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Abstract

An Approach to Nonlinear Oscillations Through Randomization

by

Jaeseung Byun

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Fai Ma, Chair

In this thesis, a novel investigation of deterministic nonlinear systems is presented. When
autonomous dynamical systems are randomized by white-noise excitation, their behaviors
are governed by diffusion equations. The core idea behind the method of randomization
involves replacing a nonlinear ordinary differential equation of motion by a linear partial
differential equation of diffusion.

Exact analytical solutions are feasible for only a limited number of nonlinear systems. How-
ever, some nonlinear systems, which are difficult to analyze using deterministic methods,
possess stationary diffusion equations with exact solutions. These diffusion responses pro-
vide deeper insights into the qualitative behaviors of nonlinear systems, such as stability at
multiple equilibria, limit cycles, and bifurcations.

To demonstrate the potential and feasibility of randomization, numerous nonlinear oscillators
are considered. When both the deterministic systems and the associated randomized systems
can be analyzed, there is complete agreement in their qualitative properties. Furthermore,
some example systems inaccessible through deterministic approaches can be readily exam-
ined using randomization, suggesting that randomization could be an alternative tool for
investigating nonlinear oscillations.

Keywords: Nonlinear dynamical system; Stochastic process; Stochastic differential equation;
Random vibration; Randomization; Fokker-Planck equation; Forward diffusion equation



i

Contents

Contents i

List of Figures iii

1 Introduction 1

2 Literature Review 4
2.1 Random Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Nonlinear Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Theoretical Background 9
3.1 Nonlinear Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Hamiltonian Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Qualitative Behaviors of Nonlinear Systems . . . . . . . . . . . . . . . . . . 11

3.3.1 Multiple Equilibrium Points . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Limit Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Theory of Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1 Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Chapman-Kolmogorov Equation . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Diffusion Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Qualitative Analysis by Randomization 27
4.1 Framework of Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Nonlinear Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Linear Damping with Nonlinear Stiffness . . . . . . . . . . . . . . . . . . . . 43
4.5 Nonlinear Damping with Nonlinear Stiffness . . . . . . . . . . . . . . . . . . 45

4.5.1 Heuristic Framework of Solving the Diffusion Equation . . . . . . . . 45
4.5.2 Projected Crater Curve Analysis . . . . . . . . . . . . . . . . . . . . 53
4.5.3 Heuristic Framework Using Variation of Parameters . . . . . . . . . . 58



ii

4.6 Illustrative Examples of Randomization . . . . . . . . . . . . . . . . . . . . . 60
4.6.1 Multiple Equilibrium Points . . . . . . . . . . . . . . . . . . . . . . . 61
4.6.2 Limit Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6.3 Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Conclusions 90

Bibliography 92

A Basic Theories of Differential Equations 100
A.1 Nonlinear Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.2 Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2.1 Classification of Partial Differential Equations . . . . . . . . . . . . . 102
A.2.2 Method of Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 103

B Basic Theories of Stochastic Processes 107
B.1 Stationary Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.2 Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.3 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



iii

List of Figures

1.1 Identifying qualitative behaviors of nonlinear systems through randomization . . 2

2.1 Orbits of the Moon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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Chapter 1

Introduction

A proper understanding of nonlinear dynamical systems is central to advancements in
physics, engineering, and biology. Highlighting nonlinearity in both damping and stiffness,
the governing differential equation is expressed as follows:

ẍ + ϵα(x, ẋ)ẋ + β(x, ẋ) = 0. (1.1)

Here, x(t) is the system response, α(x, ẋ) is a nonlinear damping function with a damping
constant ϵ, and β(x, ẋ) represents a nonlinear stiffness. Exact solutions to Eq. (1.1) are
usually intractable, with few exceptions presented in complex mathematical forms such as
incomplete elliptic integrals that obscure the system behavior.

Randomization introduces a novel approach by applying white-noise excitation to deter-
ministic systems, thereby converting the deterministic response of motion into a stochastic
process called Brownian motion. When the system is excited by white noise W (t), the
stochastic counterpart of Eq. (1.1) is given by

Ẍ + ϵα
(

X, Ẋ
)

Ẋ + β
(

X, Ẋ
)

= W (t), (1.2)

with X(t) indicating the stochastic response under white-noise excitation W (t) characterized
by zero mean and constant power spectral density S0. The transition probability density
for the response X(t) is governed by the forward diffusion equation, also known as the
Fokker-Planck equation:

∂p

∂t
= −y

∂p

∂x
+ ∂

∂y

(
(ϵαy + β)p

)
+ πS0

∂2p

∂y2 . (1.3)

The function p(x, y, t|x0, y0) here defines the transition probability density function of sys-
tem states, where y = ẋ and the initial condition is represented by (x0, y0). In essence,
randomization replaces the nonlinear second-order ordinary differential equation of motion
(1.1) by a linear second-order partial differential equation of diffusion.
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Stable equilibria

Saddle points

• System Randomized by White Noise

• Corresponding Deterministic System

(a) Stable foci and saddle points

• System Randomized by White Noise
Limit cycle

• Corresponding  Deterministic System

(b) Limit cycle

Figure 1.1: Identifying qualitative behaviors of nonlinear systems through randomization

As the system evolves, it may converge to a steady state. This state can be determined
by solving the stationary diffusion equation, which is obtained from Eq. (1.3) by setting the
time derivative to zero:

−y
∂ps

∂x
+ ∂

∂y

(
(ϵαy + β)ps

)
+ πS0

∂2ps

∂y2 = 0, (1.4)

where ps(x, y) is the stationary probability density function.
While few nonlinear systems allow for direct analytical solutions to Eq. (1.1), some associ-

ated stationary diffusion equations, as shown in Eq. (1.4), can be solved exactly. The reason
being linear partial differential equations are sometimes more manageable than nonlinear
ordinary differential equations. Such exact diffusion responses provide critical insight into
the qualitative behaviors of nonlinear systems, identifying characteristics including nodes,
foci, saddle points, limit cycles, and bifurcations. Notably:

• Stable equilibria, such as nodes and foci, manifest as peaks on a locally concave section
of the stationary distribution ps(x, y)—illustrated in Fig. 1.1a.
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• Saddle points, with zero gradients in orthogonal directions, are distinctively positioned
not to coincide with local extrema—depicted in Fig. 1.1a.

• Limit cycles may be inferred from crater curves on the surface of ps(x, y), where the
density exhibits relative maxima—shown in Fig. 1.1b.

Nonetheless, exact solutions to the diffusion equations remain challenging due to in-
creased dimensionality of the partial differential equation. This study introduces heuristic
methodologies to address the stationary diffusion equations when traditional techniques fail.

The aim of this work is to thoroughly examine the qualitative behaviors of autonomous
nonlinear systems using randomization, and to assess their steady-state dynamics through
the exact solutions of the stationary diffusion equations.

The structure of the thesis proceeds as follows:

• Chapter 2 presents a comprehensive literature review on nonlinear systems and random
vibrations, encompassing both historical background and recent progress.

• Chapter 3 provides a detailed exposition on the foundations of Brownian motion, non-
linear dynamics, and stochastic processes, including the derivation of the diffusion
equation.

• Chapter 4 describes the method of randomization applied to nonlinear oscillators,
analyses obtainable via the heuristic methods, and addresses the analytical nature of
the solutions.

• Chapter 5 encapsulates significant findings and their relevance to understanding the
complexities inherent in nonlinear dynamical systems.
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Chapter 2

Literature Review

This chapter presents a comprehensive overview of the current literature on random vibration
and nonlinear dynamical systems. It includes crucial insights from both historical works as
well as recent developments in the areas of limit cycles and randomized nonlinear systems.

2.1 Random Vibration
Random vibration, which explores oscillatory motion under inherent uncertainties, has been
shaped through the collective contributions of numerous researchers across generations. The
theory integrates work in deterministic structural vibrations, probabilistic analysis of me-
chanical systems, and the study of stochastic processes.

The 17th-century investigations by Marin Mersenne and Galileo Galilei provided early
momentum to the field with their independent studies on string vibrations [1]. Lord Rayleigh
further elaborated on the deterministic theory of structural vibrations in The Theory of
Sound (1877), focusing on the vibration and resonance of elastic solids and gases, as well as
the propagation of acoustic waves in materials [2, 3]. A notable contribution from Rayleigh’s
work was identifying the fundamental frequency of vibration of a conservative system by
applying the energy conservation principle.

A leap in understanding random vibrations followed the mathematical treatment of Brow-
nian motion1. This phenomenon, observed by Robert Brown in 1827 and quantitatively
explained by Albert Einstein in 1905, marked a significant advance in the mathematical
analysis of random vibration [5, 6]. Wiener’s subsequent introduction of spectral density as
a key descriptor for stationary stochastic processes in 1930 has become foundational to the
field [6].

In the early 20th century, the Langevin equation and the Fokker-Planck equation were
developed to study Brownian motion [7]. Langevin introduced a random Markovian force to
describe the random collisions between particles, leading to a stochastic differential equation

1Wiener process in physics and Brownian motion in mathematics are equivalent, as are Brownian motion
in physics and the Ornstein-Uhlenbeck process in mathematics [4].
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(a) The cusp-shaped orbits (b) The loop-shaped orbit

Figure 2.1: Orbits of the Moon

for a Brownian particle [8]. Fokker introduced a partial differential equation that governs
the probability density for the velocity of the Brownian particle under diffusion from in-
teractions with the fluid [9]. This equation, now known as the Fokker-Planck equation or
forward diffusion equation, also accounts for drift due to friction. The review by Uhlenbeck
and Ornstein [10] introduced a Fokker-Planck equation associated with a constant diffusion
coefficient and linear drift term, known as the Langevin equation. Wang and Uhlenbeck
solved the diffusion equation for the Langevin equation using Fourier transform techniques
[11]2.

2.2 Nonlinear Dynamical Systems
The contributions of Henri Poincaré in the domain of nonlinear dynamical systems sub-
stantially enhanced the understanding of motion related to celestial bodies. Among these
enhancements is a refined understanding of the Moon’s orbit, which demonstrates intricate
interactions with both Earth and Sun. This refinement was achieved by Poincaré’s sugges-

2Although it appears in a review paper, this example is considered original [12].
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Figure 2.2: The limit cycle illustrated by Poincaré

tion of transitioning from a cusp-shaped orbit to a loop-shaped orbit, thereby providing a
more precise periodic solution for moon’s movements [13, 14] (see Fig. 2.1 [14]).

Moreover, the study conducted by Poincaré on limit cycles led to the creation of the first
mathematical representations of a limit cycle, represented by a two-dimensional differential
equation [15]:

dx

x(x2 + y2 − 1) − y(x2 + y2 + 1) = dy

y(x2 + y2 − 1) + x(x2 + y2 + 1) , (2.1)

where the analytical form of the limit cycle is given by (Fig. 2.2 [15])

x2 + y2 = 1. (2.2)

George Duffing advanced to the field of mechanics, especially in the area of nonlinear
dynamical systems, by examining mathematical and technical aspects of nonlinear adjust-
ments to linear harmonic oscillators. Instances where a spring either stiffens or softens as
it stretches were explored, which can be represented by incorporating a cubic term into the
conventional linear Hooke’s law [16]. The focus was on the following equation, encompassing
both free oscillation and a harmonic forcing function [17]:

d2x

dt2 + χ
dx

dt
+ αx − γx3 = k sin(ωt). (2.3)

The Duffing equation has been applied to understand various physical systems, including
vibrating structures [18], electrical signal analysis of distribution lines [19], and modeling
brain activity in biology [20].
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Figure 2.3: The Van der Pol limit cycle

Balthasar van der Pol’s work in the 1920s marked the experimental study of nonlinear
dynamical systems and chaos theory [21]. By working on the limit cycle of the Van der Pol
oscillator [22], which is described by

d2v

dt2 − ϵ(1 − v2)v̇ + v = 0, (2.4)

the term relaxation oscillation emerged, indicating the deviation of the sinusoidal oscillation
to diverging shapes of the oscillation, which form the limit cycle. This idea was further
extended to other engineering applications, such as the modelling of heart-beat oscillation
[23, 24]. The discovery of irregular noise, attributed to Van der Pol, is also considered as
the first empirical observation of deterministic chaos [21].

Andronov and Pontryagin contributed to bifurcation theory. They introduced the concept
of structural stability, which determines whether a system can maintain its behavior despite
small alterations. This allowed them to identify points called structurally unstable points,
where minor changes can lead to drastically different outcomes. Their work provided valuable
insight into the behavior of dynamical systems near bifurcation points. [21, 25]

Edward Lorenz influenced the development of chaos theory by formulating the concept of
the strange attractor, which is often used to demonstrate the behavior of chaotic systems. In a
1963 paper, it was revealed that a system exhibited varying outcomes when approximations
were made for predicting weather and rounding off to different digits. The sensitivity to
initial conditions was noted, suggesting that minimal variations in initial conditions might
lead to significant disparities in the long-term system behavior [26].
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2.3 Recent Developments
This section presents recent advancements in random vibrations and nonlinear dynamics,
emphasizing the importance of multiple equilibria, limit cycles, and bifurcations in nonlinear
systems.

Multiple equilibrium points play a crucial role in local stability analysis for nonlinear sys-
tems, which influences control system design in applications such as robotic motion tracking
[27, 28] and neural network stability [29, 30]. However, identifying stability using Lyapunov
methods can be challenging due to their inherent limitations, such as the difficulty of finding
an appropriate Lyapunov function in the direct method and the inability to determine global
stability in the indirect method.

Limit cycles are frequently observed in biological systems like heartbeat patterns [22,
31] and ecological interactions [32, 33], as well as engineering applications including robot
locomotion [34–39] and power grid energy distribution [40]. Limit cycles assist in developing
algorithms for robots to navigate safely around obstacles [41–44]. Although early research
provided exact analytical forms of limit cycles [45, 46], later studies indicated that such de-
scriptions are not always feasible [47–51], leading to the use of approximations and numerical
models.

Comprehending equilibrium points and limit cycles is essential for analyzing bifurcations,
as variations with system parameters can exhibit diverse qualitative behaviors [52]. Taking
bifurcation into account in real-life scenarios proves to be practical, as it helps in prediction
and control of system behavior under changing conditions. A notable example of the practical
application of bifurcation analysis is in the design of stable rotordynamic systems, where
avoiding bifurcation is crucial to ensure reliable performance and prevent failures [53, 54].

Randomization facilitates the qualitative analysis of nonlinear systems through station-
ary diffusion equations. Early research on solving these equations made significant progress
[12, 55–61], but universal solutions remain elusive. Approximation strategies [62, 63] and
machine learning techniques [64–67] offer potential improvements in solution accuracy. All
the aforementioned studies have been limited to analyzing stochastic differential equations
without considering the corresponding deterministic differential equations. This thesis in-
troduces a framework that employs randomization to examine the qualitative behavior of
deterministic nonlinear systems.
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Chapter 3

Theoretical Background

This chapter presents the foundational theoretical concepts necessary for understanding the
randomization of nonlinear dynamical systems.

3.1 Nonlinear Dynamical Systems
In the domain of classical mechanics, nonlinear dynamical systems are characterized as sets of
second-order differential equations that do not adhere to the principle of linear superposition.
The analysis within this thesis focuses on deterministic, autonomous systems described by
the following equations:

ẋ = a1(x, y)
ẏ = a2(x, y),

(3.1)

and in an alternative vector notation:

ż = a(z), (3.2)

where z = [x, y]T symbolizes the state vector and a(z) denotes the system dynamics. Tra-
jectories of the solution can be illustrated visually as curves in the phase plane, facilitating
better understanding of the qualitative behavior of such systems. Further discussions will ad-
dress Hamiltonian systems as employed in physics and will examine three distinct phenomena
in nonlinear dynamical systems: multiple equilibrium points, limit cycles, and bifurcations.

3.2 Hamiltonian Systems
Hamiltonian systems, as a distinct category within nonlinear dynamical systems, feature
prominently in classical mechanics. These systems are analyzed via the Lagrangian formalism
in configuration space and the Hamiltonian formalism in phase space. Notably, phase space
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trajectories of Hamiltonian systems constitute curves at constant values, absent temporal
dependence within the Hamiltonian function.

The Hamiltonian function arises from the Legendre transformation of the Lagrangian
L(q, q̇, t) [68]:

H(q, p) =
n∑

i=1

piq̇i − L(q, q̇, t), (3.3)

where q encapsulates the configuration variables and p the conjugate momenta. The mo-
menta are defined as

pi = ∂L

∂q̇i

, i = 1, . . . , n. (3.4)

The Lagrangian function is most commonly expressed as the difference between kinetic and
potential energy:

L(q, q̇, t) = T − V, (3.5)
where T is the kinetic energy and V is the potential energy of the system. Canonical
Hamiltonian equations offer a framework for describing the system dynamics:

q̇i = ∂H

∂pi

, i = 1, . . . , n,

ṗi = −∂H

∂qi

, i = 1, . . . , n,

(3.6)

which constitute phase space trajectories of Hamiltonian systems. The Hamiltonian is not
always equal to the total energy of the system, but it is conserved if the Hamiltonian is
not explicitly dependent on time. This can be shown by taking the time derivative of the
Hamiltonian function (3.3):

dH

dt
=

n∑
i=1

∂H

∂qi

q̇i +
n∑

i=1

∂H

∂pi

ṗi + ∂H

∂t
. (3.7)

Within this framework, the first two terms negate each other under the canonical equations,
and the final term vanishes if the Hamiltonian excludes dependency on time.

Recall that the nonlinear system of interest, defined in Eq. (1.1), is as follows:

ẍ + ϵα(x, ẋ)ẋ + β(x, ẋ) = 0.

Using the notations ẋ = y, p = ẋ, and q = x, and assuming an absence of damping (ϵ = 0),
the conservative Hamiltonian function is represented as

H(x, y) = y2 − L(x, y). (3.8)

This representation provides a description of the system dynamics through the Hamiltonian:

ẋ = ∂H

∂y
= a1(x, y),

ẏ = −∂H

∂x
= a2(x, y).

(3.9)
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These expressions will be consistently applied throughout this thesis, except where otherwise
specified.

Example 3.2.1. Consider a linear harmonic undamped oscillator of the form

ẍ + x = 0.

The Hamiltonian function of this system is

H(x, y) = y2 −
(

1
2y2 − 1

2x2
)

= 1
2x2 + 1

2y2.

Therefore, the Hamiltonian is equal to the total energy of the system, and it is conserved.

Example 3.2.2. Consider an undamped nonlinear pendulum equation of the form:

ẍ + sin(x) = 0.

This can be written in the phase space as

ẋ = y = ∂H

∂y
,

ẏ = − sin(x) = −∂H

∂x
.

Integration of the first equation gives

H(x, y) = 1
2y2 + c1(x),

where c1(x) is an arbitrary function of x. Taking the derivative of H(x, y) with respect to x
and equating it to − sin(x) yields

∂H

∂x
= dc1

dx
= sin(x).

Therefore, the Hamiltonian function is

H(x, y) = 1
2y2 − cos(x) + C,

where C is a constant.

3.3 Qualitative Behaviors of Nonlinear Systems
Investigating quantitative behaviors in nonlinear dynamical systems poses significant chal-
lenges due to the inherent difficulty of obtaining analytical solutions. However, it is possible
to study the qualitative behaviors of these systems by examining equilibrium points, limit
cycles, and bifurcations.
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3.3.1 Multiple Equilibrium Points
Equilibrium points exist where the state of the system remains constant (i.e., ẋ = 0 and
ẏ = 0). Techniques used to analyze equilibrium points of nonlinear dynamical systems align
with approaches employed for linear dynamical systems.

Equilibrium points can be classified through the analysis of the Jacobian matrix of system
dynamics, a(z), evaluated at the equilibrium points. The Jacobian matrix definition is as
follows [69]:

J(zeq) = ∂a

∂z

∣∣∣∣
z=zeq

=

∂a1
∂x

(xeq, yeq) ∂a1
∂y

(xeq, yeq)
∂a2
∂x

(xeq, yeq) ∂a2
∂y

(xeq, yeq)

, (3.10)

where zeq = (xeq, yeq) represents the equilibrium point. If the real part of eigenvalues of the
Jacobian matrix is nonzero, then such an equilibrium point is called a hyperbolic equilibrium
point. Hyperbolic equilibria can be classified into three types: node, focus (spiral point), and
saddle point. Hyperbolic equilibrium points hold particular interest because local qualitative
behavior can be determined by examining eigenvalues of the Jacobian matrix.

Eigenvalue analysis of the Jacobian matrix is analogous to the eigenvalue analysis of the
system matrix in linear dynamical systems. For example, if all eigenvalues are real and
negative, then the equilibrium point is a stable node. On the other hand, if eigenvalues are
real and positive, it corresponds to an unstable node. Complex eigenvalues with non-zero
real parts indicate a spiral point, and distinct real eigenvalues with different signs represent
a saddle point.

Example 3.3.1. Consider a damped nonlinear pendulum of the form:

ẍ + ϵẋ + sin(x) = 0, (3.11)

where ϵ is a damping constant. This can be written in the phase space as

ẋ = y,

ẏ = −ϵy − sin(x).
(3.12)

Equilibrium points for this system are (xeq, yeq) = (±nπ, 0), and the Jacobian matrix of the
system is

J(x) =

 0 1
− cos(x) −ϵ

.

Eigenvalues of the Jacobian matrix are

λ1,2 = − ϵ

2 ±
√

ϵ2

4 − cos(x).

For 0 < ϵ < 2, two equilibrium point types occur: saddle points with odd n having real
eigenvalues of opposite signs, and stable spiral points with even n having complex conjugate
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eigenvalues with negative real parts. For ϵ > 2, stable nodes emerge when n is even, and
saddle points when n is odd.

Although the eigenvalue analysis of the Jacobian matrix permits the discovery of a local
qualitative behavior, this method is unsuitable for determining global qualitative behavior.
Furthermore, the eigenvalues obtained from the Jacobian matrix do not provide an accurate
representation of the behavior, as the eigenvalues are obtained from the linearized system.

To accurately analyze global qualitative behavior of the system, further investigation of
nullclines and isoclines of the system is required [70]. Analyzing nullclines and isoclines for
nonlinear dynamical systems is a challenging task, as nullclines/isoclines are not straight lines
and only provide information on derivatives of state variables. In the following sections, an
approach to study equilibria and assess the global qualitative behavior using randomization
will be discussed, which serves as a significant contribution of this thesis.

3.3.2 Limit Cycles
A limit cycle is a closed, isolated trajectory unique to nonlinear dynamical systems. It
arises from periodic solutions where the system state returns to its initial position after
completing a period. In contrast, oscillatory linear systems generate closed, but non-isolated
trajectories. Analysis of limit cycles generates valuable insights into the long-term behavior
of system trajectories, which can be applied to diverse fields such as control systems design
[35, 38, 71], trajectory planning [41, 42], and vibration analysis [72].

The Poincaré-Bendixson theorem [73] postulates that any bounded trajectory not con-
verging toward an equilibrium point eventually approaches a closed orbit as t → ∞. More-
over, the Bendixson-Dulac theorem [74] asserts that a two-dimensional system cannot contain
a closed orbit if the dynamics vector a maintains zero divergence, i.e., ∇ · a = 0. Although
these theorems hold theoretical significance, they frequently prove insufficient for confirming
the existence of limit cycles. Section 4.5.2 explores an alternative qualitative method to
verify the presence of limit cycles using a projected crater curve. In the subsequent sections,
a brief discussion of the classification of limit cycles and their analytical forms in nonlinear
dynamical systems is presented.

Classification of Limit Cycles
Limit cycles can be categorized into three distinct types based on stability: stable, unstable,
and semi-stable.

Stable limit cycles cause system trajectories converging to a repeating pattern over time,
as illustrated in Fig. 3.1a. Unstable limit cycles exhibit diverging system trajectories that do
not settle into a repeating pattern, demonstrated in Fig. 3.1b. Semi-stable limit cycles show
both converging and diverging behaviors, suggesting that the behavior of the system may
settle into a repeating pattern from one direction but diverge from another, as presented in
Fig. 3.1c.
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(a) Stable limit cycle:
ṙ = −r(r2 − 1), θ̇ = 1

(b) Unstable limit cycle:
ṙ = r(r2 − 1), θ̇ = 1

(c) Semi-stable limit cycle:
ṙ = r(r2 − 1)2, θ̇ = 1

Figure 3.1: Classification of limit cycles

Analytical Form of Limit Cycles
The analytical form of limit cycles in nonlinear dynamical systems can be derived in a few
cases. Three types of nonlinear dynamical systems of particular interest include (i) the Van
der Pol-Rayleigh oscillator, (ii) a nonlinear oscillator with an elliptical limit cycle, and (iii)
a Liénard-type oscillator.

Van der Pol-Rayleigh Oscillator

For a nonlinear oscillator of the form:

ẍ − ϵ
(
1 − x2 − ẋ2)ẋ + x = 0, (3.13)

where ϵ is a damping constant, it is observed that the Van der Pol-Rayleigh equation admits
an exact harmonic solution for any value of ϵ [46]:

x(t) = cos(t + ϕ). (3.14)

Assuming ϕ = 0 without loss of generality, a Hamiltonian can be derived from Eq. (3.9):

H = 1
2x2 + 1

2 ẋ2, (3.15)

where H is identical to the total energy of the undamped system. The time derivative of H
can be computed as follows:

dH

dt
= d

dt

(
1
2x2 + 1

2 ẋ2
)

. (3.16)
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Using Eq. (3.13), it can be deduced that

dH

dt
= ϵ
(
1 − x2 − ẋ2)ẋ2 = ϵ(1 − 2H)ẋ2 (3.17)

Separating the equation and integrating both sides results in∫
dH

1 − 2H
= −1

2 ln(1 − 2H) =
∫

ϵẋ2dt. (3.18)

As t → ∞ in steady state, Eq. (3.18) becomes

1 − 2H = lim
t→∞

C exp
(

−2ϵ

∫ t

0
ẋ2dt

) = 0. (3.19)

Since H is constant, the energy of the system remains constant for motion on the limit cycle.
Setting H = 1/2 results in the limit cycle trajectory:

x2 + ẋ2 = 1. (3.20)

Elliptical Limit Cycle

A nonlinear oscillator of the form:

ẍ − ϵ

(
1 − x2

a2 − ẋ2

b2

)
ẋ + b2

a2 x = 0, (3.21)

where ϵ is a constant, presents a limit cycle trajectory that is elliptical in nature:

x(t) = a cos
(

bt

a

)
= a cos(ωt), (3.22)

where ω = b/a can be interpreted as the angular frequency of the oscillator.
The trajectory of the oscillator forms an ellipse, demonstrated through the following

derivation. By inserting (3.22) into (3.21), the result is

ẍ + b2

a2 x = −
(

b

a

)2

a cos(ωt) + b2

a
cos(ωt) = 0 (3.23)

and
1 − x2

a2 − ẋ2

b2 = 1 − cos2(ωt) − 1
b2

(
b

a

)2

a2 sin2(ωt) = 0. (3.24)

Thus, the trajectory of
x2

a2 + ẋ2

b2 = 1 (3.25)
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(a) ϵ = 1 (b) ϵ = 1.5

Figure 3.2: Analytical limit cycles of the Liénard-type oscillator

satisfies the equation of an ellipse. By scaling time with

τ = b

a
t, (3.26)

Equation (3.21) can be rewritten as

d2x

dτ 2 − ϵb

a

(
1 − x2

a2 − 1
a2

(
dx

dτ

)2
)

dx

dτ
+ x = 0, (3.27)

where the following relations are used:

ẋ = dx

dt
= dx

dτ

dτ

dt
= dx

dτ

b

a
,

ẍ = d2x

dt2 = b

a

d2x

dτ 2
dτ

dt
=
(

b

a

)2 d2x

dτ 2 .

When the time is scaled, Eq. (3.21) evolves into Eq. (3.13), and the limit cycle is a circle of
radius a for all ϵ > 0.

Liénard-type Oscillator

The nonlinear oscillator of form [45, 48]:

ẍ + ϵ
(
x2 − 1

)
ẋ + ϵ2

16x3(x2 − 4) + x = 0, 0 < |ϵ| < 2 (3.28)
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exhibits a limit cycle in algebraic form as follows (Fig. 3.2):

y2 + ϵ

2x
(
x2 − 4

)
y + (x2 − 4)

(
ϵ2

16x2(x2 − 4
)

+ 1
)

= 0, y = ẋ. (3.29)

Equation (3.29) can be verified as follows. First, the derivative of Eq. (3.29) with respect to
t is (

2y + ϵ

2x
(
x2 − 4

))
ẏ = − ϵ

2

((
3x2 − 4

)
y2
)

− ϵ2

16

((
x2 − 4

)(
6x3 − 8x

)
+ 2x

)
y. (3.30)

Inserting Eq. (3.30) into left side of Eq. (3.28) yields

− ϵ

2

((
3x2 − 4

)
y2
)

− ϵ2

16

((
x2 − 4

)(
6x3 − 8x

)
+ 2x

)
y

+
(

2y + ϵ

2x
(
x2 − 4

))(
ϵ
(
x2 − 1

)
y + ϵ2

16x3(x2 − 4) + x

)
= 0.

(3.31)

Existence of Periodic Solutions
In this section, criteria for the existence of periodic solutions in a specific class of nonlinear
systems will be introduced briefly. These criteria stem from the Poincaré-Bendixson theorem
[75].

Consider a nonlinear system of the form:

ẍ + f(x, ẋ)ẋ + g(x) = 0, (3.32)

where f(x, ẋ) and g(x) are continuous functions. Unlike the previous Liénard-type oscillator,
the damping coefficient functions depend on x and ẋ. Rewriting the equation in state space
form yields

ẋ = y,

ẏ = −f(x, y)y − g(x).
(3.33)

The following theorem provides a sufficient condition for the existence of periodic solutions
in Eq. (3.32) [75]:

• There exists a positive constant r such that f(x, y) > 0 for all x2 + y2 > r2.

• f(0, 0) < 0.

• g(0) = 0, and g(x) > 0 for all x > 0, and g(x) < 0 for all x < 0.

•
∫ x

0 g(ξ)dξ goes to infinity as x goes to infinity.
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Figure 3.3: First condition of the existence theorem in Example 3.3.2 with ϵ =
√

3

Example 3.3.2. Consider a nonlinear system of form:

ẍ + ϵ

4y2 +

(
x2 − 4

)(
ϵ2x2(x2 − 4

)
+ 16

)
4

y + x

(
3ϵ2x4

16 − ϵ2x2 + ϵ2 + 1
)

= 0 (3.34)

where y = ẋ and ϵ is a positive constant. By applying the existence theorem, it can be
deduced that the system exhibits a periodic solution. The first condition is satisfied since,
for any r > 2, f(x, y) > 0 always holds true (Fig. 3.3). Additionally,

f(0, 0) = −16ϵ < 0, (3.35)

which satisfies the second condition. The fourth condition is met as the polynomial function
goes to infinity as x goes to infinity.

The third condition is fulfilled if

3ϵ2x4

16 − ϵ2x2 + ϵ2 + 1 > 0, (3.36)
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since x consistently meets the third condition. Analyzing the minima of the right-hand side
of Eq. (3.36) reveals

xmin = ±
√

8
3 (3.37)

and the value of the function at the minima is

ymin = −ϵ2

3 + 1. (3.38)

Therefore, Eq. (3.36) is satisfied if
0 < ϵ <

√
3, (3.39)

where ϵ =
√

3 is a bifurcation point. Consequently, the system possesses a periodic solution
for ϵ <

√
3.

Although the existence criteria do not confirm the presence of a periodic solution for
ϵ ≥

√
3, the system maintains a periodic solution for ϵ ≥

√
3, as displayed in Fig. 3.4.

This limitation can be resolved by employing randomization, which will be discussed in the
subsequent chapter.

3.3.3 Bifurcation
Bifurcation represents a change in the behavior of a dynamical system due to parameter
variations. Bifurcation can be classified into two major categories: local bifurcation and
global bifurcation. Local bifurcation occurs when an equilibrium point of the system experi-
ences a qualitative change locally, such as in a saddle-node bifurcation or a Hopf bifurcation.
A saddle-node bifurcation takes place if the equilibrium point corresponds to a zero eigen-
value, while a Hopf bifurcation occurs when the equilibrium point is associated with a pair
of purely imaginary complex conjugate eigenvalues. Global bifurcation arises when periodic
trajectories align with equilibrium points, such as in a homoclinic bifurcation.

In this section, an example involving bifurcation is introduced. The subsequent chapter
includes the utilization of randomization for analyzing such bifurcations.

Example 3.3.3. Recalling the extended Liénard equation in Eq. (3.32):

ẍ + f(x, ẋ)ẋ + g(x) = 0,

where

f(x, ẋ) = ϵ

4ẋ2 +

(
x2 − 4

)(
ϵ2x2(x2 − 4

)
+ 16

)
4

, g(x) = x

(
3ϵ2x4

16 − ϵ2x2 + ϵ2 + 1
)

.

(3.40)
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(a) ϵ = 1 (b) ϵ =
√

3, non-hyperbolic equilibria

(c) ϵ = 2, homoclinic bifurcation (d) ϵ = 2.5

Figure 3.4: Bifurcation of the extended Liénard-type oscillators
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The equilibrium points of the system and their associated eigenvalues of the Jacobian matrix
are

xeq,0 = 0, yeq,0 = 0, λ1,2(xeq,0, yeq,0) = 8ϵ ±
√

63ϵ2 − 1,

xeq,1 =
−

√
3
√

8 − 4
√

µ2−3
µ

3 , yeq,1 = 0,

λ1,2(xeq,1, yeq,1) = −16µ3

27 − 16µ2
√

µ2 − 3
27 + 8µ

3 + 16
√

µ2 − 3
9

±
2
√

−243µ2 + 486µ
√

µ2 − 3 + 16
(

2µ3 + 2µ2
√

µ2 − 3 − 9µ − 6
√

µ2 − 3
)2

+ 729

27 ,

xeq,2 =

√
3
√

8 − 4
√

µ2−3
µ

3 , yeq,2 = 0,

λ1,2(xeq,2, yeq,2) = −16µ3

27 − 16µ2
√

µ2 − 3
27 + 8µ

3 + 16
√

µ2 − 3
9

±
2
√

−243µ2 + 486µ
√

µ2 − 3 + 16
(

2µ3 + 2µ2
√

µ2 − 3 − 9µ − 6
√

µ2 − 3
)2

+ 729

27 ,

xeq,3 =
−

√
3
√

8 + 4
√

µ2−3
µ

3 , yeq,3 = 0,

λ1,2(xeq,3, yeq,3) = −16µ3

27 − 16µ2
√

µ2 − 3
27 + 8µ

3 − 16
√

µ2 − 3
9

±
2
√

−243µ2 + 486µ
√

µ2 − 3 + 16
(

2µ3 + 2µ2
√

µ2 − 3 − 9µ − 6
√

µ2 − 3
)2

+ 729

27 ,

xeq,4 =

√
3
√

8 + 4
√

µ2−3
µ

3 , yeq,4 = 0,

λ1,2(xeq,4, yeq,4) = −16µ3

27 − 16µ2
√

µ2 − 3
27 + 8µ

3 − 16
√

µ2 − 3
9

±
2
√

−243µ2 + 486µ
√

µ2 − 3 + 16
(

2µ3 + 2µ2
√

µ2 − 3 − 9µ − 6
√

µ2 − 3
)2

+ 729

27 .

(3.41)

Figure 3.4 showcases the limit cycle of the extended Liénard-type oscillator for various values
of ϵ. Two non-hyperbolic equilibrium points with a zero eigenvalue at ϵ =

√
3 can be
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observed, and each equilibrium point diverges to one saddle point and one unstable focus
when ϵ >

√
3. The zero eigenvalue can be confirmed from Eq. (3.41):

λ1 = −16µ3

27 + 8µ

3 + −729 + 2
√

16(2µ3 − 9µ)2 + 729
27 = 0. (3.42)

A homoclinic bifurcation takes place at ϵ = 2, where the limit cycle of the system coincides
with the equilibrium points (±

√
2, 0). Once the system surpasses the homoclinic bifurcation,

two additional limit cycles emerge with ϵ > 2, as displayed in Fig. 3.4.

In the next chapter, a novel approach to assess the qualitative behavior of nonlinear dy-
namical systems through randomization will be introduced. This delves into the fundamental
principles of Brownian motion, provided in the subsequent section.

3.4 Theory of Brownian Motion
The theory of Brownian motion is a key concept within the field of stochastic processes.
The derivation of the diffusion equation holds particular importance as it establishes the
foundation for the framework of randomization.

In order to derive the diffusion equation, weakly stationary stochastic processes are as-
sumed. In these processes, the mean remains constant, and the correlation between two
random variables is based solely on their time difference. Moreover, the randomized dy-
namical system relies on a Markov process—a concept that will be elaborated upon in the
following section.

3.4.1 Markov Processes
A Markov process X(t) represents a stochastic process in which the probability of the future
depends solely on the present state, not on the sequence of events that preceded it. This
means that

P (X(tn) ≤ xn|x1, . . . , xn−1) = P (X(tn) ≤ xn|xn−1), (3.43)
where tn > tn−1 > · · · > t1. If X(t) is a Markov process, any two increments of different
time interval are independent. The time intervals must be non-overlapping, for instance,
X(tn) − X(tn−1) and X(t2) − X(t1) are independent given that tn > tn−1 ≥ t2 > t1.

The Markov property is an important characteristic for simplifying the analysis of the
process. For example, the Markov property is used to derive the solution of the diffusion
equation, also known as the Fokker-Planck equation. It is also worth noting that a nonlinear
system excited by white noise is a Markov process, which is a pivotal statement when apply-
ing randomization. White noise W (t) itself is not a Markov process because it is incoherent
in the sense that W (t1) and W (t2) are uncorrelated for any two points t1 ̸= t2. In the case
of white noise, neither past nor present events influence future events.
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Markov processes can be fully characterized with the concept of transition probability.
The transition probability distribution, with continuous t and X(t), takes the form of a
conditional probability:

P (X(t) ≤ x|X(t0) = x0), (3.44)
where x0 denotes an initial time. If Eq. (3.44) is differentiable, transition probability density
is

p(x, t|x0, t0) = ∂

∂x
P (X(t) ≤ x|X(t0) = x0). (3.45)

Recalling the joint probability density (B.1) and assuming initial probability density p(x1),
the joint probability density can be written as

p(x1, t1; x2, t2; . . . ; xn, tn) = p(x1, t1)p(xn, tn|xn−1, tn−1) . . . p(x2, t2|x1, t1). (3.46)

One can demonstrate that a Markov process is also Markovian in reverse, i.e., for arbitrary
instants t1 < t2 < · · · < tn, the transition probability satisfies

p(x1, t1|x2, t2; x3, t3; . . . ; xn, tn) = p(x1, t1|x2, t2). (3.47)

3.4.2 Chapman-Kolmogorov Equation
Given a Markov process X(t) with transition probability density p(x, t|y, s), where s < t,
and considering an intermediate state between the starting state x1 at time t1 and the end
state x2 at time t2, the probability density can be written as

p(x2, t2; x1, t1) =
∫ ∞

−∞
p(x2, t2; x, t; x1, t1)dx =

∫ ∞

−∞
p(x2, t2|x, t)p(x, t|x1, t1)p(x1, t1)dx

(3.48)
Since the x1 and t1 do not depend on x, dividing both sides by p(x1, t1) results in

p(x2, t2|x1, t1) = p(x2, t2; x1, t1)
p(x1, t1)

=
∫ ∞

−∞
p(x2, t2|x, t)p(x, t|x1, t1)dx. (3.49)

The obtained equation is known as the Chapman-Kolmogorov equation or Smoluchowski
equation, which acts as a conservation law for probability. It should be noted that the pres-
ence of a Markov process is a sufficient condition for the Chapman-Kolmogorov equation,
although the reverse does not always hold true. If the underlying Markov process is a dif-
fusion process, the Chapman-Kolmogorov equation can be formulated as a parabolic partial
differential equation, called a diffusion equation. The solution of the diffusion equation pro-
vides the transition probability density p(x, t|y, s), which fully determines the response of
the given system.

An irreducible Markov process has all its states reachable from any other state and is
ergodic if it returns to every state it previously visited with a probability of one as time pro-
gresses. When both conditions are satisfied, the process entails an equilibrium distribution
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independent of the initial distribution, which implies that

lim
t→∞

p(x, t|y, s) = ps(x),
∫ ∞

−∞
ps(x)dx = 1. (3.50)

This stationary probability density function ps(x) is independent of the initial position x0
and t; determining it can assist in the analysis of deterministic nonlinear oscillators with the
framework of randomization.

3.4.3 Diffusion Processes
The diffusion equation is important to understand and successfully utilize the method of
randomization, where the drift and diffusion coefficients are directly related to the coefficients
of a randomized dynamical system.

A physical system modeled by a Markov process can be classified as a diffusion process
when it satisfies the diffusion assumptions, illustrated in Eq. (3.52). Considering a Markov
process X(t) with a transition probability function p(x, t|y, s), where s < t, and taking a
time increment ∆t, the moments of change in the spatial coordinate are given by

mn(x, t) =
∫ ∞

−∞
(z − x)np(z, t + ∆t|x, t)dz = E

[
(∆X)n|X(t) = x

]
. (3.51)

In order for the Markov process to be classified as a diffusion process, the following diffusion
assumptions must hold:

lim
∆t→0

1
∆t

m1(x, t) = lim
∆t→0

1
∆t

E
[
∆X|X(t) = x

]
= m(x, t),

lim
∆t→0

1
∆t

m2(x, t) = lim
∆t→0

1
∆t

E
[
(∆X)2|X(t) = x

]
= σ(x, t),

lim
∆t→0

1
∆t

mn(x, t) = lim
∆t→0

1
∆t

E
[
(∆X)n|X(t) = x

]
= 0, n > 2.

(3.52)

Equation (3.52) asserts that, in small-time intervals, the spatial coordinate undergoes only
minor changes. The first and second moments are proportional to ∆t, whereas higher mo-
ments display an order higher than ∆t.

If these assumptions hold true, a Markov process is classified as a diffusion process. This
can be verified for specific physical systems such as the Langevin equation. The functions
m(x, t) and σ(x, t) are respectively referred to as drift and diffusion coefficients. Analogous
definitions also apply to vector stochastic processes. A system excited by white noise always
satisfies the diffusion assumptions under the assumption of Markovian behavior.

The Markov process X(t), characterized by a transition probability function p(x, t|y, s),
where s < t, can be examined through the arbitrary function R(x) which diminishes suffi-
ciently fast when x → ±∞:∫ ∞

−∞

∂

∂t
p(x, t|y, s)R(x)dx =

∫ ∞

−∞
lim

∆t→0

p(x, t + ∆t|y, s) − p(x, t|y, s)
∆t

R(x). (3.53)
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The right-hand side of the above equation can be rewritten as∫ ∞

−∞
lim

∆t→0

p(x, t + ∆t|y, s) − p(x, t|y, s)
∆t

R(x)

= lim
∆t→0

1
∆t

(∫ ∞

−∞
R(x)p(x, t + ∆t|y, s)dx −

∫ ∞

−∞
R(z)p(z, t|y, s)dz

)
.

(3.54)

Using the Chapman-Kolmogorov equation yields

lim
∆t→0

1
∆t

(∫ ∞

−∞
R(x)

∫ ∞

−∞
p(x, t + ∆t|z, t)p(z, t|y, s)dzdx −

∫ ∞

−∞
R(z)p(z, t|y, s)dz

)

= lim
∆t→0

1
∆t

∫ ∞

−∞
p(z, t|y, s)

(∫ ∞

−∞
R(x)p(x, t + ∆t|z, t)dx − R(z)

)
dz.

(3.55)

Expanding R(x) about the intermediate state z results in

R(x) = R(z) + R′(z)(x − z) + 1
2R′′(z)(x − z)2 + O(x − z)3. (3.56)

By applying the diffusion assumptions, the following expression is obtained:∫ ∞

−∞
R(x)p(x, t + ∆t|z, t)dx − R(z) =

∫ ∞

−∞
R′(z)(x − z)p(x, t + ∆t|z, t)dx

+
∫ ∞

−∞

1
2R′′(z)(x − z)p(x, t + ∆t|z, t)dx +

∫ ∞

−∞
O(x − z)3p(x, t + ∆t|z, t)dx

= R′(z)m(z, t)∆t + 1
2R′′(z)σ(z, t)∆t + o(∆t).

(3.57)

Inserting this result into Eq. (3.55) yields∫ ∞

−∞

∂

∂t
p(x, t|y, s)R(x)dx =

∫ ∞

−∞
p(z, t|y, s)

(
R′(z)m(z, t) + 1

2R′′(z)σ(z, t)
)

dz (3.58)

Integration by parts of the first term on the right-hand side gives∫ ∞

−∞
pR′(z)m(z, t)dz = pR(z)m

∣∣∞
−∞ −

∫ ∞

−∞
R(z) ∂

∂z

(
p
(
z, t|y, s

)
m(z, t)

)
dz

= −
∫ ∞

−∞
R(z) ∂

∂z

(
p
(
z, t|y, s

)
m(z, t)

)
dz.

(3.59)

Similarly, the second term on the right-hand side can be written as∫ ∞

−∞
pR′′(z)σdz = pR′(z)σ

∣∣∞
−∞ −

∫ ∞

−∞
R′(z) ∂

∂z

(
p
(
z, t|y, s

)
σ(z, t)

)
dz

= −
∫ ∞

−∞
R′(z) ∂

∂z

(
p
(
z, t|y, s

)
σ(z, t)

)
dz.

(3.60)
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Integration by parts again yields∫ ∞

−∞
pR′′(z)σdz = −pR(z)σ

∣∣∞
−∞ +

∫ ∞

−∞
R(z) ∂2

∂z2

(
p
(
z, t|y, s

)
σ(z, t)

)
dz

=
∫ ∞

−∞
R(z) ∂2

∂z2

(
p
(
z, t|y, s

)
σ(z, t)

)
dz.

(3.61)

Equation (3.58) then becomes∫ ∞

−∞
pR′(z)mdz = pR(z)m

∣∣∞
−∞ −

∫ ∞

−∞
R(z) ∂

∂z

(
p
(
z, t|y, s

)
m(z, t)

)
dz

=
∫ ∞

−∞
R(z)

(
− ∂

∂z

(
p
(
z, t|y, s

)
m(z, t)

)
+ 1

2
∂2

∂z2

(
p
(
z, t|y, s

)
σ(z, t)

))
dz.

(3.62)

As a consequence, by replacing z by x on the right-hand side,∫ ∞

−∞

∂p

∂t
R(x)dx =

∫ ∞

−∞
R(x)

(
− ∂

∂x
(pm) + 1

2
∂2

∂x2 (pσ)
)

dx. (3.63)

Factoring out R(x) yields∫ ∞

−∞
R(x)

(
∂p

∂t
+ ∂

∂x
(pm) − 1

2
∂2

∂x2 (pσ)
)

= 0. (3.64)

Given that R(x) is arbitrary it results in a partial differential equation for p(x, t|y, s):

∂p

∂t
= − ∂

∂x
(pm) + 1

2
∂2

∂x2 (pσ). (3.65)

Equation (3.65), known as the forward diffusion or Fokker-Planck equation, is a parabolic
linear partial differential equation. It was first proposed by Einstein and Smoluchowski,
although its name was given later by Adrian Fokker who worked with Max Planck [9]. The
forward diffusion equation is more general than the earlier work on diffusion equations; it
contains a convection term in addition to the diffusion term. Similarly, it can be shown that
the transition probability p(x, t|y, s) satisfies the backward diffusion equation, also known as
the Kolmogorov equation:

−∂p

∂s
= m

∂p

∂y
+ 1

2σ
∂2p

∂x2 . (3.66)

The forward and backward diffusion equations are adjoint differential equations; the solution
of one is equivalent to the solution of the other. The term diffusion equation will be used
throughout this thesis to indicate the forward diffusion equation, unless specified otherwise.
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Chapter 4

Qualitative Analysis by
Randomization

This chapter expounds on the importance of randomization in uncovering qualitative be-
haviors of nonlinear systems. To randomize deterministic systems, white-noise excitation
is added to the equations of motion. An extensive analysis of qualitative behaviors of de-
terministic systems is conducted by finding the exact solution for the stationary diffusion
equation associated with randomized systems.

4.1 Framework of Randomization
Consider a deterministic nonlinear dynamical system, governed by Eq. (3.2):

ż = a(z).

In certain circumstances, it is advantageous to introduce white noise W (t) to randomize the
system. This yields

Ż = a(Z) + bW (t), (4.1)

where Z = [X, Y ]T represents a two-dimensional vector of diffusion processes, and b =
[b1, b2]T is a constant vector. This approach can be extended to an n-dimensional system, as
shown in Eq. (4.2): 

Ẋ1(t)
Ẋ2(t)

...
Ẋn(t)

 =


a1(Z)
a2(Z)

...
an(Z)

+


b1

b2
...

bn

W (t). (4.2)
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In this generalization, b is a constant vector and W (t) denotes zero-mean white noise char-
acterized by power spectral density S0. Defining σ as

σ = [σij(z, t)] = 2πS0bbT , (4.3)

the system response Z(t) constitutes a diffusion process, defined by its transition probability
p(z, t|z0). This probability satisfies the diffusion equation given by

∂p

∂t
= −

n∑
i=1

∂

∂xi

(
ai(z)p

)
+ 1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj

(
σij(z, t)p

)
, (4.4)

where the following relations hold:

ai(z) = lim
∆t→0

1
∆t

E
[
∆Xi|z

]
,

σij(z, t) = lim
∆t→0

1
∆t

E
[
∆Xi∆Xj|z

]
.

(4.5)

This formulation applies to any autonomous dynamical system, regardless of its nonlinearity,
and solving the diffusion equations achieves a complete specification of the system response.

Recalling the deterministic system of interest introduced in Eq. (1.1):

ẍ + ϵα(x, ẋ) + β(x, ẋ) = 0,

it can be represented in state-space form as described in Eq. (4.6):

ż =

ẋ

ẏ

 =

 y

−ϵα(x, y) − β(x, y)

. (4.6)

Randomizing this system using white noise W (t) results in

Ẍ + ϵα
(

X, Ẋ
)

+ β
(

X, Ẋ
)

= W (t),

which can alternatively be represented by

Ż =

Ẋ

Ẏ

 =

 Y

−ϵα(X, Y ) − β(X, Y )

+

0
1

W (t). (4.7)

In this case, the following expressions are applicable:a1(Z)
a2(Z)

 =

 Y

−ϵα(X, Y ) − β(X, Y )

, [σij(z, t)] = 2πS0bbT = 2πS0

0 0
0 1

. (4.8)
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Assuming p(z, t|z0) represents the transition probability density of the system, the associated
diffusion equation takes the following form:

∂p

∂t
= −y

∂p

∂x
+ ∂

∂y

(
(ϵα + β)p

)
+ πS0

∂2p

∂y2 .

Determining the transition probability p(z, t|z0) for a system typically involves solving ei-
ther a nonlinear stochastic ordinary differential equation or a linear second-order partial
differential equation of diffusion.

Notably, when the transition probability p(z, t|z0) attains a relative maximum value, it
lies along the trajectory passing through z0 = [x0, ẋ0]T in the phase plane. In steady-state
conditions, the diffusion equation can be further simplified to

0 = −y
∂ps

∂x
+ ∂

∂y

(
(ϵα + β)ps

)
+ πS0

∂2ps

∂y2 .

Here, ps(z) denotes the stationary probability density function, which is sufficient for iden-
tifying key qualitative behaviors of the deterministic system.

Randomization considerably simplifies and enhances the understanding of deterministic
systems when studying their qualitative behaviors, even though this might seem counterintu-
itive. One could think that the linear partial differential equation of diffusion for randomized
systems would be harder to solve than the nonlinear ordinary differential equation governing
deterministic systems due to increased dimensionality.

However, the linear nature of the partial differential equation allows for the application
of various mathematical techniques usually not applicable to nonlinear ordinary differential
equations of deterministic systems.

Moreover, the probability density of randomized systems streamlines the comprehension
of the behavior and structure of deterministic systems. Analyzing the stationary probability
density function becomes easier in identifying the stability of equilibrium points, limit cy-
cles, or bifurcations—information that is more challenging to extract from the deterministic
nonlinear ordinary differential equation alone.

4.2 Linear Systems
This section presents two examples to illustrate the application of randomization to linear
systems: Linear systems with damping and damped harmonic oscillators. The solutions of
the related diffusion equations are obtained using the Fourier transform method.

Linear Damping
Consider a deterministic linear dynamical system represented by the following differential
equation:

mẍ + cẋ = 0. (4.9)
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By denoting ẋ = v, the system can be rewritten as

mv̇ + cv = 0, (4.10)

where m denotes the mass of the particle, and c signifies the damping constant. The solution
to this system takes the form:

v(t) = v0 exp
(

− c

m
t

)
. (4.11)

To introduce randomization in the aforementioned linear system, consider adding white noise
W (t), which results in the Langevin equation [11, 76]:

m
dV

dt
+ cV = W (t), t > 0. (4.12)

In this case, V (0) = v0 and W (t) represents white noise with zero mean and constant power
spectral density. Consequently, the deterministic velocity v(t) transforms into a diffusion
process V (t).

The excitation W (t) accounts for the force of random collisions between the heavy Brown-
ian particle and lighter fluid particles. The mean effect of these collisions causes the Brownian
particle to slow down. It is expected that under random disturbance, the mean path of X(t)
aligns with the deterministic solution. When W (t) is applied over the interval −∞ < t < ∞,
the response X(t) becomes weakly stationary, implying that E

[
X(t)

]
is constant and inde-

pendent of any initial conditions. The mean-square response can be determined by

E
[
X2(t)

]
=
∫ ∞

−∞
SX(ω)dω = S0

∫ ∞

−∞

∣∣H(iω)
∣∣2dω = S0

∫ ∞

−∞

∣∣∣∣ 1
iω + β

∣∣∣∣2dω, (4.13)

where SX(ω) represents the power spectral density of X(t), and H(iω) is the transfer function
of the system. Assuming that H(iω) is a rational function, it can be expressed as

H(iω) = iωB1 + B0

−ω2A2 + iωA1 + A0
. (4.14)

Integrating the transfer function over the entire frequency range yields∫ ∞

−∞

∣∣H(iω)
∣∣2dω = π

(
B2

0A2 + B2
1A0

A0A1A2

)
. (4.15)

Since A0 = β, A1 = 1, A2 = 0, B1 = 0, and B0 = 1, the following result is obtained:

E
[
X2(t)

]
= S0

∫ ∞

−∞

∣∣∣∣ 1
iω + β

∣∣∣∣2dω = πS0

β
. (4.16)
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Consider a first-order system with drift and diffusion coefficients a(X) and b(X), represented
by

Ẋ = a(X) + b(X)W (t).

By defining

m(x, t) = −βx, σ(x, t) = 2πS0b
2(x, t) = 2πS0, (4.17)

where β = c/m, similar results can be obtained using the procedure outlined in Section 3.4.3.
Integrating the governing equation over a time increment ∆t provides

X(t + ∆t) − X(t) + β

∫ t+∆t

t

X(u)du =
∫ t+∆t

t

W (u)du. (4.18)

Application of the mean-value theorem leads to

∆X = −βX(τ)∆t +
∫ t+∆t

t

W (u)du, (4.19)

where t < τ < t + ∆t denotes the time when the mean value of X(t) is taken. Averaging
this equation results in

E[∆X] = −βE
[
X(τ)

]
∆t +

∫ t+∆t

t

E
[
W (u)

]
du = −βE

[
X(τ)

]
∆t. (4.20)

Therefore,

m(x, t) = lim
∆t→0

1
∆t

E
[
∆X|X(t) = x

]
= − lim

∆t→0
βE
[
X(τ)

]
= −βx. (4.21)

Additionally,

E
[
(∆X)2|X(t)

]
= β2X2(∆t)2 +

∫ t+∆t

t

∫ t+∆t

t

E
[
W (u)W (v)

]
dudv. (4.22)

Given that E
[
W (u)W (v)

]
= 2πS0δ(u−v), where δ(u−v) represents the Dirac delta function,

Eq. (4.22) can be modified as

E
[
(∆t)2|X(t)

]
= β2X2(∆t)2 + 2πS0∆t. (4.23)

Consequently,

σ(x, t) = lim
∆t→0

1
∆t

E
[
(∆t)2|X(t) = x

]
= 2πS0. (4.24)
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Verification for higher moments of ∆x demonstrates that

lim
∆t→0

1
∆t

E
[
(∆t)n|X(t) = x

]
= 0, n > 2. (4.25)

This finding indicates that diffusion assumptions are satisfied, and the associated diffusion
equation is

∂p(x, t)
∂t

= − ∂

∂x

(
m(x, t)p(x, t)

)
+ 1

2
∂2

∂x2

(
σ(x, t)2p(x, t)

)
. (4.26)

Substituting (4.17) into the diffusion equation yields

∂p(x, t)
∂t

= β
∂

∂x

(
xp(x, t)

)
+ πS0

∂2

∂x2 p(x, t), (4.27)

which constitutes a parabolic partial differential equation. Solving the diffusion equation
provides the transition probability p(x, t|x0). The initial condition for this equation can be
expressed as

p(x, 0|x0) = δ(x − x0). (4.28)

The diffusion equation cannot be solved using separation of variables; however, it can be
reduced to a first-order partial differential equation through the application of the Fourier
transform. Define the Fourier transform of p(x, t|x0) and the inverse Fourier transform of
ϕ(ω, t) as follows:

F [p] =
∫ ∞

−∞
p(x, t|x0)eiωxdx = ϕ(ω, t),

F−1[ϕ] = 1
2π

∫ ∞

−∞
ϕ(ω, t)e−iωxdω = p(x, t|x0).

(4.29)

Since differentiation with respect to the spatial coordinate x corresponds to multiplication
by −iω in the frequency domain, as observed from

∂

∂x
p(x, t|x0) = 1

2π

∫ ∞

−∞
−iωϕ(ω, t)e−iωxdω = F−1[−iωϕ], (4.30)

the equation can be written as

F
[

∂p

∂x

]
= −iωϕ, F

[
∂2p

∂x2

]
= −ω2ϕ. (4.31)

Likewise, differentiation of F [p] with respect to ω is equivalent to multiplication by ix,
exemplified by

∂

∂ω
ϕ(ω, t) = ∂

∂ω
F [p] =

∫ ∞

−∞
ixp(x, t|x0)eiωxdx = F [ixp], (4.32)
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resulting in

F
[

∂

∂x
(xp)

]
= −iωF [xp] = −ωF [ixp] = −ω

∂ϕ

∂ω
. (4.33)

Taking the Fourier transform of the diffusion equation produces

∂ϕ

∂t
= −βω

∂ϕ

∂ω
− ω2πS0ϕ. (4.34)

The initial condition can then be expressed as

ϕ(ω, 0) =
∫ ∞

−∞
p(x, 0|x0)eiωxdx = F

[
δ(x − x0)

]
= eiωx0 . (4.35)

Equation (4.34) represents a first-order linear partial differential equation solvable through
the method of characteristics. Rewriting the equation as

∂ϕ

∂t
+ βω

∂ϕ

∂ω
= −ω2πS0ϕ, (4.36)

with initial condition given by ϕ(ω, 0) = eiωx0 , results in auxiliary equations:

dt

1 = dω

βω
= dϕ

−ω2πS0ϕ
. (4.37)

From the first part of these auxiliary equations, a separable differential equation emerges:

dt

1 = dω

βω
, (4.38)

leading to the solution
ωe−βt = c1. (4.39)

Similarly, the second part of the auxiliary equations provides

ϕ exp
(

πS0

2β
ω2
)

= c2. (4.40)

The general solution can be expressed as

ϕ exp
(

πS0

2β
ω2
)

= f(ωe−βt), (4.41)

or equivalently,
ϕ(ω, t) = f(ωe−βt) exp

(
−πS0

2β
ω2
)

, (4.42)
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where f represents an arbitrary function. Applying the given initial condition leads to

ϕ(ω, 0) = f(ω) exp
(

−πS0

2β
ω2
)

= eiωx0 , (4.43)

resulting in
f(ω) = exp

(
iωx0 + πS0

2β
ω2
)

. (4.44)

Hence, the following expression is obtained:

ϕ(ω, t) = exp
(

iωx0e
−βt − πS0

2β
ω2
(

1 − e−2βt
))

. (4.45)

Note that a normal random variable with probability density defined by

p(x) = 1√
2πσ

exp
(

−(x − µ)2

2σ2

)
(4.46)

has the characteristic function

ϕ(ω) = exp
(

iµω − σ2ω2

2

)
. (4.47)

Therefore, the transition probability follows as

p(x, t|x0) = 1√
2πσ(t)

exp

−
(
x − µ(t)

)2

2σ2(t)

, (4.48)

where

µ(t) = x0 exp(−βt), σ(t) =

√
πS0

β

(
1 − exp(−2βt)

)
. (4.49)

The diffusion equation associated with the Langevin equation cannot be solved by separation
of variables; that is p(x, t|x0) ̸= f(x)g(t). The response process X(t) follows a normal
distribution with mean µ and variance σ for all t, which is consistent with the results obtained
from Eq. (4.10). As time t → ∞, the mean µ(t) converges to zero due to damping, while the
limiting value of σ2(t) becomes πS0/β, as illustrated in Fig. 4.1. Consequently, the random
collisions represented by white noise W (t) contribute to slowing down the Brownian particle,
but the uncertainty in the response remains bounded. These characteristics can be taken
into consideration when designing systems. Furthermore, the stationary probability density
of the Langevin equation in the steady state is given by

ps(x) = lim
t→∞

p(x, t|x0) = 1√
2πσ

exp
(

− x2

2σ2

)
, (4.50)
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Figure 4.1: Mean and variance of the Langevin equation

where

σ2 = πS0

β
. (4.51)

Additionally, the stationary probability density can be determined as the solution to the
following equation:

β
d

dx

(
xps(x)

)
+ πS0

d2ps

dx2 = 0. (4.52)

Notably, the stationary probability density is identical the solution acquired by considering
a stationary excitation W (t) for −∞ < t < ∞. When β equals zero (no damping), the
diffusion equation simplifies to the heat conduction equation:

∂p

∂t
= πS0

∂2p

∂x2 , (4.53)

which implies that there is no stationary probability density for the velocity of the Brownian
particle in the absence of damping.

Linear Damping with Linear Stiffness
Consider a deterministic linear single-degree-of-freedom mechanical system represented by
the following form:

ẍ + cẋ + kx = 0, (4.54)
where c is damping constant and k is stiffness. The system can be randomized by introduc-
ing a white-noise excitation W (t) on the right-hand side of the equation, resulting in the
stochastic differential equation below:

Ẍ + cẊ + kX = W (t), Ẋ(0) = ẋ0, X(0) = x0. (4.55)
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Here, W (t) represents a white noise process with zero mean and a constant power spectral
density S0. To construct a state-space representation of the system, a two-dimensional state
vector Z is defined as

Z =

 X

Y = Ẋ

.

The corresponding state-space representation of the system is given by

Ż =

 0 1
−k −c

Z +

0
1

W (t), Z(0) = z0 =

x0

ẋ0

. (4.56)

Define p(z, t|z0) as the transition probability density of the state vector z at time t, given
the initial state z0. The diffusion equation for the system is expressed as

∂p

∂t
= − y

∂p

∂x
+ ∂

∂y

(
(cy + kx)p

)
+ πS0

∂2p

∂y2 (4.57)

with a corresponding initial condition

p(z, 0|z0) = δ(x − x0)δ(y − ẋ0). (4.58)

Since the state vector is two-dimensional, a two-fold Fourier transform of p(z, t|z0) is proposed
in order to solve the diffusion equation, which can be expressed as

F [p] =
∫ ∞

−∞

∫ ∞

−∞
p(z, t|z0)e−iω·zdxdy = ϕ(ω, t), (4.59)

where ω =
[
ωx, ωy

]T

is the two-dimensional frequency vector. The inverse Fourier transform
of ϕ can also be used to obtain the expression of p:

F [ϕ]−1 = 1
4π2

∫ ∞

−∞

∫ ∞

−∞
ϕ(ω, t)eiω·zdωxdωy = p(z, t|z0). (4.60)

The Fourier transform of the partial derivative terms can be obtained by taking the partial
derivative of ϕ. For example, the partial derivative of ϕ with respect to ωx is

∂ϕ

∂ωy

= F [iyp].

Taking the inverse Fourier transform of both sides of the equation results in

iyp = F−1

[
∂ϕ

∂ωy

]
.
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By virtue of the Eq. (4.30), the x derivative of yp can be expressed as

i
∂(yp)

∂x
= F−1

[
−iωx

∂ϕ

∂ωy

]
.

Finally, the Fourier transform of the above equation is

F
[

∂(yp)
∂x

]
= −iωx

∂ϕ

∂ωy

. (4.61)

The following results can be derived when a similar approach is employed:

F
[

∂

∂y
(yp)

]
= −ωy

∂ϕ

∂ωy

, F
[

∂

∂y
(xp)

]
= −ωy

∂ϕ

∂ωx

, F

[
∂2p

∂y2

]
= ω2

yϕ. (4.62)

Taking the Fourier transform of (4.57) and using the above results, the following partial
differential equation can be obtained:

∂ϕ

∂t
= ωx

∂ϕ

∂ωy

− cωy
∂ϕ

∂ωy

− kωy
∂ϕ

∂ωx

− πS0ω
2
yϕ (4.63)

with the initial condition being

ϕ(ω, 0) = exp(−iω · z0). (4.64)

Considering the first-order partial differential equation:
∂ϕ

∂t
+ kωy

∂ϕ

∂ωx

+ (cωy − ωx) ∂ϕ

∂ωy

= −πS0ω
2
yϕ. (4.65)

By employing the method of characteristics, the auxiliary equations become
dt

1 = dωx

kωy

= dωy

cωy − ωx

= dϕ

−πS0ω2
yϕ

. (4.66)

Unfortunately, these equations cannot be integrated since the equations are not separable.
However, the stationary probability density function ps can be determined through a heuristic
approach. The stationary probability density is governed by Eq. (4.57) with t → ∞,

−y
∂ps

∂x
+ ∂

∂y

(
(cy + kx)ps

)
+ πS0

∂2ps

∂y2 = 0. (4.67)

This equation is precisely satisfied if

−y
∂ps

∂x
+ ∂

∂y
(kxps) = 0,

∂

∂y
(cyps) + πS0

∂2ps

∂y2 = 0.

(4.68)
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Figure 4.2: The stationary probability density function of the randomized linear mechanical
system

The first-order partial differential equation can be solved by the method of characteristics
highlighted in Section A.2.2. The general solution can then be represented as

ps = h

(
1
2kx2 + 1

2y2
)

= h(H), (4.69)

where h is an arbitrary function. Furthermore, the first part of Eq. (4.68) can be written as

∂

∂y

(
cyps + πS0

∂ps

∂y

)
= 0, (4.70)

which leads to
cyps + πS0

∂ps

∂y
= e(x). (4.71)
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Since ps and its first-order derivatives vanish as |x| + |y| → ∞, it follows that e(x) = 0.
Substituting ps = e(H) in the above equation shows

cyh + πS0
dh

dH
y = 0. (4.72)

Canceling y and integrating gives

h = A exp
(

−cH

πS0

)
, (4.73)

where A is a normalization constant. Consequently, the stationary probability density is

ps(x, y) =
exp
(

−c
πS0

(1
2kx2 + 1

2y2))∫∞
−∞

∫∞
−∞ exp

(
−c
πS0

(1
2kx2 + 1

2y2
))

dxdy
. (4.74)

It is verified that the expression above is a solution by utilizing

∂

∂x
ps(x, y) = ps(x, y)

(
− ck

πS0
x

)
,

∂

∂y
ps(x, y) = ps(x, y)

(
− c

πS0
y

)
. (4.75)

As a result of the uniqueness of the solution, this is the only possible solution. In the steady
state, x, y are independent and jointly normal. Since the damping constant c is non-zero,

E[x] = E[y] = 0. (4.76)

In the steady state,

σ2
x = πS0

ck
, σ2

y = πS0

c
. (4.77)

A contour of the stationary probability density is included in Fig. 4.2, which indicates a
stable focus at the origin. When c = 0, the stationary probability density does not exist
since the origin is a center.

4.3 Nonlinear Damping
In the presence of nonlinearity in dynamical systems, solution techniques employing Fourier
transform, as introduced in Section 4.2, are no longer applicable due to the existence of non-
linear drift/diffusion coefficients in the diffusion equation. Therefore, alternative approaches,
primarily heuristic methods, can be employed to solve the diffusion equation. The random-
ization of nonlinear systems and corresponding solution methods are presented until the end
of this chapter. Consider a nonlinear system of the form:

ẍ + g(ẋ) = 0, t > 0. (4.78)



CHAPTER 4. QUALITATIVE ANALYSIS BY RANDOMIZATION 40

Rewriting the equation with velocity yields

v̇ + g(v) = 0, (4.79)

where g(v) is a nonlinear function. Without loss of generality, let v = x, then

ẋ + g(x) = 0. (4.80)

Introducing a white-noise excitation W (t) on the right-hand side of the equation results in
the randomized system:

Ẋ + g(X) = W (t). (4.81)

The diffusion equation and the stationary probability density function associated with the
response X(t) can now be determined. Denote p(x, t|x0) as the transition probability, with
the diffusion equation given by

∂p

∂t
= ∂

∂x

(
g(x)p

)
+ πS0

∂2p

∂x2 , (4.82)

where p(x, 0|x0) = δ(x − x0). As t → ∞, p(x, t|x0) → ps(x) and the stationary probability
density satisfies

d

dx

(
g(x)ps(x)

)
+ πS0

d2ps

dx2 = d

dx

(
g(x)ps + πS0

dps

dx

)
= 0. (4.83)

Since both ps(x) and dps/dx vanish as |x| → ∞,

g(x)ps + πS0
dps

dx
= 0. (4.84)

Integrating the above equation yields

ps(x) = A exp
(

− 1
πS0

∫ x

0
g(z)dz

)
, (4.85)

with A being a normalization constant:

A =
(∫ ∞

−∞
exp
(

− 1
πS0

∫ x

0
g(z)dz

)
dx

)−1

. (4.86)

For g(x) = 0, the diffusion equation reduces to the heat conduction equation

∂p

∂t
= πS0

∂2p

∂x2 . (4.87)

In this case, stationary probability density does not exist because damping is absent.
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Example 4.3.1. Consider a nonlinear oscillator described by the following equation:

ẋ + ax + bx3 = 0, t > 0, (4.88)

where a, b are positive constants. Applying the procedure outlined above, the system can
be randomized by introducing a white-noise excitation W (t) with zero mean and constant
power spectral density S0:

Ẋ + aX + bX3 = W (t). (4.89)

Let p(x, t|x0) be the transition probability. The diffusion equation is

∂p

∂t
= ∂

∂x

(
(ax + bx3)p

)
+ πS0

∂2p

∂x2 , (4.90)

where p(x, 0|x0) = δ(x − x0). As lim
t→∞

p(x, t|x0) = ps(x), the stationary probability density
satisfies

d

dx

(
(ax + bx3)ps(x) + πS0

dps

dx

)
= 0. (4.91)

Given that both ps(x) and dps/dx vanish as |x| → ∞,

(ax + bx3)ps + πS0
dps

dx
= 0. (4.92)

Integrating the above equation results in

ps(x) = A exp

− 1
πS0

(
ax2

2 + bx4

4

), (4.93)

with A being a normalization constant:

A =

∫ ∞

−∞
exp

− 1
πS0

(
ax2

2 + bx4

4

)dx


−1

. (4.94)

If a < 0 and b < 0, then A approaches infinity and stationary probability density does not
exist because the system is unstable.

Example 4.3.2. The function g(x) in Eq. (4.81) need not be differentiable. Consider the
following deterministic nonlinear oscillator

ẋ + k sgn(x) = 0, t > 0. (4.95)



CHAPTER 4. QUALITATIVE ANALYSIS BY RANDOMIZATION 42

The randomized system is described by

Ẋ + k sgn(X) = W (t), (4.96)

where k is a positive constant, X(0) = x0, and W (t) is white noise with zero mean and
constant power spectral density S0. The signum function sgn(X) is defined as

sgn(X) =


1 X > 0
0 X = 0
−1 X < 0

. (4.97)

The diffusion equation and stationary probability density associated with the response X(t)
can be constructed in a manner similar to the previous example. An unconstrained Brownian
particle subjected to Coulomb friction is governed by

Ÿ + k sgn
(

Ẏ
)

= W (t). (4.98)

In terms of velocity, the equation assumes the form

V̇ + k sgn(V ) = W (t), (4.99)

which is identical to Eq. (4.96) with X = V . Let p(x, t|x0) be the transition probability.
The forward diffusion equation for the transition probability p(x, t|x0) can be expressed as

∂p

∂t
= ∂

∂x

(
k sgn(x)p

)
+ πS0

∂2p

∂x2 , (4.100)

where p(x, 0|x0) = δ(x − x0). As the limit of p(x, t|x0) approaches infinity, the stationary
probability density satisfies

d

dx

(
k sgn(x)ps(x) + πS0

dps

dx

)
= 0. (4.101)

Integrating the above equation yields
dps

dx
+ k

πS0
sgn(x)ps = C. (4.102)

Since both ps(x) and dps/dx vanish as |x| → ∞, the constant C = 0. Consequently, the
stationary probability density is given by

ps(x) = k

2πS0
exp
(

− k

πS0
|x|
)

. (4.103)

As expected, ps(x) reaches a maximum when the velocity x = 0. Nevertheless, due to
continual large collision forces acting on the Brownian particle, there is a small chance that
the velocity x ̸= 0 in the steady state. The discontinuity of the magnitude of the Coulomb
friction d|x|/dx = sgn(x) can also be confirmed.
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4.4 Linear Damping with Nonlinear Stiffness
This section considers a nonlinear dynamical system of the following form:

ẍ + cẋ + g(x) = 0, (4.104)

where c is a positive constant, g(x) is a nonlinear function. The randomization of the system
results in

Ẍ + cẊ + g(X) = W (t). (4.105)

Here, X(0) = x0 and Ẋ(0) = ẋ0 are initial conditions, and W (t) is stationary Gaussian
white noise with zero mean and constant power spectral density S0. In the state-space form,
the system is given by

Ż =

Ẋ

Ẍ

 =

Ẋ

Ẋ

 = a(Z) + bW (t),

a(Z) =

 Y

−cY − g(X)

, b =

0
1

.

(4.106)

Let p(z, t|z0) denote the transition probability of the system, for which the associated diffu-
sion equation is given by

∂p

∂t
= −y

∂p

∂x
+ ∂

∂y

((
cy + g(x)

)
p
)

+ πS0
∂2p

∂y2 . (4.107)

The initial condition is

p(z, 0|z0) = δ(z − z0) = δ(x − x0)δ(y − ẋ0). (4.108)

The governing equation for stationary probability density can be deduced as follows:

−y
∂ps

∂x
+ ∂

∂y

((
cy + g(x)

)
ps

)
+ πS0

∂2ps

∂y2 = 0. (4.109)

If a candidate solution ps satisfies the equations

−y
∂ps

∂x
+ ∂

∂y

(
g(x)ps

)
= 0,

∂

∂y
(cyps) + πS0

∂2ps

∂y2 = 0, (4.110)

then ps will be accepted as the solution of Eq. (4.109). To determine ps, the method of
characteristics is employed in Eq. (4.110), resulting in the following general solution1:

ps(x, y) = h

(∫
g(x)dx + 1

2y2
)

= h(H). (4.111)
1The detailed procedure is presented in Example A.2.3.
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The arbitrary function h is defined, with Eq. (4.110), leading to

∂

∂y

(
cyps + πS0

∂ps

∂y

)
= 0. (4.112)

Integrating the above equation over y yields

cyps + πS0
∂ps

∂y
= e(x). (4.113)

Since ps and its first-order derivatives vanish as |x| + |y| → ∞, e(x) becomes zero:

cyps + πS0
∂ps

∂y
= 0. (4.114)

Substituting ps = h(H) into this equation leads to

cyh + πS0
dh

dH
y = 0. (4.115)

Canceling y and integrating, the solution becomes

h = A exp
(

− cH

πS0

)
, (4.116)

where A is a normalization constant. The stationary probability density can be expressed as

ps(x, y) =
exp
(

−c
πS0

(∫
g(x)dx + 1

2y2))∫∞
−∞

∫∞
−∞ exp

(
−c
πS0

(∫
g(x)dx + 1

2y2
))

dxdy
. (4.117)

Given that there is only one solution for the problem, the result is unique. Additionally,
it is worth noting that although x and y are independent, they are not jointly normally
distributed. Furthermore, the governing partial differential equation cannot be solved via
separation of variables due to its incompatibility with such a technique as one side depends
on x while the other side depends on y. To illustrate this, let

ps(x, y) = X(x)Y (y). (4.118)

Upon substitution,

−yY
dX

dx
+ cyX

dY

dy
+ CXY + g(x)X dY

dy
+ πS0X

d2Y

dy2 = 0. (4.119)

Dividing both sides by yXY results in

− 1
X

dX

dx
+ C

Y

dY

dy
+ C

y
+ g(x)

yY

dY

dy
+ πS0

yY

d2Y

dy2 = 0. (4.120)

This equation cannot be rewritten so that one side depends only on x while the other side
depends on y. Thus, the solution ps(x, y) cannot be found by separation of variables.
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4.5 Nonlinear Damping with Nonlinear Stiffness
This section focuses on randomization of a nonlinear dynamical system with nonlinear stiff-
ness and damping. Heuristic methods for solving the diffusion equation related to such
systems are examined in detail.

4.5.1 Heuristic Framework of Solving the Diffusion Equation
The analysis now broadens to encompass a nonlinear damping term of the form f(H), where
H =

∫
g(x)dx + ẋ2/2. The nonlinear dynamical system, described by a nonlinear stiffness

term g(x) and a nonlinear damping term f(H), can be represented as

ẍ + ϵf(H)ẋ + g(x) = 0, t > 0. (4.121)

Upon introducing white noise, the stochastic equation becomes

Ẍ + ϵf(H)Ẋ + g(X) = W (t), (4.122)

where W (t) is a white noise process with zero mean and a constant power spectral density
of S0, and H

(
X, Ẋ

)
. When H = H(x), Eq. (4.121) is referred to as the Liénard equation.

Should g(x) function as a restoring force, then

G(x) =
∫

g(x)dx (4.123)

corresponds to the work done by the restoring force and, consequently, denotes the potential
energy. As a result, G(x) is positive and strictly increasing. By formulating a Hamiltonian
function,

H
(

X, Ẋ
)

= H(X, Y ) = G(X) + 1
2Y 2. (4.124)

In state space form, Eq. (4.122) can be expressed as

Ż = a(Z) + bW (t), (4.125)

where Z = [X, Y ]T , a(Z) =
[
Y, −ϵf

(
H(Z)

)
− g(X)

]T

and b = [0, 1]T . The diffusion equa-
tion associated with the transition probability p(x, y, t|x0, y0) is as follows:

∂p

∂t
= −y

∂p

∂x
+ ∂

∂y

((
ϵf(H)y + g(x)

)
p
)

+ πS0
∂2p

∂y2 . (4.126)

The stationary probability density ps(x, y) serves as the solution of the stationary diffusion
equation, denoted by

−y
∂ps

∂x
+ ∂

∂y

((
ϵf(H)y + g(x)

)
ps

)
+ πS0

∂2ps

∂y2 = 0. (4.127)
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If
−y

∂ps

∂x
+ ∂

∂y

(
g(x)ps

)
= 0 (4.128)

and
∂

∂y

(
ϵf(H)yps

)
+ πS0

∂2ps

∂y2 = 0 (4.129)

are satisfied, then ps is the solution to Eq. (4.127). Utilizing the method of characteristics,
the general solution of Eq. (4.128) can be obtained as follows:

ps = h

(
G(x) + 1

2y2
)

= h(H), (4.130)

In this case, h is an arbitrary function. Additionally, Eq. (4.129) can be expressed as

∂

∂y

(
ϵf(H)yps + πS0

∂ps

∂y

)
= 0, (4.131)

and upon integrating the equation over y, it results in

ϵf(H)yps + πS0
∂ps

∂y
= e(x), (4.132)

where e(x) is an arbitrary function. Since ϵf(H)yps + πS0∂ps/∂y vanishes as |x| + |y| → ∞,
e(x) becomes zero:

g(x)ps + πS0
∂ps

∂y
= 0. (4.133)

By substituting ps = h(H) into the equation, the following equation emerges:

ϵf(H)yh + πS0y
dh

dH
= 0. (4.134)

Cancelling y and integrating the above equation over H yields

h = A exp
(

− ϵ

πS0

∫
f(H)dH

)
, (4.135)

where A denotes a normalization constant. Consequently, the stationary probability density
can be obtained:

ps(x, y) = A exp
(

− ϵ

πS0

∫
f(H)dH

)
,

A = 1∫∞
−∞

∫∞
−∞ exp

(
− ϵ

πS0

∫
f(H)dH

)
dxdy

.
(4.136)

Given the uniqueness of the stationary solution, Eq. (4.136) is the only solution.



CHAPTER 4. QUALITATIVE ANALYSIS BY RANDOMIZATION 47

Level-Curve Analysis

A level curve of ps(x, y) is a continuous set of points along which the stationary probability
density ps(x, y) is constant. If ps(x, y) = ps(H), the level curves can be described by

H = C. (4.137)

It can be demonstrated that

d

dH
ps(H) = − Aϵ

πS0
f(H) exp

(
− ϵ

πS0

∫
f(H)dH

)
= − ϵ

πS0
psf(H). (4.138)

This implies that

∂ps

∂x
= d

dH
ps(H) = − ϵ

πS0
psf(H)g(x), ∂ps

∂y
= d

dH
ps(H) = − ϵ

πS0
psf(H)y. (4.139)

The level curve C exhibiting the highest probability corresponds to

d

dH
ps(H) = 0, (4.140)

which is equivalent to

f(H) = 0. (4.141)

Additionally, the projection of ps(x, y) onto a vertical plane achieves a relative maximum at
C, conditioned by

∂ps

∂x
= ∂ps

∂y
= 0. (4.142)

When the corresponding deterministic equation exhibits a limit cycle, the stationary prob-
ability density ps(x, y) displays a substantial value on said limit cycle. Although a limit
cycle might not strictly be a level curve, its similarity to the projected crater curve—where
ps(x, y) demonstrates a relative maximum in a direction normal to the limit cycle projected
onto the phase plane—remains evident.

In cases where the deterministic equation possesses a limit cycle, it is useful to conduct
an analysis of the level curves of the stationary probability density. By examining these level
curves, one can enhance their understanding of the system’s behavior and its relation to the
limit cycle. While the limit cycle itself might not be a level curve, it plays a significant role
in characterizing the dominant features of the system.
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Validity of Heuristic Formulation

The solution is constructed by separating the stationary diffusion equation into two compo-
nent equations, as shown in Eq. (4.110), and solving each equation separately. This approach
proves successful since ps(x, y) = ps(H) remains constant on the level curves specified by
H = C. This leads to a directional derivative of ps(x, y) along a level curve that is pro-
portional to ∇ps · T , where T represents the vector tangent to the aforementioned level
curve. Consequently, the first component equation is valid, while the solution of the second
component equation is facilitated by the dependence of H on y2. It is worth noting that typ-
ically, the stationary diffusion equation cannot be solved through the method of separation
of variables.

The gradient of ps(x, y) can be expressed as

∇ps =

∂ps

∂x
∂ps

∂y

 = − ϵ

πS0
psf(H)

g(x)
y

. (4.143)

Additionally, normal lines to the level curve H = C and vectors tangent to them, respectively,
are given by

∇H =

∂H
∂x
∂H
∂y

 =

g(x)
y

, T =

 −y

g(x)

. (4.144)

Thus, the directional derivative of ps(x, y) along a level curve appears proportional to ∇ps·T ,
which can be seen in

∇ps · T = −y
∂ps

∂x
+ ∂

∂y

(
g(x)ps

)
= − ϵ

πS0
psf(H)

(
−yg(x) + g(x)y

)
= 0. (4.145)

Similarly, the directional derivative of ps(x, y) normal to a level curve yields ∇ps · ∇H, as
indicated in

∇ps · ∇H = ∂ps

∂x
g(x) + ∂ps

∂y
y = − ϵ

πS0
psf(H)

((
g(x)

)2 + y2
)

. (4.146)

This directional derivative vanishes on the limit cycle f(H) = 0. For positive damping,
f(H) > 0 causing ps(x, y) to decrease; for negative damping, f(H) < 0 resulting in an
increase of ps(x, y). The stationary probability density will be determined for certain special
cases. Let us recall Eq. (4.104). The Hamiltonian function and level curve can be defined as
follows:

H(x, y) =
∫

g(x)dx + 1
2y2, ϵf(H) = C. (4.147)

It can be concluded that the limit cycle does not exist if C > 0. The stationary probability
density is expressed as

ps(x, y) = A exp
(

− ϵ

πS0

∫
f(H)dH

)
= A exp

(
− C

πS0

(∫
g(x)dx + 1

2y2
))

. (4.148)
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It should be noted that this cannot be solved by the separation of variables, as demonstrated
in Eq. (4.120).

Extended Heuristic Formulation

To further extend the heuristic formulation, a nonlinear deterministic equation of the fol-
lowing form is considered2:

ẍ + ϵ

(
Huf(H) − πS0

ϵ

Huu

Hu

)
ẋ + Hx

Hu

= 0. (4.149)

In this equation, ϵ represents a damping constant, y = ẋ, u = y2/2, H(x, u) denotes the
Hamiltonian function, f(H) is a function of H, and S0 is a constant power spectral density
satisfying E

[
W (t)W (t + τ)

]
= 2πS0δ(τ). Randomization of Eq. (4.149) yields

Ẍ + ϵ

(
HUf(H) − πS0

ϵ

HUU

HU

)
Ẋ + HX

HU

= W (t). (4.150)

It can be shown that if H is Eq. (4.124), HU = 1, HUU = 0, HX = g(X) and

ϵ

(
HUf(H) − πS0

ϵ

HUU

HU

)
= f(H), HX

HU

= g(X). (4.151)

The stationary probability density of Eq. (4.150) becomes

ps(x, y) = A exp
(

− ϵ

πS0

∫
f(H)dH

)
Hu. (4.152)

This result is deduced by solving the stationary diffusion equation of Eq. (4.150):

−y
∂ps

∂x
+ ∂

∂y

(ϵy

(
Huf(H) − πS0

ϵ

Huu

Hu

)
+ Hx

Hu

)
ps

+ πS0
∂2ps

∂y2 = 0. (4.153)

The solution can be constructed by separating the stationary diffusion equation into two
component equations

− y
∂ps

∂x
+ ∂

∂y

(
Hx

Hu

ps

)
= 0,

∂

∂y

(
ϵy

(
Huf(H) − πS0

ϵ

Huu

Hu

)
ps

)
+ πS0

∂2ps

∂y2 = 0.

(4.154)

2This section has been modified and extended from the work of Caughey and Ma (1982) [77].
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By letting ps(x, y) = ϕ(x, y)Hu and recognizing that u = y2/2,

− y
∂ps

∂x
+ ∂

∂y

(
Hx

Hu

ps

)
= −y

∂

∂x
(ϕHu) + y

∂

∂u
(Hxϕ) = −yHu

∂ϕ

∂x
+ yHx

∂ϕ

∂u
(4.155)

This leads to the expression
−Hu

∂ϕ

∂x
+ Hx

∂ϕ

∂u
= 0. (4.156)

Using the method of characteristics, the general solution can then be written as3

ϕ(x, y) = h(H). (4.157)

where h is an arbitrary function. Furthermore,

∂

∂y

(
ϵy

(
Huf(H) − πS0

ϵ

Huu

Hu

)
ps + πS0

∂ps

∂y

)
= 0 (4.158)

implies that
ϵy

(
Huf(H) − πS0

ϵ

Huu

Hu

)
ps + πS0

∂ps

∂y
= 0. (4.159)

By substituting ps = h(H)Hu, the expression becomes

ϵy

(
Huf(H)

πS0
− 1

ϵ

Huu

Hu

)
hHu + h

∂Hu

∂y
+ Hu

∂h

∂y
= 0. (4.160)

As
∂Hu

∂y
= yHuu,

∂h

∂y
= dh

dH

∂H

∂y
= dh

dH
yHu, (4.161)

Eq. (4.160) can be further expressed as

yH2
u

(
ϵ

πS0
f(H)h + dh

dH

)
= 0. (4.162)

Integrating both sides with respect to H results in

h = A exp
(

− ϵ

πS0

∫
f(H)dH

)
. (4.163)

Thus, ps(x, y) is given by

ps(x, y) = h(H)Hu = A exp
(

− ϵ

πS0

∫
f(H)dH

)
Hu. (4.164)

3The detailed derivation is provided in Example A.2.4
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Due to the uniqueness of the solution, this is the only possible solution. The level curves of
ps(x, y) are expressed by

− ϵ

πS0

∫
f(H)dH + ln Hu = C. (4.165)

The separation of the stationary diffusion equation is valid as ps(x, y) remains constant along
its level curves. The gradient of ps(x, y), as given by Eq. (4.166), is

∇ps =

∂ps

∂x
∂ps

∂y

 = ps

 − ϵ
πS0

f(H)Hx + Hux

Hu

− ϵ
πS0

yf(H)Hu + yHuu

Hu

. (4.166)

This gradient is perpendicular to the level curves of ps(x, y). The vector tangent to the level
curves is given by

T =

 ϵ
πS0

yf(H)Hu − yHuu

Hu

− ϵ
πS0

f(H)Hx + Hux

Hu

. (4.167)

The directional derivative of ps(x, y) along a level curve is proportional to

T · ∇ps = ∂ps

∂x

(
ϵ

πS0
yf(H)Hu − yHuu

Hu

)
+ ∂ps

∂y

(
− ϵ

πS0
f(H)Hx + Hux

Hu

)
= 0. (4.168)

Rearranging Eq. (4.168),

−yHuu

Hu

∂ps

∂x
+ Hux

Hu

∂ps

∂y
= −f(H) ϵ

πS0

(
yHu

∂ps

∂x
− Hx

∂ps

∂y

)
, (4.169)

which, using Eq. (4.166), can be further expressed as

−yHuu

Hu

∂ps

∂x
+ Hux

Hu

∂ps

∂y
= f(H)ps

ϵ

πS0

(
yHxHuu − yHuHux

Hu

)
. (4.170)

Thus, the equation becomes

−f(H) ϵ

πS0

(
yHu

∂ps

∂x
− Hx

∂ps

∂y

)
= f(H) ϵ

πS0
ps

(
yHxHuu − yHuHux

Hu

)
. (4.171)

By canceling the common terms and calculating the derivatives, the following expression is
obtained:

− y
∂ps

∂x
+ ∂

∂y

(
Hx

Hu

ps

)
= −y

∂ps

∂x
+ Hx

Hu

∂ps

∂y
+ Hu

(
yHu

∂ps

∂x
− Hx

∂ps

∂y

)
= 0. (4.172)

Example 4.5.1. Consider a nonlinear oscillator with a Hamiltonian function described by

H(x, y) = 1
2a(x)y2 + b(x), (4.173)
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where a(x) and b(x) represent arbitrary nonlinear coefficient functions of x. Since

Hx = a′(x)y2 + b′(x), Hu = a(x), Huu = 0, (4.174)

The resulting nonlinear equation of motion Eq. (4.150) is

ẍ + ϵa(x)f(H)ẋ +
1
2a′(x)ẋ2 + b′(x)

a(x) = 0. (4.175)

Randomizing this equation yields

Ẍ + ϵa(X)f(H)Ẋ +
1
2a′(X)Ẋ2 + b′(X)

a(X) = W (t). (4.176)

The probability density for this system is given by

ps(x, y) = A exp
(

− ϵ

πS0

∫
f(H)dH

)
Hu = A exp

(
− ϵ

πS0

∫
f(H)dH

)
a(x). (4.177)

It can also be confirmed that Eq. (4.174) is an extended form of the Van der Pol-Rayleigh
equation. With a(x) = 1, b(x) = x2/2, H(x, y) = y2/2 + x2/2, and Hu = 1, Eq. (4.174) aligns
with Eq. (4.235) when f = −(1 − 2H).

Example 4.5.2. Consider a nonlinear oscillator with discontinuities, where the Hamiltonian
function is expressed as

H(x, y) = B|y| − ln
(
1 + B|y|

)
+ B2

∫
g(x)dx, (4.178)

with B = γ/ϵ and g(x) an arbitrary function of x. The relevant partial derivatives from the
formulation of Eq. (4.150) are derived as follows:

H(x, u) = B
√

2u − ln
(

1 + B
√

2u
)

+ B2
∫

g(x)dx, Hx = B2g(x), f(H) = 1

Hu = B√
2u

− 1
1 + B

√
2u B√

2u

= B2

1 + B
√

2u
, Huu = −B3

(1 + B
√

2u)2
√

2u
,

Hu − Huu

Hu

= B2

1 + B
√

2u
+ 1 + B

√
2u

B2
B3

(1 + B
√

2u)2
√

2u
= By

|y|
= B sgn(y),

Hx

Hu

= g(x)(1 + B|y|).

(4.179)

These results lead to the following nonlinear equation of motion

ẍ + ϵB sgn(ẋ) +
(
1 + B|y|

)
g(x) = 0. (4.180)
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The corresponding randomized system is

Ẍ + γ sgn
(

Ẋ
)

+
(

1 + γ

ϵ

∣∣∣Ẋ∣∣∣)g(X) = W (t). (4.181)

The stationary probability density is given by

ps(x, y) = A exp
(

− γ

πS0

(
|y| + γ

ϵ

∫
g(x)dx

))
. (4.182)

4.5.2 Projected Crater Curve Analysis
In this section, the projected crater curve is introduced, which is a closed curve representing
the edge of a crater-shaped stationary probability density projected onto the x − y plane.
It consists of points (x, y) where the density attains relative maxima. A projected crater
curve is essential for analyzing the limit cycle of a deterministic nonlinear system, as there
are instances where the level curve of the maximum probability does not coincide with the
limit cycle. For example, a limit cycle is a level curve if there exists a closed level curve with
maximum value of ps as depicted in Fig. 4.3b. In some cases, however, the level curve with
the highest probability does not align with the limit cycle. Consider a nonlinear oscillator
with a stationary probability density given by

ps(x, y) = A exp
(

ϵ

πS0

(
−x4 − y4 − xy

))(
x2 + 2y2). (4.183)

As illustrated in Fig. 4.3a, the level curve with the highest probability comprises two points,
which neither form a closed curve nor a limit cycle. Nonetheless, the existence of a crater
curve implies a high likelihood of a limit cycle occurring in the corresponding deterministic
system.

The concepts of the crater curve and projected crater curve are further elaborated in
Fig. 4.4. The analytical expression for a crater curve can be derived by collecting the maxima
z − r slices of the probability density. Let ps(x, y) denote the stationary probability density
of the randomized nonlinear system, and ps(r, θ) represent its equivalent in polar coordinates.
The projected crater curve C(x, y) can be defined as

C(x, y) = ∇ps(x, y) · ∇l(x, y) = 0, where l(x, y) = x2 + y2. (4.184)

In a manner comparable to Eq. (4.184), the projected crater curve can be represented in
polar coordinates as

C(r, θ) = ∂ps(r, θ)
∂r

= 0. (4.185)

The interpretation of Eq. (4.185) is demonstrated in Fig. 4.5. When an r −θ slice is created,
the local maximum resides at the point where the radial derivative of the sliced probability
density equals zero. By repeatedly expanding the slice from 0 to 2π, the projected crater
curve corresponding to the condition ∂ps(r, θ)/∂r = 0 can be determined.
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(a) Crater curve aligned with a level curve

(b) Crater curve not aligned with a level curve

Figure 4.3: Crater-shaped stationary probability density functions with ϵ = πS0
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...
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ps (x,y)

Local maximum 

Sliced ps

Crater curve

Projected maximum

Projected crater curve

Figure 4.4: Illustration of the crater curve and the projected crater curve

�ps (x,y)

�l (x,y)

r (x,y)

ps (x,y)

Figure 4.5: Derivation of the projected crater curve
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Example 4.5.3. Consider the stationary probability density of the form

ps(x, y) = A exp

 ϵ

πS0

(
x2

2a2 + y2

2b2

)(
1 − x2

2a2 − y2

2b2

).

The projected crater curve can be obtained as

∇ps(x, y) · ∇l(x, y) = ∇

 ϵ

πS0

(
x2

2a2 + y2

2b2

)(
1 − x2

2a2 − y2

2b2

) · ∇
(
x2 + y2) = 0.

(4.186)
By processing the derivatives and simplifying the equation, the projected crater curve be-
comes

x2

2a2 + y2

2b2 = 1. (4.187)

This result concurs with the findings in Section 3.3.2, where the crater curve is identical to
a level curve.

Example 4.5.4. Revisit Eq. (4.183). The projected crater curve can be acquired using a
procedure analogous to Eq. (4.186),

∇ps(x, y) · ∇l(x, y) = ∇
(

ϵ

πS0

(
x2 + 2y2) exp

(
−4x3 − 4y3 − 2xy

))
· ∇
(
x2 + y2) = 0.

(4.188)
Equivalently,[

2x + ϵ

πS0
(x2 + 2y2)(−4x3 − y), 4y + ϵ

πS0
(−x − 4y3)(x2 + 2y2)

]
· [2x, 2y] = 0. (4.189)

Computing the dot product yields the projected crater curve:
ϵ

πS0

(
−2x6 − 4x4y2 − x3y − 2x2y4 − 2xy3 − 4y6)+ x2 + 2y2 = 0. (4.190)

The same result can be obtained using polar coordinates. The stationary probability density
in polar coordinates is as follows:

ps(r, θ) =
(
2r2 sin θ + r2 cos2 θ

)
exp
(

ϵ

πS0

(
−r4 sin4 θ − r4 cos4 θ − r2 sin θ cos θ

))
. (4.191)

Taking a derivative with respect to r, the projected crater curve is obtained by Eq. (4.192),
which is equivalent to Eq. (4.188) when substituting x = r cos θ and y = r sin θ:
∂ps

∂r
= 4r2

(
ϵ

πS0

(
−4r4 sin6 θ + 2r4 sin2 θ − 2r4 − r2 sin3 θ cos θ − r2 sin θ cos θ

)
+ sin2 θ + 1

)
× exp

(
ϵ

πS0

(
−r4 sin4 θ − r4 cos4 θ − r2 sin θ cos θ

))
= 0

(4.192)
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Figure 4.6: The crater curve of Eq. (4.183)

Since the exponential term is always positive, Eq. (4.192) can be reduced to

ϵ

πS0

(
−4r4 sin6 θ + 2r4 sin2 θ − 2r4 − r2 sin3 θ cos θ − r2 sin θ cos θ

)
+ sin2 θ + 1 = 0. (4.193)

It can be demonstrated that Eq. (4.188) and (4.192) are equivalent by replacing x = r cos θ
and y = r sin θ in Eq. (4.188). The plotted projected crater curve based on these solutions
is illustrated in Fig. 4.6.

With the formulation of the projected crater curve, it becomes possible to further em-
phasize certain analytical properties from the stationary probability density, such as critical
points. Consider the generalized stationary probability density of the form:

ps(x, y) = A exp
(
−D(xm1 + C1x

m2ym3 + C2y
m4)
)
(xn1 + C3x

n2yn3 + C4y
n4), (4.194)

where {mi, ni, Ci} and xn1 + C3x
n2yn3 + C4y

n4 are nonnegative. Critical points can be
obtained by taking the partial derivative of the projected crater curve with respect to x and
y, then setting them equal to zero, which results in

(xc, yc) =

0, ±
(

n1

Dm1

) 1
m1

,

±
(

n1

Dm1

) 1
m1

, 0

. (4.195)
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This outcome indicates that critical points do not depend on the proportional coefficients Ci

of the stationary probability density but are solely affected by the constant D. In Section
4.6, these properties will be further explored.

4.5.3 Heuristic Framework Using Variation of Parameters
In the aforementioned section, it has been illustrated that stationary diffusion equations for
randomized nonlinear dynamical systems can be solved using heuristic methods. Neverthe-
less, this formulation does not encompass all nonlinear systems. For instance, the heuristic
method presented in Section 4.5.1 fails to address the nonlinear oscillator with a stationary
probability density represented by

ps(x, y) = A exp
(

ϵ

πS0

(
−x2 − y2 − x2y2))(x2 + 2y2). (4.196)

Hence, an alternative heuristic formulation is proposed which uncovers a new set of analytical
solutions to stationary diffusion equations. This formulation is considered to be the most
generalized, as it not only includes previous formulations but also encompasses a new set
of nonlinear oscillators whose stationary probability density can be solved by the proposed
method.

Taking into account the nonlinear dynamical system introduced in Eq. (1.1),

ẍ + ϵα(x, ẋ)ẋ + β(x, ẋ) = 0,

the corresponding randomized system given by Eq. (1.2) is

Ẍ + ϵα
(

X, Ẋ
)

Ẋ + β
(

X, Ẋ
)

= W (t),

which can be expressed as

Ẍ + ϵα(X, Y )Ẋ + β(X, Y ) = W (t), (4.197)

where Y = Ẋ, ϵ is a constant, and α(X, Y ), β(X, Y ) are arbitrary functions of X and Y .
Additionally, W (t) is a white noise process with a zero mean and a constant power spectral
density of S0. Eq. (4.197) is governed by the stationary diffusion equation

−y
∂ps

∂x
+ ∂

∂y

(
(ϵyα + β)ps

)
+ πS0

∂2ps

∂y2 = 0. (4.198)

Assuming that the stationary probability density for Eq. (4.197) is expressed as

ps(x, y) = A exp
(

− ϵ

πS0
ϕ(x, y)

)
g(x, y), (4.199)
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two component equations can be constructed:

−y
∂ps

∂x
+ ∂

∂y
(βps) = 0, (4.200)

and

∂

∂y
(ϵyαps) + πS0

∂2ps

∂y2 = ∂

∂y

(
ϵyαps + πS0

∂ps

∂y

)
= 0, (4.201)

which leads to
ϵyαps + πS0

∂ps

∂y
= 0 (4.202)

Suppose that ps(x, y) = exp
(
−Dϕ(x, y)

)
g(x, y), where D = ϵ/πS0. Applying this expression

to ps in the first equation of Eq. (4.200) yields

−y
∂ps

∂x
+ ∂

∂y
(βps) = yD

∂ϕ

∂x
g exp(−Dϕ) − y

∂g

∂x
exp(−Dϕ) + ∂

∂y
(βps) = 0. (4.203)

After working out the derivatives,

yD
∂ϕ

∂x
g exp(−Dϕ) − y

∂g

∂x
exp(−Dϕ) + ∂β

∂y
g exp(−Dϕ)

− Dβ
∂ϕ

∂y
g exp(−Dϕ) + β

∂g

∂y
exp(−Dϕ) = 0.

(4.204)

By rearranging the terms, the following equation is obtained:

∂β

∂y
+
(

1
g

∂g

∂y
− D

∂ϕ

∂y

)
β = y

(
1
g

∂g

∂x
− D

∂ϕ

∂x

)
. (4.205)

This equation is a first-order ordinary differential equation that can be solved using the
variation of parameters [78]. The solution is given by

β(x, y) =

∫ (
I(x, y)y

(
1
g

∂g

∂x
− D

∂ϕ

∂x

))
dy

/
I(x, y), (4.206)

where

I(x, y) = exp
(∫ (

1
g

∂g

∂y
− D

∂ϕ

∂y

)
dy

)
. (4.207)

Applying ps to the second equation of (4.202) results in

ϵyαps + πS0
∂ps

∂y
= 0. (4.208)
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Using Eq. (4.199) and reorganizing the terms, the following equation is formulated:

α(x, y) = πS0

yϵ

(
D

∂ϕ

∂y
− 1

g

∂g

∂y

)
= 1

y

(
∂ϕ

∂y
− 1

Dg

∂g

∂y

)
. (4.209)

It is crucial to note that this formulation constitutes an extension of the previously introduced
heuristic formulations. Recall the Eq. (4.150), with U = Y 2/2, which can be rewritten as

Ẍ − ϵ

(
HY Y

Y
f(H) − πS0

ϵ

(
HY Y

Y HY

− 1
Y 2

))
Ẋ + Y

HX

HY

= W (t). (4.210)

If ϕ(x, y) =
∫

f(H)dH and g(x, y) = Hy/y, then Eq. (4.210) is equivalent to (4.197).

Example 4.5.5. Revisiting the example of Eq. (4.260), direct calculations yield

ϕ(x, y) = x4 + y4 + x2y2 = H, f(H) = 1, g(x, y) = x2 + 2y2. (4.211)

Computing the derivatives results in

∂g

∂x
= 2x,

∂g

∂y
= 4y,

∂ϕ

∂x
= 4x3 + 2xy2,

∂ϕ

∂y
= 2x2y + 4y3. (4.212)

This leads to a nonlinear system described by Eq. (4.260):

I(x, y) = exp
(∫ (

1
g

∂g

∂y
− D

∂ϕ

∂y

)
dy

)
= (x2 + 2y2) exp

(
−D

(
x2y2 + y4)), (4.213)

which provides

β(x, y) = x(2x2 + y2)
x2 + 2y2 , α(x, y) = 2x2 + 4y2 − 4

D(x2 + 2y2) . (4.214)

This outcome is identical to Eq. (4.260), signifying that the formulation presented in this
section is an extension of the heuristic formulation previously presented.

The acquired result will be employed in Section 4.6.2 to determine the analytical station-
ary probability density densities of a new set of nonlinear oscillators.

4.6 Illustrative Examples of Randomization
In this section, the randomization of dynamical systems is applied to various examples,
showcasing the effectiveness of the proposed method. The examples are divided into three
categories: multiple equilibria, limit cycles, and bifurcation. Heuristic methods developed in
Section 4.5.1 and 4.5.3 are extensively utilized to solve the diffusion equation.
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4.6.1 Multiple Equilibrium Points
Two widely studied nonlinear oscillators, the Duffing equation and the damped pendulum
equation, are considered. Particular focus is placed on the stability of their equilibria.

Duffing Equation
The present discussion encompasses the randomization of dynamical systems, focusing on
the Duffing equation as a primary example. Introduced in Eq. (2.3), the unforced Duffing
equation incorporates linear damping and nonlinear stiffness:

ẍ + ϵẋ + k1x + k2x
3 = 0, t > 0. (4.215)

Incorporating randomness, the system is expressed as

Ẍ + ϵẊ + k1X + k2X
3 = W (t), (4.216)

where X(0) = x0 and Ẋ(0) = ẋ0 denote the initial conditions, ϵ represents the coefficient
associated with the nonlinear stiffness, and W (t) refers to a stationary Gaussian white noise
featuring a zero mean and a constant power spectral density S0. This equation may be
placed in state-space form as demonstrated in Eq. (4.217),

Ż =

 Y

−ϵY − k1X − k2X
3

Z +

0
1

W (t), (4.217)

where

Z(0) = z0 =

x0

ẋ0

.

Here, Z =
[
X, Ẋ

]T

= [X, Y ]T . For the transitional probability of the system, represented
by p(x, y, t|x0, y0), the corresponding diffusion equation emerges as

∂p

∂t
= −y

∂p

∂x
+ ∂

∂y

(
(ϵy + k1x + k2x

3)p
)

+ πS0
∂2p

∂y2 . (4.218)

The initial condition is defined as

p(x, y, 0|x0, y0) = δ(x − x0)δ(y − y0). (4.219)

Furthermore, the stationary probability density is governed by

−y
∂ps

∂x
+ ∂

∂y

(
(ϵy + k1x + k2x

3)ps

)
+ πS0

∂2ps

∂y2 = 0. (4.220)
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This equation holds if
−y

∂ps

∂x
+ ∂

∂y

(
(k1x + k2x

3)ps

)
= 0 (4.221)

and
∂

∂y
(ϵyps) + πS0

∂2ps

∂y2 = 0. (4.222)

Utilizing the method of characteristics to solve Eq. (4.221), the general solution takes the
form

ps = h

(
1
2k1x

2 + 1
4k2x

4 + 1
2y2
)

= h(H). (4.223)

In this instance, h denotes an arbitrary function. Additionally,

∂

∂y

(
ϵyps + πS0

∂ps

∂y

)
= 0, (4.224)

and after integrating the above equation over y, it yields

ϵyps + πS0
∂ps

∂y
= e(x). (4.225)

By defining e(x) such that ps and its first-order derivatives vanish as |x| + |y| → ∞, it
becomes evident that e(x) = 0 and

ϵyps + πS0
∂ps

∂y
= 0. (4.226)

Substituting ps = h(H) in the above equation,

ϵyh + πS0
dh

dH
y = 0, (4.227)

and upon integrating the above equation over y,

h = A exp
(

− ϵH

πS0

)
, (4.228)

where A is a normalization constant. Consequently, the stationary probability density is
given by

ps(x, y) =
exp
(

− ϵ
πS0

(1
2k1x

2 + 1
4k2x

4 + 1
2y2))∫∞

−∞

∫∞
−∞ exp

(
− ϵ

πS0

(1
2k1x2 + 1

4k2x4 + 1
2y2
))

dxdy
. (4.229)

This outcome aligns with the solution derived from the rationale provided in Section 4.4. For
cases where k2 > 0, Fig. 4.7 exhibits a typical graph of the stationary probability density.
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Figure 4.7: The stationary probability density function of the Duffing equation, ϵ = 0.1,
k1 = 1, S0 = 1/π, and k2 = {1, −0.01}.

Notably, the stationary probability density ps(z) attains a maximum at z = 0. However,
for the case when ϵ > 0, k1 > 0, and k2 > 0, the deterministic Duffing equation

ẍ + ϵẋ + k1x + k2x
3 = 0 (4.230)

possesses a single equilibrium point at (0, 0), which is classified as a stable focus. In general,
the stationary probability density of a system exhibits a relative maximum at each stable
equilibrium point. The stationary probability density associated with the response x(t) can
be expressed as

ps(x) =
∫ ∞

−∞
ps(x, y)dy = A exp

(
− ϵ

πS0

(
1
2k1x

2 + 1
4k2x

4
))

. (4.231)

In the scenario where ϵ = 0, the stationary probability density cannot exist due to the origin
functioning as a center. When ϵ > 0, k1 > 0, and k2 < 0, three equilibrium points emerge,
located at (0, 0) and (±

√
−k1/k2, 0). While the origin remains a stable focus, the other

two equilibrium points act as saddle points. The majority of trajectories are unbounded,
subsequently resulting in an absence of stationary probability density. Such probability
density for k2 < 0 can be observed in cases where a Brownian particle is constrained to a
rectangle centered at the origin of the phase plane.
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Figure 4.8: The stationary probability density of the damped pendulum, ϵ = 0.15 and
S0 = 1/π

Figure 4.9: The phase portrait of a deterministic equation of damped pendulum with ϵ = 0.15
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Damped Pendulum
In Example 3.3.1, the qualitative behavior of the damped pendulum was analyzed using
conventional deterministic methods. The present discussion pivots to an analysis via ran-
domization. Recall that the deterministic damped pendulum equation is given by

ẍ + ϵẋ + sin(x) = 0, t > 0.

When excited by white noise, the equation becomes

Ẍ + ϵẊ + sin(X) = W (t). (4.232)

This is equivalent to Eq. (4.104) with g(X) = sin(X). Following the procedure outlined in
Section 4.4, the stationary probability density can be expressed as

ps(x, y) =


exp

(
− ϵ

πS0 (− cos(x)+ 1
2 y2)

)
∫ b

−b

∫ b
−b exp

(
− ϵ

πS0 (− cos(x)+ 1
2 y2)

)
dxdy

−b < x, y < b

0 otherwise
. (4.233)

A typical graph of the stationary probability density is illustrated in Fig. 4.8. It should be
noted that

lim
b→∞

∫ b

−b

∫ b

−b

exp
(

− ϵ

πS0

(
− cos(x) + 1

2y2
))

dxdy

 → ∞ (4.234)

Further scrutiny reveals that ps(z) attains a relative maximum at (2nπ, 0) and a saddle point
at
(
(2n − 1)π, 0

)
, where n is an integer.

For the deterministic damped pendulum equation with ϵ > 0, there are two types of
equilibrium points. Stable equilibrium points are located at (2nπ, 0) and can be classified
as stable foci. On the other hand, unstable equilibrium points are situated at

(
(2n − 1)π, 0

)
and serve as saddle points. A phase portrait for ϵ = 0.15 is presented in Fig. 4.9.

4.6.2 Limit Cycles
The current discussion focuses on the randomization of nonlinear systems that exhibit a
limit cycle in their corresponding deterministic system.

The Van der Pol-Rayleigh Oscillator
Revisiting the nonlinear system with an existing limit cycle introduced in Eq. (3.13),

ẍ − ϵ
(
1 − x2 − ẋ2)ẋ + x = 0.
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The system, excited by white noise, is expressed as

Ẍ − ϵ
(

1 − X2 − Ẋ2
)

Ẋ + X = W (t), (4.235)

where initial conditions are X(0) = 0 and Ẋ(0) = 0. The stochastic forcing W (t) is a Gaus-
sian white noise with zero mean and spectral density S0. Denoting Y = Ẋ, the Eq. (4.235)
becomes analogous to Eq. (4.122), where

g(X) = 1, f(H) = −(1 − 2H), H = 1
2X2 + 1

2Y 2. (4.236)

Following the procedure in Section 4.5, the solution is

ps(x, y) = A exp
(

ϵ

πS0

(∫
(1 − 2H)dH

))
= A exp

(
ϵ(H − H2)

πS0

)
. (4.237)

Replacing H with x2/2 + y2/2 yields

ps(x, y) = A exp
(

ϵ

πS0

(
1
2x2 + 1

2y2
)(

1 − 1
2x2 − 1

2y2
))

, (4.238)

where
A = 1∫∞

−∞

∫∞
−∞ exp

(
ϵ

πS0

(1
2x2 + 1

2y2
)(

1 − 1
2x2 − 1

2y2
))

dxdy
. (4.239)

In a vector form,

ps(z) =
exp
(

ϵ
πS0

(1
2z · z

)(
1 − 1

2z · z
))

∫∞
−∞

∫∞
−∞ exp

(
ϵ

πS0

(1
2z · z

)(
1 − 1

2z · z
))

dz
. (4.240)

The uniqueness of the solution implies that this is the only solution. Notably, x and y are
correlated and not jointly normal. The stationary probability density ps(x, y) was derived by
partitioning the stationary diffusion equation into two component equations, which proved
effective as the stationary probability density is symmetric about the y-axis, illustrated in

ps(x, y) = ps(−x, y). (4.241)

Consequently, the diffusion equation is satisfied upon substituting x with −x, resulting in

−y
∂ps

∂x
+ ∂

∂y
(xps) = 0, (4.242)

which implies that
− ∂

∂y

(
ϵ(1 − x2 − y2)yps

)
+ πS0

∂2ps

∂y2 = 0. (4.243)
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Similarly, the symmetry about the y-axis yields the same stationary diffusion equations if
ps(x, y) = ps(x, −y). (4.244)

Moreover, the two separated equations do not originate from radial symmetry of ps(x, y).
This is visible in Fig. 4.3b, which displays the stationary probability density function ps(x, y)
and the level curve of the Van der Pol-Rayleigh oscillator. By computing first-order partial
derivatives,

∂ps

∂x
= dps

dH

∂H

∂x
= A exp

(
ϵ

πS0
H(H − 1)

)
ϵ

πS0
(1 − 2H)x = ϵ

πS0

(
(1 − 2H)x

)
ps,

∂ps

∂y
= dps

dH

∂H

∂y
= A exp

(
ϵ

πS0
H(H − 1)

)
ϵ

πS0
(1 − 2H)y = ϵ

πS0

(
(1 − 2H)y

)
ps.

(4.245)

Through the analysis of Section 4.5.1, a limit cycle can be deduced from the stationary
probability density ps(x, y) of the randomized Van der Pol-Rayleigh oscillator. For the limit
cycle to be a level curve C, the projection of ps(x, y) onto a vertical plane must possess a
relative maximum on C. This implies that

∂ps

∂x
= ∂ps

∂y
= 0, (4.246)

which leads to
(1 − 2H)x = (1 − 2H)y = 0. (4.247)

The solution of Eq. (4.247) is either (x, y) = (0, 0) or (1 − 2H) = 0. This implies that the
limit cycle is the unit circle:

x2 + y2 = 1.

The stationary probability density ps(x, y) has a relative minimum at the equilibrium point
(0, 0), which is an unstable focus if 0 < ϵ < 2 or an unstable node if ϵ > 2. At the origin,

ps(0, 0) = ps(H = 0) = A. (4.248)
The limit cycle of the Van der Pol-Rayleigh oscillator is the unit circle for all positive values
of ϵ, no matter how large. On the limit cycle,

ps

(
H = 1

2

)
= A exp

(
ϵ

4πS0

)
> A = ps(0, 0). (4.249)

It is impossible to determine the nature of any critical points on the limit cycle since ps(x, y)
is constant on the limit cycle. This can be verified by calculating the determinant of the
Hessian of ps(x, y) being zero:

∂2ps

∂x2 = ∂

∂x

(
ϵ

πS0

(
(1 − 2H)x

)
ps

)
=
(

ϵ

πS0

)2(
(1 − 2H)2x2

)
ps + ϵ

πS0

(
1 − 3x2 − y2)ps,

∂2ps

∂y2 = ∂

∂y

(
ϵ

πS0

(
(1 − 2H)y

)
ps

)
=
(

ϵ

πS0

)2(
(1 − 2H)2y2

)
ps + ϵ

πS0

(
1 − x2 − 3y2)ps,

∂2ps

∂x∂y
= ∂

∂x

(
ϵ

πS0

(
(1 − 2H)y

)
ps

)
=
(

ϵ

πS0

)2(
(1 − 2H)2xy

)
ps − 2ϵ

πS0
xyps.
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Figure 4.10: The limit cycle of the van der Pol-Rayleigh oscillator with different damping
constants ϵ

On the limit cycle, however,

∂2ps

∂x2 = ϵ

πS0

(
1 − 3x2 − y2)ps = 2ϵ

πS0
(−2x2)ps < 0,

∂2ps

∂y2 = ϵ

πS0

(
1 − x2 − 3y2)ps = 2ϵ

πS0
(−2y2)ps < 0,

∂2ps

∂x∂y
= − 2ϵ

πS0
xyps.

(4.250)

The determinant of the Hessian of ps(x, y) is

det(H) =

∣∣∣∣∣∣
∂2ps

∂x2
∂2ps

∂x∂y
∂2ps

∂y∂x
∂2ps

∂y2

∣∣∣∣∣∣ = ϵ2

π2S2
0

(
(2x2)(2y2) − (2xy)2)p2

s = 0. (4.251)

The limit cycle is the unit circle 2H = 1 for any ϵ. The directional derivative of ps(x, y)
normal to a level curve is proportional to

∇ps · ∇H = ∂ps

∂x
g(x) + ∂ps

∂y
y = ϵ

πS0
ps(1 − 2H)

(
g2(x) + y2). (4.252)
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Figure 4.11: Stationary probability density of Eq. (4.255)

For points inside the limit cycle, 2H < 1, and consequently, ps(x, y) increases towards the
limit cycle. For points outside the limit cycle, 2H > 1, and thus ps(x, y) decreases away
from the limit cycle.

Elliptical Limit Cycle
The nonlinear oscillator with an elliptical limit cycle can be analyzed similarly. The ran-
domized nonlinear equation of

ẍ − ϵ

(
1 − x2

a2 − ẋ2

b2

)
ẋ + b2

a2 x = 0

becomes

Ẍ − ϵ

(
1 − X2

a2 − Ẋ2

b2

)
Ẋ + b2

a2 X = W (t), (4.253)
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where a, b, are constants. The Hamiltonian function is

H(X, Y ) =
∫

g(X)dX + 1
2Y 2 = b2X2

2a2 + Y 2

2 , f(H) = −
(

1 − 2H

b2

)
. (4.254)

The stationary probability density ps becomes

ps(x, y) = A exp
(

ϵ(H − H2

b2 )
πS0

)
= A exp

 ϵ

πS0

(
x2

2a2 + y2

2b2

)(
1 − x2

2a2 − y2

2b2

), (4.255)

where
A = 1∫∞

−∞

∫∞
−∞ exp

(
ϵ

πS0

(
x2

2a2 + y2

2b2

)(
1 − x2

2a2 − y2

2b2

))
dxdy

. (4.256)

The stationary probability density and level curves of the probability are shown in Fig. 4.11,
which are ellipses. The limit cycle, for any value of ϵ, is the ellipse:

f(H) = −
(

1 − 2H

b2

)
= 0, (4.257)

which is equivalent to

x2

a2 + y2

b2 = 1.

This result is consistent with the one obtained from the deterministic approach presented in
Section 3.3.2.

Hamiltonian Function with Quartic Terms
For weakly non-linear systems, approximation methods can be employed to find solutions.
However, such techniques become ineffective when strong nonlinearity is present. Consider
the following differential equation

ẍ + ϵ

(
2x2 + 4ẋ2 − πS0

ϵ

(
4

x2 + 2ẋ2

))
ẋ + 2x3 + xẋ2

x2 + 2ẋ2 = 0. (4.258)

Recall the Hamiltonian associated with the equation of motion of the stochastic system in
Eq. (4.150):

H = x4 + y4 + x2y2 = x4 + 4u2 + 2x2u, f(H) = 1,

Hx = 4x3 + 2xy2 = 4x3 + 4xu, Hu = 2x2 + 4y2 = 8u + 2x2.
(4.259)
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Figure 4.12: The stationary probability density function of the stochastic nonlinear system
Eq. (4.260)

Randomizing (4.258)with white noise W (t) results in

Ẍ + ϵ

(
2X2 + 4Ẋ2 − πS0

ϵ

(
4

X2 + 2Ẋ2

))
Ẋ + 2X3 + XẊ2

X2 + 2Ẋ2
= W (t). (4.260)

Assuming 0 < ϵ ≪ 1 is not enough to reduce the strong nonlinearity observed in this system
due to the presence of nonlinear stiffness and damping terms. The corresponding probability
density is expressed as follows:

ps(x, y) = A exp
(

− ϵ

πS0

∫
f(H)dH

)
Hu = A exp

(
ϵ

πS0

(
−x4 − y4 − x2y2))(x2 + 2y2).

(4.261)

The stationary probability density function and the limit cycle of the nonlinear oscillator,
with ϵ = πS0 and S0 = 1/π, are illustrated in Fig. 4.12. The level curves of ps(x, y) are given
by

− ϵ

πS0

∫
f(H)dH + ln Hu = − ϵ

πS0

(
x4 + y4 + x2y2)+ ln

(
x2 + 2y2) = C. (4.262)



CHAPTER 4. QUALITATIVE ANALYSIS BY RANDOMIZATION 72

Figure 4.13: The critical points, limit cycle, and the projected crater curve of the nonlinear
system Eq. (4.260)

Compared to the results obtained from the Van der Pol-Rayleigh oscillator and the nonlin-
ear oscillator with an elliptical limit cycle, the limit cycle does not demonstrate an identical
behavior to a level curve. It is notable that while the function ps(x, y) demonstrates sym-
metry about the coordinate axes, the limit cycle lacks symmetry with respect to the y-axis.
Nonetheless, a degree of similarity exists between the crater curve of ps and the limit cycle
of the corresponding deterministic system, as supported by several studies [60, 79–83].

To ascertain the critical points of the stationary probability density, Eq. (4.142) is em-
ployed. The critical points are

(x, y) =

±
(

πS0

2ϵ

) 1
4

, 0

,

0, ±
(

πS0

2ϵ

) 1
4

. (4.263)

In the special case where ϵ = πS0,(
πS0

2ϵ

) 1
4

∣∣∣∣∣∣
ϵ=πS0

= 0.8409. (4.264)

The critical points are depicted in Fig. 4.13. It is important to note that the critical points
along the x-axis do not reside on the limit cycle due to the asymmetry of the limit cycle
about the y-axis.
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The projected crater curve can be determined by the following expression:

∇ps(x, y) · ∇l(x, y) = ∇
(

ϵ

πS0

(
x2 + 2y2) exp

(
−4x3 − 4y3 − 2x2y2)) · ∇

(
x2 + y2) = 0.

(4.265)

After computing the dot products and simplifying the equation, the projected crater curve
takes on the form:

ϵ

πS0

(
−2x6 − 6x4y2 − 6x2y4 − 4y6)+ x2 + 2y2 = 0. (4.266)

By transforming Eq. (4.265) into polar coordinates, it becomes
ϵ

πS0

(
−2r4 sin6 θ − 2r4)+ sin2 θ + 1 = 0. (4.267)

Nonlinear Oscillator with Tabular Functions
This section considers more complicated nonlinear oscillators specified by tabular functions,
such as polynomial, Bessel, sine, cosine, and exponential functions.

Randomized System

The deterministic system is given by

ẍ + ϵα(x, ẋ)ẋ + β(x, ẋ) = 0,

and its corresponding randomized system:

Ẍ + ϵα(X, Y )Y + β(X, Y ) = W (t).

The goal is to find α(x, y) and β(x, y) such that the equivalent stationary probability density
of the randomized system becomes

ps(x, y) = A exp
(

− ϵ

πS0
ϕ(x, y)

)
g(x, y),

where ϕ(x, y) = x2 +y2 +x2y2, g(x, y) = x2 +C1y
2, and C1 is a free parameter. The resulting

stationary probability density is identical to Eq. (4.197), and the contour of the stationary
probability density is shown in Fig. 4.14.

Using the same procedure as the previous section, the first-order derivatives of g and ϕ
are calculated:

∂g

∂x
= 2x,

∂g

∂y
= 2C1y,

∂ϕ

∂x
= 2x + 2xy2,

∂ϕ

∂y
= 2y + 2x2y. (4.268)
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(a) The probability density function

(b) A comparison between the limit cycle and the projected crater curve

Figure 4.14: ϕ(x, y) = x2 + y2 + x2y2, g(x, y) = x2 + 2y2
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Applying the same procedure of Section 4.5.3, α(x, y) and β(x, y) are obtained through direct
calculations:

α(x, y) = 1
y

(
∂ϕ

∂x
− 1

D

1
g

∂g

∂y

)
=

2
(

(x2 + 1)(x2 + C1y
2) − C1

D

)
x2 + C1y2 , (4.269)

β(x, y) =

∫ (
I(x, y)y

(
1
g

∂g

∂x
− D

∂ϕ

∂x

))
dy

/
I(x, y)

=
x
(

x6y2 + x6 + 2x4y2 + x2y2 + 2x4 + x2 − x2+1
D

)
(x2 + C1y2)(x6 + 3x4 + 3x2 + 1)

+
xC1

(
x4y4 + x4y2 + x4 + 2x2y4 + 2x2y2 + y4 + y2 + 2x2y2+x2+2y2+1

D
+ 2

D2

)
(x2 + C1y2)(x6 + 3x4 + 3x2 + 1) ,

(4.270)
where

I(x, y) = exp
(∫ (

1
g

∂g

∂y
− D

∂ϕ

∂y

)
dy

)
= (x2 + C1y

2) exp
(

−D
(
x2 + 1

))
. (4.271)

Projected Crater Curves

The calculation of the projected crater curve for the nonlinear oscillator involves the equation
∇ps · ∇l = 0. This leads to the following C(x, y) expression:

C1

(
−D

(
2x2y4 + x2y2 + y4)+ y2

)
− D

(
2x4y2 + x4 + x2y2)+ x2 = 0. (4.272)

In polar coordinates, deriving C(r, θ) with respect to r, using ∂ps(r, θ)/∂r = 0, results in

−D
(
2r4 sin6 θ − 4r4 sin4 θ + 2r4 sin2 θ − r2 sin2 θ + r2)− sin2 θ + 1 = 0. (4.273)

To find the critical points, take the partial derivatives of ps with respect to x and y, utilizing
∂ps/∂x = 0 and ∂ps/∂y = 0:  −D(x2 + C1y

2)(y2 + 1) + 1 = 0
−D(x2 + C1y

2)(x2 + 1) + C1 = 0
. (4.274)

After determining the critical points, the following are obtained:
x = 0, y = ±

( 1
D

) 1
2 = ±

(
S0π

ϵ

) 1
2

y = 0, x = ±
( 1

D

) 1
2 = ±

(
S0π

ϵ

) 1
2

. (4.275)
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Figure 4.15: ps = A exp
(
−D(x2 + y2 + x2y2)

)
(x2 + C1y

2) with different coefficients C1 and
fixed D = 1
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(a) Projected crater curves (b) Limit cycles

Figure 4.16: ps(x, y) = A exp
(
−x2 − y2 − x2y2)(x2 + C1y

2), C1 < 1

(a) Projected crater curves (b) Limit cycles

Figure 4.17: ps(x, y) = A exp
(
−x2 − y2 − x2y2)(x2 + C1y

2), C1 = 1
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(a) Projected crater curves (b) Limit cycles

Figure 4.18: ps(x, y) = A exp
(
−x2 − y2 − x2y2)(x2 + C1y

2), C1 > 1

The limit cycle of the nonlinear oscillator alongside the projected crater curve (where C1 = 2)
is shown in Fig. 4.14. Mirroring the outcome depicted in Fig. 4.13, the discrepancy between
the projected crater curve and the limit cycle intensifies considerably, a consequence of the
additional nonlinearity introduced by the oscillator.

Effect of Damping Constant D and Free Parameter C1

The effect of the constants C1 and D = ϵ/πS0 on the projected crater curve is investigated,
with S0 = 1/π. The results for different values of C1 are displayed in Fig. 4.15. It is observed
that the crater curve exists for most values of C1, except for very large positive or negative
values. The critical points of the system described by Eq. (4.275) remain unchanged as they
do not depend on C1.

The projected crater curves for C1 > 1, C1 = 1, and C1 < 1 are provided in Fig. 4.16,
4.17, and 4.18, respectively. Although the analytical expression of the projected crater curve
Eq. (4.272) includes both C1 and D, the trajectory of the projected curve remains the same
when the value of D is fixed, as seen in the left column of these figures.

In contrast, the trajectory of limit cycles is significantly affected by changes in the value
of C1, as illustrated in the right column of the same figures. Moreover, the results for
varying values of D are presented. When the value of D decreases, the trajectory of both
the projected crater curve and the limit cycles become larger. This observation is consistent



CHAPTER 4. QUALITATIVE ANALYSIS BY RANDOMIZATION 79

(a) C1 = 1 (b) C1 < 1

Figure 4.19: ps(x, y) = A exp
(
D(−x2 − y2 − x2y2)

)
(x2 + C1y

2), D ≫ 1

with the fact that the critical points of the stationary probability density increase with a
larger value of D.

A noticeable deviation exists between the projected crater curve and the limit cycle,
meaning that in most cases, the limit cycle is not the projected crater curve. However, when
C1 = 1 and D ≫ 1, as shown in Fig. 4.17, the projected crater curve becomes identical to the
limit cycle. This occurs because the crater curve turns into a level curve, as demonstrated
in the example of the Van der Pol-Rayleigh oscillator.

Finally, a comparison is made with the case where C1 < 1 and D ≫ 1, as illustrated in
Fig. 4.19. In this situation, the crater curve is no longer a level curve, resulting in a deviation
between the projected crater curve and the limit cycle.

Nonlinear Oscillator with Non-Tabular Functions
The randomization is not limited to nonlinear systems with tabular functions; it can also be
applied to non-tabular forms such as error functions.

Randomized System

Let ϕ(x, y) = x4+y4+x4y4, g(x, y) = x2+C1y
2, where C1 is a free parameter. The stationary

probability density is calculated using Eq. (4.197), and its contour is illustrated in Fig. 4.20.
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(a) The probability density function

(b) A comparison between the limit cycle and the projected crater curve

Figure 4.20: ϕ(x, y) = x4 + y4 + x4y4, g(x, y) = x2 + y2
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Consequently, the resulting deterministic system is given by

ẍ + ϵα(x, ẋ)ẋ + β(x, ẋ) = 0,

where

α(x, ẋ) =
2
(

−C1 + 2Dẋ2(x4 + 1
)(

C1ẋ
2 + x2))

D(C1ẋ2 + x2) ,

β(x, ẋ) = N(x, ẋ)
2D

3
2 (C1x8ẋ2 + 2C1x4ẋ2 + C1ẋ2 + x10 + 2x6 + x2)

,

(4.276)

and the numerator function N(x, ẋ) is

N(x, ẋ) = x

(
2C1D

3
2 x6ẋ4 + 2C1D

3
2 x6 + 2C1D

3
2 x2ẋ4 + 2C1D

3
2 x2 + 2C1

√
Dx2 + 2D

3
2 x8ẋ2

+ 2D
3
2 x4ẋ2 − 2

√
πD2x8

√
x4 + 1 exp

(
Dẋ4(x4 + 1

))
erf
(√

Dẋ2
√

x4 + 1
)

− 2
√

πD2x4
√

x4 + 1 exp
(

Dẋ4(x4 + 1
))

erf
(√

Dẋ2
√

x4 + 1
)

+
√

πDx4
√

x4 + 1 exp
(

Dẋ4(x4 + 1
))

+
√

πD
√

x4 + 1 exp
(

Dẋ4(x4 + 1
))

erf
(√

Dẋ2
√

x4 + 1
))

.

Note that the error function is defined as

erf(x) = 2√
π

∫ x

0
e−t2

dt, (4.277)

which is a non-elementary mathematical function.

Projected Crater Curves

Using the same procedure as in Section 4.5.2, the projected crater curve is given by

C(x, y) = −4x6y4D − 2x6D − 4x4y6C1D − 2x4y2C1D − 2x2y4D + x2 − 2y6C1D + y2C1 = 0,

C(r, θ) = r2(−4C1Dr8 sin6 (θ) cos4 (θ) − 2C1Dr4 sin6 (θ) − 2C1Dr4 sin2 (θ) cos4 (θ)
+ C1 sin2 (θ) − 4Dr8 sin4 (θ) cos6 (θ) − 2Dr4 sin4 (θ) cos2 (θ) − 2Dr4 cos6 (θ)
+ cos2 (θ)

)
= 0.

(4.278)

The critical points are

(xc, yc) =

0, ±
(

1
2D

) 1
4

,

±
(

1
2D

) 1
4

, 0

. (4.279)
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Figure 4.21: ps = A exp
(
−D(x4 + y4 + x4y4)

)
(x2 + C1y

2) with different coefficients C1 and
fixed D = 1
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(a) Projected crater curves (b) Limit cycles

Figure 4.22: ps(x, y) = A exp
(
−x4 − y4 − x4y4)(x2 + C1y

2), C1 < 1

(a) Projected crater curves (b) Limit cycles

Figure 4.23: ps(x, y) = A exp
(
−x4 − y4 − x4y4)(x2 + C1y

2), C1 = 1
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(a) Projected crater curves (b) Limit cycles

Figure 4.24: ps(x, y) = A exp
(
−x4 − y4 − x4y4)(x2 + C1y

2), C1 > 1

Figure 4.20 showcases the limit cycle of the nonlinear oscillator and the projected crater
curve with C1 = 1. Although the system has increased complexity, the deviation between
the projected crater curve and the limit cycle is noticeably smaller compared to the previous
example. This observation indicates that the complexity of the nonlinear system is not the
main factor determining the magnitude of the deviation between the projected crater curve
and the limit cycle. The primary factors affecting the deviation are the damping constant D
and the free parameter C1. Further discussion on these parameters will be provided in the
following sections.

Effect of Damping Constant D and Free Parameter C1

The stationary probability density functions, illustrated in Fig. 4.21, show the impact of
varying free parameter C1. It becomes evident that C1 mainly affects the contour shape of
ps, while not altering the corresponding trajectory of the projected crater curve. As observed
in the previous example, the crater curves vanish when C1 ≫ 1 or C1 ≪ 1. Additionally, a
slight widening of the limit cycle with respect to the x-axis occurs as C1 increases.

In contrast, the effect of damping constant D is more pronounced on the trajectories of
both the limit cycle and projected crater curve, which supports the analysis from the previous
example. Notably, the closest resemblance between the limit cycle shape and projected crater
curve happens when D ≪ 1 and C1 = 1. This observation contradicts the conclusion drawn
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(a) C1 = 1 (b) C1 < 1

Figure 4.25: ps(x, y) = A exp
(
D(−x4 − y4 − x4y4)

)
(x2 + C1y

2), D ≪ 1

in the previous example, which can be attributed to the misalignment between the projected
crater curve and a given ps level curve.

4.6.3 Bifurcations
This example illustrates the use of the heuristic formulation, presented in Section 4.5.3,
applied to a nonlinear oscillator exhibiting complex behavior. The characteristics of the
oscillator include multiple limit cycles and homoclinic bifurcation, demonstrating the versa-
tility and applicability of the proposed approach.

Reconsider the nonlinear oscillator of Eq. (3.34):

ẍ + ϵ

4y2 +
(

x2

4 − 1
)(

ϵ2x2(x2 − 4
)

+ 16
)y + x

(
3ϵ2x4

16 − ϵ2x2 + ϵ2 + 1
)

= 0.

The qualitative behaviors have been investigated through traditional deterministic methods
in Example 3.3.3 and 3.3.2, which exhibited their limitations. In this example, the random-
ization is applied to the system, revealing the effectiveness of the proposed formulation.
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Figure 4.26: Stationary probability density of the nonlinear oscillator with complex qualita-
tive behavior
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Randomized System

The corresponding randomized system of the deterministic system is given by

Ẍ + ϵ

4Y 2 +
(

X2

4 − 1
)(

ϵ2X2(X2 − 4
)

+ 16
)Y + X

(
3ϵ2X4

16 − ϵ2X2 + ϵ2 + 1
)

= W (t),

(4.280)

where W (t) is a white noise process with a zero mean and a constant power spectral density
of S0. By the virtue of the formulation presented in Section 4.5.3, the stationary probability
density can be obtained in the form:

ps(x, y) = A exp

− ϵ

πS0

y2 +
(
x2 − 4

)( ϵ2

16x2(x2 − 4
)

+ 1
)2

. (4.281)

By substituting

ϕ(x, y) =

y2 +
(
x2 − 4

)( ϵ2

16x2(x2 − 4
)

+ 1
)2

, g(x, y) = 1 (4.282)

in Eq. (4.206) and (4.209), the following results are achieved:

α(x, y) = 1
y

(
∂ϕ

∂x
− 1

D

1
g

∂g

∂y

)
= 4y2 +

(
x2

4 − 1
)(

ϵ2x2(x2 − 4
)

+ 16
)

,

β(x, y) =

∫ (
I(x, y)y

(
1
g

∂g

∂x
− D

∂ϕ

∂x

))
dy

/
I(x, y) = x

(
3ϵ2x4

16 − ϵ2x2 + ϵ2 + 1
)

.

(4.283)

Projected Crater Curves

In this example the projected crater curves are identical to the level curves. Therefore, the
projected crater curve analysis of Section 4.5.2 provides the exact analytical form of the
limit cycles. The projected crater curve of the corresponding deterministic system can be
calculated through ∇ps · ∇l = 0, leading to C(x, y):

y2 +
(
x2 − 4

)( ϵ2

16x2(x2 − 4
)

+ 1
)

= 0. (4.284)

After transforming the equation into polar coordinates, C(r, θ) = ∂ps(r, θ)/∂r = 0 yields

ϵ2r6 cos6 θ

16 − ϵ2r4 cos4 θ

2 + ϵ2r2 cos2 θ + r2 − 4 = 0. (4.285)
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(a) ϵ = 1 (b) ϵ =
√

3

(c) ϵ = 2 (d) ϵ =
√

5

Figure 4.27: Exact solution of the limit cycles
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This equation is identical to exact solution of the limit cycle, which can be demonstrated
by Fig. 4.26. This is a significant advantage of the randomization, as obtaining the ex-
act analytical form of the limit cycle is not readily available with traditional deterministic
methods.

Effect of ϵ as a Bifurcation Parameter and the Existence of Limit Cycles

Example 3.3.3 reveals that the equilibrium points are given by

(xeq, yeq) = (0, 0), and (xeq, yeq) =

±
√

3
√

8 ± 4
√

ϵ2−3
ϵ

3 , 0

. (4.286)

Examining the contour of ps in Fig. 4.26, various qualitative behaviors emerge as ϵ changes.
The detailed observations are as follows:

• 0 < ϵ <
√

3: A stable single limit cycle surrounds the unstable node at (0, 0).

• ϵ =
√

3: The system retains a single limit cycle, while two additional non-hyperbolic
points emerge within the cycle.

•
√

3 < ϵ < 2: The unstable foci shift away from the origin, yet the oscillator maintains
its single limit cycle.

• ϵ = 2: Marking a homoclinic bifurcation point, the saddle points spawn two homoclinic
orbits, while the system still exhibits only one limit cycle.

• ϵ > 2: As the unstable foci continue to drift away from the origin, the system develops
two more limit cycles. Two saddle points appear between these additional cycles.

The analysis through randomization provides a comprehensive understanding of the quali-
tative behavior of the system, in contrast to conventional deterministic methods that face
limitations when characterizing the intricate behavior of the oscillator. Displaying the con-
tour of ps allows for a more intuitive interpretation of limit cycle trajectories for the oscillator
as the bifurcation parameter ϵ varies.
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Chapter 5

Conclusions

This dissertation presents a novel investigation into the qualitative behaviors of determin-
istic dynamical systems using randomization. The emphasis has been on randomization of
nonlinear autonomous equations of motion. Chapters 1 through 3 offer a comprehensive
examination of the foundational principles underlying randomization in nonlinear systems.
In particular, an extensive review of nonlinear systems and theory of Brownian motion,
including the derivation of the diffusion equation, was discussed.

Chapter 4 outlines the framework of randomization, a novel approach to analyzing non-
linear dynamical systems. This method is based on the idea of transforming deterministic
system state variables into stochastic state variables due to white noise excitations. The
analysis of the resulting stochastic systems was performed by obtaining the exact solution of
the diffusion equation, incorporating heuristic methods that were introduced for solving the
equation. The proposed methodology was applied to well-known nonlinear oscillators and a
newly discovered class of analyzable nonlinear oscillators.

The contributions of this work encompass:

1. Using randomization as an effective tool for investigating stability at equilibrium points
of nonlinear systems, demonstrated through established oscillators like the Duffing
equation and damped pendulum equation. Comparing stationary probability density
functions with deterministic trajectories on the phase plane reveals strong connections
between them. This comparison simplifies the understanding of stability at equilibrium
points, providing a more straightforward approach than traditional Lyapunov stability
analysis.

2. Applying the randomization method to new analyzable nonlinear oscillators, demon-
strating its effectiveness in obtaining exact analytical solutions for limit cycles. Com-
parisons with existing techniques, such as the Poincare-Bendixson theorem, highlight
the advantages of randomization.

3. Showcasing the benefits of randomization when strong nonlinearity appears in systems,
such as extended Liénard-type oscillators, which exhibit non-hyperbolic equilibria and
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multiple limit cycles as bifurcation parameters vary.

The importance of randomization methods in understanding complex nonlinear systems
in engineering and science cannot be overstated. These methods are crucial for studying
various fields, including nonlinear vibration, biology, trajectory planning, and control sys-
tems. One key aspect is the strong relationship between limit cycles and the projected crater
curves of stationary probability density functions.

When finding exact expressions for limit cycles is challenging, obtaining accurate solu-
tions for stationary probability density functions becomes especially valuable. The proposed
framework offers more than just precise results; it also presents additional benefits. For ex-
ample, it can help create obstacle avoidance algorithms in control systems by using the exact
solution of the stationary probability density function to closely match a related deterministic
system’s limit cycle.

Future research in areas such as artificial intelligence is worthwhile, where exact solutions
can benefit various diffusion models that are commonly used in image generation models. In
summary, the framework presented not only provides exact solutions of stationary probability
density functions but also opens up new possibilities for progress in different research fields.
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Appendix A

Basic Theories of Differential
Equations

This chapter offers a succinct overview of the basic theories pertaining to ordinary differen-
tial equations and partial differential equations, with an emphasis on nonlinear dynamical
systems.

A.1 Nonlinear Dynamical Systems
The nth-order nonlinear system can be described by the following equation [74]:

ẋ1 = a1(t, x1, x2, . . . , xn, u1, u2, . . . , um),
ẋ2 = a2(t, x1, x2, . . . , xn, u1, u2, . . . , um),

...
ẋn = an(t, x1, x2, . . . , xn, u1, u2, . . . , um),

(A.1)

where t is the time, xi, i = 1, . . . , n is the state variable, ẋi = ∂xi/∂t, uj, j = 1 . . . m is the
input variable, and ai is the ith nonlinear function. In vector notation, (A.1) can be written
as

ẋ = a(t, x, u), (A.2)

where x = [x1, x2, . . . , xn]T , u = [u1, u2, . . . , um]T , and a = [a1, a2, . . . , an]T . The system can
be simplified by several assumptions, two of which hold prime importance in this thesis:

• Unforced: Implying that the dynamics a do not depend on the input vector u,
ẋ = a(t, x). (A.3)

• Autonomous: Implying that the dynamics a do not contain the dependence of the time
variable t,

ẋ = a(x). (A.4)
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Nonlinear dynamical systems display a wide range of behaviors which are not present in
linear systems, such as limit cycles, finite escape times, bifurcations, and multiple isolated
equilibrium points. Some of these behaviors will be briefly discussed.

• Limit cycle: An isolated, periodic orbit of the system. Further information can be
found in Section 3.3.2.

• Finite escape time: The system can reach infinity in finite time. As an example,
consider the following nonlinear differential equation

ẋ = −x + x2, (A.5)

whose solution is
x(t) = x0 exp(−t)

1 − x0 + x0 exp(−t) , (A.6)

where x0 is the initial condition. The system can reach infinity in finite time if t =
ln
(
x0 / (x0 − 1)

)
and x0 > 1.

• Multiple isolated equilibrium points: The system can feature multiple isolated equi-
librium points. For instance, consider the nonlinear differential equation ẋ = −x + x2

again. This system showcases two equilibrium points, x = 0 and x = 1. The system
can be stable or unstable depending on the initial condition; if x0 < 1, the system is
stable at x = 0.

• Bifurcation: A phenomenon that occurs when a system undergoes a transition from
one system response to another. Further information can be found in Section 3.3.3.

• Non-uniqueness/non-existence of the solution: In linear systems, the solution is unique
and exists for all initial conditions. However, in nonlinear systems, the solution may
not be unique and may not even exist for all initial conditions. The following nonlinear
differential equation

ẋ = 3x
2
3 , x(0) = 0 (A.7)

features two solutions, x(t) = t3 and x(t) = 0. Similarly, the following nonlinear
differential equation

ẋ = 1
x

, x(0) = 0 (A.8)

also presents two solutions:
x(t) = ±2t

1
2 . (A.9)

A.2 Partial Differential Equations
In this section, the key concepts involved in solving partial differential equations are reviewed.
The focus is on second order partial differential equations, which are essential components
for solving diffusion equations.
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A.2.1 Classification of Partial Differential Equations
A partial differential equation can be classified by several criteria: linearity, the number of
independent variables, the order of the partial derivatives, boundary conditions, and initial
conditions. In this section, the focus will be on the linearity of the partial differential equation
and the order of the partial derivatives. In the realm of solving the diffusion equation, second-
order partial differential equations with two independent variables, x and y, are the most
commonly encountered type of equations.

Due to the limited solvability of full nonlinear partial differential equations, often some
simplifications are used to induce partial linearity into the equation. One example is a
quasi-linear partial differential equation, which is given by

A

(
∂u

∂x
,
∂u

∂y
, u, x, y

)
∂2u

∂x2 + 2B

(
∂u

∂x
,
∂u

∂y
, u, x, y

)
∂2u

∂x∂y
+ C

(
∂u

∂x
,
∂u

∂y
, u, x, y

)
∂2u

∂y∂x

+ D

(
∂u

∂x
,
∂u

∂y
, u, x, y

)
∂2u

∂y2 = f

(
∂u

∂x
,
∂u

∂y
, u, x, y

)
.

(A.10)

By further assuming the form represented in (A.11), one obtains a semi-linear partial differ-
ential equation:

A

(
∂u

∂x
,
∂u

∂y
, u, x, y

)
= A(x, y), B

(
∂u

∂x
,
∂u

∂y
, u, x, y

)
= B(x, y),

C

(
∂u

∂x
,
∂u

∂y
, u, x, y

)
= C(x, y), D

(
∂u

∂x
,
∂u

∂y
, u, x, y

)
= D(x, y).

(A.11)

Finally, a linear partial differential equation of a function u(x, y) takes the following form:

A(x, y)∂2u

∂x2 + 2B(x, y) ∂2u

∂x∂y
+ C(x, y)∂2u

∂y2

+ D1(x, y)∂u

∂x
+ D2(x, y)∂u

∂y
+ D3(x, y)u = f(x, y).

(A.12)

The first three coefficient functions A, B, and C play an important role in determining
the type of the partial differential equation. These coefficients can be used to calculate the
characteristic polynomial, B2 −AC, which can then be used to classify the partial differential
equation as either elliptic, hyperbolic or parabolic. This classification can also be extended to
n dimensional independent variables, where the eigenvalues of the coefficient matrix are used
to determine the type of the partial differential equation. The partial differential equation is
called elliptic if all its eigenvalues are negative, hyperbolic if they are positive, and parabolic
if all eigenvalues are zero.

Example A.2.1. Consider the following example of a linear partial differential equation of
stationary diffusion described in Eq. (1.4):

−y
∂ps

∂x
+ ∂

∂y

((
ϵαy + β

)
ps

)
+ πS0

∂2ps

∂y2 = 0.
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The partial differential equation can be categorized as linear since its coefficient functions are
all linear functions of x and y. Furthermore, the characteristic polynomial is zero, indicating
that it is a parabolic partial differential equation.

A.2.2 Method of Characteristics
The Method of Characteristics, also known as the Lagrange-Charpit method [84], effectively
solves quasi-linear partial differential equations of the first order:

a1
∂u

∂x1
+ a2

∂u

∂x2
+ · · · + an

∂u

∂xn

= f(x1, x2, . . . , xn, u), (A.13)

where ai = ai(x1, x2, . . . , xn, u). In this context, the graph of z = u(x1, x2, . . . , xn) forms an
n-dimensional manifold S:

S =
{(

x1, x2, . . . , xn, z(x1, x2, . . . , xn)
)}

. (A.14)

This manifold S is referred to as the integral manifold and serves as a solution to Eq.
(A.13). The method of characteristics constructs characteristic curves along which the par-
tial differential equation is reduced to a system of ordinary differential equations known as
characteristic equations [85, 86]:

dxi

dt
= ai(x1, x2, . . . , xn, z), i = 1, 2, . . . , n,

dz

dt
= f(x1, x2, . . . , xn, z).

(A.15)

Here, t is the parameter along the characteristic curves, which take the form:

χ =
{(

x1(t), x2(t), . . . , xn(t), z(t)
)}

. (A.16)

Additionally, the characteristic equations can be expressed in the form of auxiliary equations
or Lagrange-Charpit equations:

dx1

a1
= dx2

a2
= · · · = dxn

an

= dz

f
. (A.17)

The integral manifold is constructed by the smooth union of characteristic curves em-
anating from every point on the (n − 1)-dimensional manifold, referred to as the non-
characteristic. This manifold is represented by the graph of a function Γ, parameterized
by s = (s1, . . . , sn−1):

Γ =
{(

g1(s), g2(s), . . . , gn(s), η(s)
)}

. (A.18)
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(x0, y0, z0)

x

y

z

(x0, y0, 0)

χ
Γ

. . .

. . .

Figure A.1: An illustrative example of characteristic curves χ and non-characteristic Γ in a
two-dimensional linear partial differential equation of first order.

The initial conditions are given by the functions gi(s) and η(s):

xi(s, 0) = gi(s), i = 1, 2, . . . , n,

z(s, 0) = η(s).
(A.19)

By solving Eq. (A.15) and applying corresponding initial conditions the solution of Eq.
(A.13) is obtained.

When the dimension of the variable is reduced to two, the integral manifold is represented
by a surface, and the non-characteristic Γ takes the form of a space curve (Fig. A.1 [85]).
Consider the two-dimensional, linear formulation of Eq. (A.13):

a1(x, y)∂u

∂x
+ a2(x, y)∂u

∂y
= f(x, y). (A.20)

The characteristic equations are
dx

dt
= a1(x, y), dy

dt
= a2(x, y), dz

dt
= f(x, y) (A.21)

accompanied by the initial conditions:

x(s, 0) = g1(s), y(s, 0) = g2(s), z(s, 0) = η(s), (A.22)

where g1, g2, and η are arbitrary functions. By solving Eq. (A.21) and subsequently sub-
stituting the variables (s, t) according to Eq. (A.22), the integral surface represented by
z = u(x, y) is derived. This surface, expressed in terms of (x, y), is the solution to Eq.
(A.20).
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Example A.2.2. Take the first-order linear partial differential equation of the form [87]:

x
∂u

∂x
+ ∂u

∂y
= 0,

with initial condition u(x, 0) = h(x). The associated characteristic equations are

dx

dt
= x,

dy

dt
= 1,

dz

dt
= 0,

complemented by the initial state of the system:

x(s, 0) = g1(s) = s, y(s, 0) = g2(s) = 0, z(s, 0) = η(s).

Solving this system generates the following relations:

x(s, t) = c1(s)et, y(s, t) = t + c2(s), z(s, t) = c3(s),

where c1(s), c2(s), and c3(s) are functions unveiled by utilizing the initial conditions. This
leads to

x(s, t) = set, y(s, t) = t, z(s, t) = η(s).
After substituting from (s, t) to (x, y):

s(x, y) = xe−y, t(x, y) = y.

The solution to the differential equation is consequently expressed by

u(x, y) = z
(
s(x, y), t(x, y)

)
= η
(
xe−y

)
.

Example A.2.3. Regarding Eq. (4.128):

−y
∂ps

∂x
+ g(x)∂ps

∂y
= 0,

this can be represented in an alternative formulation:

− y

g(x)
∂ps

∂x
+ ∂ps

∂y
= 0.

The resulting characteristic equations are

dx

dt
= − y

g(x) ,
dy

dt
= 1,

dz

dt
= 0.

The initial conditions are noted as

x(s, 0) = s, y(s, 0) = 0, z(s, 0) = η(s).
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Integration with respect to these initial conditions yields

G(x) +
∫

y dt = c1(s), y(s, t) = t + c2(s), z(s, t) = c3(s),

where G(x) =
∫

g(x) dx. Upon applying the initial conditions, the solutions become

G(x) + 1
2y2 = G(s), y(s, t) = t, z(s, t) = η(s).

The change from (s, t) to (x, y) enables the solutions to be written as

s(x, y) = G−1
(

G(x) + 1
2y2
)

, t(x, y) = y.

The solution is therefore given by

ps(x, y) = η
(
s(x, y)

)
= h

(
G(x) + 1

2y2
)

,

where h is an arbitrary function.

Example A.2.4. Examining Eq. (4.156)

−Hu
∂ϕ

∂x
+ Hx

∂ϕ

∂u
= 0,

after rearranging the terms, the equation becomes

−Hu

Hx

∂ϕ

∂x
+ ∂ϕ

∂u
= 0.

The corresponding characteristic equations are
dx

dt
= −Hu

Hx

,
du

dt
= 1,

dz

dt
= 0.

The initial conditions outlined are
x(s, 0) = s, u(s, 0) = 0, z(s, 0) = η(s).

From the similar procedure of Example A.2.3, integration while considering the initial con-
ditions produces∫

Hx dx +
∫

Hu du = H = c1(s), u(s, t) = t, z(s, t) = η(s).

The transformation from (s, t) to (x, u) results in
s(x, u) = c−1

1 (H), t(x, u) = u,

where c1(s) = H(s, 0). The solution is therefore given by
ϕ(x, u) = η

(
s(x, u)

)
= h(H),

with the function h chosen such that it conforms to the boundary or initial conditions.
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Appendix B

Basic Theories of Stochastic Processes

A stochastic process/random process [88] is a physical/mathematical model of a system that
evolves randomly over time. It is typically defined as a collection of time-dependent random
variables, such as X(t1), X(t2), . . . , with ti (Fig. B.1 [89]). In stochastic processes, upper
case letters represent random variables while lower case denotes specific realizations of those
variables. For example, X(ti) could represent the possible position of a particle at time i,
and x(ti) would be the actual value of the position.

Consider the measured values of X(t1) = x1, . . . , X(tn) = xn at discrete times t1, . . . , tn,
where t1 < · · · < tn. The joint probability density which describes the system is given by

p(x1, t1; x2, t2; . . . ; xn, tn). (B.1)

X1(t)

X2(t)

Xn(t)

t1 t

t

t
t1

t1

. . .

Figure B.1: A stochastic process
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If the independence is assumed, the joint probability density can be written as

p(x1, t1; x2, t2; . . . ; xn, tn) = p(x1, t1)p(x2, t2) . . . p(xn, tn). (B.2)

If further measurements y1, y2, . . . , ym are defined at s1, s2, . . . , sm, where s1 < · · · < sm <
t1 < · · · < tn, the conditional probability density becomes:

p(x1, t1; x2, t2; . . . ; xn, tn|y1, s1; y2, s2; . . . ; ym, sm) = p(x1, t1; . . . ; xn, tn, y1, s1; . . . ; ym, sm)
p(y1, s1; . . . ; ym, sm) .

(B.3)
Another way to define a stochastic process is by its moments [90]

E
[
X(t)

]
=
∫

xp(x, t)dx,

E
[
X(t1)X(t2)

]
=
∫

x1x2p(x1, t1; x2, t2)dx1dx2,

. . . = . . . ,

E
[
X(t1)X(t2) . . . X(tn)

]
=
∫

x1x2 . . . xnp(x1, t1; x2, t2; . . . ; xn, tn)dx1dx2 . . . dxn.

(B.4)

The first and second moment of a stochastic process are also called mean and auto-correlation
function, respectively:

µX(t) = µ
[
X(t)

]
= E

[
X(t)

]
,

Cor
[
X(t1), X(t2)

]
= E

[
X(t1)X(t2)

]
.

(B.5)

Similarly, auto-covariance and variance function are written as

Cov
[
X(t1), X(t2)

]
= E

[(
X(t1) − µX(t1)

)(
X(t2) − µX(t2)

)]
,

VarX(t) = Var
[
X(t)

]
= E

[(
X(t) − µX(t)

)2
]
.

(B.6)

For two stochastic processes X(t) and Y (t), cross-correlation and cross-covariance functions
can be defined as follows:

Cor
[
X(t1), Y (t2)

]
= E

[
X(t1)Y (t2)

]
,

Cov
[
X(t1), Y (t2)

]
= E

[(
X(t1) − µX(t1)

)(
Y (t2) − µY (t2)

)]
.

(B.7)

For simplicity, the auto-correlation/covariance and cross-correlation/covariance functions
will be referred to as correlation/covariance functions in subsequent sections. The mean-
ing of the function can be inferred from the notations.

A property of the correlation function is its symmetry. Consider two stochastic processes
with a set of two random variables,

{
X(t1), X(t2)

}
and

{
Y (t1), Y (t2)

}
, the following property

holds:
Cor
[
X(t1), Y (t2)

]
= Cor

[
Y (t2), X(t1)

]
,

Cor
[
X(t1), X(t2)

]
= Cor

[
X(t2), X(t1)

]
.

(B.8)
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Covariance function also exhibits the symmetry property
Cov

[
X(t1), Y (t2)

]
= Cov

[
Y (t2), X(t1)

]
,

Cov
[
X(t1), X(t2)

]
= Cov

[
X(t2), X(t1)

]
,

(B.9)

which can be shown by Eq. (B.8) and
Cov

[
X(t1), Y (t2)

]
= Cor

[
X(t1), Y (t2)

]
− µX(t1)µY (t2). (B.10)

Notable stochastic processes include Markov, Wiener, and Ornstein-Uhlenbeck processes.
Markov processes are essential when deriving the diffusion equation in Section 3.4.3. Other
important concepts include stationary stochastic processes and power spectral density, which
will be discussed in the following sections.

B.1 Stationary Processes
Consider an m-th order probability density function of the form

p(x1, x2, . . . , xm; t1, t2, . . . , tm). (B.11)
The stochastic process is said to be stationary if the probability density function is invariant
under time translation τ , i.e.:

p(x1, x2, . . . , xm; t1, t2, . . . , tm) = p(x1, x2, . . . , xm; t1 + τ, t2 + τ, . . . , tm + τ). (B.12)
Furthermore, the stochastic process is said to be stationary in the strong sense if Eq. (B.12)
holds for all m, and stationary in the weak sense if Eq. (B.12) holds for m = 1 and m = 2.
The weak sense of stationary stochastic process, with zero mean is used throughout this
thesis unless stated otherwise.

Let X(t) and Y (t) be the weakly stochastic process with a set of two random variables,
i.e, X(t), X(t + τ) and Y (t), Y (t + τ). Direct consequence of the definition of the weakly
stationary stochastic process yields the following properties [90]:

1. The mean and moment of the stochastic process is constant over time:
µ
[
X(t)

]
= µX , E

[
Xn(t)

]
= E[Xn], (B.13)

2. The correlation/covariance function of a single stochastic process X(t) is a function of
time shift τ only:

Cor
[
X(t), X(t + τ)

]
= Cor

[
X(τ), X(τ)

]
:= Cor

[
X(τ)

]
,

Cov
[
X(t), X(t + τ)

]
= Cov

[
X(τ), X(τ)

]
:= Cov

[
X(τ)

]
.

(B.14)

3. The correlation/covariance function of two stochastic processes X(t) is a function of
time shift τ only:

Cor
[
X(t), Y (t + τ)

]
= Cor

[
X(τ), Y (τ)

]
,

Cov
[
X(t), Y (t + τ)

]
= Cov

[
X(τ), Y (τ)

]
.

(B.15)
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B.2 Power Spectral Density
The power spectral density is an auto-correlation function of a given stochastic process in the
frequency domain. Under the assumption of stationary process, the power spectral density of
a stochastic process X(t) is defined as the Fourier transform of the auto-correlation function
of the stochastic process:

SX(ω) = F
[
Cor
[
X(τ)

]]
= 1

2π

∫ ∞

−∞
Cor
[
X(τ)

]
e−iωτ dτ. (B.16)

Similarly, the inverse Fourier transform of the power spectral density is the auto-correlation
function of the stochastic process:

Cor
[
X(τ)

]
= F−1[SX(ω)

]
=
∫ ∞

−∞
SX(ω)eiωτ dω. (B.17)

It can be easily shown that if there is no time shift, the power spectral density is the
expectation of the square of the stochastic process:

Cor
[
X(0)

]
= E

[
X2(t)

]
=
∫ ∞

−∞
SX(ω)dω. (B.18)

B.3 Gaussian Processes
A Gaussian process is a stochastic system with random variables indexed by time or space,
where any finite subset follows a multivariate normal distribution. White noise W (t) is
a Gaussian process with zero mean and a constant power spectral density S0. Then the
following properties hold:

SW (ω) = S0, (B.19)
Cor
[
W (τ)

]
= E

[
W (t)W (t + τ)

]
= 2πS0δ(τ). (B.20)

The first result is self-explanatory from the assumption of constant power spectral density.
The second result can be obtained by substituting the power spectral density in the equation
(B.17):

Cor
[
W (τ)

]
=
∫ ∞

−∞
S0e

iωτ dω = S0

∫ ∞

−∞
eiωτ = 2πS0δ(τ). (B.21)

Note that the complex integral with residue theory [91] is being used here:∫ ∞

−∞
eiωτ dω =

∫ 0

−∞
eiωτ dω +

∫ ∞

0
eiωτ dω = πδ(τ) + 1

iτ
+ πδ(τ) − 1

iτ
= 2πδ(τ). (B.22)

Eq. (B.19) and (B.20) imply that the Gaussian white noise is completely characterized by
its constant power spectral density.
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