
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Aggregating Caches: A Mechanism for Implicit File Prefetching

Permalink
https://escholarship.org/uc/item/75j61547

Authors
Amer, Ahmed
Long, Darrell DE

Publication Date
2001

DOI
10.1109/mascot.2001.948880

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/75j61547
https://escholarship.org
http://www.cdlib.org/

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/3913623

Aggregating caches: A mechanism for implicit file prefetching

Conference Paper · February 2001

DOI: 10.1109/MASCOT.2001.948880 · Source: IEEE Xplore

CITATIONS

16
READS

31

2 authors:

Some of the authors of this publication are also working on these related projects:

File system usability View project

Fault-tolerant archival storage arrays View project

Ahmed Amer

Santa Clara University

53 PUBLICATIONS 666 CITATIONS

SEE PROFILE

Darrell D. E. Long

University of California, Santa Cruz

307 PUBLICATIONS 8,736 CITATIONS

SEE PROFILE

All content following this page was uploaded by Darrell D. E. Long on 10 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/3913623_Aggregating_caches_A_mechanism_for_implicit_file_prefetching?enrichId=rgreq-e53559fe3bf2b016c340b9d7ea8a5c54-XXX&enrichSource=Y292ZXJQYWdlOzM5MTM2MjM7QVM6MTA2NTAyODI0MTM2NzEwQDE0MDI0MDM2NjA5Nzc%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/3913623_Aggregating_caches_A_mechanism_for_implicit_file_prefetching?enrichId=rgreq-e53559fe3bf2b016c340b9d7ea8a5c54-XXX&enrichSource=Y292ZXJQYWdlOzM5MTM2MjM7QVM6MTA2NTAyODI0MTM2NzEwQDE0MDI0MDM2NjA5Nzc%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/File-system-usability?enrichId=rgreq-e53559fe3bf2b016c340b9d7ea8a5c54-XXX&enrichSource=Y292ZXJQYWdlOzM5MTM2MjM7QVM6MTA2NTAyODI0MTM2NzEwQDE0MDI0MDM2NjA5Nzc%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Fault-tolerant-archival-storage-arrays?enrichId=rgreq-e53559fe3bf2b016c340b9d7ea8a5c54-XXX&enrichSource=Y292ZXJQYWdlOzM5MTM2MjM7QVM6MTA2NTAyODI0MTM2NzEwQDE0MDI0MDM2NjA5Nzc%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e53559fe3bf2b016c340b9d7ea8a5c54-XXX&enrichSource=Y292ZXJQYWdlOzM5MTM2MjM7QVM6MTA2NTAyODI0MTM2NzEwQDE0MDI0MDM2NjA5Nzc%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmed-Amer-45?enrichId=rgreq-e53559fe3bf2b016c340b9d7ea8a5c54-XXX&enrichSource=Y292ZXJQYWdlOzM5MTM2MjM7QVM6MTA2NTAyODI0MTM2NzEwQDE0MDI0MDM2NjA5Nzc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmed-Amer-45?enrichId=rgreq-e53559fe3bf2b016c340b9d7ea8a5c54-XXX&enrichSource=Y292ZXJQYWdlOzM5MTM2MjM7QVM6MTA2NTAyODI0MTM2NzEwQDE0MDI0MDM2NjA5Nzc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Santa-Clara-University?enrichId=rgreq-e53559fe3bf2b016c340b9d7ea8a5c54-XXX&enrichSource=Y292ZXJQYWdlOzM5MTM2MjM7QVM6MTA2NTAyODI0MTM2NzEwQDE0MDI0MDM2NjA5Nzc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmed-Amer-45?enrichId=rgreq-e53559fe3bf2b016c340b9d7ea8a5c54-XXX&enrichSource=Y292ZXJQYWdlOzM5MTM2MjM7QVM6MTA2NTAyODI0MTM2NzEwQDE0MDI0MDM2NjA5Nzc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-e53559fe3bf2b016c340b9d7ea8a5c54-XXX&enrichSource=Y292ZXJQYWdlOzM5MTM2MjM7QVM6MTA2NTAyODI0MTM2NzEwQDE0MDI0MDM2NjA5Nzc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-e53559fe3bf2b016c340b9d7ea8a5c54-XXX&enrichSource=Y292ZXJQYWdlOzM5MTM2MjM7QVM6MTA2NTAyODI0MTM2NzEwQDE0MDI0MDM2NjA5Nzc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Santa_Cruz?enrichId=rgreq-e53559fe3bf2b016c340b9d7ea8a5c54-XXX&enrichSource=Y292ZXJQYWdlOzM5MTM2MjM7QVM6MTA2NTAyODI0MTM2NzEwQDE0MDI0MDM2NjA5Nzc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-e53559fe3bf2b016c340b9d7ea8a5c54-XXX&enrichSource=Y292ZXJQYWdlOzM5MTM2MjM7QVM6MTA2NTAyODI0MTM2NzEwQDE0MDI0MDM2NjA5Nzc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-e53559fe3bf2b016c340b9d7ea8a5c54-XXX&enrichSource=Y292ZXJQYWdlOzM5MTM2MjM7QVM6MTA2NTAyODI0MTM2NzEwQDE0MDI0MDM2NjA5Nzc%3D&el=1_x_10&_esc=publicationCoverPdf

Aggregating Caches: A Mechanism for Implicit File Prefetching

Ahmed Amer and Darrell D. E. Long
�

Jack Baskin School of Engineering
University of California, Santa Cruz

1156 High St., Santa Cruz 95064
a.amer@acm.org, darrell@cse.ucsc.edu

Abstract

We introduce the aggregating cache, and demonstrate
how it can be used to reduce the number of file retrieval
requests made by a caching client, improving storage sys-
tem performance by reducing the impact of latency. The ag-
gregating cache utilizes predetermined groupings of files to
perform group retrievals. These groups are maintained by
the server, and built dynamically using observed inter-file
relationships.

Through a simple analytical model we demonstrate how
this mechanism has the potential to reduce average laten-
cies by ��� % to ��� %. Through trace-based simulation we
demonstrate that a simple aggregating cache can reduce the
number of demand fetches by almost ��� %, while simultane-
ously improving cache hit ratios by up to � %.

1 Introduction

We present a mechanism for automated file grouping
based on dynamically observed inter-file relationships. Re-
lationships are maintained by the file server based on all
requests for files, with minimal metadata updates. Mobile
file caches and data hoarding algorithms attempt to keep
the number of remote requests to a minimum through the
hoarding of files to the mobile computer’s local store before
disconnection from the LAN. Upon disconnection, both the
latency and transfer time for remote data can increase sub-
stantially. In wireless networks, a complete disconnection,
e.g., due to a temporary break in RF reception, renders these
values unbounded. A weak network connection makes it
highly desirable to minimize the number and amount of data
requests made to remote servers. The latency component of
data retrieval costs can also be dramatically increased due
to the physical distance from the remote system. Under

	
Supported in part by the National Science Foundation award CCR-

9972212, and the Usenix Association.

such conditions the user will face considerable latency in
retrieving files, regardless of the bandwidth of the network
connection. The latency component of data retrieval can
be viewed as a per-operation cost that must be paid regard-
less of the size of the operation. A major motivation for
our work is to reduce the effects of latency by reducing the
number of data retrieval operations needed. Our method-
ology is based on the assumption that increasing the vol-
ume of useful information retrieved per operation is a good
way of achieving such a reduction in the number of data
fetches. This approach is based on the same basic principle
that drives the disk designers’ desire for larger disk block
sizes, to help mitigate increasing per-block overheads [5].

Increasing the amount of data retrieved with every op-
eration is of no benefit if this data is not useful (likely to
be needed in the near future). As only a fraction of the re-
trieved data will be useful, we are effectively trading avail-
able transfer bandwidth for a potential reduction in total la-
tency costs. Fortunately, with relatively simple grouping
schemes it is possible to construct small groups of related
files with, on average, a very high fraction of the group
proving useful. This is because data accesses tend to be
grouped into very consistent, small groups of files. We
experimentally demonstrate the validity of this claim, and
present results of trace-based simulations to demonstrate
the effectiveness of a caching strategy based on server-
maintained groups. In short, we demonstrate that group-
ing related files is an effective mechanism for improving
the performance of distributed caching systems by reducing
perceived latencies, while avoiding many of the penalties
inherent in predictive systems proposed to date.

2 System Description

The intuition of relationships among file access events
has led to considerable research into file access prediction
and prefetching schemes [8, 4, 21]. One of the most promi-
nent features of our system is a decoupling of relationship
tracking from the client retrieval of files. This is an impor-

Data Client

Cache Manager

Limited Local Storage

Storage Server
Group Retrieval

Single Request

Single Request

Single Request
and Retrieval

Local File System Interface

File Store
Server

Relationship
Metadata

Remote File Server

and Retrieval

Mobile/Local System

Figure 1. A conceptual view.

tant point, as one major issue with prefetching caches is the
problems inherent in the deliberate fetching predicted data.
Such prefetches will often incur the same per-operation
overheads as regular data retrieval, possibly with no ben-
efit. Furthermore, traditional prefetches would only be of
perceivable benefit if they can be initiated far enough in ad-
vance of the request for the prefetched data.

Figure 1 presents a conceptual view of our model. File
access requests go through the local file system interface,
and are forwarded through a local cache manager to the file
store managed by the server module. The major difference
from prior art in distributed caches is the inclusion of server-
side relationship information. This allows the client and
server to transparently fetch groups of files that have been
pre-constructed at the server based on prior access patterns.

The server component maintains per-file relationship in-
formation, maintaining a group of � related files for each
file. When a client requests a file “fetch,” the server and
client components cooperate to opportunistically “trans-
mit” the group of ����� related files. File fetches are
high priority and will always preempt file group transmis-
sions. This offers the opportunity to fully utilize the trans-
port medium, while avoiding the performance penalties of
false prefetches. Recent experience with file prefetching
implementations [7] has demonstrated the negative impact
of user-level prefetchers contending with user-generated
requests, and the need for such system-level preemptible
mechanisms.

We build groups by tracking a fixed number of succes-
sors for all files accessed. A successor is simply a file ac-
cessed immediately following the current file. This infor-
mation can easily be maintained as file metadata. Our ex-
perimental results demonstrate that only a small number of
successors are needed to capture most strong relationship
information. The update mechanism for the list of succes-
sors was found to be of less significance than the tracking
of relationships based on succession. In fact, simply adding
each new successor to a list for the current file, and stop-

F1 F2 F3

F4

F5

F6 F7

2

1 2

1

G1

G2

G3

2

1

3

Figure 2. A simple grouping example.

ping after observing a fixed number of unique successors
will be shown to be near optimal with as few as five suc-
cessors. This results does not consider the ordering of files
within these groups, no priority information is considered,
and yet experimental results favor recency-based orderings
within groups (LRU replacement). Figure 2 shows a simple
high-level example of group construction based on tracked
successor information. The grouping process can be seen
as a process of graph cutting, for a graph with nodes repre-
senting files, and directed edges representing succession re-
lationships. The edge labels represent the ordering of edges
in terms of preference. This example shows the construc-
tion of groups of three files. In particular we see how, files
F3, F4, and F5 are considered possible successors for file
F2. In building a group of three files, we take the requested
file (F2), and its two most likely successors (F3 and F5).
The ordering of successors is largely dependent on the re-
placement policy for the tracked successors.

As the relationships are maintained by the server, files
that have common relationships need not be trained for
each client separately. Traditional prefetching addressed the
problem of modeling a user’s file access behavior, which
can vary dramatically depending on many factors including
the application being used and the time of day. With our
model the problem of modeling the access behavior of a
user has been reduced to a problem of modeling the succes-
sion relationships among files, regardless of the user. This
information is very resilient to time scale, and determin-
ing relationships at the data end, and not the user end, is a
simpler problem. For commonly accessed files we do not
require training or warm-up periods, as we can leverage re-
lationships inferred from prior users/sessions.

2.1 When is grouping effective?

We now present a simplified analytical approximation
for the effect of grouping on file system performance. The

time to retrieve a file from a remote server can be divided
into two basic components: latency (�), a fixed per-request
time cost, and transfer time (�) a quantity dependent on the
volume of data retrieved and the speed of the underlying
transport layer. The average retrieval duration ¯� is defined
as:

¯��� ����� (1)

If the latency component, � , is large in comparison to the
transfer time � , then the retrieval of more items per opera-
tion could be justified. This is intuitive, but to be more pre-
cise we need to define two additional quantities: the group
size � , and the utilization fraction � . The group size, � , is
simply the number of data items in a group retrieved from
a remote server. It is the number of files in a group that we
attempt to retrieve from a remote server with each request
for a specific file. The utilization, � , represents the fraction
of data items retrieved that are actually used. This is the
number of files in a retrieved group that are subsequently
accessed. If each request for a file results in a retrieval of a
group of � files, then the average duration of a file retrieval
¯�
	 is now defined as:

¯�
	�� � 	 ��� 	 (2)

If we blindly retrieve groups of � items per request, then
with �� � , we have:

� 	 ��� 	�� �
� � �

��� � (3)

Equation 3 shows how such a scheme could only benefit
if a large enough percentage of files in a block are useful,
such that the gain from reducing latency by a factor of ��� �
is not outweighed by transfer costs increased by a factor of�� .

Files are not transferred unless the bandwidth is avail-
able and not required by demand driven fetches. and so no
penalty is paid by an increase in � 	 , and � 	�� � . Equation 3
revised for our model would give us equation 4

� 	 ��� 	 � ��� �
��� � (4)

From equation 4 we can deduce that the average per-
ceived latency is now � 	 � ���� 	 . This value is defined
by the actual latency of the underlying system, and re-
duced/increased by the product of � and � . If ������� �
the grouping is detrimental to system performance, and if
�����! � it is beneficial to performance. A system that can
effectively group files in pairs with a likelihood of access for

the successor exceeding 50%, is a system that can reduce
perceived latency. If the accuracy of a successor prediction
is on the order of 80%, then perceived latency is reduced by
more than 47%. If a system can group files into groups of
four, with a utilization of 60%, then perceived latency can
be reduced by more than 58%.

Our experiments demonstrate that these are conservative
estimates, and that reductions in latency of at least 75% to
82% are possible with groups of only five files. Our simu-
lations of a simple aggregating cache demonstrate that the
number of remote file requests can be reduced by almost
50% with minimal effort at optimizing the grouping pro-
cess.

2.2 A Basic Aggregating Cache

To test the above premise we implemented a cache simu-
lator that was tested against recorded file system traces from
the Coda project [6, 12]. A client of limited cache capacity
made requests to a server that maintains a per-file list of ob-
served successors ordered by recency of access. Requests
for a file result in the retrieval of the file itself and a group
of up to � files. This group of files is constructed by the
server, based upon observed file access patterns.
Maintaining a Successor List. Our implementation main-
tains a short list of five to thirty successors for each file ac-
cessed in the trace. As each file access is observed, the suc-
cessor list is updated to indicate what files were the most
recent successors of the previous file. When we observe an
access "$# , we update the list of successors for "%#'& � to show
file "�# as the most recent successor. Replacement of files
on a successor list is performed purely based on recency
(though more accurate mechanisms are being investigated
for more complex aggregating caches). If we represent the
successors of file " as an ordered list (*) � (*",+.-/)102(*",+.-4353635+ , ac-
cess " # results in) � (7" #'& � + � " # , with " # being placed at
the head of file " #8& � ’s successor list. This successor list is a
list of file " ’s immediate successors (the set of files accessed
immediately following file ").
Retrieving a Group of Successors. The server is respon-
sible for constructing a group of size � for retrieval by the
client. To explain how the basic aggregating cache does
this we need to distinguish transitive successors from the
set of immediate successors of a file " . Whereas the im-
mediate successors of " are the members of the ordered list
(*) � (7",+9-9) 0 (7",+9-:363536+ , the transitive successors are the mem-
bers of the list (*) � (7";+.-9) � (*) � (7",+9+.-9) � (*) � (*) � (7",+9+.+.-4353636+ . The
server maintains only immediate successor information for
each file. No effort is made to extend the information
tracked beyond a single immediate successor, although such
an extension may benefit accuracy of successor prediction,
we have found relatively high accuracy can be achieved pre-
dicting a most likely immediate successor, at a very low

maintenance cost [2].
Our system will currently make a best-effort to retrieve

a group of � files. For a group of two or three files this is
simply a matter of retrieving the requested file and one or
two of its immediate successors. Larger groups require a
more forward-looking approach, where the list of transitive
successors is followed as far as possible. This mechanism
depends on the chaining of “most-likely” immediate succes-
sor predictions. Upon receiving a group of � files, the client
uses LRU replacement for its cache, placing the requested
file at the head of its list, with the remaining members of
the group appended to the end. This avoids assigning a high
priority to unconfirmed successors, though exact placement
of the remaining group members was found to have little
effect if the cache is several times the group size.

Forcing a server to build a group of size � regardless
of its confidence in the successor meta-data may seriously
harm hit ratios. We are investigating more accurate meth-
ods for determining a most likely immediate successor,
as well as more rigorous mechanisms for group creation.
Nonetheless, this simple implementation of a basic aggre-
gating cache was capable of providing a great reduction
in the number of file retrieval requests made by the client,
while actually improving hit ratios.

3 Experimental Results

To determine the usefulness of our grouping model we
need to determine if its relationship maintenance scheme
is feasible and effective. To evaluate feasibility we deter-
mined how much variation there was in per-file successors.
To evaluate effectiveness we measured the utilization of file
groups, and implemented a simulator of a basic aggregat-
ing cache. Tests were run on file system traces gathered
using Carnegie Mellon University’s DFSTrace system [12].
The tests covered five systems, for durations ranging from
a single day to over a year. The traces represented varied
workloads, particularly barber a file server, and mozart a
personal workstation. These traces provide information at
the system-call level, and represent the original stream of
access events, not filtered through a cache.

3.1 Successor Variability

The first question we ask is how much metadata is re-
quired to construct effective groups of related files. As we
are tracking relationships based on succession of access, an
excellent upper bound on the per-file metadata is given by
the number of unique successors observed for a file. Fig-
ure 3 shows a CDF plot of the number of unique files ac-
cessed after a file.

From the figure it is clear that � � % of files have fewer
than 10 unique successors, and more than � � % of files have

0

20

40

60

80

100

1 10 100 1000

%
 o

f F
ile

s

Unique Successors

Figure 3. A CDF plot for mozart, indicating how
many unique successors were observed for
all files over a period of one week.

less than 20 unique successors. These results are typical
over all traces examined for durations ranging from a week
to year. For durations of a day or less there is noticeably
less variation, with � � % of files having less than 10 succes-
sors. It is therefore possible to capture all relevant file re-
lationship information using very little additional metadata.
Maintaining as few as five successors per file was found to
be enough to achieve very high group hit rates and utiliza-
tion.

3.2 Group Performance and Size

The CDF plot of Figure 3 demonstrated how a small
number of successor files being tracked for each file are
likely to capture most possible immediate successors. We
now examine what kind of metadata updates are required
to maintain such a successor list, while also maintaining a
useful group likely to contain the next files used.

Figure 4 gives a more accurate view of successor pre-
diction accuracy, and subsequently an optimistic estimate
of � in real systems. These figures plot the performance of
successor predictions based on per-file immediate successor
lists. The window size is the the number of unique succes-
sors maintained for each file. The � axis represents the pre-
diction accuracy for each scheme. A scheme is considered
accurate if for a particular file we find that its successor was
within the immediate successor list maintained using each
update policy. Accuracy is determined by the total number
of accurate predictions over all file access events during the
trace period.

Figure 4 presents results for four different update poli-
cies, and one upper bound:

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 a
cc

ur
ac

y
of

 s
uc

ce
ss

or
 e

st
im

at
e

(%
)

window size

Optimal
stability

LRU
LFU

static

(a) barber

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 a
cc

ur
ac

y
of

 s
uc

ce
ss

or
 e

st
im

at
e

(%
)

window size

Optimal
stability

LRU
LFU

static

(b) mozart

Figure 4. Hit rates (accuracy of predictions)
for per-file successor windows of varying
sizes, and using different replacement poli-
cies.

� LRU – continuously updates the entire per-file imme-
diate successor lists with LRU replacement.

� LFU – similar to LRU, but with frequency-based re-
placement, and recency tie-breakers.

� Stability – a variation on LFU, which only updates
the access count for the last successor, and replaces
based on minimal count (shortest run).

� Static – representing the least updates, this policy
simply tracks the first window size unique successors

for a file, and never updates the lists when they are
full.

� Optimal – an oracle that has perfect knowledge of
successor events, and will make an accurate predic-
tion if the event to follow has ever occurred previ-
ously within window size events of the current event.
This yields the best performance possible by any on-
line algorithm in this application.

Figure 4 gives an indication of the effectiveness of a lim-
ited amount of per-file state in capturing possible succes-
sors. The most important result of Figure 4 is how high the
accuracy of even the simplest schemes are for window sizes
of as few as five successors. The performance of the static
scheme is very impressive, and supports the observation that
only a small number of successors need be maintained to
capture inter-file relationships.

Another important point is that with as few as five or
six successors, all schemes were generally comparable to
the optimal on-line policy. It is interesting to note how the
workload for the personal workstation mozart exhibited the
worst lag in performance for the static update policy. This
can be observed up until a group of size six, whereas no
such lag can be found for the server workload barber. This
is not surprising when you consider that more file I/O would
be user-initiated on a personal workstation than a file server
(e.g., shells and commands).

The results of Figure 4 show that it is possible to capture
most likely successors for a file in a very small window,
with near-optimal accuracy, and utilizing minimal metadata
updates. These results only provide us with an optimistic
estimate of the average utilization of a group. This is clear
when you realize accuracy will only increase with larger
windows because it measures the likelihood of a successor
being in the group. To measure the likelihood of a con-
structed group being relevant to the next element, and get a
conservative estimate of the expected utilization of a group,
we need to consider Figure 5.

Figure 5 plots the prediction accuracy of the next file
based on a previous window size set of unique files. This
gives the likelihood of a group member, for a group of
size window size + 1, being the immediate successor. The
two schemes used to update the successor are simple last-
successor and a simple static model which tracks the first
observed successor and does not perform any updates there-
after.

In this figure we can clearly see at what point a group
becomes too big to hold strong relationship information
through immediate succession. This appears to occur at
groups of size five, a result which is stable across time scales
and workloads with very little variation. For mozart we also
see a confirmation of the inadequacy of groups of less than
five files at determining succession, explaining the initial

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 a
cc

ur
ac

y
of

 s
uc

ce
ss

or
 e

st
im

at
e

(%
)

prior set window size

dynamic
static

(a) barber

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 a
cc

ur
ac

y
of

 s
uc

ce
ss

or
 e

st
im

at
e

(%
)

prior set window size

dynamic
static

(b) mozart

Figure 5. The accuracy of a static and dy-
namic successor prediction for sets of win-
dow size unique files.

lag observed in Figure 4.

With these experiments we have seen values of � can
practically range from

� � % to ��� % for values of � � � .
This implies that a successful grouping scheme can reduce
average latencies by � � % to ��� % (a factor of � to �23 � �).
Empirical tests support these conclusions, and demonstrate
reductions of almost ��� % in the number of file fetches
performed using a simulation of a very basic aggregating
cache.

0

20

40

60

80

100

100 200 300 400 500 600 700 800

H
it

R
at

e
(%

)

Cache Capacity (files)

lru
g2
g3
g5
g7

g10

(a) barber

0

20

40

60

80

100

100 200 300 400 500 600 700 800

H
it

R
at

e
(%

)

Cache Capacity (files)

lru
g2
g3
g5
g7

g10

(b) mozart

Figure 6. Cache Hit Rates.

3.3 Aggregating Cache Performance

Figure 6 shows the cache hit rates for several cache con-
figurations plotted against cache capacity. We plot the re-
sults for a standard LRU cache, and a basic aggregating
cache with group sizes, � , ranging from � to � � .

The most interesting thing to note about the graph is how
the cache hit rate is not hurt by the grouping, but is in fact
increased by almost � %. This benefit is quickly lost when
the cache capacity is increased, but this is to be expected, a
cache large enough to hold all accessed files gains nothing
from an improved replacement or retrieval policy.

Figure 7 shows the measure number of file retrieval re-
quests made for different cache sizes. As in Figure 6 we
compare difference grouping sizes to an LRU cache. We

0

10000

20000

30000

40000

50000

60000

70000

100 200 300 400 500 600 700 800

N
um

be
r

of
 F

et
ch

es

Cache Capacity (files)

lru
g2
g3
g5
g7

g10

(a) barber

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

100 200 300 400 500 600 700 800

N
um

be
r

of
 F

et
ch

es

Cache Capacity (files)

lru
g2
g3
g5
g7

g10

(b) mozart

Figure 7. Number of File Fetches.

can see a significant reduction in file retrieval requests for
all cache sizes, with the barber trace showing reductions of
approximately ��� %. Not surprisingly the benefits of an ag-
gregate cache are masked more rapidly for the workstation
mozart than for the server barber. The benefits of aggre-
gate caching are more pronounced over a wider range of
cache capacities for the server workload. This is consistent
with the results of Figures 4 and 5 where the server trace
was found to exhibit less variation due to choices in update
policies.

These results are not the � � % to ��� % improvements
we expected from the simplified analytical model, but are
nonetheless very promising. It should be noted that the
reduction in file fetch operations was achieved using only
a basic aggregating cache, with very limited optimization.

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400 450 500

H
it

R
at

e
(%

)

Filter Capacity (files), cache capacity = 300

a-cache
lru
lfu

Figure 8. The effects of filtering LRU caches
of different sizes on target cache hit rates.

We made no attempt to optimize the successor prediction
or group construction process, opting to use simple re-
cency as the selection criteria for the most likely successors
and group members. Although more accurate schemes are
currently under investigation for the construction of larger
more optimal groups, this implementation was sufficient to
demonstrate the effectiveness of an aggregating cache, and
illustrating its inherent simplicity.

3.4 The Effects of Client Filtering

Client caches can have an adverse effect on any simula-
tion study that does not take them into account. A common
view is that a given trace workload when filtered through
an LRU cache will eliminate most short-lived and high fre-
quency files, and that this is often overlooked when simu-
lating caching schemes for, e.g., mobile file systems. It can
be argued that a workload filtered through a client cache
will represent the workload shifts induced by user behav-
ior, whereas unfiltered workloads are greatly influenced by
the more predictable behavior of programs and are easier to
model. The degree of this behavior is heavily dependent on
the relative sizes of the filtering cache, and the target cache
we are modeling. When the filtering cache is comparable in
capacity to our target cache we can expect the hit rate of the
target cache to be very poor.

Figure 8 compares the hit rates for LRU, LFU, and ag-
gregating caches for the mozart workload filtered through
an LRU cache. The aggregating cache is set to build groups
of size � . The target caches being modeled have a � � � file
capacity and we vary the filter cache’s capacity from ��� to
��� � files. As we can see, the usefulness of the simple cache
replacement algorithms rapidly disappears as the filtering

cache capacity approaches the capacity of the target cache.
Interestingly, the aggregating cache maintains a reasonable
hit rate under these pathological conditions. These results
demonstrate that a cache that attempts to model access be-
havior is better able to tolerate filtering effects than caches
based on a simple heuristic that does not attempt any such
modeling. A more detailed analysis of the performance of
the aggregating cache under filtering effects can be found in
another study [1].

4 Related Work

Our work has drawn from work in distributed file sys-
tems, predictive prefetching, and working set identification.
In particular, our model is based on ideas of cache man-
agement introduced with AFS and later Coda [6]. Griffioen
and Appleton presented a file prefetching scheme based on
graph-based relationships [4]. Their probability graphs are
very similar in nature to our relationship model, but are
limited to tracking frequency of access within a particular
“lookahead” window size. Our model, on the other hand,
is primarily based on immediate recency (succession), and
requires no minimum probability to initiate a prefetch, but
opportunistically fetches related files. Our model is also in-
dependent of any concept of lookahead window size.

Later work by Kroeger and Long [8] compared the pre-
dictive performance of the last successor model to Griffioen
and Appleton’s scheme, and more effective schemes based
on context modeling and data compression. The use of the
last successor model for file prediction, and more elaborate
techniques based on pattern matching, were first presented
by Lei and Duchamp [10]. The first proposed application of
data compression techniques to file access prediction was
presented by Vitter and Krishnan [21].

Earlier work on the automatic detection of working sets
includes the work of Tait and Duchamp [20]. “Dynamic
Sets” presented another model for using file groups, but in-
stead of automatic detection, dynamic sets provides mech-
anisms for applications to specify groups of files in which
they are interested [19]. The Seer project also attempted
to use file groups for mobile file hoarding [9]. Seer used
the notion of a semantic distance coupled with shared-
neighbors clustering to build file hoards.

Dynamic groups [19] are an excellent example of an at-
tempt to target the same domain – the grouping of data for
efficient data access – but they are not automated. The work
on dynamic sets focused on providing a mechanism for de-
scribing group membership dynamically, it did not auto-
mate the process of detecting such groups from the access
stream. For data grouping they fill a similar niche to that
served by I/O hints in predictive prefetching applications.

Attempts to optimally place files on disk were originally
done manually, placing frequently accessed files closer to

the center of the disk. The need to automate this process
was addressed by the work of Staelin and Garcia-Molina
[15, 18, 16, 17]. This work dealt with optimal place-
ment, but offered models based on probabilistic assump-
tions that did not capture dynamic relationships between
files. The Berkeley Fast File System (FFS) [11, 14] attempts
to group data into cylinder tracks, and more recent work by
Ganger and Kaashoek [3] increased disk bandwidth utiliza-
tion through data co-location, extending FFS to C-FFS (co-
locating FFS). More recent work by Shriver et al. [13] has
provided analytical reasoning for the benefits of read-ahead
buffering and prefetching.

5 Conclusions and Future Work

We have demonstrated through a simple analytical ap-
proximation, and empirical tests, that file access events tend
to be grouped into highly consistent and very stable groups
of few files. This observation combined with our group
transmission, and relationship tracking structure, can pro-
vide a mechanism for reducing perceived latencies through
implicit prefetching. This is possible in a manner com-
pletely transparent to the user and existing applications. Ex-
periments have shown that groups of as few as five files are
enough to capture the majority of inter-file relationships.
For groups of five files we can see utilization of

� � % to
� � %, indicating that we can potentially reduce average la-
tencies by � � % to ��� %, and have demonstrated reductions
of up to ��� % through the simulation of a very basic aggre-
gating cache.

An open question in this study is how much of which
files to transmit first. For some workloads, e.g., web ac-
cess, it is almost always the case that a file will be read
in its entirety, and relative ordering within a group is of
little relevance to the end user. For other scenarios, the
membership in a small group may be all the information
that is required, e.g., distributing the members of a group
among a cluster of storage devices/servers. Our empirical
tests would strongly suggest that recency is one of the best
mechanisms for deciding priority, as evidenced by the per-
formance of LRU replacement in both the trace analysis and
the cache simulations, but this is a subject that is undergoing
further research. This paper has taken a high-level, general-
ized approach to simulation and modeling, further work is
required to produce more detailed performance evaluations,
tested against more specific application domains. Future
work also includes the investigation of how such a scheme
applies to environments other than distributed file systems.
In particular, we are interested in mass stores, and modern
storage architectures where relative latency is a serious per-
formance issue.

6 Acknowledgments

We are grateful to Ethan L. Miller for proposing the
optimal on-line predictor, and are especially grateful to
Thomas Kroeger and Randal Burns for valuable feedback,
reviews and discussions. We are grateful to all the mem-
bers of the Computer Systems Laboratory, for their contin-
uous feedback, support and valuable discussions. Our most
extensive multi-year traces were kindly made available by
M. Satyanaryanan of Carnegie Mellon University, through
the greatly appreciated efforts of Thomas Kroeger in pro-
cessing and conversion.

References

[1] A. Amer and D. D. E. Long. Adverse filtering effects
and the resilience of aggregating caches. In Proceedings
of the Workshop on Caching, Coherence and Consistency
(WC3 ’01), Sorrento, Italy, June 2001. ACM. (to appear).

[2] A. Amer and D. D. E. Long. Noah: Low-cost file access pre-
diction through pairs. In Proceedings of 20th International
Performance, Computing, and Communications Conference
(IPCCC 2001), pages 27–33. IEEE, Apr. 2001.

[3] G. R. Ganger and M. F. Kaashoek. Embedded inodes and
explicit grouping: Exploiting disk bandwidth for small files.
In Proceedings of the 1997 USENIX Annual Technical Con-
ference, pages 1–17, Anaheim, CA, Jan. 1997.

[4] J. Griffioen and R. Appleton. Reducing file system latency
using a predictive approach. In USENIX Summer Technical
Conference, pages 197–207, June 1994.

[5] P. Hodges and D. Cheng. Large block size for disk drives.
National Storage Industry Consortium (NSIC) White Paper,
2000.

[6] J. J. Kistler and M. Satyanarayanan. Disconnected operation
in the Coda file system. In 13th ACM Symposium on Op-
erating Systems Principles (SOSP), pages 213–25, Pacific
Grove, CA, USA, Oct. 1991.

[7] T. M. Kroeger. Modeling File Access Patterns to Improve
Caching Performance. PhD thesis, University of California,
Santa Cruz, Mar. 2000.

[8] T. M. Kroeger and D. D. E. Long. The case for efficient
file access pattern modeling. In Proceedings of the Seventh
Workshop on Hot Topics in Operating Systems (HotOS-VII),
pages 14–9, Rio Rico, Arizona, Mar. 1999. IEEE.

[9] G. H. Kuenning and G. J. Popek. Automated hoarding for
mobile computers. In 16th ACM Symposium on Operating
Systems Principles, pages 264–75, Saint Malo, France, Oct.
1997.

[10] H. Lei and D. Duchamp. An analytical approach to file
prefetching. In Proceedings of the 1997 USENIX Annual
Technical Conference, pages 275–88, Anaheim, CA, Jan.
1997.

[11] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A
fast file system for UNIX. ACM Transactions on Computer
Systems, 2(3):181–97, Aug. 1984.

[12] L. Mummert and M. Satyanarayanan. Long term distributed
file reference tracing: Implementation and experience. Soft-
ware - Practice and Experience (SPE), 26(6):705–736, June
1996.

[13] E. Shriver, C. Small, and K. Smith. Why does file system
prefetching work? In Proceedings of the 1999 USENIX
Annual Technical Conference, pages 71–83, Monterey, CA,
June 1999.

[14] K. A. Smith and M. Seltzer. A comparison of FFS disk allo-
cation policies. In Proceedings of the 1996 USENIX Techni-
cal Conference, pages 15–25, San Diego, CA, Jan. 1996.

[15] C. Staelin and H. Garcia-Molina. Clustering active disk data
to improve disk performance. Technical Report CS-TR-283-
90, Department of Computer Science, Princeton University,
Feb. 1990. revised June 1990.

[16] C. Staelin and H. Garcia-Molina. File system design us-
ing large memories. In Proceedings of the Fifth Jerusalem
Conference on Information Technology (JCIT), pages 11–
21. IEEE, Oct. 1990.

[17] C. Staelin and H. Garcia-Molina. Smart filesystems. In Pro-
ceedings of the Winter 1991 USENIX conference, pages 45–
51, Jan. 1991.

[18] C. H. Staelin. High Performance File System Design. PhD
thesis, Department of Computer Science, Princeton Univer-
sity, Oct. 1991.

[19] D. C. Steere. Using Dynamic Sets to Reduce the Aggregate
Latency of Data Access. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, Jan.
1997.

[20] C. D. Tait and D. Duchamp. Detection and exploitation of
file working sets. Technical Report CUCS-050-90, Com-
puter Science Department, Columbia University, New York,
NY 10027, 1990.

[21] J. S. Vitter and P. Krishnan. Optimal prefetching via data
compression. Journal of the ACM, 43(5):771–93, Sept.
1996.

View publication statsView publication stats

https://www.researchgate.net/publication/3913623

