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A road surface reconstruction 
dataset for autonomous driving
Tong Zhao1, Yichen Xie   2, Mingyu Ding   2, Lei Yang   1, Masayoshi Tomizuka2 &  
Yintao Wei   1 ✉

Recent developments in intelligent robot systems, especially autonomous vehicles, put forward 
higher requirements for safety and comfort. Road conditions are crucial factors affecting the 
comprehensive performance of ground vehicles. Nonetheless, existing environment perception 
datasets for autonomous driving lack attention to road surface areas. In this paper, we introduce the 
road surface reconstruction dataset, providing multi-modal, high-resolution, and high-precision data 
collected by real-vehicle platform in diverse driving conditions. It covers common road types containing 
approximately 16,000 pairs of stereo images, point clouds, and ground-truth depth/disparity maps, with 
accurate data processing pipelines to ensure its quality. Preliminary evaluations reveal the effectiveness 
of our dataset and the challenge of the task, underscoring substantial opportunities of it as a valuable 
resource for advancing computer vision techniques. The reconstructed road structure and texture 
contribute to the analysis and prediction of vehicle responses for motion planning and control systems.

Background & Summary
Environment perception lays the foundation for motion planning and control systems of unmanned robots and 
ground vehicles1,2. The progress of autonomous vehicle (AV) perception is always promoted by the emergence 
of large-scale datasets. Diverse multi-modal datasets have been published in the past decade, such as KITTI3, 
Argoverse4, and nuScenes5. The 3D surroundings and semantic information can be recovered by advanced deep 
learning models based on multi-modal data6,7.

Despite the remarkable strides on both datasets and algorithms8–10, they typically focus on above-road traf-
fic perception by segmentation, object detection, and tracking. The road surface conditions, particularly road 
friction and unevenness parameters, are frequently overlooked or simplistically treated as constant constraints. 
According to the U.S. Federal Highway Administration (FHWA), in 2020 there are 32.11% unpaved roads in 
urban and rural areas11, which account for up to 20% of fatalities in some states12. About 15% of all road crashes 
are caused by low road friction such as wet pavement13. The road surface, being the sole interface with which 
vehicles establish physical contact, essentially determines the safety and comfort boundaries of vehicle dynam-
ics14–16. The precision and performance of control systems are inherently limited without the knowledge of road 
surface. Therefore, besides traffic environment understanding, road surface perception remains a critical bottle-
neck in ensuring overall AVs performance.

Road reconstruction, aiming at recovering fine-grained road profile and texture with camera or LiDAR sen-
sors, is an emerging topic in the technical stacks of AVs17,18. It significantly benefits predicting vehicle response 
in advance thus enabling proactive decisions to avoid potential safety risks19–21. Although many reconstruction 
research with available datasets have been reported22,23, the accuracy and fineness are insufficient for real-vehicle 
applications as the datasets provide sparse information for road surfaces. First, images in these datasets hold 
small areas for road surface, leaving low definition especially at far distances due to the perspective effect24. 
Then, neither accuracy nor density of LiDAR labels is adequate. Unlike traffic objects such as pedestrians and 
vehicles with large scale, road unevenness like rocks and cracks generally have small amplitudes25. Most datasets 
utilize LiDAR sensors with accuracy of ±3 cm, which is incapable of capturing accurate road profile variations. 
Furthermore, existing datasets are generally captured in cities with structured roads, whose scenario coverage is 
insufficient. Recovering detailed road profiles from these datasets is not promising.

Above all, there are hardly unified and comprehensive datasets to develop and evaluate road reconstruction 
applications. To solve the problems and fill this gap, we transfer the perception perspective from traffic scenar-
ios to roads. This work presents a road surface reconstruction dataset named RSRD26, which to the best of our 
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knowledge, is the first large-scale and real-world dataset special for road surface reconstruction. Note that 63 
point cloud frames in this dataset are utilized in our previous work27, which focus on point cloud segmentation. 
None of the rest data in this dataset has been publicly reported.

Figure 1 shows the schematic overview and data samples of this study. For real-vehicle data acquisition, 
we build a hardware platform containing stereo camera, LiDAR, IMU, and RTK sensors. Both the camera and 
LiDAR concentrate on forward road surface rather than the whole traffic surrounding. Fine road textures and 
dense road point clouds are retained. Experiments are conducted in urban and rural areas covering diverse road 
surface conditions. Raw data undergoes calibration, rectification, motion compensation, and fusion procedures 
to create the RSRD. It outperforms the other datasets by providing about 16,000 pairs of high-resolution and 
high-accuracy road stereo images, point clouds, ground-truth depth/disparity maps, and vehicle motion infor-
mation. Our RSRD can serve as an effective benchmark for extensive tasks encompassing vision or LiDAR-based 
reconstruction, localization, and mapping.

Our dataset represents a pioneering contribution toward promoting autonomous driving by road surface 
reconstruction. It may contribute to both research and applications in terms of (i) developing universal 3D 
vision methods like monocular depth estimation, stereo matching, and multi-view stereo; (ii) exploring point 
cloud processing and motion estimation algorithms for robots and vehicles; (iii) estimating road unevenness 
and friction from reconstructed road profile and texture thus benefiting vehicle safety and comfort control sys-
tems; (iv) road crack monitoring for pavement maintenance.

Methods
In this section, we comprehensively describe the methodology utilized to build this dataset, including data acqui-
sition platform, experiment design, data pre-processing and post-processing pipelines for multi-modal data.

Hardware platform.  Figure 2 shows the developed hardware platform, while Fig. 3 shows the sensor spec-
ifications and the corresponding data processing methods. Unlike the common sensor installation, the suit is 
mounted on the bonnet with a 17° pitch angle for prototype purposes. The perspectives of camera and LiDAR 
sensors focus more on the road area rather than the whole surrounding. The suit consists of a 32-line LiDAR, 
two cameras, a IMU, and a RTK system. The typical accuracy and precision of the LiDAR are ± 1 cm and 0.5 cm, 
respectively, which are higher than most of these adopted in existing datasets. It can capture mild road undula-
tions and damages, ensuring high-precision road perception. Since we consider only the road surface area, the 
horizontal viewing angle of the mechanical rotating LiDAR is set to 100°.

Fig. 1  Schematic overview of the study.

Fig. 2  An illustration of the hardware platform.
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The cameras generate clear and sharp images with dynamic range up to 105 dB, guaranteeing imaging quality 
in severe brightness changes. It has inside algorithms that prevent ghost blur in multi-exposure HDR imaging. 
The two cameras are fixed by a designed rigid holder with 12 cm baseline. The road preview distances of the 
cameras are about 14 m. The IMU and the RTK antenna are placed near the LiDAR to measure its orientation 
and position. We established a temporary fixed basement to achieve more stable and reliable localization results. 
The position and pose measurements are utilized in the following multi-frame point cloud fusion. The cameras 
and LiDAR run at 5 Hz, so the LiDAR can acquire more points in one frame. The IMU collects orientation data 
at 400 Hz, while 10 Hz as for the RTK. All the sensors are hardware-synchronized by the Pulse Per Second (PPS) 
from GNSS. The cameras start exposure when the LiDAR exactly rotates to the forward position. All the data 
samples have timestamps in UTC format. The sensors are integrated with the aluminum profile framework and 
tightly fixed to ensure a rigid connection.

The sensors are calibrated separately to ensure comprehensive accuracy. The stereo camera and the 
camera-LiDAR extrinsic parameters are calibrated with high-precision checkerboards. Specifically, the two cam-
eras are first calibrated using a checkerboard with 12*9 square grids each of 2 cm size. Camera intrinsic parame-
ter, lens distortion coefficients, rotation and translation matrices between the two cameras are derived. We utilize 
the Stereo Camera Calibrator in Matlab (https://www.mathworks.com/help/vision/camera-calibration.html)  
to achieve this, which implements the calibration method in28. The extrinsic parameter between left camera 
and LiDAR is calibrated statically with another checkerboard with 6*7 square grids each of 8 cm. We adopt the 
Lidar Camera Calibrator (https://www.mathworks.com/help/lidar/lidarcameracalibration.html) to calculate the 
calibration parameter. The overall re-projection error is smaller than 1 pixel.

Experiment and data collection.  Experiments are conducted from March to April, 2023 in Beijing and 
Qingdao, China. Driving on uneven roads results in severe vibration of the vehicle body. Therefore, the vehicle 
velocity is limited to under 40 km/h to prevent image motion blur and achieve denser road scan. Raw data is 
collected on concrete and asphalt roads in urban and rural areas with various uneven conditions, covering about 
30 km of roads. We specially pick road segments with representative characteristics like bumps, potholes, con-
tinuously uneven surfaces, and texture-less areas. The acquired data covers common conditions for passenger 
vehicles, providing a valuable benchmark to dive into practical road image patterns.

The sensors are connected to a IPC running Python environment. Sensor working conditions and data flow 
are managed and collected by a script, where each sensor corresponds to an independent process. The two 
cameras, simultaneously triggered by the 5 Hz PPS, transmit YUV image data by USB protocol. The left and 
right images are compressed and saved in .jpg format with saving quality of 100. The LiDAR data is delivered by 
Ethernet protocol, which are then decoded to point cloud with the provided software kit. Frames including xyz 
coordinate values are saved in .pcd format. Each point has its timestamp at micro-second precision, which can 
be synchronized with other measured data. The IMU measures the roll and pitch angles of ego motion, which 
are sent to the host machine by CAN bus. The RTK module outputs longitude, latitude, altitude (LLA), heading 
(i.e., yaw) and velocity information. All the raw orientation, location, and velocity signals along with timestamps 
are saved in.txt files.

Motion information processing.  Motion information is essential for sequence-based applications includ-
ing the point cloud fusion below. Positions originally measured by RTK module include LLA in WGS84 coor-
dinate. The longitude and latitude are presented in ddd.ddddddd° format. The altitude is the height over mean 
sea level in mm unit. The LLA can be converted into relative translation in the local East-North-Up (ENU) 
frame considering the earth geometry model. The raw pose signals are transformed to the LiDAR coordinate, 

Fig. 3  Sensor specifications and data processing.
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i.e., describing LiDAR’s rotation w.r.t. the local ENU coordinate. The definition of heading angle in our settings 
is: 0° when the vehicle faces south, while increase to 360° when rotating counterclockwise from bird’s eye view. 
The pitch and roll are rotation angles w.r.t the X and Y axes respectively, obeying the right-hand rule. The rotation 
sequence is yaw-pitch-roll in intrinsic rotations (rotated axis). The corresponding pose of the cameras can also be 
derived with the LiDRA-camera extrinsic. The horizontal velocity values are also provided in the local East-North 
coordinate.

Image rectification and point cloud fusion.  For eliminating the image distortion caused by imperfect 
installation and lens, the stereo images are rectified using the OpenCV functions (https://docs.opencv.org/4.2.0/
d9/d0c/group__calib3d.html). After rectification, the corresponding point in one image can be found on the same 
row of another image. The column difference of corresponding pixels is defined as disparity, which is the target 
of stereo matching.

The single-frame LiDAR point cloud is still sparse, making fine-grained reconstruction challenging. 
Multi-frame fusion is required to accumulate nearby points29. We give a general description here as the detailed 
theoretical deduction is introduced in our previous work27. First, the points in nearby 46 frames are aligned 
to the same origin with the motion information, which is actually the motion compensation. Specifically, the 
translation and pose variation in the local ENU coordinate relative to the origin are interpolated for all points 
to be fused, after which the points are compensated and transformed into the original LiDAR coordinate. Then, 
the Iterative Closest Point (ICP) registration algorithm and its improved forms30 are utilized to further refine 
the fusion. The earlier and later frames are registered to the origin frame. To avoid extra noise and guarantee 
the dataset quality, we manually fine-tune the ICP hyper-parameters by grid-search for every sample and pick 
the one with the highest alignment accuracy. Note that the position accuracy of RTK may decrease due to the 
multi-path effect. Therefore, the point cloud fusion above is implemented only to frame segments with 1.4 cm 
localization precision.

Figure 4 shows the fused and single-frame point clouds projected onto images. The point cloud density is 
significantly promoted after fusion, making it superior for supervised learning requiring ground-truth labels. 
The average alignment errors in the road surface’s horizontal and vertical directions are bounded by ±1.2 cm. 
This error level guarantees the preservation of detailed road surface unevenness such as slight cracks and rocks.

Ground-truth labels.  Supervised learning requires massive data with ground-truth labels to fit models. 
Since this dataset emphasizes the reconstruction of road surface, we provide road profile geometry labels con-
verted from point clouds. We do not offer semantic annotations like segmentation masks and detection bounding 
boxes, as they are inappropriate for this task. Practical road conditions are variable and therefore, in most cases, 
it is hard to clearly distinguish the foreground and background. Road unevenness like cracks and continuously 
uneven surfaces have no regular patterns or shapes, while segmentation or detection are insufficient to describe 
the complicated road profiles.

To generate the ground-truth depth maps, the road surface point clouds are first projected onto the rectified 
left image plane by using the LiDAR-camera extrinsic, while only the points within camera’s perspective are pre-
served. The z coordinate values are the depth of corresponding pixels. Depth maps with the same resolution (i.e., 
1920*1080) are obtained, which serve as labels for methods like monocular depth estimation, structure from 
motion, and multi-view stereo. For stereo matching algorithms, ground-truth disparity d is derived according to 
the relationship d = f·b/z, where z is the depth value, f and b are the camera focal length in pixel unit and stereo 
baseline, respectively. The preview distance of the cameras is about 14 m, resulting in disparity values between 
20–140 for the full-resolution stereo images.

Methods for technical validation.  For technical validation of this RSRD, we perform two typical com-
puter vision tasks to reconstruct road surface: monocular depth estimation and stereo matching. For prototype 
purpose, we adopt the full-resolution (1920*1080) images and dense label maps to test the usability and reliability 
of the dataset.

Monocular depth estimation.  We adopt seven depth estimation algorithms that ever achieved the 
state-of-the-art (SOTA) performance and re-implement their provided codes on our RSRD. The full-resolution 
images of the left camera are taken as inputs, while the depth maps are utilized as supervision to fit models. The 

Fig. 4  Comparison of projected point cloud between the (a) multi-frame fused and (b) single-frame. The color 
bar indicates depth.
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maximum depth is set as 14 meters. The models are trained for ten epochs for fair comparison. The batch size 
is set to fully utilize the memory of a RTX 3090 GPU. All the other parameters adopt default configurations in 
codes. We select the following commonly utilized metrics in depth estimation to evaluate the models: Abs. Rel. 
(the absolute relative error between actual and predicted depth values), RMSE (the root mean square error), 
RMSE log (the log of RMSE), and Sq. Rel. (the squared relative error).

Stereo matching.  We select five stereo matching methods to fit the dataset. The stereo pairs are center-cropped 
to 1400*700 since stereo matching for 2 M resolution images burdens memory and computation in our test envi-
ronment. The maximum disparity value is set as 128 for the cropped images. The five models are trained for five 
epochs. We evaluate the model performance with the following metrics: end point error (EPE) calculated as the 
average absolute disparity error, n-pixel percentage defined as the ratio of pixels with disparity errors bigger than n.

Data Records
The dataset is available in both the data repositories31–33 and dataset webpage https://thu-rsxd.com/rsrd. For the 
convenience of organization and download, the dense and sparse subsets are stored in different repositories. In 
this section, we describe the detailed contents and file directory of RSRD.

Dataset organization.  Multi-frame point cloud fusion requires much human effort as the optimal regis-
tration parameters involve human selection. We finally build 2,793 pairs of samples with fused dense point cloud 
labels. Furthermore, to enlarge the dataset scale and scenario diversity, we provide another independent sparse 
subset containing about 13,000 data pairs with motion-compensated single-frame point cloud labels, as illus-
trated in Fig. 4b. Models trained on the dense subset will be more accurate and reliable for road reconstruction. 
Nonetheless, the two subsets are equivalent for applications that do not utilize depth or disparity supervision such 
as structure from motion. The sparse subset can also be used to pre-train deep learning models since its scale and 
pattern coverage are larger.

Among the two subsets, we extract some time-continuous sequences for motion-related applications. The 
time duration is 8 seconds for each sequence, indicating 40 samples as the data acquisition frequency is 5 Hz. 
The aforementioned motion information is attached for every sample in the sequences. There are 15 and 176 
sequences in the dense and sparse subsets, respectively.

Moreover, despite image resolution at 1920*1080 preserves fine road surface texture, it requires much mem-
ory and computation thus posing challenges for developing deep learning models. Therefore, we provide the 
down-sampled images and label maps with half resolution 960*540 for both the two subsets. The original and 
down-sampled sets share the same point clouds and motion information since they are independent from image 
resolution. Researchers can determine which resolution to utilize according to their preferences.

Dataset directory.  The dataset is compressed into one.zip file, whose folder directory is shown in Fig. 5. 
All the multi-modal data samples are normatively formatted for convenient usage. All files are named by the 
corresponding timestamp of 5 Hz trigger in YYYYMMDDHHmmSS.sss format, e.g., 20230408042202.800.jpg, 
20230317074852.200.pcd. Data in one day shares the same calibration file, which can be indexed by the date in 
their timestamps. The calibration files, including camera intrinsic, stereo baseline, and left camera-LiADR extrin-
sic parameters, are provided in the development kit described in the Code Availability section.

For the convenience of model development and fair model performance comparison, we further split the 
dense subset into train set with 2,493 pairs, and test set with 300 pairs. Data samples in the train set are placed 
into folders named in format YYYY-MM-DD-HH-mm-SS, e.g., 2023-03-21-07-36-59. There are no content dif-
ference of the folders, but indicating that data in these folders are acquired near the time declared by the folder 
names. Table 1 enumerates the number of data pairs in the folders of train set. Note that the 15 continuous 
sequences are all in the train set and settled in 15 separate folders with ‘conti’ in folder name. Motion states at 

Fig. 5  Folder directory of the dataset.
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every moment of these sequences are saved in binary files named loc_pose_vel.pkl, which are directly placed in 
the corresponding root folders. The sequences are not listed in Table 1 as their number of data pairs are always 40.

Multi-modal data are placed in sub-folders named by the corresponding data type. The left and right folders 
store stereo left and right images, respectively. The depth and disparity indicate the ground-truth depth and dis-
parity maps w.r.t. the left camera, respectively. Point clouds are saved in pcd folders. Folders with half in name 
store the down-sampled images and label maps with half resolution, i.e., 960*540. File names in the nine folders 
are the same excluding file extensions. Therefore, the target data at the same moment can be indexed by the file 
names.

The sparse subset has the same directory structure as the dense subset without being split into train or test 
sets. Table 2 also shows the number of data pairs in the folders of sparse subset.

Interpretations about data format.  The stereo images are saved in .jpg format with saving quality of 100. 
The depth and disparity maps are saved in 16-bit.png format. Values in maps without ground-truth label are set as 
0. The actual depth or disparity values can be obtained by dividing 256. The .pcd files in the final dataset contains 
only xyz fields of points. The.pkl files storing motion information are generated by the pickle lib in Python, which 
can be parsed with the function in our development kit.

Technical Validation
In this section, we first perform thorough statistic analysis on our RSRD from many aspects. Results prove that 
our dataset outperforms the others in terms of road surface reconstruction applications. Results of the technical 
validation algorithms in Methods section are presented and explained.

Comparison with existing datasets.  To demonstrate the superiority of our RSRD, we comprehensively 
compare the existing vision datasets with stereo images for AVs perception as shown in Table 3. The widely used 
KITTI dataset3,34 contains few samples in the stereo subset, based on which the performance of deep learning 
models to be developed cannot be ensured. The DrivingStereo35 has much more samples by collecting data in 
similar scenarios and road sections. The road ratio indicates the ratio of road area to the whole image. The exist-
ing datasets have low road ratios since they care the complete traffic environment. The GT ratio is the percentage 
of pixels with ground-truth LiDAR points. Nevertheless, this metric is not directly comparable since it can be 
improved by reducing the image resolution. Our RSRD still reaches 4.12% even at 1920*1080 resolution, while 
17.08% for 960*540 resolution. The ApolloScape36 achieves extremely dense labels by fitting CAD models to cars 
and roads. Recovering the actual road profiles is almost impossible since the road surfaces are regarded as planes.

Folder name Number of data pairs

2023-03-17-07-48-37 133

2023-03-21-07-36-59 67

2023-04-06-01-38-49 166

2023-04-08-02-33-11 96

2023-04-08-03-04-21 134

2023-04-08-03-15-19 167

2023-04-08-03-26-11 223

2023-04-08-04-21-42 100

2023-04-08-04-46-16 62

2023-04-09-01-57-56 88

2023-04-09-02-07-24 517

2023-04-09-02-20-51 140

Table 1.  Folder-wise counts of sample pairs in train split of the dense subset.

Folder name Number of data pairs Folder name Number of data pairs

2023-03-17-07-48-37 399 2023-04-08-04-21-42 221

2023-03-21-07-36-59 184 2023-04-08-04-38-49 186

2023-04-06-01-38-49 218 2023-04-08-04-46-16 184

2023-04-06-01-42-50 468 2023-04-08-04-47-43 142

2023-04-08-02-33-11 638 2023-04-08-04-49-08 384

2023-04-08-03-15-19 225 2023-04-09-01-57-56 202

2023-04-08-03-18-09 427 2023-04-09-02-00-22 903

2023-04-08-03-26-11 142 2023-04-09-02-07-24 1138

2023-04-08-04-03-42 149 2023-04-09-02-20-51 422

Table 2.  Folder-wise counts of sample pairs in train split of the sparse subset.
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We also assessed the average disparity accuracy, which is a comprehensive evaluation involving all the 
errors in sensor acquisition, fusion, and calibration processes. We pick corresponding pixels at different posi-
tions of the stereo images and calculate their errors between the LiDAR-measured disparity values. Our RSRD 
achieves an error of 0.6, which is generally equivalent to the KITTI. It outperforms all the other datasets as for 
the corresponding depth error because our cameras have a smaller value of focal multiplying baseline. The 
human-designed model fitting causes significant disparity errors in the ApolloScape. Also, the errors are incon-
sistent among samples, possibly because of the temporary loss of RTK. The Argoverse-stereo has higher errors at 
object boundaries, possibly because of poor motion compensation or joint calibration.

The road condition diversity of the compared datasets is relatively poor as they focus on the whole traffic 
condition. The accuracy and label density do not satisfy the requirements of precise and dense road surface per-
ception applications. By comprehensive comparison, our RSRD has superiority among all metrics and is a better 
alternative for road surface perception.

Analysis of point cloud label density.  We count the number of label points of left images in the dense 
subset, and the histogram is shown in the left sub-figure of Fig. 6. Most image samples have 70K–100K pixels 
with ground-truth depth and disparity values, corresponding to the ratio between 3.4%–4.8% for full-resolution 
images while 13.6%–19.2% for half-resolution images. Also, we evaluate the point density along the longitudinal 
direction of road surface. The number of LiDAR scanlines in intervals of 40 cm is counted, as shown in the right 
sub-figure of Fig. 6. Within preview distance of 6 meters, averagely at least one scanline per 10 cm can be ensured. 
The reconstruction performance is expected to decrease from 7 meters away since both the ground-truth density 
and road surface definition are low.

Validation results of monocular depth estimation.  Figure 7 visualizes monocular depth estimation 
results derived by the AdaBins model37. For better visualization, we convert depth maps into normal maps since 
depth can not obviously present the slight road unevenness. The speed bump, potholes and cracks are precisely 
recovered, verifying the effectiveness of our RSRD in capturing road surface structures. Benefiting from the high 
accuracy and dense point cloud labels, all the models achieve distinguished values on the metrics in Table 4. 
However, the average relative depth error around 2% indicates an absolute error of 10 cm at 5 m depth. The accu-
racy is inadequate for practical applications since road surface vibrations are generally smaller than this level. 
Further, as shown in Fig. 8, we visualize the depth-wise relative error in the range of 2~8 m with interval of 40 cm. 

# samples Resolution B (cm) F (px)
LiDAR acc. 
(cm)

Road 
ratio (%)

GT ratio 
(%)

Disp. acc. 
(px)

KITTI’123 389 1242 × 375 54 719  ± 2 18.3 28.04 0.5

KITTI’1534 400 1242 × 375 54 719  ± 2 20.6 19.72 0.6

Argoverse4 6624 2464 × 2056 29.7 3757  ± 3 31.6 0.78 0.7

ApolloScape36 5165 3130 × 960 — —  ± 0.5 30.1 78.24 8.2

DrivingStereo35 182188 881 × 400 54 2061  ± 2 37.7 21.18 1.0

KAIST Urban39 — 1280 × 560 47.5 775  ± 3 32.2 — —

FordAV40 — 1656 × 860 52.9 945  ± 2 16.0 — —

Oxford Robot41 — 1280 × 960 24 983  ± 3 29.3 — —

RSRD(Ours) 2793 + 13672 1920 × 1080 12 2022  ± 1 89.1 4.12 0.6

Table 3.  Comparison of the existing datasets with stereo images for AVs perception. The B indicates stereo 
baseline, and F is the camera focal length. We randomly extract 100 samples from every dataset, and evaluate 
the Road ratio, GT ratio, and Disparity accuracy metrics on them. The KAIST Urban, FordAV, and Oxford Robot 
datasets do not directly provide the rectified stereo images.

×104

(a) (b)

Fig. 6  Density of point cloud labels. (a) histogram of the number of disparity labels. (b) number of LiDAR 
scanlines in 40 cm intervals along the longitudinal direction of road surface.
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The relative error increases with depth, indicating higher accuracy at near distance. This phenomenon is con-
sistent with the data pattern as texture details are retained at small depth while lost at large depth because of the 
perspective effect. The dataset is quite challenging and therefore, leaves much space for researchers in developing 
advanced models to achieve more accurate estimation.

Validation results of stereo matching.  The test metrics including EPE, 1-pixel, and 3-pixel ratios are 
listed in Table 5. The disparity errors of all models are around 0.4 pixels, which is at the sub-pixel level. More than 

Fig. 7  Inference results by monocular depth estimation methods. From up to down: input RGB images, surface 
normal maps, and colored point clouds. For better visualization, we show the surface normal maps calculated 
from the depth maps.

Method Abs Rel ↓ RMSE ↓ RMSE log ↓ Sq Rel ↓

AdaBins37 0.016 0.150 0.023 0.005

NeWCRFs42 0.033 0.294 0.044 0.017

BTS43 0.019 0.172 0.026 0.006

SAN44 0.029 0.219 0.036 0.009

iDisc45 0.019 0.174 0.026 0.006

PixelFormer46 0.019 0.176 0.026 0.006

LapDepth47 0.023 0.217 0.032 0.009

Table 4.  Evaluation results with monocular depth estimation methods.

Fig. 8  Visualization of depth-wise relative error. The depth interval is set as 40 cm. (a) results from AdaBins. (b) 
results from ACVNet.

Method EPE (px)  >1 px (%)  >3 px (%)

RAFT-Stereo48 0.450 8.139 1.157

ACVNet49 0.354 4.885 0.100

IGEV-Stereo50 0.369 4.896 0.151

CFNet51 0.333 3.276 0.063

GwcNet52 0.412 5.890 0.255

Table 5.  Evaluation results with stereo matching methods.
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95% of pixels have the estimation error less than 1 pixel. Considering the camera intrinsic and extrinsic parame-
ters, the average disparity error corresponds to a depth error of 4 cm at 5 m depth. Also, we convert disparity into 
depth and visualize the depth-wise relative error as shown in Fig. 8. Stereo matching also presents the increasing 
trend of error with respect to depth. However, the magnitude is smaller than that of monocular depth estimation. 
For instance, the relative error at 2.5 m depth is 0.37%, translating to an absolute error of 0.9 cm. Recovering road 
profiles by stereo cameras is expected to be more promising than the monocular.

We preliminarily validate the dataset with existing algorithms by adopting the full-resolution images. For 
faster training and model development, researchers can utilize the half-resolution images.

Usage Notes
The motion information of sequences is provided in primary form, i.e., Euler angles and LLA. We provide func-
tion that converts the LLA to relative translation. Researchers can also convert them into required formats such 
as extrinsic parameters of adjacent frames or these relative to the first frame. If required, the depth maps of right 
images can also be generated as point clouds and calibration parameters are all provided.

This dataset is mainly for road reconstruction purpose based on vision or point cloud. We do not provide 
semantic-related labels such as segmentation and detection. Researchers can make corresponding annotations 
on images or points for supervised learning.

The dataset, released with license CC BY 4.0, is open to download.

Code availability
We provide a development kit programmed with Python language for this dataset, which contains scripts for 
visualizing and parsing the dataset. The toolkit is available at the code repository38 (https://github.com/ztsrxh/
RSRD_dev_toolkit). The projection.py provides functions for reading calibration parameters, reading disparity 
and depth maps, projecting points onto images and pixels onto points, as well as their visualization. The read_
imu_rtk.py shows an example that parses the motion information and convert them into relative location under 
ENU coordinate. The data_reader.py implements the Dataloader in PyTorch that provides training samples. 
The cam_extrinsic.py implements the calculation of camera extrinsic parameter between two time clocks. The 
extrinsic is presented as the translation and rotation matrices from the current time to the origin.

The code has MIT license for unrestricted usage.
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