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Abstract
Chronic kidney disease (CKD) has been shown to result in profound changes in the composition and functions of the gut 
microbial flora which by disrupting intestinal epithelial barrier and generating toxic by-products contributes to systemic 
inflammation and the associated complications. On the other hand, emerging evidence points to the role of the gut microbiota 
in the development and progression of CKD by provoking inflammation, proteinuria, hypertension, and diabetes. These obser-
vations demonstrate the causal interconnection between the gut microbial dysbiosis and CKD. The gut microbiota closely 
interacts with the inflammatory, renal, cardiovascular, and endocrine systems via metabolic, humoral, and neural signaling 
pathways, events which can lead to chronic systemic inflammation, proteinuria, hypertension, diabetes, and kidney disease. 
Given the established role of the gut microbiota in the development and progression of CKD and its complications, favorable 
modification of the composition and function of the gut microbiome represents an appealing therapeutic target for prevention 
and treatment of CKD. This review provides an overview of the role of the gut microbial dysbiosis in the pathogenesis of the 
common causes of CKD including hypertension, diabetes, and proteinuria as well as progression of CKD.
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Introduction

Gut microbiota, a highly diverse bacterial population [1] 
consisting of approximately  1014 bacteria [2], has recently 
drawn attention as a central player in the development of 
many chronic diseases, including chronic kidney disease 
(CKD). Alterations in the gut microbiota are associated 

with the development of proteinuria [3], inflammation, type 
2 diabetes [4], type 1 diabetes [5], and hypertension [6]. 
The gut microbiota is in a bidirectional interaction with the 
kidneys and deterioration in this relationship results in CKD 
development [7]. Therefore, gut microbiota can be consid-
ered an important player in the pathogenesis of CKD directly 
and indirectly by influencing the development of diabetes, 
hypertension, and proteinuria. For this reason, “engineering” 
the gut microbiota via lifestyle modifications and therapeutic 
interventions represents a potential target for prevention and 
treatment of CKD.

Gut microbiota, inflammation, and chronic 
kidney disease

CKD is associated with chronic systemic inflammation [8] 
which is a cornerstone in the development and progression 
of CKD [9]. Previous studies have identified gut microbiota 
as one of the important mediators of systemic inflammation 
[7]. In fact, kidney diseases such as tubulointerstitial nephri-
tis, nephrolithiasis, amyloidosis, and glomerulonephritis 
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commonly occur in patients with inflammatory bowel dis-
eases (IBD) [10]. Interestingly, CKD and IBD share some 
similarities in the composition of the gut microbiome. Spe-
cies from Bacteroidetes and Enterobacteriaceae/Proteobac
teria genres are increased while other genera such as Prevo-
tella and Lactobacilli are decreased [11, 12]. Therefore, gut 
dysbiosis could contribute to the pathogenesis of systemic 
inflammation in CKD and IBD.

The normal gut microbiota can protect the kidney 
whereas gut dysbiosis can facilitate CKD development [13]. 
The gut dysbiosis in CKD includes an increase in the species 
from Enterobacteriaceae and Pseudomonadaceae genera of 
the phylum Proteobacteria, Bacteroidaceae, and Clostridi-
aceae; and a decrease in species from Lactobacillaceae, 
Prevotellaceae, and Bifidobacteriaceae [12]. Strikingly, 
the species that are expanded in CKD are generally capable 
of inducing local and systemic inflammation directly and 
indirectly. For example, Proteobacteria, the gram-negative 
phylum containing both Enterobacteriaceae and Proteobac-
teriaceae can induce inflammatory response by: compromis-
ing the gut mucosal barrier function (increasing gut’s mucus 
permeability [14]), increasing intestinal T helper 17 (Th17) 
cell to T regulatory (Treg) cell ratio [15], and by enabling 
translocation of lipopolysaccharide (LPS) and gut bacterial 
components to the systemic circulation [16].

In addition, the microbial species that are increased 
in CKD produce pro-inflammatory substances including 
p-cresyl sulfate, indoxyl sulfate, trimethylamine N-oxide 
(TMAO) [17, 18], bile acids deoxycholic acid (DCA) and 
lithocholic acid (LCA) [19]; at the same time, acetylcholine 
(Ach) which is an anti-inflammatory neurotransmitter with 
renal protective properties is degraded [20].

Changes in microbiota also involve depletion of protective 
microbial species including bacteria that fortify the gut bar-
rier function [21]; bacteria that produce anti-inflammatory 
and cytoprotective substances such as short-chain fatty acids 
(SCFA) [18], γ-aminobutyric acid (GABA) [22], ACh [20], 
nitric oxide (NO) [23], chenodeoxycholic acid (CDCA), 
and ursodeoxycholic acid (UDCA) [19], vitamin B complex 
[24], peptide YY (PYY), and glucagon-like peptide 1 and 
2 [25]; and finally microbial species capable of stimulating 
the anti-inflammatory vagal system [26] and suppressing the 
mostly pro-inflammatory sympathetic activity by means of 
reducing pain and anxiety [26].

Based on the above observations the CKD-associated 
intestinal epithelial barrier dysfunction [12], accumulation 
of the gut-derived uremic toxins [17, 18], reduction of group 
B vitamins [24], NO deficiency, increased sympathetic and 
depressed vagal activity may be, in part, mediated by the gut 
microbiota dysbiosis [26].

Inflammation plays a central role in the pathogenesis of 
CKD directly by inflicting renal injury and indirectly by pro-
moting the development and progression of the disorders 

that cause CKD including diabetes, hypertension, and pro-
teinuria. Considering the role of gut dysbiosis in promoting 
systemic inflammation, its presence can contribute to the 
development and progression of CKD and its major risk fac-
tors. The relationship between gut microbiota/inflammation 
and the renal system is not one-sided. As the renal func-
tion deteriorates, several changes occur in renal handling 
of water, minerals, metabolic waste products and toxins as 
well as renal endocrine function. Renal failure results in fluid 
overload, accumulation of uremic toxins and waste products, 
hyperphosphatemia, and electrolyte disorders which work 
in concert to promote changes in gut microbiota by several 
mechanisms.

Taken together, the emerging data demonstrate the causal 
interaction between the gut microbial dysbiosis and kidney 
disease in which by promoting chronic inflammation gut 
dysbiosis causes CKD, and by modifying the biochemical 
and biophysical milieu of the gut, CKD transforms the gut 
microbiome to dysbiotic state, thereby creating a vicious 
cycle [27].

Gut microbiota, proteinuria, and chronic 
kidney disease

Proteinuria is a strong risk factor for development and pro-
gression of CKD as proteinuric diseases such as treatment-
resistant nephrotic syndrome can culminate in CKD [28]. 
Gut microbial dysbiosis is associated with a number of pro-
teinuric renal disorders such as IgA nephropathy and lupus 
nephritis [29]. Via controlling Treg activity, the gut micro-
biota can affect the development of idiopathic nephrotic 
syndrome since enhanced Treg activity has been shown to 
alleviate it [15]. In addition, development of renal amyloido-
sis, could be supported by the gut dysbiosis-induced chronic 
inflammation leading to production of serum amyloid A 
(SAA) which is up regulated in chronic inflammatory condi-
tions [30]. Furthermore, gut microbiota can contribute to the 
development of hypertension [6] and diabetes [4, 5]; which 
can both cause proteinuria via renal arterial hyalinosis and 
diabetic nephropathy, respectively. In summary, by several 
mechanisms the gut microbial dysbiosis can contribute to 
the development of proteinuria.

The gut microbiota displays some changes in a variety 
of diseases which can lead to proteinuric kidney disease. 
The most striking change in the gut flora of patients with 
the proteinuric diseases listed in Table 1 is the decline in 
the level of species from the Lactobacillus and Bifidobacte-
rium genera. In fact, these two genera are among the most 
well-known probiotics with numerous useful functions 
such as protection of the gut barrier structure [21], pro-
ductions of SCFA [18], NO [31], vitamin B [24], Ach, and 
GABA [22]; and SCFA-mediated production of incretins 



International Urology and Nephrology 

1 3

glucagon-like peptide-1 (GLP-1), GLP-2, and PYY [25]. 
The above-mentioned functions render these species “anti-
inflammatory bacteria” [24] by protecting the host from 
chronic inflammatory disorders such as autoimmune dis-
eases, hypertension, and diabetes, conditions that can cause 
proteinuric nephropathy. On the other hand, in most of the 
diseases mentioned above, certain genera from the Proteo-
bacteria phylum have been reported to be enriched. Since 
Proteobacteria can induce inflammation by disrupting gut 
barrier function [14–16] and producing pro-inflammatory 
substances, uremic toxins and serotonin [17], increased Pro-
teobacteria population may contribute to the pathogenesis 
of a variety of chronic inflammatory diseases that lead to 
proteinuric nephropathy. However, the patterns of gut dys-
biosis vary in different diseases; for example species from 
the genus Prevotella are increased in hypertension [32] and 
type 2 DM [33] but reduced in CKD [12]. Likewise, the 
levels of some genera such as Prevotella and Clostridium 
display different changes in these diseases. For instance, 
although Prevotella can produce SCFA [18] and therefore 
increase incretin secretion [25] to reduce inflammatory tone 
and insulin resistance, as a gram-negative species, it can 
induce inflammatory response via LPS [34]. Moreover, its 
enrichment in the gut flora is associated with an elevation of 
trimethylamine N-oxide (TMAO) [35] and stearic acid, the 
latter being an important hypertension-related metabolite 
[32]. Similarly, Clostridium which can produce SCFA and 
increase the anti-inflammatory Treg activity [36] can also 
produce uremic toxins [18]. Therefore, some bacteria can 

potentially have both beneficial and harmful effects on the 
host and thus depending on which effects are pronounced, 
they can exert either protective or deleterious impacts on the 
host. Also, as listed in Table 1, composition of the gut flora 
is different in different proteinuric diseases pointing to the 
underlying conditions, as opposed to proteinuria per se, in 
shaping the structure of the gut microbiome. Taken together, 
composition of the gut microbiota is closely associated with 
the renal diseases that cause proteinuria.

Considering that the pro-inflammatory uremic toxins also 
directly damage the kidneys [37, 38] and promote hyper-
tension [39] and insulin resistance [40], it is conceivable 
that hypoalbuminemia may intensify the toxic effects of the 
protein-bound uremic toxins produced by the gut flora. Also, 
with the exception of indole [41], the integrity of the gut 
mucosa could be compromised by the pro-inflammatory pro-
tein-bound uremic toxins especially in their free forms which 
enable them to accumulate in various tissues including the 
gut mucosa. This is exemplified by p-cresol which has detri-
mental effects on the human colonic epithelium [42]. Thus, 
by raising the free fraction of these toxins, heavy proteinuria 
can amplify their damaging effect on various tissues includ-
ing the gut mucosal barrier. Lastly, plasma proteins act as 
the carriers of several hormones, and the plasma level of the 
protein-bound hormones decline in parallel with the plasma 
protein levels in proteinuric diseases. Therefore, losses of the 
protein-bound thyroid hormones in proteinuric diseases can 
promote the development of CKD as well as its risk factors 
and disruption of the gut mucosal barrier function (Table 2).

Table 1  The changes in the gut microbiota in CKD and in various nephropathies

a Since hypertension and diabetes are important causes of renal disease, the gut dysbiosis seen in hypertension and diabetes could be contributors 
for the development of hypertensive and diabetic nephropathy
b Akkermansia was found to be more enriched in patients with type 2 diabetes and multiple type 1 diabetes mellitus (DM)-related antibodies than 
a single antibody

Increased genera Decreased genera

CKD Enterobacteriacece, Clostridia, Bacteroidia, Pseudomon-
adaceae

Bifidobacteriaceae, Lactobacillaceae, Prevotellaceae

IgA nephropathy Enterobacteriaceae, Sutterellaceae, Ruminococcaceae, 
Streptococcaceae, Lachnospiraceae, Eubacteriaceae

Clostridium, Lactobacillus, Enterococcus, Bifidobacte-
rium

Lupus nephritis Lactobacillus [29]
Hypertensive  nephropathya Prevotella, Klebsiella, Porphyromonas, Actinomyces, 

Streptococcus, Turicibacter, S24-7, Veillonellaceae, 
Lactococcus, Coprobacillus

Faecalibacterium, Oscillibacter, Roseburia, Bifidobacte-
rium, Coprococcus, Butyrivibrio, Pseudobutyrivibrio, 
Ruminococcaceae

Diabetic  nephropathya Type 1 DM: Bacteroides, Blautia, Rikenellaceae, Rumi-
nococcus, Streptococcus, Clostridium perfringens, 
Veillonella, Fusobacteria, (Leptotrichia)

Type 2 DM: Escherichia, Prevotella, Clostridium bolt-
eae, Clostridium symbiosum, Clostridium ramosum, 
Clostridium hathewayi, Betaproteobacteria, Desulfo-
vibrio

Type 1 DM: Lactobacillus, Bifidobacterium, Prevotella, 
Staphylococcus, Lachnospiraceae, Veillonellaceae, 
Coprococcus eutactus, Dialister invisus, Roseburia 
faecis, Faecalibacterium prausnitzii, Clostridium 
clostridioforme, Blautia coccoides, Pseudobutyrivi-
brio, Akkermansia  muciniphilab

Type 2 DM: Bifidobacterium, Eubacterium rectale, Fae-
calibacterium, Roseburia intestinalis, Clostridiales, 
Lactobacillus, Akkermansia muciniphilab (Verrucomi-
crobiaceae), Streptococcus
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Gut microbiota and hypertension

Another important risk factor for CKD is hypertension 
which results in renal arteriolar sclerosis and nephrosclero-
sis. Mounting evidence has shown that arterial blood pres-
sure can be affected by the gut microbiota [6]. In fact, a 
causal relationship between gut dysbiosis and hypertension 
has been implied by studies in which transplantation of fecal 
material from hypertensive patients or rats to normotensive 
mice or rats resulted in elevation of blood pressure in nor-
motensive animals [32, 43]. Therefore, hypertension can be 
another pathway through which gut dysbiosis can promote 
CKD development.

In order to explore the potential association of hyperten-
sion with the gut microbiota several studies have compared 
hypertensive patients and animals with their normotensive 
counterparts. In general the overall diversity of the gut flora 
is reduced [32] and the Firmicutes to Bacteroidetes ratio 
is increased in hypertension [44]. Specifically, Prevotella, 
Klebsiella, Desulfovibrio, Porphyromonas, Actinomyces, 
Streptococcus, Turicibacter, Veillonellaceae, Lactococcus, 
Coprobacillus [43] were found to be increased while Faecal-
ibcterium, Oscillibacter, Roseburia, Bifidobacterium, Cop-
rococcus, Clostridium, Butyrivibrio, Pseudobutyrivibrio, 
and Ruminococcaceae [43] were decreased in hypertensive 
subjects. The observed changes in the composition of the 
gut microbiota can, in part, account for the hypertension-
associated increase gut mucosal permeability [45] via: a—
reduction of Clostridium, which by increasing Treg activity 
in colonic mucosa [15] which reduces inflammation and 
protects gut mucosal integrity, b—expansion of some spe-
cies from Proteobacteria (Klebsiella, Desulfovibrio), which 
can intensify gut mucosal barrier dysfunction by amplifying 
inflammatory profile and damaging colonocytes with  H2S 
[34]. Another noteworthy change in the hypertensive gut 
microbiota is the increase in gram-negative species such as 
Prevotella, Klebsiella, Desulfovibrio, and Veillonella which 
can contribute to the pathogenesis of hypertension by pro-
moting LPS-mediated chronic inflammation [34]. On the 
other hand, Bifidobacteria which suppress the intestinal LPS 

levels and protect the gut barrier function [32], are decreased 
in hypertension [46]. In addition, the gut microbiota in 
hypertensive subjects displays a trend towards lower SCFA 
and higher lactate-producing phenotypes [6] which can con-
tribute to elevation of blood pressure since SCFAs have anti-
hypertensive properties [47] whereas lactate is associated 
with hypertension [48]. SCFAs are important anti-hyperten-
sive metabolites not only for being anti-inflammatory [49], 
but also by stimulating release of the incretin GLP-1 [25], 
which has potential anti-hypertensive properties through its 
vasodilatory effects [50]. Furthermore, Bifidobacteria spe-
cies which produce the potent vasodilator, NO, [23], are 
significantly depleted in the gut flora of hypertensive sub-
jects [6]. Moreover, the reduction of Bifidobacteria which 
produce the anti-hypertensive neurotransmitter, GABA 
[22] and expansion of the Proteobacteria which produce the 
pro-hypertensive neurotransmitters noradrenalin (NE) and 
serotonin that contribute to elevation of blood pressure in 
hypertensive population. Lastly, gut dysbiosis can contrib-
ute to hypertension via increased sympathetic activity in 
response to the leaky gut-mediated release of inflammatory 
mediators [15] and diminished production of sympathetic 
inhibitor GABA due to the depletion of Bifidobacteria [22]. 
Therefore, the gut dysbiosis contributes to the development 
of hypertension via inflammatory, metabolic, endocrine, and 
neurological pathways.

Finally, by damaging vessels and reducing collateral for-
mation the combination of diabetes and hypertension can 
work in concert to compromise tissue perfusion [51]. The 
reduction of the intestinal mucosal perfusion can have del-
eterious effects on the gut mucosal barrier and microbiota, 
as seen in intestinal ischemia–reperfusion injury in which 
the gut mucosal integrity is disrupted [52] and gut dysbio-
sis occurs with expansion of Escherichia and the decline of 
Lactobacilli and Lachnospiraceae [53], increased bacterial 
adhesiveness and virulence. Taken together, hypertension 
contributes to the development of CKD and CKD results 
in development and intensification of hypertension; events 
which work in concert to induce gut microbial dysbiosis and 
impair epithelial barrier structure and function (Table 3).

Table 2  The relationship between gut microbiota, proteinuria, and chronic kidney disease

• Via controlling Treg activity gut microbiota can affect the development of idiopathic nephrotic syndrome [Ref. 15]
• Renal amyloidosis, could be supported by the gut dysbiosis-induced chronic inflammation leading to production of serum amyloid A (SAA) 

[Ref. 30]
• In proteinuric diseases, there is decline in the level of beneficial species from the Lactobacillus and Bifidobacterium genera which protects 

epithelial barrier function [Ref. 21]
• Gut microbial dysbiosis is associated with a number of proteinuric renal disorders such as IgA nephropathy and lupus nephritis [Ref. 29]
• Probiotic treatment may decrease protein excretion and attenuated systemic inflammation as evaluated by serum lipopolysaccharide, interleu-

kin-6, and C-reactive protein levels in rats by 5/6 nephrectomy (Nx rats). Histologically, renal sclerosis in Nx rats was restored by Lact treat-
ment. A reduction in the expression of tight junction proteins and the Toll-like receptor 2 (TLR2), a putative Lact receptor, in the colons of Nx 
rats were mitigated by Lactobacillus [Ref. 3]
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Gut microbiota and diabetes

One of the serious complications of diabetes is diabetic 
nephropathy which is the most common cause of CKD 
worldwide. Growing evidence suggests that the gut micro-
biota is an important determinant of the development of dia-
betes. Actually, as supported by fecal transplantation studies, 
alterations of the gut microbiota directly affect the course 
of both type 1 and type 2 diabetes development [54, 55]. 
Therefore, understanding of the role of gut microbiota in 
the pathogenesis of diabetes is essential in developing better 
strategies for the management of diabetes and its complica-
tions including CKD.

The gut dysbiosis seen in type 1 and type 2 diabetes dis-
play some differences, yet there are important disturbances 
in the gut microbiota and of mucosa which are shared by 
both diseases. To begin with, the gut mucosal barrier func-
tion is compromised in both type 1 and type 2 diabetes [56, 
57]. Interestingly, the abundance of many microbial gen-
era related to the gut mucosal barrier function is changed 
in these diseases such that Lactobacilli, Bifidobacteria, 
Pseudobutyrivibrio, Roseburia, and Faecalibacterium are 
reduced while Clostridium perfringens, Bacteroides spp., 
Prevotella, Betaproteobacteria, and Desulfovibrio are 
enriched [5, 33]. Probiotic bacteria such as Lactobacilli 
and Bifidobacteria which are depressed in diabetes can 
strengthen the gut mucosal barrier function by stabilizing 
the tight junctions between the intestinal epithelial cells 
and promoting the secretions of mucus, secretory immu-
noglobulin A (sIgA), the antimicrobial protein β-defensin 
[21], and GLP-2 [18], an incretin with trophic effects on 
the gut mucosa [57]. In addition, the other genera that are 
decreased in diabetes either directly (Pseudobutyrivibrio 
[58], Roseburia, Faecalibacterium [59] or indirectly (Lac-
tobacilli, Bifidobacteria [60]) produce butyrate, a SCFA 
which contributes to the gut barrier integrity by “feed-
ing” the colonocytes [61], promoting tight junction assem-
bly [62], and enhancing mucus production [63]. On the 
other hand, the species enriched in diabetes are mucolytic 

bacteria such as C. perfringens and species from Desulfo-
vibrio, Bacteroides [64], and Prevotella [65]. Clostridium 
perfringens damages the gut mucosa via its toxins [66] and 
as a member of the Proteobacteria phylum, Betaproteobac-
teria may increase mucus barrier permeability [14]. Gut 
barrier dysfunction is an important factor in the develop-
ment of type 1 and type 2 diabetes by enabling the leakage 
of pro-inflammatory bacterial products such as LPS, which 
cause insulin resistance [67] and accelerate progression 
of kidney disease in diabetic patients [68]. Also, the gut 
dysbiosis seen in type 1 diabetes includes an increase in 
population of Leptotrichia goodfellowii [69], which pos-
sesses an antigen that provokes the  CD8+ T cells to attack 
pancreatic islets through molecular mimicry [69] and 
accelerate development of type 1 diabetes by increasing 
the exposure of the  CD8+T cells to the aforementioned 
antigen. In addition, the gut microbial dysbiosis seen in 
diabetes can affect Th cell differentiation. For instance 
some species from Lactobacilli, Bifidobacterium, Clostrid-
ium spp. [70], Bacteroides fragilis [71], and butyrate-
producing bacteria [72] can promote Treg differentiation; 
and Lactobacilli and Bifidobacteria may be able to induce 
mucosal-associated invariant T (MAIT) cells via vitamin 
B production [73–75]. Treg and MAIT cells have known 
anti-inflammatory properties [76]; in fact, Treg cells are 
reduced in both type 1 and type 2 diabetes [77, 78]. The 
reduction in the Treg activity in diabetic patients can be, in 
part, mediated by the decrease in population of most of the 
Treg-supporter species in the gut flora. Besides its inter-
actions with the gut barrier and the immune system, the 
gut microbiota can affect the course of the development 
and progression of diabetes by altering the gut endocrine 
function and the composition of metabolites produced by 
microbial flora. Firstly, the SCFAs, which are produced 
by some important probiotic bacteria such as Lactobacilli, 
Bifidobacteria, and the butyrate-producing species [18, 31, 
58, 59] can protect against type 1 diabetes [79] possibly 
through inducing apoptosis in the macrophages infiltrating 
the pancreatic islets [80]. In addition they can alleviate 

Table 3  The relationship between gut microbiota and hypertension

• Mounting evidence has shown that arterial blood pressure can be affected by the gut microbiota due to lower short-chain fatty acids and higher 
lactate-producing phenotypes [Ref. 6]

• Studies showed that transplantation of fecal material from hypertensive patients or rats to normotensive mice or rats resulted in elevation of 
blood pressure in normotensive animals [Refs. 32, 33]

• Firmicutes to Bacteroidetes ratio is increased in hypertension [Ref. 44]
• Prevotella, Klebsiella, Desulfovibrio, Porphyromonas, Actinomyces, Streptococcus, Turicibacter, Veillonellaceae, Lactococcus, Coprobacillus 

are usually increased while Faecalibcterium, Oscillibacter, Roseburia, Bifidobacterium, Coprococcus, Clostridium, Butyrivibrio, Pseudobu-
tyrivibrio, and Ruminococcaceae were decreased in hypertensive subjects [Ref. 43]

• The observed changes in the composition of the gut microbiata can, in part, account for the hypertension-associated increase gut mucosal 
permeability via: a- reduction of Clostridium, which by increasing Treg activity in colonic mucosa [Refs. 15, 45]

• Gut dysbiosis can contribute to hypertension via increased sympathetic activity in response to the leaky gut-mediated release of inflammatory 
mediators [Ref. 15]
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progression of type 2 diabetes by directly inducing pancre-
atic insulin secretion [81] and reducing insulin resistance 
[82] while increasing β-cell survival [83]. Also, SCFAs 
induce the secretion of GLP-1 [84], which can improve 
blood glucose levels in type 1 diabetes [85], and decrease 
insulin resistance [86] while increasing insulin secretion 
[87] in type 2 diabetes. Thus, the extensively documented 
depletion of the SCFA-producing species in both type 1 
and type 2 diabetes [33] results in the loss of the afore-
mentioned beneficial effects of the SCFAs and incretins. 
In addition, Lactobacilli and Bifidobacteria can produce 
several other metabolites and neurotransmitters that reduce 
insulin resistance such as CDCA [19], group B vitamins 
[73], GABA [22], ACh [20], and NO [23], thereby exert-
ing beneficial effects especially on type 2 diabetes. Also, 
having anti-inflammatory [88] and immunomodulatory 
properties [89], both GABA [89] and riboflavin [88] can 
support β cell survival; being especially valuable for 
type 1 diabetes. In fact, a GABA-producing Lactobacil-
lus strain has been shown to reduce hyperglycemia in rats 
with streptozotocin-induced diabetes [90]. Moreover, the 
vascular and other complications of diabetes can be allevi-
ated by NO [91] and group B vitamins [92], even though 
not all studies confirm the vasoprotective effects of folate 
in diabetic patients [93]. The farnesoid X receptor (FXR) 
has been shown to have protective effects against diabetic 
nephropathy [94], and as the most potent natural ligand 
of FXR, CDCA can have important roles in the preven-
tion of diabetic nephropathy [95]. However, since most 
probiotic bacteria are suppressed in the gut flora of dia-
betic patients [57], the loss of beneficial effects of these 
metabolites and neurotransmitters, probably contributes to 
the development of diabetes. Additionally, by intensifying 
the gut’s mucosal inflammation, the reduction of probiotic 
species [33] can increase sympathetic activity [96], which 
can complicate the glycemic control in diabetic patients 
[97]. Taken together, through multiple mechanisms the gut 

microbiota can influence the development and progression 
of both type 1 and type 2 diabetes.

Lastly, diabetes can intensify the gut microbial dysbiosis 
and mucosal barrier dysfunction since hyperglycemia can 
alter composition of the gut flora by suppressing Lactoba-
cilli [98]. This is compounded by subsequent development 
of eNOS deficiency [99] and the loss of interstitial cells of 
Cajal (ICCs) [100], resulting in stasis and bacterial over-
growth in the intestines of diabetic subjects [101]. Also, the 
development of diabetic microangiopathy can further com-
promise intestinal mucosal perfusion, thereby perturbing 
intestinal barrier function [52], and amplifying gut microbial 
dysbiosis [102] as observed in ischemia–reperfusion injury. 
The above information demonstrates the complex bidirec-
tional relationship between the gut microbiota and the meta-
bolic/endocrine system and their role in the pathogenesis of 
diabetes and diabetic nephropathy (Table 4).

Animal models

Up to know, we have discussed various pathogenetic mecha-
nisms regarding microbiota, CKD, diabetes and hyperten-
sion. Recently animal studies have also confirmed these 
mechanisms were in fact true. Sun et al. showed that in a 
mouse model of obesity, high-fat diet (HFD) HFD-induced 
obesity leads to elevations in gut microbiota-generated 
metabolite TMAO in the circulation, which contributes 
to renal interstitial fibrosis and dysfunction by promoting 
renal oxidative stress and inflammation [103]. In another 
animal study, Wu et al. showed that fecal metabolites were 
significantly altered in rats with uremia; these changes were 
partially reversed by Lactobacillus [104].

Yoshifuji et al. demonstrated that rats treated with Lac-
tobacillus showed decreased protein excretion attenuated 
systemic inflammation as evaluated by serum lipopolysac-
charide, interleukin-6 and C-reactive protein levels in rats 

Table 4  The relationship between gut microbiota and diabetes

• Fecal transplantation studies have shown that alterations of the gut microbiota directly affect the course of both type 1 and type 2 diabetes 
development [Refs. 54, 55]

• Gut mucosal barrier function is compromised in both type 1 and type 2 diabetes [Refs. 56, 57]
• In diabetic conditions Lactobacilli, Bifidobacteria, Pseudobutyrivibrio, Roseburia, and Faecalibacterium are reduced while Clostridium per-

fringens, Bacteroides spp., Prevotella, Betaproteobacteria, and Desulfovibrio are enriched [Refs. 5, 33]
• Immune system dysregulation due to gut dysbiosis may be observed during diabetes [Refs. 69, 72–75]
• Glucagon-like peptide—which has a protective role in gut mucosal barrier—secretion decreases in diabetes [Ref. 84]
• Diabetes can intensify the gut microbial dysbiosis and mucosal barrier dysfunction since hyperglycemia can alter composition of the gut flora 

by suppressing Lactobacilli [Ref. 98]
• Probiotic treatment such as with Lactobacillus casei CCFM419 had a positive effect on insulin resistance, increased the level of short-chain 

fatty acids and increased the abundance of butyrate-producing bacteria, such as Allobaculum and Bacteriodes [Ref. 107]
• Probiotic treatment such as with Lactobacillus rhamnosus NCDC 17 improved oral glucose tolerance test, biochemical parameters (fasting 

blood glucose, plasma insulin, glycosylated hemoglobin, free fatty acids, triglycerides, total cholesterol, low-density lipoprotein cholesterol, 
and high-density lipoprotein cholesterol) and oxidative stress [Ref. 108]
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by 5/6 nephrectomy (Nx rats). Histologically, renal sclerosis 
in Nx rats was restored by Lact treatment. A reduction in 
the expression of tight junction proteins and the Toll-like 
receptor 2 (TLR2), a putative Lact receptor, in the colons of 
Nx rats were mitigated by Lactobacillus [3]. Marques et al. 
evaluated the effect of a high-fiber diet and supplementation 
with the short-chain fatty acid acetate on the gut microbiota 
and the prevention of cardiovascular disease in sham and 
mineralocorticoid-excess-treated mice with a control diet, 
high-fiber diet, or acetate supplementation. They found 
that high consumption of fiber modified the gut microbiota 
populations and increased the abundance of acetate-pro-
ducing bacteria independently of mineralocorticoid excess. 
Both fiber and acetate decreased gut dysbiosis, measured 
by the ratio of Firmicutes to Bacteroidetes, and increased 
the prevalence of Bacteroides acidifaciens. Compared with 
mineralocorticoid-excess mice fed a control diet, both high-
fiber diet and acetate supplementation significantly reduced 
systolic and diastolic blood pressures, cardiac fibrosis, and 
left ventricular hypertrophy. Acetate had similar effects and 
markedly reduced renal fibrosis [105].

Whether altered GIS permeability by altered microbi-
ata is an unknown issue, a recent study by Stewart et al. 
showed that hypertension changes the mechanical changes 
of rat gut. In their study, they evaluated the hypothesis that 
hypertension increases fibrosis and thus mechanical prop-
erties of the gut. A custom indentation system was used to 
test colon samples from Wistar Kyoto (WKY) normoten-
sive rats and spontaneously hypertensive rats (SHR). They 
observed that SHR proximal colon has a mean steady-state 
modulus almost 3 times greater than WKY control rat colon 
(5.11 ± 1.58 and 18.17 ± 11.45 kPa, respectively). These 
increases were associated with increase in vascular smooth 
muscle cells layer and collagen deposition in the intestinal 
wall in the SHR [106].

Li et al. investigated the effect of Lactobacillus casei 
CCFM419 on insulin resistance and gut microbiota in type 
2 diabetic mice. They showed that revealed that L. casei 
CCFM419 had a positive effect on insulin resistance. Fur-
thermore, treatment with L. casei CCFM419 recovered the 
level of SCFA and increased the abundance of butyrate-pro-
ducing bacteria, such as Allobaculum and Bacteriodes [107].

Singh et al. in a rat model also demonstrated that Lacto-
bacillus rhamnosus NCDC 17 improved oral glucose toler-
ance test, biochemical parameters (fasting blood glucose, 
plasma insulin, glycosylated hemoglobin, free fatty acids, 
triglycerides, total cholesterol, low-density lipoprotein cho-
lesterol and high-density lipoprotein cholesterol), oxidative 
stress (thiobarbituric acid reactive substance and activities of 
catalase, superoxide dismutase, and glutathione peroxidase 
in blood and liver), bifidobacteria and lactobacilli in cecum, 
expression of glucagon-like peptide-1 producing genes in 
cecum, and adiponectin in epididymal fat, while decreased 

propionate proportions (%) in caecum, and expression of 
tumor necrosis factor-α and interleukin-6 in epididymal fat 
of diabetic rats as compared to diabetes control group [108].

Human studies

In one open label controlled trial, 20 peritoneal dialysis 
(PD) patients habitually consuming a high AGE diet were 
recruited and randomized into either continuing the same 
diet (HAGE, n = 10) or a one-month dietary AGE restric-
tion (LAGE, n = 10). At baseline, cohort exhibited a lower 
relative abundance of Bacteroides and Alistipes genus and a 
higher abundance of Prevotella genus when compared to the 
published data of healthy population. Dietary AGE restric-
tion altered the bacterial gut microbiota with a significant 
reduction in Prevotella copri and Bifidobacterium anima-
lis relative abundance and increased Alistipes indistinctus, 
Clostridium citroniae, Clostridium hathewayi, and Rumino-
coccus gauvreauii relative abundance [109].

Rossi et al. evaluated whether synbiotic (pre- and pro-
biotic) therapy alters the gut microbiota and reduces 
serum concentrations of microbiome-generated uremic 
toxins, indoxyl sulfate (IS) and p-cresyl sulfate (PCS), 
in patients with CKD. Of 37 individuals randomized 
(age = 69 ± 10 years old; 57% men; eGFR = 24 ± 8 ml/min 
per 1.73 m2), 31 completed the study. Synbiotic therapy did 
not significantly reduce serum IS but did significantly reduce 
serum PCS Synbiotics also altered the stool microbiome, 
particularly with enrichment of Bifidobacterium and deple-
tion of Ruminococcaceae [110].

Fangmann et al. involved more than 500 human predia-
betes and type 2 diabetes. Subjects with different metabolic 
phenotypes regarding their niacin [nicotinic acid (NA) and 
nicotinamide (NAM)] status and their gut microbiome. In 
addition, NA and NAM delayed-release microcapsules were 
engineered and examined in vitro and in vivo in two human 
intervention studies (bioavailability study and proof-of-
concept/safety study). They showed that na and nam micro-
capsules produced a significant increase in the abundance 
of Bacteroidetes. In the absence of systemic side effects, 
these favorable microbiome changes induced by microen-
capsulated delayed-release NA were associated with an 
improvement of biomarkers for systemic insulin sensitivity 
and metabolic inflammation. Authors suggest that targeted 
microbiome intervention by delayed-release NA might rep-
resent a future therapeutic option for prediabetes and type 
2 diabetes [111].

Soleimani et al. determined the effects of probiotic sup-
plementation on glycemic control, lipid concentrations, bio-
markers of inflammation and oxidative stress in 60 diabetic 
patients on hemodialysis in a parallel randomized double-
blind placebo-controlled clinical trial Subsequently, they 
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were randomly divided into two groups to take either a cap-
sule containing the probiotics Lactobacillus acidophilus, 
Lactobacillus casei and Bifidobacterium bifidum or placebo 
for 12 weeks. After the 12 weeks, analysis of patients who 
received probiotic supplements compared with the placebo 
showed they had significantly decreased fasting plasma 
glucose, serum insulin, homeostasis model of assessment-
estimated insulin resistance, homeostasis model of assess-
ment-estimated beta-cell function, Additionally, compared 
with the placebo, probiotic supplementation resulted in sig-
nificant reductions in serum high-sensitivity C-reactive pro-
tein plasma malondialdehyde subjective global assessment 
scores, and a significant increase in plasma total antioxidant 
capacity [112].

Balfegó et al. in a pilot randomized trial investigated the 
effects of sardine-enriched diet on metabolic control, inflam-
mation and gut microbiota in drug-naïve patients with type 
2 diabetes: a pilot randomized trial. 35 drug-naïve patients 
with type 2 diabetes were randomized to follow either a type 
2 diabetes standard diet (control group: CG), or a standard 
diet enriched with 100 g of sardines 5 days a week (sar-
dine group: SG) for 6 months. There were no significant 
differences in glycemic control between groups at the end 
of the study. Both dietary interventions decreased phylum 
Firmicutes and increased E. coli concentrations at the end of 
the study from baseline, whereas SG decreased Firmicutes/
Bacteroidetes ratio and increased Bacteroides–Prevotella 
compared to baseline [113].

Simon et al. performed a prospective, double-blind, ran-
domized trial performed in 21 glucose-tolerant humans. 
Participants ingested 10(10) b.i.d. L. reuteri SD5865 or 
placebo over 4 weeks. In glucose-tolerant volunteers, daily 
administration of L. reuteri SD5865 increased glucose-stim-
ulated GLP-1 and GLP-2 release by 76% (P < 0.01) and 43% 
(P < 0.01), respectively, compared with placebo, along with 
49% higher insulin (P < 0.05) and 55% higher C-peptide 
secretion (P < 0.05) [114].

Modifying the gut microbiota to prevent/
treat CKD and its risk factors

Given that in several ways the gut microbiota can influence 
the development of CKD and its major risk factors includ-
ing inflammation, proteinuria, hypertension, and diabetes, 
it is reasonable to consider the gut microbiota as a target for 
prevention and treatment of these diseases. The strategies 
in the “engineering” of the gut microbiota can be grouped 
primarily into lifestyle changes and medications.

The lifestyle modification is an effective way to mold the 
gut microbiota into a healthier phenotype. To begin with, a 
fruit/vegetable-based diet enriched with prebiotics instead 
of a protein and animal fat-rich diet supports the growth of 

Prevotella, Lactobacilli, and Bifidobacteria [115, 116] while 
suppressing Bacteroides, Enterobacteria, and Clostridia 
[116, 117]. In fact consumption of a diet enriched with 
amylose, a fermentable and indigestible complex carbohy-
drate has been shown to markedly attenuate inflammation 
and oxidative stress, reduce renal fibrosis, retard progres-
sion of kidney disease, improve gut microbial dysbiosis and 
ameliorate metabolic disorders in CKD animals [118, 119]. 
In addition meeting the body’s protein needs from plants 
seems healthier since a plant-based diet contains less cho-
line and l-carnitine which are the precursors of the uremic 
toxin TMAO than animal-based diet [120]. In fact, dietary 
fibers and prebiotics have been shown to decrease inflamma-
tion and mortality in CKD patients [121] while retarding the 
decline in glomerular filtration rate [122], reducing insulin 
resistance [123], postprandial glycemia [124], blood lipid 
levels [125], and hypertension [126, 127]. Also, supplement-
ing the diet with l-arginine, vitamin D, polyphenols, zinc, 
and iron strengthen the gut barrier [128] and enrich benefi-
cial bacteria [129] while fish oil and plant-derived essential 
lipids suppress the pathogenic species [130]. Additionally, 
physical activity promotes a healthier gut flora by increasing 
the growth of beneficial bacteria and overall diversity of the 
gut microbiota [131] which can partly account for the overall 
health benefits of physical activity.

In addition to the diet and physical activity, use of vari-
ous probiotics may re-shape the gut microbiota. First of 
all, probiotics such as Lactobacilli and Bifidobacteria can 
be effective in making the gut flora healthier by support-
ing the growth of other beneficial species including SCFA-
producing bacteria [60]. In fact, although not all [132], sev-
eral studies have reported the anti-inflammatory effects of 
probiotic and symbiotic bacteria in different patient popu-
lations [133]. Also, probiotics have been shown to lower 
blood urea nitrogen (BUN) level [134, 135] and improve the 
kidney function in diabetic patients [136], reduce arterial 
pressure [137], the risk of proteinuric kidney disease [138], 
and type 1 diabetes [70, 139], in the general population and 
mitigate the metabolic derangements in patients with type 
2 diabetes [140]. Alternatives to the mainstream probiotic 
species are the archaea Methanomassiliicoccus luminyensis 
B10, which degrades TMAO [141], and the genetically engi-
neered “smart bacteria”, which have been shown to reduce 
BUN in uremic rats [142]. Other than live microorganisms, 
lubiprostone and the anti-diabetics liraglutide, saxagliptin, 
and metformin as well as some traditional medicines can 
promote the growth of beneficial genera including Lactoba-
cilli, Eubacterium, Prevotella, and Akkermansia muciniphila 
[102] which is an anti-inflammatory species that has been 
shown to improve the metabolic profile in mice [143] while 
decreasing the level of Clostridium spp. [144]. and Firmi-
cutes [145]. In general; the traditional medicines rhubarb 
(emodin) [144] and lubipristone [146] are able to reduce 
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serum concentrations of uremic toxin. Moreover, besides 
the gut microbiota itself, their toxic by-products can be tar-
geted via adsorption of uremic toxins and LPS. In fact AST-
120 [147] and sevelamer [148] have been shown to reduce 
plasma levels of LPS and indoxyl sulfate respectively in 
hemodialysis [148] and CKD [147] patients. Also, there are 
strategies to inhibit production of indoxyl sulfate and TMAO 
by blocking the hepatic sulfation of indoxyl [149] and using 
the trimethylamine (TMA) inhibitor [150]. Therefore, the 
gut microbiota and its toxic products can be modified by 
certain dietary and therapeutic interventions (Table 5).

Conclusion

CKD development is a multifaceted process which involves 
an intricate bidirectional crosstalk between the intestines and 
the renal, metabolic, endocrine, and cardiovascular systems. 
The gut microbiota can exert protective or damaging impact 
on the kidney either directly or indirectly by modulating 
the major risk factors for development and progression of 
CKD including inflammation, diabetes, hypertension, and 
proteinuria. Given the important role of the gut microbiota 
in the development and progression of CKD and its main 
underlying causes, strategies aimed at improving the com-
position of the gut microbiota is an appealing approach for 
their prevention and treatment. Accordingly deciphering the 
cross talk between the gut microbiota and the renal, cardio-
vascular, endocrine, and metabolic systems is essential for 
developing novel strategies for prevention and treatment of 
chronic disorders such as CKD and its risk factors.
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