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ABSTRACT OF THE DISSERTATION

Essays in Experimentation, Voting with Sabotage, and Dynamic Inconsistency

by

Danil Dmitriev

Doctor of Philosophy in Economics

University of California San Diego, 2023

Professor T. Renee Bowen, Chair

This dissertation examines the optimal design of incentives or mechanisms in

various strategic and non-strategic settings.

Chapter 1 studies how to provide incentives for creativity by analyzing a stylized

model of delegated creative experimentation. A principal desires an agent to frequently

switch to new uncertain projects to maximize the chance of success, while the agent

faces a fixed cost of switching. We show that the principal’s optimal reward scheme

is maximally uncertain—the agent receives transfers for success, but their distribution

has extreme variance. Despite being stationary, the optimal reward scheme achieves

the principal’s first-best outcome provided that the agent’s outside option is sufficiently

xi



valuable. These results shed light on the value of randomized incentives for motivat-

ing creativity and provide guidance on how to design optimal bonus schemes in online

platforms and other applications.

Chapter 2 studies the design of robust votingmechanisms in the presence of sab-

otage. We consider a preference aggregation problem in which the designer faces both

genuine agents and outside saboteurs. We show that plurality voting and other standard

mechanisms are typically not robust to sabotage. The optimal voting mechanismmust

make saboteurs indifferent between each alternative they can vote for. Based on the

property, we suggest simple ways of improving standard voting mechanisms to make

themmore robust to outside sabotage.

Chapter 3 studies perceptions of dynamic inconsistency in labor provision over

time. We present a novel laboratory experimental design intended to measure both ac-

tual and perceived dynamic inconsistency by using a convex commitment device. In

a pilot experiment, we find that participants demand significant amounts of commit-

ment despite showing little dynamic inconsistency in their labor choices. This implies

that they believe themselves to bemore dynamically inconsistent than they are. The re-

sults suggest caution when employing commitment devices, as their usage may be un-

related to the inconsistency they attempt to solve.
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Chapter 1

Motivating Creativity

1.1 Introduction

Frequently trying new ideas (i.e., being creative) is important in many work en-

vironments. Online platforms, such as YouTube, TikTok, or Facebook, desire creators

to try new content variations to find where they can capture the attention of the plat-

form’s users and generate engaging content. A recording label would like its artists to

constantly try new variations of theirmusic tomaximize the chance of a “hit”. These sit-

uations share two key features: (i) a profit-maximizing principal that benefits from the

creator’s success; (ii) the creator can recycle old variations in the hope of eventual suc-

cess or develop a new variation at some cost. Since the principal is not directly involved

with experimentation, she is typically free of this switching cost, which leads to a mis-

alignment of incentives. The creator prefers to stick to each content variation for some

time even in the absence of success. The principal does not internalize the creator’s

switching cost and would like him to experiment with new variations constantly until

success arrives. How should the principal motivate the creator to be more creative?1

1While this dissertation chapter is focused on private benefits of creativity, discovery of new ideas is
also a crucial factor in explaining economic growth, e.g. see Jones (2002, 2022). Studying how to properly

1



The contribution of this dissertation chapter is two-fold. First, we reveal a novel

role that extreme uncertainty of rewards can play in incentivizing creative experimenta-

tion. When the agent draws a low reward on a new project, he is incentivized to switch

early to another project in expectation of getting a better reward. The principal can ex-

ploit this incentive by making the high reward arbitrarily large and concentrating al-

most all probability on the low reward. Our second contribution is more technical. Ex-

isting literature on delegated experimentation with moral hazard finds that it is gen-

erally optimal for the principal to use a time-contingent reward scheme, i.e., a trans-

fer rule with deadlines (e.g., see Halac et al., 2016; Guo, 2016). This solution is a natu-

ral way to affect the agent’s dynamic incentives but can be costly to implement due to

monitoring or enforcement costs. Stationary reward schemes (e.g., a fixed payment for

achieving success) are easier to implement in practice, especially when dealing with

many agents. We show that (stationary) uncertainty of rewards can provide the neces-

sary dynamic incentives for the agent to experiment efficiently. We also derive a con-

dition under which the restriction to stationary rewards does not prevent the principal

from achieving her ideal outcome.

We analyze a stylized principal-agent model of delegated experimentation with

switching costs. There is a principal and an agent. Agent engages in continuous-time

experimentation, facing an unlimited number of bandit arms (projects). He can only

work on one arm at a time. If an arm is good, it delivers success at a positive rate while

being worked on; however, a bad arm never succeeds. Hence, good news is conclusive.

There is a common prior that an unexplored arm is good. When a success happens,

both the agent and the principal get payoffs. At any point, the agent can stop working

on the current project, pay a fixed switching cost and start working on a new one. The

principal faces no switching cost. This model captures important features of existing

motivate creative experimentation is important for both private companies and the society as a whole.
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environments, such as YouTube. We can think of the agent as a new content creator. He

must experimentwith new content variations in order to discover the onewhere he can

achieve success. Switching to a different type of content involves buying new software

or equipment and researching the existing content of this type, which can be viewed as

a switching cost for the creator. The platform is the principal and does not pay this cost

because it is not directly involved in the creator’s experimentation.

Without additional incentives from the principal, the agent’s optimal policy fol-

lows a standard index rule. If there was no switching cost, this would result in instan-

taneous switching to a new project when there is no immediate success on the current

one. With the switching cost, the agent spends positive time on each project before

switching. Since the principal faces no such switching cost, her preferred policy is in-

stantaneous switching. Hence, there is a conflict of incentives—the principal would like

the agent to switch quicker than he does. For example, YouTube likely views a content

creator that has worked on the same kind of content for a couple years without achiev-

ing success as being stuck too long.

To address this conflict, the principal can design (and commit to) a bonus

scheme. We assume that the bonus scheme takes the following form: Each project is as-

signed a fixed payment that is paid if and when that project succeeds.2 The agent does

not know the reward on a given armuntil he starts working on it. This assumption rules

out a few natural mechanisms, but we believe it is practical. The main type of mech-

anism we rule out is any mechanism that contains time-contingent payments or dead-

lines (Halac et al., 2016; Guo, 2016). One could imagine promising the agent a bonus

payment, but also fixing a deadline at which they must switch to a new arm. Maintain-

ing such time-contingent schemes is costly in many situations. For example, YouTube

deals with hundreds of thousands of creators at once, which would make maintaining
2This is reminiscent of YouTube paying content creators for the number of views on their videos.

3



individual time-contingent contracts with each creator quite costly. In general, imple-

menting a mechanism relying on memory is costlier than a mechanism that does not

keep track of it. We wish to investigate how well the principal can perform when she is

restricted to simple, stationary reward schemes.3

What is the optimal bonus scheme for the principal? Tomotivate the discussion,

let us return toYouTube. Theplatform incentivizes creators via a recommendation algo-

rithm and a pay-for-ads scheme. Perhaps surprisingly, both are quite non-transparent

for creators. As The Verge puts it, “YouTubers are at themercy of a platform they do not

fully understand”. Theymust experiment with different content variations to learn how

much the platform incentivizes each variation, and sometimes see that their new con-

tent is not rewarded that much. While this non-transparency is discomforting for cre-

ators and contributes to burnout (New York Times), it may be benefiting the platform

in some way. Our model can shed light on the nature of this benefit.

The non-transparency of YouTube’s incentive schemes can be expressed in our

model as the uncertainty of the principal’s bonus scheme. We will focus on two ap-

proaches that the principal can take — transparent and opaque. A transparent bonus

scheme sets a fixedbonus payment for all arms, so the agent knowswhat hewill get if he

switches. In contrast, an opaque bonus scheme sets a distribution of rewards for unex-

plored arms but does not initially reveal rewards to the agent. When the agent switches

to a new arm, its bonus is drawn randomly and revealed. This design creates an asym-

metry between the agent’s current arm, which has a known bonus, and an unexplored

arm, whose bonus is uncertain. In this way, stationary uncertainty of the bonus scheme

can change the agent’s dynamic incentives for switching to a new arm.

Our first key result (Theorem 1) states that opaque bonus schemes perform

strictly better for the principal than transparent ones. Specifically, we show that given
3We also assume non-negative transfers in the main model, which can be viewed as a liquidity con-

straint. We relax this assumption in Section 1.5 and show that this only strengthens our results.

4
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any transparent bonus scheme, there exists an opaque (opaque) bonus scheme that

keeps the agent just as happy and offers the principal a strictly higher expected value.

To understand how opaque rewards work, suppose that the principal offers a distribu-

tion of one low reward and one high reward. If the agent draws the low reward, this pro-

vides extra endogenous pressure to switch early, since a new arm’s expected reward is

better than the current one. On the other hand, drawing a high reward suppresses the

switching incentive for a symmetric argument. The principal thus benefits from the

low-reward cases, i.e., when the agent gets unlucky. We show that the principal can de-

sign the distribution of rewards in such a way that the gain from the low-reward cases

outweighs the loss from the high-reward cases.

Our second result (Theorem 2) concerns the structure of the optimal bonus

scheme. We know it is opaque, but what properties does its reward distribution have? It

turns out that an opaque bonus scheme performs best when it leverages an extremely

large but unlikely reward to maximize the probability of a low reward that induces effi-

cient experimentation. That is, if we fix any opaque reward distribution with a given ex-

pected value to the agent, the principal can do strictly better by increasing the value of

the high reward and shifting the probability to the low reward. Doing so exploits the fact

that the agent’s continuation value conditional on the current arm’s reward is increasing

and unbounded in the reward. The principal chooses the low reward so that the agent’s

experimentation policy, conditional on the reward and the overall agent’s value, is so-

cially efficient. Intuitively, the principal leverages the size of the high reward (under

which experimentation is suboptimal) tomake the low reward (underwhich experimen-

tation is optimal) almost certain. Since the goal is to make the probability of the low re-

ward as high as possible, the principal wants to make the high reward arbitrarily large.

Our final result (Theorem 3) derives a condition under which opaque bonus

5



schemes achieve the principal’s ideal outcome.4 That outcome is characterized by a so-

cially efficient experimentationpolicy and full surplus extraction from the agent. When

the principal cannot impose a negative bonus on the agent, opaque bonus schemes

achieve the principal’s ideal outcome if and only if the agent’s outside option is suffi-

ciently valuable. This result hinges on the combination of the agent’s participation con-

straint and the liquidity constraint that prevents the principal from taxing the agent.

The outside option sets a value that the principal must assign to an explored arm to in-

duce the agent to begin experimentation. Dropping the low reward as low as the liquid-

ity constraint allows, the principal induces the quickest possible switching time. This is

a lower bound on the agent’s switching time under the liquidity and participation con-

straints that the principal faces. The principal can achieve her ideal outcome if and

only if this bound is below the socially efficient switching time. This is equivalent to

the agent’s outside option having a sufficiently high value. If the liquidity constraint is

relaxed by allowing the principal to tax the agent’s success payoff, the principal’s ideal

outcome can always be achieved (Theorem 4).

The extreme spread of rewards described above is reminiscent of the so-called

“Mirrlees problem” in the classical hidden-action model. The principal observes a sig-

nal of the agent’s action in the form of output, and the signal’s support is infinite. When

the tails of the signal distribution are sufficiently informative, it is possible to incen-

tivize thefirst-best action by setting an extremepunishment for sufficiently extreme sig-

nal realizations (Bolton and Dewatripont, 2005, pp. 140-141). Themechanism in this dis-

sertation chapter works in a similar way but ismore subtle because it relies on dynamic

revelation of information. The principal uses a very large reward to provide the neces-

sary incentive for the agent to switch early conditional on drawing a bandit arm with

a low reward. As opposed to the hidden-action model above, this incentive is dynamic
4Technically, opaque bonus schemes can get arbitrarily close to the principal’s ideal value.
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and comes at a potential cost for the principal. That cost vanishes as the high bonus

gets arbitrarily large due to the probability being fully concentrated on the low bonus.

The role of uncertainty in incentivizing creativity sheds new light on the incen-

tive schemes we see in practice. Consider YouTube once again. The platform has two

mainmechanisms that provide incentives for novice content creators—a recommenda-

tion algorithm and a share of advertising revenue (pay-for-ads). Both systems have a lot

of uncertainty and non-transparency for content creators.5 Consider the pay-for-ads

scheme, which pays creators based on howmuch ad revenue their videos generate. The

specific pay rate is sensitive to a video’s content niche and the regionwhere it iswatched

and can vary by an order ofmagnitude (as discussed in this Thinkific blog). When a cre-

ator switches to a new content variation, they cannot predict with certainty what pay

rate their new videos will receive. Our results suggest that this uncertainty, even if not

intended by YouTube, can induce creators to experiment more frequently and achieve

success faster. If YouTube wishes to leverage this uncertainty to incentivize creative ex-

perimentation, we suggest that the distribution of rewards should be extreme—a high

pay rate with low probability or a low pay rate with high probability. We discuss in de-

tail how our model relates to YouTube and similar platforms in Section 1.4.

The rest of the chapter is structured as follows. Section 1.2 presents the main

model. Section 1.3 describes the key results. Section 1.5 discusses a few important ex-

tensions, such as allowing negative transfers or introducingmoral hazard into the prob-

lem. Section 1.4 discusses how our results apply to YouTube and other online platforms

that rely on content creation.
5Discussion of YouTube algorithm transparency can be found in the following articles at the Schwartz

Reisman Institute for Technology and Society, Fast Company, and Forbes.
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Related literature

Broadly, this dissertation chapter belongs to the literature on experimentation

with learning.6 While we model experimentation using exponential bandit arms7, we

consider a relatively new variationwhere there is an unlimited supply of risky arms that

the agent can explore. Ourmodel is closely connected to that of Sadler (2021), who con-

siders a single-agent setting with a known distribution of rewards on the unexplored

arms. He analyzes how the structure of the reward distribution affects the agent’s exper-

imentation policy and a social planner’s preference for using subsidies or taxes. We dif-

fer from his analysis by focusing on a principal-agent conflict of incentives that arises

due to the principal facing no switching cost. We show that the value of the agent’s out-

side option has an important effect on the efficiency of the optimal bonus scheme. Addi-

tionally, we explicitly derive the agent’s optimal index policy. To do that, we rely on the

applicability of the well-knownGittins index to stationary bandit problemswith switch-

ing cost, as shown in Bergemann and Välimäki (2001) for a discrete-time model.

This dissertation chapter primarily contributes to the literature on delegated ex-

perimentation, which is typically focused on solving the issues of informational asym-

metry8, moral hazard9, and adverse selection10. Our analysis is closest to the moral

hazard strand of the literature, where we wish to highlight Halac et al. (2016). They

consider a dynamic experimentation setting where the principal cannot contract over

which arm the agent experiments with. However, arbitrary time-contingent transfers

are allowed. Our model can be construed as a setting where the principal cannot con-

tract over how long the agent has been experimenting, but can assign different rewards
6For a wide overview, see Hörner and Skrzypacz (2016).
7See Kaspi and Mandelbaum (1998); Keller et al. (2005).
8See Gomes et al. (2016); Halac et al. (2016); Guo (2016).
9See Bergemann andHege (2005); Manso (2011); Bonatti andHörner (2011); Halac et al. (2016); Bonatti

and Hörner (2017); Thomas (2021).
10See Halac et al. (2016).
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to different arms. Hence, we contribute to the literature by deriving the optimal bonus

scheme when it is impractical or costly to use the standard solution of time-dependent

transfers. We also derive conditions under which this restriction does not prevent the

principal from achieving her first-best outcome.

Another paperwewish to highlight isManso (2011), which studies optimal incen-

tives for innovation using a two-armed bandit problem with two periods. It finds that

incentivizing innovation sometimes requires tolerance for failure (captured by trans-

fers that occur conditionally on early failure). In particular, pay-for-performance met-

rics are shown to be insufficient for achieving the principal’s goal. We show that this is

not the case when there are many risky projects for the agent to experiment with. The

principal can use an uncertain performance-based bonus scheme to incentivize opti-

mal exploration of new projects.

Owing to the main application, this dissertation chapter is connected to recent

literature studying the design of online platforms which rely on content creation. Jain

and Qian (2021) study how ad revenue sharing incentives of a platform are affected by

the competition between producers and the properties of the customer base. In related

work, Bhargava (2022) analyzes a more general model of a digital platform that mone-

tizes the consumption of goods through third-party advertisers. He focuses on how the

distribution of creators’ talents is related to market concentration among creators and

platform design. We contribute to this literature by studying how to optimally incen-

tivize novice producers to experiment with new content and how the uncertainty of the

platform’s incentive scheme can accelerate their success.

This dissertation chapter is also connected to the literature on experimentation

in two-sided markets. Gomes and Pavan (2016) focus on price discrimination in match-

ingmarketswhere agents have private characteristics that affect thematch values. Peitz

et al. (2017) analyze optimal experimentation by a platform in a two-sidedmarketwhere

9



the externality value of matches between consumers and producers is initially uncer-

tain. Jullien and Pavan (2018) study platformmarkets where information on users’ pref-

erences is dispersed, focusing on participation decisions when a new, uncertain plat-

form market is launched. We focus on a different aspect of experimentation in two-

sided markets—new producers experimenting with products to find one that they can

provide successfully.

1.2 Model

There is a principal (she) and an agent (he). Time is continuous, t ∈ [0,∞). The

agent can experiment by choosing one of infinitelymany exponential bandit arms to ex-

plore or take a safe outside option. The principal designs a bonus scheme to incentivize

optimal experimentation by the agent. Both players are risk-neutral. We can think of

the principal as a platform, for example YouTube, and the agent as a content creator

that experiments with different content variations. We will now explain each element

of the model in more detail.

Experimentation. We model each variation of content as an exponential bandit arm.

Each arm can be good or bad, and there are infinitely many of them. An unexplored

arm is good with probability π0 and bad otherwise. A good arm delivers success at rate

λ while the agent is exploring it. A bad arm never succeeds, and hence good news is

conclusive. When an arm succeeds, the principal and the agent get payoffs yP and yA,

respectively. Since good news is conclusive, the agent stops switching arms as soon as a

success occurs. Returning to YouTube, we can think of “success” as the creator finding

a content variation that attracts a lot of viewership. If the agent takes the outside option,

it generates flow payoff s > 0 to the agent and 0 to the principal.

Learning. As the agent is working on an arm, his belief that it is good will be gradually
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drifting down as long as success is not occurring. After working on an arm for time t

without success, the posterior belief that the arm is good equals

πt =
π0e−λt

1−π0 +π0e−λt
.

Since good news is conclusive, observing a success will cause πt to jump to 1, and cause

the agent to never switch from that arm.

Switching costs. At any moment, the agent can choose to continue the current action

(experimentingwith a bandit arm or taking the safe payoff), or begin experimenting on

a new arm. When the agent begins to experiment on a new arm, he incurs a one-time

switching cost c > 0.

Absent additional incentives from the principal and given the switching cost, the

agent’s optimal policy is to experiment on each armuntil its posterior belief drifts below

a certain level. This is a well-known index policy that is summarized in the following

lemma.

Lemma 1. The agent switches to a new arm if and only if the current belief π satisfies π < πA,

where

π
A =

m̂
λyA

and

m̂ = sup
t≥0

−c+ π0λ

r+λ
(1− e−(r+λ)t)yA

1
r

(
π0r
r+λ

(1− e−(r+λ)t)+(1−π0)(1− e−rt)
) .

The proof of this and all following results are in the Appendix.11 Note that m̂ is

a modified version of the standard Gittins index that accounts for the switching cost.

Observe that, if c = 0, the index simplifies to m̂ = π0λyA. This implies that without a
11The proof relies on the stationarity of the problem, which has already been used in Bergemann and

Välimäki (2001) to prove the optimality of index policies in a discrete-time version of our model.
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switching cost the cutoff belief would be πA = π0 (i.e., instantaneous switching).

Feasible bonus schemes. The agent’s switching cost creates a conflict of interest be-

tween the principal- and the agent-optimal experimentation policy. With an infinite

number of identical arms and no switching cost, the principal prefers instantaneous

switching between arms conditional on absence of success, i.e. πP = π0 > πA. To address

this conflict, the principal can commit to a bonus scheme (i.e., a transfer rule) at t = 0.

We assume that the principal cannot contract over the time spent on each arm,

but can observe the success of an arm. We also assume that the principal cannot pay

directly for switching to a new arm.12 Formally, this means that the set of feasible con-

tracts consists of all possible transfer distributions on the available arms, where the

transfers are paid upon success. Wemake this restriction for a few reasons. We wish to

determine whether the principal can achieve her first-best outcome using a simple, sta-

tionary reward scheme. Stationary reward schemes are also less costly to implement

than a history-contingentmechanism. Thismakes themmore practical in applications,

especially if they still allow the principal to achieve her first-best outcome.

Transparency of bonus schemes. There are two types of stationary bonus schemes

that we will focus on—transparent and opaque. A transparent bonus scheme assigns a

positive bonus payment b to each unexplored arm that the principal pays to the agent

if that arm succeeds. This bonus payment is revealed to the agent at time t = 0. In

contrast, an opaque bonus scheme assigns a distribution F of positive bonus payment b

to each unexplored arm. We allow any distributionwith finite support. The distribution

is revealed to the agent at time t = 0, but the realized reward on a given arm is not

revealed until the agent starts experimenting on it.13 Hence, the continuation value of
12A switching bonus is ruled out because the principal would still have to keep track of the agent’s

history. If she did not, the agent could abuse the mechanism by constantly switching back and forth
between two arms.

13We assume b ≥ 0 in the main model because it is more consistent with observed mechanisms, in
which the principal does not tax the agent’s payoff. This assumption is relaxed in Section 1.5, and this
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a new arm is uncertain until the agent pays the switching cost and starts working on it.

Equilibrium. We use Markov perfect equilibrium as our solution concept. The payoff-

relevant state variables are the belief π on the current arm and the bonus payment b

on the current arm. The principal sets a bonus scheme for all arms at t = 0, and the

agent chooses an action (continue, switch, take outside option) for every belief π and

reward w. In equilibrium, the two must be best-responding to each other. Formally,

the principal chooses a finite-support distribution F over b ≥ 0. The agent chooses a

function a : R× [0,1] → {outside option, current arm, new arm} that maps the bonus

on the current arm and current belief into actions.

1.3 Analysis

Lemma 1 above characterizes the agent’s switching policy in the absence of a

principal’s incentive scheme. We will begin with a characterization of the agent’s op-

timal switching policy given a bonus scheme that offers him value VA. This result will

be useful for characterizing transparent and opaque bonus schemes in subsequent sec-

tions.

1.3.1 Agent’s switching policy

Suppose the agent is currently experimenting on an arm with promised reward

b and current belief π. Further suppose that switching to a new arm has valueVA to the

agent. As is standard, the agent’s optimal experimentation strategy consists of a cutoff

switching belief.

only strengthens our results.
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Lemma 2. Let VA be the agent’s value of a new arm, and suppose that the current arm has

bonus payment b and posterior belief π. The agent switches to a new arm if and only if

π ≤ rVA

λ(yA +b−VA)
.

Note that VA in this lemma includes the switching cost, i.e. VA = −c+ uA(π0,VA),

where uA(π0,VA) is the agent’s continuation value of the new arm, given optimal policy.

The policy from Lemma 2 can also be expressed in terms of a switching time.

The agent works on each arm for time t = tA(b,VA) that satisfies

tA(b,VA) =−1
λ

ln
(

(1−π0)rVA

π0(λ(yA +b−VA)− rVA)

)
.

1.3.2 Transparent bonus schemes

Wewill begin the analysis with a simpler case—transparent bonus schemes. The

principal chooses a deterministic reward b that is offered on all arms. Whenever the

agent draws a new arm, he is promised the same payment b upon success. Note that

since all arms receive the same bonus b, the value of a new arm VA depends on b and

the agent’s switching rule. Since Lemma 2 relies on the value VA to characterize the

switching time, we will not explicitly solve for the optimal transparent bonus scheme.

We instead provide a characterization of transparent bonus schemes that will be useful

for showing that they can be improved upon by opaque (stochastic) bonus schemes.

Consider a transparent bonus scheme that offers the agent some “target” value

V̄A ≥ ū. Note that this completely pins down bonus payment b. To see why, let τ be the

agent’s switching time. Then his overall valueVA can be written as

VA =−c+
∫

τ

0
π0λe−(r+λ)t(yA +b)dt +

(
1−π0 +π0e−λτ

)
e−rτVA
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The first term is the switching cost that is paid immediately. The second term is the

expected payoff conditional on getting a success before switching at t = τ, and the third

term is the discounted value of a new arm. Since the problem is recursive, the current

arm’s initial value and a new arm’s value in the future both equalVA. Plugging inVA = V̄A

and τ = tA(b,V̄A), we get an implicit equation that relates V̄A and b. Clearly, higher b

induces a higher VA, so there is a unique payment b that satisfies this equation for a

given “target” value V̄A. Denote that bonus payment by bA(V̄A).

We can similarly express the principal’s overall valueVP as a function of b and τ:

VP =
∫

τ

0
π0λe−(r+λ)t(yP −b)dt +

(
1−π0 +π0e−λτ

)
e−rτVP

We can then plug in τ = tA(bA(V̄A),V̄A) and b = bA(V̄A), which gives us the principal’s

overall value VP(V̄A) from offering a deterministic bonus scheme with value V̄A to the

agent. The choice of the optimal transparent bonus scheme boils down to optimizing

VP(V̄A) over V̄A subject to the agent’s participation constraint:

max
V̄A≥ū

π0λ

λ+r

(
1− e−(r+λ)tA(bA(V̄A),V̄A)

)
(yP −bA(V̄A))

1−
(
1−π0 +π0e−λtA(bA(V̄ ),V̄ )

)
e−rtA(bA(V̄A),V̄A)

.

However, identifying the optimal transparent bonus scheme is irrelevant, as we

will next show that you can improve upon a transparent scheme by an opaque bonus

scheme. The key reason why this is possible is that transparent bonus schemes are

generally inefficient. The principal will only consider bonus payments b < yP in order

to get a positive profit in expectation. For any bonus schemewith b ∈ (0,yP), the agent’s

switching policy leads to inefficiently high switching time,. This is because he does not

fully internalize the joint benefit of success, yA+yP, but faces the full switching cost. As

a result, the joint value of experimentation is not maximized for any transparent bonus
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scheme that offers the principal a positive value. However, opaque bonus schemes can

fix this issue.

1.3.3 Opaque bonus schemes

Opaque bonus schemes are characterized by a reward distribution that a new

arm’s bonus payment is drawn from when the agent switches to it for the first time.

Once a reward is drawn, it is fixed for that arm. This introduces endogenous disparity

between the current armand anewarm that affects the agent’s dynamic incentives. The

agent knows her reward on the current arm, but faces a distribution of several rewards

on any new arm. Hence, he will have a combination of switching times, one for each

possible reward. Each of them is characterized by Lemma 2.

We will identify an opaque bonus scheme with its underlying reward distribu-

tion F hereafter. We consider the set of opaque bonus schemes with any finite-support

distribution.14 In this terminology, a transparent bonus scheme from above is charac-

terized by a deterministic F.

Definition 1. An opaque bonus scheme is a probability distribution F over the bonus pay-

ment b ∈ [0,∞) with finite support.

Let VA(F) and VP(F) be the agent’s and the principal’s overall values when the

principal uses an opaque bonus scheme F. These are the values of a brand new arm

under the bonus scheme F, given the agent-optimal experimentation policy. Letting

f (b) be the probability distribution function ofF, we can implicitly express these values

as follows:

VA(F) = −c+∑b∈supp F f (b) ·
[∫ tA(b,VA(F))

0 π0λe−(r+λ)t(yA +b)dt +
(

1−π0 +π0e−λtA(b,VA(F))
)

e−rtA(b,VA(F))VA(F)
]
,

VP(F) = ∑b∈supp F f (b) ·
[∫ tA(b,VA(F))

0 π0λe−(r+λ)t(yP −b)dt +
(

1−π0 +π0e−λtA(b,VA(F))
)

e−rtA(b,VA(F))VP(F)
]
.

14Assuming finite support is not restrictive, but simplifies the analysis.
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It is useful to identify a special class of opaque bonus schemes—binary. A binary

bonus scheme offers just two rewards to the agent — a “good” and a “bad” one.

Definition 2. A binary bonus scheme is an opaque bonus schemewith underlying reward

distribution F such that |supp(F)|= 2.

Intuitively, if the agent draws a “bad” reward, this incentivizes him to switch ear-

lier; a “good” reward pushes him to switch later. Since the principal prefers earlier

switching time and paying less, she benefits when the agent gets unlucky and draws a

low reward and “loses” when the agent draws a high reward. All opaque bonus schemes

share this property. Binary bonus schemes take this idea to the extreme and effectively

pool all rewards below the average and all rewards above the average into single points.

As it turns out, we can restrict our analysis to binary bonus schemeswithout loss of gen-

erality.

Lemma3. Consider an arbitrary opaque bonus scheme F. There exists a binary bonus scheme

F ′ such that VA(F ′) =VA(F) and VP(F ′)≥VP(F).

In words, this means that an opaque bonus scheme with a complicated reward

distribution cannot be better for the principal than a simple binary bonus scheme. The

proof shows that you canpick two values in the support of distributionF and construct a

binary bonus scheme F ′ with support on those two values. The resulting bonus scheme

keeps the agent as happy as before (thusmaintaining participation) andmakes the prin-

cipal weakly better off.

Another way to interpret Lemma 3 is that if you take any opaque bonus scheme,

you canweakly improveupon itwith a binary bonus scheme. It is natural to askwhether

the same logic can be applied to transparent bonus schemes with a deterministic re-

ward. Given a transparent bonus scheme, is there a binary bonus scheme that strictly

improves upon it? The answer is yes.
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Theorem 1. Consider any transparent bonus scheme with b > 0 and overall valuesVA andVP.

There exists a binary opaque bonus scheme F such that VA(F) = V̄A and VP(F)> V̄P.

Given any bonus scheme that offers a certain bonus payment on success, the

principal can do better by replacing that reward with an uncertain lottery between two

rewards—low and high. Intuitively, the agent’s best response is to switch early under

the former and switch late under the latter. The principal benefits from an early switch

but is harmed by a late switch. A binary bonus scheme has to balance these two effects

whilemaintaining the agent’s participation. Theorem1 states that it is possible to design

this bonus scheme in such away that the agent is just as happy as under the transparent

bonus scheme, and the principal is strictly better off.

To understand how an opaque reward scheme can be superior, let us examine

how it affects the agent’s dynamic incentives. The principal has three variables to work

with: the low reward bL, the high reward bH , and the probability distribution. We can

capture the latter with the probability of bL, denoted by q. The distribution F can then

be denoted byF = (bL,q; bH ,1−q). Suppose that the principalwishes to keep the agent’s

initial value at some V̄A ≥ ū. This pins down the value of q through the agent’s value

equation:

V̄A =−c+q ·

[∫ tA
L

0
π0λe−(r+λ)t(yA +bL)dt +

(
1−π0 +π0e−λtA

L

)
e−rtA

L V̄A

]

+(1−q) ·

[∫ tA
H

0
π0λe−(r+λ)t(yA +bH)dt +

(
1−π0 +π0e−λtA

H

)
e−rtA

HV̄A

]
,

(1.1)

where tA
L = tA(bL,V̄A) and tA

H = tA(bH ,V̄A), as determined by Lemma 2. Similarly, we can
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write the principal’s value as

VP = q ·

[∫ tA
L

0
π0λe−(r+λ)t(yP −bL)dt +

(
1−π0 +π0e−λtA

L

)
e−rtA

L VP

]

+(1−q) ·

[∫ tA
H

0
π0λe−(r+λ)t(yP −bH)dt +

(
1−π0 +π0e−λtA

H

)
e−rtA

HVP

]
.

(1.2)

The principal’s value can also be represented asVP =V ∗−V̄A, whereV ∗ is the joint value

of the two players defined as follows:

V ∗ =−c+q ·

[∫ tA
L

0
π0λe−(r+λ)t(yA + yP)dt +

(
1−π0 +π0e−λtA

L

)
e−rtA

L V ∗

]

+(1−q) ·

[∫ tA
H

0
π0λe−(r+λ)t(yA + yP)dt +

(
1−π0 +π0e−λtA

H

)
e−rtA

HV ∗

]
.

(1.3)

Note that the agent’s switching time is increasing in the bonus b, which implies

tA
L < tA

H . Since the principal prefers the agent to switch quicker, she prefers the case

b = bL over the case b = bH . If the principal could choose bL, bH and q independently

of each other, she would maximize q and set bL to a value that maximizes VP through

equation (1.2). However, q is implicitly determined by bL and bH through equation (1.1),

with q ∈ (0,1) for any finite bL and bH . Despite this constraint, the intuition of focusing

on the the low-reward case and making it as likely as possible is key to making opaque

schemes perform well.

Suppose that we fix bL at a given level and try to maximize q. The only variable

the principal can change is bH . Increasing bH increases the third term in equation (1.1),

and thus allows the principal to redistribute some probability from b = bH to b = bL.

Intuitively, theprincipal is leveraging a largerhighbonus to shiftprobability to themore

beneficial case while keeping the agent indifferent.
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Note that the agent’s continuation value is increasing and unbounded in bH .15

Hence, the principal can increase q all the way to q = 1 by making bH arbitrarily large.

Figure 1.1 illustrates this by depicting the probability q for a range of bL as we increase

bH further and further. In the limit, we have q → 1 for any bL.

Figure 1.1: Probability of low bonus, q, as a function of bL for various levels of bH . The
agent’s value is fixed at VA = ū. Parameters: π0 = 0.3, λ = r = 1, yA = 5, yP = 10, c = 0.5,
ū = 1.

Let us now examine the principal’s value under an extreme opaque bonus

scheme. Since the principal’s value can be expressed as VP = V ∗− V̄A, maximizing the

principal’s value with a binary bonus scheme is equivalent to maximizing joint value

V ∗ while holding the agent’s value at V̄A. Note that joint value in equation (1.3) is unaf-

fected by transfers between the players; it is only affected by the agent’s switching time,

tA
L and tA

H . To see the effect of bH on these rules, we can directly apply Lemma 2. Intu-

itively, an increase of the bonus payment on the current arm (holding an unexplored

arm’s value fixed) will make sticking to the current arm more attractive. This prolongs

experimentation on the current arm, increasing tA(b,V̄A).
15This would still be true if the agent was mildly risk-averse, e.g. by having a concave but unbounded

von Neumann-Morgenstern utility function.
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We illustrate the effect of bonus payment on experimentation graphically in Fig-

ure 1.2. Figure 1.2(a) depicts the agent’s optimal switching belief given bonus payment

b on the current arm and holding the overall value of the agent fixed at VA = ū. Figure

1.2(b) depicts the joint surplus as a function of the agent’s switching belief, which is af-

fected by the bonus payment on the current arm. That is, the figure depicts VA +VP

given any possible switching belief πA ∈ [0,π0],16 which is affected by the current arm’s

bonus. Note that the joint value is single-peaked in the switching belief, with the peak

corresponding to the efficient switching policy.

(a) πA as a function of the current arm’s bonus
b, holdingVA (the value of a new arm) fixed.

(b) Joint surplus as a function of πA.

Figure 1.2: Joint surplus and switching policy as a function of the bonus payment on
the current arm, holding the value of a new arm fixed. Parameters: π0 = 0.3, λ = r = 1,
yA = 5, yP = 10, c = 0.5, ū = 1.

Figure 1.3 on the next page combines these two graphs and depicts the joint sur-

plus (the blue curve) as a function of the bonus payment on the current arm. Note that

the agent’s overall value is kept atVA = ū in both the opaque and the transparent bonus

schemes. In the graph, the transparent bonus scheme is denoted by the red line at the

bonus payment b = b̄. It is clear that the joint value is not maximized at that point, as

the agent’s switching time is too large. However, pushing b further down would violate
16πA > π0 is impossible due to the agent’s posterior belief decreasing over time in absence of success.
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the agent’s participation constraint, since it both reduces the current arm’s reward and

the overall valueVA. The opaque bonus scheme can resolve this tension.

Figure 1.3: Simulation of the joint continuation value of a current arm. The orange
lines describe an opaque bonus scheme with payments bL and bH . Parameters: π0 =
0.3, λ = r = 1, yA = 5, yP = 10, c = 0.5, ū = 1.

Figure 1.3 illustrates one such bonus schemewith low reward bL andhigh reward

bH . For any bL < b̄ and bH > b̄, there exists a probability distribution on b∈ {bL,bH} such

that the agent’s expected value is exactly equal to ū:

ū =−c+P(bL)VA(bL, ū)+(1−P(bL))VA(bH , ū),

where

VA(b, ū) =
∫ tA(b,ū)

0
π0λe−(r+λ)t(yA +bL)dt +

(
1−π0 +π0e−λtA

L

)
e−rtA

L ū.

The principal can manipulate the values of bL and bH while keeping the agent
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indifferent between experimentation and outside option. The expected joint value of

the opaque bonus scheme is somewhere between the continuation values at b = bL and

b= bH , which is depicted by a green and a black dashed line segments in Figure 1.3. The

expected joint value is higher under the opaque bonus scheme than the transparent one

as long as it is located on the green segment, i.e. there is enough probability placed on

b = bL.

Now suppose that the principal lets bH get arbitrarily large, bH → ∞. The agent’s

continuation value VA(bH , ū) is increasing in bH , which means that the principal keeps

shifting more probability to b = bL to keep the agent’s overall value at ū. In the limit,

VA(bH , ū) becomes arbitrarily large, and thus the probability of bL gets arbitrarily close

to 1:

P(bL) =
VA(bH , ū)− ū− c

VA(bH , ū)−VA(bL, ū)
→ 1 asVA(bH , ū)→ ∞.

However, the joint continuation value Vjoint(bH , ū) = VA(bH , ū)+VP(bH , ū) approaches a

finite number. To understand this, note that bH is simply a transfer between the players

that does not affect the joint value. The only way in which bH affects the joint value is

through the agent’s switching time, tA(b, ū). As bH → ∞, we have tA(bH , ū)→ ∞, and the

joint continuation value under b = bH approaches

Vjoint (bH , ū)→−c+
π0λ

λ+ r
(yA + yP).

Together with q → 1, this implies that, as bH → ∞, the expected joint value approaches

Vjoint(bL, ū). Referring back to Figure 1.3, this limiting behaviormeans that the expected

joint value eventually enters the green line segment. Since the agent’s value is kept at

ū, the principal’s value approaches Vjoint(bL, ū)− ū. Intuitively, the principal’s value in

the limit is determined by the agent’s outside option and the joint surplus given the low-

bonus switching policy.
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Thenext result describes the effect of increasing bH on the principal’s valuemore

precisely.

Theorem2. Consider a binary bonus scheme F = (bL,q; bH ,1−q)with fixed bL andVA(F) =

V̄A. There exists B > bL such that VP(F) is increasing in bH for any bH ≥ B. Moreover, the

global maximum of VP(F) over bH is attained when bH → ∞.

Figure 1.4 illustrates this result by depicting the principal’s value of an opaque

bonus scheme as a function of bH .17 Bonus bL is calibrated to maximize the joint con-

tinuation value, as in Figure 1.3.

We can see that the opaque scheme’s value is initially decreasing. This is due

to the joint surplus decreasing relatively rapidly (as can be seen in Figure 1.3). That is

caused by the local concavity of the joint continuation value function. However, for suf-

ficiently high bH the value function becomes convex and flattens, which allows the ef-

fect of shifting probability from bH to bL to prevail. This shift of probabilities is respon-

sible for the continual increase of the opaque scheme’s value thereafter.

Figure 1.4 also shows that the induced principal’s value is not convex in the bonus

b. Increasing bH while maintaining the agent’s participation constraint effectively re-

sults in an increase of the bonus payment’s variance. However, it can help or hurt the

principal’s value depending on how large the increase in bH is. We can also see that an

opaque bonus scheme improves upon the transparent bonus scheme only if the high

bonus is sufficiently large.

1.3.4 Efficiency of opaque bonus schemes

We now turn attention towards the question of how well opaque bonus schemes

perform in this setting. It is useful to compare them to the best outcome for the princi-
17Recall that for all values of bH , probability q is adjusted to keepVA(F) = ū.
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Figure 1.4: Simulation of the principal’s value of a transparent scheme (red line) and
an opaque bonus scheme (orange line), as a function of bH . Parameters: π0 = 0.3, λ =
r = 1, yA = 5, yP = 10, c = 0.5, ū = 1, bL = 1.88.

pal. This benchmark involves first-best switching policy (that maximizes joint surplus)

and full surplus extraction from the agent (i.e., setting VA = ū). Using Lemma 1, the ef-

ficient switching policy can be expressed in terms of a switching belief π∗:

π
∗ =

m∗

λ(yA + yP)
, where m∗ = sup

t≥0

−c+ π0λ

r+λ
(1− e−(r+λ)t)(yA + yP)

1
r

(
π0r
r+λ

(1− e−(r+λ)t)+(1−π0)(1− e−rt)
) .

This is a useful benchmark for bounding the best overall value that the principal can

achieve. The agent’s participation constraint requires him to receive at least ū = s
r in

order to engage in experimentation.18 Therefore, the principal’s overall value under any

mechanism cannot exceed the joint value under the efficient switching policy minus

the agent’s outside value ū. Theorem 3 offers a condition under which this upper bound

is attainable via an opaque bonus scheme.
18This is the discounted value of choosing the outside option forever.
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LetV ∗ be the joint surplus under the first-best switching policy.

Theorem 3. There exists an opaque bonus scheme with the principal’s value arbitrarily close

to VP =V ∗− ū if and only if

ū ≥ π∗λ

r+π∗λ
yA

Otherwise, there exists an opaque bonus scheme with the principal’s value arbitrarily close to

VP =V ∗− π∗λ

r+π∗λ
yA.

Perhaps surprisingly, a key reason for this result is the non-negativity of b. To

understand this, consider the agent’s dynamic incentives. At every point in time, he

compares the benefits associated with the current arm’s success payoff yA+b and belief

πt < π0 to a brand new arm with value VA. As the agent’s switching time is generally

inefficiently high, the optimal bonus scheme aims to bring it down to the efficient t∗

(i.e. bring πA up to π∗). In a binary bonus scheme, this can be done by reducing bL

while keeping the agent’s value fixed at VA = ū. Recall that the agent’s switching belief

conditional on the low reward is

π
A =

rū
λ(yA +bL − ū)

.

However, if ū is too low, the binary bonus scheme may be incapable of bringing the

agent’s switching time all the way to t∗ while maintaining VA = ū. The combined con-

straints of keeping VA(F) = ū and bL ≥ 0 may make it impossible for the principal to

achieve first-best outcome, and thus lead to an inefficient switching policy.

If the principal could impose a negative transfer bL < 0 (effectively taxing the

agent’s success), then Theorem 3 would become stronger. We provide the alternative

result for this case in Section 1.5. In short, if bL < 0 is possible, then binary bonus

schemes can always approximate the efficient switching rule and extract all surplus.
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Intuitively, this is because we remove the binding constraint that sometimes precludes

this outcome in Theorem 3.

It is important to note that Theorem 3 does not imply that the principal prefers

the agent to have a higher ū. All else equal, increase in ū generally hurts the princi-

pal. Theorem3 simply describes the condition underwhich the restriction to stationary

bonus schemes does not prevent the principal from achieving her first-best outcome.

When the agent’s outside option is not sufficiently valuable, a time-contingent incentive

mechanism (like a bonus payment with a deadline) can perform strictly better than the

best stationary bonus scheme.

1.4 Application to YouTube

In this section, we will discuss how our results can be applied to YouTube and

other online platforms that rely on decentralized content creation.

First, we need to establish that the problem faced by YouTube and its content cre-

ators is reminiscent of the model in Section 1.2. To begin, consider content creators—

novice creators, to be specific. When these creators enter theplatform, theyhave aprac-

tically unlimited number of content variations to explore. Initially, they do not know

what they can be successful at andmust discover this by trial and error. Once they start

producing a particular kind of video, they may eventually strike success (e.g., generate

a lot of views and gain a large audience), but the success is uncertain. Whenever cre-

ators switch to a new content variation, theymust invest a bit of time and effort into fig-

uring out how to make new videos. This involves purchasing new equipment if neces-

sary, researching the existing creators in the new content niche, and generally learning

how to properly make a new type of video. Overall, this supports modeling a YouTube

content creator’s problem as an infinite-armed bandit problem with switching costs.
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Now let us turn attention to YouTube itself. The platform’s main source of rev-

enue is advertising, as explained on its website. The more consumers are on the plat-

form, the more videos (and ads) they watch—the higher the platform’s profit. Hence,

YouTube is interested in having a lot of engaging content that can be supplied to con-

sumers. For that, it needs content creators that can produce high-quality content and

capture a large audience. In other words, the platform benefits from creators succeed-

ing. However, the platform is not directly involved in the production of content and

thus does not internalize a creator’s switching cost. Regarding novice creators, it only

cares about quickly getting them to the point where they achieve success and can pro-

vide engaging content for the consumers. This establishes a basic payoff structure that

resembles the payoffs in our model. Both the platform and the creators benefit when

success happens, but the creators face an additional switching cost.

YouTube can affect content creators’ decisions by designing additional incen-

tives, such as a bonus scheme. In practice, YouTube has two relevant systems that pro-

vide incentives for a novice—a recommendation algorithm and a pay-for-ads scheme.

The recommendation algorithm is responsible for taking the creator’s content and

matching it to consumers thatmay be interested inwatching it. All else equal, if a video

is recommended more by the algorithm, the creator gets more views. The pay-for-ads

scheme is the main mechanism that translates views into a monetary benefit, at least

for novice creators.19 If we consider generating (ad) views to be a measure of success

on YouTube, then pay-for-ads is essentially a bonus for success that we analyze in our

model. It can also be viewed as a standard pay-for-performance incentive scheme.

Theprevious threeparagraphs establish that themodel in Section 1.2, reasonably

approximates the problem faced by YouTube and novice content creators. We can now
19Successful content creators can monetize their audiences through direct sponsorships from firms

and donation services like Patreon. We focus onnovice creators that do not have an audience tomonetize
because they are the creators whom YouTube would like to actively experiment with new content.
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examine how the results in Section 1.3 apply to YouTube’s problem. Taken in a norma-

tiveway, they suggest that if YouTubewants to use a simple, stationary incentive scheme

to motivate experimentation by novice content creators, it should employ a highly un-

certain bonus scheme. This scheme should leverage a very unlikely but large reward

against an overwhelmingly likely but low reward. The result is optimal experimenta-

tion by most content creators (who get unlucky with their bonus), which comes at the

cost of a tiny minority of content creators that get a lucky draw of the bonus and thus

remain stuck. This incentive scheme requires the platform to neither spend resources

onmonitoring each creator nor keep track of the content they have supplied in the past.

We can also predict that this incentive scheme will result in nearly socially efficient ex-

perimentation as long as the content creators have sufficient valuable outside options.

We can also ask whether the optimal bonus scheme we derive descriptively

matches the actual incentive schemes used by YouTube. Let us focus on the pay-for-

ads scheme, as it is the closest match to the bonus schemes we analyze. It has been ob-

served20 that the payouts for ads on YouTube have a large variance based on the region

where views are generated and on the content niche. Specific pay rates fall in the range

of $1 to $12 per 1000 views, which is a substantial spread when considering a “success-

ful” video garners hundreds of thousands of views. This uncertainty affects the incen-

tives of novice content creators. However, there is little evidence suggesting that it has

been designed that way by YouTube. The observed variability in payouts is mostly at-

tributed to the outcomes of online advertisement auctions.21 Some content keywords

and some regions are more valuable to advertisers, which leads to higher bids on the

corresponding ads. This generates variance in payouts that the creators receive.

In contrast, YouTube’s bonus scheme is remarkably transparent and uniform.
20See this blog on Thinkific, for instance.
21For instance, Google’s AdSense Calculator provides an ad revenue estimate based on a web page’s

content category and region.
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Regardless of how much advertisers pay for views on a given video, YouTube gives a

fixed share of that revenue to content creators. In a world where all content and all au-

diences generated the same ad revenue, the platform’s bonus scheme would be equiva-

lent to the deterministic bonus scheme in ourmodel. Aswe show, such a bonus scheme

does not provide optimal incentives for creative experimentation. Novice content cre-

ators will not try new content variations with efficient frequency because they do not

fully incorporate the platform’s payoff into their decision-making.

Our results suggest that YouTube can improve the incentives for creativity with-

out relying on more complicated mechanisms, such as time-contingent bonuses or

deadlines. A likely reason why YouTube employs a simple, flat pay-for-performance

bonus scheme is that it is easy to scale. To provide better incentives for creativity, the

platform can reduce the standard pay rate and compensate for it by offering a very high

pay rate on selected rare content variations. Those content variations will be initially

unknown to content creators. This uncertainty will put them in a situation where un-

explored content has a higher pay rate (on average) than their current content. As a re-

sult, they will becomemore exploratory and find success more quickly, which will ben-

efit the platform.

In this dissertation chapter, we have abstracted away from the fact that different

projects may have different returns. For example, two content variations on YouTube

may generate very different advertising revenues. Since YouTube likely knows which

content is more profitable, it could use this knowledge in the design of its uncertain

bonus scheme. For instance, it could skew high pay rates for creators towards content

variations that typically deliver high advertising revenue. However, suchmicromanage-

mentmay require additional resources and costs for the platform. In addition, creators

are already incentivized to seek content that offers a high advertising revenue by the

virtue of receiving a fixed share of that larger amount. Skewing the uncertain bonus
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scheme towards high-paying content may thus be unnecessary.

1.5 Extensions

In this section, we will briefly analyze a few important extensions of the model.

We will begin with considering the case where the principal can set a negative bonus

payment b. We will then analyze a simple moral hazard extension of the model and

examine a new form of incentive—switching subsidy.

1.5.1 Negative transfers.

In this section, we will briefly explore what happens if the principal can fix a

negative bonus b. This can be interpreted as the principal taxing the agent’s profit or

being able to choose. Does relaxing the design of the bonus scheme in this way affect

the outcome?

We can show that Theorem 1 still holds, i.e. opaque bonus schemes are better

than transparent ones. The proof relies on the principal being able to offer a lower

bonus than in the transparent scheme under consideration, which is still the casewhen

we relax the constraint b ≥ 0. Similarly, Lemma 3’s proof is unaffected, which means

that we can restrict attention to binary bonus schemes.

The main change is observed when we get to Theorem 3. The inequality con-

straining efficiency of the optimal binary bonus scheme exists precisely because the

principal cannot tax the agent. If we remove this constraint, we get a stronger result.

Theorem 4. There exists an opaque bonus scheme with the principal’s value arbitrarily close

to VP =V ∗− ū.

With b ≥ 0 constraint removed, the principal can always achieve the first-best

outcome using opaque bonus schemes. In other words, if the principal can tax the
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agent’s profit (even without causing them to go into debt), then she can extract all sur-

plus. Notably, this result is maintained if we restrict b ≥−yA, imposing a debt-free con-

dition on the agent. The optimal bonus scheme does not involve the agent having to pay

the principal at any point.

To understand this, recall that the agent-optimal switching belief with bonus b

on the current arm is equal to

π
A =

rVA

λ(yA +b−VA)
,

where VA is the value of an unexplored arm (given the optimal experimentation pol-

icy). Recall that we typically have πA < π∗ due to the agent not fully accounting for the

principal’s success payoff. When the principal is designing the optimal opaque reward

scheme, she is trying to get πA up to π∗ under the low bonus bL, and at the same time

get VA to equal ū. If bL is allowed to be negative (down to −yA), the principal can make

the current arm as unappealing for the agent as they want, which can push πA as high

as she wants. This ensures that the efficient switching under b = bL is achievable. With

the optimal bonus scheme pushing the probability of bL to 1, the result is full surplus

extraction (VA = ū) and maximization of joint surplus (πA = π∗) with probability 1.

Theorem 4 once again highlights that the importance of the agent’s outside op-

tion hinges upon the principal not being able to tax the agent’s payoff. This can be a

practical restriction; for instance, YouTube cannot tax the financial support creators

get from ad sponsorships or services like Patreon. Achieving efficient experimentation

by novice creators is thus dependent on the value of the creators’ opportunity costs.
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1.5.2 Moral hazard and switching subsidy

Suppose that the agent has access to projects (bandit arms) of two distinct types,

expensive (type A) and cheap (type B). Expensive arms are the same as in themainmodel:

they have prior probability π0 of being good, deliver success at rate λ conditional on

being good, and have switching cost cA > 0. Cheap arms are different: they are bad

with probability 1 and have switching cost cB > 0, such that cB < cA. Intuitively, these

are garbage variations that the agent can start working on with almost no effort, but

this comes at the cost of success chance. The principal cannot distinguish between

expensive and cheap arms, but the agent can. The agent still has access to an outside

option that offers a safe flow payoff s > 0. At every time moment,a he now chooses

between four actions instead of three: (i) continue work on the current arm; (ii) switch

to an expensive arm; (iii) switch to a cheap arm; (iv) take the outside option.

Wewish to investigate how the presence of cheap arms affects the optimal bonus

scheme. We also want to see how they affect a new incentive—a switching subsidy. Sup-

pose theprincipal offers a variationof thebonus scheme fromSection 1.2. Shepromises

a bonus payment wb upon success and an additional payment ws paid whenever the

agent switches to a new arm. We will refer to this as bonus scheme with switching subsidy.

Wewill show that the presence of cheap arms constrains the use of the switching

subsidy, but does not impede the effectiveness of opaque bonus schemes.

Lemma 4. In equilibrium, we must have ws ≤ cB.

Note that if the principal sets ws > cB, the agent’s best response will be to instan-

taneously switch to a cheap arm regardless of p. This offers him an immediate positive

payoff (the net switching subsidy), which outweighs any flow expected payoff he can

get from working on an arm, or even from taking the outside option. Instantaneous

switching to cheap arms will result in infinitely negative expected value for the princi-
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pal. Hence, the presence of cheap armswith a low switching cost constraints the princi-

pal in her reward design. Intuitively, this is because the switching subsidy incentivizes

the agent to switch between arms regardless of their success probabilities, since the prin-

cipal cannot tell the arms apart.

Given this constraint, we can ask whether opaque bonus schemes (with stochas-

tic wb) can still improve upon a transparent one (with deterministic wb). The answer

hinges on the values of the agent’s outside option and the switching costs. Recall that

the efficient switching belief π∗ is defined by

π
∗ =

m∗

λ(yA + yP)
, where m∗ = sup

t≥0

−cA +
π0λ

r+λ
(1− e−(r+λ)t)(yA + yP)

1
r

(
π0r
r+λ

(1− e−(r+λ)t)+(1−π0)(1− e−rt)
) .

Further, let ŵs and ŵb be the transparent bonus scheme with switching subsidy that

makes the agent indifferent between experimentation and outside option while mini-

mizing bonus ŵb. That is, ŵs and ŵb solve min ŵb subject to ŵb ≥ 0, ŵs ≤ cB and m̂ = s,

where index m̂ is defined by

m̂ = sup
t≥0

−cA + ŵs +
π0λ

r+λ
(1− e−(r+λ)t)(yA + ŵb)

1
r

(
π0r
r+λ

(1− e−(r+λ)t)+(1−π0)(1− e−rt)
) .

In essence, bonus scheme (ŵs, ŵb)makes the agent indifferent while ensuring that the

bonus payment is as low as possible. We then have the following result.

Theorem 5. The optimal the bonus scheme with switching subsidy is opaque if and only if

ŵb > 0 and π
∗ >

rū
λ(yA + ŵb − ū)

.

Otherwise, a transparent bonus scheme with switching subsidy (ŵs, ŵb) is also optimal.

It is important to note that even when the transparent scheme (ŵs, ŵb) is opti-
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mal, there exist opaque bonus schemes that can perform arbitrarily close to it. Hence,

a transparent bonuswith switching subsidy never outperforms opaque bonus schemes;

however, it can sometimes perform worse. The key reason is the existence of cheap

arms which bounds ws from above. To understand this, consider the second inequal-

ity in Theorem 5. The right-hand side is the lowest switching belief that a transparent

bonus scheme with switching subsidy can achieve. If π∗ > ū
λ(yA+ŵb)

, then the joint value

(and the principal’s as a result) can be improved by pushing the switching belief up. If

ŵb > 0, opaque bonus schemes can induce a lower bonus, which pushes the switching

belief up. Thus, transparent bonus schemes are suboptimal whenever both inequali-

ties hold.

These inequalities aremore likely to holdwhen the switching cost of cheap arms

is lower. A lower cB puts a stronger restriction on ŵs, which in turn makes ŵb higher.

This causes the switching belief rū
λ(yA+ŵb)

to increase, making the first inequality more

likely to hold. Hence, we should not expect to see switching subsidies in environments

where the agent has access to very cheap projects that are extremely unlikely to suc-

ceed.

1.6 Conclusion

This dissertation chapter has studied the question of how one can motivate cre-

ativity when being creative is costly. Creativity (i.e., trying new ideas and variations) is

at the core of many professions, from research to creation of art and, more recently,

content in online platforms. Finding the optimal way to motivate creativity using sim-

ple reward schemes is at the heart of our analysis.

We study a principal-agent, continuous-time model of experimentation with

switching costs and infinitely many exponential bandit arms. A switching cost is key to
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the setting as away tomodel the cost of creativity (switching to newarms). However, the

infinite set of bandit arms is more of a convenient assumption for modeling purposes.

Our insights would remain largely unaffected if we considered a model with finitely

many arms. Another important aspect of themodel is the asymmetry of switching costs,

which is what creates the conflict of incentives between the principal and the agent.

Our key finding is that the optimal bonus scheme uses uncertainty to motivate

creativity. The principal can exploit an extremely unlikely but large reward in order

to induce the optimal experimentation policy under the overwhelmingly likely low re-

ward. This bonus scheme relies on the agent’s continuation value being increasing and

unbounded in the bonus. Despite the bonus scheme being time-independent and sim-

ple, it can achieve the principal’s first-best outcome as long as the agent’s outside op-

tion is sufficiently valuable. Moreover, if the principal can tax the agent’s payoff from

an arm’s success, then the first-best is always achievable.

Our results can guide the design of rewards in online platforms and in other

settings where stimulating creativity is important. If there is a cost to designing com-

plicated time-contingent incentive schemes, creating highly uncertain stationary re-

ward schemes is preferable. We also note that the existing uncertainty in the incentive

schemes used by YouTube canmotivate novice content creators to try new content vari-

ationsmore frequently. Regardless of intent, this uncertainty can contribute to the plat-

form’s end goal of increasing the supply of engaging content for its viewers.

Chapter 1 is currently being prepared for submission for publication of the ma-

terial. The dissertation author, Danil Dmitriev, is the sole author of this chapter.
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Chapter 2

Sabotage-Proof Mechanism Design

2.1 Introduction

Polls – especially those conducted online – are notorious for their lack of robust-

ness to sabotage; the derailment of online polls by internet trolls1 is a common andwell-

documented occurrence, often producing amusing news articles but also potentially

large costs. Take for instance the 2015–2016 New Zealand flag referendums, where an

online poll was used to crowdsource a replacement for the country’s national flag. The

public gallery of flag submissions quickly became inundated with ridiculous, unusable

flags. This process took well over a year, cost approximately $NZ 26 million, and was

ultimately fruitless in producing a new flag. Similar derailments have interfered with

crowdsourcing in marketing campaigns (BBC, 2016), information-gathering during the

2020 US Presidential Election (Collins and Popken, 2019; Frenkel et al., 2020), and even

prevented the government of North Macedonia from properly counting its own popu-

lation (The Economist, 2020).

How does one optimally design votingmechanisms in the presence of saboteurs
1A “troll” in this context is someone who is deliberately trying to derail a poll or any othermechanism
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or trolls?2 This question can be split into two parts: how does one design the entry part

of the mechanism to encourage normal agents and dissuade trolls, and how does one

design the voting part of the mechanism given a fixed population of participants? We

aim to answer both questions in this project. However, so far our results focus on the

second part. It is a natural place to start the analysis and proceed to the entry part via

backward induction. For now, we consider a situation where the entry has already oc-

curred, and analyze the designer’s problem given a fixed population of participants. In

this framework, we focus on analyzing a few benchmark mechanisms and characteriz-

ing the optimal mechanism as completely as possible.

We start by analyzing a simple illustrative example with two genuine agents and

one troll. Each genuine agent has a private type corresponding to a bliss point over ac-

tions the mechanism designer can take. The mechanism designer’s objective is to max-

imize the welfare of the genuine agents. There is a common prior over their types. The

designer gathers information through a poll and then takes an action. The troll’s objec-

tive is to minimize the welfare of the genuine agents. We consider two specific mech-

anisms as reasonable baselines — “majority rule” and “average-of-votes” — for both

methodological and empirical reasons. Choosing the outcome that was voted for on av-

erage is theoretically optimal assuming that trolls are absent, utility is quadratic, and

that it is indeed possible to average over votes.3 On the other hand, choosing the out-

come with the most votes is by and large the most widely used in polls and elections.

Our project offers insights into how suboptimal these two mechanisms are in the pres-

ence of trolls.

Analyzing the agents’ equilibrium behavior in the illustration below, we derive

the welfare implications for bothmechanisms and compare with the benchmark of do-
2Here, we use “troll” and “saboteur” interchangeably.
3For instance, this is possible in theWeber (1929) Problem and in other facility location problems that

followed.
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ing nomechanism (“no-poll benchmark”). In the example, “majority rule” performs ex-

actly as the no-poll benchmark, whereas “average-of-votes” (a more fine-tuned mecha-

nism) performs better when ex-ante uncertainty over types is high, but worse when it

is low.

We then consider the finite analysis of our two baseline mechanisms, “majority

rule” and “average-of-votes”, in a more general setting with a finite number of agents

and trolls. We derive similar predictions as in the Illustration, and show that when

ex-ante uncertainty is low, the “average-of-votes” mechanism will perform poorly com-

pared to a blind mechanism. Intuitively, this happens because under low ex-ante un-

certainty there is little potential gain from gathering information from the agents, but

the negative impact of trolls is still present in its full force. This suggests that even un-

der a fixed population of agents and trolls, a blind mechanism may still be better than

running an informative mechanism when there is little information the designer can

potentially gain.

Additionally, we derive some properties of the optimal mechanism given a fixed

population of participants. First, we show that the optimal mechanism has to satisfy a

quasi-monotonicity property, which basically requires that more votes for a given type

result in an action that is closer to that type’s optimal action. Interestingly, this property

is always violated by the “majority rule” mechanism, which indicates that it is never

optimal. Next, we show that the optimal mechanism also has to satisfy an indifference

property,which requires the trolls to be indifferent between theirmessages. This allows

us to reduce the search for the optimal mechanism to a narrow family of mechanisms

that fulfill the property. It also allows us to generally rule out the “average-of-votes” as

the optimal mechanism.

Finally, we consider the limit case where the number of trolls is arbitrarily large

and derive a worst-case result applicable to any (continuous) mechanism. This can
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model a situation where trolls have very low costs of entry (and possibly submitting

multiple votes). We show that given any continuous mechanism, trolls can achieve the

worst-case outcome under it if they are sufficiently numerous. A natural corollary fol-

lows: if number of trolls is potentially unlimited, the best mechanism for the designer

to implement is a blind (or no-poll) mechanism, which ignores messages from agents

and chooses the ex-ante best outcome. This speaks to the observed tendency of online

polls being shut down or cancelled when a large influx of trolls occurs, and suggests

that such action may indeed be optimal in these circumstances.

At the end of the paper, we discuss these insights in more detail and outline fu-

ture extensions. Most notably, we plan to consider the entry part of the designer’s prob-

lem and see how the presence of trolls affects the optimal population of agents that the

designer wants to attract. We also plan to analyze environments where the designer’s

preferences are not perfectly aligned with the genuine agents’. In this scenario, it is

plausible that the trolls’ desire to hurt the designer could inadvertently improve the gen-

uine agents’ welfare. For example, in an auction setting, saboteurs could decrease the

auctioneer’s expected revenue, which may be beneficial to the genuine bidders.

Literature Review Our focus in this paper is on the design of polling mechanisms in

the presence of adversarial saboteurs among the voters. To our knowledge, there are

papers that incorporate a strict subset of these considerations, but not all of them. For

instance Chorppath and Alpcan (2011), Liu et al. (2017), Yang et al. (2017), Brahma et al.

(2022), and Jiang et al. (2022) focus on mechanism design with malicious/adversarial

agents in non-voting settings. In the literature on electoral competition, (Invernizzi,

2020) studies sabotage within parties and (Hirsch and Kastellec, 2022) studies studies

sabotage between parties. We instead focus on the other side of the ballot-box (voters)

in polls (i.e. without strategic candidates).
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Our paper is also related to the literature on the design of false name-proof4

mechanisms when anonymous agents can participate more than once (e.g. by creat-

ing multiple identifiers, botting, etc.). Such mechanisms were originally studied in

combinatorial-auction settings (Yokoo (2003, 2008), Yokoo et al. (2001, 2004, 2006), and

Rastegari et al. (2007)) andmore recently in voting games albeitwithout saboteurs (Conitzer

(2008), Bachrach and Elkind (2008), Aziz et al. (2011), Elkind et al. (2011), and Fioravanti

and Massó (2022)).

Our paper is also related to Lambert and Shoham (2008), who studies how to de-

sign a survey mechanism that elicits truthful opinions, and to Gary-Bobo and Jaaidane

(2000), who study a pollingmechanism design problem. However, neither paper allows

for saboteurs amongst the voting population as in this paper. Sabotage is a consider-

ation more often seen in (dynamic and static) contests (discussed in Chowdhury and

Gürtler (2015)). Most relevant is Ishida (2012), which considers the problem of design-

ing sabotage-proof dynamic contests.

2.2 Illustration

Suppose there are three agents, i ∈ {1,2,3}. Agents 1 and 2 are “genuine” or “nor-

mal” (interchangeable) agents. Each of them has a type θi ∈ {γ1,γ2}, with an i.i.d. prior

distribution characterized by P(θi = γ1) = p, where p ∈ (0;1). For simplicity, assume

γ1 = 1 and γ2 = 2. Agent 3 is a “troll” or “saboteur” (interchangeable) and will be de-

scribed below.

There is a mechanism designer who wants to maximize the well-being of agents
4I.e. mechanisms where agents do not have an incentive to participate more than once, even if they

are able to do so.
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1 and 2. The utility function of an agent of type θi is given by

ui(a,θi) =−(a−θi)
2 ,

where a ∈ R is the expected action taken by the designer.5 The objective function of the

designer is given by

V (a) = E

[
2

∑
i=1

ui(a,θi)

]
.

Agent 3 is a “troll”, or a “saboteur”, whose goal is to reduce the well-being of

agents 1 and 2 as much as possible. He does not know the agents’ types, but knows the

prior distribution, just as the mechanism designer. In a sense, his objective is entirely

opposite of the designer’s objective.6 Hence, no matter what mechanism the designer

creates, agent 3 will participate in a way that ex-ante minimizes V (a). Agents 1 and 2

are aware of this and can take it into account when choosing how to behave.

In order to maximize the well-being of agents 1 and 2, the designer can create a

mechanism, which consists of amessage setM and an outcome rule x : M3 →R. We limit

our attention to direct mechanisms in which agents report their types, i.e. M = {1,2}.

The choice of a mechanism then boils down to choosing the outcome function.

There are two baseline mechanisms we will consider. The first will be referred

to as “majority rule”, where the designer implements the action equal to the mode of

observed messages (and randomizes in case of a tie). It closely matches the design of

online polls discussed in the Introduction. The second mechanism will be referred to

as “average-of-messages rule”, where the designer implements the action equal to the

average of observed messages.7 This mechanism is optimal in the absence of trolls,
5Notice that these agents are risk neutral. If a had instead represented the designer’s realized action,

these agents would be risk averse.
6Note that the designer does not care about the troll’s well-being. Oneway to interpret this assumption

is that the troll comes fromoutside the population of agents that the designer cares about, e.g. a foreigner
participating in a poll about purely domestic matters.

7Recall that γ1 = 1 and γ2 = 2, so messages are just real numbers.
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given the quadratic-loss utility function of the normal agents.

As we will see, both mechanisms have their comparative strengths and weak-

nesses when it comes to solving the designer’s problem. In short, the majority rule is

less susceptible to the influence of trolls, since they have to be pivotal in order to affect

the outcome. On the other hand, the average-of-votes rule incorporates more informa-

tion from the normal agents and has the potential to better match the average type of

the agents. However, that potential can be limited by the increased influence of trolls,

who no longer need to be pivotal in order to affect the outcome. In fact, we show that

thismechanismmight performworse than doing nomechanism at all — a “blindmech-

anism” benchmark, where the designer always takes the ex-ante best action. This oc-

curs when there is little information that can be gained through the poll to begin with,

in which case the negative influence of trolls outweighs the positive gain frommore in-

formation.

The next two subsections outline a detailed analysis of the two baseline mecha-

nisms.

Majority rule

As implied by its name, this outcome rule selects the mode of the received mes-

sages when themode is unique; otherwise, we assume that the outcome rule uniformly

randomizes between the choices tied for first. Formally, if m represents the vector of

observed messages, then

x(m)≡ U{mode(m)}. (2.1)

How do the genuine agents and the troll behave in this mechanism?

Lemma 5. Fix mechanism M = {1,2} and x(m) ≡ U{mode(m)}, and assume that genuine

agents always break indifference in favor of telling the truth. Then any BNE of the resulting
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game is for genuine agents to tell the truth and for the troll to tell either m3 = 1 or m3 = 2 (he

is indifferent).

The proof of this lemma can be found in Appendix A.2.1. Intuitively, any agent’s

vote matters only when that agent is pivotal. For genuine agents, that means that their

decision matters only when the other agent and the troll split votes, in which case the

agent strictly prefers to tell the truth.8 For the troll, his decision matters only when the

genuine agents are (truthfully) splitting the vote, inwhich case he is indifferent between

saying 1 (and hurting type 2) or saying 2 (and hurting type 1). Importantly, this is not the

case when there is more than one troll, and we plan to consider this case in subsequent

work.

Let us now consider the welfare implications of the “majority rule” mechanism.

Given the BNE described in Lemma 5 (for argument’s sake, assumem3 = 2), the ex-ante

welfare of agents is equal to

VMVW = p2 ·0+2p(1− p) ·
(
−(0)2 − (1)2

)
+(1− p)2 ·0 =−2p(1− p) (2.2)

Our benchmark for welfare is the no-poll scenario, under which the designer

does not create any mechanism and simply takes the ex-ante best action. That action

should maximize the objective function,

VNP(a) =−p2 ·2(a−1)2 −2p(1− p) ·
(
(a−1)2 +(a−2)2)− (1− p)2 ·2(a−2)2 .

which has the corresponding first order condition,

−4p2(a−1)−4p(1− p) · (2a−3)−4(1− p)2(a−2) = 0

8Our assumption about the indifference-breaking rule eliminates nonsensical equilibria where all
agents always say the same message.
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Solving this first order condition for a yields a = 2− p as the designer’s ex-ante best

action.9

Under this action, we can show that the agents’ welfare (after a few algebraic

simplifications) is given by

VNP =−2p2(1− p)2 −2p(1− p)((1− p)2 + p2)−2(1− p)2 p2

=−2p(1− p).

Note that this is exactly the same as VMVW . This implies that running a “majority rule”

mechanism leads to the same welfare as running no mechanism at all! The presence

of the troll completely nullifies the effectiveness of the mechanism in conveying infor-

mation to the designer.

Average-of-votes

This outcome rule simply takes the averageof themessages receivedby themech-

anism designer. Formally,

x(m)≡ 1
N

N

∑
i=1

mi (2.3)

Similarly to the “majority rule” discussion, let us find the equilibrium in the re-

sulting game between the genuine agents and the troll.

Lemma6. FixmechanismM = {1,2} and x(m)≡ 1
N ∑

N
i=1 mi, and assume that genuine agents

always break indifference in favor of telling the truth. Then the unique BNE of the resulting

9Note that ∂2

∂a2 VNP(A) =−4p2 −8(1− p)p−4(1− p)2
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game involves the genuine players telling the truth and the troll playing the following strategy:

m∗
3T =


1, if p < 1

2

{1,2}, if p = 1
2

2, if p > 1
2 .

The proof of this lemma can be found in Appendix A.2.2. Intuition behind it

is similar to that of Lemma 5, with the exception that now the troll is not indifferent

between messages because he is able to affect the outcome in all cases (as opposed to

only the cases where he is pivotal in the “majority rule” mechanism).

Let us now consider the welfare implications of the “average-of-votes” mecha-

nism. Assume p > 1
2 (to pin down the exact message of the troll). Given the BNE de-

scribed in Lemma 6 , the ex-ante welfare of the genuine agents is equal to

VAM = p2 ·2

(
−
(

1
3

)2
)
+2p(1− p) ·

(
−
(

2
3

)2

−
(
−1

3

)2
)
+(1− p)2 ·0

=−2
9

p2 − 10
9

p(1− p) =−2
9

p(5−4p) .

Let us now compare it to the no-poll benchmark. We already know that under it

the designer’s problem is exactly the same as the one already considered in the “major-

ity rule” discussion, so the optimal action is a = 2− p and the attained welfare is

VNP =−2p(1− p).

When is this outcome better than the one provided by “average-of-votes” mechanism?

Note:

VAM <VNP ⇔ −2
9

p(5−4p)<−2p(1− p) ⇔ p >
4
5
.
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That is, if p is sufficiently high, the no-poll benchmark (as well as the “majority rule”

mechanism)provideshigherwelfare than the “average-of-votes”mechanism. Intuitively,

this happens because there is little ex-ante uncertainty over the distribution of types of

the genuine agents, meaning that the no-poll benchmark performs relatively well. This

also means that there is little information that could potentially be gained from run-

ning the “average-of-votes” mechanism, while the negative effect of the troll’s presence

still remains in full force. Therefore, if ex-ante uncertainty over the type distribution

is sufficiently low, the “average-of-votes” mechanism loses to the no-poll benchmark

and to the “majority rule” mechanism. On the other hand, if the ex-ante uncertainty is

sufficiently high, there is a lot of information to be gained from the “average-of-votes”

mechanism, so it is worth choosing it over the considered alternatives.

2.3 Model

In this section, we introduce a general model of voting mechanism design with

a finite number of voters and trolls (or saboteurs). We focus on the case of two types

in the interest of clearly presenting our results.10 We will partially characterize the

optimal mechanism by showing that it must satisfy a particular “indifference property”

for the saboteurs. Wewill also analyze the performance of twobenchmarkmechanisms

— majority rule and average-of-votes rule. Finally, we will finish by discussing how these

benchmark mechanisms can be improved in simple ways to account for the presence

of the saboteurs.
10Ourmain results in subsections 2.3.2 and 2.3.3 can be straightforwardly extended to the case with an

arbitrary, finite number of types.
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2.3.1 Setting

There is a designer that can take a public action a ∈R and N “genuine”/“normal”

voters. Each voter i has a type θi ∈ {γ1,γ2} =: Γ that is i.i.d. with P(θi = γ1) = p. This is

common knowledge. A voter of type θ has a standard quadratic-loss utility function

u(a,θ) =−(a−θ)2.

We make the assumption of a specific functional form for tractability of analysis. In

general, we can assume any single-peaked utility function (so that it has a bliss point).

The designer’s objective function is to maximize the expected aggregate welfare

of the genuine voters voters:

U(a) = E

[
N

∑
i=1

u(a,θi)

]
.

In addition to the N genuine agents, the voting population also contains T trolls (or

saboteurs). Each troll agent has objective function that is diametrically opposed to that

of the designer:

uT (a)≡−E

[
N

∑
i=1

u(a,θi)]

]
=−U(a).

Hence, their goal is to minimize the designer’s objective function.

In order to choose a, the designer picks a voting mechanism which specifies a

message setM and an outcome rule g : MN+T →R. We will focus on directmechanisms

that allow voters to submit a report of their type. Formally, M = {γ1,γ2}. The messages

of voters and trolls are indistinguishable to the designer, but she knows that there are

N voters and T trolls. Given that there are two types, we can express a mechanism’s

outcome rule as a mapping from the number of votes for θ = 1 into an outcome a ∈
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[1,2]:11

g : {0,1, . . . ,N +T}→ [1,2].

The timing of the model is as follows. Nature draws the types of the voters,

{θi}N
i=1. The designer announces and commits to a mechanism g. Voters and trolls sub-

mit messages to the mechanism. The outcome is picked according to g and submitted

messages, and payoffs realize.

Before we proceed to the analysis of the optimal mechanism, it is useful to an-

alyze a benchmark case where there are no trolls. Suppose T = 0. The designer then

faces a straightforward problem of eliciting types of the voters and picking the best ac-

tion. Given that the voters vote sincerely, the designer will observe {θi}N
i=1. Maximizing

aggregate welfare:

max
a∈[1,2]

−
N

∑
i=1

(a−θi)
2 =⇒ a∗ =

1
N

N

∑
i=1

θi.

In other words, the optimal mechanismwithout the trolls is the average-of-votes. Here-

after, we will describe a mechanism by its outcome rule g(k) for all k ∈ {0,1, . . . ,N +T},

where k is the number of votes for the lower type, γ1.

Lemma7. IfT = 0, the optimalmechanism is the average-of-votes rule, i.e. the outcome rule is

g(k) =
k
N

γ1 +
N − k

N
γ2.

It is useful to examine what happens to the performance of the average-of-votes

mechanism (denoted by gav). We will also compare its performance to that of a “blind

mechanism” (gb), which ignores the votes and always picks the ex-ante best action. Us-
11We allow for “compromise” outcomes, in which the designer picks action a ∈ (γ1,γ2).
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ing the prior, we can find that action to be

gb(k) = argmax
a

Eθi

[
N

∑
i=1

−(a−θi)
2

]
=⇒ gb(k) = pγ1 +(1− p)γ2.

Suppose there are some trolls, T ≥ 1. The average-of-votes mechanism is now

defined as

gav(k) =
k

N +T
γ1 +

N +T − k
N +T

γ2.

Wecan show that the trolls’ best strategy under thismechanism is to vote for the ex-ante

less likely type. For concreteness, assume p > 1
2 , which makes γ2 the less likely type.

Lemma 8. Assume p > 1
2 . Under gav, the trolls optimally vote for θ = γ2.

Since the average-of-votes mechanism does not account for the trolls’ presence,

the designer’s expected welfare is smaller than when T = 0. However, sometimes trolls

not only reduce the effectiveness of the mechanism, but can completely overturn any

welfare improvement that it generates in their absence.

Lemma 9. The expected welfare under gav is strictly lower than under the blind mechanism

gb if and only if

p >
N +2T

N +2T +T 2 =: p̄.

Note that if T = 0, this inequality turns into p > 1. This is expected: without

trolls, the average-of-votes mechanism will always outperform the blind mechanism.

The lemma also sheds light on the circumstances when ignoring information from the

voters can be beneficial. When p is large (close to 1), there is little ex-ante uncertainty

about the average type in the voter population. As a result, there is little benefit in

gathering information about voters’ types in the first place. This leads a mechanism

that doesn’t put any weight on the prior to perform worse than picking the ex-ante best

action.
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Figure 2.1: How p̄ := N+2T
N+2T+T 2 from Lemma 9 varies with N and T

Figure 2.1 demonstrates how p̄depends onN and T . If we focus on a specific level

curve, we can observe that when T needs to increase at a slower rate thanN tomaintain

the same level of p̄. Technically, T needs to grow at the rate proportional to
√

N.

2.3.2 Properties of the Optimal Mechanism

This section derives two properties of the optimal mechanism in the given set-

ting — quasi-monotonicity and an indifference condition. The first property puts reason-

able bounds on the optimalmechanismand allows us to rule out themajority rule as the

optimalmechanism. The second property puts a strict restriction on the optimalmech-

anism that generally rules out the “average-of-votes” mechanism. Additionally, we can

use the insights of the indifference condition to suggest simple improvements to both

of these benchmark mechanisms.

Suppose that the designer observes k votes given for type θ = γ1. Given that there

are T trolls in total, the true number of genuine agents of type θ = γ1 can be from

max{k−T,0} to min{k+T,N}. This allows us to put some reasonable bounds on the op-
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timal mechanism’s outcome rule. The following proposition describes them formally.

Proposition 1. If g is an optimal mechanism, then for any k ∈ {0,1, . . . ,N +T}

k
N

γ1 +
N − k

N
γ2 ≤ g(k) ≤ max{k−T,0}

N
γ1 +

min{N − k+T,N}
N

γ2.

This property canbedescribedas quasi-monotonicitywith respect to votes. Roughly

speaking, the optimal mechanism’s action should be increasing in the number of votes

that are cast for type θ = γ2. There may be local non-monotonicity, but overall the out-

come rule should fall within the given bounds. This property is clearly satisfied by the

“average-of-votes” mechanism, but it is not satisfied by the “majority rule” mechanism.

Therefore, we can conclude that the latter mechanism is not optimal under any prior p

and any number of voters or trolls.

Can the “average-of-votes” mechanism be optimal, then? The next property of

the optimal mechanism sheds some light on this.

Proposition 2. Under the optimal mechanism, the trolls are indifferent between sendingm =

γ1 and m = γ2.

We refer to this as the indifference property, since the optimal mechanism has

to keep the trolls indifferent between all messages. Intuitively, when the trolls are not

indifferent, the designer can slightly adjust the outcome rule under the mechanism

without changing the trolls’ best reply. This allows the designer to improve aggregate

welfare under that strategy (and potentially worsen it under other strategies). This bit-

by-bit optimization remains possible until the designer reaches a mechanism in which

the trolls are indifferent between sending either message. Notably, this result can be

readily generalized to a settingwithmore than two types; then, the optimalmechanism

must keep the trolls indifferent between allmessages.
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The indifference property has two main benefits. First, it allows us to rule out a

lot of potential mechanisms and focus on a narrow family of those that keep the trolls

indifferent. “average-of-votes” mechanism generally does not satisfy the property. The

only situation where it does is where p = 0.5. In that case, the trolls are indifferent be-

tween sending either messages, and it turns out that the “average-of-votes” is the opti-

mal mechanism in that case. However, in any other situation the mechanism is not op-

timal because it violates the indifference property.

Second, the indifference property is a useful tool for reducing the computational

complexity of searching for the optimal mechanism. In a general setting with N voters,

T trolls and k types, a mechanism has to specify kN+T outcomes. Proposition 2 puts
k(k−1)

2 equations that restrict these variables. As a result, it reduces the dimensionality

of the set of mechanisms that one needs to search through.

The impact of the indifference property can be seen visually in Figure 2.2, which

depicts the designer’s expected utility for the caseN = 2 and T = 1 and for various priors

p. Recall that in this case, amechanism is characterized by {g(0),g(1),g(2),g(3)}, where

g(k) is the outcome conditional on observing k votes for γ1. Correspondingly, the axes

in each subfigure capture g(1) and g(2) through the weights placed on γ1.12

We can observe that the designer’s utility is generally higher along a dotted line

in each subfigure. This dotted line depicts the set of mechanisms that satisfy the indif-

ference property from Proposition 2. As can be seen, the designer’s utility is generally

higher the closer the mechanism is to the dotted line. Intuitively, the closer a mecha-

nism is to making trolls indifferent, the better (on average) it is. We can also see the

computational impact of the indifference property, which reduces the dimensionality

of the set of candidate mechanisms from 2 (a square) to 1 (a line).

We are currently investigating the designer’s problem under the indifference re-
12For instance, if the weight placed on γ1 under 1 vote for γ1 is equal to 0.4, that means g(1) = 0.4γ1 +

0.6γ2.

53



striction in order to see whether we can explicitly derive the optimal mechanism.
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Figure 2.2: Graphical illustration of the optimal mechanism for the case N = 2 and
T = 1, for various levels of p. The white star denotes the optimal mechanism. The
dotted line that the star is situated on is the family of mechanisms that make the troll
indifferent between messages.
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2.3.3 Improving BenchmarkMechanisms

In this section, we will propose ways to improve two benchmark mechanisms —

majority rule and average-of-votes rule — by using the indifference property.

Under both mechanisms, the trolls’ optimal strategy is the same. They can vote

for themore likely type γ1
13 or the less likely type γ2. To decrease the expected aggregate

welfare, trolls should vote for the less likely type. This introduce a bias against the prior

into the mechanisms’ outcomes. In order to improve aggregate welfare, the designer

should tweak the mechanisms in a way that introduces bias towards the prior. We will

show an intuitive way to do that for both benchmark mechanisms.

First, consider the majority rule. A common modification of this mechanism is

a supermajority rule, which makes it harder to affect the outcome of the vote by small

deviations in the vote distribution. One needs to also specify what happens if the su-

permajority is not reached, which we refer to as the default option. This is where the de-

signer can put some bias towards the prior and offset the influence of the trolls. Wewill

show that modifying the majority rule in this way can improve its expected welfare.

Formally, let gmr be themajority-rulemechanism and gα,x
smr be anα-supermajority

rule with default outcome x. The outcome x is implemented if neither γ1 nor γ2 gets

enough votes to meet the threshold α. Naturally, we only consider α > 1
2 . Before we

proceed to the result, recall that p ≥ 1
2 , i.e., type θ = γ1 is ex-antemore likely in the voter

population. The resultwill assume that there are at least 3 trolls in order to avoid a trivial

case where changing the supermajority rule does not change the expected outcome.

Proposition 3. Suppose T ≥ 3. There exists α > 1
2 such that the expected welfare under mech-

anism gα,γ1
smr is strictly larger than the expected welfare under gmr for any α ∈

(1
2 ,α
)
.

Intuitively, the supermajority rule limits the trolls’ influence in two ways. First,
13Recall that we assume P(θi = γ1) = p > 1

2 .
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it makes it less likely that their vote is pivotal. Second, it incorporates a bias towards

the prior in its default option. Note that in the Proposition, the supermajority rule picks

a = γ1 (the more likely type from ex-ante perspective) as its default option. This works

to counteract the trolls’ influence in the cases where they were previously pivotal.

Nowwe turn our attention to the average-of-votesmechanism. Themechanism’s

performance suffers in a similar fashion to the majority rule—trolls vote for the less

likely type and bias the outcome against the prior. One natural way to adjust the mech-

anism is by changing the weights assigned to each vote. In the benchmarkmechanism,

votes for γ1 and γ2 receive equal vote in determining the outcome. The designer can in-

troduce a bias towards the prior by assigning a larger weight in the outcome to the vote

for the more likely type, γ1.

Formally, let gam(β) be the weighted-average-of-votes rule in which votes for γ1

receive weight β and weights for γ2 receive weight 1. For example, if there are k votes

for γ1 and N +T − k votes for γ2, the outcome under gβ
am would be

gβ
am(k) =

kβ

kβ+(N +T − k)
γ1 +

N +T − k
kβ+(N +T − k)

γ2.

Note that β = 1 corresponds to the benchmark average-of-votes rule.

Proposition 4. There exists β > 1 such that the expected welfare under gβ
am is strictly higher

than the expected welfare under g1
am for any β ∈

(
1,β
)
.

Theweighted-average-of-votes rule counters the trolls’ influence in adirectway—

by decreasing the weight of votes for the troll-preferred option in determining the out-

come.
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2.4 Limit Environment: Trolls Ruin Everything

In this section, wewill consider the effect of the trolls on amechanism’s outcome

when the number of trolls becomes large. For this purpose, we will restrict attention

to direct mechanisms that map distribution of votes into a distribution over outcomes.

Formally, consider a direct mechanism that is characterized by the outcome rule g :

∆Γ→∆Γ.14 Note that the argument of themechanism is a distribution over votes (which

are types due to directness of the mechanism), whereas the output of the mechanism

is a distribution over outcomes (which are types by a reasonable assumption).15

Let g(∆Γ) denote the set of possible distributions over outcomes thatmechanism

g can generate. Let

t = min
x∈g(∆Γ)

V (x) = min
x∈g(∆Γ)

E

[
N

∑
i=1

ui(x,θi)

]
be theworst utility (from ex-ante perspective) that themechanismmay generate for the

designer. Let πt be the distribution of votes that produces that outcomes, i.e. V (g(πt)) =

t. This is the ideal scenario for the trolls, given that their aim is to minimize the de-

signer’s objective function. The following result focuses on trolls’ ability to manipulate

the mechanism to produce that scenario.

Before we introduce the result, let us introduce some notations. We will call a

mechanism g continuous if g : ∆Γ → ∆Γ is a continuous mapping. Let p(θ,T ) denote a

distribution of votes that is produced when normal agents have types θ = (θ1, . . . ,θN)

and trolls’ vote distribution is π(T ), which is defined as follows:

π(T ) = min
π∈F(T )

|π−πt |,

14Recall that Γ = {γ1,γ2}.
15Alternative way to view this is to map a distribution of votes into an outcome that is in the span of Γ,

when such an outcome can be defined. This is the case for the “average-of-votes” mechanism.
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where F(T ) = {π ∈ ∆Γ | ∀γi, π(γi) =
k
T for some k ∈ N}.

Given these notations, we have the following result:

Proposition 5. Fix a continuous mechanism g : ∆Γ → ∆Γ. Then for any θ and any ε > 0,

there exists T̄ such that if T > T̄ , we have |V (g(π(θ,T )))− t|< ε.

This result can be interpreted as follows. Fixing any continuous mechanism,

there will be a distribution of votes πt that produces the (ex-ante) worst outcome under

this mechanism. If trolls are sufficiently numerous, they can get the actual distribution

of votes arbitrarily close to πt no matter the distribution of normal agents’ types. And

hence, due to continuity of themechanism, they can get its outcome g(π(θ,T )) arbitrar-

ily close to g(πt).

Letting T grow to potentially unlimited extent may seem implausible at first,

since it relies on trolls being able to enter in large numbers at little to no cost.16 How-

ever, this is a common feature of open-access online polls that have been discussed in

the Introduction as part of our motivation. Several of those polls have clear signs of

“botting”, which is a practice of creating dozens and hundreds fake accounts or entries

in order to participate in a poll. In these circumstances, having T grow arbitrarily large

is not a strange assumption, and may have actually contributed to the organizers’ deci-

sion to shut down those polls, as we will see below.

Note that Proposition 5 places the designer into worst-case analysis territory of

mechanism design. She knows that trolls, provided that they are sufficiently numerous,

may get the outcome of anymechanism arbitrarily close to the worst case of that mech-

anism. Given this, she may evaluate mechanisms based on their worst case alone and

pick the best mechanism based on that evaluation.

One option that is always open to the designer is to simply pick a distribution

over outcomes that is best from the ex-ante perspective. We will refer to this as a blind
16In fact, it’s only a Google search away (https://tinyurl.com/PollBotGoogleSearch).

59

https://tinyurl.com/PollBotGoogleSearch


mechanism, since it does not gather any information from the agents and picks a distri-

bution over outcomes based on the prior alone. Formally, a blind mechanism is char-

acterized by function gb : ∆Γ → ∆Γ such that ∀π ∈ ∆Γ, gb(π) ∈ argmaxx∈∆ΓV (x).

Lemma 10. Let gb be a blind mechanism and g be any other continuous mechanism. Let πt

be the worst-case distribution of votes for g. Then V (g(πt))≤V (gb(·)).

This result easily follows from the definition of a blind mechanism. Since gb

always maps any distribution of votes into argmaxx∈∆ΓV (x), and since g(pt) is the worst-

case outcome for g, it must be that V (g(pt)) ≤ maxx∈∆ΓV (x). This implies V (g(pt)) ≤

V (gb(·)).

Lemma 10 indicates that when the designer expects too many trolls to partici-

pate in her mechanism, her best option might be to “shut down” the mechanism and

run a blind one. This relates our analysis to motivational examples in the Introduction,

where most online polls that were infiltrated by trolls were shut down by organizers.

Our analysis provides theoretical rationale for such a decision, and also suggests when

it is optimal. In particular, it is optimal to run a blind mechanism when costs of enter-

ing the mechanism are very low for trolls, i.e. in situations where trolls will be suffi-

ciently numerous to bias the outcome towards the worst-case scenario.

2.5 Discussion and Next Steps

We have studied two baseline mechanisms of gathering information in the pres-

ence of trolls: “average-of-votes” and “majority rule”. Moreover, the “majority rule”

mechanism performs exactly the same as the no-poll benchmark, meaning that it does

not give the designer any additional information that he can use. We have also shown

that it is not clear which mechanism is comparatively better: if the ex-ante uncertainty

over the best action is high, a more flexible option (“average-of-votes”) is better, and
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vice versa. This suggests that more simple, rigid mechanisms may perform better in

the presence of trolls when there is relatively little ex-ante uncertainty over what the

best action is. And if the opposite is the case, then more flexible mechanisms may per-

form better. We plan to study this conjecture in a more general setting and determine

its truth value.

Another important question to ask is what role commitment plays in the pres-

ence of trolls. In classical papers on limited commitment, it has been shown that a

mechanismdesigner generally performs betterwhenhehas access to full commitment.

However, in the environment where some agents actively try to sabotage his mecha-

nisms, the power to commit may actually hurt the designer’s objective. If he commits

to a certain mechanism, then trolls will be able to take full advantage of it. They might

not be able to do so if the designer does not fully commit to a mechanism. This discus-

sion can be related to the examples from Introduction, where many online polls were

rejected or shut down after it was discovered that trolls had a major influence over the

outcome. If the designer picks amechanismwhere he has to best respond to his beliefs

about the agents’ types, it imposes an interesting constraint on the trolls — they have

to conceal themselves among legitimate messages in order to avoid being “detected”.

We plan to formalize this analysis and determine whether it is indeed true that full-

commitment mechanisms perform worse (on some metric) than limited-commitment

mechanisms.

It is also important to consider environments where the designer’s objective is

not aligned with that of the normal agents, e.g. auction or classical principal-agent set-

ting. Apart from doing the same analysis of trolls’ influence on the welfare of normal

agents, we could also now disentangle two alternative models of trolls’ preferences —

anti-agents and anti-designer. In the first case, the trolls wish to hurt the aggregate wel-

fare of the normal agents, which is similar to our current example. In the second case,

61



trolls wish to hurt the designer as much as possible, which could have non-trivial ef-

fects on the welfare of normal agents.

To sum up, our future analysis includes studying full-commitment mechanisms

more generally and check whether the insights we have gained so far hold there. In

addition, we plan to compare full-commitmentmechanismswith limited-commitment

mechanisms and see whether the latter generally perform better against trolls’ influ-

ence than the former. We also plan to extend analysis to the case where the designer’s

preferences are not aligned with preferences of normal agents.

Chapter 2 is currently being planned for submission for publication of the mate-

rial. Frederick Papazyan and the dissertation author, Danil Dmitriev, are principal co-

authors of this chapter.

62



Chapter 3

Dynamic Inconsistency and Convex

Commitment Devices

3.1 Introduction

Many researchers studying dynamically inconsistent preferences have treated

the demand for costly commitment devices as smoking gun evidence of present-biased

dynamic inconsistency (e.g., O’Donoghue and Rabin (1999)). Commitment restricts fu-

ture choice sets, which makes it easier for the decision-maker to avoid undesirable be-

havior. Commitment demand, therefore, indicates that the decision-maker believes

she will take undesirable future actions. For the same reason, commitment devices are

considered the gold standard for mitigating welfare loss from dynamic inconsistency.

However, the welfare and policy value of commitment devices depends not just upon

the degree of dynamic inconsistency, but also upon the degree of perceived dynamic

inconsistency and upon the interaction between actual and perceived dynamic incon-

sistency. Recent studies have shown conflicting evidence regarding how sophisticated

people are about their dynamic inconsistency, ranging from full naivete to partial so-
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phistication to overly pessimistic perceptions.

In this chapter, we present a novel experimental design where we offer individu-

als convex commitment contracts during the performance of real-effort tasks. Similar

to Augenblick and Rabin (2019), we ask participants to choose how much effort to sup-

ply for various wages. For a given wage and session, they make a labor supply decision

in a previous session and at the current session. For each decision made in a previous

session, we ask with what probability (between 10% and 90%) they would like to com-

mit to the early decision rather than the late one, with higher commitment being more

costly. We can then estimate structural time preference parameters from labor supply

decisions and participants’ implied perceptions of these parameters from commitment

decisions.

We recruited 42 1 undergraduate students at UC San Diego and ran two sets of

experimental sessions, each one consisting of four decision-making periods. Despite

commitment demand being costly, we observe demand from a substantial number of

participants and substantial depth of demand. The labor supply decisions, in contrast,

seem to be relatively time-consistent. This indicates thatmany of our participants were

overly pessimistic about their future labor supply decisions. We quantify this by show-

ing that both the ex-ante and ex-post welfare effects of commitment usage are negative

and increasing in magnitude with commitment level, with much of this effect coming

from the explicit cost of commitment.

In order to support these reduced-form results, we consider a structural model

of decision-making in our experiment consisting of the standard quasi-hyperbolic dis-

counting model (O’Donoghue and Rabin (1999)) and a convex effort cost function (as

in Augenblick and Rabin (2019)). We use the structural model to obtain aggregate esti-

mates of the present bias, exponential discount factor, disutility of labor parameters,
1Ourgoal is to recruit between 100 and 150participants, butwehavebeendelayedby the costs incurred

to conduct the experiment.
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as well as the implied perception of their present bias. We find that our estimate of the

perception of present bias is significantly lower than the estimate of the present bias it-

self, implying that the participants on average significantly overestimate the degree of

their present bias.

The results of our study have implications for future experimental design and

welfare analysis. Our use of a convex commitment device appears to elicit commitment

demandmore precisely than binary devices. It also allows our use of a structuralmodel

to infer perceptions of dynamic inconsistency and compare them against actual incon-

sistency displayed by the participants. The use of a convex, rather than binary, com-

mitment device may also help alleviate a possible experimenter demand effect. The

welfare implications of our analysis are straightforward: when people are overly pes-

simistic about their dynamic inconsistency, they demand too much commitment and

lose out on potential earnings. Future studies can extend this analysis to other fields

where dynamic inconsistency and commitment demand have been observed.

The rest of the chapter is structured as follows. Section 3.2 contextualizes our

contributions within the existing literature. Section 3.3 explains our experimental de-

sign. Section 3.4 provides a standard theoretical model of quasi-hyperbolic discounting

which we use for structural estimation. Section 3.5 provides reduced-form results that

were summarized above. Section 3.6 provides structural estimates of discounting pa-

rameters. Section 3.7 provides the welfare analysis.

3.2 Literature Review and Contributions

Empirical investigations of dynamic inconsistency have largely focused on mea-

suring the degree of dynamic inconsistency, and have often found evidence of dynamic

inconsistency and demand for costly commitment devices in many settings. However,
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there has been relatively little work on measuring perceptions of dynamic inconsis-

tency. The few papers that attempt to do so yield conflicting conclusions. Augenblick

et al. (2015) present a test of dynamic inconsistency in real-effort tasks and investigate

the demand of a binding commitment device in an experimental setting. The authors

find evidence of dynamic inconsistency in the real-effort tasks, and find that dynamic

inconsistency in effort tasks predicts demand for the binding commitment device—

indicating that dynamically inconsistent participants are at least somewhat aware of

their inconsistency.

Augenblick and Rabin (2019) present another test of dynamic inconsistency in

task performance, combining the real-effort tasks with incentivized belief elicitation to

estimate perceived dynamic inconsistency. Somewhat surprisingly, the data indicate lit-

tle to no aggregate awareness of dynamic inconsistency despite significant presence of

dynamic inconsistency. In contrast to Augenblick and Rabin (2019), Carrera et al. (2019)

find substantial evidence of partial (but not full) awareness of dynamic inconsistency.

In a field experiment on gym attendance, the authors offer participants both commit-

ment contracts and anticommitment contracts, documenting demand for both types.

The results suggest caution when interpreting commitment demand as reduced-form

evidence of awareness of dynamic inconsistency, with the authors warning that exper-

imenter demand effects and noisy valuations could also be significant drivers of com-

mitment demand rather than a desire to change future behavior.

Other recent studies involving commitment demand paint contrasting pictures

of how dynamic inconsistency relates to commitment demand. Sadoff et al. (2020)

present a field test of dynamic inconsistency in food choice, finding both a substan-

tial degree of dynamic inconsistency and a substantial demand of commitment. No-

tably, however, the participants demanding commitment were less likely to exhibit ac-

tual dynamic inconsistency. Toussaert (2018) attempts to distinguish between commit-
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ment demand caused by awareness of dynamic inconsistency, such as in O’Donoghue

and Rabin (2001), and commitment demand caused by the presence of temptation and

self-control costs, such as in Gul and Pesendorfer (2003). Toussaert (2018) classifies a

substantial number of experimental participants as demanding commitment because

of temptation costs, while finding few subjects’ behavior consistent with awareness of

dynamic inconsistency.

Our project addresses the literature in several ways. First, our use of a struc-

tural model of commitment demand, rather than a reduced-form approach, allows us

to interpret how much of commitment demand is coming from a desire to change fu-

ture behavior and howmuch is coming from noise. Second, our use of a convex design

also means we are robust to experimenter demand effects on commitment choice—

participants may feel the experimenter wants them to select the commitment option

when offered only binary choices. While we offer more commitment options than un-

der binary choice, using multiple commitment options obscures possible inference

about experimenter demands. We believe that this, in conjunction with our use of a

structuralmodel, addresses several concerns about commitment demand raisedbyCar-

rera et al. (2019).

Another contribution of this project is to address the large disconnect between

the results in Augenblick and Rabin (2019) and previous literature on commitment de-

mand. While a substantial body of previous literature finds that participants frequently

demand commitment, the results in Augenblick and Rabin (2019) suggest that people

have little understanding of their dynamic inconsistency, and therefore should not de-

mand commitment. Our study attempts to connect these results through the use of the

convex commitment device, which allows us tomeasure perceptions of dynamic incon-

sistency directly from commitment demand (in contrast to the belief elicitation tech-

nique used in Augenblick and Rabin (2019)). In addition, the results of ourmeasured re-
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lationship between actual and perceived dynamic inconsistency could have an impact

in model selection and welfare analysis. Both Toussaert (2018) and Sadoff et al. (2020)

find a negative relationship between the degree of dynamic inconsistency and commit-

ment demand, but differ on their assessment of the welfare effects of commitment de-

vices by attributing commitment demand to different factors. We also find a negative

relationship between the actual and perceived dynamic inconsistency parameters, but

our welfare analysis is more in line with the Sadoff et al. (2020) interpretation that com-

mitment offerings should be carefully tailored to the individuals involved to avoid wel-

fare losses.

3.3 Experimental Design

We recruited 42 undergraduate students from the UCSD Economics Laboratory.

Participants’ instructions can be found in the Appendix.

Each session was scheduled on a Monday morning at 10:30, to avoid time or day

effects. In addition to their earnings from task completion, participants were paid a $5

sign-up fee plus a $15 completion bonus, both upon exit to avoid income effects during

the experiment. We focus on a sub-sample of 27 participants who attended all sessions

and made all decisions.2

The experiment involves participants making labor supply decisions for piece-

rate wages across time. Labor consists of transcribing strings of alphanumeric charac-

ters, with each correct string counting as one unit of labor. All participants received

their payments only during the final session of the experiment, but were required to

supply labor on multiple sessions during the experiment.
24 participants failed to attend all sessions, and 11 attended all sessions but were unable to make all

decisions due to a computer error. Including the data available from these participants does not change
any structural estimates or conclusions, but it does make the non-parametric analysis unnecessarily dif-
ficult to interpret.
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The experiment consisted of 4 sessions, each one week apart. In sessions 1-3,

the participants made make decisions about how much labor to supply (i.e. how many

strings to translate) in the following session. Each participant was be randomly shown

8 wages ranging between $0.01 and $0.31 per task performed, and asked to report how

many tasks they would like to perform during the following session at each of these

wages.

In sessions 1-3, after reporting their desired labor supply, the participants were

also be asked to report how likely they want this decision to become the decision-that-

counts in the following session. For eachwage-labor decision they have justmade, they

were be asked to make a decision about the probability (between 10% and 90%) this

decision becomes the decision-that-counts in the following session. The complemen-

tary probability is the likelihood that the decision they make in the following period

session becomes the decision-that-counts in that period. The probability choices are

costly, with a higher probability of committing to the current session’s decision coming

at a higher cost.

In sessions 2-4, the participantsmade decisions about howmuch labor to supply

in the current session. They were again be shown the same 8 wages they were shown

in the previous sessions, and asked how many tasks they would like to perform in the

current session at each of those wages.

In sessions 2-4, after reporting their desired labor supply, we select uniformly

at random one of the wages each participant faced. We then randomly select between

their labor supply decision made in the current session and their decision made in the

previous session, according to the probability the participant reported in the previous

session. This decision is the decision-that-counts, and the participant was then asked

to perform that many tasks in exchange for payment of the selected wage at the end of
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the experiment 3.

We would like to briefly discuss how this experimental design elicits both actual

and perceived dynamic inconsistency. Tomeasure the actual degree of present bias, we

compare the labor supply decisionsmade on different dates about labor supplied in the

same session. Decisions about labor supply in the future for wage payments in the fu-

ture are not affected by present-biased dynamic inconsistency, since both the costs and

benefits of the labor supply decision are experienced in the future. In contrast, deci-

sions about labor supply in the present for wage payments in the future are affected by

present-biased dynamic inconsistency, since labor costs are experienced immediately

but wage payments are earned in the future. Since dynamic inconsistency affects only

the labor supply decisions made on the date the labor work is performed, observing la-

bor supply decisions both on the date of work and in advance allows us tomeasure how

dynamic inconsistency affects the labor supply decisions.

To measure the perceived degree of dynamic inconsistency, we use the commit-

ment decisions from sessions 1-3. The more dynamically inconsistent a participant be-

lieves they are, the further they believe their future behavior will be from where they

would currently like it to be. The larger this difference in outcomes, the larger the wel-

fare loss the participant expects from dynamically inconsistent behavior. Therefore,

participants who believe they are more dynamically inconsistent are willing to pay

more to commit themselves to their earlier decisions, and therefore choose a higher

implementation probability. Note that binary commitment devices (only offering the

options to commit or not commit, used previously in the literature), do not provide suf-

ficiently fine choice data to reveal the degree of perceived dynamic inconsistency. Our

convex commitment device allowsmore precise elicitation, as we show in the next sec-

tion.
3All decisions were made using the oTree platform created by Chen et al. (2016)
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3.4 Theoretical Model

Consider a decision maker with preferences over outcome streams x = {xt}T
t=1

given by the (β, β̂,δ) preferences in O’Donoghue and Rabin (2001). In each period τ, the

decision maker has preferences given by the utility function

Uτ(x) = u(xτ)+β

T

∑
t=τ+1

δ
tu(xt).

The decisionmaker, however, believes in period τ that in period τ+k she will have pref-

erences Ûτ+k(x) = u(xτ+k)+ β̂∑
T
t=τ+k+1 δtu(xt). The parameter β is the decision maker’s

degree of present bias, the parameter β̂ is the agent’s belief about their degree of present

bias, and the parameter δ is the agent’s long run impatience.

The decision maker will receive monetary payments in exchange for providing

labor, so xt = (Mt ,Lt). 4 We assume that her Bernoulli function u(xt) is quasilinear 5, so

u(xt) = Mt −C(Lt). (3.1)

We assume that C(0) = 0, and that C′ > 0 and C′′ > 0. Following the timing above, at

time τ the decision maker solves for howmuch labor she plans to supply during period

t > τ for payment received in period T . This is given by

L∗
τ,t ,̸= = argmax β ·δT−t ·L ·w−β ·δτ−t ·C(L). (3.2)

During period t = τ, the decision maker must decide how much labor to supply
4Since the decision maker recieves a linear wage payment for labor provision, note that Mt = w ·L for

some L.
5We must assume that the Bernoulli function is additively separable, since our experiment hinges

on the costs and rewards of labor supply being in different periods and that the global utility function
is additive separable across time. We use a quasilinear specification for simplicity and for structural
estimation, but any additively separable specification will do.
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during the current period. This is given by 6

L∗
τ,t,= = argmax β ·δT−t ·L ·w−C(L). (3.3)

At time τ the decisionmaker believes at time t > τ the actual amount of labor that

she will supply will not by given by L∗
τ,t ,̸=. This is because the decision maker believes

her preferences at time t are given by Ût , rather thanUt . Therefore, the decision maker

believes her labor supply at t will be chosen to solve

L∗
τ,t,p = argmax β̂ ·δT−t ·L ·w−δ

τ−tC(L). (3.4)

Note that (3.4) is similar to (3.3), but rewards are weighted by β̂ rather than β; this

is because the agent believes that their degree of present bias is β̂ rather than β. The

decisionmaker then selects a probability p ∈ [p, p] of having L∗
τ,t ,̸= implemented at time

t, for which the decision maker has to pay a cost X(p) 7 at time T , where X(0) = X ′(0) =

0,X ′(p)> 0, and X ′′(p)> 0. Assuming that preferences over p are given by an expected

utility function, the optimal choice of p is given by

p∗τ,t ,̸= = argmaxp p(β ·δT−t ·w ·L∗
τ,t ,̸=−β ·δτ−t ·C(L∗

τ,t ,̸=))

+(1− p)(β ·δT−t ·w ·L∗
τ,t,p −β ·δτ−t ·C(L∗

τ,t,p))−β ·δT−t ·X(p).
(3.5)

We will now characterize L∗
τ,t ,̸=,L

∗
τ,t,=,L

∗
τ,t,p and p∗τ,t . Under the assumptions onC,C′ has

an inverse function which we denote D. The solutions to (3.2)-(3.4) are then L∗
τ,t ,̸= =

6Note that in equation (3.2), both cost and payouts are weighted by β because both effort costs and
monetary rewards are experienced on a future date. In equation (3.3), monetary rewards areweighted by
β since those are experiencedon future datewhile costs arenotweightedbyβ since those are experienced
immediately.

7The entire model can be redefined using p̃ = 1 − p and making −X(p̃) = X(p) a payment for not
committing rather than a cost for committing. This is a treatment we are interested in conducting during
future sessions.
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D(δT−τ ·w), L∗
τ,t,= = D(β ·δT−τ ·w), and L∗

τ,t,p = D(β̂ ·δT−τ ·w). Taking the derivative with

respect to p in equation 3.5 and substituting in the solutions to (3.2) and (3.4) produces

derivative = β ·
(
δ

T−t ·w ·D(w ·δT−τ)−δ
τ−tC(D(w ·δT−τ))−w ·δT−t ·D(w · β̂ ·δT−τ)

+δ
τ−tC(D(w · β̂ ·δT−τ))−δ

T−tX ′(p)
)
.

If β̂ = 1, this is simply−X
′
(p)which implies p∗ = p. This is consistent with the idea that

people who believe they have no present bias (time consistent and fully naive decision

makers) would not choose costly commitment devices. When β̂ < 1, (6) is decreasing in

β̂ so the agent would choose p∗ > p. For choices of p∗ < p, equation (6) is set equal to 0.

Thus, given w andC, β̂ then uniquely determines p∗.

3.5 Reduced-form Results

The following table summarizes our observations of commitment demand. Note

that the total sample size is 28 people, which is the number of people who participated

in all sessions.

Category Share of sample

Total in sample 100%

Pay for commitment at least once 93%

Pay at least $1 for commitment at least once 79%

Pay the maximal amount for commitment at least once 46%

Pay for commitment on at least 50% of decisions 68%

Pay for commitment on at least 75% of decisions 46%

Pay for commitment on every decision 11%

Commitment demand is widespread: many people commit frequently and sub-

stantially. This stands in stark contrast to a plethora of laboratory studies (Augenblick
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et al. (2015)) where commitment demand is often limited. We are hesitant to claim we

can fully explain the difference given ourmoderate sample size, but we conjecture that

this difference comes from three features of our design.

First, our convex device is mechanically more flexible than the binary commit-

ment devices used in the literature. Decision-makers who value both commitment and

flexibility would be generally less interested in commitment demand than those with-

out a preference for flexibility. For example, a decision-maker that chooses to buy a

moderate amount of commitment in our experiment would be inclined to not commit

at all in a situationwhere her only choiceswere the extremes—commit fully or not at all.

Another factor we believe is responsible for the difference is that the design in

Augenblick et al. (2015) puts the cost of commitment in different units (dollars) than

the gain from commitment (units of effort), whereas our design has cost and benefits

of commitment in the same unit (dollars). It is conceivable that participants find it eas-

ier tomake decisions when benefits and costs are expressed in the same units. This ten-

dency would explain why there was a large spike in commitment demand at the price

of 0 in Augenblick et al. (2015) while there is almost no demand at positive prices.

Finally, ourparticipantswere allowed tomake commitment decisions conditional

upon the wage whereas in Augenblick et al. (2015) the participants made a single com-

mitment decisions for all interest rates they faced. This implies that the participants

had to average the benefits of commitment across different rates, which could result in

them demanding less commitment. The benefits of commitment are tightly linked to

the trade-off rates in the economic environment, so designers of commitment devices

should take care to allow for flexibility when observable8 variables change in the envi-

ronment.
8While there are obvious benefits to designing commitment that is flexible in response to changes

not observed by the designer, the costs of disentangling changing background variables from dynamic
inconsistency can be high. Observability of a factor mitigates this cost, since the designer can easily
verify a change in the environment.
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Next, we will examine the relationship between the per-task wage and the com-

mitment demand. As Figure 3.1 shows, there is an overall positive correlation between

wage and commitment choice, and thus between labor supply and commitment choice.

However, when we control for wages, labor supply does not differ significantly across

periods, across time until labor is provided, or across commitment levels. We also ob-

serve that when comparing the first and the last session, commitment demand drops

mildly over time for most wages. This suggests the participants may be learning about

their (mis)perceptions of their present bias, and attempting to correct their behavior.

Figure 3.1: The blue line is average commitment demanded during period 1. The red
line is the average commitment demanded during period 3 (the last period in which
commitment is offered).

Figure 3.2 shows that labor supply decisions are increasing with the wage and

aremostly consistent across time. The first observation is consistent with an increasing

labor supply, as predicted by the theoretical model. The fact that the average labor

supply is the same regardless of whether labor is performed in the current or in a future

session suggests that participants generally do not suffer from dynamic inconsistency.

We also find that participants’ preferences overmoney and effort do not seem to change

over time. This is beneficial for the structural analysis we will do in the next section.
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Figure 3.2: The blue line is average labor supply chosen before the period in which
labor is performed. The red line is the average labor supply chosen during the period
in which labor is performed.

3.6 Structural Results

Wemake the structural assumption thatC(L) = 1
ϕγ

Lγ. We set X ′(p) = 1
10(p−0.1),

p = 0.9, and p = 0.1 in our experiment. Therefore,

L∗
τ,t ,̸= = (wδ

T−τ
ϕ)

1
γ−1 , L∗

τ,t,= = (βδ
T−τwϕ)

1
γ−1 ,

and

p∗ = X ′−1
(

w(wδ
T−τ

ϕ)
1

γ−1 − 1
ϕγ

(wδ
T−τ

ϕ)
γ

γ−1 −w(β̂δ
T−τwϕ)

1
γ−1 +

1
ϕγ

(β̂δ
T−τwϕ)

γ

γ−1

)
.

Figure 3.1 shows the aggregate estimates from the experimental data. We see

that β ≈ 1 and δ ≈ 1, as we predicted from our graphs of the labor supply decisions. The

estimate of δ is consistent with much of the previous literature, and the literature for β

has some conflicting results. The estimate of γ ≈ 2 is the same as Augenblick and Rabin

(2019). Parameter φ does not appear to be well-measured, likely due to heterogeneity of
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Table 3.1: Aggregate estimates of the model parameters.

labor supply functions among participants.

The key measurement we want to focus on is β̂ (which is called βh to distinguish

from the empirical estimate of β). The only empirical estimate of βh that we are aware

of is in Augenblick and Rabin (2019), who find βh ≈ 1. Our estimate of βh is significantly

lower than 1. We would like to attribute this difference in estimates to the difference in

experimental designs, with Augenblick and Rabin (2019) asking participants for their

predicted labor supply and our experiment using convex commitment choices. How-

ever, given our small sample, we cannot support this assertion without more data. Our

estimate for βh is also quite below the predicted lower bound of β in O’Donoghue and

Rabin (2001).

The fact that βh is estimated to be below 1 and even below β has a few implica-
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tions. Our participants mostly seem to believe that they are dynamically inconsistent.

However, they on average overestimate the degree of their present bias. This is also

mostly truewhen you consider individual estimates of β and βh, however imprecise they

may be due to small number of observations. Overall, the discrepancy between β and

βh have led participants to over-demand commitment, with negative consequences for

their welfare. Section 7 considers these consequences in more detail.

Figure 3.3: Blue dots are individualmeasures of β (horizontal axis) and β̂ (vertical axis).
The orange dot is our aggregate estimate, and green dot is the aggregate estimate from
Augenblick and Rabin (2019), and the red line is a reference line for β = β̂

Figure 3.3 shows the individual structural estimates of β and βh for our partici-

pants. The red line shows β = βh, and as we can see, many participants lie below that

line 9. Indeed, many of our participants have estimates for βh that are below the as-

sumed lower bound of β in O’Donoghue and Rabin (2001). This is consistent with our

aggregate structural estimate that β̂ is significantly lower than β.
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Figure 3.4: The ex-ante (red line) and ex-post (blue line) average earnings difference
as a function of commitment probability. The green line is a reference line displaying
the costs of commitment

3.7 Welfare Analysis

Figure 3.4 demonstrates the welfare effects of commitment demand. The green

line shows the cost of commitment. The red line considers the difference between the

expected earnings under the given commitment choice and the expected earnings un-

der the lowest, cheapest commitment choice of p = 0.1. The blue line simply takes the

difference between the earnings from the participant’s labor choice the period before

labor and the earnings from the labor choice the period labor is performed, minus the

cost of commitment they chose. Both red and blue lines are showing averages for the

corresponding commitment levels across wages and participants.

Bothwelfare calculations indicate losses fromcommitment, and these losses are

increasing in the commitment probability and closely follow the slope of the commit-

ment cost. To put it simply, people lose from commitment—the more they commit, the

more they lose. If commitment helped the participants improve their welfare, both the

red and the blue lines would be above the green line. What we see instead is that both
9Removing the outlier above of β ≈ 3 does not affect the aggregate estimates of β or β̂.
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lines follow the commitment cost very closely in both level and slope. This indicates

that commitment does not provide any meaningful improvement to the participants’

welfare. This contrasts sharply with John (2020), who documented losses at low levels

of commitment and gains at high levels of commitment.

3.8 Conclusion

Commitment devices currently are the gold-standard treatment for mitigating

the effects of dynamic inconsistency, but this position rests on the assumption that in-

dividuals only perceive dynamic inconsistency that they experience. Despite a moder-

ate sample size, we document many individuals who are incorrectly pessimistic about

their future selves. They demand costly commitment despite not needing it, which re-

sults in ex-post earnings losses that closely follow the cost of commitment. This result

suggests that one important direction for future work is designing interventions other

than commitment devices that can improve outcomes under dynamic inconsistency.

Another direction is investigating other settingswhere dynamic inconsistency has been

documented and experimentally checking whether people have correct perceptions of

their inconsistency.

As discussed in Section 3.5, we find much more commitment demand than sim-

ilar studies in the past (particularly Augenblick et al. (2015)). We provide several con-

jectures that could explain this difference. A primary factor is the fact that in our study,

both the benefits and the costs of commitment are expressed in the same units (dol-

lars). Dealing in the same units may be easier for participants and might make them

more likely to commit. Another possible reason is that participants value flexibility in

the commitment device, which makes our convex commitment device more attractive

than a hypothetical binary device with two extreme options (fully commit or not com-
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mit at all). Finally, our participants were allowed tomake commitment decisions condi-

tional upon the wage whereas in Augenblick et al. (2015) the participants made a single

commitment decision for all interest rates they faced. The ability to fine-tune the level

of commitment to the relevant parameters in the environment could be responsible for

higher eagerness to commit in our sample.

Chapter 3 is currently being prepared for submission for publication of the ma-

terial. Adrian Wolanski and the dissertation author, Danil Dmitriev, are principal co-

authors of this chapter.
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Appendix A

Supplemental Material

A.1 Appendix of Chapter 1

A.1.1 Proof of Lemma 1

We rely on Bergemann and Välimäki (2001) in showing the applicability of Git-

tins index to our problem. While their model is in discrete time and ours is in continu-

ous time, we share a key property—stationarity of the agent’s experimentation problem.

Since there is always another arm available, the agent never goes back to previously

used arms. Optimality of an index policy follows from a similar argument as Berge-

mann and Välimäki (2001) use to prove their Theorem 1.

Let us start by compute theGittins index of an armwith posterior belief π. Gittins

index for this problem is the highest number m(π) that satisfies

0 = sup
t≥0

π

∫ t

0
λe−λτ

(
e−rτyA −

∫
τ

0
e−rkm(π)dk

)
dτ− (1−π+πe−λt)

∫ t

0
e−rτm(π)dτ

0 = sup
t≥0

π

∫ t

0
λe−λτ

(
e−rτyA −

1
r
(1− e−rτ)m(π)

)
dτ− (1−π+πe−λt)

1
r
(1− e−rt)m(π)
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For any fixed t, this turns into

m(π, t) =
π
∫ t

0 λe−(r+λ)τyAdτ

π
∫ t

0 λe−λτ 1
r (1− e−rτ)dτ+(1−π+πe−λt)1

r (1− e−rt)

=
πλ

r+λ
(1− e−(r+λ)t)yA

1
r

(
π(1− e−λt)− πλ

r+λ
(1− e−(r+λ)t)+(1−π+πe−λt)(1− e−rt)

)
=

πλ

r+λ
(1− e−(r+λ)t)yA

1
r

(
π− πλ

r+λ
−
(

π− πλ

r+λ

)
e−(r+λ)t +(1−π)(1− e−rt)

)
=

πλ

r+λ
(1− e−(r+λ)t)yA

1
r

(
πr

r+λ
(1− e−(r+λ)t)+(1−π)(1− e−rt)

)
=

πrλ(1− e−(r+λ)t)yA

πr(1− e−(r+λ)t)+(1−π)(r+λ)(1− e−rt)

=
πrλyA

πr+(1−π)(r+λ) 1−e−rt

1−e−(r+λ)t

The index is then given by

m(π) = sup
t≥0

πrλyA

πr+(1−π)(r+λ) 1−e−rt

1−e−(r+λ)t

Note that this is maximized as t → 0. The index is essentially the flow payoff on a hypo-

thetical safe arm that makes the agent indifferent between switching immediately and

working on the risky arm for some time and then switching to the safe arm. The risky

arm gets worse the instant oneworks on it, so the optimal time to switch to the safe arm
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is instantaneous too. Hence, the index is given by

m(π) = lim
t→0

πrλyA

πr+(1−π)(r+λ) 1−e−rt

1−e−(r+λ)t

=
πrλyA

πr+(1−π)(r+λ) limt→0
re−rt

(r+λ)e−(r+λ)t

=
πrλyA

πr+(1−π)r

= πλyA.

Let us also compute the Gittins index of an unexplored arm. Recall that it incurs

a cost c for switching to it immediately. Thus, its index m̂ must solve

0 = sup
t≥0

−c+π0

∫ t

0
λe−λτ

(
e−rτyA −

∫
τ

0
e−rkm̂dk

)
dτ− (1−π0 +π0e−λt)

∫ t

0
e−rτm̂dτ

Following the same steps as above,

m̂ = sup
t≥0

−c+ π0λ

r+λ
(1− e−(r+λ)t)yA

1
r

(
π0r
r+λ

(1− e−(r+λ)t)+(1−π0)(1− e−rt)
) .

This is well-defined and achieves supremum for some t > 0. The agent will experiment

on each arm until its index, pλyA, drifts below the index m̂.

A.1.2 Proof of Lemma 2

During a time interval dt, the agent succeeds with probability πλdt, and with

probability 0 otherwise. If success does not occur, the agent updates her belief to the

following:

π+dπ =
π(1−λdt)
1−πλdt

≈ π+(−πλ+π
2
λ)dt,
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where the latter part is an approximation with higher-order terms of dt dropped. Sim-

plifying:

dπ ≈−λπ(1−π)dt.

Whenever the agent is working on an arm with current belief π, he can choose

to continue working “for a little bit” (for time dt → 0) or switch to a new arm. Let VA

be the value of an unexplored arm. Then, the agent’s continuation payoff satisfies the

following Bellman equation:

uA(π) = max{VA, e−rdtE[u(π+dπ)|π]}.

Note that if the agent continues working, they succeed with probability πλdt,

which yields a payoff of yA+b. Alternatively, the arm fails, and so the continuation pay-

off will be equal to u(π+dπ) = uA(π)+
∂

∂π
uA(π)dπ. Thus, we can express the expectation

E[u(π+dπ)|π] in the following way:

E[u(π+dπ)|π] = πλ(yA +b)dt +(1−πλdt)
(

uA(π)+
∂

∂π
uA(π)dπ

)
≈ πλ(yA +b)dt +(1−πλdt)

(
uA(π)−λπ(1−π)

∂

∂π
uA(π)dt

)

Note that we can approximate e−rdt ≈ 1− rdt. Thus, if the agent’s belief is above the

switching belief π, the continuation payoff must satisfy

uA(π)≈ πλ(1− rdt)(yA +b)dt +(1− rdt)(1−πλdt)
(

uA(π)−λπ(1−π)
∂

∂π
uA(π)dt

)
≈ πλ(yA +b)dt +(1− (r+πλ)dt)uA(π)−λπ(1−π)

∂

∂π
uA(π)dt.

The last step removeshigher-order termsof dt, as is standard. Rearranging the equation
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and substituting back into the Bellman equation above gives us

uA(π) = max
{

VA,
πλ

r+πλ
(yA +b)− λπ(1−π)

r+πλ

∂

∂π
uA(π)

}
.

This also gives us a differential equation on uA(π) for beliefs above the switching belief π:

∂

∂π
uA(π)+

r+πλ

λπ(1−π)
uA(π) =

1
1−π

(yA +b) (A.1)

This first-order linear differential equation can be solved using integrating factor G(π):

G(π) = e
∫ r+πλ

λπ(1−π)
dπ

= e
r
λ
(ln(π)−ln(1−π))−ln(1−π) =

(
π

1−π

) r
λ 1

1−π

Equation (A.1) then simplifies to

∂

∂π
(G(π)uA(π)) =

1
(1−π)

(yA − c+VA)G(π).

Thus,

uA(π) =
1

G(π)

(∫ yA +b
1−π

G(π)dπ+C
)

=
1

G(π)
(yA +b)

∫ (
π

1−π

) r
λ 1
(1−π)2 dπ+

C
G(π)

=
1

G(π)
(yA +b)

λ

r+λ

(
π

1−π

) r+λ

λ

+
C

G(π)

=
πλ

r+λ
(yA +b)+

(
1−π

π

) r
λ

(1−π)C,

whereC is an integration constant thatwill be pinned downby the boundary conditions.

Specifically, the continuation payoff function above needs to satisfy valuematching and

smooth pasting. Let π be the belief at which the agent chooses to switch to a new arm.
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Then:

uA(π) =VA, and
∂

∂π
uA(π) = 0.

The smooth pasting condition is equivalent to:

λ

r+λ
(yA +b)−

(
1−π

π

) r
λ

C− r
λ

1
π2

(
1−π

π

) r−λ

λ

(1−π)C = 0

λ

r+λ
(yA +b)− πλ+ r

πλ

(
1−π

π

) r
λ

C = 0

Hence,

C =
λ

r+λ
· πλ

πλ+ r

(
π

1−π

) r
λ

(yA +b).

Substituting this into the value matching condition:

(
πλ

r+λ
+

λ

r+λ
· λπ(1−π)

πλ+ r

)
(yA +b) =VA

πλ(πλ+ r)+πλ2 −π2λ2

(r+λ)(πλ+ r)
(yA +b) =VA

πλ

πλ+ r
(yA +b) =VA

Rearranging:

(πλ+ r)VA = πλ(yA +b) =⇒ π =
rVA

λ(yA +b−VA)

The agent will switch to a new arm if and only if π < π.

We candeduce the agent’swaiting time from this switching belief. Let tA(b,VA)be

the agent’s optimal switching time given bonus payment b and new arm’s valueVA. Note:

π =
π0e−λt∗(yA)

1−π0 +π0e−λt∗(yA)
.
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Hence,

tA(b,VA) =−1
λ

ln
(
(1−π0)π

π0(1−π)

)
=−1

λ
ln
(

(1−π0)rVA

π0(λ(yA +b−VA)− rVA)

)
.

A.1.3 Proof of Lemma 3

Consider an arbitrary opaque bonus scheme with a reward distribution F. Let

{b1,b2, . . . ,bn} be the support of F, and let fi be the probability of b = bi. LetVA(F) = V̄A

be the agent’s initial value, i.e. the value of an unexplored arm, given the agent-optimal

experimentation policy under F (described in Lemma 2). LetVA(b,x) be the agent’s con-

tinuation value immediately after drawing reward b when the value of an unexplored

arm is x. Similarly, denote the principal’s continuation value byVP(b,x).1

Suppose the principal wants to construct a better bonus scheme F̂ such that the

supports ofF and F̂ coincide andVA(F ′)=VA(F)= V̄A. Theprincipal solves the following

problem:

max
f̂1, f̂2,..., f̂n≥0

n

∑
i=1

f̂iVP(bi,V̄A),

s.t.
n

∑
i=1

f̂iVA(bi,V̄A) = V̄A,

n

∑
i=1

f̂i = 1.

Expressing f̂1 through the first constraint and substituting into the objective function

and the second constraintmorphs this problem intomaximizing a linear objective func-

tion subject to one linear constraint, with n− 1 variables. As is standard, there exists

a “corner solution”, where n−2 variables equal zero. Therefore, there exists a solution
1The principal’s continuation value depends on x because the agent’s experimentation policy depends

on both b and x.
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to the original problem that has only two positive probabilities, which corresponds to a

binary bonus scheme. Denote this scheme by F ′. Given that F is a feasible point in the

optimization problem above, it follows thatVA(F ′) =VA(F) andVP(F ′)≥VP(F).

A.1.4 Proof of Theorem 1

Consider a deterministic bonus schemewith bonus payment b = b̄, and consider

a binary opaque bonus scheme F. Let bL < b̄ and bH > b̄ be the two offered payments,

and let q be the probability of the low payment. Suppose that the principal keeps the

agent’s value the same as under the deterministic bonus scheme,VA(F) =VA(b̄).

The agent’s switching time is given by:

t∗L =−1
λ

ln
(

(1−π0)rū
π0(λ(yA +bL − ū)− ū)

)
t∗H =−1

λ
ln
(

(1−π0)rū
π0(λ(yA +bH − ū)− ū)

)

The agent’s continuation value under each payment is given by:

VA(bL) =
π0λ

r+λ
(yA +bL)

(
1− e−(r+λ)t∗L

)
+
(

1−π0 +π0e−λt∗L
)

e−rt∗L ū

VA(bH) =
π0λ

r+λ
(yA +bH)

(
1− e−(r+λ)t∗H

)
+
(

1−π0 +π0e−λt∗H
)

e−rt∗H ū

Since the principal wants to keep the agent’s overall expected value at ū, the bonus

scheme’s probability q is pinned down by the following:

ū =−c+qVA(bL)+(1−q)VA(bH) =⇒ q =
VA(bH)− c− ū

VA(bH)−VA(bL)
.
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The principal’s overall value (as a function of bH) is then given by

VP = q ·
(

π0λ

r+λ
(yP −bL)

(
1− e−(r+λ)t∗L

)
+
(

1−π0 +π0e−λt∗L
)

e−rt∗LVP

)
+

+(1−q) ·
(

π0λ

r+λ
(yP −bH)

(
1− e−(r+λ)t∗H

)
+
(

1−π0 +π0e−λt∗H
)

e−rt∗HVP

)

We can solve forVP in closed form:

VP =
π0λ

(
q(yP −bL)

(
1− e−(r+λ)t∗L

)
+(1−q)(yP −bH)

(
1− e−(r+λ)t∗H

))
(r+λ)

(
1−q(1−π0 +π0e−λt∗L)e−rt∗L − (1−q)(1−π0 +π0e−λt∗H )e−rt∗H

)
Suppose that the principal increases the spread of payments by letting bH → ∞. As

bH → ∞, we have q → 1 and t∗H → ∞, which simplifies the expression, in particular the

denominator:

VP →
π0λ(yP −bL)

(
1− e−(r+λ)t∗L

)
−π0λ limbH→∞(1−q)bH

(r+λ)
(
1− (1−π0 +π0e−λt∗L)e−rt∗L

)
Note that

lim
bH→∞

(1−q)bH = lim
bH→∞

(ū+ c−VA(bL))
bH

VA(bH)−VA(bL)

= (ū+ c−VA(bL)) lim
bH→∞

bH
π0λ

r+λ
bH
(
1− e−(r+λ)t∗H

)
+o(bH)

= (ū+ c−VA(bL)) ·
r+λ

π0λ

90



Hence,

VP →
π0λ

r+λ
(yP −bL)

(
1− e−(r+λ)t∗L

)
− (ū+ c−VA(bL))

1− (1−π0 +π0e−λt∗L)e−rt∗L

=

π0λ

r+λ
(yP + yA + ū)

(
1− e−(r+λ)t∗L

)
+
(

1−π0 +π0e−λt∗L
)

e−rt∗L ū− ū− c

1− (1−π0 +π0e−λt∗L)e−rt∗L

=
−c+ π0λ

r+λ
(yP + yA)

(
1− e−(r+λ)t∗L

)
1− (1−π0 +π0e−λt∗L)e−rt∗L

− ū

Note that this limit is the joint value under the switching time t∗L, minus the agent’s

reservation utility. Let t∗ be the switching time that maximizes the joint value (recall

Section 3.3). We know that tA(b̄, ū)> t∗, since the transparent bonus scheme is certainly

inefficient. Thus, given that bL < b̄ and that tA(b, ū) is increasing in w, we can conclude

that the principal’s value is higher under the limiting opaque bonus scheme than under

the corresponding transparent bonus scheme for any bL < b̄.

A.1.5 Proof of Theorem 2

Consider a binary opaque bonus schemewith low reward bL and high reward bH ,

with probability of low reward being q. Let V̄A = q ·VA(bL)+(1−q) ·VA(bH) be the agent’s

expected value under it. Note that this pins down q.

Note that the agent’s continuation value of a given armwith reward s, uA(π0,s,V̄A),

is increasing in s. This implies that q is increasing in bH . Moreover, lims→∞ uA(π0,s,V̄A) =

∞, as this continuation value is given by

uA(π0,s,V̄A) = max
τ≥0

π0λ

r+λ
(yA + s+V̄A)

(
1− e−(r+λ)τ

)
+
(

1−π0 +π0e−λτ

)
e−rτV̄A,

where the objective function goes to ∞ for any fixed value of τ. Additionally, note that

the joint continuation value of a given arm with reward s, u joint(π0,s,V̄A) is bounded.
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Moreover,

lim
s→∞

u joint(π0,s,V̄A) =

π0λ

λ+r (yA + yP − c)

1− π0λ

λ+r

,

since the agent’s switching time goes to ∞ as s → ∞.

Consider the opaque bonus scheme with bL and bH once more. Using the impli-

cations above, we can conclude that

q ·u joint(π0,bL,V̄A)+(1−q)·u joint(π0,bH ,V̄A)> q ·u joint(π0,bL,V̄A)+(1−q)·
π0λ

λ+r (yA + yP − c)

1− π0λ

λ+r

,

where the right-hand function is strictly increasing in bH due to q being increasing in bH .

Thus, there exists b̄ such that for any bH > b̄, the left-hand function is also increasing in

bH .

As bH → ∞, the joint expected value converges to u joint(π0,bL,V̄A), similar to the

proof of Theorem 1. Since tA(bH ,V̄A) > tA(bL,V̄A) > t∗, it follows that u joint(π0,bL,V̄A) >

u joint(π0,bH ,V̄A) for any 0 ≤ bL < bH . Therefore,

u joint(π0,bL,V̄A)> q ·u joint(π0,bL,V̄A)+(1−q) ·u joint(π0,bH ,V̄A)

for any q < 1. This implies that the joint expected value attains its global maximum

when bH → ∞.

A.1.6 Proof of Theorem 3

Recall from the proofs of Theorem 1 and Theorem 2 that the optimal binary

bonus scheme F∗ lets bH → ∞ while keeping the agent’s participation constraint satis-

fied, VA(F) = ū. In particular, the principal’s expected value of this bonus scheme is

given by

VP(F∗) = u joint(π0,bL, ū)− c− ū.
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The optimal binary bonus scheme should choose bL to maximize the joint continuation

value u joint(π0,bL, ū). Since the transfer does not enter the value function except through

the agent’s switching time, this is equivalent to choosing bL so that

tA(bL, ū) = t∗,

or as close to t∗ as possible. Recall that tA(bL, ū) is increasing in bL. This implies that

the principal canmatch the efficient switching time t∗ as long as it is possible under the

lowest possible payment, bL = 0.

Recall from Lemma 2 that the agent’s switching rule satisfies

rū
λ(yA +bL − ū)

=
π0e−λtA(bL,ū)

1−π0 +π0e−λtA(bL,ū)
,

which is equivalent to

ū =
λ(yA +bL)

λ+ r · 1−π0+π0e−λtA(bL,ū)

π0e−λtA(bL,ū)

.

Thus, the principal can choose bL to achieve tA(bL, ū) = t∗ if and only if

ū ≥ λyA

λ+ r · 1−π0+π0e−λt∗

π0e−λt∗

.

A.1.7 Proof of Theorem 4

Adopt most of Theorem 3’s proof. Let p∗ be the efficient switching belief. Under

the limiting opaque bonus scheme from Theorems 1 and 3, the agent’s switching belief

is given by

π
A(bL) =

rū
λ(yA +bL − ū)

,
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where bL is the low reward in the bonus scheme under consideration. Note that πA(bL)

is monotonically decreasing in bL, and limbL→−yA πA(bL) = +∞. Thus, there exists bL >

−yA such that πA(bL) = π∗. This implies that the optimal bonus scheme achieves the

efficient switching policy with probability 1 (probability of bL) and extracts all surplus

by holding the agent’s participation constraint with equality.

A.1.8 Proof of Theorem 5

First, suppose that ŵb = 0. This means that there exists a switching subsidy ŵs ≤

cB such that the agent is indifferent between the outside option and the experimenta-

tion. By Lemma 2, the agent’s switching belief in this case is πA = rū
λyA
. This is the high-

est switching belief that the principal can possibly achieve using any stationary bonus

scheme (transparent or opaque) while maintaining the agent’s value at ū. Hence, the

transparent bonus scheme (ŵs,0) is optimal. If ŵb > 0 but π∗ ≤ rū
λ(yA+ŵb)

, then there ex-

ists a transparent bonus scheme (ws,wb) such thatws ≤ ŵs ≤ cB, wb > ŵb, and the agent’s

switching belief is πA = π∗. Hence, scheme (ws,wb) is optimal.

Now suppose that we have ŵb > 0 and π∗ > rū
λ(yA+ŵb)

. The transparent bonus

scheme (ŵs, ŵb) induces the switching belief πA = rū
λ(yA+ŵb)

. Increasing the agent’s switch-

ing belief to get it closer to π∗ would require reducing ŵb. To maintain the agent’s value

at ū, the principal would have to simultaneously increase ŵs. However, ŵb > 0 implies

that ŵs = cB; the principal thus cannot increase ŵs any further without inducing the

agent to constantly switch to cheap arms. In this case, no transparent bonus scheme

achieves the principal’s first-best outcome.

Consider designing a binary opaque bonus scheme with zero switching subsidy,

as in Theorems 1 and 2. In the limit as the high reward becomes arbitrarily large, the

opaque bonus scheme achieves the switching belief πA = rū
λ(yA+bL)

with probability 1. By

choosing bL < ŵb, we will get an opaque bonus scheme that has a more efficient switch-
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ing belief while maintaining the agent’s value at ū. The optimal bonus scheme is thus

opaque, and not any of the transparent bonus schemes with a switching subsidy.

A.2 Appendix of Chapter 2

A.2.1 Proof of Lemma 5

Genuine Players’ (i = 1,2) Problems

Given the vector of messages m ∈ {L,H}3 and types (θ1,θ2) ∈ {L,H}2, (genuine)

player i ∈ {1,2} has the following utility function:

ui(x(m),θi) =−(x(m)−θi)
2, (A.2)

where x(m)≡ U{mode(m)}. Notice that under this simple setup, x(·) simplifies to

x(m)≡ sgn(m1 +m2 +m3) (A.3)

because of the facts that there are 3 voters and that (L,H) = (−1,1).

Letmk,θk denote themessage of player k ∈ {1,2,3}who is of type θk ∈ {L,H}∪{T}.

Then the expected utilities of players 1 and 2 are given by

Eθ2u1(m1θ1,(m2θ2 ,m3T ),θ1) =−p[x(m1θ1,m2L,m3T )−θ1]
2 − (1− p)[x(m1θ1,m2H ,m3T )−θ1]

2

and

Eθ1u2(m2θ2,(m1θ1 ,m3T ),θ2) =−p[x(m1L,m2θ2 ,m3T )−θ2]
2− (1− p)[x(m1H ,m2θ2,m3T )−θ2]

2,
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respectively.

To facilitate performing the calculationsbelow, let EU1θ1(m1θ1,(m2L,m2H ;m3T )) :=

Eθ2u1(m1θ1,(m2θ2,m3T ),θ1) and define EU1θ1(m1θ1,(m2L,m2H ;m3T )) similarly.

Let i = 1 and θ1 = L =−1. To characterize player 1’s optimal strategy, I consider

the following 8 cases, summarized in the table, below:

1 2 3 4 5 6 7 8

m2L L L H H L L H H

m2H H H L L L L H H

m3T L H L H L H L H

Going through all of these cases exhausts all the possible (m2L,m2H ,m3T ).

Case 1: (m2L,m2H ;m3T ) = (L,H;L)

EU1L(−1,(−1,1;−1)) = 0 >−4(1− p) = EU1L(1,(−1,1;−1))⇒ m∗
1L(−1,1;−1) =−1.

Case 2: (m2L,m2H ;m3T ) = (L,H;H)

EU1L(−1,(−1,1;1)) =−4(1− p)>−4 = EU1L(1,(−1,1;1))⇒ m∗
1L(−1,1;1) =−1.

Case 3: (m2L,m2H ;m3T ) = (H,L;L)

EU1L(−1,(1,−1;−1)) = 0 >−4 = EU1L(1,(1,−1;−1))⇒ m∗
1L(1,−1;−1) =−1.

Case 4: (m2L,m2H ;m3T ) = (H,L;H)

EU1L(−1,(1,−1;1)) =−4p >−4 = EU1L(1,(1,−1;1))⇒ m∗
1L(1,−1;1) =−1.

Case 5: (m2L,m2H ;m3T ) = (L,L;L)

EU1L(−1,(−1,−1;−1)) = 0 = EU1L(1,(−1,−1;−1))⇒ m∗
1L(−1,−1;−1) = {−1,1}.

Case 6: (m2L,m2H ;m3T ) = (L,L,H)

EU1L(−1,(−1,−1;1)) = 0 >−4 = EU1L(1,(−1,−1;1))⇒ m∗
1L(−1,−1;1) =−1.

Case 7: (m2L,m2H ;m3T ) = (H,H;L)

EU1L(−1,(1,1;−1)) = 0 >−4 = EU1L(1,(1,1;−1))⇒ m∗
1L(1,1;−1) =−1.

Case 8: (m2L,m2H ;m3T ) = (H,H;H)

EU1L(−1,(1,1;1)) = 0 = EU1L(1,(1,1;1))⇒ m∗
1L(1,1;1) = {−1,1}.
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Summarizing the above,

m∗
1L(m2L,m2H ;m3T ) =

{ {−1,1} , if m2L = m2H = m3T

−1 , otherwise

The derivations for m∗
2L(·), m∗

1H(·), and m∗
2H(·) are very similar and are omitted.

Let i, j ∈ {1,2} (i ̸= j) and θi ∈ {L,H}. Then,

m∗
iθi
(m jL,m jH ,m3T ) =

{ {−1,1} , if m2L = m2H = m3T

θi , otherwise.

For simplicity, we impose thatwhenEUiθi(miθi,(m jL,m jH ;m3T ))=EUiθi(−miθi,(m jL,m jH ;m3T )),

player i (of type θi) will vote θi. Imposing this “indifference-breaking condition” yields

m∗
iθi
(m jL,m jH ,m3T )≡ θi (sincere voting by genuine types)

Saboteur’s Problem (Player 3)

Given θ−3 and m−3,θ−3,

u3(m3T ,m−3,θ−3 ,θ−3) =− ∑
j ̸=3

u j(m jθ j ,m− j,θ− j ,θ j)

Given the (common) prior, player 3’s expected utility is as follows:
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Eθ−3[u3(m3T ,m−3,θ−3,θ−3)] = ∑
τ∈{L,H}2

P{θ−3 = τ} ·u3(m3T ,m−3,τ,τ)

≡ p2[−u1(m1L,(m2L,m3T ),L)−u2(m2L,(m1L,m3T ),L)
]

+ p(1− p)
[
−u1(m1L,(m2H ,m3T ),L)−u2(m2H ,(m1L,m3T ),H)

]
+ (1− p)(p)

[
−u1(m1H ,(m2L,m3T ),H)−u2(m2L,(m1H ,m3T ),L)

]
+ (1− p)2[−u1(m1H ,(m2H ,m3T ),H)−u2(m2H ,(m1H ,m3T ),H)

]
Now, note the following:

(i) If θ1 = θ = θ2, then player 3 is not pivotal, so

ui(θ,(θ,m3T ),θ) = 0 ∀m3T (i = 1,2; θ =−1,1)

(ii) If θi = L, θ j = H (i, j ∈ {1,2}, i ̸= j), then player 3 is pivotal, so

ui(−1,(1,m3T ),−1) =
{ 0 , if m3T =−1

−4 , if m3T = 1
, ui(−1,(1,m3T ),1) =

{ −4 , if m3T =−1

0 , if m3T = 1
.

It then follows that

Eθ−3[u3(m3T ,m∗
−3,θ−3

,θ−3)] = 8p(1− p) ∀m3T ∈ {−1,1}

Hence, player 3 is indifferent between choosing m3T = −1 and m3T = 1 for all

p ∈ (0,1). ■

A.2.2 Proof of Lemma 6

The structure of this derivation is very similar to that of the previous section. We

first solve the genuine players’ (i = 1,2) problems using an exhaustive method. After-
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ward, we compareEθ−3[u3(−1,m∗
−3,θ−3

,θ−3)] andEθ−3[u3(1,m∗
−3,θ−3

,θ−3)] to derivem∗
3T (·).

The only difference in this derivation is that now x(·) is given by (2.3) instead of (2.1).

Genuine Players’ (i = 1,2) Problems

Case 1: EU1L((−1,(−1,1;−1))−EU1L((1,(−1,1;−1)) = 4
3 −

8 p
9 > 0

⇒ m∗
1L((1,(−1,1;−1))) =−1,

Case 2: EU1L((−1,(−1,1;1))−EU1L((1,(−1,1;1)) = 20
9 − 8 p

9 > 0

⇒ m∗
1L((1,(−1,1;1))) =−1,

Case 3: EU1L((−1,(1,−1;−1))−EU1L((1,(1,−1;−1)) = 8 p
9 + 4

9 > 0

⇒ m∗
1L((1,(1,−1;−1))) =−1,

Case 4: EU1L((−1,(1,−1;1))−EU1L((1,(1,−1;1)) = 8 p
9 + 4

3 > 0

⇒ m∗
1L((1,(1,−1;1))) =−1,

Case 5: EU1L((−1,(−1,−1;−1))−EU1L((1,(−1,−1;−1)) = 4
9 > 0

⇒ m∗
1L((1,(−1,−1;−1))) =−1,

Case 6: EU1L((−1,(−1,−1;1))−EU1L((1,(−1,−1;1)) = 4
3 > 0

⇒ m∗
1L((1,(−1,−1;1))) =−1,

Case 7: EU1L((−1,(1,1;−1))−EU1L((1,(1,1;−1)) = 4
3 > 0

⇒ m∗
1L((1,(1,1;−1))) =−1,

Case 8: EU1L((−1,(1,1;1))−EU1L((1,(1,1;1)) = 20
9 > 0

⇒ m∗
1L((1,(1,1;1))) =−1,

Hence, player 1 (of type L) votes sincerely (i.e., m∗
1L(·) ≡ −1. As before, the derivations

for player 2 and for high types are omitted since they are very similar. Players 1 and 2

of either type vote sincerely (i.e., m∗
iθi
(·)≡ θi, ∀i ∈ {1,2},∀θi ∈ {−1,1}).

Saboteur’s Problem (Player 3)

Solving player 3’s problem is much simpler this time:
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Eθ−3[u3(−1,m∗
−3,θ−3

,θ−3)]−Eθ−3 [u3(1,m∗
−3,θ−3

,θ−3)] =
8(p−1)2

9
− 8 p2

9
=

8
9
− 16 p

9

which is positive if and only if p > 1
2 . Hence,

m∗
3T ≡


−1 , if p < 1

2

{−1,1} , if p = 1
2

1 , if p > 1
2

■

A.2.3 Trolls’ Behavior Under “Majority Rule”

When there are N agents, 2 types (γ1 and γ2), T trolls, and the voting mechanism is “Ma-

jority Rule”, trolls will always vote for the less likely type.

Let ni(θ) ∈ {0,1, ...,N} denote the number of agents that are type γi (i = 1,2), given the

realization θ ∈ {γ1,γ2}N. Since there are two types, n2(θ)≡ N −n1(θ).2 Let

ϕ(n1) :=
(

N
n1

)
pn1(1− p)(N−n1) (A.4)

denote the probability that n1 players are of the first type.

Notice that trolls are pivotal if and only if |n1 −n2| ≤ T . This is equivalent to

N −T
2

≤ n1 ≤
T +N

2
.

For simplicity, assume that N−T
2 , N+T

2 /∈ N and that T < N.3 Trolls have two strategies to

2The input for n1 will be suppressed throughout.
3These assumptions are bynomeans necessary. In amore exhaustive proof, whereN,T ∈N, wewould

need to use some tie-breaking rule for when the n1 =
N−T

2 and n1 =
N+T

2 . The assumption T < N is just so
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compare: vote for θ = γ1 or for θ = γ2. We will show that trolls optimally vote for γ2 iff

p > 1
2 .

Denote the trolls’ message by mT and let EUT (mT ) denote their expected utility from

voting mT .4 Then, the trolls will optimally pick m∗
T = γ2 iff EUT (γ1)−EUT (γ2)< 0. After

some (omitted) algebraic simplification, we get

EUT (γ1)−EUT (γ2) =

⌊N+T
2 ⌋

∑
n1=⌊N−T

2 ⌋+1

ϕ(n1)
[
(N −n1)(γ1 − γ2)

2 −n1(γ1 − γ2)
2]

=

⌊N+T
2 ⌋

∑
n1=⌊N−T

2 ⌋+1

ϕ(n1)(N −2n1)(γ1 − γ2)
2

=

⌊N
2 ⌋

∑
n1=⌊N−T

2 ⌋+1

(ϕ(n1)−ϕ(N −n1))(N −2n1)(γ1 − γ2)
2,

where the last equality is due to the symmetry of N−2n1 around n1 =
N
2 . Next, note that

due to the symmetry of binomial coefficients, we have

ϕ(n1)−ϕ(N −n1) =

(
N
n1

)(
pn1(1− p)N−n1 − pN−n1(1− p)n1

)
,

which is negative for any n1 <
N
2 iff p > 1

2 . Thus, if p > 1
2 , we have EUT (γ1)−EUT (γ2)< 0,

and the trolls’ optimal strategy is to vote for the less likely type, m = γ2.

“■”
that we focus on the less trivial part of the complete proof. When T ≥ N, trolls are always pivotal.

4Here, trolls will always cast the same votes as one another, and hence can be treated as one player in
this proof.
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A.2.4 Proof of Lemma 8

Proof. The difference between the designer’s expected utility when trolls imitate γ1 and

γ2 can be shown to satisfy

∆EU =−
N

∑
k=0

N

k

 pk(1− p)N−k

(
k
(

N − k
N +T

)2

+(N − k)
(

T + k
N +T

)2
)
(γ1 − γ2)

2

+
N

∑
k=0

N

k

 pk(1− p)N−k

(
k
(

T +N − k
N +T

)2

+(N − k)
(

k
N +T

)2
)
(γ1 − γ2)

2

∼
N

∑
k=0

N

k

(k
(

N − k
N +T

)2

+(N − k)
(

T + k
N +T

)2
)(

(1− p)k pN−k − pk(1− p)N−k
)

The last line is due to us removing (γ1 − γ2)
2 to simplify the expression (it is a common

positive term). Assuming N is odd5, we can represent the sum above as follows:

∆EU ∼
N−1

2

∑
k=0

N

k

((1− p)k pN−k − pk(1− p)N−k
)[

k
(

N − k
N +T

)2

+(N − k)
(

T + k
N +T

)2

−

− (N − k)
(

k
N +T

)2

− k
(

T +N − k
N +T

)2
]
.

Note that for k < N
2 , we have (1− p)k pN−k − pk(1− p)N−k > 0, since p > 1

2 . Also note:

k
(

N − k
N +T

)2

+(N − k)
(

T + k
N +T

)2

− (N − k)
(

k
N +T

)2

− k
(

T +N − k
N +T

)2

=

= (N −2k)
T 2

(N +T )2 +0 > 0,

since k < N
2 .

5The argument follows very similarly if N is even.
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Therefore, the difference ∆EU is strictly positive term by term. This implies that the

designer achieves higher utility when trolls report more likely type (γ = 2 since we have

p > 1
2). Hence, trolls will optimize by picking the less likely type (γ = 1) to report. ■

A.2.5 Proof of Lemma 9

Proof. It can be shown that the expected utility of the designer (ex-ante) is given by

E

[
N

∑
i=1

ui(g(θ,T ),θi)

]
=−

N

∑
k=0

N

k

 pk(1− p)N−k

(
k
(

T +N − k
N +T

)2

+(N − k)
(

k
N +T

)2
)

=−
N p
(
N2(1− p)+N(1− p)(2T −1)+T (2p+T −2)

)
(N +T )2

This sum is hard to interpret, but we can check comparative statics of it with respect to

T and p. Straightforward algebraic calculations show that

∂

∂T
E

[
N

∑
i=1

ui(g(θ,T ),θi)

]
=−2N p(NT + p2 −3p+2)

(N +T )3 < 0,

which implies that having more trolls will strictly reduce the designer’s welfare. This is

expected, since more trolls will be able to bias the result of the mechanism in a more

drastic way.

For the blind mechanism, the designer’s expected utility under is given by

E

[
N

∑
i=1

ui(p,θi)

]
=−

N

∑
k=0

N

k

 pk(1− p)N−k
(

k (1− p)2 +(N − k)(2− p)2
)

=−N p(1− p).

The blindmechanismperforms better than the average-of-votesmechanism if and only
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if

−N p(1− p)>−N p
N2(1− p)+N(1− p)(2T −1)+T (2p+T −2)

(N +T )2 .

Rearranging and simplifying:

−(1− p)>−N2(1− p)+N(1− p)(2T −1)+T (2p+T −2)
(N +T )2

p−1 >−N2(1− p)+N(1− p)(2T −1)+T (2p+T −2)
(N +T )2

p >
pN2 +2pNT +(1− p)N +2(1− p)T

(N +T )2

(N +T )2 p > (N2 +2NT −N −2T )p+N +2T

p >
N +2T

N +2T +T 2 .

■

A.2.6 Proof of Proposition 1

Proof. Suppose that the observed number of votes for type γ1 is k ∈ {0,1, . . . ,N+T}. The

lowest number of trolls that can be in this number is 0 (if all of them voted for type γ2),

and the highest number is T (if all of them voted for type γ1). Therefore, the highest

possible number of genuine agents with type γ1 is k and the lowest possible number

is max{k−T,0}. The true distribution of genuine types is anything in the range from

(max{k−T,0},min{N − k+T,N}) to (k,N − k).

Note that the optimal outcome is decreasing in the number of genuine agents of type

γ1. Hence, it follows that the largest outcome that could be optimal is

b =
max{k−T,0}

N
γ1 +

min{N − k+T,N}
N

γ2, (if number of γ1 types is lowest)
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and the smallest outcome that could be optimal is

b =
k
N

γ1 +
N − k

N
γ2. (if number of γ1 types is highest)

Let g(k) be the mechanism’s outcome under the mechanism g. If g(k)< b, the expected

welfare under the mechanism can be improved if we set g(k) = b. Similarly, if g(k)> b,

the expected welfare can be improved if we set g(k) = b.

■

A.2.7 Proof of Proposition 2

Proof. Define a mechanism as an outcome rule g : {0,1, . . . ,N +T} → [γ1,γ2], where the

argument is the number of votes for γ1. The designer chooses this rule to maximize the

ex-ante utility subject to the trolls’ best response.

Suppose that for a given mechanism g′ the trolls are not indifferent between m = γ1

and m = γ2. For concreteness, assume that they prefer m = γ1. Fixing the trolls’ action,

the designer’s ex-ante utility is continuous in g(0), g(1), . . ., g(N + T ). Therefore, in

a neighborhood6 of g′ the trolls’ strategy can be treated as a constant in that it does

not change when the designer slightly adjusts g′(0), g′(1), . . ., g′(N +T ). There are two

possibilities: either g′ is a local (and global7) maximum, or the designer can improve

upon it. We will prove that the former option is not possible.

If we fix the trolls’ strategy atm = γ1, the designer’s best reply is to essentially “subtract”

the trolls’ votes from the total. That is, if the designer observes k votes for γ1, she then

knows that k−T genuine agents have this type and N +T − k genuine agents have the
6I.e. a set of mechanisms g such that

∣∣∣∣(g(0),g(1), . . . ,g(N +T )
)
−
(
g′(0),g′(1), . . . ,g′(N +T )

)∣∣∣∣ < ε for
some ε > 0, where || · || is the Euclidean norm.

7This is due to the concavity of the designer’s utility function.

105



other type. Then the designer’s optimal mechanism is g1, where

max
g1(k)

−(k−T )(g1(k)− γ1)
2 − (N +T − k)(g1(k)− γ2)

2

=⇒ g1(k) =
k−T

N
γ1 +

N +T − k
N

γ2.

Note that g1 completely neutralizes the trolls’ influence and achieves the same utility

level as under perfect information. This, however, cannot be the equilibrium, since the

trolls canbenefit by switching someof their votes tom= γ2. In that case, themechanism

will not take optimal action given any distribution of votes, and the designer’s ex-ante

utility will be lower. Hence, the trolls would prefer to deviate from m = γ1.

This implies that the designer’s optimal mechanism cannot be g1, or any mechanism

for which the trolls strictly prefer message m = γ1. A similar proof can be done for the

mechanisms for which the trolls prefer m = γ2. Hence, the optimal mechanism must

make the trolls indifferent between the messages. ■

A.2.8 Proof of Proposition 3

Proof. Assume N +T is odd. The proof below can be easily adapted to the case where

N +T is even.

We will show this result by proving that changing themajority rule gmr to a supermajor-

ity rule gα̂,γ1
smr with α̂ = 1

2 +
1

N+T is always strictly beneficial for the designer. This is true

regardless of how the trolls respond to the change of the mechanism.

First, suppose that the trolls’ strategy remains the same. Recall that in themajority rule,

the trolls strictly prefer to vote for θ = γ2. Thus, the mechanism gα,γ1
smr will differ in its

outcome from gmr in only one instance: when there are k̂ =
[N+T

2

]
+1 votes for γ2. The

majority rule has gmr
(
k̂
)
= γ2, but the supermajority rule has gα̂,γ1

smr
(
k̂
)
= γ1. This is a

beneficial change because in this instance there are more voters with type θ = γ1 than
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θ = γ2. Hence, the change to gα̂,γ1
smr leads to a higher expected welfare.

Wewill nowverify that this improvement remains if the trolls switch their strategy from

voting for θ = γ2 to voting for θ = γ1. In this case, gα̂,γ1
smr will have the same outcomes (and

the same expected welfare) as gmr if the trolls voted for θ = γ1 instead of θ = γ2. The

expected welfare under gmr is strictly higher if the trolls vote for θ = γ1 than if they vote

for θ = γ2. This implies that the change to gα̂,γ1
smr leads to a higher expected welfare. ■

A.2.9 Proof of Proposition 4

Proof. Recall that for β = 1, trolls prefer voting for θ = γ2, since p > 1
2 . For β close to

1, this will remain true due to the expected welfare’s continuity in β (see below). The

weighted-average-of-votes mechanism’s expected welfare is

V (gβ
am) =−

N

∑
i=0

N

i

 pi(1− p)N−i

(
i
(

N +T − i
iβ+(N +T − i)

)2

+

+(N − i)
(

iβ
iβ+(N +T − i)

)2
)
(γ1 − γ2)

2.

To show the result, we will take the derivative with respect to β and show that it is neg-

ative at β = 1. We will drop the (positive) term (γ1 − γ2)
2 to simplify the calculations.

∂

∂β
V (gβ

am)∼−
N

∑
i=0

N

i

 pi(1− p)N−i

(
− 2i2(N +T − i)2

(iβ+(N +T − i))3+

+(N − i)
2i2β(iβ+(N +T − i))−2i3β2

(iβ+(N +T − i))3

)

=−
N

∑
i=0

N

i

 pi(1− p)N−i2i2(N +T − i)
(N +T − i)+(N − i)β
(iβ+(N +T − i))3 .
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All terms are positive except for the negative sign at the front, so ∂

∂β
V (gβ

am)< 0 at β = 1.

Due to continuity of the expected utility, the trolls’ strategy will remain the same for a

range β ∈ (β̄,1) for some β̄. Hence, the designer can improve upon the mechanism’s

expected welfare by reducing β. ■

A.2.10 Proof of Proposition 5

Proof of Proposition 5. We know that g is continuous, i.e.

∀ε > 0 ∃δ > 0 s.t. ∀p, p′ ∈ ∆Γ, |p− p′|< δ ⇒ |g(p)−g(p′)|< ε,

where | · | denotes the standard Euclidean norm.

Define t = minx∈g(∆Γ)E
[
∑

N
i=1 ui(x,θi)

]
and pt = argminx∈g(∆Γ)E

[
∑

N
i=1 ui(x,θi)

]
. Due to con-

tinuity of g, there exists a neighborhood of pt where the mechanism’s outcomes are

close to t, the trolls’ ideal outcome. We want to prove that as T → ∞, the trolls will be

able to get into that neighborhood no matter the distribution of other agents’ types.

For T trolls, let p(T ) be a distribution of their votes (excluding normal agents) that is

closest to pt . Formally, let F(T ) = {p ∈ ∆Γ | ∀γi, p(γi) =
k
T for some k ∈ N}, and define

p(T ) as

p(T ) = min
p∈F(T )

|p− pt |.

Note that F(T ) for different T ∈ N can comprise points with arbitrary rational coordi-

nates. Since rational numbers are dense in R, it follows that we can always find suffi-

ciently large T so that |p(T )− pt | is arbitrarily close to 0. Formally, for any δ > 0 there

exists T̂1 ∈ N such that

T > T̂1 ⇒ |p(T )− pt |<
δ

2
.

This will be useful later on.
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p(T ) is the distribution of votes that trolls generate on their own. Nowconsider possible

variations that can be introduced to p(T ) due to normal agents’ (sincere) votes. Let

θ = (θ1, . . . ,θN) be vector of normal agents’ types, and let p(θ,T ) be the distribution of

votes with normal agents and trolls included. That means

p(θ,T )(γi) =
T · p(T )(γi)+∑

N
j=1⊮{θ j = γi}

N +T
.

The distance between total distribution of votes and trolls’ distribution of votes is given

by

|p(T )− p(θ,T )|=
√

∑
γi∈Γ

(
p(T )(γi)− p(θ,T )(γi)

)2

=

√√√√∑
γi∈Γ

(
1

N +T
·
(

N · p(T )(γi)−
N

∑
j=1

{θ j = γi}
))2

.

Due to quadratic nature of the norm, it will achieve its maximum when all normal

agents are of the same type. Thus, the distance will take form

|p(T )− p(θ,T )|=

√√√√( N
N +T

· (p(T )(γ)−1)
)2

+ ∑
γi ̸=γ

(
N

N +T
p(T )γi

)2

=
N

N +T
·

√√√√(p(T )(γ)−1
)2

+ ∑
γi ̸=γ

(
p(T )γi

)2

for some γ ∈ Γ. Clearly, limT→∞ |p(T )− p(θ,T )| = 0, since the expression under the

square root is bounded by |Γ|, which is finite. Thus, for any δ > 0 there exists T̂2 ∈ N

such that

T > T̂2 ⇒ |p(T )− p(θ,T )|< δ

2
for any θ.
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Now we can take the maximum of T̂1 and T̂2 that will ensure

T > T̂ = max{T̂1, T̂2} ⇒ |p(T )− pt |<
δ

2
and |p(T )− p(θ,T )|< δ

2
.

Finally, note that

|p(θ,T )− pt | ≤ |p(θ,T )− p(T )|+ |p(T )− pt |.

Therefore, we can conclude that

T > T̂ ⇒ |p(θ,T )− pt |<
δ

2
+

δ

2
= δ.

Hence,

∀ε > 0 ∃T̂ ∈ N such that T > T̂ |g(p(θ,T ))−g(pt)|< ε.

If T is large enough, trolls can guarantee that the outcome ofmechanism g is arbitrarily

close to the ex-ante worst-case outcome g(pt). This finishes the proof.

■

A.3 Appendix of Chapter 3

A.3.1 Instructions in the Experiment

The Study

This study examines the people’s decisions about doing work for monetary payments.

For this study, we have designed a task that you can choose to do for different wages.

The tasks are of no value to us, beyond understanding these decisions.

We are interested in these work decisions at different points in time. For example, you
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might be asked on April 1 howmany tasks you want to do on April 15 for various wages.

When April 15 arrives, you will be asked howmany tasks you want to do on that day for

various wages. Note that your decisions about future work do not have to be the same

as the eventual decisions about work when the day arrives. You will actually have to

do the tasks specified in one of these decisions, so treat each choice youmake as if it

will be the one that will determine your tasks. We refer to the tasks that will actually

be done as the decision-that-counts, and elaborate below on how exactly this decision

is chosen.

We are also interested in people’s preferences about which decisions are implemented.

For example, you might be asked on April 1 how many tasks you want to do on April 15

for different wages as well as howmuch you prefer to actually do your April 1 decisions

about April 15 tasks over your April 15 decisions about April 15 tasks. That is, we will

ask you how you would like to determine the decision-that-counts.

Work Decisions

Recall that we are interested in people’s decisions about doing work for monetary pay-

ments. In each working session, you will have to complete 10mandatory tasks, and any

amount of supplemental tasks that you choose. You will be asked a series of questions

regarding your preferences for completing these supplementary tasks.

We are interested in these decisions at different points in time. You will be asked ques-

tions about howmany tasks youwant to do at various points in the future and howmany

tasks you want to do in the present day for a set of different wages. For example, you

may be asked on April 1, April 8, and April 15 how many tasks you would like to do on

April 15. The decisions made on April 1 and April 8 are called your decisions about fu-

ture work and the decisions made on April 15 are called your decisions about current
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work. Note that your decisions about future work may be the same or may be different

from your decisions about current work.

Your screen will have a list of various wages as well as a date of work. You will be asked

how many tasks you would like to do at each wage on the date of work. Next to each

wage is a slider barwith values between 0 and 100; youwill use this slider bar to indicate

how many tasks you would like to complete at each wage. Below is an example of how

the decision screen might look like.

Figure A.1: Example of a work decision screen.

Your decisions cannot affect which future wages might be realized. One of these deci-

sions will be randomly selected to become the decision-that-counts, so you will ac-

tually have to do the tasks specified in one of these decisions. In other words, each

decision that you report has a positive chance of becoming the one you will need to

complete. Therefore, it is in your interest to treat each choice you make as if it will

be the one that will determine your tasks and answer honestly about yourwork pref-
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erences.

Determination of Decision-that-counts

In addition to people’s decisions over doing work for monetary payments at different

points in time, we are also interested in people’s preferences over which of those deci-

sions should be implemented. Therefore, in addition to making decisions about how

many tasks to do at a given wage, you will also be asked how much you want decisions

made at different points in time to be the decision-that-counts. To do this, you will be

asked to provide a decision-that-counts percentage (henceforth DTC percentage) in

each of your decisions about future work. For example, you may be asked for DTC per-

centage decisions on April 1 and April 8 about work on April 15. Below is an example of

how the decision screen might look like.

Figure A.2: Example of a DTC percentage decision screen.

Youwill use your slider bar to select a numberbetween 10%and90%. TheDTCpercent-
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age is the probability that your decision about futureworkwill become the decision-

that-counts. Therefore, 1 minus the DTC percentage is the probability that your de-

cision about current work will become the decision-that-counts. For example, if on

April 1 you selected an DTC percentage of 30% for your April 15 decision, then there is a

30% chance that your April 1 decisionwill be the decision-that-counts and a 70% chance

that your April 15 decisionwill be the decision-that-counts. Also, each possible DTC per-

centage choice may be associated with a monetary cost or monetary reward, denoted

as cost or reward, respectively. These costs or rewards are only paid for the decision-

that-counts, and eachof the choices youmakehas apositive chanceof being realized.

To illustrate this, suppose that on April 1 and 8 you are making DTC percentage deci-

sions about work on April 15. Suppose that on April 1, at a wage of $0.18 you selected

a DTC percentage of 30% which costs $0.10, and at a wage of $0.25 you selected a DTC

percentage of 40% which costs $0.20. Suppose that on April 8, at a wage of $0.18 you se-

lected an DTC percentage of 35% which costs $0.15, and at a wage of $0.25 you selected

an DTC percentage of 40% which costs $0.20. If the decision-that-counts is your April 1

decision at a wage of $0.18, you would have to pay the cost of $0.10. If the decision-that-

counts is your April 15 decision at awage of $0.18, youwould have to pay the cost of $0.10.

In neither case, however, will you have to pay the cost of $0.20 from your decisions at a

wage of $0.25, nor would you have to pay the cost of $0.15 from your April 8 decision at

the wage of $0.18. All monetary costs or rewards will be deducted from or added to your

earnings at the end of the experiment. Your DTC percentages will be used to to deter-

mine the decision-that-counts, so they will affect the tasks you will actually have to

do. Therefore, it is in your interest to treat each choice you make as if it will be the

one that will determine your tasks and answer honestly about your preferences.
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Selection of the Decision-that-counts

The selection of the decision-that-counts will occur in three stages.

In the first stage, we will determine which wage determines your decision-that-counts.

Since you made decisions across different weeks for five different wages, we will ran-

domly select a number between 1 and 5 to determine which wage’s decisions will be

used to determine the decision-that-counts. Note that since youmade decisions for five

different wages, all wages are equally likely to determine the decision-that-counts.

The second stage determines which of your decisions about future work will be used

to determine the decision that counts. If youmade two decisions about future work for

the date in question, we will randomly select a number between 1 and 2 to determine

which decision about future work will be used to determine the decision that counts.

For example, if you were making decisions about April 15 work on April 1 and April 8,

this stage will determine which of the latter two dates will be used in the next stage.

Note that since you made decisions on two previous dates, all decisions about future

work are equally likely to determine the decision-that-counts.

The third stage determines whether your decision-that-counts will come from an deci-

sion about future work or a decision about current work. We will randomly select a

number between 1 and 100. If that number is less than or equal to your chosen DTC

percentage for thewage selected in stage 1 on thedate selected in step 2, the decision-

that-counts will be the decision about future work (from the date selected in step 2).

If that number is greater than your chosen DTC percentage for the wage selected in

stage 1 on the date selected in step 2, the decision-that-counts will be the decision

about current work. Therefore, the DTC percentage that you select precisely deter-

mines the likelihood with which your decision about future work or you decision

about current work becomes the decision-that-counts. For example, if at the wage
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selected in stage 1 and the decision about future work selected in stage 2 you selected

an DTC percentage of 30%, then there is a 30% chance that your decision about future

work will be the decision-that-counts and a 70% chance that your decision about cur-

rent work will be the decision-that-counts.

At every stage, you will see a screen with a random number generator, so that you can

explicitly observe the process of selecting the decision-that-counts.
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