
UC San Diego
UC San Diego Previously Published Works

Title
Impact of the Types and Relative Quantities of IGHV Gene Mutations in Predicting 
Prognosis of Patients With Chronic Lymphocytic Leukemia

Permalink
https://escholarship.org/uc/item/75j0d4hz

Authors
Kaufman, Matthew
Yan, Xiao-Jie
Li, Wentian
et al.

Publication Date
2022

DOI
10.3389/fonc.2022.897280
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/75j0d4hz
https://escholarship.org/uc/item/75j0d4hz#author
https://escholarship.org
http://www.cdlib.org/


Frontiers in Oncology | www.frontiersin.org

Edited by:
Manlio Ferrarini,

University of Genoa, Italy

Reviewed by:
Dimitar G Efremov,

International Centre for Genetic
Engineering and Biotechnology, Italy

Fortunato Morabito,
Provincial Health Authority of Cosenza,

Italy

*Correspondence:
Nicholas Chiorazzi

NChizzi@Northwell.edu

†Present Address:
Matthew Kaufman,

Department of Emergency Medicine,
Jersey City Medical Center, Robert
Wood Johnson-Barnabas Health,

Jersey City, NJ, United States

‡These authors have contributed
equally to this work

Specialty section:
This article was submitted to
Hematologic Malignancies,

a section of the journal
Frontiers in Oncology

Received: 15 March 2022
Accepted: 30 May 2022
Published: 12 July 2022

Citation:
Kaufman M, Yan X-J, Li W,

Ghia EM, Langerak AW, Rassenti LZ,
Belessi C, Kay NE, Davi F,

Byrd JC, Pospisilova S, Brown JR,
Catherwood M, Davis Z, Oscier D,

Montillo M, Trentin L, Rosenquist R,
Ghia P, Barrientos JC, Kolitz JE,

Allen SL, Rai KR, Stamatopoulos K,
Kipps TJ, Neuberg D and Chiorazzi N

(2022) Impact of the Types and
Relative Quantities of IGHV

Gene Mutations in Predicting
Prognosis of Patients With

Chronic Lymphocytic Leukemia.
Front. Oncol. 12:897280.

doi: 10.3389/fonc.2022.897280

ORIGINAL RESEARCH
published: 12 July 2022

doi: 10.3389/fonc.2022.897280
Impact of the Types and Relative
Quantities of IGHV Gene Mutations
in Predicting Prognosis of Patients
With Chronic Lymphocytic Leukemia
Matthew Kaufman1†‡, Xiao-Jie Yan1‡, Wentian Li2‡, Emanuela M. Ghia3,
Anton W. Langerak4, Laura Z. Rassenti3, Chrysoula Belessi5, Neil E. Kay6, Frederic Davi7,
John C. Byrd8, Sarka Pospisilova9, Jennifer R. Brown10, Mark Catherwood11,
Zadie Davis12, David Oscier13, Marco Montillo14, Livio Trentin15, Richard Rosenquist16,
Paolo Ghia17, Jacqueline C. Barrientos1,18,19,20, Jonathan E. Kolitz1,20, Steven L. Allen1,20,
Kanti R. Rai1,18,19,20, Kostas Stamatopoulos21, Thomas J. Kipps3, Donna Neuberg22

and Nicholas Chiorazzi1,18,19,20*

1 Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset,
NY, United States, 2 The Robert S. Boas Center for Genomics & Human Genetics, The Feinstein Institutes for Medical
Research, Northwell Health, Manhasset, NY, United States, 3 Center for Novel Therapeutics, Moores Cancer Center,
University of California, San Diego, La Jolla, CA, United States, 4 Laboratory Medical Immunology, Department of
Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands, 5 Hematology Department, Nikea General
Hospital, Pireaus, Greece, 6 Division of Hematology, Mayo Clinic, Rochester, MN, United States, 7 Department of Biological
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Patients with CLL with mutated IGHV genes (M-CLL) have better outcomes than patients
with unmutated IGHVs (U-CLL). Since U-CLL usually express immunoglobulins (IGs) that
are more autoreactive and more effectively transduce signals to leukemic B cells, B-cell
receptor (BCR) signaling is likely at the heart of the worse outcomes of CLL cases without/
few IGHV mutations. A corollary of this conclusion is that M-CLL follow less aggressive
clinical courses because somatic IGHV mutations have altered BCR structures and no
longer bind stimulatory (auto)antigens and so cannot deliver trophic signals to leukemic B
cells. However, the latter assumption has not been confirmed in a large patient cohort. We
tried to address the latter by measuring the relative numbers of replacement (R) mutations
that lead to non-conservative amino acid changes (Rnc) to the combined numbers of
conservative (Rc) and silent (S) amino acid R mutations that likely do not or cannot change
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amino acids, “(S+Rc) to Rnc IGHV mutation ratio”. When comparing time-to-first-
treatment (TTFT) of patients with (S+Rc)/Rnc ≤ 1 and >1, TTFTs were similar, even
after matching groups for equal numbers of samples and identical numbers of mutations
per sample. Thus, BCR structural change might not be the main reason for better
outcomes for M-CLL. Since the total number of IGHV mutations associated better with
longer TTFT, better clinical courses appear due to the biologic state of a B cell having
undergone many stimulatory events leading to IGHV mutations. Analyses of larger patient
cohorts will be needed to definitively answer this question.
Keywords: chronic lymphocytic leukemia, CLL, somatic mutations, immunoglobulin variable domain, prognosis
INTRODUCTION

Patients with chronic lymphocytic leukemia (CLL) whose
leukemic clone uses a mutated immunoglobulin heavy variable
(IGHV) gene (M-CLL) typically have less aggressive disease than
patients with CLL that use an unmutated IGHV gene (U-CLL)
(1, 2). This observation has had a major direct impact on
predicting the prognosis of CLL and a significant influence on
its understanding and management (3, 4). Documenting this
gene distinction is now considered a reliable prognostic factor,
and the International Workshop on CLL (5) recommend
checking this as a guideline for patient care and management.
Moreover, IGHV-mutation status can help predict outcome for
patients treated with chemoimmunotherapy (fludarabine,
cyclophosphamide, and rituximab) (6–8), and for U-CLL
patients treated with ibrutinib vs. chemoimmunotherapy (9).
Moreover, IGHV-mutation status, along with other parameters,
is incorporated into several prognostic algorithms (10–12).

There is speculation that the relationship between less
aggressive disease and expression of mutated IGHVs is due to
a loss or attenuation of autoreactivity of membrane
immunoglobulin (IG), a major component of the B-cell
antigen receptor (BCR), which limits the ability of the receptor
to deliver trophic signals to the leukemic B cells. There is ample
support for this concept. For example, U-CLL-derived IGs are
extensively autoreactive, binding multiple self-molecules (13–
15), especially those generated by apoptosis and protein catalysis
(16–18). These are often referred to as natural autoantibodies. In
contrast, M-CLL IGs are much less autoreactive. Notably,
reverting M-CLL IGs to their germline sequence can lead to
autoantigen binding, implying that those B cells that became
leukemic in vivo might have been self-reactive prior to
accumulating IGHV mutations (17, 19, 20). Thus, the process
of losing autoantigen binding by somatic IGHV mutations can
occur normally during B cell maturation, validating the
speculation that this could explain the extended clinical course
of patients with M-CLL. Additionally, CLL clones differ in their
responsiveness to BCR engagement, with surrogate antigen
binding, e.g., interaction with anti-IG antibodies, being more
effective in stimulating U-CLL than M-CLL cases (21–23), and
the ability to deliver a signal via the BCR correlating with worse
clinical outcomes (24, 25). Finally, and possibly most
convincingly, inhibition of BCR signaling by blocking the
2

action of Bruton’s tyrosine kinase (BTK) (26–29) or of
phosphoinositide 3’ kinase delta (PI3Kd) (30–33) has a very
significant effect on CLL cell survival, growth, and trafficking (9,
34–38). Such signaling inhibitors have had a major impact on the
quality of patient lives, along with very high overall response
rates and, in combination with other reagents, improving overall
survival (39–42).

Nevertheless, the concept that the loss of polyreactive antigen
binding and BCR signaling is at the root of better prognosis has
not been directly confirmed in a large patient cohort, and that
correlation is the intention of this investigation and report. For
this process to be in play in most instances, only replacement (R)
mutations and, in particular non-conservative R (Rnc)
mutations, would be most relevant, since only R, and especially
Rnc mutations can change the amino acid composition of an
IGHV-IGHD-IGHJ rearrangement, thereby potentially altering
(auto)antigen binding and eliminating or reducing BCR
signaling. Conservative R (Rc) amino acid changes are less
likely to alter protein structure and thereby (auto)antigen
binding, and silent (S) mutations, by definition, cannot. Hence,
since Rnc mutations more often alter amino acid structure, they
are more prone to reduce BCR binding, and preempt cell
signaling. In general terms, Rnc mutations yield an amino acid
that has features opposite or distinct from those of the original
one, e.g., hydrophilic vs. hydrophobic or non-polar vs. charged
polar amino acids (43, 44). Additionally, in some instances, only
a single R can lead to major alterations in protein structure and
result in disease, e.g., cystic fibrosis and sickle cell anemia.

Here, we investigated the roles of S, Rc, and Rnc mutations on
time-to-first-treatment (TTFT) of patients with CLL. This was
addressed using a database of IGHV-IGHD-IGHJ DNA
sequences with linked clinical information obtained from
institutions in the United States of America and Europe. Our
findings suggest that the relative frequencies of (S + Rc) IGHV
mutations, which are less likely to create a major BCR structural
change, are as important and correlate equally well with
improved clinical course as Rnc mutations that are more likely
to create a major BCR structural change. Moreover, our data
suggest that the total number of mutations in the clonotypic
rearranged IGHV gene of a CLL cell might be more central to
better prognosis, suggesting that an overriding reason that IGHV
mutations associate with better clinical course is the biologic
state of a B cell that has undergone several rounds of stimulation
July 2022 | Volume 12 | Article 897280
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leading to germinal center reactions, possibly varying in the
follicular and extra-follicular types.
METHODS

Patient Information and IGHV
Sequence Data
Patient and corresponding IGHV-IGHD-IGHJ DNA sequence
information (n = 3,598) were received from two large consortia
studying CLL and BCR structure: the NIH-sponsored CLL
Research Consortium (CRC) and the European Research
Initiative on CLL/ImMunoGeneTics (ERIC/IMGT). CLL was
defined as suggested by the latest guidelines from the
International Workshops on CLL (5).

Analysis of Immunogenetic Characteristics
The same IGMT software and tools were used by both consortia
to analyze IGHV-IGHD-IGHJ sequences from the leukemic
clones of CLL patients and to characterize and define if IGHV
mutations could change amino acid sequence (S vs. R) and if R
mutations were conservative (Rc) or non-conservative (Rnc), as
determined by charge, hydropathy, and size.

Analysis of Time to First Treatment
TTFT was defined as the number of years between the date of
diagnosis and the date of initial therapy. The survival package of
the R (statistical computing platform: https://www.r-project.org/)
was used to estimate TTFT (Kaplan-Meier plots) through the
survfit function. The impact of an independent variable on TTFT
was determined by the Cox proportional hazard model (Cox
regression) using the coxph function. To create graphic
representations of TTFT in the figures in this document, Prism
software and the log rank test were used. Nominal P-values are
presented, without adjustment for multiplicity of testing.

Division of Individual IGHV-IGHD-IGHJ
Sequences Into Groups Based on the
Ratio of IGHV Mutations More or Less
Prone to Lead to a Significant BCR
Structural Change
IGHV-IGHD-IGHJ gene rearrangement sequences were
segregated based on the ratio of the combined number of S +
Rc IGHV mutations divided by the number of Rnc IGHV
mutations: (S+Rc)/Rnc. To allow mathematical comparisons
should any type of mutation be absent, a value of 0.05 was
added to each ratio component, (S+Rc +0.05)/(Rnc+0.05). For
simplicity, the latter is represented in the text as “(S+Rc/Rnc”. An
arbitrary (S+Rc)/Rnc percentage cutoff was chosen so that the
calculated value would indicate the likelihood that amino acid
change could appreciably alter BCR structure. Sequences with
values of ≤ 1.0, based on the (S+Rc)/Rnc calculation, were
considered more likely to lead to a major BCR structural
change and are referred to as being in the “Low Ratio Group”;
those sequences with values of > 1.0, were considered less likely
to lead to a major structural change and are referred to as being
Frontiers in Oncology | www.frontiersin.org 3
in the “High Ratio Group”. Also, when another threshold cutoff
value was used, i.e., the median value of all (S+Rc)/Rnc
percentages (1.91), the reported findings were essentially the
unchanged (Figure S1). For sequences with no IGHV somatic
mutation, (S+Rc)/Rnc is not defined.

Multiparameter Analysis of TTFT
Comparing (S+Rc)/Rnc Percentage and
Total Number of Mutations, Regardless of
Type (S, Rc, Rnc)
A two-variable Cox regression was used to compare the total
number of mutations (≥ 1) as the first variable, and logarithm-
transformed mutation type ratio (S+Rc+0.5)/(Rnc+0.5) as the
second variable, was used. A log-transformed ratio variable was
employed as that more accurately followed a normal distribution
than the ratio variable itself. The underlying assumption of the
multivariable Cox regression was that the total number of
mutations and the log-ratio jointly contribute to TTFT in an
additive manner, and the contribution is averaged over the entire
range of the variable values.
RESULTS

Comparing and Coalescing the IGHV-
IGHD-IGHJ Gene Rearrangement
Sequence Data From the Two Consortia
To assure that merging the IGHV-IGHD-IGHJ gene
rearrangement data from the CRC and ERIC/IMGT was
appropriate, the distribution of sequences bearing the various
types of somatic mutations was compared (Table 1). The
sequence data from the CRC were collected from 1,690
patients with CLL; 36% were 100% unmutated (0 Mut), 2%
had only S mutations (S only), 7% had only R mutations (R
only), and 55% had a combination of S and R mutations (S+R).
The DNA sequences from ERIC/IMGT were from 1,908 patients;
34% were 0 Mut, 1.6% S only, 6.4% R only, and 58% S+R. Thus,
the IGHV mutations were similar in types, patterns, and
distributions between the two data sets.

Moreover, although the methodologies to obtain IGHV-
IGHD-IGHJ sequence data were not uniform among all the
institutions in the two consortia, the same IMGT tools were used
to analyze the data.

Therefore, based on very similar patient mutation parameters
and uniform analytic approaches, the data from the two sites were
pooled and used in the findings described here. The breakdown
for the combined IGHV sequence data for the combined 3,598
patients with CLL was 35% 0 Mut (n = 1,259), 1.8% S only (n =
65), 7% R only (n = 236), and 57% S+R (n = 2,038).

TTFT Defined by the Classical IGHV-
Mutation Status Approach
As per convention, we first divided all 3,598 patients, using the
standard 2% difference from germline cutoff, into IGHV-
unmutated (U-CLL; n = 1,713) and IGHV-mutated (M-CLL;
n = 1,885) subgroups, and then used the Kaplan-Meier approach
July 2022 | Volume 12 | Article 897280
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to estimate TTFT. In this way, as expected, M-CLL patients had a
significantly longer TTFT than U-CLL patients (Figure 1A;
median TTFT: 9.00 vs. 2.22yrs; P < 0.0001), consistent with
established, published clinical observations and assuring that the
combined cohort was a fair representation of the real-world
patient base.
Categorizing IGHV-IGHD-IGHJ Gene
Rearrangement Sequences Containing
Somatic IGHV Mutations Into Those With
Mutation Types More or Less Likely to
Change BCR Amino Acid Structure
The most direct way to address BCR structural change as being
responsible for differences in TTFT would be to compare the
clinical courses of CLL patients bearing somatically mutated
IGHVs comprised of only S mutations to those patients whose
IGHVs have only R mutations, or preferably, solely Rnc
mutations. This would require having an extremely large
database containing sequences with at least 5-6 somatic
mutations of solely one type, since, depending on the
individual IGHV gene expressed by a CLL clone, 5 or 6
mutations are needed to exceed the 2% mutation difference
from germline and hence be tested in the standard IGHV-
mutation analysis. This was not possible for our patient cohort,
since none of the IGHV sequences exhibiting only S mutations
reached the required ≥ 5 level, and only 44 sequences contained ≥
5 R only mutations.
Frontiers in Oncology | www.frontiersin.org 4
Therefore, we devised an approach that incorporated all
patient sequences with IGHVs containing ≥ 1 mutation of any
type (n = 2,339), and then segregated these based on the ratios of
S + Rc mutations divided by Rnc mutations, (S+Rc)/Rnc. Since
BCR ratios ≤ 1.0 (“Low Ratio Group”) would have a greater
number of Rnc changes, such mutations would more likely lead
to significant alterations in (auto)antigen binding. Likewise,
BCRs with ratios > 1.0 (“High Ratio Group”) would be skewed
to having a greater number of S and Rc mutations that would be
less likely to change (auto)antigen binding (see Methods
for details).

After dividing the CLL patients with IGHV mutations in the
original cohort into these two ratio groups, we went on to analyze
TTFT. Thus, in the following analyses, the TTFT for patients in
the Low and High Ratio Groups (Figure 2), as well as a subgroup
that was created based on equal numbers of samples and
mutations per sample (Figure 5), were compared in two ways:
independently; after dividing each by the 2% IGHV-mutation
cutoff; and based on the data obtained disregarding the < 2% or
the ≥ 2% cutoff categories.

TTFT for Patients in the Low and High
Ratio Groups
When dividing the Low Ratio Group (n = 405) into categories
below (worse outcome) and above (better outcome) the 2%
cutoff, a clear and significant difference in TTFT was found
(Figure 2A; median TTFT: 1.91 vs. 6.78 yrs; P < 0.0001). To
illustrate how this result related to the standard IGHV-mutation
A B

FIGURE 1 | Kaplan-Meier estimates of time to first treatment (TTFT) using the classical IGHV-mutation status parameters. (A) Comparison of TTFT based on the < 2%
vs. ≥ 2% difference from the germline IGHV sequence. All 3,598 sequences were used without regard for the types of somatic IGHV mutations. M-CLL: 1,885 patients,
856 treated; U-CLL: 1,713 patients, 1,369 treated. Data analyzed using the Log-rank (Mantel-Cox) test. (B) Comparison of TTFT based on the < 2% vs. ≥ 2%
difference from the germline IGHV sequence analyzing only those patients with ≥ 1 IGHV mutation. < 2%: 454 patients, 351 treated; ≥ 2% 1,885 patients, 856 treated.
TABLE 1 | Distributions of mutation types between the CLL Research Consortium (CRC) and the European Research Initiative on CLL/ImMunoGeneTics (ERIC/IMGT).

CRC ERIC/IMGT Total

0 mutations
(100% homology with germline)

36.0% (609) 34.1% (650) 35.0% (1,259)

Silent (S) mutations only 2.0% (34) 1.6% (31) 1.8% (65)
Replacement (R) mutations only 6.8% (114) 6.4% (122) 6.6% (236)
Silent + Replacement mutations (S+R) 55.2% (933) 57.9% (1,105) 56.6% (2,038)
Total 100% (1,690) 100% (1,908) 100% (3,598)
July 2022 | Volume 12 |
 Article 897280
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analysis using all patient sequences (Figure 1B), the two sets of
tracings were overlaid. This indicated that the > 2% category in
the Low Ratio Group was different from the same category for all
patients (Figure 2B; P < 0.01). Thus, the > 2% category for the
Low Ratio Group has less patients in the better outcome category
than the standard IGHV-mutation analysis using all patients; the
statistical significance of this finding was not adjusted for
multiple comparisons.

When segregating the High Ratio Group (n = 1,934) into the
2% cutoff categories and then comparing TTFT, again a highly
significant difference was seen (Figure 2C; median TTFT: 2.59
vs. 9.38 years; P < 0.0001). Additionally, overlaying the curves
from the High Ratio Group with those found using all IGHV-
mutated patients (Figure 1B), TTFT for both the ≥ 2% and < 2%
categories overlapped (Figure 2C). Thus, for the High Ratio
Group, the relative numbers of patients in each of the two 2%
cutoff categories are similar to those from the standard analysis
using all patients (Figure 2D); this suggests that the High Ratio
Group better reflects the IGHV mutation status distribution of
the unseparated IGHV-mutated cohort.

Next, we calculated the degree of difference in TTFT of the ≥
2% and < 2% categories between the Low and High Ratio
Groups. This indicated that the High Ratio Group had
Frontiers in Oncology | www.frontiersin.org 5
significantly longer TTFTs for the ≥ 2% (Figure 3A; median
TTFT: 6.78 vs. 9.38 yrs; P = 0.0009) and the < 2% (Figure 3B;
median TTFT: 1.91 vs. 2.59 yrs; P = 0.0053) categories than the
Low Ratio Group.

Finally, we compared TTFT for patients in the Low vs. High
Ratio Groups without dividing them into < or ≥ 2% categories.
This also indicated that the patients in the High Ratio Group
had significantly better clinical courses than those in the Low
Ratio Group (Figure 4A; median TTFT: 3.56 vs. 8.03 yrs; P
< 0.0001).

Collectively, these calculations indicate that the both the High
Ratio and the Low Ratio Groups contain patients with mutated
IGHVs with better or worse clinical courses. Also, the inter-
group comparisons suggest that the High Ratio Group might
have a better TTFT than the Low Ratio Group in more accurately
discerning important patient clinical outcomes.

Correcting Analyses for Differences in the
Numbers of Sequences of Various Types
and in the Number of Mutations Per Type
The above estimates of TTFT using the various comparisons
were unexpected in that they suggested that IGHV mutations
which would likely change or likely not change BCR structure
A B

C D

FIGURE 2 | Kaplan-Meier estimates of TTFT of patients with IGHV sequences bearing at least 1 somatic mutation divided into Low or High (S+Rc)/Rnc Ratio
Groups. (A) TTFT of patients with IGHV genes falling into the “Low Ratio Group”, ≤ 1.0 (S+Rc)/Rnc (n = 405) were compared based on the < 2% vs. ≥ 2% difference
from the germline IGHV sequence. Number of cases in the < 2% difference group: 183, 152 treated (median TTFT = 1.91 years); number of cases in the ≥ 2%
difference group: 222, 119 treated (median TTFT = 6.78 years) (P < 0.0001). (B) TTFT of all patients (Figure 1B) and those sequences in Low Ratio Group based on
the < 2% vs. ≥ 2% difference from the germline IGHV sequence. ** = P < 0.01 Pair-wise Log-rank (Mantel-Cox) test. (C) TTFT of patients in the High Ratio Group, >
1.0 (S+Rc)/Rnc) (n = 1,934) compared based on the 2% cutoff. Number of cases in the < 2% difference group: 271, 199 treated (median TTFT = 2.59 years);
number of cases in the ≥ 2% difference group: 1,663, 737 treated (median TTFT = 9.38 years) (P < 0.0001). (D) TTFT based on the < 2% vs. ≥ 2% difference from
the germline IGHV sequence using all patient sequences (Figure 1B) and those sequences in High Ratio group. ** = P < 0.01.
July 2022 | Volume 12 | Article 897280
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impact clinical course in a similar manner in general, and that
the TTFT of High Ratio Group is even better. One confounding
factor in the comparisons, however, is that the total number of
patients in the Low Ratio Group is significantly less than in the
High Ratio Group (Low: n = 405; High: n = 1,934). In addition,
the DNA sequences of the individual patients in the High Ratio
Group had a higher number of IGHV mutations (of any type)
than the Low Ratio Group (Figure S2). Thus, a significantly
smaller number of cases fell into the ≥ 2% category in the Low
Ratio than the High Ratio Group (n = 222 vs 1,663).

Therefore, to rule out that the TTFT findings above were
artefactual and not reflecting a true biologic effect, we modified
the Groups to assure that the numbers of cases in the Low and
High Ratio Groups were equal and that the numbers of
mutations per sequence in each Group were similar. This was
Frontiers in Oncology | www.frontiersin.org 6
achieved using an exact match approach (45). Specifically, for
each sample in the Low Ratio Group, a sample from the High
Ratio Group was randomly picked that had the same number of
total mutations. The end result was a one-to-one matching in
sample size (n = 405) and mutation number between the Low
and High Ratio Groups (range: 1 – 36).

Since the number of cases in the Low Ratio Group was
constant, the TTFT comparisons for this Group, based on the
2% cutoff, were those already shown in Figure 2A (P < 0.0001).
The TTFT findings for the High Ratio Group were still very
significant (Figure 5A; median TTFT: 2.42 vs. 8.50 yrs; P <
0.0001), and the curves based on the 2% cutoff overlapped that of
the original High Ratio Group (Figure 5B). Moreover, this
double matching approach reduced the differences between the
Low and High Ratio Groups seen in Figure 3 to insignificant
A B

FIGURE 3 | Comparison of estimated TTFT in the < 2% and ≥ 2% mutation categories of the Low Ratio Group and the High Ratio Group. (A) Comparison of TTFT
in ≥ 2% mutation category of Low vs. High Ratio Groups (P = 0.0009). Number of cases from Low Ratio group: 222, 119 treated (median TTFT = 6.78 years).
Number of cases from High Ratio group: 1663, 737 treated (median TTFT = 9.38 years). (B) Comparison of TTFT in < 2% mutation category of Low vs. High Ratio
Groups (P = 0.0053). Number of cases from Low Ratio group: 183, 152 treated (median TTFT = 1.91 years). Number of cases from High Ratio group: 271, 199
treated (median TTFT = 2.59 years).
A B

FIGURE 4 | Comparison of estimated TTFT between the Low Ratio Group and the High Ratio Group. (A) Comparison of TTFT between the Low and High Ratio
Groups using all patients in the respective groups (P < 0.0001). Number in Low Group = 405, median = 3.56 years; number in High Group = 1934, median = 8.03
years. (B) Comparison of TTFT after matching the Low and High Ratio Groups for equal numbers of patients (n = 405) with equal numbers of mutations per
sequence (range: 1 – 36). Low Group median = 3.56 years, and High Group median = 4.08 years; P = 0.0626.
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levels (difference between > 2% categories: P = 0.089; difference
between < 2% categories: P = 0.203).

Finally, we found that TTFT was equal for patients matched as
above in the Low vs. High Ratio Groups without dividing them
using the 2% cutoff (Figure 4B; TTFT: 3.56 vs. 4.08 yrs; P = 0.0626).

Collectively, these findings, especially when using cohorts of
equal size and bearing the same number of mutations per sequence,
suggest that the relative types of IGHV mutations with a higher
(Low Ratio Group) or lower (High Ratio Group) probability of
altering BCR structure have the same effect on TTFT. Thus,
although somatic mutation altered BCR structure is likely a factor
involved in lengthening TTFT in certain instances, it does not
appear to be the most influential variable for this patient cohort.

Total Numbers of Mutations, Regardless
of Type, Correlate With TTFT After
Exceeding a Minimum and Reaching an
Apparent Maximum
Since both types of mutations appear to affect TTFT similarly, this
implies that the total number of IGHV mutations might correlate
better with clinical course in CLL. To test this, we re-ran the
IGHV-mutation analysis on the original total patient cohort using
Frontiers in Oncology | www.frontiersin.org 7
all samples with ≥ 1 IGHVmutation, choosing a series of arbitrary
mutation number cutoffs, ranging from 1 to > 21 (Figure 6).
Notably, this approach indicated that the extent of TTFT increased
significantly after the number of IGHV mutations reached and
exceeded 5-6 mutations (the classical 2% cutoff) and reached a
plateau for TTFT at ≥ 10 mutations. This again highlights that the
≥ 2% cutoff is effective in segregating cases into a better outcome
group. Additionally, outcomes continue to improve as the
number of total mutations increases at least to the level of ~10
mutations/sequence. Another study of patients treated with
chemoimmunotherapy found that clinical outcome improved
progressively as IGHV mutations increased (46). Notably,
incorporating the (S+Rc)/Rnc variable into these arbitrary
mutation intervals did not improve clinical course prediction
(Figure S3).

Multiparameter Analysis Comparing
(S+Rc)/Rc Percentage and Total Number
of Mutations, Regardless of Type,
in Defining TTFT
Finally, we used a two-variable Cox regression to compare the total
number of mutations (≥ 1) as the first variable, and logarithm-
A B

C D

FIGURE 5 | Estimated TTFT of patients in the Low or High Ratio Groups matched for numbers of patients and mutations per sequence. A, B, C, (D) Layout of
graphs as per Figure 2. An exact matching approach with random sampling was used to achieve equal numbers of patients (n = 405) with the same number of
IGHV mutations per patient (1-36) in the Low Ratio and High Ratio Groups. (A) Number of cases in the < 2% difference group: 187, 148 treated (median TTFT =
2.42 years); number of cases in the ≥ 2% difference group: 218, 101 treated (median TTFT = 8.50 years) (P < 0.0001). (B) TTFT based on the < 2% vs. ≥ 2%
difference from the germline IGHV sequence using all patient sequences (Figure 1B) and those sequences in Matched High Ratio group. (C) Number of cases from
Low Ratio group: 222, 119 treated (median TTFT = 6.78 years). Number of cases from Matched High Ratio group: 218, 101 treated (median TTFT = 8.50 years).
(D) Number of cases from Low Ratio group: 183, 152 treated (median TTFT = 1.91 years). Number of cases from High Ratio group: 187, 148 treated (median
TTFT = 2.42 years).
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transformed mutation type ratio (S+Rc+0.5)/(Rnc+0.5) as the
second variable (see Methods). The P-value for testing the null
hypothesis that the total number of mutation variable does not
contribute to the hazard ratio, is < 0.0001. The hazard ratio
(increment of one mutation) is 0.955 (95% confidence interval:
0.948-0.962).
DISCUSSION

Defining the IGHV gene mutation status of a patient’s
leukemic B cell clone is a cornerstone of prognosis in CLL
(3, 47). Although several studies have addressed the best cutoff
to be used in this analysis (46, 48–52), there has not been a
detailed investigation aimed at determining if a loss of (auto)
antigen – BCR interaction, which could obviate or reduce
transmission of ongoing survival signals to the leukemic B
cell, is the feature that is most responsible for defining M-CLL
patients with better clinical outcomes. Here, we have tried to
address this issue.

Although the most robust way to address the issue would be
to compare the clinical courses and outcomes of CLL patients
with IGHV genes expressing solely S vs. patients with solely R,
especially Rnc, mutations, our database did not contain sufficient
numbers of such cases with only S or only R or Rnc mutations to
allow this. Therefore, we compared IGHV mutated sequences
segregated based on skewing of the relative frequencies towards
(S+Rc) or Rnc mutations, as the former are less likely to make a
significant change in BCR structure than the latter. This was
done for the entire population of samples with one or more
Frontiers in Oncology | www.frontiersin.org 8
somatic mutations and after normalizing the number of cases
within the two (S+Rc)/Rnc High and Low Ratio Groups for
numbers of samples and mutations per sequence.

Both relative mutation ratio options, < 1 and ≥ 1 (S+Rc)/Rnc,
indicated similar TTFT, suggesting that the ability or inability to
carry out BCR-mediated signaling is not the only reason that
somatic mutations that lead to a ≥ 2% difference in nucleotide
sequence influence clinical course.

However, several caveats need to be considered before
excluding that a change in BCR structure is a major driver in
determining clinical course. First, it is clear that for some
antigens changing a single or only a very few amino acids in
the IG variable domain can significantly alter auto- and foreign-
antigen binding (53–55). This is the case for CLL B cells as well
(56–58). Moreover, changing a single amino acid residue can
affect the transmission of “autonomous BCR signaling” (59)
based on BCR-BCR autoreactivity (60, 61), which appears to
be a key factor in CLL B cell survival (59). Also, the apparent
autoreactivity of IGs encoded by unmutated IGHV genes
depends upon the proper pairing of IG heavy and light chains
and the somatically generated VH CRD3s. As such,
autoreactivity should not be considered an intrinsic property of
unmutated rearranged IGHV genes commonly used in CLL (e.g.,
IGHV1-69), suggesting that autoreactivity can be a selected
binding activity (19). Finally, it is possible that Rnc mutations
lead to enhanced (auto)antigen binding and continuous binding
site occupancy, thereby resulting in an anergic state (22, 62) that
reduces cell division, clonal burden, and disease progression.

Second, our analyses only relate to potential structural
changes involving the IGHV portion of the BCR. Changes in
other parts, including the IGK/LV-IGK/LJ gene rearrangement
and the VH CDR3 are not considered in this examination, and it
is well documented that changes in each of these BCR regions are
critical for (auto)antigen binding. Indeed, a characteristic
mutation in the IGLV3-21 gene is directly associated with
clinical course for CLL patients (63, 64), albeit in the opposite,
more adverse, direction than would be predicted by IGHV-
mutation analysis.

Nevertheless, the finding that TTFT increases as the number
of total mutations increases is compatible with clinical courses
being affected by the number of times a CLL cell precursor was
signaled to undergo cell division and potentially a germinal
center reaction. In this regard, the number of mutations
accrued by a normal B lymphocyte is a function of the number
of times a cell is stimulated to experience a germinal center
reaction, with each episode leading to one mutation (65, 66). In
this scenario, a given clinical course would not necessarily be
directly affected by the types of IGHV mutations; rather,
mutation amounts would imply the number of BCR signals
received and the cell divisions undergone. This is consistent
with the documentation that clinical outcomes of patients treated
with chemoimmunotherapy are reflected by a continuum in the
number of mutations a CLL B cells exhibits [Figure 6 and (46)].
Thus, the physiologic state and the biologic properties of a cell
that has undergone many rounds of stimulation and
FIGURE 6 | Comparison of TTFT for patients based on IGHV nucleotide
mutation number intervals, regardless of mutation type. All patients with ≥ 1
mutation per IGHV sequence were segregated into nucleotide mutation number
ranges, and then TTFT compared without using a 2% cutoff. Patients bearing
clones without any IGHV mutations are provided for comparison. TTFT and
numbers of patients in the various intervals: 1-4: median TTFT - 2.19 yrs, n =
389; 5-6: median TTFT - 2.43 yrs, n = 173; 7-9: median TTFT - 6.06 yrs, n =
232; 10-12: median TTFT - 11.21 yrs, n = 221; 13-15: median TTFT - 10 yrs, n
= 257; 16-18: median TTFT - 10.33 yrs, n = 297; 19-21: median TTFT - 10.58
yrs, n = 240; >21: median TTFT - 9.36 yrs, n = 539. ** < 0.01; *** < 0.001.
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accumulated multiple mutations, regardless of a BCR structural
change, could have a major prognostic impact. This situation is
consistent with the phenotype (67), telomere (68), and
methylation (69–71) features of CLL B cells, suggesting that all
CLL cases, U-CLL as well as M-CLL, are derivatives of
chronically stimulated, memory-like B cells. In this regard, it is
important to recognize that there are several ways that antigen-
experience and germinal center reactions can be initiated and
where they can occur (72), e.g., within a lymphoid follicle in a
classical germinal center with a well-defined cellular
microenvironment, or outside of a follicle (extra-follicular),
where the tissue architecture is not as rigidly set as in a
germinal center within a follicle. Thus, the biologic
characteristics of B cells that mutate in response to different
types of (auto)antigenic challenges and within different tissue
microenvironments might differ, as might the types and relative
quantities of S, Rc, and Rnc mutations that are selected for or
against. The similarities and differences in the follicular and
extra-follicular B cell differentiation pathways are reviewed in
(73, 74).

Finally, the two possibilities, i.e., BCR structural change and
the number of CLL precursor B cell divisions, are not mutually
exclusive. Certainly, the more often a cell undergoes a germinal
center reaction the more likely a key R mutation could occur,
especially since only a single or a few key amino acid changes can
have dramatic influences on (auto)antigen binding. Moreover,
the number of mutations in the IGHV gene, regardless of type,
could be a surrogate for what has happened in the VH CDR3 or
in the IGHK/LV-IGK/LJ genes. In this regard, one could
postulate that the clinical courses of patients in the (S+Rc)/Rnc
Low Ratio Group are a direct consequence of BCR structural
changes in the IGHV domain of the BCR, and the clinical courses
of those patients in the (S+Rc)/Rnc High Ratio Group could be
the consequence of structural change that occurred outside of the
IGHV domain. Future studies with larger numbers of CLL
pat ient sequences might enable a more definit ive
understanding of the relative influences of these two
parameters on the prognosis of CLL patients with the IGHV-
mutated subtype.
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