7e_1 conda-forge

r-rlang 0.4.12 r41h28b5c78_0 conda-forge

r-rmarkdown 2.11 r41hc72bb7e_1 conda-forge

r-roxygen2 7.1.2 r41h9951f98_0 conda-forge

r-rprojroot 2.0.2 r41hc72bb7e_0 conda-forge

r-rstudioapi 0.13 r41hc72bb7e_0 conda-forge

r-rversions 2.1.1 r41hc72bb7e_0 conda-forge

r-sass 0.4.0 r41h9951f98_0 conda-forge

r-scales 1.1.1 r41hc72bb7e_0 conda-forge

r-sessioninfo 1.1.1 r41hc72bb7e_1002 conda-forge

r-shiny 1.7.1 r41h785f33e_0 conda-forge

r-sourcetools 0.1.7 r41h9951f98_1002 conda-forge

r-stringi 1.7.5 r41hd783aa8_0 conda-forge

r-stringr 1.4.0 r41hc72bb7e_2 conda-forge

r-sys 3.4 r41h28b5c78_0 conda-forge

r-testthat 3.1.0 r41h9951f98_0 conda-forge

r-tibble 3.1.5 r41h28b5c78_0 conda-forge
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r-tidyselect 1.1.1 r41hbe3e9c8_0 conda-forge

r-tinytex 0.34 r41hc72bb7e_0 conda-forge

r-usethis 2.1.0 r41hc72bb7e_0 conda-forge

r-utf8 1.2.2 r41h28b5c78_0 conda-forge

r-vctrs 0.3.8 r41h28b5c78_1 conda-forge

r-viridislite 0.4.0 r41hc72bb7e_0 conda-forge

r-waldo 0.3.1 r41hc72bb7e_0 conda-forge

r-whisker 0.4 r41hc72bb7e_1 conda-forge

r-withr 2.4.2 r41hc72bb7e_0 conda-forge

r-xfun 0.27 r41h9951f98_0 conda-forge

r-xml2 1.3.2 r41h9951f98_1 conda-forge

r-xopen 1.0.0 r41hc72bb7e_1003 conda-forge

r-xtable 1.8_4 r41hc72bb7e_3 conda-forge

r-yaml 2.2.1 r41h28b5c78_1 conda-forge

r-zeallot 0.1.0 r41hc72bb7e_1003 conda-forge

r-zip 2.2.0 r41h28b5c78_0 conda-forge

ratelimiter 1.2.0.post0 pypi_0 pypi

readline 8.1 h05e3726_0 conda-forge

requests 2.27.1 pypi_0 pypi

requests-cache 0.9.3 pypi_0 pypi

setuptools 60.10.0 py310h2ec42d9_0 conda-forge

sigtool 0.1.3 h88f4db0_0 conda-forge

six 1.16.0 pypi_0 pypi

sqlite 3.37.1 hb516253_0 conda-forge

tapi 1100.0.11 h9ce4665_0 conda-forge

tk 8.6.12 h5dbffcc_0 conda-forge
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tktable 2.10 h49f0cf7_3 conda-forge

toml 0.10.2 pypi_0 pypi

tzdata 2022a h191b570_0 conda-forge

url-normalize 1.4.3 pypi_0 pypi

urllib3 1.26.9 pypi_0 pypi

wheel 0.37.1 pyhd8ed1ab_0 conda-forge

xz 5.2.5 haf1e3a3_1 conda-forge

zlib 1.2.11 h9173be1_1013 conda-forge

zstd 1.5.2 h582d3a0_0 conda-forge
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