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ABSTRACT OF THE DISSERTATION

Efficient Use of Execution Resources in Multicore Processor
Architectures

by

Matthew David DeVuyst

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California, San Diego, 2011

Professor Dean Tullsen, Chair

As the microprocessor industry embraces multicore architectures, inherently

parallel applications benefit directly as they easily transform into sets of homoge-

neous parallel threads. However, many applications do not fit this model. These

applications include legacy binaries compiled for a single thread of execution and

inherently serial applications. The inability of these two kinds of applications to

exploit multicore architectures has created a crisis for the microprocessor indus-

try: customers have come to expect significant performance improvements in all

of their application every processor generation, but recent multicore architectures

have failed to meet those expectations for many applications. This dissertation ex-

plores ways in which these applications can run efficiently on multicore platforms.
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The performance of legacy binaries compiled for a single thread of exe-

cution can be improved through automatic parallelization. We introduce a new

technique to automatically parallelize binaries as they are executing. The par-

allelization technique leverages the benefits of hardware transactional memory, a

synchronization mechanism enabling optimistic concurrency. Our technique ex-

ploits this to parallelize code that a traditional parallelizing compiler would be

unable to transform due to potential memory aliasing.

Applications with fundamentally serial code can benefit from core cus-

tomization. The more heterogeneous the cores are, the more likely that a given

application will find a core on which it runs efficiently. We investigate two forms

of heterogeneity: that created on homogeneous hardware by unbalanced resource

assignment, and heterogeneity created by hardware asymmetry. We first consider

a homogeneous multicore system composed of multithreading cores. Often the best

schedules on such a system are unbalanced. We propose a set of novel schedul-

ing algorithms that consider unbalanced schedules to find good application-to-core

assignments. We consider objective functions of both performance and energy.

We also explore how applications can benefit from diverse ISAs by considering

heterogeneous-ISA multicore systems. We propose a new technique to rapidly

migrate a thread among cores of different ISAs, allowing applications to take ad-

vantage of hardware heterogeneity for performance gain or energy savings.

xvi



Chapter 1

Introduction

The last few years have seen a dramatic shift in the microarchitecture indus-

try: from single-core to multicore architectures. Limitations on the power density

of integrated circuits have forced a change in the paradigm of processor design.

No longer do we look to instruction-level parallelism (ILP) as the primary source

of increased performance potential. Instead, thread-level parallelism (TLP) has

become the primary vehicle for better performance. Increasing transistor counts

are being put to use to exploit thread-level parallelism, forcing computer engineers

to rethink how to make the best use of the additional core resources.

Inherently parallel applications benefit directly from multicore architec-

tures, as they easily transform into sets of homogeneous parallel threads. However,

many applications cannot directly benefit from multicore architectures. These ap-

plications fall into two categories:

1. Legacy binaries compiled for a single thread of execution.

2. Inherently serial applications.

The former may include some inherent parallelism, but it is hidden from the hard-

ware due to how the application was compiled. The latter simply lacks the thread-

level parallelism necessary to directly take advantage of multiple cores.

This has led to a crisis in the microprocessor industry, as customers have

come to expect that all of their programs will perform significantly better every

1
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processor generation. Before the multicore era, performance gains for all applica-

tions were possible thanks to shrinking feature size and architectures that could

increasingly exploit ILP (with superscalar pipelines and aggressive out-of-order

engines). Now that architects have reached the limits of ILP exploitation and are

using extra transistors to take advantage of TLP, applications not compiled for par-

allel execution or lacking TLP are falling behind. This dissertation explores ways

in which these kinds of applications can be made to run efficiently on multicore

platforms.

To improve the performance of legacy binaries that possess some inherent

TLP but have been compiled for a single thread of execution, we automatically

parallelize them at runtime. This is made difficult by the fact that the inher-

ent parallelism is obfuscated during original compilation. Proving that memory

accesses are thread-safe (i.e., are not aliased by potential parallel threads) is dif-

ficult (or impossible in some cases) for a traditional parallelizing compiler with

source code access, but it is even more difficult when only the machine code is

visible. The key to enabling parallelization in spite of this uncertainty is the use of

hardware transactional memory (TM). Transactional memory is a promising syn-

chronization mechanism enabling optimistic concurrency. It allows our dynamic

recompiler to parallelize code that a traditional parallelizing compiler would be

unable to parallelize due to potential memory aliasing.

Many applications (legacy or not) lack inherent TLP, making parallelization

impossible. For these applications, we can improve their efficiency on multicore

systems by taking advantage of heterogeneity. Traditional parallel applications

are broken into sets of homogeneous parallel threads that easily map to homo-

geneous multicore systems. But the differing (heterogeneous) characteristics of

single-threaded applications call for heterogeneous multicore systems to execute

efficiently. The more heterogeneity, the more likely each application will find the

right core to execute on—whether it be, for example, a powerful but under-utilized

core for a CPU-intensive application, a small low-power core for a lightweight ap-

plication, or a core with support for special instructions for a domain-specific

application.
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In this dissertation we explore how to leverage two different kinds of het-

erogeneity:

1. heterogeneity created by unbalanced load on homogeneous cores,

2. heterogeneity created by hardware asymmetry—a diverse set of different core

types with multiple ISAs.

We first consider a homogeneous multicore system composed of multithread-

ing (SMT) cores. This increasingly common architecture presents a difficult chal-

lenge because resource sharing, and therefore thread interaction, occurs in two

dimensions. Applications running on different cores share relatively few resources;

applications running simultaneously in different hardware contexts on the same

core share many resources. Some combinations of applications share resources

well, while others create heavy resource contention. Finding good schedules on

these architectures proves to be a difficult task because the number of possible

schedules to consider is large and positive thread interaction is difficult to predict.

We observe that often the best schedules, especially when both performance and

energy are primary concerns, are unbalanced ones—it is most efficient when some

cores are more utilized than others.

Next, we consider a heterogeneous-ISA chip multiprocessors (CMP). The

diversity of not only core types, but also ISAs creates a wide range of custom

cores—each designed to efficiently execute a particular kind of application. But

for programs to be able to take advantage of this heterogeneity, they must be free

to move among cores. Migration can either be used to free up needed resources

when new programs enter the system or to exploit different phase behavior within

an application. We propose a new technique to quickly migrate programs among

heterogeneous cores with a minimal sacrifice of runtime performance.

In the next section, we introduce our runtime parallelization technique for

legacy binaries. In the following section we introduce our studies of two het-

erogeneous systems that use multiple cores to efficiently execute inherently serial

applications.
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1.1 Parallelizing Single-Threaded Code

Before the multicore era of general-purpose processor design, single-threaded

legacy binaries saw significant performance improvements with every processor

generation. Because multicore microarchitectures exploit TLP, not ILP, legacy

binaries no longer experience significant performance gains.

Parallelization of single-threaded binaries, particularly at runtime, when

more information is known about the behavior of the program, has been shown

to be effective, to various degrees [CO03, OYOB02, THA+99, YF08, VRR+07,

ZMLM08, vPCC07]. Many of these proposals show only modest performance gains,

or show high performance gains but make assumptions about extensive new hard-

ware support. From the prior research it is clear that some hardware support is

necessary to achieve good speedup from parallelized legacy programs; but archi-

tects are reluctant to add expensive special-purpose hardware. We explore the

re-use of hardware intended for a different purpose—hardware that is more likely

to be implemented by processor makers: hardware transactional memory [HM93].

Transactional memory (TM) is a promising lock-free synchronization mech-

anism that has been the center of active research in the last few years with the

explosion of multicore architectures. Transactional memory gives programmers

and compilers powerful shared-memory synchronization primitives. Instructions

are grouped into transactions that are guaranteed to commit atomically. TM

provides optimistic concurrency: transactions are allowed to execute concurrently

and the hardware monitors violations among memory operations contained in the

transactions. If a violation is detected, the affected transaction is rolled back and

restarted. Thus serialization is only imposed on parallel code if true memory alias-

ing is present; when it is not present (whether or not that can be guaranteed a

priori), serialization is not enforced.

In this dissertation, we introduce a new runtime parallelization technique

leveraging the optimistic concurrency of TM to automatically parallelize single-

threaded legacy programs. This work addresses a number of challenges posed by

this type of parallelization and quantifies the trade-offs of some of the solutions,

such as how to select good loops for parallelization, how to partition the iteration
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space among parallel threads, how to handle loop-carried dependencies, and how

to transition from serial to parallel execution and back. The simulated implemen-

tation of runtime parallelization shows a speedup of 1.36 for the NAS benchmarks

and a 1.34 speedup for the SPEC 2000 CPU floating-point benchmarks when using

two cores for parallel execution.

1.2 Managing Heterogeneity

1.2.1 Scheduling in a CMP of SMT Cores

Applications that cannot be parallelized because they lack inherent TLP

may still be able to benefit from multicore architectures, even homogeneous ar-

chitectures, if they can take advantage of heterogeneity arising from unbalanced

schedules to find the best core to execute on.

Before multicore architectures were common, scheduling on a processor

that exposes only one hardware context was more about fairness (or responsive-

ness) than about efficiency, because there is almost no interaction among threads.

Scheduling on a processor that exposes two or more hardware contexts of the same

type (either multiple cores or multiple SMT contexts) creates a new challenge—

scheduling for efficiency—because the interactions of threads executing concur-

rently determines performance and power usage. Previous work has shown that the

coscheduling of threads on an SMT processor greatly impacts performance [ST00].

This is due to the high degree of resource sharing among SMT contexts. The

importance of good coschedules is somewhat diminished in a multicore processor

because resource sharing is usually limited to the last-level cache (and perhaps one

other level of shared cache). In architectures that combine SMT and multicore de-

sign, finding good schedules becomes more complicated, as there are two degrees

of resource sharing among contexts. Not only is it necessary to find good schedules

to maximize performance, but recently, energy has also become a first-class metric.

Often this results in the best schedules being unbalanced ones, creating a type of

heterogeneity. Deciding which core to run an application on becomes critical.

In this dissertation we propose a new thread scheduling technique for this



6

increasingly popular architecture—chip multiprocessors with simultaneous mul-

tithreading cores. We describe optimizations for both performance and energy

efficiency. The key contribution of our scheduler is its consideration of unbalanced

schedules. Conventional multiprocessor scheduling, applied to this architecture,

will attempt to balance the thread load across cores. We demonstrate that this

approach eliminates one of the biggest advantages of this architecture—the ability

to use unbalanced schedules to allocate the right amount of execution resources

to each thread. However, to accommodate unbalanced schedules, the search space

of all schedules (both balanced and unbalanced) is much greater than that of the

balanced schedules alone. This dissertation proposes and evaluates scheduling

mechanisms that allow the system to identify and migrate toward good thread

schedules, whether the best schedules are balanced or unbalanced.

1.2.2 Migrating Execution on Heterogeneous CMPs

In Chapter 4 we investigate how a different kind of heterogeneity—hardware

heterogeneity—can benefit serial applications on multicore architectures. Research

has shown that architectures with multiple cores of different types can achieve

greater performance and power efficiency [KTJR05, HM08]. In the past, when

processor design centered around a single core, architects sought to make cores

as general as possible, capable of performing well on different types of code. The

abundance of cores in new architectures affords architects the ability to specialize

some of those cores to run certain classes of code more efficiently. Heterogeneity

is a powerful tool to balance generality and specialization.

Another factor that drives heterogeneous design is energy efficiency. Ar-

chitects designing general-purpose processors must strike a balance between per-

formance and energy efficiency. Often the two goals are in conflict. However,

in a heterogeneous chip multiprocessor, different cores can be selected all along

the power/performance curve—some cores designed for high performance, others

suited to low-power operation.

Designing software to run on heterogeneous CMPs with cores sharing a

common ISA is simpler than for heterogeneous-ISA CMPs. Heterogeneous-ISA
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CMPs enable a new dimension of heterogeneity. Just as architectures are designed

with different goals, so are ISAs. Some ISAs as designed to support a wide variety

of instruction types, including sets of special-purpose instructions. Some ISAs are

engineered to facilitate small, simple architectures. Also, assumptions about cache

and memory latencies play a big role in ISA design. Multicore architectures that

are able to exploit these differences will have a power/performance advantage over

homogeneous-ISA architectures.

Efficient thread scheduling on heterogeneous-ISA CMPs is difficult because

good thread scheduling needs to be dynamic. Not being able to reschedule running

threads on different core types limits how effective the system is in exploiting

hardware diversity. For example, when the energy level that is available to the

system changes, the system should be able to adapt, migrating execution to low-

power cores. Or when program behavior changes, execution should migrate to a

core that will be able to handle the workload most efficiently. Or when a new

high-priority process enters the run queue, the most powerful core(s) should be

made available to it. But for a scheduler on a heterogeneous CMP to adapt to

such changes, it needs to be able to migrate execution across core types.

This dissertation proposes a novel execution migration technique for CMPs

with heterogeneous ISAs. The critical feature of these architectures, that we take

advantage of, is their shared memory. We leverage this advantage by keeping the

memory image of a migratable process in a state that is almost completely ISA-

neutral. This allows migration to be fast, as very little state has to be transformed.

We rely heavily on the compiler to both enforce memory image consistency and to

extract the information necessary to transform the remaining architecture-specific

state. We achieve fast migration (308 microseconds on average) with a minimal

sacrifice of runtime performance (performance without migrations)—2.3% on av-

erage.

The rest of this dissertation is organized as follows. Chapter 2 presents

our solution to getting improved performance from legacy single-threaded code on

multicore architectures. Chapters 3 and 4 describe how programs that cannot be

parallelized can still thrive on multicore architectures by finding and exploiting
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heterogeneity. Chapter 3 focuses how to make use of heterogeneity stemming from

unbalanced schedules, and Chapter 4 focuses on a critical first step toward exploit-

ing hardware heterogeneity: migration on heterogeneous-ISA systems. Chapter 5

concludes.



Chapter 2

Runtime Parallelization

2.1 Introduction

General-purpose microprocessor design has undergone a major shift in the

last few years as the performance and thermal characteristics of large out-of-order

microprocessors failed to scale. The multicore era is upon us, and as feature

sizes continue to shrink, dies are divided up into ever more processing cores. The

increase in hardware parallelism has outpaced the software industry; there is a

large body of applications written for or compiled for a single thread of execution,

and these applications do not take advantage of the extra parallelism being offered

by modern microprocessors.

Some single-threaded legacy applications are rewritten to take advantage

of the additional hardware parallelism, but this is often a difficult and expensive

undertaking. Some legacy applications are recompiled with a parallelizing compiler

that attempts to extract as much parallelism as possible. But this is not always

possible for a number of reasons. It is not possible if the software vendor only

distributed the application in binary form and they have gone out of business, no

longer support the application, are unwilling to recompile the application because

they are worried that it may introduce or uncover bugs, or rely extensively on a

compiler that does not support parallelization. Sometimes the user is unwilling to

pay more for an updated version.

The software industry recognizes the growing need to produce parallel mul-

9
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tithreaded code to take advantage of the offered hardware parallelism to make the

performance of their software products competitive. They are becoming increas-

ingly interested in ways of making the writing of correct parallel code less difficult

and error-prone.

What makes parallel programming so difficult to implement correctly is

the need to control access to variables in shared memory. Most of the traditional

paradigms for controlling access to shared memory involve using locks to control

access to regions of code that may operate on shared memory. Often times it is

not known by either the programmer or compiler if, at any given moment during

the running of a program, multiple threads will attempt to operate on the same

memory at the same time. To protect against the possibility of such a conflict,

locks are used to conservatively guard access to shared memory.

Parallelization at runtime is even harder because high-level program infor-

mation is lost. Because a static compiler has access to a higher-level representation

of the program, it is in a better position to reason about potential memory aliasing.

Runtime parallelization operates on machine code, where it is much more difficult

to determine where potential aliasing may occur. Consequently, nearly all memory

references must be treated as potentially aliased and guarded with synchronization

primitives, like locks, which force serialization.

Transactional memory (TM) is a promising improvement over lock-based

synchronization. It optimistically grants access to shared memory, forcing serial-

ization only when a real conflict is detected [HM93, AAK+05, CNV+06, RHL05,

YBM+07, MBM+06a, MBM+06b, HWC+04, ST95, HF03, HLMS03]. TM is an

area of active research and has been gaining increasing acceptance in industry

[DLMN09]. For example, the Rock processor from Sun Microsystems supports

hardware transactional memory. We believe that in the near future we will see

more microprocessor vendors including hardware support for transactional mem-

ory.

Leveraging hardware support for TM, we propose a new technique to au-

tomatically (without any user intervention) extract thread-level parallelism from

legacy single-threaded binaries with minimal architectural change. We find that
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transactional memory enables the parallel execution of many loops that are seri-

alized by traditional synchronization. Our technique uses a dynamic optimization

framework: frequently executed loops are identified by hardware at runtime, a dy-

namic recompiler is spawned in a free hardware context to transform the key loops

into parallel code, and the recompiled parallel loops are patched in to the running

program. The dynamic recompiler analyzes the loop (at the machine code level,

not at the source code level) and, if possible, transforms it into a loop that can

be executed in parallel. When the parallelized loop executes, parallel threads are

forked onto free hardware contexts.

The primary contribution of this chapter is to show that the reduced over-

head and optimistic concurrency of hardware transactional memory enables the

effective parallelism of a number of legacy codes, despite the existence of unknown

and possibly unknowable memory aliasing.

This chapter describes our parallelization technique and quantifies its effec-

tiveness across a number of benchmarks. In Section 2.2 we give an overview of the

related work. Section 2.3 describes our baseline processor architecture, including

transactional memory and dynamic optimization implementations. An explana-

tion of our parallelization technique is found in Section 2.4, and a description of

the parallel code generation is found in Section 2.5. In Section 2.6 we describe our

experimental methodology, and in Section 2.7 we present our results. Section 2.8

concludes.

2.2 Related Work

2.2.1 Transactional Memory

Our parallelization technique relies on data speculation to avoid frequent

synchronization. This requires a mechanism to prevent erroneous execution that

arises from unanticipated memory aliasing between loop iterations. We achieve

this through the use of transactional memory.

Transactional memory was first proposed by Herlihy and Moss as a hard-

ware implementation of lock-free concurrent synchronization [HM93]. Their model
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provides the programmer with guarantees about the memory accesses of instruc-

tions contained in transactions. One guarantee is that writes to memory within a

transaction are not visible to other transactions until transaction commit (at which

time all the writes in the transaction are atomically released). Another guarantee

is that memory aliasing among transactions (e.g., a write in one transaction to the

same address as a read in a concurrently-executing transaction) is detected and

appropriate recovery actions taken (e.g., a transaction’s state will be discarded and

it will be restarted).

From this simple model, a number of significant improvements have been

made, including more efficient ways of handling increased buffered state [AAK+05,

CNV+06], virtualization [RHL05, YBM+07], improved conflict detection

[MBM+06a], sub-cache line granularity [YBM+07], nested transactions

[MBM+06b, YBM+07], faster transaction commits [MBM+06a], ordered transac-

tions [HWC+04], and software-based transactional memory [ST95, HF03, HLMS03].

Handling Increased Buffered State

Ananian et al. [AAK+05] assert that a TM implementation should not place

restrictions on transaction size. They propose two related hardware TM imple-

mentations: Unbounded Transactional Memory (UTM) and Large Transactional

Memory (LTM). LTM is a simplification of UTM that does not require modifica-

tions to the memory interface. They use an in-memory data structure, instead of

the cache architecture, to track transactional state, allowing transactions to grow

as large as system memory.

Chuang et al. [CNV+06] also propose a hardware TM implementation that

does not place restrictions on transaction size. Their proposal, Page-based Trans-

actional Memory, integrates transaction bookkeeping with the virtual memory

system.

Virtualization

Some researchers have proposed ways to virtualize TM so that the program-

mer is shielded from platform-specific resource limitations. Rajwar et al. [RHL05]
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introduce Virtual Transactional Memory, a hardware-software hybrid TM imple-

mentation that uses virtualization techniques to deal with cache overflows and

clock interrupts.

Fast Transaction Commits

In many TM implementations old memory state is kept in place until trans-

action commit, while transaction state is buffered. In order to make transactions

commit faster, Moore et al. [MBM+06a] propose updating memory immediately

with transaction state and writing the old versions of data to a log in case of trans-

action abortion. Their implementation, LogTM, also extends a directory-based

cache coherence protocol to achieve fast conflict detection.

Sub-cache Line Granularity

LogTM Signature Edition [YBM+07] extends LogTM by adding signatures

(hashes of read and write sets) to facilitate conflict detection. This decouples

conflict detection from L1 cache tags and arrays. Because neither version man-

agement nor conflict detection are tied to the cache architecture, their hardware

TM implementation can operate at granularities finer than cache lines. Our par-

allelization technique benefits significantly from this fine granularity (as we show

in Section 2.7.2).

Nested Transactions

Many TM models support closed nested transactions, where all nested

transactions are flattened into the outermost transaction. This preserves correct-

ness when software composition is used (e.g., when module A opens a transaction

and calls module B, which may open addition transactions), but may degrade

performance. Moravan et al. [MBM+06b] propose support for open nested trans-

actions, where an abort in an inner transaction does not cause the outer transaction

to abort. They also allow escapes in the middle of a transaction in order to suspend

transactional execution while non-transactional code (e.g., OS code) is invoked.
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Ordered Transactions

In many TM implementations, transactions commit in an arbitrary order—

whichever transaction completes first commits first. Recognizing that most par-

allel applications have places where one transaction must commit before another,

Hammond et al. [HWC+04] introduce a hardware TM implementation, TCC, that

supports ordered transactions. If the programmer wishes, he or she may spec-

ify the order of transactions in addition to the boundaries of each transaction.

Hardware-managed phase numbers are associated with transactions; a transaction

in a newer phase will stall if there are uncommitted transactions in older phases.

Ordered transactions have also been proposed by Ceze et al. [CTTC06] and Porter

et al. [PCT09].

Software Transactional Memory

First proposed by Shavit and Touitou [ST95], Software Transactional Mem-

ory (STM) is an alternative TM implementation strategy based completely in soft-

ware. Performance is not as good without hardware support, but the solution is

more portable and can be used on any machine that supports load-linked/store-

conditional operations. Harris and Fraser [HF03] and Herlihy et al. [HLMS03] ex-

tend STM to object-oriented languages and propose implementations of dynamic

STM—where transactions and transactional objects can be created dynamically.

Our TM Model

We assume hardware transactional memory, but otherwise, we are relatively

insensitive to which implementation. We only require that the TM implementation

support ordered transactions. Ordered transactions are only allowed to commit in

a predefined order.

Advances in transactional memory should improve the performance of our

parallelization technique. For example, faster transaction commits will lower the

transactional overhead of our parallelization and improve performance; and sup-

port for the efficient buffering of more transactional state will allow for the paral-

lelization of larger loops and more iterations per transaction.
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2.2.2 Dynamic Optimization

A dynamic optimization framework supports our parallelization technique

by efficiently discovering loops that are good candidates for parallelization, calling

our dynamic recompiler to parallelize the candidate loops, and patching the parallel

versions of loops into running code. Research on dynamic optimization is advancing

rapidly. What follows is a summary of important advances.

Bala et al. [BDB00] In 2000 the first software-based dynamic optimization sys-

tem was introduced. This framework, called Dynamo, is a software-only optimizer

that is similar to, but also fundamentally different from Just-in-time (JIT) com-

pilation. Like JIT compilers, Dynamo optimizes code as it is running; but unlike

JIT, it optimizes native binaries, not bytecode. Dynamo operates by alternating

between interpretation and direct execution—frequently executed portions of code

(so-called hot traces) are optimized and placed in a code cache for direct execution

(everything else is interpreted).

Chen et al. [CLG00] The dynamic optimization system Mojo is very similar

to Dynamo, but adds support for exception handling and multithreaded code. It

also distinguishes itself by supporting optimization for a CISC ISA—x86. As in

Dynamo, in Mojo the optimization is typically performed in the same thread (and

on the same hardware context) as the main execution.

Patel and Lumetta [PL01] They propose a hardware-based dynamic optimiza-

tion framework, called rePLay, that enables aggressive optimizations by stringing

together basic blocks in a single control flow called a frame. Frames are built

speculatively and a hardware-based recovery mechanism reverts program state if

an early exit is taken.

Bruening et al. [BGA03] They provide an interface to the software-based

dynamic optimizer DynamoRIO (an IA-32 version of Dynamo) that makes it easy

to create new optimizations. Their framework makes writing optimization modules

for a dynamic compiler as easy as it is to write optimization passes for a static
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compiler. The abstraction provided by their framework overcomes the difficulties

(e.g., memory management) of interleaving the execution of the optimizer with the

execution of the program being optimized.

Lu et al. [LCYcH04] In the ADORE dynamic optimization system, the exe-

cution of the optimizer is segregated to an OS-level thread. The framework uses

the hardware performance counters in the Itanium 2 processor to detect hot re-

gions of code; analysis and optimization is performed in software in the optimiza-

tion thread. This hybrid hardware-software approach combines the best of both

worlds. However, context switches to the optimization thread for profiling hamper

performance.

Our Dynamic Optimization Framework

The dynamic optimization framework that we employ is a simplified ver-

sion of the Trident framework by Zhang et al. [ZCT05, ZCT06, ZTC07], which is

similar to ADORE. In Trident all of the profiling is handled in hardware and the

optimization thread is executed on a separate hardware context, completely elim-

inating interference from the optimization thread on the main execution. Trident

supports a broad selection of optimizations, many of which are orthogonal and

complementary to our parallelization optimization.

Hot traces (frequently executed regions of code) are detected by simple

hardware performance monitors; finding hot traces in hardware incurs much less

of a performance penalty on the monitored process. Since the loop analysis and

parallelizing recompilation is much more complex, it is best done in software. To

accomplish this, when a hot trace is detected, the processor will spawn a new thread

in a free hardware context to run a software dynamic recompiler to analyze and

optimize the code. In our case, the hot code regions are loops and the optimization

performed is parallelization. As Zhang et al. point out, doing the profiling in

hardware and the optimization in a separate thread in a separate hardware context

results in very minimal performance impact on the target process.
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2.2.3 Dynamic Loop Parallelization

Other researchers have proposed the use of dynamic optimization to aid in

runtime parallelization of loops.

Jrpm [CO03] parallelizes Java bytecode at runtime in the Java Virtual Ma-

chine. They also exploit optimistic concurrency in their parallelization; but unlike

our work, which uses transactional memory to achieve this, they use thread-level

speculation (TLS). Also, in their work, programmer transformations are necessary

to expose loop-level parallelism; our technique is fully automatic and does not re-

quire any programmer or user intervention. The goal of our work is to improve the

performance of legacy binaries, and we target compiled machine code (not Java

bytecode); we address code that does not have the advantages of running in a

controlled virtual machine environment, like the Java Virtual Machine.

Ootsu et al. [OYOB02] also propose a runtime parallelization technique

for binaries using a dynamic optimization framework. Their work builds on the

parallelization technique of Tsai et al. [THA+99] by adding binary translation at

runtime, instead of transformation at compile-time, to perform the parallelization.

Unlike our work or Jrpm, they do not explore the use of any optimistic concur-

rency mechanisms to ensure correctness with regard to concurrent memory access.

Instead they rely on an explicit serialization of all the instructions that compute all

the store addresses in the loop body. To ensure correctness, this code is collected

in a serially-executing phase they call TSAG (Target Store Address Generation),

that is executed at every loop iteration in every parallel thread (in original pro-

gram order). Then, as the main body of the loop is executed (in what they call

the Computation phase), a special hardware structure called the Memory Buffer

coordinates memory dependencies among parallel threads.

Yardimci and Franz [YF08] put forth a dynamic parallelization and vector-

ization technique for single-threaded binaries. Their technique involves only control

speculation, not data speculation. Therefore, they introduce a complex control-

flow analysis (especially to handle indirect branches); but they do not parallelize

loops whose induction registers do not have deterministic fixed strides, loops that

have stores in conditionally-executed code regions (i.e., in the then clause of an
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if-then statement), or loops with potential cross-iteration data dependencies. Be-

cause our approach leverages transactional memory for data speculation, we find

ways around all these limitations and are thus able to parallelize more loops.

Vachharajani et al. [VRR+07] add speculation to Decoupled Software Pipe-

lining (DSWP). DSWP parallelizes a loop by partitioning the loop body into

stages that are scheduled on threads and executed in a pipelined manner, commu-

nicating results via a message-passing or buffering mechanism. Speculative DSWP

breaks some recurrence dependencies so that the loop body can be broken into

smaller pieces to increase scalability and load balancing. Our work differs from

theirs in three ways: our technique works at the machine code level, where anal-

ysis and transformation is more complicated due to compiler optimization and

loss of information; we use a simpler, more common form of speculation, transac-

tional memory—they use a complicated versioned memory system; their technique

utilizes heavy inter-thread (cross-core) communication, potentially requiring hard-

ware support for best performance.

Works by Zhong et al. [ZMLM08] and Von Praun et al. [vPCC07] leverage

TM for parallelization, but rely on programmer and/or heavy compiler support;

our technique requires neither.

2.2.4 Speculative Multithreading

Speculative multithreading [SBV95, MGT98, KT99] is an alternate ap-

proach that attempts to get parallel speedup from serial code. They do so by

executing serial code in parallel and recover from misspeculation. They typically

rely heavily on data value speculation and prediction, as well as some type of

memory versioning. Conversely, we create more conventional parallel code (dy-

namically), without data prediction, and only exploit speculative execution to the

extent that transactional memory already supports it.
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2.3 Architecture

Hardware transactional memory provides several key advantages over tra-

ditional synchronization, particularly with regard to the problem of runtime paral-

lelization. The key problem in runtime parallelization, that has made it an essen-

tially unsolvable problem except in the most simple cases, is that in the absence

of any high-level program information, nearly all loads and stores must be treated

as potentially aliased—the necessarily conservative handling of these potential de-

pendencies serializes the code. Transactional memory, by supporting optimistic

concurrency, solves a whole set of problems. First, because code is only serial-

ized when there is true aliasing, conservative placement of synchronization has

no cost. Second, we can include many writes in a single transaction, minimizing

synchronization overhead with no significant loss in concurrency. Because trans-

actional semantics require no correlation between the synchronization mechanism

and the data that is protected, parallelization is simply enabled, yet still catches

even unanticipated dependencies.

To illustrate the power of this technique, consider the pseudo-assembly code

of the loop in Figure 2.1. This code loops over an array of structures: for each

structure element, a pointer field is extracted and followed, and the data at that

pointer location is modified. Assume this loop is executed many times, is part of

a single-threaded application (for which we do not have the source code), and is

running on a modern multicore processor on which there are one or more unutilized

cores.

Using hardware performance counters, a dynamic optimization framework

can detect that this loop executes frequently and can transform it automatically

into parallel code—with different iterations of the loop running in different threads.

Without the high-level code, we cannot guarantee that parallel iterations of this

loop will not attempt to modify the same data in memory. With traditional lock-

based synchronization primitives, our parallelizer would transform the loop such

that a lock would have to be acquired and released on every iteration of the loop.

Since only one thread may hold the lock at any time, even though the loop would

be parallelized across multiple threads, the frequent synchronization would force a
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loop : sub r1 , r1 , 256

add r5 , r1 , r6

load r2 , 64( r5 )

load r3 , 0( r2 )

add r3 , r4 , r3

s t o r e r3 0( r2 )

bne r1 , 0 , loop

Figure 2.1: Potential memory aliasing makes this loop hard to parallelize.

serialization of loop iterations. However, if the loads and stores are not frequently

aliased in neighboring iterations, the serialization is unnecessary.

If the optimizer instead uses transactional memory to make the code thread-

safe, then when aliasing is infrequent, unnecessary serialization does not hinder

performance. Each iteration is wrapped in a transaction and the transactions exe-

cute concurrently. Thus, with minimal analysis of the code, we still get guaranteed

serialization of iterations when there are dependencies, and parallel execution in

the absence of dependencies.

Transactional memory constructs are frequently utilized by programmers or

compilers with a high-level (source code) view of the application. At this level alias

analysis is much more feasible than at the machine code level. Synchronization

code need not be applied in cases where it can be proven that aliasing is not possi-

ble. But a dynamic optimizer analyzes and transforms machine code. At this level

it often impossible to prove that aliasing will not occur; so very conservative syn-

chronization code is necessary. This makes TM a more attractive synchronization

primitive.

2.3.1 Code Transformation Overview

We now present a high-level overview of the code transformation. Sec-

tion 2.4 provides more details on this process.

Figure 2.2 shows what the transaction-wrapped transformed code from Fig-
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f o rk f i x

branch btx

loop : EndTransaction

f i x : sub r1 , r1 , 256

btx : BeginTransact ion

sub r1 , r1 , 256

add r5 , r1 , r6

load r2 , 64( r5 )

load r3 , 0( r2 )

add r3 , r4 , r3

s t o r e r3 0( r2 )

bne r1 , 0 , loop

EndAllTransact ions

j o i n : . . .

Figure 2.2: Wrapping the loop body in a transaction allows for safe and optimistic
parallelization.

ure 2.1 would look like when targeting two parallel threads. Some details (mostly

for bookkeeping) have been omitted to simplify the example. The code first forks

a new thread to start executing at the label fix. This is a lightweight fork—no

new stack is created, only registers are copied and the program counter is set. The

newly-created thread will execute the induction code to bring the loop-carried reg-

isters up-to-date in preparation to execute the second iteration of the loop: in this

example 256 is subtracted from register r1. Then, a new transaction begins and

the loop body is executed. Meanwhile, the original thread will branch to the label

btx, open a new transaction, and execute the first iteration of the loop. When a

thread completes an iteration, i, of the loop, it will close the transaction and open

a new transaction to execute iteration i+ 2. The ordering of the transactions will

ensure that state from each iteration is committed (i.e., data is stored to memory)

in original program order. When the loop is done executing, all the transactions
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will be closed, the spawned threads will be terminated, and execution will resume

in the original thread at the join label.

Having ordered transaction commits ensures that we do not commit values

out of order, and also ensures that the value of the last write to each memory

location in the loop is the value that is visible at loop exit.

2.4 Parallelization

There are several things we need in order to enable dynamic parallelization

of legacy serial code. First, we need some kind of dynamic optimization framework

that can (1) identify candidate loops to parallelize, (2) spawn a thread to analyze

each loop and generate parallel code, and (3) patch in the new version. We also

need hardware support to catch dependencies between iterations assumed to be

parallel (transactional memory, in our case). We need our parallelizer to solve the

problem of selecting the right granularity of parallelism. We also need to ensure

that we maintain the semantics of sequential execution, particularly as viewed by

the code following the parallel region—transactions accomplish this for memory,

but registers must be handled in software. Our solutions for each of these issues

will be presented in this section and the following one. This section focuses on the

overall design of the parallelization process, including the dynamic optimization

framework that orchestrates the parallelization process and the scheduling of par-

allel code on threads. The next section will focus on aspects of the parallel code

generation itself.

2.4.1 Dynamic Optimization Framework

The basic unit of optimization targeted by our technique is the loop. To

identify loops most effectively, we combine two techniques—a whole-program

control-flow analysis that identifies loops, combined with a hardware monitor that

identifies frequent branches. This provides a more accurate view of important

loops than trying to identify loops based on hot-branch addresses.

When a new process is started, a loop analyzer begins in a spare hardware
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context to perform a quick loop analysis of the binary code. Since this is a static

analysis, it can be performed once and the results even saved to a file for all

future executions. The static analysis is not required, but improves the quality

of discovered loops. Because it runs in a separate context and typically requires

only a few milliseconds, it neither slows the main thread nor impedes our dynamic

parallelizer in any but the shortest of applications.

The loop analyzer operates as follows. First, instructions are grouped into

basic blocks; the control flow among basic blocks is modeled with a directed graph.

A dominator graph is built; and any edge i→j in the control flow graph from a node

i to a node j that dominates node i is the back edge of a natural loop (composed of

all the basic blocks that form that cycle in the graph) [Muc97]. Loops that contain

system calls or computed branches are filtered out because parallelizing such loops

would be problematic. Information about each natural loop, like the address of

the backward branch instruction, the branch target, the size of each loop, and the

list of basic blocks that make up the loop is stored in a software buffer called the

Loop Information Store (LIS) that is mapped into the address space of the target

process.

As the program executes, a hardware-based profiler, like the Hot Path Pro-

filer in [ZCT05], finds frequently executed loops, called hot loops. When a hot loop

is identified, hardware monitors measure the average number of cycles required to

execute one iteration of the loop. Once the baseline performance of the hot loop

has been measured, a dynamic recompiler is spawned in a spare hardware context

to attempt to parallelize the hot loop. The recompiler receives from the hardware

profiler the identification of the hot loop and it finds a more detailed analysis of

that loop in the LIS.

If the dynamic recompiler is able to parallelize the loop, it produces the

machine code of a parallel version and inserts it into a region of memory, called

the code cache, in the target process’ address space. It modifies the first instruction

of the serial (original) version of the loop to be a branch instruction to the parallel

version of the loop. On the next instance of the loop, the parallel version will be

executed.
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One of the first instructions in the new version of the loop is a fast fork

instruction. When this instruction is executed, a new thread is created on a spare

hardware context. This is not a traditional heavy-weight fork. No new stack is

created for the new thread and no registers are set, except for the program counter,

which is set by adding the current PC to the offset encoded in the fork instruction.

Because only the PC has to be set in the newly-created thread, the fork can be

very fast.

As the parallel version of the loop executes, its performance is monitored in

hardware. The average number of cycles per iteration of the parallel execution is

compared to the average number of cycles per iteration of the serial execution. If

the parallel version of the loop is not performing any better than the serial version,

the parallel version is eventually removed, as in [ZCT05]. After all the iterations of

a parallelized loop complete, parallel threads are terminated and serial execution

continues on the original thread.

2.4.2 Partitioning the Iteration Space

Loop iterations are distributed among threads in a round-robin fashion.

In our baseline implementation, this distribution is done at the granularity of

individual iterations. We also experiment with distributing groups of iterations

among threads, where each group is wrapped in a single transaction. The idea of

partitioning the iteration space among threads as groups of iterations is commonly

referred to as tiling and has been studied in part by [YF08]. The tile size is the

number of consecutive loop iterations grouped together and treated as a unit of

parallel work.

Large tile sizes are advantageous for three reasons. First, because multiple

iterations are wrapped in a single transaction, the overhead of transaction start

and commit is amortized. Second, loop induction code (code run before every

tile to bring the loop-carried register state up-to-date) can be compacted. The

simplest example of this is a register that is incremented by a fixed amount every

iteration. Suppose we have two parallel threads and a loop that iterates 100 times,

and the value in register r1 is incremented by one each iteration. With a tile size
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of one, before every iteration of the loop, r1 will be incremented by one to account

for the previous iteration that was executed on the other parallel thread. This will

result in 99 dynamic instructions of overhead. With a tile size of 10, the value in r1

can be incremented by 10 to account for the previous 10 iterations. This will only

result in nine dynamic instructions of overhead. Finally, the last advantage of large

tile size is applicable in cache configurations where false sharing is possible (e.g.,

for line-granularity transactional memory). If a loop’s memory access pattern is

such that a single cache line is written across multiple iterations, then false sharing

can arise, resulting in frequent transaction restarts that hurt performance. This is

an issue we directly address and will discuss in more detail later in this section.

Despite the many advantages of large tile sizes, there are a couple of disad-

vantages to consider as well. First, there is potentially more wasted computation

when transaction restarts or aborts are encountered. Speculative execution is

allowed to continue further and the consequence of a transaction that does not

commit is more computation that has to be rolled back. Second, with larger tile

sizes comes larger transactions. And with this, the possibility of transactional state

overflow increases.

Given all these considerations, each loop has an ideal tile size based on

factors such as iteration count, loop body size, induction code size, transactional

overhead cost, probability of early exit, and probability of transaction restart.

Finding a good tile size for each loop is important in getting the best performance

from loop parallelization. On the other hand, we find that, for most loops, tile

size does not significantly affect performance—other factors, like loop-carried de-

pendencies and transaction restarts, play a much greater role in determining the

performance of a parallelized loop (or whether it is even possible to parallelize a

loop). For most loops, the tile size is more useful as a parameter to fine-tune a

loop’s parallel performance.

Given the marginal performance improvements of finding optimal tile sizes

and the significant increase in the complexity of analysis required (which is contrary

to the design philosophy of our fast dynamic recompiler), we do tile size selection

in two ways. We can statically select a tile size that has been found to result in
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good performance, in general. For the results presented in this chapter, the tile

size we select is 16. Alternatively, we can use the dynamic optimization framework

to iteratively re-parallelize loops and sample performance to discover better tile

sizes.

Nevertheless, there is one simple compiler-based analysis that we find worth-

while to implement in our dynamic recompiler to aid in picking reasonable tile sizes.

We find that when transactional memory is implemented at cache line granularity,

loop parallelization often suffers from false sharing, which results in transaction

restarts that hinder performance. We now discuss how a simple compiler-based

analysis can be used to reduce this. To our knowledge, we are the first to propose

such a stride-based tiling strategy to reduce false sharing in parallelized loops.

Stride Pattern Detection To Reduce False Sharing

When transactional memory is implemented at cache line granularity, false

sharing becomes a concern. Consider the case of a loop that writes every other

element in an array of 32-bit integers (one integer per iteration) and a cache with

a 32-byte line size (each line holds eight integers). If each iteration is executed in

a separate transaction on a separate thread, in almost every iteration there will

be write-sharing of the same cache line. Since multiple writes to the same cache

line in different transactions will cause a transaction restart because the memory

system cannot effectively merge partial writes to cache lines, performance will

suffer greatly. In the above example, if we tile four loop iterations per transaction,

then the set of written cache lines can be completely disjoint among transactions,

resulting in no transaction restarts. This is illustrated in Figure 2.3.

To determine the smallest tile size that will result in the minimum trans-

action restarts due to false sharing, our dynamic recompiler analyzes the stride

patterns of all memory writes in each loop to be parallelized. The algorithm to

compute the smallest necessary tile size is simple. For every memory write i, the

least common multiple (lcm) of its stride, si, and the cache line size, L, is divided

by the stride, si. This is the smallest necessary tile size for that write. To find

the smallest tile size for the set of all n writes in the loop body, the least common
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for ( i = 0 ; i < 1024 ; i = i +2) {
A[ i ] = i ;

}

Figure 2.3: The above loop writes every other element in an array. When paral-
lelized with a tile size of one, cache lines containing the array are written by both
parallel threads. When parallelized with a tile size of four, the set of cache lines
written by each parallel thread is disjoint.

multiple of the minimum tile sizes of each write is computed. Thus, the formula is

Tile Size = LCM(
LCM(s1, L)

s1
, . . . ,

LCM(sn, L)

sn
) (2.1)

This serves only as a minimum tile size. If there are other reasons why an even

larger tile size would result in even greater performance, a larger tile size can be

selected, as long as it is divisible by this minimum tile size.

Following this procedure to pick a tile size that eliminates or reduces false

sharing is no guarantee that it will do so. Some stores do not follow stride patterns.

Also, more complex stride patterns are not detected by this technique. For some

sets of strided writes, it is impossible to find a minimum tile size that separates

cache line writes into disjoint sets. For example, if there are two writes in a loop

body, both with a stride pattern of one (i.e., the writes are consecutive), and when

the first write modifies word N in a cache line, the second write modifies word

N + 1 in a separate cache line, there is no tile size that will eliminate false sharing

(assuming the cache line size is greater than one word). Despite the limitations of
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this analysis, we find that the write behavior of most loops is regular, simple, and

amenable to our simple analysis.

This stride-based tile size picking algorithm does not work well when the

arrays are not aligned to cache line boundaries or when the loops that write arrays

do not begin at a cache line boundary. Some compilers may attempt to align

large arrays on cache line boundaries, but many do not. To address this issue, we

propose running the first few iterations of a loop in serial mode until a cache line

boundary is reached. To avoid over-complicating our dynamic recompiler, we elect

not to implement this feature. Because the version of GCC that we use to compile

our benchmark binaries does not align large arrays to cache line boundaries the

performance gains in our benchmarks when using our stride-based tile size picking

algorithm are minimal (2% for NAS and 4% for SPEC floating point). Since most

of the stride patterns in our benchmarks are very simple, and because tiling has

other benefits besides reducing false sharing, we find that it is sufficient to use a

tile size that is a multiple of the number of words in a cache line, regardless of

whether a strided memory access pattern is found.

2.5 Code Generation

This section describes the parallel code generation. There are a number of

necessary features to parallel code generation. Parallel code must be able to take

advantage of cross-iteration dependency checking (enabled by transactional mem-

ory). It must maintain the semantics of sequential execution, handling explicitly

what TM does not—data flow through registers. And it must have some way of

dealing with function calls in parallelized code.

2.5.1 Transaction Wrapping

The use of transactional memory in automatic parallelization is an impor-

tant focus of our study. The key benefit provided by TM is optimistic concurrency

among parallel threads in the face of statically-unknown memory sharing. While

loop-carried dependencies though registers can be determined statically, depen-
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dencies through memory cannot always be determined a priori. Some memory

sharing can be determined statically, but this can require a complicated and costly

analysis. The analysis is further complicated by the applications we are targeting—

single-threaded legacy binaries with no source code available. For all these reasons,

our dynamic recompiler analyzes loop-carried dependencies through registers but

does not explicitly analyze memory sharing among parallel threads, relying on the

TM system at runtime to detect and recover from memory violations caused by

inter-iteration memory sharing.

Every loop iteration (or consecutive group of loop iterations, if tiling is

used), is wrapped in an ordered transaction. The ordering of the transactions

match the original sequential ordering of the loop iterations. Because loop itera-

tions are distributed to parallel threads running on different cores in a round-robin

fashion, the distribution of ordered transactions among parallel threads is round-

robin. For example, if we have a tile size of two and we have two cores running

parallel threads labeled thread0 and thread1 and a loop that iterates six times,

then iterations zero and one will be wrapped in a transaction, tx0, and executed on

thread0. Iterations two and three will be wrapped in another transaction, tx1 and

executed in parallel on thread1. Finally, iterations four and five will be wrapped in

a third transaction, tx2, and execute after iterations zero and one on thread0. tx0

on thread0 will be required to commit first, tx1 on thread1 next, and tx2 on thread0

last. If a transaction ever reaches its commit point and there is an older (earlier)

transaction that has not yet committed, execution on the thread processing the

newer (later) transaction will stall and wait for all older transactions to commit.

Since the iterations (or groups of iterations) in every loop are ordered,

it makes sense to think about the ordered transactions in each loop instance as

a sequence of ordered transactions that start with transaction 0. Because the

notion of sequences of ordered transactions, as opposed to a global ordering of

all transactions, more intuitively maps to how we are using ordered transactional

memory, we have implemented our ordered transactional memory model to support

sequences of ordered transactions. At every loop instance, a new sequence of

ordered transactions is started, and every transaction wrapping an iteration (or
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group of iterations) is a member of that sequence.

We use a special instruction that marks the beginning of a sequence of

transactions, BTS (Begin Transaction Sequence). This instruction is inserted in the

prologue of the parallel loop and serves to inform the hardware-based transactional

memory manager (TMM) that a new ordered sequence of transactions is about to

start. To signal the TMM that a sequence of transactions should come to an end,

the ELTX (End Last Transaction) instruction is used. This instruction not only

marks the end of a sequence of transactions, but also serves to mark the end of

a particular transaction in the sequence of transaction (the last transaction). An

ELTX instruction is placed in the loop epilogue—a block of code executed by the

primary thread after all the iterations of the loop have completed. In the following

sections we discuss what other instructions compose a loop epilogue.

Opening Transactions

Individual transactions are started with the BTX (Begin Transaction) in-

struction; this signals the TMM that a new transaction is starting. One of these

instructions is executed at the beginning of every iteration. In our TM model, as

in most TM proposals, register state is saved when a transaction is begun in case

the transaction fails to commit and has to be rolled back. We assume a shadow

register file for this purpose. Memory instructions executed after the beginning of

a transaction are said to execute in the transaction and follow the transactionally-

extended cache coherence protocol (transactional bits are marked as appropriate

and dirty memory is prevented from leaving the local cache).

Closing Transactions

Transactions can end in three ways. The most common way a transaction

ends is by committing. When a transaction commits, the memory state written

inside the transaction is made available to other threads. In the case of our cache-

based TM implementation this means that cache words marked transactionally-

written can be copied to private caches of other cores when requested, or written

back to the L2 if evicted. Most transactions commit when they reach an ETX
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(End Transaction) instruction and all older transactions have committed. If an

ETX instruction is reached and there are uncommitted older transactions, the

thread executing the transaction is stalled until all older transactions commit. An

ETX instruction is executed at the end of every loop iteration (after the branch to

a new iteration has been taken). The other way that a transaction may successfully

commit is by the ELTX instruction that we already discussed. This instruction

does the same thing as the ETX instruction, but also signals the end of a sequence

of transactions. Whereas an ETX instruction is inserted at the end of the loop

after the branch to a new iteration, an ELTX instruction is inserted in the loop

continuation (in the loop epilogue).

The second way that a transaction may end is by an explicit abort. We

implement this functionally in the ATX (Abort Transaction) instruction. This

instructs the TMM to invalidate all the local cache words marked as transaction-

ally written, effectively rolling back the memory state of the transaction (and the

register state via the shadow register file). Explicit aborts also obey the trans-

action ordering semantics—no transaction may abort unless all older transactions

have committed. Otherwise, speculative transactions with invalid data could cause

aborts. ATX instructions are inserted down loop early exit paths. An early exit

path is the path taken when a loop exits at a point different from the loop con-

tinuation. A C/C++ break instruction in the middle of a for loop is one example

of an early exit. The ATX instruction is one of a few instructions inserted on

all early exit paths that serve to prepare the process for the transition back to

single-threaded execution.

The third way that a transaction may end is by a transaction restart.

Restarts are triggered when a transactional memory violation is discovered (for

example, if it is discovered that a store instruction in an older transaction wrote

to an address that a load in a younger transaction read from). Violation detection

is built into the cache coherence protocol and happens eagerly (during execution

of the violation-causing memory instructions) instead of lazily (at the end of the

transaction). This means that a transaction may restart at any time during ex-

ecution. The semantics of a restart are virtually identical to those of an explicit
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abort: cache words marked transactionally-written are invalidated and register

state is restored. Execution then starts again from the BTX instruction that be-

gan the transaction.

2.5.2 Forking and Halting Parallel Threads

We now describe when and how parallel threads are created and destroyed.

First, we define the original thread as the persistent, primary thread that will exe-

cute the target process in both single-threaded mode and parallel mode. We define

parallel threads as those threads which are created to execute parallel portions of

the code. During single-threaded execution, only the original thread executes;

during the phases of parallel loop execution, the original thread and the parallel

threads each execute some portion of the iteration space of the parallelized loop.

When transitioning from single-threaded execution to parallel execution, parallel

threads are forked. When transitioning from parallel execution back to single-

threaded execution, parallel threads are destroyed. We discuss the forking process

in Section 2.4.1; now we describe thread destruction.

Parallel threads are halted when a sequence of transactions comes to an

end, which happens when either an ELTX or ATX instruction commits. When

this happens, the PC of the original thread is set to the instruction immediately

following the instruction that ended the transaction sequence. Note that an ELTX

or ATX instruction may be executed in a parallel thread. But single-threaded

execution will always resume after this instruction on the original thread; and all

parallel threads, including (potentially) the thread that executed the ELTX or

ATX instruction, will be halted.

After an ELTX instruction, the original thread executes the rest of the loop

epilogue, and execution branches back into the single-threaded code immediately

following the single-threaded version of the loop. After an explicit abort instruction

(ATX) down a loop early exit path, the original thread re-executes that last partial

loop iteration or group of iterations (if loop tiling is used) before branching back

to serial code. This is necessary because the transaction abort will throw away

the memory state of the partial last iteration or group of iterations. The reason
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for ( i = 0 ; i < 4 ; ++i ) {
B[ i ] = A[ i ] ;

i f (A[ i ] == 0) {
break ;

}
x = A[ i ] ;

}

Figure 2.4: C code to demonstrate loop early-exit procedure.

why we cannot simply execute an ELTX instruction and commit transactional

state down an early exit path like we do for the loop continuation has to do with

preserving correct register state. As we discuss in Section 2.5.3, register state

is saved to memory (spilled) at the end of every iteration. Register state can

then be read from memory (filled) by the original thread in the epilogue in order

to capture the register state of the last iteration of the loop, regardless of which

parallel thread executed the last iteration. The problem is that some register values

may be incorrect on an early exit. Loop-carried register-bound dependencies will

be correct because they are explicitly computed (described in Section 2.5.3), but

some register values that are written in the loop body but not loop-carried may

be incorrect.

To demonstrate this, consider the following example. The C source code for

this example is in Figure 2.4. Suppose this loop is executed with one iteration per

transaction and there are two parallel threads. Also, suppose that the compiler

binds both i and x to registers. Iterations zero and two will be executed on the

original thread and iterations one and three will be executed on the parallel thread.

Note that the last iteration of the the loop will execute on the parallel thread.

The register holding the value of i is loop-carried, so the dynamic recompiler will

generate induction code for it (more on this in Section 2.5.3). This will mean

that before all iterations, except the first, ++i will be executed to bring this loop-

carried register value up-to-date. When iteration three begins, the register value of
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the register bound to i will be two, by virtue of the induction code, and the value

of the register bound to x will be A[1] since the last iteration to execute on this

thread would have been iteration one. When iteration three ends, both registers

will have the correct values. But suppose the early exit is taken from this loop in

iteration three. i will be correct, but x will not be correct (it will be A[1] instead

of A[2]).

This is why, on an early exit, the original thread must re-execute the last

partial iteration—to capture the correct register state. It will also serve to create

the correct memory state (since the memory state of the last partially-executed

iteration would have been erased by the transaction abort). The original thread

will fill the register state from the last successfully committed transaction and re-

execute the last partial iteration in single-threaded mode. In our example, this

would mean that the original thread would load the register state as it was at the

end of the third transaction (after iteration two). The value of i would be two and

the value of x would be A[2]. Then iteration three would be re-executed, setting

B[3] to A[3] and incrementing i to three.

2.5.3 Data Flow Through Registers

Dependencies and data sharing among iterations through memory are han-

dled by the transactional memory system at runtime, but dependencies and data

sharing through registers must be analyzed by the dynamic recompiler and handled

explicitly in the parallelized code. Dependency analysis involving only registers is

significantly less complex than memory analysis, but there are several challenges

to generating parallel code out of sequential. Loop-carried dependencies through

registers are problematic because cores do not share registers. Also, on loop exit,

the continuing thread must see a single register file with the latest update to each

register, even though the last write could have occurred in any core. The lat-

ter issue requires register value updates when (1) register values are conditionally

written, or (2) when the last iteration of the loop does not execute on the original

thread.
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1 s t o r e r1 , 0( r2 ) // Mem[0+ r2 ] <= r1

2 add r2 , 4 , r2 // r2 <= r2 + 4

3 mult r4 , 5 , r2 // r4 <= r2 ∗ 5

4 load r1 , 512( r2 ) // r1 <= Mem[512+ r2 ]

5 add r3 , r1 , r2 // r3 <= r1 + r2

6 add r5 , r2 , r3 // r5 <= r2 + r3

7 add r6 , r3 , r6 // r6 <= r3 + r6

Figure 2.5: Pseudo-assembly code to demonstrate induction code generation.

Loop-carried Register Dependencies

We can manage most loop-carried dependencies by treating the dependent

computation as induction code. When the dynamic recompiler analyzes a loop

before parallelization, in addition to building a control-flow graph for the loop,

it builds a data-flow graph to model the flow of data though registers. A list of

registers that are loop-carried is generated by identifying all registers that are read

before being written in the loop body. Induction code is extracted from the loop by

following the data-flow graph backwards, starting at the last writes to each loop-

carried register, including every instruction that is necessary to compute the new

values of the loop-carried registers. This induction code is added to the beginning

of the loop body to generate the correct live-ins.

Consider the pseudo-assembly code in Figure 2.5, representing a portion of

a loop body. Registers r1, r2, and r6 are loop-carried. The last write to register

r1 is on line four (the load instruction); this instruction is data-dependent on

instruction two. Register r2 is last written in instruction two. And register r6 is

last written in instruction seven; this instruction is data-dependent on instruction

five, which is data-dependent on instructions two and four (which is dependent on

instruction two). Therefore, the induction code would include instructions two,

four, five, and seven. Executing these instructions in this order brings all the loop-

carried registers up-to-date (i.e., accounting for the previous iteration executed in

another parallel thread).
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Conditionally-written Registers

Registers written in conditionally-executed basic blocks are problematic for

two reasons. When they are loop-carried registers, the conditional statements

can cause significant induction code expansion. For non-loop-carried registers,

correctly identifying the last write to the register is difficult. In both cases, we

exploit the transactional memory system’s facility of guaranteeing correct ordering.

To keep the induction code small, we do not include control flow in induc-

tion code. Instead, both loop-carried registers and non-loop-carried conditionally-

written registers are passed through memory and no induction code needs to be

generated for them—transactional memory will ensure correct ordering. This

is enabled though the use of spill (store) and fill (load) instructions. For each

conditionally-written register, the dynamic recompiler inserts a spill instruction at

the end of the basic block(s) where the register is conditionally written. If the

register is loop-carried as well, a fill instruction for that register is inserted at the

beginning of the loop. For all conditionally-written registers, a spill instruction

is inserted in the loop prologue (to be executed before any iterations) and a fill

instruction is inserted in the loop epilogue and down early exit paths. For loop-

carried conditional register dependencies that are infrequent, this allows the code

to typically execute in parallel. When the dependencies are frequent, there will

be frequent restarts, and hardware monitors will recognize our failure to achieve

speedup on the loop; this will cause the loop to revert to the original code.

For a non-loop-carried conditionally-written register, this mechanism serves

to provide the original thread with the correct register value after loop termi-

nation (and parallel thread termination), regardless of which thread may have

last executed the conditional block that wrote the register. For a loop-carried

conditionally-written register, this mechanism serves to safely forward the loop-

carried register value when necessary. Parallel execution is optimistic in that

subsequent iterations running on parallel threads never wait for the forwarded

value. Only when the conditional code is actually executed and the value becomes

loop-carried is the later iteration held up. There is no need for any additional

mechanism to detect these cases and recover when they arise because the TM sys-
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1 for ( i = 0 ; i < 1000 ; ++i ) {
2 o ld count = count ;

3 i f (A[ i ] == ’ ! ’ ) {
4 count++;

5 l a s t = i ;

6 }
7 }

Figure 2.6: C code to illustrate two kinds of register writes. Assuming that the
compiler binds count and last to registers, the registers representing these variables
are conditionally-written. count is loop-carried and last is not.

tem will detect the sharing (at the spill address) and restart the newer transaction

that had run ahead optimistically without the forwarded value.

The C code in Figure 2.6 illustrates both kinds of conditionally-written

registers. This loop iterates over a character array and counts the number of

exclamation marks found, recording the location of the last mark for later reference.

Assuming the variables count and last are bound to registers, last represents a

non-loop-carried conditionally-written register and count represents a loop-carried

conditionally-written register. The dynamic recompiler will insert two register spill

instructions at the end of the basic block where count and last are conditionally

written (after line five) to store the value of count and last to memory. If the

last iteration where last is updated is executed on a parallel thread, that thread

can be safely terminated and the correct value of last filled from memory by the

original thread after loop termination. The value of count is filled from memory at

the beginning of every iteration. In the common case, where the last character was

not an exclamation point and the conditional code was not executed, the private

caches of all parallel threads will read-share this value and the same value will be

read every time. When the conditional code is executed and the new value of count

is spilled to memory, parallel iterations that follow that iteration will be restarted

and will then read the correct value for count.

Another type of control-flow (in addition to conditional control-flow) that
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complicates register dependence handling occurs in nested loops. If a loop-carried

register dependence is in a nested loop or depends on code in a nested loop, then

induction code would have to include the nested loop; however, this is undesirable

because it significantly increases the overhead. Using the spill/fill technique that

we use for conditional code would hurt performance as well. The spill/fill tech-

nique performs well for most conditional code because, for infrequently executed

conditional code, transaction restarts caused by the loop-carried dependence are

rare. Forwarding loop-carried register values through spills and fills in code that is

guaranteed to execute every iteration results in frequent transaction restarts, which

drives performance down. As a result, we do not parallelize loops with induction

code (for an outer loop) inside nested loops.

Register State of the Last Iteration

We must also identify the last writer of registers that are not conditionally

written. This is an easier problem, but may still involve data transfer. Unlike

conditionally-written registers, at loop termination we know exactly which thread

had the correct, most up-to-date value of the non-conditionally-written registers:

the thread that executed the last iteration of the loop. This allows us to track

register values without any restart-inducing data sharing. At the end of every loop

iteration, register state is spilled to a thread-specific memory location; no cache

lines have to be write-shared by different threads for this. Upon loop termination,

after the parallel threads have been halted, the original thread fills the register

state from the memory location of the thread that executed the last loop iteration.

The dynamic recompiler inserts the fill code in both the loop epilogue and the

early exit code. When executed on an early exit, the register state of the last

full iteration (before the iteration that took the early exit) is loaded because the

transaction abort that is executed on an early exit causes transactional state to

be rolled back. This sets the state of the original thread to a place just before

the iteration that will take the early exit. Recall from Section 2.5.2 that after an

early exit is taken, the original thread re-executes the last iteration of the loop; so

loading the register state as it was just before the last loop iteration is necessary
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to prepare for this re-execution.

We experiment with two kinds of spills and fills to preserve correct register

state. The first kind of spill/fill is a single register spill/fill, similar to the kind

we use for conditionally-written loop-carried registers. Using this kind of spill/fill

requires finding all the written (live-out) registers and inserting individual spill/fill

instructions for each. Finding written registers is straightforward, but the runtime

overhead of executing many spill/fill instructions is costly. The number of registers

that need to be spilled and filled could be reduced if we knew which registers were

actually live-in to the code following the loop. However, this kind of live-in analysis

at the machine code level turns out to be difficult (especially in the presence of

computed branches) and costly (because many potential execution paths have to

be explored). Instead of trying to discover all the registers that are live-in to the

code following the loop or finding all the registers that are written in the loop and

inserting spill/fill code for each one of them, we use register file spill/fill code that

stores and loads all the registers to/from memory. These instructions consume

more memory bandwidth but cut down on the dynamic instruction count and

allow the dynamic recompiler to execute faster, as it does not need to perform a

more complicated register analysis. More complex spill/fill instructions could be

introduced to improve performance, like spill/fill instructions that take a bitmap

specifying which registers to store/load. Such instructions exist in the ARM ISA.

Loads in the Induction Code

Load instructions in the induction code pose a unique problem. Since the

induction code represents a portion of the instructions that execute in the prior

iteration, including a load instruction essentially reorders memory operations (if

the loop body contains a store instruction)—because the load may execute after

other memory operations in the previous iteration that it should execute before.

For example, consider the C code in Figure 2.7. First, A[i+1]−>weight is

loaded. Then the value of last , which is A[i]−>weight, is stored to B[i]−>weight.

last is a loop-carried dependence and, assuming it is bound to a register, it

is a loop-carried register dependence that can be handled with induction code.
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l a s t = A[0]−>weight ;

for ( i = 0 ; i < 1000 ; i++) {
tmp = A[ i +1]−>weight ;

B[ i ]−>weight = l a s t ;

l a s t = tmp ;

}

Figure 2.7: C code that iterates over two arrays of pointers to structs (that have
a weight field) and copies the weights in one set of structs to the other set.

The induction code would include the load instruction and would essentially load

A[i+1]−>weight into last . But suppose that A[i] and B[i−1] point to the same

struct. If the previous iteration has finished execution, the induction code may

load the new weight of the struct instead of the old weight, which is incorrect

because, in serial execution, the old weight would have been saved in last (since

the load should occur before the store).

Because memory instructions in induction code can cause memory ordering

errors, all loop-carried registers that depend on a load should be checked to ensure

that the correct value was loaded. To avoid any serialization of parallel code, we

place the check at the end of every transaction, before the transaction commit. For

every loop-carried register that depends on a load, the live-in state of that register

at the beginning of the transaction is checked against the live-out state of that

register at the end of the previous transaction. If the register values do not match,

the correct register value is loaded and the transaction restarts. Since the check

happens just before transaction commit and part of the live-in register state is being

compared to the live-out register state of the previous transaction, there needs to

be a mechanism to store register state at the beginning of the transaction. But

this is already a requirement of the transactional memory system—register state

has to be saved in case the transaction is aborted/restarted and transactional state

rolled back.

Fortunately, cases where a loop-carried register depends on a load (in loops
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that contain store instructions) are infrequent. But for those registers that are af-

fected, the dynamic recompiler inserts code before transaction commit to compare

the register values.

2.5.4 Function Calls

Function calls in loops create a number of challenges for parallelization.

Recall that parallel threads are created with a lightweight fork instruction that

does not create a new stack. So parallel threads share a common stack space in

memory. This works well for easily sharing and using stack data, like local variables

in the scope of the loop, but difficulties arise when multiple parallel threads try to

grow the stack and create new local variables, as is necessary when a function is

called. If unchecked, threads would overwrite the data of peer threads.

Function calls are also problematic because control flow leaves the carefully-

analyzed loop code and enters serial code. Not only would we have to ensure that

this code is parallelization-safe, but we may also need to modify this code to

support parallelization. If a called function calls other functions, even if this rarely

happens (e.g., to handle corner cases or error conditions), then those functions

would need to be analyzed and potentially modified as well. The amount of code

that must be analyzed and transformed to parallelize a simple loop can grow very

quickly when all called functions must be explored.

We also have to ensure that every function returns to the call site. While

high-level programming languages can provide this guarantee and a compiler may

be easily able to assert this, machine code does not provide these guarantees and

analysis at this level is not straightforward. For example, at the machine code

level a function call usually takes the form of a branch instruction that has the

side-effect of saving the next PC value in a given register; and a function return

is implemented as a branch instruction whose address is taken from a register. By

convention, most assembly programmers and compilers use a standard register to

save the return value, though this is not required; and there are some cases where

this convention is not followed. Also, there is no requirement at the machine code

level that the register containing the return address is not modified, or even that
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the same register be used for the function return. This means that there is no

guarantee that a function ever returns or that it returns to the call site. Our

dynamic recompiler must check for these possibilities. But this analysis becomes

much more difficult if the return address is saved to memory—which is typically

done when another function is called. Ensuring that the return address is not

modified requires a difficult and expensive alias analysis to check that no other

writes modify the address containing the return register value.

These problems can be solved by inlining functions. An inlined function is

not allocated its own stack frame—so we do not have to deal with parallel threads

allocating new stack frames. The second problem is solved because as the dynamic

recompiler analyzes and prepares a function for inlining, it ensures that it returns

to the call site.

Our recompiler inlines one level of function calling. Any function calls

within called functions are replaced with early exit points that facilitate the tran-

sition from parallel execution back to serial execution at the point of the function

call site. This does not completely prevent the problems springing from having a

shared stack, because parallel threads will still be using the same stack memory

for the inlined functions. However, the transactional memory system will prevent

violations on the ordering of memory operations to the shared stack—sequential

semantics will still be preserved, though parallel performance may suffer a little.

Function inlining allows us to easily modify a copy of the function intended for

parallel execution without making changes to the original copy of the function

intended for sequential execution.

This also allows us to guarantee proper function return and the correct han-

dling of the return address. We must ensure that after parallel execution completes,

a return address pointing to a call site in parallel code is not followed. Therefore,

the address of the call site in the serial code must be saved to the return address

register. To accomplish this, the dynamic recompiler transforms the function call

into a sequence of instructions that (1) explicitly saves the address of the original

call site to the return register specified in the original branch instruction and (2)

branches to the inlined copy of the function in the parallelized loop code. Likewise,
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Table 2.1: Architecture Detail

Cores 2, in-order Shared L3 cache 4M, 2 way
Total Fetch Width 4 L1-L1 transfer 14 cyc
Int/FP regs/core 100/100 Load-use, L1 hit 2 cyc
I cache/core 64k, 2 way Load-use, L2 hit 16 cyc
D cache/core 64k, 2 way Load-use, L3 hit 58 cyc
Shared L2 cache 512k, 2 way Load-use, L3 miss 158 cyc

the return instruction is transformed into a fixed branch back to the call site in

the parallel loop code.

2.6 Experimental Methodology

This initial study of the use of hardware transactional memory to facilitate

automatic runtime parallelization of legacy code is in some respects a feasibility

study to determine to what extent we can expose the available parallelism. For

that reason, we keep our execution model relatively simple—we assume two cores.

One core runs all the serial portions of code as well as one of the parallel threads in

parallelized code regions. The other core executes parallel threads when available

and the dynamic compiler thread (which only runs about 3% of the time). The

maximum expected parallel speedup is 2.0.

We have chosen to model low latency cache-to-cache transfers: 14 cycles.

We have done so for two reasons. First, we feel that these latencies will drop

significantly as chip designers get better at designing CMPs with more hardware

parallelism. The old shared-bus model is showing its age, not originally being

designed with CMPs in mind. As more sophisticated core interconnects are de-

veloped, cache-to-cache transfer latency will drop. Second, we find that for any

speculative parallelization technique, including our own, if the memory sharing

among parallel threads is high, as it usually is in most integer applications, high

cache-to-cache transfer latency can degrade performance.

See Table 2.1 for more details of our processor architecture. In the following

section, we describe the architecture of our transactional memory model.
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2.6.1 Transactional Memory

We model a generic transactional memory system. The only relatively un-

common characteristic that we require is the support for ordered transactions.

Many proposed transactional memory systems view all concurrent transactions

as equal; however, to preserve program order we require preferential treatment

for transactions executing earlier (less-speculative) loop iterations. The order-

ing of transactions is considered in decisions regarding which transaction(s) to

restart when a memory violation occurs, and in restricting when a transaction

can commit. The modifications necessary to add ordering among transactions are

straightforward and a number of transactional memory proposals support ordered

transactions [HWC+04, CTTC06, PCT09].

We model our transactional memory system at word granularity because

we find that memory violation detection at cache line granularity results in poor

performance for many loops due to frequent transaction restarts caused by false

sharing. Consider the case of a very simple loop that writes successive elements

in an array of integers. If each iteration is wrapped in a transaction and executed

concurrently, conflict detection at cache line granularity would result in false shar-

ing as each parallel thread tries to write to different parts of the same cache line.

Because of the significant performance advantages offered by violation detection at

word granularity, we assume this granularity. Note that our parallelization tech-

nique is compatible with cache line granularity violation detection and will still

yield a speedup, just not as great. A further discussion of some of the trade-offs

of granularity and a performance comparison can be found in Section 2.7.2.

In trying to model as generic a transactional memory system as possible,

we assume a TM system that is similar to the simple original model proposed by

Herlihy and Moss [HM93]. Like many newer TM proposals, we model the buffering

of transactional state in the local caches instead of a special transactional buffer.

The traditional MESI cache coherence protocol [PP84] is extended to support

memory violation detection (as is done by Hammond et al. [HWC+04] and Porter

et al. [PCT09], for example).

A few bits are added to cache lines to support violation detection via the
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cache coherence protocol: a sub-word-write bit, a stale bit, and three bits per

word: a transactionally-written bit (TXW), a transactionally-read bit (TXR), and

an unsafe bit. If line granularity is used, only a stale bit, a single TXW bit, and

a single TXR bit are necessary. The sub-word-write bit is used to prevent false

sharing. It is set if less than a word is written. If this bit is set on a cache

line and if two parallel threads write to the same line or an older transaction

writes to a line that a newer transaction reads from, a violation is asserted and

the newer transaction is restarted. If the sub-word-write bit is not set, then false

sharing WAW and RAW dependencies do not pose a problem and do not trigger

a transaction restart. The stale bit is set on a line that an older transaction reads

from and a newer transaction writes. The read value is only good for the duration

of the transaction and the line is invalidated on transaction commit. The TXW and

TXR bits are set on words (or lines if line-granularity is used) that are written or

read (before ever being written), respectively, in a transaction. If a word is written

in an older transaction and read (before being written) in a newer transaction, a

violation is asserted and the newer transaction (and all transactions newer than

it) are restarted. The unsafe bit is set when another thread writes to a word in

a shared line. A later access to a word marked with an unsafe bit results in a

violation and transaction restart. It is out of the scope of this chapter to explain

all the details of this cache coherence protocol. For a more detailed explanation

see Porter et al. [PCT09].

2.6.2 Simulation and Benchmarks

We now describe our simulation methodology and the benchmarks we use

to evaluate the performance of runtime parallelization.

To avoid program start-up behavior, we simulate steady-state execution well

into the program. Therefore, we assume that prior to the measurement interval,

the one-time static program analysis has completed, and that loops that our system

would try to parallelize but fail to achieve speedup have already been identified

and rejected. The mechanics and efficiency of the code cache uninstallation process

has been shown in prior work (e.g., Zhang et al. [ZCT05]). Thus, our results are
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somewhat optimistic; but, in that prior work, it was found that after an initial

warm-up, the code changed very infrequently.

To measure the effectiveness of our parallelization technique, we implement

a dynamic recompiler to parallelize loops in binaries compiled for the Alpha archi-

tecture. At its core is a disassembler and transactional memory-aware parallelizing

compiler. For each loop it is given to parallelize, it generates a parallel version of

that loop in Alpha machine code. Built around its core are two interfaces: a stand-

alone interface so that it can be run as a stand-alone executable in order to aid in

debugging, and an interface to the dynamic optimization framework, allowing for

efficient communication of parallelization tasks. The dynamic optimization frame-

work passes it hot loops as it detects them, and the dynamic recompiler passes

back parallel versions of those loops. The dynamic recompiler was not designed to

be a robust full-featured compiler, but to be very small and lightweight, allowing

it to quickly recompile loops at runtime.

We extended SMTSIM [Tul96a], an event-driven Chip Multiprocessor

(CMP) and Simultaneous Multithreading (SMT) processor simulator, to support

transactional memory and a dynamic optimization framework. The simulator is

configured as a CMP and executes Alpha binaries, including our dynamic recom-

piler compiled for the Alpha ISA.

We focus on legacy code, and in particular we want to address two types of

applications—those for which thread-level parallelism is clearly available but the

code was compiled single-threaded to run on legacy processors, and those clearly

written for single-threaded execution, but some thread-level parallelism may still

be available. We use NAS 3.3 benchmarks to represent the former (except dc which

does not compile properly for Alpha OSF/4 using GCC) and all the SPEC2000

CPU floating-point benchmarks to represent the latter. All the benchmarks were

compiled with GCC 4.3 at optimization level -O2. Even when thread-level par-

allelism is clearly evident in the source code, we find that compiling for a single

thread at this high optimization level seriously obfuscates that parallelism in many

cases.

The NAS benchmarks are each fast-forwarded one billion dynamic instruc-
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tions before detailed simulation in order to skip over program initialization. A

SimPoint [SPHC02b] analysis is performed for each SPEC benchmark to find rep-

resentative points of execution for detailed simulation. The A inputs are used

for the NAS benchmarks and the reference inputs are used for the SPEC bench-

marks. For the SPEC benchmarks that have multiple reference inputs, the first

(alphabetically ordered) inputs are used.

For the results we present in this chapter, loops are parallelized into two

threads and the default tile size is 16.

2.7 Results

The performance gains of our parallelization with constant tile size are

presented in Figure 2.8 (the dark bars). The average speedup among the NAS

benchmarks is 1.36 and the average speedup among the SPEC FP benchmarks

is 1.34. The performance of some benchmarks, like mg, mgrid, and swim, came

close to the theoretical limit of 2X speedup. Others, like facerec and fma3d (to

name a couple), see no performance gain. In general, despite the challenges of

identifying, transforming, and exploiting parallelism in serial code at runtime, we

are successful, to some degree, in a significant percentage of the applications.

There are three primary reasons why some benchmarks cannot benefit from

parallelization. First, in some cases, there is an inherent lack of thread-level par-

allelism. In other cases, thread-level parallelism is present, but it is not expressed

in a way that is amenable to our parallelization technique. For example, a re-

duction [PE95], like a loop that sums up values in an integer array, has inherent

parallelism; but if it is not coded carefully to express that parallelism, a critical

loop-carried dependency will be created between every consecutive iteration of the

summation. Since our dynamic recompiler operates at a very low level, it is not

always able to recognize and transform every expression of parallelism. Third,

and most importantly, some optimizations (like software pipelining) and machine

code generations during original compilation obscure or impede subsequent paral-

lelization. Thread-level parallelism that is evident in the high-level language of the
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Figure 2.8: Speedups of NAS and SPEC FP benchmarks. The dark bars and
data labels show performance when the tile size is fixed at 16. The light bars show
performance when an optimal tile size is selected for each loop.

source code may not be obvious or may not exist in the optimized single-threaded

binary. The poor performance on ep is clearly an example of this case.

The number of parallelized loops in each benchmark that contribute to over-

all speedup vary quite a bit. Some benchmarks, like cg, mgrid, and swim, contain

only one or two important parallelized loops that account for the performance gain.

Other benchmarks, like lu, ua, applu, and art, have eight or more important loops

that contribute to their performance gain. The benchmark ua has 13 important

loops that each contribute a performance gain of a few percent.

2.7.1 Tile Size

Figure 2.9 demonstrates how variance in tile size affects performance. For

benchmarks in both suites, some degree of tiling is necessary in order to obtain the

highest performance gains; however, we find that tiling is not absolutely necessary

to see reasonable performance gain. The best tile size for NAS benchmarks is 16,
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Figure 2.9: Speedup across various tile sizes.

while the best tile size for SPEC FP benchmarks is eight. As tile size increases

much beyond 16, performance decreases in spite of the decreasing parallelization

overhead. Because transactions are larger, transaction restarts are more costly

because more worthless instructions are executed—instructions whose effects will

be undone. Also, large tile size creates a load imbalance among parallel threads

during the last iterations of the loop.

When the tile size of each loop is varied and the best-performing parallel

loop version is selected, the distribution of ideal tile sizes is highly distributed: 19%

of the time the best tile size is one, 9% of the time it is two, 9% of the time it is four,

15% of the time it is eight, 8% of the time it is 16, 14% of the time it is 24, 11%

of the time it is 32, and 15% of the time it is 64 (the complete distribution of best

tile sizes is given in Figure 2.10). These results imply that for best performance,

the dynamic optimization framework should attempt parallelizations at a variety

of tile sizes. Conversely, if loop analysis can find the optimal tile size, it could

reduce the number of parallelized loop versions to be tried. Event-driven dynamic

compilation has been shown to be quite effective at just this kind of trial-and-error

optimization [ZCT06] due to the very low overhead of recompiling threads that

run in another core.

The light bars in Figure 2.8 show speedup when the optimal tile size per
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loop is selected. The average NAS benchmark speedup is 1.45 (a 9% performance

improvement) and the average SPEC FP speedup is 1.38 (a 4% performance im-

provement). The performances of most benchmarks improve very little when op-

timal tile sizes are selected on a per-loop basis instead of a single static tile size.

However, a few benchmarks, like cg and galgel, show a more significant perfor-

mance improvement. The performance of applu is slightly lower due to a negative

interaction between some of the loops of different tile sizes (minor second-order

caching effects) that our loop selection mechanism is not able to detect a priori.

In all of the results presented so far, parallel loops of various degrees of

nesting are installed. We experiment with two more constrained selection policies.

In the first of these policies the dynamic optimization framework selects only par-

allelizable innermost loops. Loops that have no nested inner loops are included

in this selection. In the second policy, only outermost loops are selected. Loops

that are not nested within any other loops are included in this selection. Based on

how we have defined these policies, loops that are not nested in any other loops

and do not contain any nested loops themselves are selected in both policies. Note

that there are some loops that fall in neither category: loops that are contained

within another loop and have a nested inner loop. We compare the performance

of parallelization under these two policies and our unconstrained policy.

The performance results are given in Figure 2.11. For most benchmarks,

parallelization of the innermost loops results in better performance than paral-

lelization of the outermost loops. There are three reasons why innermost loops

are generally better candidates for parallelization: the thread-level parallelism our

technique exploits most readily is fine-grained; fine-grain thread-level parallelism is

more abundant than coarse-grain thread-level parallelism in the code we run; also,

because the size of outer loops are greater, the restart cost of a failed transaction

is greater. Larger loops have a greater potential for inter-iteration dependencies,

resulting in more transaction restarts that hurt parallel performance. This figure,

then, shows two key results. If we are trying to really minimize the complexity of

the dynamic recompiler threads, restricting it to innermost loops is very effective.

However, there is a reasonable gain to considering all loops as candidates.
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Figure 2.10: This shows, for each benchmark, what fraction of parallel loops in
that benchmark have the best performance at various tile sizes. Those benchmarks
with no bars are benchmarks where no loops could be effectively parallelized.
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Figure 2.11: Speedups of NAS and SPEC FP benchmarks under different loop
selection policies: innermost loops only, outermost loops only, and unconstrained.

Figure 2.12: Speedup across various tile sizes under different loop selection
policies.
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The results in Figure 2.11 show performance under different loop selection

policies with the tile size fixed at 16. But to see how the loop selection policy affects

performance at various tile sizes, we simulate execution under the three policies

at various tile sizes. The results are shown in Figure 2.12. Just as parallelizing

innermost loops proves more profitable at the tile size of 16, it is more profitable at

all other tile sizes as well (at least among the reasonable sizes we test). From this

graph we also see that larger tile size more quickly results in worse performance

for outermost loops. This is because outermost loops are typically larger: tiling

does marginally less to amortize parallelization overhead (relative to smaller loops);

and because dependencies are more likely, more execution is wasted in restarted

transactions even when tile size is relatively small. Most importantly, from these

results we observe that the unconstrained loop selection policy consistently yields

better performance across all tile sizes.

2.7.2 TM Cache Granularity

All of the above results have been with the transactional memory system

configured at word granularity instead of cache line granularity. Word granularity

is more expensive, but yields performance results even on traditional transactional

code [CMT00]. We explore how that granularity affects performance.

Figure 2.13 compares performance across all the benchmarks when trans-

actional memory is implemented at word granularity verses cache line granularity.

The average speedup across the NAS benchmarks drops from 1.36 with word gran-

ularity to 1.16 for line granularity; and the average speedup across the SPEC

floating-point benchmarks drops from 1.34 to 1.21. While TM at word granularity

increases data cache complexity and size, it dramatically increases parallel perfor-

mance. TM at cache line granularity causes significant false sharing, both write-

after-write (WAW) false sharing and read-after-write (RAW) false sharing. This

increases the transaction restart frequency, which reduces parallel performance.

When TM is implemented at cache line granularity, small tile size results

in more frequent false sharing. At higher tile sizes, some false sharing can be

eliminated as parallel threads are more likely to operate on data in disjoint cache
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Figure 2.13: Speedups of NAS and SPEC FP benchmarks. The light bars show
performance when TM is implemented at word granularity. The dark bars and the
data labels show performance when TM is implemented at cache line granularity.
The tile size in both cases is 16.

Figure 2.14: Speedup across various tile sizes. TM is implemented at cache line
granularity.
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lines. This effect is highlighted in Figure 2.14. Here performance is worse at lower

tile sizes. Across all tile sizes the average performance of the NAS benchmarks is

distinctly less than the average performance of the SPEC FP benchmarks. This

is not something we observe at word granularity. This suggest that the NAS

benchmarks are more prone to false sharing.

Despite the expected frequency of false sharing between iterations of legacy

code compiled for single-threaded execution, we still see significant (albeit reduced)

opportunity to find and exploit parallelism. This is because we assume a system

that can identify poor-performing loops; thus, loops with frequent false-sharing-

induced transaction restarts will be discarded.

2.8 Conclusion

In this chapter we present a runtime parallelization technique that lever-

ages hardware transactional memory and the runtime flexibility and efficiency of

dynamic optimization. It allows single-threaded legacy binaries to achieve per-

formance improvements in the increasingly common context of multicore microar-

chitectures. Our parallelization technique makes use of transactional memory to

provide optimistic concurrency and to make strong guarantees about correctness

in code that a traditional compiler would have a hard time proving correct. Fur-

thermore, parallelization is accomplished without assistance from the user or pro-

grammer and without access to the original source code.

We discuss some of the unique challenges posed by runtime parallelization

and show how we address these challenges in our design. Our runtime paralleliza-

tion yields 36% performance improvement across the NAS benchmarks and 34%

performance improvement across the SPEC2000 floating-point benchmarks, utiliz-

ing two-core parallelism. We show that a loop selection policy that considers only

loops at a particular nesting level (e.g., innermost loops only) fails to achieve the

highest performance. We show that most applications are fairly intolerant of tile

size (the number of iterations per transaction). They are more sensitive to the

granularity of the underlying transactional memory system, achieving significant
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gains with word granularity conflict detection.
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Chapter 3

Unbalanced Scheduling on a

Multithreading Multiprocessor

3.1 Introduction

Applications with inherent thread-level parallelism may be parallelized into

balanced homogeneous sets of parallel threads to efficiently run on homogeneous

multicore platforms. However, many programs do not have natural TLP and can-

not be parallelized. Fortunately, these applications can still benefit from multicore

architectures if they can exploit heterogeneity to find the best core to run on—

the core that will maximize performance or consume less energy. While this is

especially true on heterogeneous multicore hardware, heterogeneity can still be

found and exploited on homogeneous hardware—by taking advantage of unbal-

anced schedules. CMPs with SMT cores have the ability to simultaneously execute

multiple applications on the same core. This creates the potential for unbalanced

schedules, representing a form of heterogeneity, that may improve energy efficiency

or performance (both per-thread and overall). These architectures present new op-

portunities and new challenges to achieving maximum efficiency via effective thread

scheduling.

The challenges arise from the fact that given a set of applications and a

set of multithreaded cores, the space of possible schedules of threads to cores can

57
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be enormous—making it difficult to either predict or discover the best schedules.

However, there are also tremendous opportunities. In this environment we have

much more control over which threads, and how many, are coscheduled on cores.

Even if we assume relatively balanced schedules (the same number of threads

assigned to each core), we can select the groupings of threads assigned to each

core so as to minimize negative interference between threads. In this chapter we

show that we need not assume balanced schedules; and, in fact, the ability to

create unbalanced schedules provides an important degree of freedom. This is an

important result because conventional multiprocessor schedulers, applied to this

architecture, will always seek to balance the number of threads on each core—we

show that this is often the wrong decision.

Previous work [SPHC02a] has shown that resource demands vary signifi-

cantly between applications, and even between phases of the same application. Re-

cently, heterogeneous (or asymmetric) multiple-core architectures have been shown

to be effective at exploiting this phenomenon by mapping each job to the core that

most closely matches the resource demands of the application [KFJ+03, KTR+04].

We can exploit the same principles in a CMP of SMT processors without the bur-

den of hardware heterogeneity. In this case, the heterogeneity comes from the

fraction of core resources made available to each thread. For example, consider a

CMP where one core is already running two threads and another core is idle. In

this case, a new thread could either be scheduled on the first core, providing low

marginal performance but possibly expending even less marginal power, or it could

be scheduled on the idle core, providing high marginal performance but resulting

in high marginal power. Scheduling on the already-loaded core may be best if the

execution resource demands of the thread are low.

This chapter examines system-level thread scheduling policies for a multi-

threaded multicore architecture. Particular attention is paid to enabling perfor-

mance and energy efficiency through unbalanced schedules. These schedules give

the system the ability to cluster threads that have low execution demands and

amortize the power cost of using a core.

Because the search space of possible schedules for such architectures is large,
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we rely on schedulers that learn from experience and migrate to the best schedules.

They do so either through directed sampling or by making small adjustments to the

current schedule (which is assumed to be good). Our studies cover many different

degrees of thread-level parallelism. We consider schedules that leave cores idle, even

when there are more threads than cores. This is particularly useful when energy

and power are primary concerns. When both performance and power are first-

class concerns for the scheduler, the nature of the best schedules become difficult to

predict; thus, it becomes critical to have scheduling policies that dynamically adapt

to the particular workload’s execution behavior, and discover the right strategy.

This chapter makes the following contributions. It studies, for the first time,

a spectrum of scheduling policies for a multithreaded multicore architecture where

both performance and energy are prime considerations. It shows that unbalanced

schedules (uneven distribution of threads among the cores) often outperform bal-

anced schedules—the best scheduling policies are those that consider both balanced

and unbalanced schedules. We show that one can often get higher performance

by clumping badly behaving threads together on the same core than by spread-

ing them around. This is because such threads can interfere destructively with

the otherwise high-performing threads. Running them with other low-performing

threads is less likely to significantly impede those other threads. The benefits of

unbalanced scheduling increase as the objective function puts more emphasis on

power efficiency.

Additionally, we demonstrate that intelligent non-sampling-based schedul-

ing policies can often outperform the policies that require sampling of the search

space; this is significant because, given a moderate number of cores and a moderate

number of threads, the search space for possible schedules can become large.

This chapter also extends symbiotic scheduling [ST00] to a CMP of SMTs.

Symbiosis-based random scheduling heuristics that perform well for a SMT core

also perform well for a CMP of SMT cores, but with smaller marginal gains.

However, due to the much larger search space, we show that in this case there is

even more gain to be had with more intelligent policies. Finally, we show that

there are significant benefits to doing energy-aware scheduling. For 12 threads on
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a four core four-way SMT processor, it can result in up to 7.4% savings in energy,

10.3% savings in energy-delay product, and 35% savings in power. Savings are

even greater with fewer threads.

The rest of the chapter is organized as follows. Section 3.2 describes pre-

vious work related to thread scheduling and multithreading chip multiprocessors.

Section 3.3 discusses the architecture that we evaluate—a CMP of SMT cores. In

Section 3.4 we present our scheduling mechanisms and policies. We discuss our

experimental methodology in Section 3.5 and present and analyze the results in

Section 3.6. In Section 3.7 we summarize our findings.

3.2 Related Work

Multithreaded CMPs are becoming increasingly common. One of the first

SMT CMP architectures, the POWER5 [CFS+04] (produced in 2004 by IBM),

includes two SMT cores, supporting four hardware contexts. Its successor, the

POWER6 microprocessor, released in 2007, also includes two two-way SMT cores.

IBM’s latest offering, the POWER7, boasts four, six, or eight cores, each four-

way SMT. Sun’s first multithreaded CMP, the UltraSPARC T1 (a.k.a. Nia-

gara) [Sun05], released in 2005, contains four, six, or eight cores, each four-way

SMT. The T1’s successor, the UltraSPARC T2 (released in 2007) supports 64

thread contexts (eight cores, eight-way SMT). Sun’s latest offering, the SPARC

T3 supports 128 thread contexts (16 cores, eight-way SMT). Intel’s Nahalem mi-

croarchitecture [Sin08] (introduced in 2008) includes processors with up to eight

cores and two-way SMT. With an abundance of multithreaded CMPs on the mar-

ket today and the trend of increasing hardware parallelism, thread scheduling on

such architectures is increasingly important.

Scheduling for SMT Processors

There is a long history of research on scheduling for multithreaded single-

core processors.

Parekh et al. [PEL00] propose a number of thread-sensitive scheduling al-



61

gorithms for SMT processors. These algorithms use measurements of how each

thread utilizes different parts of the core. They find that the most effective feed-

back metric is IPC. High IPC floating-point threads are coscheduled with high

IPC integer threads.

Snavely and Tullsen [ST00] introduce a sampling-based scheduler that sam-

ples job coschedules and then predicts coschedules with high symbiosis. Symbiotic

jobs are ones that run well together—that use complementary core resources in-

stead of aggressively competing for the same shared resources at the same time.

Finding symbiotic coschedules on an SMT is important because the level of re-

sources sharing is much higher than in multiprocessors. Snavely et al. [STV02]

extend their scheduler to support priorities and show up to 40% improvement in

throughput while still meeting priority goals. While the kind of coscheduling in

their work is temporal, the coscheduling in our research is spatial—coscheduling

symbiotic jobs on different cores. Also, they do not consider power or energy.

Settle et al. [SKJC04] add architectural support to expose direct measures

of shared cache utilization to the OS scheduler. By not relying on sampling, their

scheduler can adapt more quickly to changing program behavior. However, by

focusing only on cache interference among coscheduled threads, they miss some of

the other points of resource contention in SMT systems (e.g., register file, hardware

buffers).

Scheduling for CMPs

The degree of resource sharing among threads on different cores (usually

just one or two of the furthest levels of cache) is significantly less than on a single

SMT core. Hence, the cost of a bad coscheduling decision on a CMP is less than

the cost on an SMT core. Nevertheless, finding optimal schedules for CMPs with

single-thread cores is very difficult. Jiang et al. [JSCT08] prove that the problem is

NP-compete. They present a sequence of scalable approximation algorithms that

find near-optimal schedules.

Scheduling becomes even more difficult when the cores are asymmetric

(heterogeneous). Kumar et al. [KFJ+03] and Ghiasi and Grunwald [GG03] in-
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troduce single-ISA heterogeneous multicore architectures and demonstrate how

intelligently scheduling single threads can result in significant power and energy

savings or performance gains. Kumar et al. [KTR+04] go beyond finding the best

core for a single thread and consider finding good schedules for workloads of size up

to the number of available hardware contexts. They employ a sampling strategy to

find good schedules as programs enter new phases of execution. In their hardware

model, some cores are multithreaded, and they explore simple heuristics to guide

the scheduler to good thread assignments.

Li et al. [LBKH07, LBK+10] propose a scheduler, called AMPS, for SMP

and NUMA asymmetric architectures. They implement AMPS in the Linux kernel

and model asymmetric multicore architectures by modulating clock speed and

changing L2 size and execution width. AMPS has three distinguishing features:

(1) asymmetry-aware load balancing assigns load to each core proportional to its

computing power, (2) faster-core-first scheduling assigns threads to under-utilized

powerful cores first, and (3) NUMA-aware migration predicts thread migration

overhead and manages migration on NUMA architectures. Like the scheduling

heuristics of Kumar et al. [KTR+04], AMPS is focused on performance only.

In this chapter, we consider scheduling for objectives that are a composition

of both power and performance. We consider more powerful heuristics that are

better suited to SMT CMP architectures.

Scheduling for Multithreaded CMPs

El-Moursy et al. [EMGAD06] model scheduling on a simple processor con-

sisting of two cores, with two SMT contexts each. They observe that the number

of potential schedules on such an architecture and the dynamic nature of program

phase behavior makes finding good schedules very difficult. They experiment with

several hardware metrics (including register file contention, functional unit con-

tention, and L2 cache contention) to predict what threads run well together. They

find that metrics of ready and in-flight instructions prove the most effective in

aiding the scheduler to make the right decisions. Their only objective function is

performance.
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Improving Cache Performance

Fedorova et al. [FSSN05] examine scheduling for L2 cache miss rate on an

SMT CMP architecture. They introduce an L2-conscious scheduling algorithm

based on balance-set scheduling. They assume high thread-level parallelism, and

do not consider unbalanced schedules. In this research, we focus on direct measures

(i.e., performance, power, energy) rather than indirect—thus, if L2 miss rate is the

dominant factor, we will migrate to schedules that minimize it (but perhaps more

slowly). If there are other important factors, we will find better schedules.

Avoiding Thermal Emergencies

Powell et al. [GPV04] seek to alleviate the power density problem, a condi-

tion found in many modern processors and potentially aggravated by an SMT CMP

architecture. Their work leverages the ability to schedule on two levels: inter-core

and intra-core. Because their goal is very different, the proposed scheduling solu-

tion, Heat-and-Run, is not effective for reaching our goals. Heat-and-Run moves

jobs off of a core (to a cooler one) before the core can exceed thermal thresholds.

In a sense, they employ unbalanced schedules to favor cool cores, and let hot cores

cool down.

3.3 Architecture

We focus on a single hardware architecture but evaluate it under different

constraints and different levels of thread parallelism (different loads). This archi-

tecture is large enough to make scheduling a complex problem; and we believe the

principles exposed by our results will scale to larger configurations.

The architecture is a chip multiprocessor consisting of four homogeneous

simultaneous multithreaded [TEL95] cores implemented in the 0.1µm process with

shared L2 and L3 caches. Each core has its own L1 data cache and L1 instruction

cache. Because threads can migrate between cores, they will exercise the cache

coherence policy to correctly handle dirty data in the L1 data caches. When a

thread migrates to another core and requests data that was dirty in the L1 data
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cache of the core it was previously running on, the dirty data will be written to

both the L1 cache of the core on which the thread is now running and the shared

L2 cache. The implementation is assumed to be at 2.1 GHz and latencies are

determined accordingly.

There are four contexts per SMT core, for a total of 16 contexts in the

system. Each SMT core is out-of-order. There exist two dimensions of thread-

level parallelism (TLP) in our architecture as there are multiple cores, each with

multiple contexts. In the first dimension of TLP, threads coscheduled in different

contexts on the same core share many core resources including a register file,

hardware queues, and a set of functional units. In the second degree of TLP,

threads scheduled on different cores share fewer resource (such as the more distant

levels of the memory hierarchy).

In this work, we assume that unused cores are completely powered down,

rather than left idle. Thus, unused cores suffer no static leakage or dynamic switch-

ing power. This does, however, introduce a latency for powering a core on or off.

In [KFJ+03], it is estimated that a given processor core can be powered on in

approximately one thousand cycles of the 2.1 GHz clock. They assume that when

a processor core is powered down, the phase-lock loop that generates the clock for

the core is not powered down. Rather, the same phase-lock loop generates the

clock for all cores. Consequently, the power-up time of a core is determined by

the time required for the power buses to charge and stabilize. However, in this

work we did not want to assume constraints on power supply or PLL design, so we

perform all experiments assuming that it takes 30 microseconds to turn on or off

a core. We estimate this time based on reported data on PLL stabilization times

and system overheads. Note that this is over 60 times more conservative than was

assumed in some prior work [KFJ+03], and it allows plenty of time for dirty data

to be flushed from the caches, as well. We also assume, conservatively, that a core

keeps dissipating idle power at a steady rate until it is completely powered off and

also during the entire power-on procedure. We do not consider dynamic voltage

scaling (DVS) in this work.

Table 3.1 contains more details of the architecture.
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Table 3.1: Architecture Detail

Cores 4 TLB miss penalty 790 cycles
Contexts per core 4 I cache size 32k
Reorder Buffer entries 256 I cache miss penalty 8 cycles
Active List entries 512 I cache associativity 4
Total fetch width 4 D cache size 32k
Integer registers per core 100 D cache miss penalty 8 cycles
FP registers per core 100 D cache associativity 4
shared L2 cache size 2 MB shared L3 cache size 4 MB
L2 miss penalty 40 cycles L3 miss penalty 315 cycles
L2 access time 12 cycles L3 cache access time 35 cycles

3.4 Scheduling Policies

We assume an operating system level thread scheduler that makes global

(CMP-wide) scheduling decisions. Thus, scheduling decisions must be made at a

very coarse granularity, and the cost of moving a thread is very small relative to the

typical interval between moves. The processor typically makes scheduling decisions

based on sampled data of processor power and performance. Processor power and

performance can be estimated by reading counter registers that are already found in

most modern processors. New samples are collected and new scheduling decisions

can be made as often as every operating system timer interrupt (although, in

general, we strive to change schedules much less often than the timer interrupt) or

when the mix of jobs changes.

We assume all jobs have equal priority. Differing priorities could signifi-

cantly increase the utility of unbalanced schedules, thus increasing the importance

of scheduling algorithms that consider such schedules. However, the correct met-

rics to evaluate the goodness of our schedules are less clear in the presence of

priorities, so we do not demonstrate that advantage in this work.

The scheduling policies we evaluate are described below. They come in

two broad categories: sampling-based policies and electron policies. The electron

polices are so called because the state of a core may cause it to either try to push

a job away or to attract new jobs.
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3.4.1 Sampling-based Policies

The sampling-based policies work in a series of alternating temporal phases:

a sampling phase and a steady phase. During the sampling phase, a number of

different schedules are tried; at the end of the sampling phase the sample schedule

with the best metric value is chosen as the schedule to be in effect throughout the

steady phase. The metric value depends on what we wish to optimize for, whether

it be power, energy, energy-delay product, performance, or something else. In

addition to the sample schedules, the schedule in place during the last steady phase

is also a candidate for selection—this ensures that in the ideal (but somewhat rare)

case with no noise or phase behavior, we will always move toward better schedules.

In all cases, we create 10 sample schedules, which we find creates a good balance

between the desire to maximize our chances of finding a good schedule and to

minimize the ratio of the duration of the sample phase to the duration of the

steady phase. Each sample runs for two time slices, and the measurement takes

place on the second, to eliminate cold-start effects. The steady phase then runs 10

times as long as the sample phase.

While the creation of schedules is geared towards intelligently navigating

through the permutation space, selecting the best schedule involves using the right

metric to characterize the goodness of a schedule. The sampling policies, then,

are generic and can be specialized to different objective functions by changing

the evaluation metric. The evaluation metrics used to choose the best sampled

schedule are described in Section 3.4.3.

We consider the following sampling-based scheduling policies:

Balanced Symbiosis It has been shown previously that some groups of appli-

cations run well together, while others result in destructive interference [TB01],

causing individual applications to slow down. This property can be used to en-

hance system performance by scheduling “friendly” threads together on one core.

Threads are randomly assigned to contexts for each sample schedule. The only

constraint, in this case, is that the number of threads scheduled on each core is

the same, or within one if the threads don’t divide evenly onto cores. At the end
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of the sampling phase, whatever decision metric has been chosen will be used as

the criterion for selecting a schedule for the steady phase. This policy is closest to

the symbiotic job schedulers described by Snavely and Tullsen [ST00] for a single

SMT core (those schedules were “balanced” in the sense that they always used

all thread contexts). Because this scheme only considers balanced schedules, most

schedules considered are reasonable ones—but potentially better schedules that

are not balanced will never be considered.

Symbiosis This policy is similar to the prior one, except that it does not con-

strain the threads to be assigned evenly among the cores. As a result, it has the

potential to find better schedules than the first policy can find; but it also has the

potential to sample a larger number of clearly bad schedules.

Balanced Random This policy chooses a random, but balanced, schedule with

no sampling. This is the closest approximation to what a conventional load-

balancing multiprocessor scheduler would do, and is the baseline in many of our

graphed results.

Prefer Last This is a class of policies that assume that the configuration we are

running now has merit, and the next configuration will be similar. In this case,

sampling is biased towards a similar configuration with only a fraction (30%) of

the schedules deviating from that. The different forms of prefer last are described

below—they differ in how we define “similar” schedules. With these policies, we

can apply an intelligent bias to the sampling (e.g., use all cores, use few cores)—but

the bias is not hard-coded in the scheduler; the bias is derived from recent history.

Prefer last policies are introduced in [KTR+04]; however, we look at many more

flavors and apply them in a different context.

Prefer Last – Numbers A new schedule is similar to the original schedule if

it runs the same number of threads on each core as the original did. However, the

particular assignment of threads is done randomly. This policy seeks to retain the

same level of schedule imbalance, but does not strive to favor or coschedule the
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same threads.

Prefer Last – Swap A similar schedule is created by choosing two threads (on

different cores) from the original schedule to swap places. This policy evolves

slowly both in the number of threads assigned to cores and the composition of

threads coscheduled.

Prefer Last – Move In this variant, a similar schedule is created by randomly

choosing one thread and moving it to a randomly-selected empty context on an-

other core and leaving all other threads in place. This policy tends to preserve the

sets of threads coscheduled, but allows the distribution of the load (in number of

threads) to evolve more quickly. Note that this policy does not work in this exact

form for very high system loads (i.e., when all the contexts are saturated).

All these policies are evaluated assuming that any unused cores are power-

gated. When a sampling phase begins, all the samples to be tried out in that

sampling phase are created and then ordered by the number of cores they utilize.

The schedules that use the same number of cores as were used in the last steady

phase are tried first. All the schedules that use a different number of cores are

grouped together by the number of cores they use and are ordered such that all

the sample schedules using the same number of cores are tried consecutively. This

minimizes the number of power-gating changes that are made.

3.4.2 Electron Policies

The policies in the previous section rely on sampling for intelligent schedul-

ing. However, such policies become less effective as the search space expands.

Rather than sampling, the electron policies rely on more explicit evidence

that a particular core is over-scheduled, under-scheduled, or just poorly scheduled.

Cores will attract threads that fill a void and repel threads when contention is

high. Threads will move around each interval to create a better fit. The schedule

naturally adapts as threads enter new phases of execution.
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Following is the description of electron policies customized for each metric

that we study.

Electron – Performance This policy assumes that utilization of a core’s re-

sources has a correlation with performance. The IPC of each core in the previous

period is calculated. The core with the highest aggregate IPC repels one thread,

and the core with the lowest IPC attracts a thread. If the latter has a free context,

the thread is transferred. If the condition is not met, we do not change the sched-

ule. Ninety percent of the time the selection of the thread to repel away from the

high IPC core is the highest IPC thread on that core, and ten percent of the time

a random thread from that core is selected. The thread selection policy is based

on the assumption that the highest IPC thread has the most aggressive resource

requirements and hence needs to find a core with the least current utilization. Oc-

casional random selection guards against the same thread infinitely hopping from

core to core.

Electron – Energy The objective here is to minimize the overall energy con-

sumption of the processor. The energy of each core in the previous period is

calculated. The non-idle core with the lowest energy repels one randomly-chosen

thread, and the core with the highest energy attracts a thread. If the former was

not idle and if the latter has a free context, then the thread is transferred; other-

wise the schedule does not change. Over time, this policy tends to cluster threads

so that more cores are left idle, then distributes the jobs efficiently among those

cores.

Electron – EDP This policy tries to minimize overall energy-delay product of

execution by identifying cores under-performing on this metric. The energy-delay

product of each core in the previous period is calculated. The core with the highest

EDP attracts a thread, which is supplied from the core with the lowest EDP—the

thread to move is chosen randomly. If the latter was not idle and if the former has

a free context, the thread is transferred; otherwise the schedule does not change. If

a core was idle (meaning it consumed no power but completed no instructions) its
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EDP is considered to be infinite. This assumption discourages idling of cores—we

find that leaving a core idle (when EDP is the targeted metric) is usually inefficient.

Note that making locally good decisions for a metric like EDP does not

guarantee making globally good decisions [SKTC05].

For the electron policies, the duration of a period is moderately long (i.e.,

a schedule change can occur at most once every four operating system time-slices

in our experiments). If a new schedule results in a core being left idle, that core is

powered down immediately. For all the policies, at every scheduling change, if the

new schedule calls for cores to be powered on, the required cores are powered on

before the new schedule takes effect. Also, if the new schedule calls for cores to be

either powered on or powered off, the scheduler does not sample any performance

or power counters during the transition, so as not to skew the statistics associated

with the new schedule.

Note that electron schedulers run the risk of continuing to alternate among

two schedules. To help avoid such situations, history information has been incor-

porated into the scheduling policy decisions. A history is maintained of the last

10 schedules run (duplicate schedules included) and the associated performance

and power. If the schedule that the electron policy proposes is found in the his-

tory, then the scheduler knows about how well it will perform. In such cases, it

will select the “best” schedule among all the schedules in the history, where the

“best” schedule is the one found to be most efficient with regard to the desired de-

cision metric. If the proposed schedule is not found in the history, its performance

is unknown, so it will be run. Because the history length is finite and contains

previously used schedules regardless of their uniqueness among the other history

entries, the electron scheduling policies will be able to adapt to workload phase

changes. Stale performance data is evicted from the history and previously applied

schedules are eventually applied again.

3.4.3 Decision Metrics

This section describes the metrics used to select from among the sampled

schedules discussed in Section 3.4.1. The objective function during scheduling may



71

be static for a given environment and a given market segment. In other cases, it

may change dynamically as the processor changes power conditions (e.g., plugged

vs. unplugged, full battery vs. low battery, thermal emergencies), as applications

switch (e.g., low priority vs. high priority jobs), or even within an application

(e.g., a real-time application is behind or ahead of schedule).

We consider four system-level objective functions in this chapter: perfor-

mance, power, energy, and energy-delay product; and we tune the evaluation metric

for those objective functions in the following ways.

Performance The metric for performance is calculated weighted speedup (CWS).

This is derived from the weighted speedup metric proposed by Snavely and Tullsen

[ST00], and used in this chapter to evaluate simulated performance (described in

Section 3.5). However, it cannot be applied in the same way at runtime with-

out oracle information—this is because it depends on knowing how the program

would run on a baseline configuration (e.g., single-threaded). Thus, we define each

application’s “average performance”, for the purpose of calculating CWS, as the

average of its performance over a number of sampled configurations. Thus, for

the runtime scheduler, one thread’s contribution to the total calculated weighted

speedup is its IPC for that sample, divided by its average IPC for all samples. We

find this to provide better performance than using IPC as the choice metric. With

IPC, causing one thread’s throughput to drop from four to two is twice as bad as

causing another thread to drop from two to one. With CWS, they are considered

equally bad—this represents a more system-level view of performance which says

that a 2X slowdown in any application is considered bad, regardless of the raw

IPC.

Energy-Delay Product The energy-delay product (EDP) of the processor,

which is PowerPerCycle/IPC2, is computed for each of the sampled schedules.

The schedule with the lowest EDP is considered the best.

Energy The energy of the processor (measured in watts per instruction), is

PowerPerCycle/IPC ((watts/cycle)/(instructions/cycle) = watts/instruction).
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It is computed for each of the sampled schedules—the sample with the lowest en-

ergy is considered the best. Performance (IPC) is still a factor in the energy

equation, because faster execution consumes power over a shorter time-span.

Power The total power is computed at each sampling schedule. The total power

is the sum of the power of all the cores plus the power of the shared structures (L2

and L3 caches). The schedule with the lowest power is considered the best.

3.5 Experimental Methodology

In this section, we discuss the various methodological details of the evalu-

ation framework and scheduling mechanisms for this chapter.

3.5.1 Scheduling Parameters

Our thread scheduler is assumed to be a part of the operating system; it

makes scheduling decisions based on sampled data of processor power and perfor-

mance. New samples are collected and new scheduling decisions can be made at

every operating system time-slice interval. We assume an operating system time-

slice of a quarter million cycles. This time-slice is artificially short to keep our

simulations from taking too long. It allows us to model a larger number of sam-

ple/steady intervals per simulation, and is still long enough to capture interesting

application phases for most of our benchmarks. This enables our scheduling poli-

cies to be evaluated and compared based on how quickly and accurately they can

adjust to the changing workload behavior. The time-slice interval durations we

use are significantly longer than any lingering cold-start artifacts of the simulation

methodology.

3.5.2 Workload Construction

We select twelve benchmarks from the SPEC 2000 benchmark suite to con-

struct workloads for the evaluation. Sub-setting is done such that the fraction of

compute and memory bound benchmarks is the same as that in the entire SPEC
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suite—so the subset is representative of the entire suite. Each benchmark is fast-

forwarded for two billion instructions before detailed simulation. Table 3.2 contains

a list of the twelve benchmarks. All simulations use the reference data sets.

We perform all our evaluations for various values of available thread-level

parallelism for multiprogramming workloads. For each level of thread-level paral-

lelism, we construct and use eight workloads by randomly selecting eight different

subsets of the 12 benchmarks. These groups are formed such that the contribution

of a benchmark to the result remains the same across different TLPs, similar to

the sliding window methodology typically used in SMT research [TEL95]. For the

12-thread experiments and higher, at most only one group could be constructed if

we don’t allow duplicate threads. Thus, multiple instances of randomly-selected

application(s) are run in a single group. Table 3.3 lists the workloads used for

our study. In all the results reported in this chapter, the results are obtained by

averaging the statistics across the eight groups.

3.5.3 Simulation Methodology

All our simulations are done using a chip-multithreaded multiprocessor

derivative of SMTSIM [Tul96b]. The simulator supports the MESI coherence pro-

tocol and executes statically linked Alpha binaries. Appropriate modifications are

made to simulate the effect of OS-level scheduling as well as the availability of

hardware counters. To gather power statistics we integrate a modified version of

Wattch [BTM00] into our simulator. We modify Wattch to collect, calculate, and

report power statistics on a multicore architecture with a shared L2 cache. We

make use of Wattch’s conditional clocking power model (labeled cc3 in Wattch

source code). We also introduce core-level power-gating into the model. The mod-

eling details for power-gating are discussed in Section 3.3.

3.6 Analysis and Results

This section presents the effectiveness of the scheduling policies that adapt

to varied program behavior and consider both balanced and unbalanced schedules.
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Table 3.2: Benchmarks: Each benchmark is labeled with a code (used in Ta-
ble 3.3) and a brief description

Benchmark Code Description
gap 0 Interpreter
fma3d 1 Crash simulator
mesa 2 3D graphics
equake 3 Wave simulator
crafty 4 Chess game
wupwise 5 Quantum chromodynamics
mgrid 6 Multi-grid solver
gzip 7 Compression
gcc 8 Compiler
apsi 9 Meteorology
swim A Shallow water modeling
ammp B Chemistry

Table 3.3: Workloads: The first part of each pair is the workload label. The
second part of each pair encodes the benchmarks that form the workload—each
digit in this number is the code of a particular benchmark. There are workloads
consisting of 4, 6, 8, 12, and 16 threads.

4a 8165 6a 8165B0 8a 8165B072
4b 6359 6b 635924 8b 6359240B
4c A960 6c A96048 8c A9604851
4d 5879 6d 5879B1 8d 5879B143
4e A23B 6e A23B79 8e A23B7968
4f 4230 6f 423076 8f 423076A9
4g 47A8 6g 47A8A1 8g 47A8A10B
4h 1B20 6h 1B2035 8h 1B20354A

12a 8165B07284A3 16a 8165B07284A36359
12b 6359240B38A1 16b 6359240B38A1A960
12c A96048516723 16c A960485167235879
12d 5879B1435062 16d 5879B1435062A23B
12e A23B79689514 16e A23B796895144230
12f 423076A97B51 16f 423076A97B5147A8
12g 47A8A10B0962 16g 47A8A10B09621B20
12h 1B20354AB879 16h 1B20354AB8798165
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We pay particular attention to the case where both performance and energy are

important and provide more detailed results for that case. We also examine the

various policies for objective functions specific to energy, power, and performance.

3.6.1 Scheduling for Both Energy and Performance

Scheduling for both energy and performance at the same time presents an

interesting challenge for a CMP of SMT cores. The marginal performance achieved

by using an additional core in a CMP of SMTs is typically higher than the marginal

performance improvement from using an additional SMT context on the same core.

Also, the marginal performance improvement from an SMT context continues to

decrease as the number of threads increases [TEE+96]. So, it is often better to

schedule as few applications on each SMT core as possible if scheduling only for

performance—threads spread out across cores. On the other hand, the converse is

true for energy. That is, energy efficiency increases with the number of contexts

in operation [STC00], so we tend to aggregate threads when scheduling for energy.

Figure 3.1 shows how energy and performance vary with the number of contexts for

our processor model. We see that, on average, marginal performance drops off as

we add threads, and is typically much less than the performance of using a second

core. Conversely, energy efficiency is maximized as we add threads to a single

core. Scheduling for a CMP of SMTs such that both energy and performance are

optimized, then, requires a careful balance between these two competing objectives.

We perform all our evaluations in this section using the energy-delay prod-

uct (EDP) metric. EDP recognizes the importance of both energy and performance

and is used widely as an important objective function for desktop as well as server

processors.

Unbalanced Scheduling Schedulers for traditional multiprocessors seek to

evenly distribute the system load over the available processing contexts. Such

schedulers constrain the schedules to be balanced, limiting their flexibility to op-

timize for multiple competing objectives at the same time.

If our scheduler allows unbalanced scheduling, we have the opportunity to
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Figure 3.1: Average marginal utility and cost of using each SMT context on a
single core.

meet both of these objectives—we can aggregate jobs that have low execution

resource demands for energy efficiency, while still giving more resources (e.g., on

other cores) to those jobs that demand them for performance.

Figure 3.2 compares an optimal static scheduling policy (Static Ideal) that

allows unbalanced scheduling against the best static scheduling policies that are

constrained to be balanced. Static Balanced ensures that each core runs the same

number of threads (or within one if the number of threads is not evenly divisible

by the number of cores), and hence, is similar to the traditional load-balancing

schedulers. Static Cluster Balanced ensures that only as many cores as necessary

to run a given number of threads are kept on and the rest are power-gated; among

the active cores, each core runs the same number of threads. This policy minimizes

the system energy consumption at the expense of performance. The results are

shown for different levels of thread-level parallelism. Thus, if we have six threads,

Static Balanced will only consider schedules of threads to the four cores like 2,2,1,1;

and Static Cluster Balanced will only consider schedules like 3,3,0,0.

Figure 3.2 shows that there is a significant advantage to doing unbalanced
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Figure 3.2: The effectiveness of unbalanced and balanced static scheduling poli-
cies in reducing energy-delay product. Results are presented as fraction of EDP
savings relative to Balanced Random.

Figure 3.3: Extent of imbalance for the best schedules found by static policies
targeting EDP.



78

scheduling—Static Ideal results in consistently higher EDP savings than the best

balanced scheduling policy (Static Balanced). Savings are 12% higher for four

threads and 6.6% higher for eight. As cores become more heavily saturated with

threads, the flexibility for doing intelligent unbalanced scheduling decreases and

the relative benefits decrease.

While these results are averaged over eight workloads, we observe that

Static Ideal often results in unbalanced schedules (see Figure 3.3, black bar—

the other bars are discussed later). For example, for four threads, five out of

eight workloads are scheduled in an unbalanced manner in the ideal case. For six

threads, this number is six out of eight. All the best static schedules for eight

and 12-threaded workloads are unbalanced. We also observe that most of the

schedules are unbalanced even for the best dynamic scheduling policies discussed

in the following sections.

The advantages due to unbalanced scheduling depend on the characteris-

tics of the workload. Benchmarks gcc and gzip are averse to running with other

applications due to high instruction cache working set sizes and high core uti-

lization, respectively. Balanced scheduling policies force these applications to be

coscheduled with some other thread on the same core, resulting in a significant

performance hit. However, Static Ideal allows these applications to be on a core

by themselves, resulting in high overall efficiency. On the other hand, we find that

ammp, swim, and apsi are often coscheduled, as they have lower inherent ILP and

see minimal destructive cache interference. Workload 8e (see Table 3.3) contains

both gcc and gzip, and the best unbalanced schedule has 14% lower EDP than the

best balanced schedule.

The graph also makes a case for energy-aware scheduling. Static Ideal re-

sults in more than 12.1% EDP savings for four threads and 18.5% savings for eight

threads. In fact, we observe that the policy can result in savings of 8.7% even

for 16 threads (not shown in the graph) over a naive schedule that only seeks to

balance the load.

The static results are ideal, identified by exhaustive search. The next section

presents realistic dynamic scheduling policies.
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Figure 3.4: Energy-delay product for sampling-based scheduling policies.

Exploring the Search Space Through Directed Sampling Sampling-based

scheduling policies try to adapt to the changing workload behavior by sub-setting

the search space and then making the best choice of schedule from among the

reduced space. The effectiveness of a scheduling policy is hence primarily deter-

mined by how effectively it does the sub-setting. Figure 3.4 compares the various

sampling-based scheduling policies. Results are shown for both symbiosis-based

policies as well as Prefer Last policies. The results are shown for various levels of

thread-level parallelism and with Balanced Random policy as the baseline.

The graph leads to several interesting observations. First, there are again

significant benefits to doing energy-aware dynamic scheduling. The best sampling-

based policy (Prefer Last – Move) results in 2.3% EDP savings for four threads,

7.8% savings for eight threads, and 8.3% savings for 16 threads (16 thread case

not shown in graph). These benefits are achieved through unbalanced scheduling

of threads to cores. For example, 91% of the schedules chosen by the Prefer Last

– Move are unbalanced for four threads. The percentage of unbalanced schedules

is 59%, 89%, and 90% respectively for six, eight, and 12 threads. Figure 3.3 shows
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the fraction of unbalanced schedules for other policies as well.

The results show that symbiosis-based scheduling policies that perform

well for an SMT core [ST00] also perform well for a CMP of SMT cores. The

best symbiosis-based policy (Balanced Symbiosis) results in 1.9% EDP savings for

four threads and 5.9% savings for eight threads. The continued benefits due to

symbiosis-based policies can be explained by the need to coschedule “friendly”

threads together even on a chip multithreaded processor. A more surprising re-

sult is Balanced Symbiosis outperforming Symbiosis. Although Symbiosis has the

freedom to try out both balanced as well as unbalanced schedules, it also has a

greater likelihood of sampling bad schedules for a given number of samples. Bal-

anced Symbiosis, on the other hand, is conservative and only samples reasonably

good (balanced) schedules, converging on better schedules more quickly. This is

particularly true with six threads, where even the balanced scheduler is allowed

(forced) to sample moderately unbalanced schedules.

Another significant observation is that the policies that learn from the

makeup of the current configuration (Prefer Last) can result in high overall system

efficiency. In fact, the best Prefer Last scheduling policy (Prefer Last – Move)

outperforms the best symbiosis-based policy (31% higher savings for workloads of

eight threads). This is due to a more targeted sub-setting of the search space by

the Prefer Last policies. Prefer Last – Numbers emerges as the weakest sampling-

based policy because it does not preserve coschedule relationships and changes the

number of threads per core slowly. Prefer Last – Swap preserves coschedule rela-

tionships, but also changes the distribution (in number of threads) slowly. Prefer

Last – Move outperforms both the above policies as it not only preserves the sets

of threads coscheduled, but also allows the distribution of the load to evolve more

quickly.

Non-sampling Strategies The previous policies rely on sampling for intelligent

scheduling. However, such policies get increasingly less effective as the assignment

space gets larger; for a given machine, the size of the assignment space increases

with the number of threads that need to be scheduled. The sampling strategies

also experience an overhead, as the sampling intervals will have lower performance
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Figure 3.5: Effectiveness of the non-sampling electron policy, compared to two
sampling policies.

than the steady intervals.

Figure 3.5 shows the results for the Electron EDP scheduling policy. The

electron policies rely on more explicit evidence that a particular core is over-

scheduled, under-scheduled, or just poorly scheduled. This is especially useful

when the assignment space is too large to sample effectively. In fact, the electron

policy outperforms all the sampling-based policies when thread-level parallelism is

high. EDP savings are twice that of Prefer Last – Move and 2.4 times Balanced

Symbiosis for 12 threads. While the sampling strategies struggle with the size of

the search space, the fact that the electron policies incur no sampling overhead

allows those policies to adapt much more often and navigate the large schedule

space more effectively.

We also observe that the best schedules for Electron EDP are unbalanced.

For 12 threads, for example, 100% of the schedules are unbalanced. 83% and 99%

of the schedules are unbalanced for four and eight threads respectively. This again

confirms the usefulness of providing more flexibility to the scheduler.
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Figure 3.6: The impact on performance, energy, and power of various thread
scheduling policies.

3.6.2 Scheduling for Other Metrics

This section discusses scheduling for other scenarios where it is less critical

to have both low energy and high performance at the same time. These scenarios

differ from the previous section in that at least the shape of good schedules is more

predictable. However, we find that even in these cases, directed scheduling policies

still enable us to find specific schedules that better use the available resources and

group threads in ways that minimize negative interference.

Figure 3.6 compares various scheduling policies directed towards perfor-

mance (measured as weighted speedup), energy, and power (using 8-thread work-

loads). With these metrics, it is still beneficial to consider unbalanced schedules

(see Figure 3.7). However, in general, the improvement is less significant from

these schemes. Simply balancing the system load evenly over compute nodes is

often a sufficient mechanism for extracting good performance. What gain there is

comes primarily from finding symbiotic schedules that are better than the random

groupings.
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Figure 3.7: Extent of imbalance in the dynamic schedules targeting the various
metrics.

For the power-related metrics (energy and power), we see that significant

benefits can be had with directed scheduling policies. Note that no power bar

is shown for the electron policy because no electron policy is optimized for power

(since such a policy would be trivial). Electron Energy emerges as the best schedul-

ing policy for energy. It results in over 15% energy savings—high gains can be at-

tributed to the push/pull behavior trying to cluster threads intelligently on as few

cores as possible. Other scheduling policies that allow unbalanced scheduling also

result in over 10% savings. Balanced Symbiosis fails to achieve significant savings

because it is constrained to utilize all the cores all the time. Scheduling for power

exposes the value of unbalanced scheduling even more. Balanced Symbiosis results

in less than 2% power savings. Policies that allow unbalanced scheduling can lead

to more than 35% power savings.
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3.7 Conclusions

A chip multithreading architecture, with multiple SMT cores on chip, has

a unique ability to partition distributed execution resources to each application

according to its individual needs. But this requires appropriately assigning threads

to cores, as the execution resources available to a thread depend on how many

threads are assigned to the same core and exactly which threads it shares the core

with.

A traditional multiprocessor scheduler, applied to this architecture, will

not identify the best schedules. To do this, a good scheduler must be able to

explore both balanced and unbalanced schedules. Additionally, it must be able

to distinguish between good and bad coschedules and navigate the huge space of

potential schedules to continuously evolve toward better ones.

This chapter proposes several operating system level thread scheduling poli-

cies for such an architecture. These adaptive policies are particularly critical when

both performance and energy are first-class concerns. In that scenario, neither

distributing threads across cores nor aggregating threads on few cores is clearly

the best policy, but the right schedules are workload-dependent and can only be

identified by policies that adapt dynamically to the current program behavior. We

show gains, versus a random scheduler that always uses balanced schedules, of

6-11% in energy-delay product. We also observe gains when scheduling for pure

energy, performance, or power.
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Chapter 4

Execution Migration on a

Heterogeneous CMP

4.1 Introduction

The previous chapter demonstrates how heterogeneity, via unbalanced sched-

ules on homogeneous hardware, can be exploited by applications that cannot bene-

fit from parallelization. With custom cores (hardware heterogeneity), there is even

more opportunity for single-threaded applications to find a good core on which to

run. This chapter addresses the challenge of scheduling on heterogeneous archi-

tectures (heterogeneous-ISA CMPs, in particular), focusing on the mechanism by

which a thread can move to the “right” core.

Current industry offerings include only homogeneous CMPs—all cores on

a die are identical; however, research has shown that heterogeneous CMPs can

achieve even greater performance and power efficiency [KTJR05, HM08]. Allow-

ing the set of heterogeneous cores on a chip to conform to different instruction set

architectures adds a new degree of freedom to heterogeneous CMP design. ISAs

can be designed to meet different goals: some are designed to make hardware imple-

mentation simple, to reduce code size, to reduce memory accesses, to enable more

energy-efficient hardware design, to support a wider range of computation types

(e.g., floating-point). Heterogeneous-ISA CMPs allow architects more flexibility in

86
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creating more efficient multicore microprocessors.

There are many obstacles that must be overcome to make general-purpose

heterogeneous-ISA CMPs feasible. This chapter proposes a solution to one of

those problems: process migration. The ability to migrate a running program

among heterogeneous cores is critical because it allows programs to capitalize on

the available heterogeneity by being able to adapt to both phase changes and

environmental changes. Some examples include:

• When the power state of the computer changes (e.g., a laptop going from

normal to low-battery operation), programs running on a core designed for

high performance could be migrated to a core designed for energy efficiency.

• When a new process with high priority and high performance demands en-

ters the run queue, other processes could be migrated away from the most

powerful core.

• If a program enters a new phase of execution with different computational

demands (e.g., floating-point intensive code or cryptographic code), execu-

tion could migrate to a core with strong support for the new computation

type (e.g., dedicated floating-point hardware or cryptographic instructions).

• If a part of the chip becomes too hot, programs executing on cores in that

region could migrate away, possibly to cores of different ISAs, in a cooler

region of the chip, or to cores that are designed to run cooler.

While no general-purpose heterogeneous CMPs are on the market at this

time, special-purpose heterogeneous multiprocessors have been produced. Called

heterogeneous multiprocessor systems-on-chips (MPSoCs), these architectures are

designed for computation in specific domains that require a diverse set of al-

gorithms to solve a problem. Examples of heterogeneous MPSoCs include the

C-5 Network processor [C-P01], the Philips Viper Nexperia (a multimedia pro-

cessor) [DJR01], the Texas Instruments (TI) OMAP architecture (a cell phone

processor) [Tex06], and the Cell processor [KDH+05] (designed for use in game

systems). These systems do not support migration. This is a significant handicap
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because the ability to migrate removes the burden from the programmer to figure

out where the code should be running at all times. The programmer does not

have to carefully plan how various pieces of a program will execute on specialized

cores. Instead, the compiler can produce different versions of a single program for

each core type; and as the program moves through various phases of execution

(that map to specialized processing cores), execution will automatically migrate to

the appropriate core. This chapter focuses on migration in the context of general-

purpose heterogeneous CMPs. Migration in this context is more important than

on embedded systems where hardware-software co-design is more common and

flexibility is less important. Nevertheless, migration can benefit heterogeneous

MPSoCs as well by easing programmer burden.

Execution migration on a heterogeneous-ISA CMP is much more challeng-

ing than on a homogeneous CMP because program state (in registers and memory)

is kept in an architecture-specific form. This requires state transformation during

migration, which can be very expensive. Prior work on migration among het-

erogeneous systems has only considered migration among heterogeneous machines

(e.g., among nodes in a grid), not among heterogeneous cores in a CMP. Migrat-

ing execution among cores on the same chip (instead of among machines) affords

a unique opportunity for low-cost migration because state copy is not necessary

since memory is shared. To take advantage of this opportunity, it is essential that

as little transformation as possible be done at migration time. We accomplish this

by ensuring that the memory state of the program at points throughout execution

is nearly identical across compilations for different architectures. During migration

most data objects do not need to be copied or repositioned. As a result, all point-

ers remain correct after migration, avoiding the cost and complexity of finding and

fixing pointers during migration.

In this chapter we describe an execution migration technique for

heterogeneous-ISA CMPs with the following goals (in order of increasing impor-

tance):

1. There should be frequent opportunities for migration—points in execution

when migration is possible.
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2. The technique should not require type-safe code.

3. Making a program suitable for migration should not require any special ef-

fort by the programmer or user. Programs should be migratable simply by

compiling them with our migration-aware build toolchain.

4. No special hardware support should be necessary for migration.

5. Migration should have low performance overhead.

6. The normal runtime performance of the application (without migration)

should be minimally impacted.

7. Correctness should be preserved—that is, after a migration, a program should

behave as if it had always been running on that core; its output should not

deviate from a non-migrated instance running on either core.

The contributions of this chapter are as follows. We describe a new execu-

tion migration technique suited to a new domain (heterogeneous-ISA CMPs). The

key insight of this technique is that because migration overhead is not dominated

by state copy (since memory is shared among cores), migration can be fast if a

small amount of state has to be transformed. We measure the costs and overheads

of our migration technique. Finally, we describe areas where there is opportunity

and need for further work to produce faster migration-safe code with support for

more features.

In the next section we discuss related work in the area of execution migra-

tion as it has been applied to other heterogeneous domains. Then in Section 4.3

we give an overview of our migration strategy. Section 4.4 describes how we ensure

a nearly identical memory image across compilation for different architectures to

make migration fast. Section 4.5 describes migration itself. Section 4.6 details our

experimental methodology, while Section 4.7 shows the performance of migration,

and Section 4.8 concludes.
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4.2 Related Work

To our knowledge, no previous work has addressed the problem of migrat-

ing a process among heterogeneous-ISA cores on a chip multiprocessor. There are,

however, two closely related problems. The first is the problem of process migra-

tion among computers of different architectures that are members of a cluster, grid,

or distributed system. The second is the problem of checkpointing and recovery

(CPR) of processes on computers of different architectures. In every proposed so-

lution to both of these problems, large-scale state copy is necessary and dominates

latency. The problem that this chapter addresses is different because state copy

is not necessary since memory is shared. Consequently, there is an opportunity

for low-cost migration if state transformation cost is low. As a result, we spend

considerable effort optimizing pieces of our migration overhead that would have

been inconsequential in those systems.

Nevertheless, much can be learned from the proposed solutions to the prob-

lems of inter-machine migration and CPR. This section focuses on how researchers

have addressed these two related problems. First, we discuss the motivations that

have been driving past research on these problems. Then, as we summarize impor-

tant works in the area, we extrapolate key ideas that are applicable to the problem

that we address, point out differences in the problems, and contrast the solutions.

Process migration among compute nodes (whether homogeneous or het-

erogeneous) in a cluster, grid, or distributed system is desirable for a number of

reasons. It may be necessary to migrate running processes for load balancing—to

dynamically distribute computation needs among the collection of resources as job

needs change or compute resources change. It may also be necessary to migrate a

process to take advantage of data locality; sometimes it is more expensive to move

data to where the data needs to be computed than it is to move the computation

to the data. Resource fulfillment is another common reason for migration—some

machines may be able to run certain jobs more efficiently than others. Finally,

processes may need to be migrated away from a machine that will be taken offline

for maintenance.

A similar problem to inter-machine migration is checkpointing and recovery.
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In fact, migration may be viewed as a special case of CPR, where migration is

accomplished by taking a checkpoint of process state on one machine, copying

that checkpoint to another machine, and restoring the checkpoint there. CPR is

useful in many scenarios, fault tolerance being the most common. If the failed

node is not repaired quickly and it is not practical to recover on a node with an

identical architecture, then heterogeneous CPR allows recovery to take place on a

node with a different architecture. Other uses of CPR include debugging support,

auditing, and service interruption for maintenance. Since the problems of inter-

machine process migration and CPR are so closely related, most of the solutions

presented in the literature address both problems simultaneously.

4.2.1 Homogeneous Migration and Checkpointing

Approaches to homogeneous inter-machine process migration and CPR are

significantly different than approaches for the heterogeneous case. For heteroge-

neous migration and CPR, application details must be considered because the

application is represented differently on different platforms. However, for the

homogeneous case, the state of the application can be treated as a black box.

Only the system’s view of the application’s state must be considered—the process

memory image and register state (including program counter) can be saved with-

out modification, left in its architecture-specific representation. The application

may be migrated/checkpointed by any external agent—either the operating sys-

tem [HD06, BGW93] or a user-level runtime system [LTBL97, PBKL95]. This is

called a system-level approach. It has the advantages of being easy to implement,

not interfering with runtime performance, and requiring no changes to application

code (by the programmer or a compiler/preprocessor).

While efficient homogeneous migration and checkpointing is an interesting

problem, the problem we address (of process migration on a heterogeneous-ISA

CMP) is more closely related to the problem of inter-machine heterogeneous mi-

gration/CPR; the rest of the related work discussed in this section focuses on

inter-machine heterogeneous migration and checkpointing.



92

4.2.2 Theoretical Models

Von Bank, et al. [vBSS94] give a theoretical model, including a formal defi-

nition of heterogeneous process migration. They develop the model around points

of equivalence among multiple representations of a single program with identical

stimuli. From this model, they describe, in abstract terms, how computations

occur in a stack-based procedural language like C. They identify three proper-

ties of an equivalence point (a point of potential migration): an equivalent set of

live variables, all the live variables stored in memory instead of registers (not a

strict requirement, but an implementation convenience), and the ability to relate

the function call graphs of the program compiled for two machines. They recog-

nize that the compiler must avoid optimizations that move code across equivalence

points or carry temporary values across equivalence points. They assert that the

language system (the compiler, assembler, linker, etc.) can be designed to ensure

points of equivalence at a desired granularity; but the finer the granularity, the

more performance will suffer because the compiler will be more constrained and

less able to make machine-dependent optimizations—a conclusion that we confirm

empirically in this chapter. They postulate that the ideal granularity is at a subset

of the function call sites. The particular subset depends on the “compatible sub-

graph”, which is the subgraph of the function call graphs for each target that are

the same. Though their model is well-defined, they do not provide any detail on

how to implement a compiler that is able to create equivalence points and facilitate

migration. This is one of the contributions of this chapter.

4.2.3 Early Work

Some of the earliest work on process migration was by Dubach and Shub

[DRS89, Shu90]. Their solution is meant to work on the equivalent of a strongly-

typed language (to facilitate data translation). They follow a principle they call

“greatest common denominator” (GCD), where data is placed in memory with

extra padding, if necessary, in order to accommodate the largest data representa-

tion among architectures to which execution might be migrated. This is applied

to most memory segments except the code section. This allows most pointers to
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work without the need for correction. We applied the same GCD principle to our

work; only in our case, the migrated process uses the exact same memory image

instead of a copy of it. Also our compiler ensures that function entry points appear

at the same offsets within the code sections so that, after the OS remaps the pages

of the code section during migration, the function entry points will be at identical

addresses. As a result, function pointers do not need to be located and fixed.

4.2.4 Instrumenting Well-Typed C Code

Many works propose migration through the instrumentation of well-typed

C code. The definition of well-typed code is different among these works, with

some work supporting some type-unsafe constructs. In contrast, the migration

technique this chapter proposes does not place any such restrictions on the code.

Nevertheless, our technique has a great deal in common with inter-machine migra-

tion techniques for well-typed C code.

Fernandes, et al. [FPS06] Recent work includes that of Fernandes, et al.,

who extend the Cornell Checkpointing Compiler (a C preprocessor and runtime

library) [BMPS03], with the ability to take portable checkpoints for migration

among heterogeneous computers. Their preprocessor must determine the type of

every data object. It adds instrumentation code to save (at runtime) the address

and size of every object when it comes into existence. At checkpoint/migration

time, this information is used to create new memory sections (stack, heap, globals)

one object at a time, doing any necessary translation during re-creation. Pointers

are fixed by searching through the object descriptors on the source machine for

the object pointed to by the address, and setting the pointer value to the address

of that object on the target machine. The preprocessor also adds push and pop

function calls before and after every call site in the original code. The program uses

these to record where it is executing, so that the sequence of call sites leading up

to the place in the code where a checkpoint is taken can be determined [BMPS03].



94

Karablieh, et al. [KBH01] They address the problem of CPR among hetero-

geneous machines with a different objective. Their goal is maximum heterogeneity,

supporting new platforms without modification or special configuration; Therefore,

they are willing to sacrifice some performance for portability. Their preprocessor

inserts code to use goto statements, calls, and returns triggered at CPR time to

unwind and re-create the stack and bring the program counter to the correct po-

sition. During the recovery of a stack frame, local variables are restored and then

control is transferred to the appropriate call site where the next function in the

activation history is called. To facilitate the checkpointing of stack-based vari-

ables, all the local variables in a function are wrapped in a struct. The program

is instrumented to maintain a state stack, where every element contains a pointer

to the struct of locals and a label to the location in the code of the call site of

the next function called. As functions are entered and exited, nodes are created

and destroyed on the state stack. To store data in an architecture-neutral format,

fprintf and fscanf are used during CPR. Instead of allowing a program to use

native pointers and then translating all pointers at migration time, they create

an additional level of indirection—what they call the Memory Refractor (MR).

The instrumented program keeps this structure up-to-date at runtime. The MR

contains size and type information about every variable (whether global, local, or

heap-based) and a pointer to the location of that variable. All pointers in the orig-

inal code are transformed into architecture-independent offsets into the MR. As a

consequence of this extra abstraction, all pointer dereferences require an additional

memory access.

In a heterogeneous CMP environment, where state copy is not necessary

because memory is shared, Karablieh, et al.’s method for transforming state (us-

ing fprintf and fscanf) would result in high migration overhead—something our

migration technique avoids. Our solution to pointer correctness after migration is

also different: they use an MR, which hurts runtime performance by adding an

additional dereference to every pointer access; we keep pointed-to objects at fixed

locations in memory so that no additional indirection is necessary.
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Ramkumar and Strumpen [RS97, SR96, Str98] These papers propose

application-level checkpointing (where the application, instead of the OS, directs

CPR) using a C-to-C compiler that adds code to explicitly save and restore vari-

ables by name and unwind and rewind the stack. Pointers are converted to a

machine-independent format and back to a native format at migration time. Data

is converted to a machine-independent format (that they call Universal Checkpoint

Format) during checkpointing and then to the appropriate machine-dependent for-

mat during recovery. Their compiler generates what they call type metrics, which

are tree structures that describe the properties of and relationships among all the

data types used in a program’s code. These aid in data conversion, including

handling differences in padding and alignment, and pointer conversion.

Ferrari, et al. [FCG00, Fer98] These papers describe a migration scheme

very similar to that of Ramkumar and Strumpen. One notable difference is their

use of a receiver-makes-right policy for data translation. Instead of converting all

data to a universal format when taking a checkpoint and then converting that to

a machine-specific format during restoration, the checkpointing machine does no

data conversion and the restoring machine converts from the native format of the

sender to its own native format. The advantage of this scheme is that if the two

architectures are identical (i.e., if the migration is homogeneous) or if they are very

similar, the process incurs less translation overhead. However, this leads to more

complexity since each machine type must be able to translate from every other

supported machine type; in contrast, with a universal intermediate format, each

machine type only needs to be able to translate to and from the universal format.

They use polling to initiate checkpointing. At certain points of execution—which

they call poll points—a state variable is checked to determine if the program has

been put in the checkpointing state. If it has, then variables are saved and the

stack is unwound using a sequence of return statements. They support two kinds

of poll points—mandatory and optional. Mandatory poll points are placed around

every call site that may potentially lead to a point in the code where a checkpoint

request is detected by another poll point. Optional poll points can be placed

anywhere at the discretion of the programmer. They are usually placed in regions
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of code that execute for long periods of time without making function calls so that

the average latency to checkpoint request detection is low. The authors introduce

some simple heuristics for the automatic placement of optional poll points. We

use similar heuristics but evaluate their effectiveness using a new metric and more

realistic benchmarks.

Smith and Hutchinson [SH96] Instead of modifying the application to con-

duct its own migration, Smith and Hutchinson offload most of that work onto the

compiler and a pair of separate processes, migrout and migrin. They modify

the ACK compiler to disable optimizations across call sites and to record extra

information about the program, including details about the type and location of

every variable at every call site. migrout uses this information to inspect the

program’s memory image and convert it to a machine-independent form; migrin

uses the information to convert from the machine-independent form to a machine-

specific form on the destination machine. This reduces runtime overhead; however,

pointer translation during migration is a slow operation, especially if the program

uses many pointers.

Chanchio and Sun [CS02] The technique of Chanchio and Sun is very similar

to Ferrari’s. One improvement is the checkpointing of only live local variables

(instead of all locals) at each call site. Their technique also differs in when stack

frames are restored. Instead of translating and restoring all stack frames before

execution is resumed, stack frames are translated and restored lazily as functions

are returned. This reduces migration overhead at the expense of runtime overhead.

Pointers in languages like C present a difficult problem for heterogeneous

migration because they are machine-dependent, allowing direct access to any object

in the address space of a process. No prior work has been able to efficiently deal

with the problem of pointers. Either runtime performance is sacrificed ([KBH01])

or migration performance is ([FPS06, RS97, SR96, Str98, FCG00, Fer98, SH96,

CS02]). One of the main contributions of our work is to demonstrate an effective

method of dealing with pointers (by ensuring all pointed-to objects remain at fixed

locations).
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4.2.5 Other Languages

The techniques presented in this section contain valuable contributions to

the topic of heterogeneous migration but do so by taking advantage of the strong

typing and mobile features of other programming languages. In contrast, our

technique is effective in type-unsafe languages like C.

Veldema and Philippsen [VP05] Their paper proposes a migration technique

for Java code. The primary goal of their work is to reduce runtime overhead; to

achieve this goal they utilize heavy compiler support. The compiler performs all

high-level machine-independent optimization passes and then creates a Usage De-

scriptor String (UDS) for each live local variable. The UDS is a string representing

the computations necessary to produce the value of the variable at a call site. Each

local variable is uniquely identified by a UDS, which is the same across compilation

to different target architectures. Associated with each UDS string representing a

variable is the location of that variable when the call site is reached (e.g., on the

stack or in a register). As the low-level optimization passes change the variable’s

location, the mapping is updated. With this mapping, they are able to migrate

local variable values across architectures. The compiler creates two functions for

every call site: one that knows how to checkpoint the local state at that call site

and another that knows how to restore local state at that call site (in a machine-

dependent way, based on the UDS-to-location mappings).

Steensgaard and Jul [SJ95] This work adds heterogeneous mobility to the

Emerald distributed programming language. Emerald programs consist of a set

of objects distributed among different machines. Accesses to objects (even if they

reside on different machines) are transparent. Originally, Emerald only supported

the distribution of objects among homogeneous machines; Steensgaard and Jul add

support for distribution among heterogeneous machines, utilizing the compiler to

keep track of where data values are kept in the activation records and registers.

This allows them to translate a machine-specific activation record to a machine-

independent activation record and then back to a machine-specific activation record
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for a different machine. They discuss when, during execution, it is safe to migrate—

they call these points bus stops. A bus stop exists at procedure calls, system

calls, and at the bottom of loops. The compiler is free to optimize code between

bus stops, but not across. They give a few examples of such optimizations that

move code across bus stops and they propose some solutions, though they do

not implement the solutions or measure their effectiveness. They identify code

motion, strength reduction, and instruction selection as three optimizations that

may take place across migration points. They propose that bridging code be

introduced by the compiler and executed during migration to reverse the effects of

code reordering.

4.2.6 Other Directions

The following works propose less traditional approaches to the inter-machine

migration problem.

Ssu, et al. [SF98, SFJ03] In this work, migration cost is reduced by having

a master process on one machine and slave processes on machines of different

architectures. The master process executes the program and periodically sends

updates (on some procedure entries) to the slave processes; the slave processes

sit idle most of the time, occasionally receiving state updates from the master,

which they translate into a native format. Checkpointing is done using traditional

homogeneous checkpointing techniques. Since the master does not need to convert

any data itself, it has low overhead. The data conversion latency and checkpointing

latency happen in parallel with regular execution, hiding their effects. Their results

show low runtime overhead and little processor utilization by the slave processes;

however, the checkpoint interval is around 5 minutes. They do not create or modify

a compiler to handle the code changes, instead modifying the source code by hand

(often increasing code size by 35%). They only support basic data types and do

not support structs.
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Theimer and Hayes [TH91] They propose that, at migration time, modified

versions of the functions in the activation history be created. This code needs to

be recompiled (at migration time), then run on the target machine. The new code

restores all the variables, jumps to the appropriate code position, and continues

normal execution. They do not implement their idea and measure its overhead,

but it is clear that such an approach will result in high migration overhead due to

the cost of compilation.

4.2.7 Differences

One important difference between the problem of process migration among

computers and process migration among cores on a single chip is the need for I/O.

When a process is to be migrated among computers, state must either be saved

to stable storage (checkpointed), transferred, and restored, or it must be trans-

ferred directly over a network of some kind. Migration within a single machine

requires no such I/O transfer—process state is kept in the same memory banks. A

common focus of the related work is on efficiently storing state, including distill-

ing or compressing needed state. Because the I/O overheads dominate migration

performance, the computational overhead is less important. Since the problem

we address does not have an I/O component, the computational component of

migration is critical for good performance. We, therefore, focus on reducing the

processing needed for migration.

Another important consequence of the difference between the problems ad-

dressed in this chapter and prior work is the ease of extending migration to other

architectures. When process migration in a cluster environment is considered, it

may be desirable to trade some performance for greater generality; the ability to

easily add migration support for a new type of machine is attractive. However, the

priorities are different for on-chip heterogeneous migration. A chip multiprocessor

is designed by a single company. They may license some of the design from other

companies or partner with them, but the effort will be unified. The different ma-

chine types in a heterogeneous cluster may be made by different (often competing)

companies with their own agendas. In contrast, the designers of chip multipro-
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cessors will put significant effort into integrating the different core types, carefully

selecting core types that complement one another and work well together (e.g.,

they won’t combine big-endian with little-endian and likely will keep fundamental

data types and sizes the same). Since it is reasonable to expect that significant

effort goes into the design and integration of the core types found in a chip mul-

tiprocessor, it is also reasonable to expect that some extra effort (simple compiler

support, at minimum) would be profitable in order to optimize migration among

those cores. In this domain, achieving performance through specialization is more

important than excess generality. Unlike in a heterogeneous cluster environment,

no new core types can be added after the product ships.

Unfortunately, most of the related work lacks comprehensive empirical per-

formance results. Some present no performance results or incomplete results (either

showing only runtime overhead or only migration overhead). Most only present

results for a select few programs (most of them toy programs). One of the con-

tributions of this chapter is to give a more complete performance analysis of our

technique using a set of common benchmark programs.

4.3 Overview of Migration

Though the operating system is responsible for coordinating migration, we

do not restrict the impetus for execution migration to come from the operating

system. It is possible for the process itself to request migration (based on a self-

awareness of its own needs), for the operating system to request migration (based

on the availability of resources and the needs of other processes), or for some

external agent (like the user) to request migration (based on a desired level of

service).

By whichever means migration is requested, the operating system must

perform three actions to facilitate migration. It must reschedule the process on

another core, it must change page table mappings to facilitate access to the code for

the migrated-to core, and it must spawn a process to transform memory for state

migration. The first two tasks—process scheduling and page table manipulation—
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are common operating system responsibilities and require no further discussion

here. The final task—state transformation—is unique. The transformation process

can either be a part of the operating system itself or it can exist as a privileged user

process that is simply spawned by the operating system. Either way, the operation

of the transforming process is the same. We describe this process in Section 4.5.

Before we continue with our overview of migration, we first state the as-

sumptions that this chapter makes and describe the ISAs we use in this study.

Assumptions We assume that there is no architecture-specific code in the pro-

gram to be migrated. We focus on migrating C code, free of inline assembly code.

To support programs with custom assembly code, assembly code would need to be

provided for all the architectures on which the process may run. We also assume

that externally-linked libraries are compiled for migration. For libraries that are

tuned to specific architectures, this will require some code changes. The C library,

for example, because it contains a significant amount of architecture-specific code,

will require significant refactoring to be migration-safe. For the testing of our

migration technique on programs which are linked to C library code, we restrict

migration to occur only within non-library code. Finally, we assume some similar-

ities in the ISAs: the same endianness, fundamental data size, and floating point

format. Otherwise, significant portions of memory would have to be transformed

during migration.

ISAs For this study, we model a small, low-power ARM core and a large, high-

performance MIPS core. ARM and MIPS are both 32-bit little-endian RISC ISAs

with IEEE 754 floating-point support. Despite their similarities, they also repre-

sent a measure of diversity, both in design and application. In terms of design,

ARM has many features that MIPS lacks: an abundance of predicated instructions

(almost every instruction in the ISA has support for predication), load-multiple

and store-multiple instructions, and a program counter accessible as a general-

purpose register. MIPS, on the other hand, has double the number of accessible

integer registers as ARM. In terms of application, ARM is most commonly used in

highly power-constrained devices. MIPS cores, while also commonly used in power-
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Figure 4.1: Heterogeneous-ISA CMP with two powerful MIPS cores and eight
energy-efficient ARM cores.

constrained devices, have also been used in more performance-focused devices (like

the Origin series of SGI supercomputers).

Figure 4.1 is a diagram of the type of CMP we model. The number of cores

of each type is irrelevant in this study, as we propose the migration mechanism,

not the policy (the former need only consider the migrated-from core and the

migrated-to core; the latter must consider all cores). The detailed architectural

model of our CMP is described in Section 4.6.2.

We experiment with only two ISAs, but our migration technique should

be feasible for CMPs with more than two core types. The greatest difficulty in

adapting the technique to more than two architectures is dealing with additional

compiler complexity. A migration-aware compiler should be designed in a very

modular fashion to easily accommodate generating compatible code for additional

architectures. As we describe in Section 4.5, the key to state transformation in-

volves creating mappings of objects from source-level/common names (e.g., local

variable “foo”) to architecture-specific locations (e.g., ARM register 5). For each

additional architecture compiled for, an additional mapping would need to be cre-

ated. Because mappings are made to a common representation, the number of

mappings the compiler must create is linear with the number of supported archi-

tectures.

Fast migration requires minimal state transformation. And this hinges on
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memory image consistency—the memory image at a point P in the execution of

a program on ISA A should be nearly identical to the memory image at P on

ISA B so that very little state must be transformed to a machine-dependent form

during migration. This is the heart of our migration strategy. The next section

describes how memory image consistency is achieved. Then Section 4.5 describes

the migration itself.

4.4 Memory Image Consistency

In order to facilitate fast execution migration, each binary representation

of a program (compiled for different ISAs) should expect to find each item of

program data at the same virtual address. This makes it possible to perform

the migration without having to rearrange data items in memory, reducing the

latency of the migration process. Contrast this with traditional inter-machine

heterogeneous migration where state copy dominates migration overhead and the

cost of reordering and transforming memory is marginal. Migration on a CMP

does not involve memory state copy, so keeping transformation costs low is critical

to good performance.

To achieve memory image consistency, first the overall structure of the

program sections for each ISA needs to be consistent: the types of sections, their

composition from the sections of various object files, and their alignments must

match. Also, within each section, the number of objects, their sizes, their relative

order in memory, and their alignment and padding rules must be identical in order

for their virtual addresses to be consistent across ISAs. This not only applies

to data sections, but also to sections containing code. This is necessary so that

function pointers will be accurate after a migration. In this case, the “objects”

within the section that must be consistently placed are function definitions. All

functions specified for each ISA must start at the same virtual addresses. The

dynamic portions of memory—the heap and the stack—also need to be consistent.
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4.4.1 Overall Section Structure

By specifying a consistent placement of the major program sections in the

virtual address space for each ISA, we take the first steps toward a common data

and code layout. We accomplish consistent section placement by modifying the

linker scripts of the GNU linker, ld. Consistent ordering of and alignment between

similar sections aggregated from multiple source files is achieved with modifications

to both the linker and the assembler.

ISAs may utilize entirely different sections for the same data. This is the

case for the small data sections in MIPS: the .sbss, .sdata, and .scommon sections.

Data objects below a certain size are placed in the small data sections; this allows

for faster access to these data objects since it takes fewer instructions to reach

these items from a base pointer (like the global pointer). This is a consequence of

the limited amount of space (16 bits) in a MIPS instruction to specify the offset

from the base pointer. In order that data does not have to be copied in or out of

small data sections at migration time, we add support for small data sections in

ARM. However, at this point we do not change the compiler to take advantage of

the small data section by generating ARM code to access data in these sections

with fewer instructions—so the performance of ARM code is not improved, but is

not degraded either.

4.4.2 Code Section Consistency

One program section that needs some work to ease migration is the code

(.text) section. This is because function pointers pose a potential problem to fast,

efficient migration. If a pointer is taken to a function, foo, and saved somewhere

in memory (either on the stack, on the heap, or in a global variable) and later in

time a migration occurs, that pointer may no longer be correct. To remedy this,

function bodies, like data objects, should be consistently placed in memory across

each ISA. This will allow all function pointers to work correctly after migration

without the the need to find and fix all the function pointers in memory.

Before function bodies can be placed at consistent memory addresses, the

compiler must make consistent decisions regarding which functions to produce code



105

for. If care is not taken, a function may be inlined away as it is compiled for one

ISA but not another. For example, if a C function is declared static and everywhere

it is called a copy of it is inlined, the original function definition may be eliminated

altogether. If different inlining decisions are made as the program is compiled for

different ISAs, a different set of function definitions may appear for each. To create

a common set of functions for which code is generated, the compiler is modified

to keep definitions for all functions even if they are inlined at every call site. This

only marginally increases code size and we measure no effect on performance.

The order of function definitions in memory must be identical, otherwise

function pointers will be incorrect after migration. To ensure this, the compiler

emits function definitions in the order they are encountered in the source files.

Finally, to make the start addresses of each function identical, the code

size of each function must be identical for every ISA. The assembler adds NOP

instructions, when necessary, to pad functions to the appropriate size. As a result,

each function compiled for each ISA matches in size and start address. While this

method increases code size a little, we measure no performance loss.

4.4.3 Heap Consistency

Code that accesses the heap must be consistent—we call this heap consis-

tency. Heap consistency is not necessary so that pointers to the heap will work

correctly after migration. Rather, it is needed to ensure that after migration the

program has an accurate record of what heap memory is allocated and what is free.

This requires that the same implementation of malloc be used for all ISAs. Then

at migration time, because all malloc’s internal data structures are preserved, a

consistent view of the heap will be maintained. The same principle applies to any

memory management library a program uses.

In the Linux system that we model, malloc acquires memory on behalf of the

caller in two ways: through the brk system call, which grows the heap, and through

the mmap system call. The mmap system call does not return heap memory, but

pages of virtual memory that the operating system has allocated to the process.

Since a single operating system instance governs all the cores, a common page table
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is used, and page allocations allocations will not change, despite the migration.

4.4.4 Stack Consistency

The stack is especially difficult to make consistent without sacrificing too

much performance because stack interaction is carefully optimized for each ISA.

For example, in an ISA with a large number of registers, many function arguments

may be passed through registers to avoid loads and stores to stack memory. But

for an ISA with a small number of registers, most function arguments must be

passed on the stack. Our goal is to find the right balance between good runtime

performance and low migration overhead. We must change stack memory as little

as possible at migration time without eliminating performance-critical ISA-specific

stack optimizations. This section describes what should be changed (and what

should not be changed) about the stack organization to strike this balance. First,

we review the major sub-components of a frame. Then we describe changes that

apply to the frame as a whole. Finally, we describe changes that apply to each

sub-component.

Components of a Frame Each stack frame is composed of different parts. The

exact number of parts and their relative order depends on (1) the needs of the

ISA, (2) the type of code being generated (e.g., position independent code may

require additional space to save a pointer into a global offset table), and (3) the

needs of the function being compiled (e.g., non-leaf functions may place outgoing

arguments in their frames). Common components of a frame include arguments,

call-saved register spill slots, and local variables. Arguments include both incoming

arguments and outgoing arguments (only if the function calls another function).

Usually, incoming stack-based arguments to a function are considered part of the

caller’s frame. Call-saved registers can be of two types: callee-saved and caller-

saved. A calling function that wishes to preserve the values in some of its caller-

saved registers across a function call will save those registers to its own frame.

A called function that intends to overwrite callee-saved registers of its caller will

first spill those register values to slots in its frame. Finally, some functions will
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Figure 4.2: The organization of a non-leaf stack frame in a migration-capable
program.

require stack space for local variables. This includes any compiler-created locals

and excludes any compiler-eliminated locals and any locals bound to registers. For

ISAs with moderate numbers of registers and functions with only a few locals, it’s

common to see the locals section of the stack frame omitted.

We now describe all of the general stack layout changes to avoid costly stack

transformations during migration, including (1) direction of growth, (2) size, (3)

ordering, and (4) alignment. If any of the following changes are not made, all of

the data on the stack will need to be repositioned during migration and all pointers

to stack-based objects will need to be fixed.

First, the stack’s direction of growth should be the same: in both ARM and

MIPS, the stack grows downward. Second, we compile the code in each function

such that, when it executes, it will make the stack frame the same size for each

ISA (by adding padding), making the overall stack size consistent.

It is also necessary to have a consistent ordering of regions within each

frame. In our implementation, a callee-saved register spill region comes first (at

the highest addresses of the frame), followed by space for locals and space for

outgoing arguments (if the function is not a leaf). MIPS requires an additional

region to save the global pointer register. This region is placed between the locals

area and the outgoing arguments area. To account for this small space in ARM,
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we modify the compiler to add additional padding to stack frames when compiling

ARM code. The cross-architectural layout of a non-leaf stack frame is shown in

Figure 4.2.

In order to achieve identical frame size, it is also necessary to maintain

consistent alignment and padding rules between regions. In our implementation,

each region is 8-byte aligned.

We now discuss specific changes to each major frame sub-component to

avoid costly stack transformations during migration. The major frame sub-

components are:

1. the function arguments region

2. the callee-saved register spill area

3. slots for local variables

Function Arguments

After migration, the program must be able to locate arguments to open

functions without requiring stack transformation during migration. First, we re-

view argument-passing conventions in MIPS and ARM. Then we describe how

problematic differences can be reconciled. Finally, we consider a special case of

argument passing: functions that accept a variable number of arguments.

Arguments may be passed to a function in two ways: through registers or

through stack memory. Each ISA has its own calling conventions specifying how

arguments should be passed. To enable migration, it is necessary to modify some

of these conventions so that functions can find their arguments after migration.

Changes are also necessary to ensure consistent frame size because stack-bound

arguments contribute to overall frame size. Forcing arguments on the stack that

would otherwise have been passed through registers can hurt performance, so we

avoid this.

For MIPS, the convention is for non-leaf functions to allocate space in their

own frames for a minimum of four outbound arguments. However, there are four

registers in which the first four arguments to a function are passed. If the called
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function needs to overwrite any of the argument registers, it may first spill those

registers to the pre-allocated argument slots on the stack. For ARM, the convention

is to only allocate space on the stack for arguments beyond the first four. The first

four arguments are always passed through registers.

To reconcile these differences (so that arguments may be located after mi-

gration) without sacrificing performance, we modify how the compiler generates

ARM code to handle function arguments. The compiler allocates stack space for

the first four arguments, though the caller does not fill these slots. The called

function is made aware of this region as a possible spill location for the argument

resisters if it needs to reuse those registers. Performance is not affected, as the

same number of arguments are passed through registers instead of going to mem-

ory. Memory usage is increased by about 16 bytes per frame. This additional

memory consumption has no noticeable effect on performance.

Variadic functions—functions that take a variable number of arguments

(like C’s printf function)—create an additional challenge to consistent calling con-

ventions. If the conventions for handling variadic functions differ among the ISAs

on the CMP, arguments to variadic functions will not be locatable after migration.

We briefly describe how variadic functions work and the conventions followed by

MIPS and ARM; then we outline the changes that must be made to enable migra-

tion in variadic functions.

The protocol for handling arguments to variadic functions is as follows. All

of the anonymous (unnamed) arguments are required to be laid out contiguously

on the stack. Initially, a local variable is created that is a pointer to the stack

location of the first anonymous argument. It is up to the called function to de-

termine the number of arguments passed. The function iteratively accesses each

anonymous argument in order. It gets the value for the next anonymous argument

by following the pointer just described. After the argument has been read, the

pointer is incremented so that it points to the next anonymous argument.

The details of how the original GCC compiler handled variadic functions

differ for each ISA. For MIPS, in non-variadic functions, the first four argument

stack locations are allocated but may never be filled. For variadic functions, if
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the first anonymous argument is within the first four arguments, then some of

those argument slots must be filled, otherwise the pointer to the next anonymous

argument will point to an empty slot. Therefore, when called, the first thing

a variadic function does is spill some of its argument registers to the already-

allocated stack locations in the parent’s frame (assuming that the first anonymous

argument lies within the first four arguments).

In ARM, since the first four arguments are passed through registers, a

similar problem arises when the first anonymous argument lies within the first

four arguments. But, unlike in MIPS, the convention in ARM is to not allocate

stack space for the first four arguments. So on entry to a variadic function, the

first action taken is to allocate N stack slots (where N is four minus the number

of named arguments) in the called function’s frame and spill N argument registers

to them. We modify the behavior of GCC when it compiles variadic functions

in ARM to (1) not allocate space for incoming anonymous arguments in its own

stack space, (2) spill argument registers for anonymous arguments into the already-

allocated slots in the caller’s frame, and (3) correctly set the pointer to the first

anonymous argument in the caller’s frame.

It is important to note that all of these changes to argument passing rules

require the recompilation of external libraries (primarily libc). This is necessary

because the interface between callee and caller functions is changed and all calls

back and forth between library code and user code must respect the new calling

convention.

Callee-saved Register Spills

For a given function, the number of callee-saved registers that need to be

overwritten depends heavily on (1) the number of registers the ISA supports (af-

fecting register pressure), (2) constraints placed on ISA-specific special-purpose

registers, and (3) low-level code transformations. Because all of these factors are

architecture-specific, the size of the callee-saved register spill area differs greatly

across ISAs. We therefore modify the compiler to add padding, as necessary, to the

callee-saved register spill area of each stack frame. This change has no noticeable
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effect on performance.

Local Variables

The last frame sub-component that requires modification is the area re-

served for local variables. There are two reasons why changes to this frame area

are necessary. First, pointers to stack-based variables should be correct after migra-

tion (and fixing them during migration is too costly). This means that pointed-to

variables must be placed at identical addresses by each ISA. Second, the size of

this area must be the same across ISAs, so that resizing (and therefore copying) is

not necessary during migration. This section describes the necessary modifications

to this part of the frame. These changes ensure (1) consistent ordering and (2)

identical size (requiring padding).

The direction of stack-based local variable allocation within the locals region

of the stack frame differs between architectures. For MIPS, GCC allocates variables

in this region from low address to high; for ARM from high address to low. Large

aggregate objects (like structs and arrays) and objects whose addresses are taken

are allocated to the stack first. The different allocation directions cause these

objects to be allocated at different addresses on the stack. For pointers to these

objects to work after migration, we require all of these objects to be allocated to the

same addresses across ISAs. To enforce this requirement we change the allocation

direction; when GCC compiles ARM code it now allocates stack objects from low

address to high. This change results in the identical placement of stack-bound

variables to which there may be pointers.

Like the other regions of a stack frame described above, this region may

require padding so that the size across architectures is identical. This is due to

the fact the the number and choice of local variables to allocate to the stack is

different across architectures.

Function Inlining

GCC makes function inlining decisions in its high-level tree optimization

passes. Most high-level passes are architecture-independent, so the optimization
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decisions that are made are identical whether compiling for ARM or MIPS. How-

ever, the function inlining passes use code size estimates, which are architecture-

specific. To facilitate an identical view of the function activation records on the

call stack at migration time, we force the compiler to make a common set of in-

lining decisions during compilation. We modify GCC to use only ARM code size

estimates to guide inlining decisions. This has no noticeable effect on runtime

performance.

4.5 Migration Process

In the last section we described the key to fast migration: obviating the

need to transform most of the memory image during migration by keeping the

memory image in an architecture-neutral state. The last section described what

must be done at compile time to prepare for migration; this section describes the

migration itself.

Migration, as we define it, is the continuation of a process’ execution on a

different core—a core with a different architecture and ISA. The source and target

cores share the same memory. The migration process involves

1. halting execution of a migratable process on the source core,

2. performing minimal transformations on the process’ memory image to make

it ready for execution under a different ISA,

3. mapping the code section of the migrating process for the target ISA into

the process’ virtual address space (replacing the code section for the source

ISA),

4. resuming execution on the target core.

All of these activities are under the control of the operating system. Most modern

operating systems already have the underlying support necessary for steps 1, 3,

and 4. Step 2 (memory image transformation) is the most critical to migration
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latency. Because this step is the heart of heterogeneous migration, we focus on its

characteristics and behavior in this section.

When all of the compiler/assembler/linker changes described in the previ-

ous section are applied, all of the program sections, except for some portions of the

stack, are migratable without any transformation. We observe that keeping the

stack in a state of complete architecture-neutrality would eliminate the need for

any memory transformation at migration time, but would significantly hurt run-

time performance. Architectures that rely on large numbers of registers for good

performance would be affected more severely—data that would normally reside

only in registers would be forced to the stack at every function call.

To facilitate the transformation of a process’ memory image (specifically,

the stack portion) we introduce a small program called the Stack Transformer

(ST). The ST has three jobs:

1. creating the register state for the migrated-to core.

2. fixing all the return addresses on the stack.

3. repositioning the values of local variables in open function activations. The

ST must ensure that the value of every stack-based variable is at the address

where code for the migrated-to core expects it.

The ST may either be a part of the kernel or it may be user code that is invoked

by the kernel during migration. Before we describe the operation of the ST, we

will discuss how its prerequisite data is generated by the compiler.

4.5.1 Stack Transformation Prerequisites

The Stack Transformer (ST) needs detailed information about the compila-

tion of the program from source code in order to prepare the stack for execution on

the migrated-to core. We modify GCC to record the necessary information during

compilation. This information includes

1. the frame layout for each function,
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2. details about function call sites,

3. the locations of local variables,

4. the sets of spilled caller-saved and callee-saved registers.

Determining Frame Layout

The common frame layout is shown in Figure 4.2. We modify GCC to

record, for every function, the sizes of every region within that function’s frame.

The ST reads in this information to determine where one frame ends and the next

begins and where to look for data in the different regions within the frame.

Collecting Call Site Information

The ability to identify function call sites is essential for migration for two

reasons: to determine where it is safe to migrate and to translate stack data during

migration. Safe execution migration may only occur at a call site that exists in the

code for both architectures because these call sites represent points of execution

equivalence. Call site identification is important for stack transformation because

the contents of the stack represent execution state at a sequence of function call

sites. In order for the ST to reposition data within each frame, it must be able to

identify and interpret stack frames.

Although we arrange function definitions to begin at the same address across

code compiled for different ISAs (to avoid fixing function pointers during migra-

tion), the address of call sites are not the same. When translating state from ISA

A to ISA B, the ST, given the sequence of return addresses on the stack for A, must

find the corresponding call site locations in the machine code of B. This is neces-

sary because the ST must transform return addresses on the stack. Also, it must

look up the meta-data produced by the compiler for each call site—information

like:

• the set of live registers at the call site (because the values of spilled registers

may need to be moved),
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• the names of the calling and called functions (so that frame size and layout

may be determined).

In order to map between the two different code addresses of a call site and

to look up additional call site information, we need a common key—a unique,

architecture-independent label that is the same across compilations for different

architectures. One option is to use a tuple of caller name, callee name, source file

name, and source line number. However, there are many instances where multiple

calls to the same function occur on the same line. This is exacerbated by the use

of macros that may expand into a large body of code containing multiple func-

tion calls to the same function (all marked by the compiler as residing on a single

line). Including column numbers in addition to line numbers is not always possi-

ble because many compilers (like GCC) do not keep column number information

throughout the entire compilation.

A better solution is to assign each call site a unique identification number.

These UIDs are assigned during the parsing stage of compilation because this stage

is shared when compiling for different ISAs, so the numbering will be consistent.

We modify GCC to create these UIDs and carry them along with each call site

throughout compilation, even as different intermediate representations are used.

During code generation, special code labels are created and inserted at each call

site. The labels encode the source file name and call site UID. When the code is

assembled and linked, these labels appear as symbols in the symbol table and are

associated with the virtual address of each call site. The ST can inspect the symbol

table to find the mappings between code addresses and call site UIDs. Also, the

call site UIDs are referenced in the meta-data produced by the compiler, giving

more information about each call site, including caller and callee names and live

variable information.

Since call sites are given UIDs during the parsing stage, special care must

be taken if call instructions are copied at some later point during compilation.

Instructions may be duplicated for a variety of reasons by a number of optimiza-

tion passes. Two examples are the function inlining passes and the basic-block

reordering pass. To avoid ambiguity among copies, each cloned call site is given
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a UID when it is created. Furthermore, the association to the original call site is

reflected in the UID—some of the bits of the UID contain the UID of the original

and some of the bits contain the copy number. We divide call site clones into

two categories: clones created in the early compiler passes and clones created in

the late compiler passes. Because the early passes are shared when compiling for

multiple ISAs, clones created in these passes will be the same. Clones created in

early passes tend to have an aspect of context sensitivity: the context of the cloned

call site may be different. For example, when a call site is cloned due to function

inlining (that is, when a function containing a call site is inlined into a caller and a

copy of the call instruction is made) the cloned call resides in a different function.

Because the context has changed, it would not be correct, upon return from the

called function, to return to the original call site; it is only correct to return to the

cloned call site.

Call sites cloned in the late passes, on the other hand, have an aspect of

context-insensitivity. There is only one late pass that creates call site clones—the

basic-block reordering pass. This pass performs software trace caching, arranging

(and in some cases duplicating) basic-blocks to avoid branch mispredictions and

instruction cache misses. The control flow is maintained; only the layout of blocks

in memory is altered (based on performance-related predictions). It is therefore

safe, upon return from a called function after migration, to return to any of the

copies of that call site (though returning to the site of the same copy is likely

to result in slightly better performance). This property of context-insensitivity is

important in the late passes because clones made at this stage of compilation are

not necessarily made consistently when compiling for different architectures. Thus,

as long as we can track the association of clones made here to their originals, we

can safely migrate at a cloned call site that may not exist for the architecture to

which we are migrating.

Cross-Jumping Not only can call site identification be impaired by call site

cloning, but it may also be hindered by optimizations that combine multiple call

sites into one. The cross-jumping optimization is one such optimization. Auto-

matically enabled at optimization level -O2 and above in GCC, this optimization
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is designed for size efficiency, not performance. It combines common sequences

of code; sometimes this includes instructions used for function calls—this hap-

pens frequently in MIPS code. A call to a function defined in another source

file is implemented in two steps. First the address of the function is loaded into a

register; then a jalr (jump and link register) instruction is executed to call the func-

tion whose address is in the given register. The cross-jumping optimization may

combine multiple jalr instances into one, separating the function-address-loading

instructions from the actual call instruction (adding unconditional jumps to the

shared call instruction). This makes uniquely identifying these call sites difficult

and makes it impossible for the ST to determine the true call site given just a

return address (since the same return address would be shared by multiple call

sites). We disable the cross-jumping optimization since it has virtually no effect

on runtime performance in our experiments.

Locating Automatic Variables

In order for the ST to move the local variables of open functions to the cor-

rect stack locations for execution on the migrated-to core, it needs to know how to

interpret the stack contents. It must be able to map high-level program variables

(which are named identically among cross-platform compilations) to architecture-

specific, compilation-dependent locations (either stack addresses or registers). All

local variables located in the stack memory image must be located and identified

by their high-level variable names. This section describes how the compiler gath-

ers this information for the ST. The next section includes a brief discussion of

optimization passes that make it difficult to locate stack variables that must be

moved during migration.

The Effect of Inlining on Variable Names Normally, programming language

rules make it unambiguous which object a variable name refers to in a given scope.

However, as the compiler inlines functions it may create ambiguities if variables

are identified by name alone. For example, if function foo contains a variable with

name var and a call to function bar, which also contains a variable with name var,
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then if the call to bar is inlined, there will be two variables in foo with the same

name. GCC is able to differentiate between the two variables, but the ST, which

only sees the variable names, could get confused. To solve this problem, every time

we copy a variable declaration for inlining, we append a unique ID to the end of

the name. This unique ID is the same across compilations for different ISAs, so

the same variable is named consistently.

A local variable for an open function activation can be in a number of places.

It may be allocated to a stack slot, allocated to a scratch register that is caller-

saved, or kept in a callee-saved register. If a variable is allocated to a callee-saved

register, then, at migration time, it could still be in the register (if no subsequent

function activation uses the register), or it could be spilled in one of the records of

a subsequent function activation (the first one that reuses the register).

In our implementation, this information is gathered and recorded by the

compiler, and later supplied to the ST during a migration. The compiler records

the location (either on the stack or in a register) of each variable, labeled by its

source-level name. For every function, it records all the variables directly allocated

to stack slots. It also records all the variables allocated to scratch registers that

are caller-saved and the location on the stack where each caller-saved register is

spilled. Finally, for every call site in every function, it records what variable is

bound to each of the live callee-saved registers at that call site.

A single stack slot may contain the values of different variables at different

times during the lifetime of a function. There are two reasons for this. First,

nested lexical scopes within a function may contain variable declarations. Thus,

two variables in different sub-scopes may occupy the same place in the stack at

different times. The second reason for stack slot cohabitation is different caller-

saved registers. If any scratch registers need to be preserved across a call site, they

are spilled on the stack. At different call sites within a function, the same stack

slot for caller-saves may be used to hold the values of different variables.

Since execution migration is possible at call sites, the ST needs to know

precisely which variables are expected to be in which stack slots at every call site so

that it can move the values of those variables to their correct, architecture-specific
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locations. To handle multiple caller-saves to the same stack location, we modify

the compiler to record the set of live scratch registers that are spilled into caller-

saved stack slots at each function call site. Later, the ST consults this record to

determine the contents of all the caller-saved stack slots in each activation record,

in case any of these values need to be moved. Ambiguity resulting from stack slot

cohabitation due to nested lexical scoping is handled by recording the scopes of

variables that are allocated to the stack as well as the scopes of function call sites.

During migration, the ST uses this scope information to disambiguate the local

variables on the stack.

Just as it is necessary to track variables in caller-saved registers at every

call site, it is also necessary to track variables in callee-saved registers across every

call site because variables may be bound to different callee-saved registers across

different function calls within the same calling function. We only need to track

the variables that are live at each call site because these are the only variables the

program expects to be valid when the process returns from the function call. If

a migration took place in the interim (between the function call and its return),

the process will be running different machine code under a different ISA that may

expect to find those live variables in different locations.

Therefore, we add a new compiler pass to find the live callee-saved registers

(and the source-level variable names bound to them) at every call site. The pass

operates by first finding all the call sites by scanning the RTL representation of

the program for call instructions. It then uses results of the data-flow analysis

to identify the set of callee-saved registers that are live at the point in the code

immediately following the call (i.e., the return point). GCC’s data-flow analysis

records the live registers at the end of each basic-block, not after every instruction.

So we start with the set of live registers at the end of the basic-block containing

the call instruction and scan backwards through every instruction up to the call

site, updating the live register set along the way.



120

Optimizations that Interfere with Variable Location

A few late optimization passes in GCC expose new live registers across

call sites. They do so in such a way that these new live registers do not always

correspond to a high-level variable name; moreover, the transformation is not al-

ways applied uniformly across all architectures, resulting in architecture-specific

state that cannot be translated at migration time. The incompatibility of these

passes with migration is not inherent to the optimization algorithms, but an ar-

tifact of their implementation in GCC. To make these optimizations compatible

with migration, one of two things may be done. First, the optimizations can be

converted from RTL passes to tree passes because the tree intermediate representa-

tion is architecture-independent. Optimization can be applied consistently during

compilation for both architectures and intermediate state that is exposed can be

assigned labels that are carried in the intermediate representation until register as-

signment. Second, the optimization passes can be modified to avoid applying the

optimization across call sites, as we do for the common subexpression elimination

pass. How this is to be done depends on the operation of the optimization. If the

optimization moves code, then code motion across call sites should be avoided. If

the optimization deletes instructions, it should avoid deleting an instruction that

exposes a new live register at any call site.

Both solutions—converting RTL passes to tree passes and introducing opti-

mization barriers at call sites—may result in less than ideal performance improve-

ment over the current implementations. But given the performance degradations

with these optimizations completely disabled, we expect the performance trade-off

to be minimal and acceptable. Either solution would required a significant refac-

toring of the code; so for this study, we have chosen to disable the problematic

optimization passes. The optimization passes (all are RTL passes) are loop in-

variant motion, global common subexpression elimination, forward propagation,

post-reload instruction scheduling, and tail call elimination. Disabling most of

these passes results in negligible performance loss. For the benchmarks we use in

this study, we observe some performance degradation when the following passes

are disabled: global common subexpression elimination (less than 1%), forward
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propagation (less than 1%), post-reload instruction scheduling (less than 0.5%),

and temporary expression elimination (less than 1%). Turning off all these passes

results in a performance loss of 3.1% in ARM code and 1.6% in MIPS code.

Special Register Contents

At call sites, live registers usually contain the values of variables, either

variables named in the source code or temporary variables created in the early

passes of the compiler. But occasionally a live register will contain something else.

It may contain the value of a constant that is frequently used in the function or it

may contain the address of a variable that is frequently referenced in the function.

If it is an address, it may be the address of a global variable (residing in the global

data section) or the address of a stack-based variable (a local variable residing in

the stack frame of the active function). Whether the register contains a constant

or an address, it may either contain the whole value or only the upper half of

it, because sometimes large values must be loaded in two instructions, one that

loads the high half and another that shifts the high half and adds the low half.

We modify the compiler to report live registers containing constants and variable

addresses, both complete values and upper halves. The compiler finds these live

register values in the same way it finds live registers containing variable values—

by traversing the data-flow graph and extracting register meta-data from RTL

instructions. Information about live registers containing constants and variable

addresses is later used by the ST when preparing register contents for the target

ISA—either at that call site or the stack frame of a descendant function invocation

that spills that register.

Locating Spilled Registers

Some local variables are not allocated to slots in the locals region of a func-

tion’s frame. Instead, they are allocated to callee-saved registers. These registers

are guaranteed to be preserved across function calls. To support this guarantee,

if a function ever needs to write to a callee-saved register, it must first save the

previous contents of that register and then restore those contents before returning.
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Callee-saved registers that are used are spilled in a special region of the frame.

The ST must find the location of every live variable in every activation record in

case those values need to be moved—this includes variables in callee-saved registers

that have been spilled to the stack in more recent activation records. Therefore,

the ST needs information about which callee-saved registers are spilled by each

function and at what offsets. Along with local variables bound to callee-saved

registers, other important registers, like the return address register, may be spilled

in the callee-saved register spill region. The ST needs to know the stack address

where the return address is kept to determine which function the next stack frame

corresponds to. Then it is able to correctly decode the next frame. We modify the

compiler to record for the ST the set of callee-saved registers and their locations

in every function’s frame.

4.5.2 Operation of the Stack Transformer

Now that we have described the prerequisites to stack transformation, we

describe the algorithm of the Stack Transformer, which is relatively simple once all

the prerequisites have been met. The job of the stack transformer is to transform

the architecture-specific program state (mainly stack data, but also register state)

from ISA A to ISA B, so that the program running on ISA B will find all of its data

after migration where it expects it. From a high level, the ST performs two quick

passes over the call stack. The first pass goes from innermost frame (the frame in

which execution was stopped) to outermost frame and finds values for caller-saved

spill locations and simple stack-bound variables. The second pass works in the

reverse direction—from outermost frame back to innermost frame—finding values

for callee-saved spill locations and determining final register state. We describe

each of these passes in turn.

The first pass examines and transforms each stack frame, from the most

recently opened frame to the first frame created when the program was begun.

When the ST begins, it is given the PC of the old core when it stopped at a call

site. The ST looks up information about the call site (information recorded during

compilation) using the PC. From this record it can tell in which function the call
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site resides. The ST then looks up information on the function (also recorded

during compilation) based on the function name and source file origin. The ST

also looks up records for the same call site (using the call site UID) and function

for the other ISA (the ISA of the core to which execution is migrating). With these

four records—call site information and function information for each ISA—the ST

goes to work transforming the stack frame.

First, from the call site record of the destination ISA, the ST processes the

list of registers that are live across the call site. It looks for the values of these

registers (by variable name) in three places in the records of the source ISA: (1)

the list of live registers in the call site record, (2) the list of caller-saved spills

in the call site record, and (3) the list of stack-bound variables in the function

record. When checking the list of stack-bound variables for the current function,

associated scope information for each variable may be used; the scope of the call

site must be contained within the scope that the stack-bound variable is defined

in for it to be a match. Once the ST has located the value that the register should

have at the current call site, it copies the value to a list of live register values

for the current function. It will keep such a list of live register values for every

frame encountered, to be used later in the reverse call stack traversal. In some

special cases, the value for the live register will be a constant, which would have

been recorded during compilation, or the address of a global variable, which can

be looked up in the program’s symbol table.

Next, the values of variables in the caller-saved spill slots are found. The

names and relative stack addresses of these variables are listed in the call site

record for the destination ISA. To find the values for these variables, the ST

checks the same three sources that it used to find values for the live registers on

the destination core. Once found, the value of the caller-saved variable is copied

to the appropriate stack slot.

Finally, the values of stack-bound variables listed in the function record for

the destination ISA are found. The same three sources as before are checked, and

when the value has been located, it is copied to the appropriate stack slot. It

should be noted that only small variables whose addresses are never taken have
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to be moved. Large variables on the stack (like arrays and structs) and variables

whose addresses are taken are given identical stack positions by the compiler, so

no copying of these values is needed and pointers to these variables will remain

valid after migration.

When the ST is done processing a frame it will determine the live register

state on the source core as it existed immediately before the current function was

entered. It will carry over and use this register state when it transforms the next

frame. It updates its view of the register state on the source core by reading from

the callee-saved register spill locations in the current frame. The list of registers

that are spilled (and the relative addresses to which they are spilled) on entry to

the current function instance is found in the function record for the source ISA.

Since the ST knows the size of the frame from the function record, it can

determine where the stack pointer would have been just before entry to the func-

tion. Also, since it knows where the return address was saved on the stack, it

can read from this stack location and determine the address of the call site that

led to the current function activation. With this information, the ST repeats the

transformation procedure for the next frame up on the call stack, looking up the

call site records and function records for the new call site and function context.

After the ST has passed over all the stack frames from innermost to out-

ermost, it has enough information about the live register state at each call site

to determine the values of the important callee-saved spill locations. The ST

starts with live registers in the outermost frame (which it recorded in the previous

pass) and moves to the next (inner) frame. For this frame, it consults the list

of callee-saved registers and, for each one, copies the value from its view of the

current register state to the appropriate location on the stack. Then it updates

the current register state with the live register values at the next call site (which

it recorded in the previous pass). The ST moves to the next frame and repeats

the process until all the important callee-saved spill slots are full. The register

state at the end of this process is the register state that should be instated on the

destination core when the ST is done and the core is ready for native execution of

the program.
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There are two important things to note about this process. First, it handles

the case where a live register at a particular call site is not saved immediately by

the callee (because the callee doesn’t recycle that register), but is instead saved

in some distant frame or is never saved—with the value remaining in the register

at the time of migration. This would not be possible with only one pass from

innermost to outermost frame. Second, if the callee spills a register that is not live

at the call site, the ST may not have a value to place in that spill slot; but this

does not cause any problems after migration because when the called function is

returned and the register is filled, it is not live, so it will not be read before being

overwritten.

4.6 Experimental Methodology

This section describes our methodology. We begin by describing how we use

two traditional compilers to model a multi-ISA compiler (a compiler with a unified

front-end and multiple back-ends to simultaneously generate code for different

ISAs). Then we describe how we measure performance. Finally, we describe how

we measure migration overhead.

4.6.1 High-Level Pass Modifications

Ideally, when compiling for heterogeneous execution migration, the compiler

should run all of its high-level, architecture-independent optimization passes once

and then pass the high-level intermediate representation off to each architecture-

specific back-end for further (architecture-specific) optimization and code genera-

tion. This model of compilation is both more efficient than separate compilation

and necessary for correctness in migration. Unfortunately, the compiler we uti-

lize, GCC, is not designed for such modular compilation. Rather than completely

re-engineering GCC to conform to our ideal compilation model, we utilize two

instances of GCC, each targeted to a different architecture, and work to harmo-

nize the front-end of the compiler. Our goal is to rid the front-end of as much

architecture-dependent code as possible so that the intermediate representation
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of a given program right before the transition to the back-end is the same. In

this way, we mimic the ideal compilation model, only sacrificing some efficiency

during compilation. Making the front-ends identical is necessary (1) to ensure

the same set of source-level variables make it to the back-end for assignment to

architecture-specific locations and (2) to ensure consistent code motion across call

sites.

Code motion across call sites occurs when computation is rescheduled across

a call site. For migration at call sites to work, it is expected that identical units

of computation would be done before the call site (before migration) on both core

types. The form of the computation will differ (different machine instructions

will be used), but the function (i.e., the semantic meaning) must be the same.

Therefore, code motion is only permissible if it is applied consistently. We allow

the front-end to apply code motion operations as it compiles for both architectures

as long as those operations are the same. In the back-end of the compiler, only

code motion between call sites, not across call sites, is permitted.

We modify GCC in a number of ways to enforce an identical intermediate

representation (IR). Here we highlight some of the more important changes, in-

cluding (1) making node numbering consistent to ensure identical compiler-created

variable names, (2) using preprocessed source files to avoid architecture-specific

code in macro expansions, and (3) disabling front-end optimizations that utilize

architecture-specific information.

A significant source of difference between IRs is the numbering of nodes

in the program’s tree representation because the compiler uses these numbers to

name new variables. Every tree node representing a declaration, type, or constant

is given a unique ID number (from a simple counter) when it is created. When the

compiler creates new variables, it bases their names on these UIDs. Thus, if more

declarations, types, or constants are created when compiling for one ISA, then the

counters that control the UIDs will be different and the compiler-created variables

will be named differently. We make some modifications to GCC to ensure that

these counters are consistent across compilations.

The use of identical preprocessed source files is also necessary to produce
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identical IRs. Instead of starting with C files containing macros that may be

expanded differently depending on the architecture-specific macro definitions in

the C library header files and kernel header files that are included, we expand all

the macros once and run the same preprocessed source files through each compiler.

GCC has a number of front-end compiler passes that peek at architecture-

specific information to help guide decisions; this results in divergent intermediate

representations when compiling for different architectures. One early optimization

pass that relies heavily on architecture-specific information is the loop invariant

optimization pass. This pass performs optimizations like strength reduction, in-

duction variable coalescing, and induction variable elimination. It makes use of

cost functions that estimate dynamic instruction counts to perform various oper-

ations. This pass has many places where architecture-specific knowledge is used,

making it difficult to remove the dependencies without crippling the pass. We

disable this pass and find no performance degradation for our benchmarks.

After all the modifications to GCC to enable an identical intermediate rep-

resentation (at optimization levels -O0 through -O2), the runtime performance of

the compiled programs is reduced by less than 1%.

4.6.2 Measuring Runtime Performance

For testing migration and measuring the runtime performance effects of

compilation for migration, we use the SPEC2000 Integer benchmarks written in C

(i.e., all but the C++ benchmark, eon). From this set of benchmarks we exclude

the gcc benchmark because it uses the non-standard alloca C library function to

dynamically allocate memory on the stack instead of on the heap—at this time

our migration technique does not support variable-size stack frames. The ten

benchmarks we use are bzip2, crafty, gap, gzip, mcf, parser, perlbmk, twolf, vortex,

and vpr. All benchmarks are compiled with GCC at optimization level -O2. In all

simulations the reference inputs are used.

Since we use the GCC compiler, which has front-ends for a number of

different programming languages (including Fortran, C++, and even Java), it is

theoretically possible to adapt our migration technique to work with programs



128

Table 4.1: Architecture detail for ARM and MIPS cores

ARM core
Frequency 833 MHz I cache 32 KB, 4 way
Fetch/commit width 2 D cache 32 KB, 4 way
Branch predictor local L2 cache 2 MB, 8 way

MIPS core
Frequency 2 GHz I cache 64 KB, 4 way
Fetch/commit width 4 D cache 64 KB, 4 way
Branch predictor tournament L2 cache 4 MB, 8 way

written in those languages. However, we have not thoroughly tested migration of

programs written in languages other than C, so we do not show any results here

for non-C programs.

To test the effects of migration-aware compilation we perform two kinds

of tests. First, we perform tests to ensure correct execution. In these tests we

use the M5 processor simulator [BDH+06] (configured to execute ARM binaries

and MIPS binaries) to run each benchmark to completion. We verify that the

outputs match the expected outputs. Second, we test performance using M5’s

cycle-accurate simulation mode on representative models of ARM and MIPS cores.

The architectural model of the ARM core is based on the low-power Cortex-A8

core, while the MIPS core is modeled with performance as the primary design

objective. The details of each core are given in Table 4.1.

Because simulating each benchmark in cycle-accurate mode is very time

consuming, we simulate a portion of execution for each benchmark. To ensure

that we measure the performance of the modeled cores on the same unit of work

even after benchmark recompilation, we insert two marks in the source code of

each benchmark—one to indicate where detailed simulation should start and one to

indicate where it should stop. The first mark is made at the point in the code after

approximately one billion instructions have passed (to skip over initialization code)

and the second mark is made after approximately 500 million more instructions

have passed. So the simulation interval is approximately 500 million dynamic

instructions, the exact number of dynamic instructions depending on the ISA and
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compilation options.

4.6.3 Measuring Migration Overhead

To measure the cost of migration, we cross-compile the Stack Transformer

for both ARM and MIPS and run it in the M5 simulator on sample migration

points taken from the benchmarks. We collect 10 samples for each benchmark in

each direction of migration. The samples are collected at intervals of 100 million

dynamic instructions starting one billion instructions into execution (to pass over

the initialization phase). Each sample is of the first call site following the given

instruction count (e.g., the first call site after 1.0 billion instructions, then the first

call site after 1.1 billion instructions, etc). In a few cases migration at the nearest

call site is not possible due to issues like executing in migration-unsafe library code;

so in those cases, a nearby sample that is suitable is used.

The Stack Transformer is written in C++. Designed as a proof-of-concept,

there is still plenty of room for optimization, and the performance results for the ST

presented in this chapter should be considered conservative estimates of potential

performance.

4.7 Results

This section quantifies the cost of our migration technique. Two critical

characteristics of a good migration strategy are low runtime performance overhead

(i.e., performance when no migration is occurring should be minimally impacted)

and low migration cost. The following two sections quantify these characteris-

tics. Since the frequency of migration opportunities may be important in some

applications, a third section quantifies this.

4.7.1 Runtime Performance of Migratable Code

A key goal of this work is to enable fast migration without compromis-

ing runtime performance—that is, performance when no migration is occurring.
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Throughout all the toolchain changes to ensure a nearly identical memory image

across architectures, care must be taken that performance is not compromised.

Among our benchmarks no performance was lost due to changes to make the

memory image consistent (e.g., padding). There is, however, some performance

loss due to optimizations in GCC that are disabled because they inconsistently

move code across call sites (that is, call-crossing code motion is applied in only one

ISA) and/or they impair the association of variable names with locations (prevent-

ing the ST from being able to reposition some data values). The specific changes

that result in performance loss are described in Section 4.5.1. On average, runtime

performance only suffers by 3.1% in ARM code and 1.6% in MIPS code.

4.7.2 Migration Cost

The cost of performing a migration is a combination of overhead from the

involvement of the operating system and the execution of the Stack Transformer.

Because programs are compiled with support for migration, most of the memory

image is already prepared for execution on the destination core. The global data

sections, the heap, and all the large variables on the stack do not need any trans-

formations applied. Also all pointers will be valid without any transformation.

Since we do not have an OS for a heterogeneous-ISA CMP, we focus only

on the migration cost incurred by the Stack Transformer. However, we expect

the OS overhead to be relatively small, since its role is to add the thread to the

run queue of another core and change some page table entries. In the rest of this

section when we refer to migration cost we mean state transformation, not OS

thread-scheduling activities.

For our benchmarks, state transformation (i.e., ST execution time) takes,

on average, 234,651 dynamic MIPS instructions when migrating execution from

ARM to MIPS and 239,426 ARM dynamic instructions when migrating execution

from MIPS to ARM. Under our detailed architectural models for ARM and MIPS

cores, the average migration times are 272 microseconds for migration from ARM

to MIPS and 344 microseconds for migration from MIPS to ARM. Figure 4.3 shows

the average migration costs for each benchmark for ARM to MIPS migration, and
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Figure 4.3: The average costs (measured in microseconds) of state transformation
for migration from an ARM core to a MIPS core.

Figure 4.4: The average costs (measured in microseconds) of state transformation
for migration from a MIPS core to an ARM core.
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Figure 4.5: Performance vs. migration frequency.

Figure 4.4 shows the average migration costs for MIPS to ARM migration. The

graphs also show the fastest and slowest migrations that we measure for each

benchmark.

For migration in either direction, the migration overheads for the bench-

marks vortex, crafty, and gap are the greatest. These three benchmarks also have

the highest average stack depths. The average stack depth is the average number

of frames on the call stack at any given point in execution. Gap has an average

stack depth of just under 30. On the other end of the spectrum, perl has an aver-

age stack depth of three. The average stack depth across all the benchmarks was

nine. Stack depth has the greatest influence on migration cost in our migration

technique; the deeper the stack, the more state needs to be transformed. One con-

sequence of this is that programs with highly recursive code have higher migration

cost; highly iterative code is much less costly to migrate.

Figure 4.5 shows the relationship between performance and migration fre-

quency. The performance results presented in this graph account for both perfor-

mance costs due to compilation for migration (discussed in the previous section)

and migration overhead. In this graph, migration frequency refers to how fre-

quently migrations take place. For example, a frequency of 20 milliseconds means

that every 20 milliseconds the program switches cores. We assume that we can
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migrate at any time—that potential migration points (call sites) occur frequently.

The straight line in the graph represents the performance if no migration occurs,

and accounts only for the overhead of compilation for migratability. The line be-

low that shows performance when migrations occur. When migrations happen

every 10 milliseconds or less the effect on performance is significant. But above

10 milliseconds, performance remains above 95%, as compilation cost dominates

migration overhead. The next two lines will be discussed in the next section.

4.7.3 Frequency of Potential Migration Points

Though our primary goals are fast migration and minimal performance

impact (when not migrating), it is also sometimes desirable that when a migration

is requested, the time until migration can begin is short, on average. This section

quantifies the frequency of potential migration points.

For some use cases of migration, the expected amount of time to the next

possible migration point is important—for example, if migration is triggered by

frequent program phase changes or if a thermal emergency occurs and migration

must take place before core failure. Our migration technique does not support

instantaneous on-demand migration. Rather, migration is only possible at function

call sites. To gain some insight into the expected time that a process would have to

wait from the time migration is requested until the thread can migrate away from

the current core, we measure the frequency of function calls in the benchmarks.

The distribution of function calls is highly irregular. During some phases

of execution, function calls are frequent; in other phases, calls (and, therefore,

migration opportunities) are much less frequent. Consequently, the average time

between calls and the median time between calls are poor metrics for evaluating

call frequency. Instead, we use as our metric the expected time to the next call.

This is the average time (measured in dynamic instructions) until the next call site

is reached from any randomly-selected point in execution.

The expected time to migration (ETTM) is computed as follows. Intu-

itively, if one considers the time from every discrete point in the program’s ex-

ecution (e.g., every dynamic instruction) to the next call and finds the average
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Figure 4.6: Among ARM binaries, the expected time to the next call, under three
situations: no dummy calls have been added, dummy calls to outermost loops have
been added, and dummy calls to second-innermost loops have been added.

of all of these times, this is the ETTM. More formally, it can be calculated in

the following way. Let times t1, t2, . . . , tn−1, tn be the times between function call

instances c1, c2, . . . , cn, cn+1. For simplicity, assume that c1 is not actually a call,

but is the first instruction executed (since migration can easily take place here);

likewise, assume that cn+1 is the last instruction of the program (since migration

can easily take place here as well). Then let the program take time T to execute,

where T =
∑n

i=1 ti. If you randomly choose a point in time, x : 0 ≤ x < T , then

the ETTM is given by

ETTM =

∑n
i=1

ti(ti+1)
2∑n

i=1 ti
=
T +

∑n
i=1 t

2
i

2T
(4.1)

Figures 4.6 and 4.7 (light bars) show ETTM for each benchmark as compiled

for ARM and MIPS, respectively. From these graphs it is clear that call frequency

varies dramatically across benchmarks. Among the ARM binaries, on one end of

the spectrum is vpr where, on average, one must wait only 84 dynamic instructions

until the next possible migration point. On the other end of the spectrum is mcf
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Figure 4.7: Among MIPS binaries, the expected time to the next call, under three
situations: no dummy calls have been added, dummy calls to outermost loops have
been added, and dummy calls to second-innermost loops have been added.

where, on average, one must wait over 48 million instructions until the next possible

migration point. For seven of the ten benchmarks, the ETTM is under 130,000

dynamic instructions; but for bzip, crafty, and mcf the ETTM is much higher.

One way to increase the frequency of migration opportunities is to add more

function calls. The long gaps between calls result from long-running loops that do

not contain any function calls (or have had their function calls inlined). We modify

GCC to inject dummy function calls (calls to an empty function that returns

immediately) into loops. We experiment with two loop selection policies following

two simple heuristics: inject dummy calls in outermost loops and inject dummy

calls in second-innermost loops (parents of innermost loops). Neither policy selects

innermost loops because the performance impact is too severe [FCG00].

The impact on ETTM of these policies is shown in the second and third

bars in Figures 4.6 and 4.7. For the three benchmarks with the longest ETTM, in-

serting function calls in outermost loops dramatically improves call frequency. For

example, in the MIPS binaries, the ETTM for bzip drops from over 19 million to
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about 3.1 million dynamic instructions; for gap, the ETTM drops from about 7.4

million to about 4 million dynamic instructions; and mcf sees its ETTM reduced

from almost 60 million to under 200,000 dynamic instructions. Using the sec-

ond loop selection policy (second-innermost) results in only marginal gains. Most

benchmarks only see a slight decrease in ETTM. Bzip2 is an exception, dropping

by a factor of 7.9 on ARM and 4.5 on MIPS.

The additional opportunities for migration that these changes bring comes

at the cost of performance. Injecting dummy calls adds instructions that do not do

any useful work and may interfere with some compiler optimizations. Performance

drops 1.4% on ARM and 4.7% on MIPS when dummy calls are added to outermost

loops. When calls are added to second-innermost loops, performance drops 2.3%

on ARM and 5.4% on MIPS. For some programs (ones with infrequent calls) the

performance degradation may be justified if the migration policy demands it.

The two lowest bars in Figure 4.5 show the performance of code compiled

with dummy calls inserted. Migration overhead is the same, but due to the ad-

ditional compilation costs, performance is lower at every migration frequency. If

migration never occurs, performance remains below 95%.

4.8 Conclusion

In this chapter we present a new technique for execution migration in a

heterogeneous-ISA CMP. This environment affords a unique opportunity for fast

migration because migration overhead is not dominated by state copy since mem-

ory is shared and native to both cores. Our migration technique takes advantage of

this opportunity by compiling programs to maintain memory state in a way that is

nearly identical to its representation on every core type. As a result, migration re-

quires only minimal transformation—only portions of the stack and register state

need to be transformed. All pointers remain valid after migration without any

transformation, eschewing the need for expensive pointer fixing during migration.

We demonstrate that with strategic compiler changes, runtime performance does

not have to be compromised for migratability—on average, non-migration perfor-



137

mance is reduced by 1.6% for MIPS and 3.1% for ARM. We show that the state

transformation cost for migration is, on average, 272 microseconds for ARM to

MIPS migration and 344 microseconds for MIPS to ARM migration.
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Chapter 5

Conclusion

The shift in the microarchitecture industry to multicore architectures chal-

lenges us to consider how software will be able to capitalize on the increased hard-

ware parallelism. Applications with inherent thread-level parallelism can be easily

transformed into sets of homogeneous parallel threads and directly benefit from

hardware parallelism. However, legacy binaries compiled for a single thread of ex-

ecution cannot directly benefit from multicore systems, nor can applications that

lack inherent TLP. We address the challenges to both of these types of applications

in this dissertation.

To address the problem of legacy code achieving performance gains on mul-

ticore architectures we propose a new technique to automatically parallelize single-

threaded code. Our solution transforms (dynamically) single-threaded binaries

for which source code is not available. It incorporates a dynamic optimization

framework to adaptively apply parallel transformations, selecting only beneficial

transformations and dynamically tuning parallelization parameters. It leverages

the optimistic concurrency of transactional memory to parallelize code that tradi-

tional parallelizing compiler cannot (or can, but not without serialization).

To address the problem of serial applications making efficient use of mul-

ticore resources, we look at how two forms of heterogeneity (workload-based and

hardware-based) may be used to find the best core for each application. To support

workload-based heterogeneity, we introduce a set of new scheduling algorithms for

the complex topology of multithreaded multicore architectures. These architec-

138
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tures pose an interesting challenge to thread schedulers, offering two dimensions of

thread interaction: loose resource sharing among cores and tighter resource sharing

among SMT contexts. The stakes for achieving efficiency and the number of poten-

tial schedules is greater than previous-generation single-core or simple multicore

architectures.

Furthermore, we help pave the way for future schedulers on heterogeneous

multicore architectures. We propose a technique for thread migration in a hetero-

geneous-ISA CMP. We exploit the fact that state copy is not necessary, since

memory is shared, by compiling programs in such a way that very little state

transformation has to be done to make them ready for execution on another core

type.

In the next three sections we summarize our findings in each of these areas.

5.1 Runtime Parallelization

Chapter 2 presents a new runtime parallelization technique that leverages

transactional memory and the runtime flexibility and efficiency of dynamic opti-

mization. It has the following key features. It works on binaries with no source code

available. It is completely automatic, requiring no assistance from the program-

mer or user. Parallelization at runtime combined with a dynamic optimization

framework allows for parallel transformations to be applied adaptively. Poorly

performing parallel code is discarded and parallelization parameters (like tile size)

are tuned. Transactional memory facilitates the parallelization of code for which

it cannot be proven that no memory aliasing exists—code that a traditional par-

allelizing compiler would be unable to parallelize without locks. It utilizes TM

for register synchronization when no faster alternatives exist. No special-purpose

hardware (hardware exclusively for parallelization) is required. We only assume a

dynamic optimization framework (which has been shown to be useful for a variety

of other optimizations [ZCT05]) and support for TM (which has more general use

as a synchronization mechanism for parallel programs).

Our runtime parallelization results in a 36% performance improvement
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across the NAS benchmarks and a 34% performance improvement across the

SPEC2000 floating-point benchmarks, utilizing two-core parallelism. We show

that a loop selection policy that considers only loops at a particular nesting level

(e.g., innermost loops only) fails to achieve the highest performance. Nevertheless,

the parallelization of innermost loops proves more profitable than the paralleliza-

tion of outermost loops. We find that tile size, while important, plays less of a role

in determining performance than other parameters, like TM granularity. We show

that no single tile size is ideal for all loops; instead ideal tile size varies significantly

among programs and also among individual loops. Finally, we evaluate the effec-

tiveness of runtime parallelization at different TM granularities: word and cache

line, showing that more significant gains can be achieved with word granularity.

5.2 Scheduling for a Multithreaded CMP

Chapter 3 introduces a new set of scheduling algorithms for CMPs with

SMT cores, allowing applications that cannot be parallelized to benefit from mul-

ticore systems via unbalanced schedules. Multithreading multicore architectures

are becoming increasingly common, and traditional schedulers fail to cope with the

increased complexity. Traditional schedulers seek to balance load across available

contexts. But in this chapter we show that unbalanced schedules, which a tradi-

tional scheduler would not even consider, are often best. Unbalanced schedules

are especially necessary to achieve maximum efficiency in terms of performance

and energy. We show, empirically, that most of the time the ideal schedule is an

unbalanced one. It is necessary, therefore, for schedulers in these environments to

consider both balanced and unbalanced schedules.

In a CMP of SMT cores, the ability to find a good schedule is critical

to achieving high efficiency. But the search space of possible schedules is very

large in this domain. Our scheduling algorithms intelligently navigate this huge

search space, quickly converging on “good” schedules. The ability to quickly find

good schedules means that they are able to adapt to changing program behavior,

reacting to phase changes—traditional schedulers cannot do this.
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The scheduling policies proposed in this chapter fall into two categories

based on how they navigate the search space: sampling-based policies and elec-

tron policies (as we call them). The sampling-based policies work by trying out

several proposed schedules at regular intervals and directly measuring power and

performance during each trial. A number of different utility functions can be used

to achieve the desired goal—whether it be performance, power, energy, or energy-

delay product (EDP). The best sampling-based policy, Prefer Last – Move, results

in an EDP savings of 7.8% with eight threads on a 4x4 architecture (four-core

CMP, four SMT contexts per core).

Electron policies are based on the assumption that the previous schedule

has some value. At regular intervals, the schedule is slightly modified as one core

attracts a thread to itself and another core repels a thread away from itself. The

criteria that a core uses to decide if it should attract or repel a thread depends

on the goal function. The electron policy targeting EDP saving achieves a 10%

savings in EDP with 12 threads on a 4x4 architecture.

5.3 Execution Migration

Serial applications can benefit even more from heterogeneous hardware,

especially when that heterogeneity extends to the ISAs, as it is more likely that

each application will have a core that is well-suited to its needs and executes

it efficiently. But in order for scheduling on such architectures to be effective,

running applications must be free to move among cores—to match phase behavior

or environment changes (e.g., power state transitions).

Chapter 4 focuses on enabling dynamic scheduling in future heterogeneous

architectures by introducing a technique for migrating execution among hetero-

geneous-ISA cores on a CMP. The migration technique relies on the build toolchain

to ensure that program state is in a form that is as architecture-neutral as possible.

The compiler, assembler, and linker work together to ensure that global data, heap

data, and critical stack data does not need to be transformed for execution on a

different core. In addition, function definitions begin at identical addresses and
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pointed-to stack variables are assigned fixed addresses. Consequently, all pointers

(whether they are to global variables, heap-based variables, stack-based variables,

or functions) remain valid after migration. And not only is most state transforma-

tion unnecessary, but the copying of state is also unnecessary because the source

and target of migration reside on the same chip and share the same memory—only

some pagetable manipulation by the OS is necessary.

On average, state migration takes 272 microseconds for migration from an

ARM core to a MIPS core and 344 microseconds for migration from a MIPS core to

an ARM core. The major determining factor in migration time is stack depth—the

deeper the stack, the more state needs transformation. It is important to note that

stack variable size does not affect migration time because large variables on the

stack (arrays, structs, etc.) are kept at fixed addresses and do not need transfor-

mation. Fast migration comes at a price though. As the compiler makes program

state less architecture-specific and more generic, some runtime performance (per-

formance when no migration is happening) must be sacrificed. Nevertheless, we

demonstrate that with careful compiler modifications and by keeping performance-

critical state in an architecture-specific form, performance loss is minimal: on av-

erage, 3.1% in ARM code and 1.6% in MIPS code.

Though the two primary goals of our migration technique are fast migration

and minimal performance degradation, we also briefly evaluate the frequency of

migration opportunities (which occur at function calls). This chapter introduces

a new metric to fairly evaluate the frequency of migration opportunities. It mea-

sures the expected time to migration (ETTM) from a randomly-selected point in

execution. We find that the ETTM varies significantly from one program to the

next. Among our benchmarks, it is as high as 60 million dynamic instructions

(for mcf on MIPS) and as low as 84 dynamic instructions (for vpr on ARM). To

reduce the ETTM for benchmarks with high ETTM, we add dummy calls (which

become migration opportunities) to loops. We evaluate two policies for selecting

which loops to add the calls to: (1) outermost loops only and (2) second-innermost

loops only. We show that the first policy is very effective at reducing ETTM in

programs with high ETTM. For example, in bzip compiled for MIPS, the ETTM
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is reduced by over a factor of six. We show that the second policy has a more

limited impact—though for bzip2 it is still helpful, reducing ETTM by a factor of

4.5 over the first policy.
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