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1 INTRODUCTION

Almost every market transaction is plagued by one party, at least, being ignorant
of pertinent information. In some instances, both parties are ignorant of the
same thing: neither farmer nor commercial granary know what the weather
will be over the coming season when agreeing to a futures contract. In many
instances, however, while one party is ignorant, the other knows the relevant
information (or at least has better information): you know your willingness to
pay for items in a shop, but the shopkeeper does not; you know the reliability
of the used car you are selling, a potential buyer does not; and so on.

Although instances of common ignorance are not without interest—they, for
example, are critical to understanding insurance and financial markets—such
markets can often be analyzed using “textbook” methods once the situation is
reformulated in terms of state-contingent commodities (see, e.g., Section 2.2.1
infra).! 'What are arguably of greater interest are settings in which ignorance
(or, equivalently, knowledge) is asymmetric between the parties: one party has
better information about payoff-relevant factors than the other. Those settings
are the focus of this chapter.

Asymmetry of information can arise in many ways and at various points in
a bilateral relationship. As some examples:

1. one party can simply be endowed with better information than the other
prior to any transaction (e.g., a used-car seller has experienced her car’s
reliability);

2. a party takes a payoff-relevant action, unobservable to her counter party,
prior to any transaction (e.g., a seller knows the quality of materials used
in the manufacture of the product she sells);

3. after entering into a relationship, a party acquires better information (e.g.,
a contractor learns how easy a job will be once on it);

4. after entering into a relationship, a party takes a payoff-relevant action,
unobservable to her counter party (e.g., an insured knows what precau-
tions he takes to avoid a loss).

Asymmetry of information can also relevant in multilateral settings (e.g., an
auction with many privately informed bidders). A complete treatment of all
settings in which asymmetric information matters would entail a sizable volume
in itself. Hence, of necessity, this chapter will be more tightly focused: for the
most part, attention is limited to bilateral settings in which asymmetries of
information exist prior to any transactions. The chapter will, thus, have little
to say about scenarios #3 and #4 (i.e., situations of hidden-information agency

LChapter 19 of Mas-Colell et al. (1995) provides a good introduction to state-contingent
commodities and markets for their trade. See also Huang and Litzenberger (1988).

{item:HI-agency}

{item:HA-agency}
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and moral hazard, respectively).? The next subsection briefly discusses some

other areas of the literature that are being ignored, along with citations for
readers interested in those areas.

Beyond that next subsection, the rest of the chapter is divided as follows:
Section 2 considers situations in which the contract proposer is the ignorant
party. Her problem is to design a mechanism that induces her counter party,
who is exogenously endowed with his information, to reveal that information
in such a way that maximizes the contract proposer’s expected payoff. The
quintessential example of this is uninformed seller designing a profit-maximizing
price discrimination scheme. As will become clear, to induce the informed party
to reveal his information, the uninformed contract proposer will need leave him
some surplus (an information rent). Because she cannot, therefore, capture all
the surplus, the contract proposer will not have appropriate incentives to maxi-
mize surplus (welfare). Hence, in contrast to settings of symmetric information,
inefficiencies will tend to arise in equilibrium. Section 3 considers the situation
when each side of the transaction is endowed with his or her own payoff-relevant
information. Unlike the preceding section, the focus will be on whether and how
a social planner could design a contract to achieve efficiency.® Section 4 assumes
it is the contract proposer who is endowed with the payoff-relevant information.
The quintessential example of this a seller who knows the quality of the good she
seeks to sell. Because she cannot commit fully to not deceive her counter party,
inefficiencies arise. Section 5 turns to the problems that arise if the asymmetry
of information arises endogenously, because one party’s prior-to-trade actions
provides him or her payoff-relevant information.

1.1 WHAT’S NOT IN THIS CHAPTER
1.1.1 COMPETITION AMONG SELLERS

Among the topics not being covered are models in which multiple sellers compete
by offering contracts to buyers.

If price competition within an oligopoly is sufficient fierce, then there is
little scope for price discrimination. It is, for instance, readily shown that if
the standard Bertrand equilibrium would hold if sellers were limited to linear
pricing, then it continues to hold even if their strategy spaces encompass com-
plicated tariffs. On the other hand, if competition is less fierce—as, say, is true
of Hotelling competition—then equilibria can exist in which sellers engage in

2Hidden-information agency is similar, in terms of methods, to the mechanism-design anal-
ysis of Section 2.1 infra. This is especially true if the agent is free to quit after learning
the payoff-relevant information because, then, the contract will have to satisfy individual-
rationality constraints similar to those that arise in that section. Classic articles on moral
hazard—also known as hidden-action agency—are Holmstrom (1979), Shavell (1979), and
Grossman and Hart (1983). Good textbook treatments can be found in Chapter 4 of Bolton
and Dewatripont (2005) and Chapters 4 and 5 of Laffont and Martimort (2002). For a web-
based resource see Caillaud and Hermalin (2000).

3If, in contrast, one side had the ability to design the contract, subject only to the other’s
acceptance of it, then the problem would be little different than the analysis of Section 2.
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price discrimination. The topic of price discrimination in oligopolistic settings
is, however, a chapter in itself, as the excellent surveys by Armstrong (2006b)
and Stole (2007) attest. The interested reader would do well to start his or her
study there.

Insurance markets with multiple insurers are particularly complex markets to
analyze. Under the most natural formulation of competition and using standard
notions of equilibrium, such markets can even fail to have equilibria (the well-
known Rothschild and Stiglitz, 1976, non-existence result). Although modifying
the models or the equilibrium concept can avoid non-existence (see, e.g., Wilson,
1977, or Hellwig, 1987), such modifications are not always appealing.

Many of those modifications can, in a sense, be seen as expanding the space
of potential contracts that insurers can offer. Implicitly or explicitly, insurers
are allowed to make offers that are contingent on the offers of other insurers.
Unfortunately, the economic modeling of competition in contracts (offers) is not
well developed and the results highly sensitive to the extent to which competitors
can make their offers contingent on those of others. As an illustration, extend
the basic Bertrand model of price competition as follows. Suppose each firm
could make the offer:

1. If my rivals all make the same offer as me (i.e., an offer with these points
#1 and #2), then I am offering to sell my product at price equal to the
monopoly price; but

2. if any rival makes a different offer, then I am offering to sell my product
at price equal to marginal cost.

Clearly, a best response to all rivals’ offering the above is to do so yourself: if
you don’t, then you can make at most zero profit, because your rivals would,
then, be pricing at marginal cost; but if you make that offer, then you get a
fraction of the monopoly profit, which is a positive amount. To be sure, one
can legitimately object to such an equilibrium as being unrealistic (at least with
a large number of sellers), possibly illegal under relevant antitrust statutes,
or dependent on an implausible level of commitment by sellers to their offers.*
But as a matter of game theory per se, this is a perfectly legitimate equilibrium.
Given the unsettled nature of modeling competition in contracts and the almost
anything-goes results of many of such models—to say nothing of the limited
space afforded this chapter—I have chosen not to consider competition among
sellers. The reader interested in competing contract offers is well advised to
begin with Katz (1991, 2006).

1.1.2 EXTERNALITIES ACROSS BUYERS

Although many of the models analyzed below are readily extended to allow
for multiple buyers, such extensions are predicated on there being no direct or
indirect externalities across buyers.

40n the other hand, it is claimed that retailers’ guaranteed-low-price policies are essentially
offers of this nature. See, for instance, Edlin (1997) and cites therein.
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In particular, an extension to multiple buyers can be complicated if the
seller’s production technology does not exhibit constant marginal costs.> Re-
lated complications arise if there are many potential buyers for a single item
(e.g., the seller has a unique piece of art to sell). A common way of selling
such an item is an auction. The literature on auctions is vast and arguably goes
beyond a survey chapter itself—to say nothing of being a portion of a survey
chapter; consequently, this chapter does not consider auctions. For the inter-
ested reader, there are a number of excellent books on the topic (counsider, e.g.,
Krishna, 2002; Klemperer, 2004; and Milgrom, 2004).

With multiple buyers there is also the possibility that the actions of one buyer
can convey information about other buyers. By exploiting such correlation, the
seller can extract more of the buyers’ surplus. This has, for example, been
considered in a pair of articles by Crémer and McLean (1985, 1988).° That
topic is not covered in this chapter.

A growing area of research has been on so-called two-sided markets, such
as telecommunications, payment cards, and singles bars.” In such markets,
one actor—the platform—provides a service that facilitates the interaction of
two other actors (or classes of actors). A payment-card network, for instance,
facilitates the exchanges of consumers and merchants. In its pricing, a platform
often needs to contend with two externalities that exist between the two sides: a
transaction externality and a membership externality. The former is the benefit
a user on one side (e.g., a merchant) derives when a user on the other (e.g.,
a consumer) chooses to transact with it. The latter is the benefit a user on
one side (e.g., a man in a stereotypical singles bar) derives from having more
options on the other side (e.g., more women at the bar). In designing the tariffs
it offers, the platform needs to be mindful of these externalities.® Although an
interesting topic, the limited space afforded here precludes further discussion.

1.1.3 INCOMPLETE CONTRACTS AND CONTRACT RENEGOTIATION

As noted, the focus here is when buyer and seller (the contractual parties) pos-
sess different information. Starting with Grossman and Hart (1986), a literature
has arisen that studies the consequences of asymmetric information not between
the contractual parties, but between those parties and some third party (e.g.,
a judge) that enforces the contract between the contractual parties. In par-
ticular, the contractual parties know payoff-relevant information that the third

5See Crémer and Riordan (1987) for an extension when the seller’s cost function is not
linear.

6There has related work in hidden-information agency settings with multiple agents. See,
for instance, Demougin and Garvie (1991) and McAfee and Reny (1992).

"For recent surveys of the two-sided markets literature see Rochet and Tirole (2006) or
Rysman (2009).

8For instance, a platform, which can utilize two-part tariffs and which confronts a transac-
tion externality, will wish to set the prices of the transactions to sum to less than the cost of
facilitating the transaction (see, e.g., Hermalin and Katz, 2004, for details). For an analysis
of membership externalities, see Armstrong (2006a).
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party does not (in the literature, such information is described as “observable,
but unverifiable”). Although this kind of informational asymmetry has proved
to be of great importance, it is not covered here. For a partial survey of the
literature, see Hermalin et al. (2007), especially Section 4.

When payoff-relevant information is observable to the contractual parties,
but unverifiable (unobservable to a third-party contract enforcer), the result-
ing contracts are often described as incomplete. As Grossman and Hart (1986)
observed, one way the contractual parties will respond to contractual incom-
pleteness is to renegotiate their contracts should the contractual parties learn
the observable-but-unverifiable information after writing their initial contract,
but before its full execution. There is a large literature on contract renegotia-
tion (see Hermalin et al., 2007, for a partial survey). Among the debates in that
literature is whether the the contractual parties can commit to a renegotiation
mechanism or must continue to renegotiate as long as there is “money on the
table” (for a brief introduction to the “money-on-the-table” problem see §3.3
infra). This touches more generally on the problem of the parties committing to
a contract that will prove ex post inefficient: if the parties come to understand
that there is money to be had, it seems natural to imagine that they will seek
to pick it up by, if necessary, renegotiating their contract. The problem is that
the anticipation of such a lack of commitment can have adverse effects ex ante:
it can be in the parties’s interest to commit to leaving some money on the table,
at least off the equilibrium path, in order to provide themselves appropriate
incentives ez ante.”

Dealing with the money-on-the-table problem has proved difficult because
of the general difficultly of satisfactorily modeling bargaining given asymmetric
information. For further discussion see Section 3.3. It is that difficulty—in
addition to the overall length constraint on the chapter—that has led me to
omit a more detailed discussion of the topic.

1.1.4 HARD INFORMATION

This chapter is essentially limited to what is know as soft information: although
the informed party can make claims about what s/he knows, those claims are
cheap talk insofar as her/his counter party cannot verify such claims. That is,
the informed party can lie. The literature has also considered hard information:
if the informed party chooses to reveal her/his information, then the counter
party can verify it. As an example, a seller’s information about the reliability
of her car is soft, but her information about its repair history is hard to the
extent she can provide receipts from her mechanic for work done.'® Although
hard information cannot be misstated, it can be concealed: unless the informed

9Such issues arise, for instance, in the bilateral investment literature (e.g., Demski and
Sappington, 1991; Noldeke and Schmidt, 1995, 1998; and Edlin and Hermalin, 2000). Another
important example, having to do with hidden-action agency, is Fudenberg and Tirole (1990).

10T here is, of course, the possibility that the receipts are fake or she has conspired with the
mechanic to commit fraud, but such possibilities are typically ruled out.
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party reveals it, the uninformed party still does not know what it is (e.g., a
used-car seller can hide receipts from her mechanic).

In some instances, the ezistence of hard information is the informed party’s
private information (e.g., the seller knows what receipts she has) and in others it
is commonly known (e.g., a college graduate can produce a transcript). When
existence is commonly known, it may be difficult for the informed party to
conceal her/his hard information due to the unraveling argument of Grossman
(1981): the uninformed party’s expectation of the information conditional on
concealment is necessarily less than the true value for some informed players;
hence, those players, who are presumably concealing, would, in fact, do better
to reveal. Extending this logic, only someone with the worst information would
be willing to conceal.!! When the existence of information is uncertainty, then
concealment may occur in equilibrium.!?

1.1.5 SIGNAL JAMMING

In some situations, the parties may initially be symmetrically informed, but
actions of one may hamper the ability of the other to learn new information. A
sizable literature of such signal-jamming models exists.!®> For instance, suppose
one party wishes to infer the value of a payoff-relevant parameter that is known
to have been drawn from a specific distribution. A signal, s, that is informative
of that parameter will be generated, but one party may only see s + x, where
x is an action taken by the other party to distort the signal. For example, as
in Holmstrom (1999), a manager’s efforts affect a firm’s revenues, which are a
signal of his ability (the payoff-relevant parameter). In some situations, such
signal-jamming efforts can be welfare enhancing (as suggested by Fama, 1980,
and as evidenced in some models in Holmstrom, 1999); in others they can be
welfare reducing (as in Fudenberg and Tirole, 1986, Stein, 1989, or other models
in Holmstrom, 1999).

11 As a simple model, suppose the informed party’s (his) hard information is @ € [0, 1] and the
uninformed party’s (her) prior belief is it’s distributed uniformly on that interval. Suppose her
best-response action to her posterior belief is a = E{0} and that is worth v(a) to the informed
party, v(-) strictly increasing. Suppose there were an equilibrium in which the informed party
conceals if # < # and he reveals otherwise. Because the uninformed party’s best response
would be 6/2 if information was not revealed, the informed party would do better to reveal
than to conceal if @ > 6/2. This can be consistent with the purported equilibrium only if
6 = 0; that is, if all reveal.

12T extend the example of the previous footnote: suppose that informed party acquires the
hard information with probability 1/2. It is readily seen that an equilibrium exists in which
those who acquire the information reveal if > 1/3 and otherwise conceal. The uninformed
party’s estimate of 6 given no information is revealed is 1/3.

13The term “signal jamming” appears to be due to Fudenberg and Tirole (1986). There
are some earlier examples of the phenomenon in the literature, though (see, e.g., Holmstrom,
1999—the original version of which appear in 1982).
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2 EXOGENOUS ASYMMETRIES OF INFORMATION AT
TIME OF CONTRACTING: INFORMED BUYER

To start, consider a situation in which one party proposes a contract to another.
The offer is take-it-or-leave-it (TIOLI): the offer’s recipient can accept, in which
case the contract is binding on both parties; or he can reject, in which case there
is no further negotiation and the parties receive their default (no-trade) payoffs.
In many market settings, the contract offeror is a seller and the recipient a
buyer. For the sake of brevity, let’s employ the names seller and buyer, with
the understanding that much of what follows is more general (e.g., the contract
proposer could be an employer and the recipient an employee).

A prominent example is the basic monopoly model, the one taught in intro-
ductory economics. To be sure, as typically taught, the model presumes many
buyers, but the number of buyers is (essentially) irrelevant for the conclusions
reached. In that model, the seller offers the buyer the opportunity to buy the
quantity he wishes, z, in exchange for paying the seller T'(x), where the function
T :R; — Ry is stipulated in the offer. For example, in the most basic monopoly
model, the function T is a linear tariff: if the buyer announces (buys) x, he
pays the seller px, where the rate (price) p is quoted in units of currency per
unit of the good. Of course, as one learns in more advanced economics courses,
the tariff needn’t be linear. Depending on the various informational and other
constraints she faces, the seller can derive greater profit by engaging in price
discrimination via a nonlinear tariff.

The design of the tariff is, in part, a function of the informational asymmetry
that exists between seller and buyer. In particular, the buyer is assumed to
have been endowed with payoff-relevant information—his type, . The buyer’s
type is typically his private information. It is, however, common knowledge
that his type is drawn from a known type space, B, according to a specific
distribution. In some instances, such as simple monopoly pricing, this may
be all that the seller knows. In other instances, such as third-degree price
discrimination, the seller is somewhat better informed, having observed some
signal that is informative about the buyer’s type.'*

As an example, the buyer may wish to purchase, at most, one unit of the
seller’s product. The buyer’s payoff if he does is 8 — p. If he doesn’t (there’s
no trade), his payoff is zero. Suppose that his type space is B = [0,1] and 8
is drawn by “nature” from that space according to a known distribution 1 — D
(the reason for writing it in this unusual manner will become clear shortly).
Assume this is all the seller knows. The seller’s payoff is p if she sells a unit
(for convenience, normalize her costs to zero) and it is 0 otherwise. Suppose the
seller offers the contract “one unit for p.” The buyer does better buying than
not buying if 5 — p > 0. The probability that a seller who quotes a price of p
makes a sale is, therefore, Pr{8 > p}; that is, it equals the survival function of
the buyer’s type evaluated at p. The expected quantity sold is D(p). Observe

14This chapter omits a discussion of third-degree price discrimination—the interested reader
is directed to Varian (1989) or Tirole (1988, §3.2).

{sect:InformedBuyer}
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this survival function is equivalent to what, in introductory economics, would be
called a demand function.!® The seller will choose p to maximize her expected
payoff, pD(p). For instance, if the buyer’s type is distributed uniformly, then
the seller chooses p to solve

maxp(l —p).
P

The solution is readily seen to be p* = 1/2. In short, the seller would make the
buyer the TIOLI offer “one unit at price 1/2.”16

Although somewhat trivial, this example reveals a basic point about effi-
ciency when contracting occurs in the shadow of asymmetric information. Wel-
fare is 8 if trade occurs, but zero if it doesn’t. Because 8 > 0 = cost, welfare is
maximized if trade always occurs. The seller, however, sets a price of 1/2: trade
thus occurs with probability 1/2. This is the standard result that linear pricing
by a monopolist tends to yield too little trade. Observe this inefficiency is the
result of (i) asymmetry of information and (ii) the bargaining game assumed: if
the seller knew f—information were symmetric—then she would offer a type-£
buyer “one unit at price 5.” Because 5 — 8 > 0, the buyer would accept. Trade
would always occur and maximum welfare, thus, achieved. Alternatively, if the
buyer were to make a TIOLI offer to the seller, then welfare would also be max-
imized: the buyer would offer “one unit at price equal cost (i.e., 0).” Because
0 > 0, the seller would accept. Trade would be certain to occur and welfare
thus maximized.

These observations generalize: consider a contract (z,t), where z € X is an
allocation and ¢t € R a monetary transfer. Let the seller’s payoff be t — ¢(x) and
the buyer’s u(z, 8) —t, where ¢ : X — R and v : X x B — R. Let 2y be the “no
trade” allocation; that is, if no agreement is reached, then the allocation is .
Assume zp € X: among the feasible contracts is one that replicates no trade.

Proposition 1. Consider the model set forth above. One player’s (e.g., the
buyer’s) payoff is type dependent, but the other’s (e.g., the seller’s) is not. The
player with the type-dependent payoff knows his type. Assume that for all types,
there is a welfare-mazimizing allocation.'” Then if one party gets to offer a
contract on a take-it-or-leave-it basis and s/he knows the type when doing so,
then welfare will be a maximum for all values of type in equilibrium.

Proof: Because the offeror could always offer the no-trade allocation and
zero transfer, there is no loss of generality in assuming the offeror’s contract is

151t can be shown that any well-behaved demand function is proportional to a survival
function, where “well-behaved” means finite demand at zero price, zero demand at an infinite
price, and demand is everywhere non-increasing in price. The proportionality factor is just
demand at zero price.

161f the bargaining is other than seller makes a TIOLI offer, then the outcome would be
different. In particular, a key assumption is that the seller can commit to never make the
buyer a subsequent offer should he reject the seller’s initial offer. The literature on the Coase
conjecture (Coase, 1972) explores what happens if the seller is unable to so commit. See, for
example, Gul et al. (1986)). See also the discussion in Section 3.3 infra.

17That is, using the notation introduced above, assume the program max,¢ x u(z, 8) — c(x)
has a solution for all 8 € B.

{prop:Efficiencyl}
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accepted in equilibrium. If the seller makes the offer, she does best to offer

argmax t — c(x)
TEX teR

subject to
u(z, B) —t > u(zo, B) . (2.1)

For any z, if the buyer’s participation (offer-acceptance) constraint (2.1) did not
bind, then the seller could raise ¢ slightly, keeping x fixed, and do better. Hence,
in equilibrium, (2.1) must bind. Hence, the seller’s choice of & must solve

max u(z, B) — e(x) — u(xo, B) . (2.2)
xTE
Because (2.2) is welfare less a constant, the result follows.

The analysis when the buyer makes the offer is similar and, thus, omitted
for the sake of brevity. |

What, in fact, is not general is the conclusion that giving the bargaining
power to the uninformed player (i.e., the seller) leads to inefficiency. To see
this, return to the simple example, maintaining all assumptions except, now,
let B = [1,2]. Because the seller can guarantee herself a profit of 1 by quoting
a price of 1, it would be irrational of her to quote either a price less than 1 or
greater than 2 (the latter because it would mean no sale). Hence, the seller’s
pricing problem can be written as

P
The solution is p* = 1. At that price, all types of buyer will buy—welfare is
maximized.

The astute reader will, at this point, object that efficiency has been shown
only under the assumption that the seller is restricted to linear pricing. What,
one may ask, if the seller were unconstrained in her choice of contract? To
answer this, we need to derive the profit-maximizing tariff for the seller, the
topic of the next subsection. Anticipating that analysis, however, it will prove—
for this example—that linear pricing is the profit-maximizing tariff and, thus,
the seller’s ignorance of the buyer’s type need not always lead to inefficiency.

2.1 TARIFF CONSTRUCTION VIA MECHANISM DESIGN

Now consider a mechanism-design approach to tariff construction. Payoffs are
as above. The buyer’s type, [, is fixed exogenously and is his private informa-
tion. The seller knows the distribution from which 8 was drawn. Denote that
distribution by F' and its support by B. The structure of the game is common
knowledge.

{eq:BuyerIR-simp}

{eq:Welfare-simp2}

{sect:Tariff_Via_Mechanisms}
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2.1.1 MECHANISM DESIGN: A CRASH COURSE

There are numerous texts that cover mechanism design.!® Consequently, the
discussion here will be brief.

Call an allocation-transfer pair, (x,t), a contractual outcome. The set of all
such outcomes is X’ x R. Let A(X x R) denote the set of all possible probability
distributions over outcomes.

Definition. A mechanism is a game form, (M, N, o), to be played by the par-
ties. The set M is the informed player’s (e.g., the buyer’s) strategy set, the set
N the uninformed player’s (e.g., the seller’s) strategy set, and o maps any pair
of strategies, (m,n), to a probability distribution over contractual outcomes; that

is, 0 : M x N = A(X x R).

Assume the choice of mechanism is the uninformed player’s (e.g., the seller’s).
Observe that any conceivable contract can be viewed as a mechanism. For
example, linear pricing is the mechanism in which M = X C Ry, N' =0, and
o:m— (m,pm).t?

Let Eq(y,n){-} denote expectation with respect to the random vector (w,t)
when it is distributed o(m,n). Define

U(U(m5 n)vﬁ) = Ea’(m,n){u(xvﬁ) - t} ;

that is, U(J(m, n),ﬁ) is the informed player’s expected payoff if he is type £,
he plays m, and the uninformed player plays n.

A mechanism is direct if M = B; that is, if the informed player’s action is
an announcement of type. It is a direct-revelation mechanism if, in equilibrium,
the informed player announces his type truthfully. For truth-telling to be an
equilibrium strategy, it must be a best response to the informed player’s type
and his expectation of the uninformed player’s action n:2°

U(o(8,n),B8) > U(c(B',n),B8) V8’ € B. (2.3)

The uninformed player seeks to design a mechanism that will, in equilibrium,
maximize her expected payoff. Designing a mechanism entails choosing M, N/,
and o. The classes of spaces and outcome functions are incomprehensibly large.
How can the optimal mechanism be found within them? Fortunately, a simple,
yet subtle, result—the Revelation Principle—allows us to limit attention to
direct-revelation mechanisms.

18 A partial list is Gibbons (1992), Salanié (1997), Laffont and Martimort (2002), and Bolton
and Dewatripont (2005). See also Chapters 13 and 23 of Mas-Colell et al. (1995).

191f one wished to get technical, one could write that o maps m to the distribution that
assigns all weight to the outcome (m, pm).

{eq:BR-GenDRMechanism}

20 Here, the equilibrium concept is Bayesian Nash. In other situations, different equilibrium {fn:BayesianNash}

concepts, such as solution in dominant strategies or perfect Bayesian equilibrium, are relevant.
The discussion here, including the Revelation Principle, extends to other equilibrium concepts.
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Proposition 2 (The Revelation Principle). ' For any general mechan-

ism (M, N,o) and associated Bayesian Nash equilibrium, there exists a direct-
revelation mechanism such that the associated truthful Bayesian Nash equilib-
rium generates the same distribution over outcomes in equilibrium as the general
mechanism.

Proof: A Bayesian Nash equilibrium of the game (M, N, o) is a pair of strate-
gies (m(-),n), m(-) a mapping from the type space to M.?? Consider the direct
mechanism: 6(-) = o(m(-),n). The claim is that &(-) induces truth-telling (is a
direct-revelation mechanism). To see this, suppose not. Then there must exist
a type 8 that does better to lie—announce some 3’ # (3; that is, formally, there
must exist 3 and 3 # 3 such that

U(5(8"),8) > U(6(B), B).

Using the definition of 5(-), this means, however, that
U(o(m(8),n),8) > U(o(m(8),n).8).

But if that expression is true, then the informed player prefers to play m(5’)
instead of m(B) in the original mechanism. This contradicts the assumption
that m(-) is an equilibrium best response to n in the original game. It follows,
reductio ad absurdum, that & induces truth-telling.

Moreover, because &(8) = a(m(ﬁ), n), the same distribution over outcomes
is implemented in equilibrium. |

An intuitive way to grasp the Revelation Principle is to imagine that, before
he plays some general mechanism, the informed player could delegate his play
to some trustworthy third party. Suppose the third party knew the agent’s
equilibrium strategy—the mapping m : B — M-—so the informed player need
only reveal his type to the third party with the understanding that the third
party should choose the appropriate action, m(8). But, because this third
party can be “incorporated” into the design of the mechanism, there is no loss
of generality in restricting attention to direct-revelation mechanisms.

21The Revelation Principle is often attributed to Myerson (1979), although Gibbard (1973)
and Green and Laffont (1977) could be identified as earlier derivations. Suffice it to say that
the Revelation Principle has been independently derived a number of times and was a well-
known result before it received its name. Proposition 2 states the Revelation Principle for
a situation with one informed player. Extending the Revelation Principle to many informed
players is straightforward. Further, as observed in footnote 20, the Revelation Principle holds
under different solution concepts.

220bserve that the informed player’s strategy can be conditioned on 3, which he knows,
while the uninformed player’s cannot be (since she is ignorant of g).

{prop:RevelationPrinciple}
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2.1.2 THE STANDARD ASSUMPTIONS

So far, the seller’s cost has assumed to be independent of the buyer’s type. This
can be relaxed—let c(x, 3) denote her cost from now on.?3 Welfare is now

w(x,ﬂ) = u(xvﬁ) - C(Iaﬂ) :

To derive the seller’s profit-maximizing mechanism, certain assumptions are
necessary to make the problem tractable. The following are standard.

Assumption 1 (Spence-Mirrlees Condition). There exist complete orders >z
and =, on B and X, respectively, such that the implication

w(z,B)—t>u@, ) -t = u(x,8) —t >u(d',B) -t (2.4)
is valid whenever =g B and x =4 x’.

Assumption 2 (Trade is Desirable). If 8 is not the infimum of B under the
complete order =g, then there exists an © € X such that w(z, 8) > w(zo, B).

Assumption 3 (Too Much of a Good Thing). Either (i) the set of possible
allocations is bounded or (i) for all € B there exists an Z(B) € X such that

z =5 T(B) implies w(z, B) < w(z(B),B).

Assumption 4 (No Countervailing Incentives). There ezists a constant ug
such that, for all 8 € B, u(xo, ) = ug.

Assumption 5 (Minimum Element). The no-trade allocation xq is the mini-
mum element of X under the complete order .

The requirement of complete orders on the type space, B, and allocation
space, X', means little further loss of generality from treating each as a subset
of the real line, R. Henceforth, assume B C R and X C R. In general, expand-
ing the analysis to allow for a (meaningful) multi-dimensional allocation space
is difficult because of the issues involved in capturing how the buyer’s willing-
ness to make tradeoffs among the dimensions (including payment) varies with
his type. The reader interested in multi-dimensional allocation spaces should
consult Rochet and Choné (1998).24

Given that B C R and X C R, it is meaningful to say £ is a higher type than
B’ if 8 > f'. Similarly, the allocation z is greater than allocation z’ if z > 2.

The Spence-Mirrlees condition (Assumption 1) says that if a lower type
prefers the outcome (z,t) to (2/,t'), * > «/, then a higher type will strictly
prefer (z,t) to («',t"). The Spence-Mirrlees condition has other interpretations.
For instance, suppose x > x’ and 8 > /3'. By choosing ¢ and t’ so that

u(z,B) —u@', )=t -t

23With this change in assumptions, Proposition 1 no longer holds if the buyer makes a TIOLI
offer to the seller unless the seller knows the buyer’s type.

24 Armstrong and Rochet (1999) and Basov (2010) are also useful references for those inter-
ested in multi-dimensional screening problems.

{ass:Spence-MirrleesGenl}

{eq:Spence-Mirrlees}

{ass:TradeDesirable}

{ass:TooMuch}

{ass:NoCounterVail}

{ass:MinElement}
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it follows, from (2.4), that
U(Iaﬂ) _u(xlvﬂ) >u(x,ﬂ/)—u(:1:',ﬂ'); (25)

in other words, the Spence-Mirrlees condition implies u(-,-) exhibits increas-
ing differences. As is well known, increasing indifferences is equivalent to the
condition that the marginal utility of allocation increase with type. If

U(Iaﬂ/) -1 Z u(xlvﬂ/) - t/v

then
u(x, ) —u(x',B) >t —t';

hence, (2.5) implies (2.4). These arguments establish:
Proposition 3. The following are equivalent:

(i) The Spence-Mirrlees condition holds.

(i) The function u(-,-) exhibits strictly increasing differences.

(iti) The marginal utility of allocation is greater for a higher type than a lower
type.?®

In light of Proposition 3, the following is immediate.

Corollary 1. Suppose X and B are intervals in R. If the cross-partial derivative
of u(-,-) exists everywhere on X x B, then the Spence-Mirrlees condition holds
if and only if
0%u(z, B)
0p0x

Corollary 1 explains why the Spence-Mirrlees condition is sometimes referred to
as the cross-partial condition.

Assumptions 2 and 3 ensure that trade is desirable with all types except,
possibly, the lowest and trade never involves allocating an infinite amount. As-
sumption 4 says that all types of buyer enjoy the same utility, ug, if there isn’t
trade. The value up is called the reservation wtility. In many contexts, a com-
mon reservation utility is a reasonable assumption. For instance, if x denotes
the amount of a good the buyer obtains, with zy = 0, then there is no obvious
reason why different types would enjoy different levels of utility when they don’t
purchase. On the other hand, in other situations of contractual screening (e.g.,

>0. (2.6)

251f we think of a buyer’s indifference curve in allocation-transfer (z—t space), its marginal
rate of substitution is minus the marginal utility of allocation divided by the marginal utility
of paying an additional dollar. The latter is —1; hence the marginal rate of substitution (MRS)
equals the marginal utility of allocation. Given Spence-Mirrlees, a higher type has a greater
MRS than a lower type. In other words, a higher type’s indifference through a given point is
steeper than a lower type’s. Hence, an indifference curve for a higher type can cross that of a
lower type at most once. This discussion explains why the Spence-Mirrlees condition is often
referred to as a single-crossing condition.

{eq:IncreaseDif}

{prop:SM-equivalence}

{corr:CrossPartial-SM}

{eq:SM-cross-partial}
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an uninformed principal seeks to hire an informed agent and higher agent types
have better alternatives wvis-a-vis working for the principal than lower agent
types), this assumption is less innocuous. Relaxing Assumption 4 requires a
more extensive analysis than fits within this chapter. The reader interested
in such models—in particular, so-called models of countervailing incentives in
which u(zg, -) is increasing in type—should consult Lewis and Sappington (1989)
and Maggi and Rodriguez-Clare (1995), among other articles.

Assumption 5 reflects that the buyer is acquiring something more than what
he would have absent trade. It is a natural assumption in contractual screening
settings more generally (e.g., no trade could constitute zero hours worked when
an uninformed principal seeks to hire an informed agent).

2.1.3 CHARACTERIZING MECHANISMS

The Revelation Principle (Proposition 2) implies no loss of generality in re-
stricting attention to direct-revelation mechanisms: the buyer’s announcement
of his type, B, maps to (I(ﬁ),t(ﬁ)) and, in equilibrium, the buyer announces
truthfully. Because (z(3),¢(8)) could equal (zo,0), the no-trade allocation and
“transfer,” there is no loss of generality in assuming that all types participate
in equilibrium. These equilibrium conditions can be written as

u(z(B),8) —t(B) > ug forall B € B (IR)

and
w(w(8), B) — 1(8) > u(x(8"), B) — t(8") for all 8,8’ € B. (1c)
Condition (IR) is the requirement that all types participate. It is known in
the literature as a participation or individual rationality (hence, IR) constraint.
Condition (1¢) is the requirement of truth telling in equilibrium. It is known in
the literature as a truth-telling or incentive compatibility (hence, I1C) constraint.
A well-known “trick” in mechanism design is to work with equilibrium util-
ities rather than directly with transfers. Observe a type- buyer’s equilibrium
utility is
v(B) = u(x(B), B) — t(B). (2.7)
By adding and subtracting u(z ('), 8’) from the righthand side of (1) and using
(2.7), the 1C constraint can be rewritten as

v(B) = v(B) +u(x(8'),8) —u(x(8),8) forall B, € B. (1c)

Consider two types, 8 and 8’, 8 > ’. The relevant IC constraints must hold
between these two (i.e., 8 cannot do better to announce he’s 8’ and vice versa):

v(B) = v(B) +u(x(8), B) — u(z(8),8) and (2.8)
v(B') = v(B) +u(x(8), ') — u(x(B),B) . (2.9)

(This line of argumentation is known as a revealed-preference argument.) Ex-
pressions (2.8) and (2.9) together imply

u(@(B), B) —u(x(8), ') = v(B) —v(B) > u(x(B),8) —u(x(8),8). (2.10)

{eq:Def-v-beta}

{eq:RP1-beta}

{eq:RP1-beta-prime}

{eq:Pinch1}
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Ignoring the middle term for the moment and recalling that the Spence-Mirrlees
condition implies u(-, -) exhibits increasing differences (Proposition 3), we have

Lemma 1. A necessary condition for a mechanism to be a direct-revelation
mechanism (i.e., to induce truthful announcements in equilibrium) is that the
allocation be nondecreasing with type (i.e., x(8) > x(8") if 8 > ).

Recall that if the seller knew the buyer’s type, her problem would be to
choose = and t to maximize

t —c(x,B) subject to u(z,s) —t > ug.

As argued in the proof of Proposition 1, the constraint must bind. So if there
were no asymmetry of information, the buyer would enjoy no rent (in equilib-
rium he would get just his reservation utility). With asymmetric information,
that conclusion need no longer hold—some buyer types may earn a rent (have
equilibrium utilities greater than their reservation utility). Because such a rent
is due to the asymmetry of information, it is called an information rent. The
following lemma is key to determining which types earn a rent and which don’t.26

Lemma 2. Consider a direct-revelation mechanism such that 3’ € B is induced
to buy; that is, such that x(8') > xg. Then any higher-type buyer, 5 € B, will
also be induced to buy under this mechanism (i.e., x(5) > x¢) and will enjoy a
greater equilibrium utility (i.e., v(B8) > v(8')).

An immediate corollary given the IR constraint is:

Corollary 2. Consider a direct-revelation mechanism such that 8 € B is in-
duced to buy. Then any higher-type buyer, B € B, must earn an information
rent in equilibrium under this mechanism.

In other words, all types that trade, except possibly the lowest type who trades,
capture an information rent in equilibrium.

What about the lowest type to trade? If the seller has designed the mecha-
nism to maximize her expected payoff, then that buyer earns no rent:

Lemma 3. Consider a direct-revelation mechanism that mazximizes the seller’s
expected payoff and assume a positive measure of types purchase in equilibrium.
If, under this mechanism, B is the lowest buyer type to buy (formally, x(8) > xo,
for all B> B; :C(B) > xo; and x(B') = wo for all B < B)), then the type- buyer

captures no rent (i.e., v(f) = ug).

Further characterization of mechanisms is facilitated by—but not really de-
pendent on—deciding whether the type space is discrete or continuous.

26The proof of this lemma can be found in the Appendix. As a rule, proofs not given in the
text can be found in the Appendix.

{lemma:IncAll-necessary}

{lemma:InfoRent}

{corr:InfoRent}

{lemma:NoRentatBottom}
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A Discrete Type Space. The type space is discrete if B is denumerable; that
is, it can be put in a one-to-one mapping with an index set (set of consecutive
integers), Zg. Let the type to which n € Zg maps be denoted 3,,. The mapping
is increasing. There is, thus, no type between £, and (3,11 for any n and
n+1¢€Zpg. Call 8, and B,4+1 adjacent types.

Because the index set is arbitrary, we can renormalize it in whatever way
is convenient. In particular, adopt, for the moment, the convention that 3 is
the lowest type to purchase in equilibrium (i.e., (81) > xo and z(8) = xo
for all 8 < B1). Because the seller offers the mechanism on a TIOLI basis, we
can restrict attention to mechanisms that maximize the seller’s expected payoff;
hence, from Lemma 3, v(31) = ug.

For all n € Zp (except the minimum n should it exist), define the rent
function as

R, (z) = u(z, Bn) — ul(x, Bp-1) -

To understand this name, observe, from (2.8), that

v(Bn) = v(Bn-1) + Ry (2(Bn-1)) - (2.11)

Expression (2.11) is sometimes called the downward adjacent IC constraint (see,
e.g., Caillaud and Hermalin, 1993). Observe

v(B2) = v(B1) + Re(x(B1)) = ur + Ra(z(B1))

v(Bs) > v(B2) + R3(x(B2)) > ur + Z R;(z(Bj-1)),

and, so on; hence,
n

v(Bn) > ur + Z R;(z(Bj-1)) - (2.12)

j=2

One can, thus, describe R, (:c(ﬂn,l)) as the contribution to the type-3, buyer’s
information rent necessary to keep him from mimicking his adjacent downward
neighbor. (Admittedly, this would be clearer if (2.12) were an equality; fortu-
nately, as shown below, it is under the seller’s optimal mechanism.)

Recall v(8) = u(z(B), 3) — t(8). Hence, (2.12) implies

t(ﬂn) S u(x(ﬂn)a ﬂn) — UR — ZRJ (x(ﬂjfl)) . (213)

j=2

There are no countervailing incentives, so R; (a:o) = 0. By assumption z(f;) =
zo for j < 1. So, the inequality in (2.13) is not reversed if » -, R; (z(Bj-1)) is
subtracted from the RHS of (2.13). This demonstrates the necessity of

t(ﬂn) S u(x(ﬂn)a ﬂn) — UR — Z Rj (x(ﬂjfl)) . (214)

j<n

{eq:DownAdjIC}

{eq:SumAdjIC}

{eq:DiscreteEq-t-bound}

{eq:DiscreteEq-t-bound-full}
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The seller maximizes her revenue by having t(-) be as large as possible, which
means, for any allocation profile z(+), she cannot do better than to have transfer
function ¢(-) defined so that the inequality in (2.14) binds.

So far, only the necessary conditions for a direct-revelation mechanism have
been characterized. Fortunately for purposes of calculating such mechanisms,

these conditions are sufficient too:
{prop:SuffMechDiscrete}

Proposition 4. Suppose the type space is discrete. A mechanism (x(-),t(-)) in
which x(-) is nondecreasing and t(-) is given by

t(ﬁn) = U(.’L’(Bn n — UR — Z R B] 1 (215) {eq:t-discrete}

i<n
1s a direct-revelation mechanism.

Proof: Consider an arbitrary type 8,. We wish to show he participates and
won’t lie about his type.

Increasing differences (Spence-Mirrlees) implies R, (z) > 0 for all > xy.
Hence, (2.15) implies

u(x(ﬁn)aﬁn) - t(ﬁn) =UuRr+ Z R]( BJ 1)) 2 UR;

that is, all types participate. Increasing differences also implies that R, () is an
increasing function.

Consider n < m. The goal is to show that a ,-type buyer doesn’t wish to
pretend to be a B,,-type buyer. His utility were he to do so is

u(x(ﬁm)a ﬁn) - t(ﬁm)

=u(z(Bm), Bn) — w(@(Bm), Bm) +ur + > Ri(2(B;-1)) + Y R;(x(Bj-1))
i<n j=n+1
= U(I(ﬂm)a ﬂn) - u(x(ﬂm)vﬂm> + ’U(ﬂn) + Z Rj (x(ﬂjfl))
j=n+1
= ’U(ﬂn) — Z (RJ ({E(ﬂm)) — Rj ({E(ﬂjfl))) < U(ﬂn), (216) {eq:discrete-TT1}
j=n+1

where the first two equalities follow from (2.15) and the third because

m

u(‘r(ﬁm)vﬁm) - u(x(ﬁm)vﬁn) = Z Rj (‘T(ﬁm)) :

j=n+1

The inequality in (2.16) follows because z(-) is nondecreasing and R;(-) is an
increasing function.
The proof for the case n > m is in the Appendix. |
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A Continuous Type Space. The other common assumption is the type
space is an interval (3, ) € R. Assume—primarily to avoid technical complica-
tions—that both limits are finite. To facilitate working with this space, take the
buyer’s utility, u(, -), to be twice continuously differentiable in both arguments.
Assume for any x € X that du(z, B)/BB is bounded above for all 3 € B.
There is now no well-defined notion of adjacent types. However, an obvious
calculus-based analogue to the rent function is the partial derivative

ou(z(B), B)
op ’

The corresponding analogue to the sum of rent functions (e.g., as appears in
(2.15) above) is the integral:

P ou(z(z),2)
/ﬁ 78[3 dz .

(Because z appears twice in that expression, it is readily seen that the integral
is not a simple anti-derivative of the partial derivative.) Further reasoning
by analogy suggests that the seller’s optimal direct-revelation mechanism is
characterized by a nondecreasing allocation profile z(-) and transfer function

5U$ZZ
8 = u(e(9). ) —un— [ dula(2).2) ), (2.17)

8 op

This conclusion is, in fact, correct:

Proposition 5. Suppose the type space is a continuous bounded interval in
R, that the buyer’s utility function is twice continuously differentiable in both
arguments, and the partial derivative with respect to type is bounded above. A
mechanism {x(-),t(-)) is a direct-revelation mechanism if and only if x(-) is
nondecreasing and

'GUIZZ
“@=u@wxm—7_/'2LLLg

, R (2.18)

where T > ug 1S a constant.

Given a nondecreasing allocation profile, z(-), the seller can choose any t(-)
satisfying (2.18) to implement it. She does better the greater is ¢(-), so it follows
she wants 7 as small as possible; that is, equal to ur. Hence, as claimed, her
expected-payoff-maximizing mechanism has a transfer function satisfying (2.17).

2.1.4 THE EQUILIBRIUM MECHANISM AND TARIFF

Consider, now, the question of the seller’s choice of mechanism to offer.
Two additional points before proceeding. First, it follows from the economic
definition of cost that ¢(xg,8) = 0 V3. Second, for the case of a discrete type

{eq:t-continuous}

{prop:SuffMechCont}

{eq:t-continuous-genl}
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space, “match” the continuous-space case by assuming the space is bounded
above and below. Given the denumerability of the space, this is equivalent to
assuming it has a finite number of elements, N. Using the ability to renormalize
the index function, let the lowest type be .

Recall that F : B — [0,1] is the distribution of buyer types. Given a
mechanism {(x(-), ¢(-)), the seller’s expected payoff is

E{t(8) ~ c(=(3).8) }.

In light of Proposition 4 or 5, as appropriate, there is no loss in limiting the
seller to nondecreasing allocation profiles x(-) and transfer functions given by
(2.15) or (2.17), as appropriate. Hence, her choice of mechanism is the program

el ema - [, mo=cle ) | -

= r;l(a)xIE {(w(x(ﬁ), B) — /{ZEBZSB} R(z)dz} —ugr (2.19)

subject to z(-)’s being nondecreasing; where R(f) is the rent function (equal to
R, (:zr(ﬁn,l)) in the discrete case and equal to Ou (:zr(ﬁ), B) /0 in the continuous
case) and f (-€B|2<p)} 18 to be read as the appropriate summation notation in
the discrete case.

Going forward let f(-) denote the density function implied by the distribution
function F(-).2” When B is a discrete space, it is often convenient to write f,,
for f(8n) and vice versa. In the discrete case, there is no loss of generality in
assuming that f, > 0 for all n (to assume otherwise would be equivalent to
assuming that type 3, simply didn’t exist—drop that type and reindex). The
analogous assumption in the continuous case, f(8) > 0 for all 8 € (3, B), is less
general, but standard. Make both assumptions. B

In the discrete case, observe

ﬁ:(ZRk ﬁzm) Z(ZRkH )fn

Z ( n+1 ﬂn Z fn> = 2 Rn+1 (I(ﬂn)) (1 - F(ﬂn))

k=n-+1

27Observe, in the continuous-space case, this essentially implies the distribution function is
differentiable (i.e., a density function is defined for all 3 € B). This assumption is readily
relaxed; the added complexity, though, of doing so makes such a generalization too costly
relative to its benefit to include in this chapter.

{eq:SellerProfit-mech-max}



EXOGENOUSLY INFORMED BUYER 20

(note 22:1 = 0). Hence, in the discrete case, (2.19) becomes

N—1
r;l(a)x Z (M(I(ﬂn)vﬂn))fn - Rn+1($(ﬂn)) (1 - F(ﬂn))) + w(x(ﬂN),ﬁN)fN
n=1

N
= 1;1(&))( Z <’LU ({E(ﬂn), ﬂn)) — %WRnJrl (x(ﬂn))> fn s (220) {eq:SellerProfit-mech-max-disc}
n=1 n

where the fact that 1—F(8x) = 0 (the probability of drawing a type higher than

the greatest is zero) permits the inclusion of the undefined term Ry 41 (z(8n)).
In the continuous case, observe, via integration by parts, that

5 B ou(z(z),2)
/ (/ﬁ T dz) f(5)d5

Hence, in the continuous case, (2.19) becomes

g 1= F(B) du(z(8), ) _ ’
rg(a;c/ﬁ <w ((E(ﬁ), ﬁ) f(ﬁ) 66 f(ﬁ)dﬁ . (221) {eq:SellerProfit-mech-max-cont}

In both cases, underscoring the great similarity between them, the principal
chooses an allocation profile to maximize

E{w(x(ﬂ),ﬂ) - %R}

subject to z(-)’s being nondecreasing. The expression inside the curly brackets—
welfare generated by trade with a S-type buyer less a term reflecting the con-
tribution the allocation z(8) has on the information rents of types higher than
B—is often referred to as virtual surplus (less often, virtual welfare). The infor-
mation rent component reflects the inability of the seller to fully capture all the
welfare generated by trade because she cannot escape “paying” an information
rent to certain types. The ratio (1 — F)/f is the multiplicative inverse of the
hazard rate of the distribution of types.??

Were it not for the constraint that the allocation profile be nondecreasing,
the solution to the principal’s mechanism-design problem could be found by

281n statistics, the ratio (1 — F)/f is known as the Mills ratio. That term is not widely used
in economics, however.
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point-wise optimization; that is, for each 8, the optimal z() would maximize
the virtual surplus; that is, be the solution to

1-F(p)
ne (8 = =5

where R(-,-) is the relevant rent function (i.e., R(x, 8,) = Ryy1(x) in the dis-
crete case; and R(z,3) = du(x,3)/0B in the continuous case). Of course, if
solving (2.22) for each f3 yields a profile that is nondecreasing, then we’ve solved
the seller’s problem—in such a case, the constraint on the allocation profile is
simply not binding. In what follows, attention is limited to situations in which
the nondecreasing-allocation condition is not binding.?*

Let Q(x, ) denote virtual surplus (i.e., the expression to be maximized in
(2.22)). By the usual comparative statics, if (-,-) exhibits increasing differ-
ences, then the x that solves (2.22) is necessarily nondecreasing in 5 and the
constraint on the allocation profile can be ignored. This observation motivates
the following series of assumptions.

R(z, ), (2.22)

Assumption 6. The welfare function (i.e., w(z, ) = u(x, ) —c(zx, B)) exhibits
increasing differences.

Observe Assumption 6 is implied by the Spence-Mirrlees condition (Proposi-
tion 3) if cost is invariant with respect to buyer type (an assumption true of
most price-discrimination models).

Given Assumption 6, virtual surplus will exhibit increasing differences if, for
B> and xz > 2/,

1-F(p)
f(B)

This observation motivates:

/ 1-— F(ﬂ/> 1 !l
(R(I,ﬂ) — R(z ,B)) < W(R(x,ﬁ )— R(«', 8 )) , (2.23)

Assumption 7 (Monotone Hazard Rate Property). The hazard rate associated
with distribution of buyer types is nondecreasing in type.

Assumption 8. The rent function exhibits nonincreasing differences.
As the discussion shows, one can conclude:

Lemma 4. Given Assumptions 6-8, virtual surplus exhibits increasing differ-
ences.

29For many problems of interest in economics, the nondecreasing-allocation condition does
not bind, which is why I’'m limiting attention to that case here.

For the interested reader, let me briefly note that when the condition binds, the seller’s
optimal mechanism-design problem becomes an optimal-control problem. In particular, if
X (+) is the schedule implied by solving (2.22) for each B and it is not nondecreasing, then
the actual allocation schedule is a flattening—or, as it is typically described ironing—out of
the hills and valleys in X (-) to achieve a non-decreasing allocation profile. Section 2.3.3.3 of
Bolton and Dewatripont (2005) provides details on ironing.

{eq:mech-pointwise-gen}

{ass:welfare-incdif}

{eq:part-virtsurp}

{ass:MHRP}

{ass:rent-decdif}

{lemma:noironing}



EXOGENOUSLY INFORMED BUYER 22

As noted, Assumption 6 is, in many instances, implied by the Spence-
Mirrlees condition. Because many common distributions (including the normal,
uniform, and exponential) exhibit the monotone hazard rate property (MHRP),
Assumption 7 is typically also seen as innocuous. Only Assumption 8 is diffi-
cult to justify as generally true because it does not correspond to any obvious
economic principle (although it does not necessarily contradict any either). On
the other hand, Assumptions 6-8 are merely sufficient conditions; it is possible
that virtual surplus could exhibit increasing differences even if one or more of
these assumptions fail.

Provided point-wise optimization is valid, the fact that there is zero proba-
bility of drawing a type greater than the highest type means

z(Bn) = argmaxw(z, By) and z(B) = argmaxw(z, 5)
reX reX
for the discrete and continuous cases, respectively. This result is often described
as no distortion at the top.

Proposition 6 (No distortion at the top). Assume the seller can solve her
mechanism-design problem via point-wise optimization (assume, e.g., Assump-
tions 6-8). Then the allocation provided the highest type is the welfare-mazi-
mizing allocation given that type.

On the other hand, if (i) 8 € B is not the highest type and (ii) all functions
are differentiable, then

E)()(J?,la) _ 6910(17513) _ 1- 17(/3) 69}%(337/3) < 6910(3:7/3)
Oz Oz 7B Oz or

(2.24)

where the inequality follows because OR(x, 3)/0x > 0 by Spence-Mirrlees. Con-
sequently, if point-wise optimization is valid and z(8) is an interior solution to
(2.22), then z(8) does not maximize welfare given that type. This is sometimes
referred to as distortion at the bottom, which is slightly misleading insofar as
this distortion affects all types other than the highest. Expression (2.24) also
tells us the direction of the distortion: the type-8 buyer will be allocated less
than the welfare-maximizing amount given his type. To summarize:

Proposition 7. Assume the seller can solve her mechanism-design problem via
point-wise optimization (assume, e.g., Assumptions 6-8). Assume all functions
are differentiable.3 Consider a type other than the highest. If his allocation
is an interior maximizer of virtual surplus, then his allocation is not welfare
mazximizing and is less than the welfare-mazimizing amount.

Intuitively, allocating more to a low-type buyer costs the seller insofar as it raises
the information rent she must “pay” all higher types (equivalently, reduces what
she can charge all higher types). Hence, she distorts the allocation to any type,
but the highest, as she balances the gains from trade with that type against the
forgone revenue from higher types.

30Tt should be clear that analogous results can be derived when the functions aren’t differ-
entiable. The value of such an extension is too small to justify its inclusion here.

{prop:NoDistortTop}

{eq:DistortBottom}

{prop:DistortBottom}
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2.1.5 EXAMPLES

Linear Pricing. Recall the example, given at the beginning of this section, in
which the buyer seeks at most one unit of the good and his benefit from the good
is 3, where 8 € [, 8], B > 0 and the distribution of types is uniform. At its most
general, an allocgtion,_:v(ﬁ), is a probability of the good in question ending up in
the buyer’s hands. Hence, X = [0, 1], with 2o = 0 (the buyer only gets the good
if trade). Earlier, it was assumed that ¢(z, 8) = 0; let’s generalize that slightly
by assuming c¢(z, 8) = xc¢ > 0, ¢ a constant. Note u(x, ) = xf. The cross-
partial derivative of that is 1; given 1 > 0, the Spence-Mirrlees condition is met,
as is Assumption 6. It is readily verified that Assumptions 2—5 are satisfied. The
uniform distribution satisfies MHRP. Observe R(z, 8) = du(z, §)/08 = x, which
trivially satisfies nonincreasing differences. Hence, the optimal mechanism can
be found by point-wise maximization of virtual surplus:

max zf —zc— (B —B) .
z€[0,1] ——
1-F
i
It follows that z(8) = 1 if 28 > 3 + ¢ and x(8) = 0 otherwise. Observe if
B > (B + ¢)/2, then the profit-maximizing mechanism entails trade with all
types; this validates the claim made earlier that the seller’s ignorance of the
buyer’s type need not necessarily result in inefficiency. Of course this problem
is somewhat special insofar as maximizing virtual surplus always yields a corner
solution and, hence, Proposition 7 does not apply. It was also claimed earlier
that linear pricing is the profit-maximizing tariff. To confirm this, let 8 =
max{j3, (6 + c)/2}. Type B is the lowest type to buy. Clearly, urp = 0. From

Lemma 3, ug = U(B) The latter quantity is B—t(ﬁ) Hence, t(g) = 5.31 Given
xz(f) = x(B) = 1 for all B > f, the 1C constraint implies ¢(5) = ¢(5). So the
tariff is T'(x) = B if # > 0 and T'(z) = 0 if = 0; that is, it is linear pricing

with a price p = 5.

Second-degree Price Discrimination via Quality Distortion.?? Many
goods can be obtained in one of many versions or classes. This is true, for ex-
ample, of software (business vs. home editions), travel (first vs. economy class),
theater (orchestra vs. balcony seating), etc. In such cases, the seller is using
quality differences to discriminate across buyers. To have a sense of this, sup-
pose there are two types of buyer, 51 and (2, f2 > 51 > 1. Let not receiving

310f course, we can derive t(-) directly from (2.17):

8 B=8, i i
- B B B—B"‘B—B’lf?ZB
#(8) = x(8)8 /ﬂx(z)dz—{o_O:o,ifﬁ<5

321In the usual labeling of price discrimination (i.e., first, second, and third degree), discrimi-
nation in which the consumer must be induced to reveal his preferences is called second-degree
discrimination. Such discrimination is, as seen, equivalent to tariff construction via mechanism
design.

{sect:PDexamples}
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the good correspond to quality g = 1 and assume that X = [1,00). Let
u(z, B) = Blog(z) and ¢(x) =z — 1. Assumptions 1-5 are readily verified. The
validity of pointwise optimization will be shown directly. Observe

1-fi
i

x(B2) = argerr/_lvaxﬁg log(z) — (z —1). (2.26)

x(P1) = argen/_lvaxﬁl log(z) — (x —1) — log(x) and (2.25)

Hence, z(f2) = B2 and

1,if fi < =
xwo—{ P

% , otherwise

The solution is nondecreasing, so pointwise optimization is valid. Note if low
types are too small a proportion of the population, then the seller prefers to
exclude them altogether (sometimes referred to as shutting out the low types).
Hence, observing a seller offering a single version does not mean that she has
eschewed second-degree price discrimination; she could be engaged in discrimi-
nation, but has chosen to shut out the low types. In some settings, the set X’
of possible qualities may be limited by technology (it could even be binary—an
air traveler, e.g., can be required to stay over Saturday night or not). Again the
seller solves (2.25) and (2.26), but perhaps without being able to use calculus.

Second-degree Price Discrimination via Quantity Discounts. A famil-
iar phenomenon is quantity discounts: the price ratio of a larger package to a
smaller is less than their size ratio. To understand such pricing, suppose a
buyer’s benefit from 2 mobile-phone minutes is fylog(z + 1), v > 0 a known
constant. Assume a constant marginal cost of supplying minutes, ¢ € (0,1). As-
sume [ is distributed uniformly on [0, 1]. The various assumptions are readily
verified for this example. Virtual surplus is

Bylog(z+1) —cx — (1 — B)ylog(x + 1) .
—_—— —
1-F du/08
The derivative of virtual surplus is
(28— 1)y —c(1+2)
1+z '

It immediately follows that

0, if 2te
x(ﬂ)—{ s o

(2'8_73;)7_0 , otherwise

{eq:qual-distorti}

{eq:qual-distort2}
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Observe some low types are shut out. The transfer function is, from (2.17),

B
t(B) = Bylog (w(ﬁ) +1) - /0 ~vlog (w(z) + 1)dz

0, if § < %t

7 (Qﬁ —1+log (MD — §, otherwise

C

Observe the transfer can be reéxpressed as a traditional tariff:33:34
1
T(z) = 3 (cz +~log(z + 1)) . (2.27)
It is readily verified that there are quantity discounts (e.g., 27 (z) > T(2z)).

2.2 THE MONOPOLY PROVISION OF INSURANCE

The analysis of the previous subsection covers a wide variety of trading situa-
tions and, via suitable redefinition of variables, an even wider array of contrac-
tual situations, but it does not cover all situations of interest. In particular,
because the analysis exploits the buyer’s quasi-linear utility, it is not suited to
situations in which quasi-linear utility is a poor assumption. One such situation
is an insurance market, where attitudes toward risk are of primary importance.

Suppose, now, the buyer’s utility in a given state is u(y;), where y; is his
income in state ¢ and u(-) : R — R is an increasing function (people prefer
greater incomes to smaller incomes). A buyer’s type is, now, his distribution
over states. As an example, a buyer could have income yy when healthy and y;
when injured, where yg > yr because of lost wages, the need to pay for medical
care, and so forth. His type, 3, is his probability of injury.

Assume the buyer is risk averse: wu(:) is strictly concave. Let E be the
relevant expectation operator over income. Given a non-degenerate distribution

33That a deterministic direct-revelation mechanism can always be reéxpressed as a standard
tariff is a general result known in the literature as the tazation principle (Rochet, 1985,
attributes the name “taxation principle” to Roger Guesnerie). Formally if x(B) is the set
of allocations feasible under a direct-revelation mechanism and if it possible to penalize the
buyer sufficiently so that he would never choose an « ¢ x(B) U {zo}, then an equilibrium
outcome under any deterministic direct-revelation mechanism defined by 8 — (:c(B),t(B)), is
also an equilibrium outcome of the game in which the seller allows the buyer to choose the
allocation, z, in exchange for payment T'(x), where T'(+) is defined by

0, ifx=uxo
T(z) =14 t(B), if B € 271 (x) (i.e., such that x = x(B) for some B € B)
buyer pays large penalty, if z ¢ x(B) U {zo}

34 An alternative method of designing the profit-maximizing tariff to engage in price dis-
crimination via quantity discounts is the so-called demand profile approach. This approach is
particularly useful if the seller has access to actual data (e.g., of the sort generated by grocery
store checkout scanners). See Wilson (1993) for details.

{eq:Tariff-2ndQuantDisc}
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over income, Jensen’s inequality implies:

E{u(y)} < u(E{y}). (2.28)

Because u(+) is monotone, it is invertible. Define the certainty equivalence by

Yer = u! (E{u(y)}) .

In words, if the buyer received ycg for certain (i.e., in all states), then his
utility would be equal to his expected utility given the relevant distribution
over income. Expression (2.28) implies yor < E{y}.

2.2.1 THE BASICS OF INSURANCE

Consider a risk-neutral seller (i.e., a party for whom the utility from a transfer
of t is just t). As a benchmark, suppose the buyer’s type were known to the
seller prior to trade. The seller could offer to insure the buyer via a contract in
which the buyer agreed to transfer his income in each state to the seller and the
seller agreed to transfer a fixed ¢ to the buyer in each state.?® Hence, the buyer’s
utility would be u(g) with certainty and the seller’s expected utility would be
E{y} — ¢ (normalize the seller’s no-trade income to zero). Provided § > ycg, the
buyer does at least as well trading as he would not trading. Provided E{y} > g,
the seller does at least as well trading as she would not trading. Because the
interval (be,E{y}) is nonempty, there exist values for ¢ such that each side
does at least weakly better to trade than not.

The last paragraph established that gains to trade exist. It didn’t, though,
establish that full insurance—a constant income for the risk-averse party across
all states—is optimal. That full insurance is optimal is, however, readily shown:36

Proposition 8. Let there be a discrete set of states. An insurance contract
between risk-neutral and risk-averse parties that does not fully insure the risk-
averse party is strictly Pareto dominated by one that does.

Proof: Let there be N states, indexed by n. Let m, denote the probability
of state n occurring. Because otherwise state n does not really exist, we may
take m, > 0 for all n. Let y, denote the risk-averse party’s income in state n.
An insurance contract, Y = (Y1,...,Yy), yields the risk-averse party a payoff
of Y, in state n and the risk-neutral party a payoff of y,, —Y,,. Suppose Y were
such that Y,, # Y, for some n and m. The buyer’s expected utility is

N
Z mau(Yy) =U .
n=1

350bviously this contract can be replicated by one stated in the more familiar terms of
premia and benefits. See footnote 38 infra.

36The analysis here assumes a discrete set of states. The extension to a continuum of
states is straightforward, but slightly more involved because of issues of measurability and the
irrelevance of sets of states of measure zero. Because the economic intuition is the same, the
extension is omitted for the sake of brevity.

{eq:Jensens1}
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If Y is not strictly Pareto dominated, then it must be a solution to the program

N N
Xlrf}%))((N ;ﬂ'n(yn — X,,) subject to ;Wnu(Xn) =U. (2.29)

Let A denote the Lagrange multiplier on the constraint. The Lagrangian is

N
> o (yn — Xo + Mu(Xp)) = AU
n=1

The corresponding first-order condition is
-1+ M (X,)=0Vn. (2.30)

Because u/(-) is strictly monotone, it follows that a necessary condition for a
contract to solve (2.29) is X; = --- = Xy. By assumption, Y does not satisfy
this and is, thus, strictly dominated by the solution to (2.29). |

Expression (2.30), the condition for a Pareto-optimal insurance contract, is
sometimes referred to as the Borch (1968) sharing rule. In terms of economics,
the Pareto-optimal contract must be one in which the ratio of the insurer’s
marginal utility of income to the insured’s marginal utility of income is a con-
stant across all states.3” This makes sense: if the ratios varied, then income
could be transferred across states in a way that made both parties better.

2.2.2 ADVERSE SELECTION

Now return to the situation in which there are multiple buyer types and the
seller is ignorant of the buyer’s type at the time of contracting.

Although the analysis could be done for more than two income states, limit-
ing attention to two is with little loss because, to make the analysis tractable, a
sufficiently strong order condition—essentially a variation of the Spence-Mirrlees
condition—needs to be assumed. Given such an assumption, there is little fur-
ther loss of generality in limiting attention to two states. Doing so also permits
a graphical analysis. Call the two states healthy (H) and injured (I).

Assume that a buyer’s injury probability, 3, is the sole dimension of varia-
tion. Regardless of type, a buyer has income yy if healthy and y; if injured,
yu > yr. A type-8 buyer’s expected income is §(8) = (1 — B)yu + Bys. Let

Yee(B) = u! ((1 = B)ulyn) + ﬂu(yl))

37The rule generalizes to a mutual insurance arrangement between two risk-averse parties.
Replace yn — Xn in (2.29) with ¢¥(yn — X»n), where 9(-) is strictly increasing and strictly
concave. Solving the new (2.29) would yield the following analogue of (2.30):

w/(yn - Xn)

=" (yn — Xn) + M/ (Xn) =0VYn = u'(Xn)

=AVn.

{eq:Borch1}

{eq:Borch2}
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denote his certainty equivalence. Note yqg(-) is a decreasing function.

From Proposition 8, the seller, if she knew the buyer’s type, would maximize
her expected payoff by offering full insurance at the level yep(8). When she
doesn’t know type, she cannot offer type-specific full insurance to multiple types:
if 8 < 3, then, because yci(+) is a decreasing function, type 8 would do better
to sign the type-3’ contract. This potential for higher-risk insureds to pretend
to be lower-risk insureds is known in the insurance literature as the problem of
adverse selection. The seller’s response to this adverse selection will be to offer
a menu of insurance contracts, not all of which will provide full insurance.

The Revelation Principle (Proposition 2) still applies, so one can view the
seller as designing a direct-revelation mechanism in which a buyer’s announce-
ment of type, B, maps to a contract (Y7(8),Yrn(5)); that is, one in which the
buyer transfers his income in state n, y,, to the seller in exchange for Y,,(3).3®

As earlier, a Spence-Mirrlees condition holds:

Lemma 5 (Spence-Mirrlees). Suppose 8 > ' and Y; > Y/. Then if a p'-type
buyer prefers (Yr,Yu) to (Y/,Y}), a B-type buyer strictly prefers (Y1, Y).

Figure 1 illustrates Lemma 5. Note it also illustrates why the Spence-Mirrlees
condition is known as a single-crossing condition.

Figure 1 also demonstrates that, in equilibrium, if the seller sells a lower-
risk type (e.g., ') a policy (contract) with some amount of insurance, then the
higher-risk type (e.g., 8) could achieve strictly greater expected utility buying
that policy than going without any insurance. For example, as shown, type 5’
is willing to buy A if offered and type 8 would enjoy strictly greater expected
utility under A than if he went without any insurance. Consequently, it must
be that if the seller serves lower-risk types in equilibrium, then higher-risk types
earn an information rent, a result similar to Corollary 2. This establishes:

Proposition 9. If a lower-risk type purchases an insurance contract in equilib-
rium, then all higher-risk types earn an information rent in equilibrium.

Figure 2 illustrates the tradeoffs faced by the seller. Suppose there are
only two types, Br and By;—high and low risk types, respectively. Suppose the
seller offered a full-insurance contract, denoted F, acceptable to the low-risk
type. The high-risk would also purchase this contract and enjoy a considerable
information rent. Suppose, instead, the seller moved along the low-risk type’s
indifference curve (the curve labeled Zg,) and offered a contract with less than
full insurance (e.g., contract D). For a contract D near F, the efficiency loss
from doing this would be second order given F is an optimum. But by doing
this, the seller could offer the high-risk type a full-insurance contract that gave
him a smaller information rent (e.g., contract E). Reducing the information

38Observe we can readily reéxpress this contract in the familiar form of a premium, ¢, the
buyer pays in both states and a benefit, b, he receives in the insured-against state (e.g.,
sickness):
t=yyg—Yyg and b=yg —Yg +Yr —ys.

Working directly with income is simpler, though.

{lemma:SM-insurance}

{prop:Insurance-InfoRent}

{fn:InsureContract}
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Income
if healthy

Income
if injured

Figure 1: lllustration of Spence-Mirrlees Condition. An indifference curve, Zg, for
a high-risk type, 3, and one, Zg/, for a low-risk type, /', through the
uninsured point, (yr,ym), are shown. Because the low-risk type prefers
(weakly) the partial-insurance contract A to no insurance, the high-risk

. . ig:SM-insurance
type strictly prefers the contract A to no insurance.

rent represents a first-order gain for the seller. Because the efficiency loss is
second order, while the rent-reduction benefit is first order, moving away from
offering just F is in the seller’s interest. The expected profit-maximizing choices
of D and E depend on the relative proportions of high and low-risk types in the
population. The greater the proportion of high-risk types, the closer D will be
to the no-insurance point (yr, ym ). Reminiscent of Proposition 7 above, there is
distortion at the bottom—to reduce the information rent of the high-risk type,
the low-risk type is offered less than full insurance.

3 TwO-SIDED ASYMMETRIC INFORMATION

Now, consider a setting in which both buyer and seller have private information
relevant to trade.

A key issue in the study of trading mechanisms is the point at which the
buyer and seller become committed to play the mechanism. Figure 3 illustrates
the three possible points. The first is before they learn their types. This corre-
sponds to a situation in which there is symmetric uncertainty about how much
the good or goods will cost to supply and the benefit it or they will yield. Such
a situation arises when yet-to-be-realized market conditions will affect cost and
benefit. Whether or not a party wishes to participate depends on his or her
expectation of his or her type. When the participation decision is made prior to
learning type, the situation is one of ex ante individual rationality.

{sect:Two-Sided_Asymmetric_Info}
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Income
if healthy

Income
if injured

Figure 2: lllustration of Distortion of Low-Risk Type's Contract to Reduce Infor-
mation Rent of High-Risk Type. Indifference curve Ié)h is the high-risk

type's. indifference curve through the contract D offered the low-risk
type ig:insurance-solution

Parties Parties play
learn type mechanism
I Time
Agree to Agree to Agree to
play & play & abide by
abide by abide by outcome
outcome outcome

) . _ . o TradineTind
Figure 3: Possible Points of Commitmentf &' -24nETming
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The second point at which commitment could occur is after the parties learn
their types, but before they play the mechanism. This is a situation in which
either (i) contracting occurs after the parties learn their types or (ii) they learn
their types after contracting, but can exit the relation without penalty before
playing the mechanism. Interpretation (i) applies when a buyer and seller,
who know their types, meet and seek to trade. Interpretation (ii) could be
reasonable given certain aspects of real-life legal systems. For instance, courts
may allow parties to walk away from contracts if they can prove that a change
in circumstances makes the contract commercially impractical (e.g., cost proves
to be higher than expected) or purpose has been frustrated (e.g., the buyer’s
benefit has significantly fallen).?® The participation constraint at this point is
known as interim individual rationality.

Finally, it might be possible for the parties to refuse to accept the results
of the mechanism: the corresponding constraint that they accept the results is
known as ez post individual rationality. In the literature, it is typically assumed
that a mechanism (contract) will be enforced by some third party, which means
the mechanism is ex post individually rational because neither party is willing
to suffer the punishment the third party would impose for non-compliance. In
reality, there are limits to enforcement. In such cases, those limits would be
relevant to the design of the mechanism.

Another issue is whether the mechanism is balanced: transfers among the
parties to the mechanism or contract always sum to zero. If a mechanism is
unbalanced, then either an outside source must be providing funds if the sum
of transfers is positive or the parties must be committed to ridding themselves
of excess funds if the sum is negative. For most buyer-seller relations, it is un-
reasonable to imagine there is a third party willing to subsidize their trading.
Similarly, it is unreasonable to imagine that the parties will actually rid them-
selves of excess funds (“burn money”). Should the mechanism call for them
to rid themselves of excess funds, the parties will presumably renegotiate their
agreement and divide the excess funds among themselves. In essence, one can
think of burning money as violating a collective ex post rationality constraint.

That noted, one can, however, imagine a few trading relations in which
unbalanced mechanisms could be reasonable. If buyer and seller are different
divisions of the same firm, then headquarters could be willing to subsidize trade
or vacuum up excess funds if need be.

3.1 TRADE SUBJECT TO EX ANTE INDIVIDUAL RATIONALITY

To begin, assume that the relevant participation constraint is ex ante individual
rationality; that is, each party’s expected payoff must exceed his or her no-trade
payoff. In line with the previous analysis, normalize the no-trade payoff to zero
for each party.

39 An illustration of frustration of purpose is the case Krell v. Henry, in which the benefit of
renting an apartment to watch a coronation parade was vastly reduced by the postponement
of the coronation (Hermalin et al., 2007, p. 95).
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3.1.1 SINGLE-UNIT EXCHANGE

Suppose the parties will exchange at most a single unit. At the time of contract-
ing, both buyer and seller know that the buyer’s value for the unit, b, will be
drawn from [0, 00) according to the distribution F. Similarly, they both know
that the seller’s cost (equivalently, her value for the unit), ¢, will be drawn from
[0, 00) according to the distribution G. Assume b and ¢ are independent random
variables. Once drawn, the buyer’s value is his private information and likewise
the seller’s cost is her private information.

As before, a mechanism is an allocation rule z : RY — [0,1] and transfer
rule. Limit attention to balanced mechanisms, so the amount the buyer pays is
necessarily the seller’s payment. Let p : Ri — R denote the seller’s payment as
a function of the buyer and seller’s announcements.

Welfare is maximized provided trade occurs if and only if b > ¢. A mecha-
nism is efficient therefore if

0,ifb<c
x(b’c)_{ 1,ifb>c

A bit of intuition facilitates the mechanism-design problem. To wit, if the
seller has been induced to reveal her cost, ¢, truthfully, then we only need the
buyer, if exchange is to be efficient, to announce—having heard the seller’s
announced c—whether he wants the good, provided the mechanism is such that
he wants it if and only if b > ¢. Buyer rationality implies he will do so if his
payment to the seller is exactly c¢ greater if he says he wants the good than if
he says he doesn’t. The issue then, at least with respect to truthful revelation,
is to induce the seller to announce c truthfully.

Notice that the mechanism is such that one party’s announcement follows—
and can be conditioned on—the announcement of another party. Such mecha-
nisms are known as sequential mechanisms for obvious reasons.*°

The buyer would behave efficiently if his payment were simply c if he buys.
Linear pricing would not, however, induce truthful revelation from the seller:
were the payment just ¢, then the seller would announce the ¢ that solved

max é(1 — F(¢)) 4+ cF(é) equivalently max(é —c)(1— F(é)). (3.1)
Lemma 6. Unless her cost exceeds the buyer’s mazimum value, the seller would
not announce her price truthfully if her payment were just her announced cost.

Proof: By assumption, there exists a ¢’ > ¢ such that 1 — F(¢/) > 0. Clearly,
either expression in (3.1) is strictly greater if é = ¢/ than if ¢ = ¢. |

Because, in a sequential mechanism, the buyer chooses whether to buy or not
given the seller’s announcement, we can write the payment as p(x, ¢). Efficiency,

40Crémer and Riordan (1985) was among the first use of sequential mechanisms (some-
times called sequential-announcement mechanisms) and consequently such mechanisms are
sometimes referred to as Crémer-Riordan mechanisms.

{eq:LP-trademech}
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as well as incentive compatibility for the buyer, requires that
b—p(1,¢) > —p(0,c¢)
for all b > ¢ and

b—p(l,c) < —p(0,c)
for all b < ¢. This requirement can be met if and only if
¢c—p(l,¢) = —p(0,¢),
from which it follows that p(-,-) must be of the form
p(z,c) =xc+T(c),

where T'(¢) depends only on the seller’s announcement and is independent of
the buyer’s purchase decision. If the seller claims her cost is ¢ when it is truly
¢, then her expected profit (utility) is

6(1 — F(é)) + CF(é) —+ T(é) ) alternatively (é — C) (1 — F(é)) + T(é) . (32) {eq:NoInvestment_Fill—in—the—pric<

The first expression in (3.2) applies if ¢ is the seller’s value from consuming the
item herself if no sale occurs, while the second applies if she only expends c¢ if
trade occurs (e.g., in the latter case, ¢ is the cost of manufacture). But since
the same & will maximize either—see (3.1) above—the analysis applies to either
alternative. (There is no “magic” here: the equivalence simply follows from the
concept of opportunity cost.)

For convenience, consider the second alternative. Take any two types ¢ and
¢, ¢ > . By the Revelation Principle, attention can be limited to mechanisms
that induce the seller’s truthful revelation. A standard revealed-preference ar-
gument implies

T(c)>(d —e)(1=F() +T(') and T(') > (c—)(1 = F(c)) + T(c).
Combining these expressions yields

T(c)—T()

c—c

1—-F()> - >1-F(c).
This suggests—via integration—the following:*!

T(c)=T(0)— / (1-F(z))d=. (3.3) {eq:Fill-in-the-price_mechNI}
0

41The mechanism derived here was originally derived in Hermalin and Katz (1993), where
it was referred to as a fill-in-the-price mechanism.
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Remark 1. Recognize that the argument to this point does not establish that
it is sufficient to limit attention to mechanisms in which T'(+) is given by (3.3).
Consequently, if this mechanism failed to maximize welfare, then one couldn’t
conclude that no mechanism would. Fortunately, as will be seen shortly, this
mechanism does maximize welfare.

Remark 2. The expression foc (1 — F(z))dz has an economic interpretation.
Recall the survival function, 1 — F(-), is equivalent to a demand curve. The area
beneath a demand curve between two prices p’ and p is the amount by which
consumer benefit is reduced if the price is raised from p’ to p. Recall the effective
price faced by the buyer is the seller’s announced cost ¢ (the T'(¢) component
is sunk from the buyer’s perspective). If the seller announces ¢ > ¢, the latter

being her true cost, then she reduces consumer benefit by fcc (1 — F(z))dz But
this is T'(¢) — T'(¢); that is, she reduces her transfer by exactly the amount she
reduces the consumer’s benefit. This causes her to internalize the externality
that her announcement has on the buyer.

The mechanism is incentive compatible for the seller if the seller solves

max(é — ¢)(1 — F(é)) + T() (3.4)

C

by choosing ¢ = ¢ for all ¢. To see that is her choice, suppose it were not. Then
there would exist a ¢ and ¢ such that

(—c)(1—F(&)+T(e)>T(c).

Suppose ¢ > ¢, then this last expression implies

1 F(e) > —

c—¢C

/C (1-F(z))dz=1-F(c) (3.5)

where ¢ € (¢, ¢). (Such a ¢ exists by the mean-value theorem.) Survival functions
are non-increasing, hence (3.5) is impossible. Reductio ad absurdum, the seller
wouldn’t prefer to announce ¢ rather than c¢. A similar argument reveals that
there is no ¢ < c that the seller would rather announce than c.

To summarize to this point: the sequential mechanism in which the seller
announces her cost, ¢, and the buyer then decides to buy or not, with the buyer’s
payment being p(z,c¢) = xc + T'(c), with T'(+) given by (3.3), induces the seller
to announce her cost truthfully in equilibrium and induces the buyer to buy if
and only if his valuation, b, exceeds the seller’s cost. The one remaining issue is
can T'(0) be set so as to satisfy ex ante IR for both buyer and seller? The seller
and buyer’s respective expected utilities under this mechanism are

Ug = /000 T(c)dG(c) = T(0) — /Ooo (/O (1- F(b))db) dG(c)

{eq:SellerProfit_FIP_NI}

{eq:FIP_NIal}
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and

Up = /OOO <—T(c) + /:O(b— c)dF(b)> dG(c)

_ _US+/0°O /Oo(b—c)dF(b)dG(c). (3.6)

7(0) = /OOO </O (1- F(b))db> dG(e), (3.7)

making Ug zero; IR for the seller is satisfied. Plugging that into (3.6) reveals
Up > 0, so the buyer’s IR is also satisfied. To conclude:

Set

Proposition 10. Assume a buyer and seller wish to exchange a single unit of a
good efficiently. Assume, too, that the parties can enter into a contract prior to
learning their valuation and cost. Then a mechanism exists that achieves first-
best efficiency and is ex ante individually rational for both parties. An example
of such a mechanism is one in which the seller announces her cost, ¢, and the
buyer subsequently decides to purchase (x = 1) or not (x =0), with the buyer’s
payment to the seller equal to xc + T(c), where T(-) is defined by expressions
(3.3) and (3.7).

3.1.2 MUuLTI-UNIT EXCHANGE

Now consider the exchange of multiple units of a good. Assume the buyer’s
utility is U(x, 8) — t and the seller’s t — C(x,~), where 8 and ~ are the buyer
and seller’s types, respectively; and, as before, = and ¢ are units of the good and
a monetary transfer, respectively. Assume that U and C' are twice continuously
differentiable in both arguments. Assume § and ~ are independent random
variables distributed, respectively, F' : [Sr, Br] — [0,1] and G : [y, vu] — [0, 1].
Welfare is
l@I(I,/g,ﬁO = l]($7/3)4_'(7(x5’Y)'
Assume, for all 8 and ~, that U(-, 8) is a concave function (buyer’s marginal
benefit is non-increasing) and C(-,) a convex function (non-increasing returns
to scale), with one function at least strictly so. Hence, W (-, 8,7) is strictly

concave for all § and ~. There is, thus, a unique welfare maximizing amount of
trade, *(8,v), for all 8 and v. To insure interior maxima assume:

e OU(0,8)/0x > 0 (marginal benefit at 0 is positive) for all § > Br;
e 0C(0,7)/0z = 0 (marginal cost at 0 is 0) for all v < vg;

e For all 8 and +, there exists a finite Z(8, ) such that x > Z(8,~) implies
OW (z, B,7)/0x < 0 (infinite trade is never desirable).

As in the previous subsection, the goal is an efficient sequential mechanism.
To “mix things up,” let the buyer be the one to announce first. The objective is

{eq:BuyerUtility _FIP_NI}

{eq:TO-FIP-NI}

{prop:FIP_NI-efficiency}
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for the seller to respond to the buyer’s announcement, B , by truthfully revealing
her type, «v; that is, the solution to

mgxp(ﬁ, ) — C(:C(B, 4), 7) (3.8)  {eq:MU-FIP-SellerGbj}

needs to be 4 = for all v and B . This can be achieved by defining

z(8,7) = x*(B,7) and p(B,7) =U(z*(8,7),8) — 7(8) (3.9)  {eq:MU-FIP-nech}

(the role of 7 : [BL, Bu] — R will be made clear below). To verify (3.9) induces
truth-telling by the seller, observe (3.8) is equivalent to

max Uz, B) — Clx,7), (3.10)  {eq:MU-FIP-Seller0bj2}
zez*(B,[vL, V]
where z* (B, [ve,vm]) is the image of 2*(B,-).42 Because z*(f3, ) is the uncon-

)
strained maximizer of (3.10) and it’s in x* (B, [vL,7H]), a best response for the
seller is to announce her type truthfully.
The additional function, 7(-), is necessary to induce truth-telling by the
buyer. The buyer’s expected utility in equilibrium is

)+ [ (U6 3).8) - U (39, 6) )ace).

L

if his type is § but he announces 3. His utility is 7(8) if he tells the truth.
Consider 8 > . By revealed preference:

(6= (9)+

YL

YH

(U (8.7).8) = U(=*(8,7), #) )dG(7) and

YH

(@) 276)+ [

YL

(U@ (B,7).8) = U (" (8.7).8) ) dG().
Rearranging,

/”H U(z*(8,7),8') — U(z*(8,7), B)
L B=p

7(8) —7(8)
57
/”H U(2"(8',7), 8) = U(a"(8',7), )
YL ﬁ - BI
Via the implicit function theorem, it is readily shown that x* is continuous in

each of its arguments. One can, therefore, take the limit of the outer expressions
as ' — . This yields*?

v [TOU(x*(8,7), B)
(8) —AL TdGW)-

dG(v) >

>

dG(v)

42Recall that the mage of a function is the set of all values the function can take.

43Because the question is the sufficiency of the mechanism, there is no loss in assuming 7(-)
differentiable provided an efficient mechanism is derived.
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Consequently,

e B % (2 z
T(ﬂ):r(0)+/ /BaU((;—B’”’)dsz(y). (3.11)

We want to simplify (3.11). To that end, observe the envelope theorem entails

oU (z*(8,7), B)

LW (2*(8,7), 8.7) ok

g

Consequently, (3.11) can be rewritten as

7(8) = 7(0) + /WH (W(w*(ﬁ,w),ﬁm) - W(:v*(BL,W)ﬁL,W))dG(v)

L

YH

)+ [ W (8,9),8.9)d6 (). (312)
YL

It remains to be verified that this mechanism induces truth-telling. Consider

B # B, the latter being the buyer’s true type. Is

YH

)=+ [

YL

(U (8,7),8) = U2 (B,7),3) )dG (1) ?

Suppose it weren’t. Substituting for 7(-) yields:

YH

[ Wi asa)ace) < [ (0638 -0 () )ac)

L YL

YH .
= [T G, pyact)
YL
But this is a contradiction because x*(3,~) maximizes W (z, 8,v). Reductio ad
absurdum, the supposition is false and the mechanism induces truth-telling.

The intuition for why the mechanism works can be seen from (3.9): the
buyer’s expected payment is

YH YH
[ e = [ e 3 d60) - €0);
YL L
that is, he pays the expected cost of providing what would be the welfare-
maximizing quantity were his type B . Consequently, he maximizes actual ex-
pected welfare if he tells the truth, but fails to do so if he lies. Effectively, the
buyer is made to face the social planner’s optimization problem and, so, made
to maximize welfare.

Finally, it needs to be verified that a 7(0) exists such that both buyer and
seller are willing to participate. To that end, let

YH Bu
T(O):/ <W($*(5L,7)75L,7)—/5 W(x*(ﬁ,7),[3,7)dF(ﬂ)>dG(7). (3.13)

L

{eq:tau-FIP-MU1}

{eq:tau-FIP-MU2}

{eq:FIP-tau0}
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It is readily seen that the seller’s expected utility is positive—there are, in
expectation, positive gains to trade and these expected gains to trade equal the
sum of the buyer’s and seller’s expected utilities. To summarize:

Proposition 11. Assume buyer and seller wish to exchange the welfare-maz-
imizing quantity of some good, where the welfare-maximizing quantity depends
on their types. Assume, too, that the parties can enter into a contract prior to
learning their types. Then a mechanism exists that achieves first-best efficiency
and is ex ante indiwvidually rational for both parties. An example of such a
mechanism is given by expressions (3.9), (3.12), and (3.13).

3.2 TRADE SUBJECT TO INTERIM INDIVIDUAL RATIONALITY

Suppose, now, a mechanism must satisfy interim individual rationality. Recall,
this means that each party must wish to play the mechanism knowing his or
her type. The no-trade payoffs continue to be zero for each party.

Limit attention to single-unit exchange. The result will prove to be that no
balanced mechanism yields welfare-maximizing exchange for all buyer and seller
types, a finding due originally to Myerson and Satterthwaite (1983).

At the time of contracting, both buyer and seller know the buyer’s value
for the unit, b, was drawn from [0,b] according to the distribution F. Only
the buyer knows what value was drawn. Similarly, they both know the seller’s
cost (equivalently, value for the unit), ¢, was drawn from [, ¢ according to the
distribution G. Only the seller knows what cost was drawn. Assume b and
¢ are independent random variables. Assume both distributions F' and G are
differentiable. Let their derivatives (density functions) be denoted by f and g,
respectively. Assume full support, so that f(b) > 0 for all b € [0,b] and g(c) > 0
for all ¢ € [, ¢]. Because trade is never efficient if ¢ > b, assume b > ¢. Given ¢
is a cost, ¢ > 0; hence, ¢ > 0.

As before, a mechanism is an allocation rule z : RY — [0,1] and a transfer
rule p : Ri — R.

Efficiency requires trade occur if and only if b > ¢. A mechanism is efficient,
therefore, if and only if it satisfies

0,ifb<c
x@”y‘{1,ﬁbzc

To determine whether an efficient balanced mechanism exists, one either
needs to derive a mechanism that works (the strategy employed in the previous
subsection) or characterize the entire set of mechanisms and show no element of
this set works (the strategy to be pursued here). From the Revelation Principle,
attention can be limited to direct-revelation mechanisms. The first step is to
characterize the set of balanced direct-revelation mechanisms; that is, mecha-
nisms in which truth-telling by one party is a best response to truth-telling by
the other and wvice versa.
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Define
é b
&) = [ alb.olgle)de and ¢s(0)= [ alborfbian.

The quantity &;(6) is the probability of trade given party #’s announced type, 6,
and truth-telling by the other party. Similarly, define

¢ b
pp(b) = / p(b,Ag(c)de and ps(c) = / plb, ¢) f(b)db.

The quantity p;(6) is the expected payment given party i’s announced type and
truth-telling by the other party.

Let u(b) and 7(c) be, respectively, the buyer and seller’s expected utilities if
they announce their types truthfully in equilibrium. Hence,

u(b) = bp(b) — p(b) and (3.14)
7(c) = ps(c) — c&s (). (3.15)

A mechanism induces truth-telling and satisfies interim IR if and only if, for all
b,b" € [0,b] and all ¢,¢’ € [0, ¢, we have

u(b) > (') — pp(b'), (ics)
m(c) = ps(c’) — c€s(c'), (1cs)
u(b) >0, and (IRp)
7(e) > 0. (IRg)
By revealed preference:
u(d) > u(b') + (') (b—b") and
u(®) = u(b) + & ()0 - b).
Combining these expressions yields:
E)(b— 1) = u(b) —u(b) = E(¥) (b — V). (3.16)

A similar revealed-preference argument yields:
&s()(e— <) = m(c) = m(e) = Es(e) (e — ). (3.17)

Suppose b > V. Tt follows from (3.16) that g(b) > £p(b')—a necessary
condition for the mechanism to be incentive compatible is that the probability
of trade be non-decreasing in the buyer’s type. Similarly, suppose ¢ > /. It
follows from (3.17) that a necessary condition for the mechanism to be incentive
compatible is that the probability of trade be non-increasing in the seller’s cost.

{eq:MS-defU}

{eq:MS-defpi}

{eq:MS-pinch-buyer}

{eq:MS-pinch-seller}
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The functions u(-) and 7(-) are absolutely continuous.** Tt follows that they
are differentiable almost everywhere. Where their derivatives exist, taking limits
reveals that

u'(b) = £p(b) and 7'(c) = —&g(c).
Finally, because u(-) and 7(-) are absolutely continuous, they can be expressed
as the indefinite integral of their derivative (Yeh, 2006, Theorem 13.17, p. 283):

b
u(b) = u(0) —l—/o &p(z)dz and (3.18)

m(c) = m(c) + /C és(z)dz. (3.19)

Because probabilities are non-negative, (3.18) implies that u(b) > 0 if u(0) > 0.
Likewise, (3.19) implies that 7(c) > 0 if 7(¢) > 0. This analysis yields:

Lemma 7. If a mechanism is incentive compatible, then (i) the buyer’s perceived
probability of trade given his value (i.e., {p(-)) is non-decreasing in his value;
(1) the seller’s perceived probability of trade given her cost (i.e., £s(+)) is non-
increasing in her cost; (1) the buyer’s equilibrium expected utility conditional
on his value is given by (3.18); and (iv) the seller’s equilibrium expected utility
conditional on her cost is given by (3.19). Moreover, necessary and sufficient
conditions for the mechanism to be interim individually rational are that the
buyer with the lowest value wish to participate and the seller with the highest
cost wish to participate (i.e., u(0) >0 and 7(¢) > 0).

What about sufficiency with respect to incentive compatibility? Suppose a
mechanism satisfies conditions (i)—(iv) of Lemma 7. Suppose the mechanism
were not IC for the buyer, then there would exist b and b’ such that

u(b) <u®)+EM)Db-V). (3.20)
Substituting for u(-) and canceling like terms, this last expression implies
b
ép(2)dz < E(V)(b—1) (3.21)
b/
if b> b or )
/ Ep(2)dz > Eg (V) (B — D) (3.22)
b
if b < b'. By the intermediate value theorem, (3.21) and (3.22) imply
Es(B)(b—b) < Ep(®)(b—1b) and (3.23)
Es(B)(V —b) > E(B) (Y —b), (3.24)

44Proof: Because £ is a probability, it is less than one. Hence, for all b, ¥, ¢, and ¢, it follows
from (3.16) and (3.17), respectively, that |u(b) — u(b')| < |[b—¥/| and |7(c) — 7(c')| < |e — |-
The functions u(-) and 7 (-) thus satisfy the Lipschitz condition. The result follows because
all Lipschitzian functions are absolutely continuous (see, e.g., van Tiel, 1984, p. 5).

{eq:MS-U-indefint}

{eq:MS-pi-indefint}

{lemma:MS-necessity}

{eq:MS-Buyer_suff0}

{eq:MS-Buyer_suffl}

{eq:MS-Buyer_suff2}

{eq:MS-Buyer_suff3}

{eq:MS-Buyer_suff4}
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respectively, where b € (min{b’, b}, max{¥’,b}). But expression (3.23) implies
¢5(b) < €5(b'), which contradicts the fact that £g(-) is non-decreasing (recall
(3.23) is the relevant expression if b’ < b and, thus, ' < b). Similarly, (3.24)
leads to a contradiction. Given that (3.20) leads to a contradiction, it follows
that it cannot hold and, thus, that the mechanism cannot fail to be 1C. This
establishes that conditions (i) and (iii) of Lemma 7 are sufficient for a mechanism
to induce truth-telling by the buyer. A similar analysis holds for the seller. To
summarize:

Lemma 8. If a mechanism is such that (i) the buyer’s perceived probability of
trade given his value (i.e., £p(+)) is non-decreasing in his value; (i) the seller’s
perceived probability of trade given her cost (i.e., £s(+)) is non-increasing in her
cost; (i1i) the buyer’s equilibrium expected utility conditional on his value is given
by (3.18); and (iv) the seller’s equilibrium expected utility conditional on her cost
is given by (3.19), then the mechanism is a direct-revelation mechanism.

The following can now be shown:

Proposition 12 (Myerson-Satterthwaite). No balanced interim individually ra-
tional mechanism exists that achieves the first best in a setting in which a single
unit is potentially to be exchanged and the buyer’s value and seller’s cost are
continuously distributed with full support over overlapping intervals.

Given that an efficient mechanism doesn’t exist, the next question is what
is the second-best mechanism? To answer, it is helpful to restate the interim
IR constraint: Lemma 8 implies a necessary condition for interim IR is that
u(0) +w(¢) > 0. This condition is also sufficient. Why? Well if one component,
say u(0), were negative, the other must be positive; moreover, —u(0) in surplus
can be shifted from the seller to the buyer to obtain new constants of integration:

%(0) =0 and 7(c) = 7(¢) —u(0) >0.

(Recall the constants of integration are arbitrary.) Next, the mechanism is
balanced, so

b ¢
| s = [ psterg(rae.
0 c

Expressions (3.14), (3.15), (3.18), and (3.19) imply

pe(b) =b5p(b) — / ¢p(2)dz and ps(c) = cs(c) + (e / €s(z

Hence,

—u(0) + / (bsB / £5(2 ) b)db

{lemma:MS-sufficiency}

{prop:Myerson-Satterthwaite}

:w(é)—l—/ <c§5 /55 dz> c)dc. (3.25) {eq:MS-derive-IR1}
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From (3.25), a mechanism satisfies interim 1R if and only if

/(b@ [ dz) - [ (eestr + [ estoaz) ot 2o,

From the definitions of 5 () and £g(-), the LHS of this last expression equals

/O(b/ .gseric [ [ e dcdz)ﬂb)db
_/</ db+// (b,2)f dbdz)g(c)dc,

In turn, this equals

/Ob /cc(b —c)x(b,c) f(b)g(c)dbdc + /Ob /Ob /ccx(z,c)g(c)dcdz x (= f(b)db)
—/:/:/Obx(b,z)f(b)dbdz x g(c)de

b c 5 -
_/o /C(b—c)x(b,c)f(b)g(c)dbdc—/0 (1_F(b>)/c (b, ¢)g(c)de db

_ /:G(c) /Obx(b,c)f(b)dbdc

_ /Ob /_ ( (b_ 1;(71;(1’)> - <c+ jff;)) 2(b, ) f(b)g(c)dedb, (3.26) {oqrus-derive-Tn2}

where the first equality follows via integration by parts. To summarize the
analysis to this point:

{MS-suff-interimIR}
Lemma 9. A necessary and sufficient condition for a direct-revelation mecha-

nism to be interim individually rational is that expression (3.26) be non-negative.

The second-best problem can now be stated:

b e
g%'z?'))c/o /g(b—c)x(b,c)f(b)g(c)dcdb

subject to the constraints that (3.26) be non-negative, ff x(b, ¢)g(c)de be non-

decreasing in b, and fo x(b, ¢)f(b)db be non-increasing in ¢. In light of Propo-
sition 12, the constraint that expression (3.26) be non-negative is binding. Let
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A > 0 be the Lagrange multiplier on that constraint. As is often done in such
problems, proceed by ignoring the monotonicity constraints on g(-) and &s(+)
and hope that the solution ends up satisfying them. The Lagrangean is

/Ob /:U’ — )a(b,c) f(b)g(c)de db
(1555

) C
x /Ob /_ ( (b— H%l_(i];(b)) - (c+ 1%\5((;))) (b, ) f(b)g(c)dedb,

where « denotes “proportional to”; that is, the last line is the Lagrangean up
to a positive multiplicative constant. Since such a constant is irrelevant to the
solution, the optimal z(-, -) maximizes that last line. The obvious solution is to
set z(b,c) = 1 when

)) x(b,¢)f(b)g(c)dedb

A L-F(b) LD G(c)
TTEx ) T T

(3.27)

and to set x(b, ¢) = 0 otherwise.
Does the solution given by condition (3.27) yield {5(-) and £g(-) that satisfy
the monotonicity constraints?

Lemma 10. A sufficient condition for the monotonicity conditions on £p(-)
and Es(+) to be satisfied is that x(-, c) be a non-decreasing function for all ¢ and
that (b, ) be a non-increasing function for all b.

In light of Lemma 10, it remains to check if (3.27) yields an z(-,-) that is non-
decreasing in its first argument and non-increasing in its second. This will hold
if the LHS of (3.27) is non-decreasing in b and the RHS is non-decreasing in c.

Lemma 11. If

1—F(b) G(c)

————= and c+ — 3.28
70) () 529

are non-increasing in b and c, respectively, then the allocation rule satisfying

(3.27) satisfies the monotonicity conditions on Eg(-) and Es(+).

b

Corollary 3. If F(:) satisfies the monotone hazard rate property (MHRP) and
G(-) the monotone reverse hazard rate property (the latter property being that
the reverse hazard rate be non-increasing),*® then the allocation rule satisfying
(3.27) satisfies the monotonicity conditions on Ep(-) and Es(+).

45The reverse hazard rate is the density function divided by the distribution function.

{eq:MS-sell_condition}

{lemma:MS-x-monotone-suff}

{lemma:MonoVirtuals}

{corr:MonoVirtuals}
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As shown in the proofs given in the appendix, the key to the analysis are
the expressions

1—F(b) G(e)
Ve(b,o)=b—0 70 and Vc(C,U)—C—I—Ug(C) .
These are similar to the virtual surplus function encountered in the previous
section (consider, e.g., expression (2.22) and surrounding discussion). We can
view them, respectively, as the virtual benefit function and virtual cost function.
As with the virtual surplus function, these functions differ from the true benefit
(b) and true cost (c) because of the information rents the parties get: the cost of
inducing truthful revelation is that high-benefit buyers and low-cost sellers must
be left some amount of information rent. The need to satisfy interim IR prevents
the mechanism designer from recapturing these rents, in expectation, via ex ante
non-contingent transfers. The consequence is distortion in the allocation of the
good.
Summarizing the analysis to this point:

Proposition 13. Consider a setting in which a single unit is potentially to
be exchanged, the buyer’s value and seller’s cost are continuously distributed
with full support over overlapping intervals, and the mechanism must satisfy
interim individual rationality. Assume, given o = 1, the virtual benefit function
18 increasing in the buyer’s valuation and the virtual cost function is increasing
in the seller’s cost. Then there exists a second-best direct-revelation mechanism.
Moreover, there exists a o € (0,1) such that this second-best mechanism utilizes
an allocation rule such that there is exchange if virtual benefit exceeds virtual
cost and no exchange otherwise (i.e., there is exchange if Vg(b,o) > Veo(c,0)
and no exchange otherwise).

As an example, suppose that b is distributed uniformly on [0,b] and c is
distributed uniformly on [0, (note, here, ¢ = 0). Assume & > b. The uniform
satisfies both MHRP and the monotone reverse hazard rate property.
Consequently,

Vg(b,o) =b—o(b—b) and Vg(c,0)=c+oc.
The allocation rule, given o, is

x(b,c)—{ 0,if (1+0)b—ob< (1

b +o)c
1,if(14+0)b—0cb>(1+o0)c

Interim IR binds; hence, (3.26) entails
b e -
0:/ / (VB (b, 1) = Ve(e, 1) x(b,c) (be)  dedb
o Jo

= /b /C(2b —b—2¢)x(b,c)(be) " dedb (3.29)
0 0

{prop:MS-2ndBest}

{eq:MS-2ndBest-uniformi}
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Note that z(b,c) = 0 if

o
1+0

b

b<

C.

It is also O if o
b——b=b-"C(.
c> 7o ¢

It is otherwise equal to 1. Knowing this, rewrite (3.29) as

e ac—B(b-? (1= 30)
0_/c/0 (2b—b—2c)(be) ~ dedb = = .

6bc 6¢(1 4 o)3

It follows that o = 1/3. Observe

1 1 4 4 1-

Hence, in this example, the second-best mechanism employs the allocation rule:

0, ifb<c+b/4
z(b,c) = _
1,ifb>c+b/4

In words, exchange occurs if and only if the buyer’s valuation exceeds the seller’s
cost by at least one-quarter of the buyer’s maximum valuation. Figure 4 illus-
trates for the case in which b = ¢ (“should” in the figure means if the first best
is to be achieved).6

3.3 THE MONEY-ON-THE-TABLE PROBLEM

From Proposition 13, the best outcome when subject to interim IR is exchange
whenever Vg (b,0) > Vo(e,0). Unless o = 0, there exist values of b and ¢ such
that b > ¢, but Vg(b,0) < Ve(c,0). Given that o = 0 is impossible (Myerson-
Satterthwaite), the following arises with positive probability: exchange should
occur (b > ¢), but is blocked by the second-best mechanism. Moreover, if buyer
and seller hear each other’s announcement, then they know that an efficient ex-
change could have occurred but didn’t. Assuming the possibility of exchanging
the good has not vanished, the parties are confronted with a situation in which
abiding by the mechanism means “leaving money on the table”; that is, there is
surplus to be realized—and presumably split between the parties—if only they
can go back and trade.

As a rule, it is difficult to see parties walking away and leaving money on the
table. Presumably, after hearing that b > ¢, but exchange is not to occur, one
party would approach the other and propose exchange at some price between b
and ¢ (e.g., p = (b+¢)/2). This is fine if the parties are naive; that is, somehow

46For more on how much the second-best mechanism loses vis-d-vis the first-best solution
see Williams (1987). See also Larsen (2012) for an empirical analysis that suggests that, at
least in some contexts, real-life mechanisms are not too inefficient vis-a-vis the first-best ideal.

{sect:CoaseConjecture}
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Trade should
occur & does

Trade should :
not occur &
does not -

. . o e . . . ig:MS-welf 1
Figure 4: Welfare Loss Due to Interim Individual Rationality Constraint & #eraretoss

they failed to anticipate the possibility of such future bargaining and, thus,
announced their types truthfully as intended under the mechanism. We should
not, though, expect such naivité. Rather, each would anticipate that money
wouldn’t be left on the table. But, then, each would have incentive to lie about
his or her type.

To see that lying would occur—formally, that truth-telling is no longer an
equilibrium—suppose the buyer will tell the truth and consider whether the
seller also wishes to tell the truth. To make the problem concrete, suppose that,
if b > ¢ but no exchange occurs under the mechanism, then the price splits the
difference; that is, p = (b + ¢)/2. The seller’s optimization problem is

méa,xps(é) - c(l — F(Vg'(Vel(e, o),a)))

#(F(Vgl(vc(é, 0),0)) ~ F(®),

where V5! is defined by Vi(V5'(z,0),0) = z, b¥ is the expected value of b

given b € (é, Vg 1 (Vc(é, o), 0‘)) , and the first line of that last expression would

be the seller’s payoff if there were no play beyond the end of the mechanism.*?

The derivative of the first line with respect to ¢ is zero evaluated at ¢ = ¢ (the

4"Note that VB_1 exists if we assume Vg (-, o) is increasing. Stronger versions of the assump-
tions in Lemma 11 or Corollary 3 would be sufficient for this property to hold.
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mechanism induces truth-telling). The derivative of the second line is

F(V5'(Ve(é,0),0)) — F(e)

EFre—2c
b—*—% (f(VBl(VC(év U),U))

-1
W Ve Y
Ve Oc

Generically, there is no reason to expect that expression to be zero at ¢ = ¢; in
other words, the potential for later bargaining will cause the seller to deviate
from truth-telling.

What should be made of this? The answer is that one should be suspicious
of the mechanism of Proposition 13 unless there is good reason to believe the
parties are committed to playing the mechanism as given (i.e., not negotiating
if exchange does not occur, but b > ¢). One good reason would be if there
is literally one point in time at which the good can be exchanged (it is, e.g.,
highly perishable and negotiations to pick up the money left on the table would
conclude only after the good has perished). A second is that the one or both
parties wish to develop a reputation for never negotiating after the play of
the mechanism:*® because the mechanism is second best, it could be in the
interest of one or both parties to develop a reputation for fully committing to
the mechanism to avoid a third-best outcome. In general, these reasons are
likely to be the exception, not the rule;* hence, another solution is necessary.

Unhappily, the current state of economic theory is weak with respect to
the modeling of bargaining between two asymmetrically informed parties. One
reason is that such games are highly sensitive to the extensive form that is
assumed. For example, a game in which one player repeatedly makes offers
and the other merely says yes or no can have quite a different outcome than
a game in which the players alternate making offers. Nevertheless, some such
bargaining game is played and one should expect that it ends with trade if b > ¢
and no trade otherwise.

As an example of such a game, suppose that the seller makes repeated offers
to the buyer until the buyer accepts or the seller concludes ¢ > 5.°° Each round
of bargaining takes a unit of time and both parties discount at a rate § € (0,1)
per unit of time. Assume that b = 1 and F is the uniform distribution. Let
pi(c) be the price offered by a seller of cost ¢ at time ¢. The objective is an
equilibrium in which pi(c) # p1(¢/) for ¢ # ¢/; that is, after the seller’s first

48Such reputations could be realistic in some settings. For instance, some divorce lawyers,
referred to as “bombers,” have developed a reputation for making take-it-or-leave-it offers in
pre-trial settlement talks; that is, they are committed to never negotiate beyond putting their
initial demands on the table. (Lest the reader worry that the author obtained this knowledge
through painful personal experience, he did not—he learned this by talking to divorce lawyers
in a social setting.)

“9Tarsen (2012) can be seen as evidence in favor of this claim. He shows the parties don’t
commit to a mechanism (an auction) and post-mechanism bargaining occurs.

50The following discussion also serves as a demonstration of the Coase (1972) conjecture.
For a more general approach, see Gul et al. (1986).
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offer, the buyer knows, in equilibrium, the seller’s cost. That is, the game from
that point on is a game of one-sided asymmetric information.

Consider the following renormalization. Define w = max{b — ¢,0}. Given
¢, one can think of w as distributed uniformly on [0,1 — ¢] because the mass
at 0 is irrelevant (no exchange should occur there). Let m = p — ¢ denote the
seller’s markup. The goal will be an equilibrium in which the parties play linear
strategies: a buyer who hasn’t yet bought buys if w > am and, if w is the highest
renormalized type who hasn’t purchased prior to the current period, the seller
sets her markup (price less cost) m = yw.

Proposition 14. Assume the buyer’s valuation is uniformly distributed. Then
there exists a subgame-perfect equilibrium in which the parties play linear strate-
gies.

As shown in the proof of Proposition 14, v < 1; hence, m; = (1 — ¢)7! tends
to 0 as t — oo. In words, the markup approaches zero, which means the seller’s
price approaches her cost. Consequently, eventually all buyers for whom b > ¢
will buy. The equilibrium of this bargaining game is, thus, such that no money
gets left on the table.

Although money is not left on the table, this does not mean that the first best
is achieved. In fact, it isn’t because, with positive probability, welfare-enhancing
exchange (i.e., when b > ¢) is delayed. Indeed, this was known: Proposition 12
(Myerson-Satterthwaite) rules out the first best. Arguments about money left
on the table don’t change that conclusion: if there were some bargaining game
that achieved the first best—achieved efficient trade immediately and at no bar-
gaining cost—then, by the Revelation Principle, that game would be replicable
by a direct-revelation mechanism, but Proposition 12 establishes that is impos-
sible. In other words, the true importance of Proposition 12 is it implies that,
for any procedure in which exchange is guaranteed to happen (eventually) if
b > ¢, there must be costs that cause the buyer and seller’s collective welfare to
be less than the first-best level, at least with positive probability.

4 EXOGENOUS ASYMMETRIES OF INFORMATION AT
TIME OF CONTRACTING: INFORMED SELLER

Now consider the situation of a contract proposer endowed with payoff-relevant
information that her counter party does not know. In keeping with Section 2’s
naming convention, call the contract proposer the seller and the counter party
the buyer (although, again, the techniques and insights developed here have
wider applicability). As in that earlier section, the contract offer is made on a
take-it-or-leave-it (TIOLI) basis.

As before, call the informed party’s information her type. Denote it by ~
and assume it is an element of I'. Let G : T' — [0, 1] be the distribution function
by which “nature” chooses . Although « is the informed party’s (here, seller’s)
private information, I" and G(-) are common knowledge.

{prop:Coase}

{sect:InformedSeller}
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4.1 THE LEMONS MODEL

The classic informed-seller model is Akerlof’s (1970) “lemons model”: the seller’s
type (i.e., ) describes the quality of the good or service she is offering. For
example, as in Akerlof’s original paper, the seller knows the quality of the used
car she is offering, whereas the buyer does not.?! It is further assumed that the
buyer cannot simply observe quality prior to trade: he only learns quality once
he has taken possession or received the service. Because of this feature, these
models are often called experience-good models.

Although quality could be multidimensional, it is standard to assume either
that is unidimensional or buyer and seller have a common complete preference
order over the elements of I, the seller’s type space.?? Consequently, there is no
further loss in treating I' as a subset of R. To avoid pathological cases, assume
I' C (v,%), both limits finite. As a convention, v > 7' is understood to mean
that type v is higher quality than 4. Assume the buyer and seller’s payoffs are,
respectively,

Up =z(u(y) —p) and Us =ap+ (1 — )y,

where x € {0,1} denotes the amount of trade, p is payment in case of trade,
and u : I' — R is an increasing function.”® Trade would never be efficient if
u(y) < v for all v € T'; hence, assume there exists a I'* C T', G(I'*) > 0, such
that u(y) >« if v € T*.

In the basic lemons model, the buyer plays a pure-strategy response: his
strategy is an z : R — {0, 1}—a mapping from prices into purchase decisions.
Observe that, for p > p’ such that z(p) = z(p’) = 1, there can no equilibrium in
which the seller quotes price p’: in any equilibrium in which trade may occur,
there is a single price, p, offered by seller types who wish to trade.

The rationality of the seller is assumed to be common knowledge. The buyer
can thus infer from a price quote of p that v % p. If there is an equilibrium in
which the buyer accepts p, it follows the buyer must believe that the seller is

playing the strategy®*
_ ) p,yify<p
p<7)_{oo,if”y>f)

51 A low-quality car is colloquially known as a “lemon,” hence the title of Akerlof’s original
article.

52The analyzes of multidimensional signaling in Quinzii and Rochet (1985) and Engers
(1987) are two notable exceptions.

53Note there is no gain in generality from assuming
Us=azp+ (1 —-z)v(y),

v : I' = R increasing, because one could simply renormalize the type space and the buyer’s
utility: I' = v(T") and (%) — u(v’l(’y)). Given the notion of opportunity cost, an equivalent
analysis is possible assuming

Us = "E(p - C(ﬁ/)) )

where ¢ : I' — R, an increasing function, is the cost of supplying a product of quality ~.

54 A price of oo is equivalent to not making an offer.

{fn:QLinearType}
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Buying, z(p) = 1, is a best response if and only if

E{u(y)|y <5} > p; (4.1)

that is, if and only if the buyer’s expected utility exceeds p conditional on
knowing quality is no greater than p. To conclude: there is an equilibrium with
trade if and only if condition (4.1) has a solution.

As an example, suppose that u(y) = my + b, T' = [0,1], and G(-) is the
uniform distribution. It is readily shown that

mp fp<
E{u(y)|y <5} = { S
b+ 2 if P> 1
For instance, suppose that b = 0 and m = 3/2. Condition (4.1) is satisfied only
for p = 0; hence, the probability of trade is zero. This is, however, inefficient
because u(y) > v for all v > 0 (i.e., ' = (0,1]). For these parameters, the
lemons problem is severe: asymmetric information destroys the market.

Consider different parameters: b = 1/8 and m = 3/2. Condition (4.1) is now
satisfied for all p < 1/2. There is, thus, an equilibrium in which types v < 1/2
offer to sell at price 1/2, other types make no offer, and the buyer purchases if
offered the product at price 1/2.55 Trade occurs 50% of the time rather than
never, so this is a more efficient outcome than under the initial set of parameters;
but it is still inefficient vis-d-vis the symmetric-information ideal.

The analysis to this point is premised on the buyer’s playing pure strate-
gies only. Are there mixed-strategy equilibria? To explore this, suppose I' =
{vL,v8}, v# > YL, and let g = G(vy.) € (0,1). Define u; = u(y;). If u; <
both ¢, there are no gains to trade. If uy > vr, but ug < g, there is an
efficient pure-strategy equilibrium in which p = uy. Hence, the only case of
interest is uy > vm. Moreover, to truly be interesting, it must be that

gur + (1 —gug <7yu, (4.2)

as otherwise there is a pure-strategy equilibrium in which both seller types sell.

Suppose that there is an equilibrium in which there is trade with positive
probability at two prices py and pg, pp, > pe. For py to be offered, it must be
that z(pn) < (p¢), where, now, z : R — [0,1]. Let U; = E{u(v)|p = p;}; that
is, U; is the buyer’s expectation of his utility upon being offered the product
at price p;j, where the expectation is calculated given the seller’s equilibrium
strategy. Because 0 < z(pp,) < 1, the buyer mixes over accepting or rejecting in
response to pp; hence, U, — p;, = 0.

55Formally, a perfect Bayesian equilibrium is seller and buyer, respectively, play strategies

12, ity < 1/2 [ 1,ifp=1/2
p(“’)_{oo,ify>1/2 and x(p) = 0,ifp£1/2 ’

and the buyer believes types v < 1/2 offer at price 1/2, types v > 1/2 make no offer, and any
other price offer was made by type 0.

{eq:Lemons1}

{eq:LemonsInteresting}
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What if the yg-type seller offers p, and the vy -type offers py in equilibrium
(i.e., the seller does not mix)? Buyer rationality implies py < uy, and his mixing
implies p, = uy. Suppose p; in fact equals vy, and suppose z(p;) = 1. Given
earlier assumptions and condition (4.2), for this to be an equilibrium, it is
necessary that

ur, > x(ug)ug + (1 — z(un))vL (4.3)

(i.e., the yr-type seller must prefer to offer the product at p = uy, than at
p = upg). Expression (4.3) holds if and only if uy > ~z. Assuming that
condition, (4.3) can be solved for z(ug):

ur —yL
UH — L
Efficiency, here, means maximizing the probability of trade; hence, the most
efficiency equilibrium is the one in which (4.4) holds as equality. To summarize:

z(ug) < (4.4)

Proposition 15. For the two-type model considered here, there is an equilib-
rium in which the low-quality seller (yr) offers the product at price ur, the
high-quality seller (vi) offers it at price up, the buyer accepts a price of uy, or
less with certainty, mizes over accepting a price of uy with probability equal to
the RHS of expression (4.4), and rejects all other offers. The buyer believes an
offer at price ug comes from the high-quality seller and he believes any other
offer is from the low-quality seller.

As an example, suppose v, = 1, vy = 3, u(y) =~y + 1, and g = 3/5. Limit-
ing both buyer and seller to pure strategies, the equilibrium is one with a price
of 2 and expected welfare of 36/15. In contrast, under the Proposition 15 equi-
librium, the prices are 2 and 4, the buyer accepts an offer of 4 with probability
1/3, and expected welfare is 38/15. In other words, the lemons problem proves
less severe than might originally have been thought once account is taken of the
possibility that the buyer can mix.

4.1.1 CREDENCE GOODS

A phenomenon related to experience goods is the following: a buyer knows he
has a problem (e.g., with his car, of a medical nature, etc.), but not its cause.
He seeks treatment from the seller (an expert, such as a mechanic or physician),
who can diagnosis the cause and administer a treatment. The buyer knows if the
the problem has been fixed or not, but not whether the diagnosis and treatment
regime were correct. This is relevant insofar as long as the seller corrects the
problem, she can claim a more severe diagnosis (e.g., engine needs replacing)
even when the truth is less severe (e.g., just the carburetor needs replacing) and
provide the more expensive treatment (e.g., replace the engine rather than just
the carburetor). Models that explore such situations are known as credence-good
models.?®

56Darby and Karni (1973) are often credited with introducing the notion of credence goods
into the literature. For a relatively recent treatment, as well as citations to earlier literature,
see Fong (2005).

{eq:LemonsMix1}

{eq:LemonsMix2}

{prop:LemonsMix1}
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One issue in such models is whether the buyer has recourse if promised one
treatment but receives another. For instance, suppose, based on his mechanic’s
diagnosis, the buyer agrees to a new engine (rather than just a new carburetor).
When the buyer picks his car up, it runs well (i.e., he knows the problem has
been fixed). Question: does he know if the engine inside his car is new (as the
mechanic claims) or is it his old engine with just a new carburetor (the mechanic
has cheated him)? If the answer is he knows (and can obtain recourse in case
of fraud), then we have one kind of credence-good model. If he doesn’t, then
we have the other. Call the two scenarios, verifiable and unverifiable treatment,
respectively. Here, attention is limited to the verifiable-treatment scenario. For
an analysis of the unverifiable-treatment scenario see Fong (2005).

As a basic model, suppose the buyer’s gross benefit if his problem is corrected
is v. Without loss, we can and will normalize v = 0. If his problem goes
uncorrected and it is of type (severity) o, o € {L, H} (low and high severity,
respectively), then his gross benefit is —¢,; that is, he loses ¢, if his problem is
not fixed. Assume

0</{; </ly,

with at least one inequality strict.’” The seller’s cost of treatment is ¢, where
cg > cp. Let ¢ = Pr{oc = L}. Assume 0 < ¢ < 1. This probability is common
knowledge, but only the seller can determine actual severity.

The extent of possible fraud by the seller is limited given the assumption of
verifiable treatment. Specifically, assume that the treatment for the more severe
problem cures the less severe problem (e.g., replacing the entire engine “fixes”
a broken carburetor), but the opposite is not true (e.g., changing a broken
carburetor is not a fix when the entire engine must be replaced).

If the buyer had to pay for treatment prior to receiving a diagnosis, the most
he would pay is

p=qlr+(1—q)lu.

If p > ¢y and ¢, > ¢, for both o, then efficiency will result: the seller offers to fix
any problem for p and the buyer accepts the offer. The seller has the appropriate
incentive to employ the correct treatment and it is efficient for problems of both
severity levels to be treated. Issues arise if p < cy or if £, < ¢, for one o.

Cost to correct severe problem exceeds average benefit of repair.
Suppose that p < ¢y, but £, > ¢, for both o. It is, thus, efficient to fix
both problems, but the seller is unwilling to fix the severe problem if she is paid
only p.°® Observe, {1, < cy given p < cy. If

by —cg </flp —cp (4.5)

57The case £7, = 0 corresponds to a situation in which the problem quickly clears up without
treatment. The case £, = £ corresponds to one in which the problem (e.g., car doesn’t run)
has the same effect on the buyer’s wellbeing regardless of cause.

58The assumption is the seller can quit if fixing a problem at a quoted price would cause
her a loss; that is, an ex post IR constraint is in effect for the seller.

{eq:Credence-NetCost}
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(i.e., the social benefit of fixing the more severe problem does not exceed that
of fixing the less severe problem), then efficiency can be attained using two
prices: py = {5, 0 € {L, H}. In other words, the seller offers to fix a problem
of severity o for price p,. Because, given (4.5), her margin is greater on fixing
the low-severity problem than on fixing the high-severity one and she cannot
fraudulently use the low-severity treatment for the high-severity problem, the
seller will behave honestly.??

If (4.5) does not hold, then the seller would have an incentive to behave
fraudulently were p, = £, for both o. Anticipating such fraud, the buyer infers
he will pay py regardless of his true problem. This exceeds p, so the buyer
would not do business with the seller. Nonetheless, there remains a two-price
solution that achieves efficiency: to wit, let m, be the seller’s margin on fixing
problem o given her quoted prices (i.e., my = py — ¢»). As we’ve seen, seller
honesty requires that my > mpy. In choosing her prices, the seller seeks to
solve:

max gmp + (1 —q)mpy (4.6)
mr,mH

subject to
mp 2 my, (Seller 1C)
Q(EL = (mr + 1) ) +(1—q) (fH — (mu +cn) ) >0, (Buyer IR)

——— —_—
pL pH
and

mp >0 (Seller 1R)

(given the seller’s 1C condition, the additional condition that my > 0 is super-
fluous and, so, can be ignored). Let S denote expected surplus from trade:

S = q(ﬁL —CL) +(1 —q)(ﬁH —CH).

590bserve this conclusion relies on the verifiability of treatment. Were treatment unverifi-

able and py > pr, then the seller would always have an incentive to claim ¢ = H. As Fong
(2005) shows, the solution in this case would be similar to Proposition 15: the buyer agrees
to treatment with certainty if the diagnosis is ¢ = L and pays pr,, but agrees to treatment
with probability

pL —CL

pPH —CL
and pays py if the diagnosis is ¢ = H. The seller who faces a buyer with a severe (o = H)
problem never lies and a seller who faces a buyer with a minor problem (¢ = L) states her
diagnosis honestly with probability ;

pPH —tL

et (%)
It is readily verified this an equilibrium for a given (pr,pg) pair of announced prices. It can
be shown that the price pair (¢1,,£¢y) maximizes the seller’s expected profit. Given (¥) this
means that the seller is always honest in equilibrium (but the buyer still mixes because he
is indifferent about obtaining treatment or not). Because of the mixing, the equilibrium is
inefficient. See Fong for further details.

{eq:Cred-Max1}
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It is readily seen that the solutions to the seller’s linear-programming problem
is any pair (mpr,mg), my > myg and my > 0 on the line

S=qmp+(1—-q)mg. (4.7)

In other words, there is an efficient outcome if the seller commits to her prices
prior to learning the buyer’s actual problem and the buyer commits to pay those
prices prior to learning the seller’s diagnosis. Reflecting her bargaining power,
the seller captures all surplus in expectation.

Unlike the earlier analysis of the market for lemons, efficiency is achieved
here. This is because, here, prices are set before the seller learns her type. As
such, the comparison between the two analyses reflects a general point: ineffi-
ciencies due to asymmetric information are more pronounced if the asymmetry
information predates the parties ability to write contracts than if it arises after
such contracting."

In many situations, the buyer is allowed to walk away after receiving a
diagnosis. In such situations, the program (4.6) would also need to satisfy ex
post IR constraints for the buyer:

lr, — (mL + CL) >0 and (IR-L)
ly — (my +cm) > 0. (IR—H)

Because (4.5) does not hold, the ex post constraint (IR-L) is binding. To see this,
observe the smallest value of my that satisfies the program (4.6) as originally
given is

mp =mpyg = S.

Substituting that into the LHS of (IR-L) yields

(=) (e = en) = (0 = cn)) (48)

which is negative given (4.5) does not hold. Given (IR-L) is binding, it follows
that
my, = {1, — ¢, ; equivalently that p;, = ¢y, .

It will also be that my = my, hence
pr =Lp+ (cg —cr) < lm,

where the inequality follows because (4.5) does not hold. Observe, now, that
although fully efficiency is still achieved, the seller no longer captures all the
surplus generated: the need to provide the seller strong enough incentives to
make an honest diagnosis conflicts with the need to keep the buyer from walking
away.

60See Hermalin and Katz (1993) and Hermalin et al. (2007, §§2-3) for further development
of this point.
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If
fH—CH<0, (49)

then efficiency will also attain: either £;, < ¢, in which case the market should
not exist and won’t; or 7, > cr, and the market should exist for fixing the less-
severe problem only and it will exist (the seller promises to fix any problem she
diagnoses as L at price £y,).

The remaining case when p < cg is

by —cg>0>/{y —cp : (410)

efficiency dictates that only the more-severe problem be treated. The previous
logic continues to apply: for the seller to have an incentive to make an honest
diagnosis, my > mpy. Here, given no market for fixing less-severe problems,
my, = 0; hence, efficiency is achievable only if pg = cy. In other words, in this
case, the seller announces she won’t fix L problems, but will fix H problems at
cost, cg. In this case, the incentive problem is so severe that it results in all
surplus going to the buyer.

Cost to correct severe problem less than average benefit of repair.
Now suppose that p > cy. Suppose ¢, < ¢, for one o, so it is inefficient to
fix all problems. If (4.9) holds, then an efficient equilibrium exists: rather than
quote a price of p and offer to fix all problems, the seller does better to quote a
price of pr, = £, and offer to fix only L problems. To see this, observe

p— (ch +(1- q)cH) = q(EL — cL) +(1- q)(fH —cH) < q(fL —cL), (4.11)

where the first term is expected profit from offering to fix all problems and the
last is expected profit from offering to fix L problems only.

Finally, suppose p > cg, but £, < c¢p. It is now impossible to provide the
seller incentives to diagnosis honestly (absent setting py = cp, which the seller
wouldn’t do). In this scenario, the seller offers to fix all problems and fixes all
problems even though it is inefficient to fix the L problems.

4.2 SIGNALING

The welfare loss due to the lemons problem is essentially borne by high-quality
(high-) sellers. This is immediate in the two-type case leading up to Proposi-
tion 15 on page 51: the low-quality seller is always able to sell her product—a
rational buyer is willing to pay up to u(vyz) regardless of his beliefs about the
seller’s quality since, for any beliefs, E{u(y)} > u(vyr)—the low-quality seller is
sure to receive at least what she would have under symmetric information. It
is the high-quality seller who is at risk of not realizing the profit, u(vy) — vm,
she would have were the setting one of symmetric information.

This insight suggests that were there a way for a high-quality seller to prove
who she was, she would do so provided it were not too expensive. In some
instances, such proof is direct—the seller, for example, employs a reliable rating

{eq:Cred-NetCost2}

{eq:Cred-NetCost3}



EXOGENOUSLY INFORMED SELLER 56

agency to certify publicly that her product is high quality. In other instances,
the proof is more indirect—the high-quality seller undertakes an action that is
worthwhile for her if it convinces the buyer she’s high quality, but would not be
worthwhile for a low-quality seller even if it misled the buyer into believing she
was high quality. An example of such indirect proof would be a seller who offers
a warranty with her product: if repair costs are high enough, then it could be
too costly for a low-quality seller to offer a warranty, even if it misled the buyer,
but not so costly for a high-quality seller. Hence, a buyer would accurately infer
that a seller offering a warranty is high quality. In the language of information
economics, such indirect proof is known as a signal.

4.2.1 A BRIEF REVIEW OF SIGNALING

Spence (1973) was the first analysis of the use of signals or signaling. In that
original paper, the seller was an employee and quality was her ability. The
buyer—potential employer—could not directly observe a would-be employee’s
ability, but he could observe the employee’s educational attainment. The key
assumption of the model was that the marginal cost of obtaining an additional
level of attainment (e.g., year in school) was always less for high-ability em-
ployees than for low-ability employees. Hence, by obtaining enough education,
a high-ability employee could signal her ability to the potential employer.

Since Spence’s seminal work, signaling models have been utilized to explore
a wide variety of economic and other social phenomena. The topic is, thus, of
great importance. On the other hand, due to its importance, there are now
many excellent texts that cover signaling (see, e.g., Fudenberg and Tirole, 1991;
Gibbons, 1992; and Mas-Colell et al., 1995). Consequently, despite its impor-
tance, the treatment here will be brief.

A signaling game is one between an informed party, who plays first, and an
uninformed party, who responds. In keeping with this chapter’s nomenclature,
call the former party the seller and the latter the buyer, although the analysis
applies more generally. The seller has utility V' (a,x,v), where a € A is the
seller’s action, x € X is the buyer’s response, and v € T is the seller’s type. In
the typical buyer-seller relation, X = {0, 1}—the buyer rejects or accepts the
seller’s offer, respectively. In that relation, A might be a two-dimensional space
consisting of a price and signaling action (e.g., a warranty). As before, v could
be a measure of quality. The buyer’s utility is U(a,x,7). A pure strategy for
the seller is a mapping a : I' = A. A pure strategy for the buyer is a mapping
x: A — X. Mixed strategies are the usual extension of pure strategies. An
outcome is separating if v # +' implies a(y) # a(y’) for any v,7’ € T'; that is,
an outcome is separating if different seller types choose different actions. An
outcome is pooling if a(y) = a(y’) for all v, € T'; that is, it is pooling if all
types choose the same action. Various hybrid outcomes are also possible (e.g.,
one type plays a with certainty, while another mixes between a and o).

Although not normally characterized as a signaling game, the treatment of
the lemons problem in the previous subsection nonetheless fits the structure of a
signaling game. In particular, the equilibrium of Proposition 15 is a separating
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equilibrium: the two types offer different prices (i.e., a(yr) = pr = wur and
a(ymg) = pn = ug). For the same game, if (4.2) were instead reversed, then a
pooling equilibrium would exist in which both types offered

p=gur+ (1—g)ung

(i.e., a(yr) = a(ym) = p). Returning to the assumption that (4.2) holds, one
can construct a hybrid (partial-separating) equilibrium in which the high-quality
type offers p, only, but the low-quality type mixes between p, and py,.

As just indicated, signaling games often admit multiple solutions (equilib-
ria). For example, under the assumptions underlying Proposition 15, another
equilibrium is

_ ULaif’YZVL, _ 171fp§UL .

and the buyer believes all offers come from the low-quality type. This is be-
cause the standard solution concept for such games, perfect Bayesian equilib-
rium (PBE), does not tie down the uninformed player’s beliefs in response to
an out-of-equilibrium move by the informed player.5! In particular, it is pos-
sible to construct equilibria that are supported by what the uninformed player
“threatens” to believe in response to out-of-equilibrium play. To reduce the
set of equilibria—in particular, to eliminate equilibria supported by “unrea-
sonable” out-of-equilibrium beliefs—various equilibrium refinements can be em-
ployed (see, e.g., Fudenberg and Tirole, 1991, especially Chapter 11, for an
introduction to refinements). A prominent refinement is the “Intuitive Crite-
rion” of Cho and Kreps (1987).

To help illustrate the issue further, as well as provide a basic understanding
of the Intuitive Criterion, consider the signaling game in Figure 5, which is
based on Cho and Kreps’s famous beer and quiche game. The game starts at
the chance node in the middle, where Nature determines whether the seller is
low quality or high quality. The probability she selects low quality is g. The
seller moves next (hollow decision node), deciding whether to offer a warranty,
but charge a high price; or to offer no warranty, but charge a low price. The
buyer moves last (filled-in decision node), deciding whether to buy or not. The
game, then, ends with payoffs as indicated; the first number in each pair is the
seller’s payoff and the second the buyer’s. The seller knows Nature’s move; that
is, she knows the quality of what she’s selling. The buyer does not—he only
observes what he is offered. That the buyer is ignorant of the seller’s type is
indicated by the dashed lines connecting his decision nodes, which indicate they
are in the same information set for the buyer.

The game has two equilibria: (1) a low-quality seller offers no warranty and
a low price, a high-quality seller a warranty and a high price, and the buyer

611n contrast, the uninformed’s beliefs following a move or action that can occur in equi-
librium must be consistent with Bayes Law given the distribution of types and the informed
player’s equilibrium strategy.
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Figure 5: A simple signaling gamef

accepts both offers; and (2) both seller types offer no warranty and the low
price, the buyer accepts that offer, but will reject the warranty-and-high-price
offer. Equilibrium (1) is separating and equilibrium (2) is pooling. The pooling
equilibrium is supported by the buyer’s believing that the out-of-equilibrium
play of an offer of a warranty and high price indicates he is facing the low-
quality seller with a probability, g, in excess of 2/3. Given such a belief, his
rejecting that offer is rational (i.e., —1§ +2(1 — g) < 0).

The second equilibrium is a valid PBE, but nonetheless strikes most observers
as unreasonable. No matter what response offering a warranty and high price
triggered in the buyer, a low-quality seller is better off playing her equilibrium
strategy of no warranty and low price; that is, a low-quality seller has no incen-
tive whatsoever to deviate. The same is not true of a high-quality seller: if the
buyer bought in response to the deviation of a warranty and high price, then
a high-quality seller is better off—she gets 2 instead of 1. Given this, it seems
unreasonable to postulate § > 2/3; indeed, § = 0 seems most sensible. As Cho
and Kreps observe, one can even imagine the seller helping the buyer to make
such a forward induction: if the parties expected the second PBE to be played,
a high-quality seller could make the following speech to accompany a deviating
offer of a warranty and high price.

Dear buyer, I know you were expecting an offer of no warranty and
a low price. Instead, I'm offering you a warranty, but a higher price.
What should you make of this innovation? If I were a low-quality
seller—which I am assuredly not—I would have absolutely no reason
to make this offer: even if you accepted, I would be worse off than
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I would be in the equilibrium you thought we were playing. On
the other hand, if you accept my offer, then, because I'm truly high
quality, I am better off. Hence, because only a high-quality seller
could have a motive to make this offer, it is only reasonable of you
to believe that I am high quality.

This reasoning can be formalized: assume I' is finite with NV elements. Let
A" be the N-dimensional unit simplex (i.e., the subset of vectors in Rf whose
elements sum to 1). Let X(a) be the set of responses available to the uninformed
player (e.g., buyer) if the informed player (e.g., seller) takes action a € A (it
could be—as in Figure 5 and many games of interest—that X(a) = X for all
a; the formulation X'(a) simply permits a more general analysis). As a second
generalization, it may be that an informed player’s action space depends on
her type; let I'(a) denote the types that have a € A in their action space. Let
w: T — AV denote beliefs over types; that is, x4 is a density function over T.
Define
br(p, a) = argmax Z Ula,z,v)u(y) .
z€X (a) ~er

In words, br(u,a) are the uninformed player’s best responses, given belief u, to
action a by the informed player. If r C I, define

BR(T, a) = U br(u,a);
{u| w(@)=1}

that is, BR(f, a) are actions for the uninformed player that are best responses
to the informed player’s action a for some beliefs provided those beliefs assign
all weight to types in the subset I'. For example, in the Figure 5 game, if
I' = {yu}—ym again denoting the high-quality type—then

BR(I', warranty & high price) = {buy},

because if the buyer assigns no weight to the low-quality type, his best response
to that offer is to buy. In contrast, if I' = T", then

BR(f, warranty & high price) = {buy, don’t buy},

because there are beliefs (e.g., u(yg) < 1/3) such that not buying is a best
response and there are beliefs (e.g., u(yy) > 1/3) such that buying is a best
response. Finally, let V*(y) denote the payoff to a type-vy informed player in the
equilibrium under analysis. The Intuitive Criterion can now be formally given:

Definition (Intuitive Criterion). Consider an equilibrium. For each out-of-
equilibrium action of the informed player, a, let

Y= {”y €l(a)| V*(y) > max V(a,x,”y)} .

z€BR(I'(a),a)
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If there is a type 7' € T'(a)\I'° such that

V() < Via,z,7'), (4.12)

min
z€BR(I'(a)\I'%,a)
then the equilibrium fails the Intuitive Criterion.

The set I'Y are types who do better in the equilibrium in question than they
could reasonably hope to do by deviating to a. For example, in the pooling
PBE of Figure 5, if a is warranty and high price, then T'® = {v.} (i.e., the set
containing only the low-quality type). Types in 'Y have no incentive to play the
deviation a. In contrast, if there is a type 7/ not in I'Y who has the ability to play
a (i.e., v € T(a)\I'’) and that type would do better than its equilibrium payoff
playing a, even if that triggered the worst response, from its perspective, from
the uninformed player given he believes no type in '’ played a (i.e., condition
(4.12) holds), then the equilibrium is unreasonable (not “intuitive”) and should
be rejected.

The pooling equilibrium of Figure 5 fails the Intuitive Criterion: there is a
type, namely the high-quality seller, in I'(a)\I'° whose equilibrium payoff, 1, is
less than the worst she would receive if the buyer, recognizing the low-quality
seller would not offer a warranty and high price, plays his best response to the
offer of a warranty and high price (which is to buy, yielding the high-quality
seller a payoff of 2). The separating equilibrium trivially passes the Intuitive
Criterion because there is no out-of-equilibrium action (offer).

4.2.2 APPLICATION OF SIGNALING TO TRADING RELATIONS

Consider, as an initial model, a seller who can take a public action s € §
prior to trade. For instance, the seller could be a website designer and s is
a measure of the quality of her own website. Let her utility be zp — c(s,7),
where p is the payment she may receive from the buyer, v € T' C R is her
type, and ¢ : § x I' — R;. Assume the cost function induces a common
complete ordering, >, over S, where s > ¢ if and only if ¢(s,v) > ¢(s',7) for
all y € T (e.g., = denotes “better design” and a better-designed site costs all
types of website designers more than a worse-designed site). To avoid issues
of countervailing incentives, assume there is a minimum element, sy € S, such
that ¢(so,7) < ¢(s,7) for all v and s € S\{so} and, moreover,

c(s0,7) = c(50,7") (4.13)

for all v,7" € T'. There is no loss of generality in normalizing the common value
¢(s0,7) to zero and that normalization is made henceforth.

The buyer’s utility if he buys is v — p and 0 if he does not. Observe that
s does not enter his utility function directly; hence, this is a model of wasteful
signaling insofar as (first-best) efficiency dictates s = so.

A critical assumption is that the seller’s utility satisfies the Spence-Mirrlees
condition. To wit, if s = ¢’ and v > 7/, then

c(s,7) —e(s,7) < e(s,7) —es',7)5 (4.14)

{eq:IntuitiveCriterion}

{eq:NoCounterVail-Signal}

{eq:8ig1-sM}
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that is, a higher-quality type of seller finds it less costly to raise the value of the
signal than does a lower-quality type. Letting s’ = sg, conditions (4.13) and
(4.14) together imply that if v > " and s # s, then

c(s,7) < c(s,7); (4.15)

that is, a higher type has a lower cost of signaling than does a lower type.

The timing is that the seller chooses s, which the buyer observes, and then
she makes a TIOLI price offer.

Assume there is a lowest type, v > 0. Observe that type can guarantee
herself a payoff of v: following any play by the seller, the worst belief possible—
from the seller’s perspective—is that the seller’s quality is 7. So if y-type seller
chooses sg and price 7, the buyer has no reason to reject. It follows that in a
separating equilibrium, the y-type seller’s payoff is v: because the seller’s type
is revealed in equilibrium, the buyer will rationally never pay more than ~. It
further follows that such a seller must play so in a separating equilibrium. This
is a general result: the worst-type seller gets the same payoff in a separating
equilibrium as she would have under symmetric information. This underscores
that it is not the worst type that is harmed by asymmetric information.

Suppose there are two types, I' = {7,7}, and two signals, S = {so, s1}. Let
G : T — [0,1] again denote the distribution “nature” uses when determining
the seller’s type. Let g = G(v). Define

yp =97+ (1—9)7;

that is, yp is the expected value of v given the prior distribution. A pooling
PBE is a(y) = (so,vp) for both v (i.e., each type chooses signal sy and prices
at yp); the buyer’s belief is u = (g,1 — g) (i.e., the prior) regardless of the
seller’s action; and the buyer accepts all p < yp, but rejects all p > vp. Does
this PBE satisfy the Intuitive Criterion? Consider the out-of-equilibrium action
a=(s1,7). If

P > —c(s1,7) (4.16)
then (4.15) implies I'® = T, so I'(a)\I'° = (), which means the Intuitive Criterion
is satisfied. If (4.16) is an equality, then (4.15) implies I'® = {}. But if (4.16) is
an equality, then (4.12) doesn’t hold, so the Intuitive Criterion is again satisfied.
To summarize to this point:

Lemma 12. For the two-type-two-signal game of the previous paragraph, the
pooling equilibrium described above satisfies the Intuitive Criterion if

5= cls1,7) < 7 (4.17)

What if (4.17) does not hold? Observe, given the Spence-Mirrlees condition
(4.14), there must therefore be a p € (yp,7) such that

p—c(s1,7) <vp <p—cs1,7). (4.18)

{eq:Sig1-SMx}

{eq:SimpSigIC1}

{eq:SimpSig-GenIC}

{eq:SimpSigIC2}
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Consider the out-of-equilibrium action @ = (s1,p). Expression (4.18) entails
I'% = {7} and I'(@)\I'°* = {¥}. Given that p < ¥, BR (I'(@)\I'°) = {1} (i.e., the
only possible best response for the buyer is to accept). It follows that (4.12)
holds; that is, the pooling PBE fails the Intuitive Criterion when (4.17) doesn’t
hold. To summarize:

Lemma 13. For the two-type-two-signal game described above, the pooling equi-
librium described there satisfies the Intuitive Criterion if and only if condition
(4.17) holds.

Next consider separating PBE. From the discussion above, a(y) = (s0,7)-
Clearly if the equilibrium is separating, the high-quality seller must choose signal
s1. Let her action be a(¥) = (s1,p). A necessary condition for this to constitute

an equilibrium is that neither type can wish to mimic the other:

—¢(s1,7) and (4.19)

p
p—c(s1,7) 2y (4.20)
Combining these conditions, a necessary condition is that

p € [y+c(s1,7), 7 +cls1,7)] =Ps .

Given that the buyer will never accept a p > 7, it follows from (4.20) that a
necessary condition for a separating PBE to exist is that

¥ =7 2> c(s1,7) - (4.21)

Because (4.17) can be rewritten as

(¥ =g < e(s1,7),

it follows that if (4.21) doesn’t hold, then a pooling PBE satisfying the Intuitive
Criterion exists. Define
P ={plp<9}NPs.

If (4.21) holds, then P* is non-empty; that is, there exists as least one p that
satisfies (4.19) and (4.20), which is acceptable to the buyer. The following is a
separating PBE: a low-quality seller plays (so,~) and a high-quality seller plays
(s1,D), p € P*; the buyer believes s = sg or p > p means the seller is low quality
and that s = s; and p < p means the seller is high quality; and the buyer
accepts p < 7y if s = sg, he accepts p < p if s = s1, and he otherwise rejects the
seller’s offer.

Because a separating equilibrium can be constructed for any p € P*, it
follows that there is a continuum of such equilibria if P* contains more than
a single element. Only one, however, satisfies the Intuitive Criterion. Define

p* = max P*. By construction

p* =min {7,7+ c(s1,7)} - (4.22)

{eq:SimpSig-LowTypeIC}

{eq:SimpSig-HighTypeIC}

{eq:SimpSig-NecSep}

{eq:SimpSig-pstar}
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Consider some p € P*, p < p*, and the separating PBE in which p is the high-
quality seller’s price offer. Observe there exists a p € (p,p*). Consider the
out-of-equilibrium action @ = (s1,p). Given (4.22),

v >p—c(s1,7)-

It follows that I'® = {y}. Because p < 7, BR (I'(@)\I'’) = {1}. Because p > p,
it follows that (4.12) holds; that is, the PBE fails the Intuitive Criterion. To
summarize:

Proposition 16. Consider the two-type-two-signal game described above. If the
difference in quality, ¥ —-y, does not exceed c(s1,%)/g, then a pooling equilibrium
in which both types choose the lower-cost signal, so, and price at average quality,
vp, exists and satisfies the Intuitive Criterion. If the difference in quality is
not less than c(s1,7), then separating equilibria exist; the unique separating
equilibrium to satisfy the Intuitive Criterion is the one in which the low-quality
seller chooses the lower-cost signal and prices at v and the high-quality seller
chooses the higher-cost signal, s1, and prices at p* as given by (4.22).

As an extension of this model, expand the space of possible signals to [sg, 00).
The set I" remains {7,7}. Assume c(+,7) is a continuous function for both ~s,
with lims_, 0 ¢(s,7) = 00. As will be seen, a consequence of these changes is
that there is only one PBE that satisfies the Intuitive Criterion.

Lemma 14. In a PBE, the low-quality seller plays, with positive probability, at
most one signal that is not the lowest signal, so, and only if the high-quality
seller also plays that signal with positive probability.

Lemma 15. A PBE in which the low-quality seller sends a signal other than
the lowest signal does not satisfy the Intuitive Criterion.

The logic used in the proof of Lemma 15 (see Appendix) can be extended
to prove:

Lemma 16. A pooling equilibrium in which both seller types send signal sy does
not satisfy the Intuitive Criterion.

Lemma 15 and the last lemma together establish that the only PBE that could
satisfy the Intuitive Criterion are separating equilibria. Among the separating
PBE, only one satisfies the Intuitive Criterion:

Proposition 17. Consider the signaling game described above in which there
are two types and a continuum of signals with a continuous and unbounded
cost-of-signaling function. Then the only PBE of that game that survives the
Intuitive Criterion is the least-cost separating equilibrium:%2 (i) the low-quality
seller chooses the lowest signal, so, and charges a price equal to her quality, ~;
(1) the high-quality seller chooses the signal s*, the unique solution to B

¥—v= c(s*,l) , (4.23)

62This separating equilibrium is also known as the Riley equilibrium from Riley (1979).

{lemma:AtMost2Signals}

{lemma:NoLowTypeHighSignal}

{prop:Riley}

{eq:Def-sstar-sig}
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and charges a price equal to her quality, 7; (iii) the buyer believes any signal
less than s* is sent by a low-quality seller and any signal s* or greater is sent by
a high-quality seller; and (i) the buyer accepts an offer if and only if it yields
him a non-negative payoff given his beliefs.

To take stock: Proposition 17 establishes that when the seller can incur a
continuum of signaling costs, the only “reasonable” equilibrium is a separating
one in which the low-quality seller admits who she is (doesn’t signal) and sets a
price equal to the buyer’s value for a low-quality product; and in which the high-
quality seller signals just enough to be convincing—the minimum signal that the
low-quality seller would be unwilling to mimic—and sets a price equal to the
buyer’s value for a high-quality product. Because the high-quality seller chooses
the smallest effective signal, the equilibrium is known as least-cost separating.

This logic can be extended to a setting in which there are N quality levels,
{70,---s7nv-1} = I'. Assume the same payoffs as before and maintain the
Spence-Mirrlees condition. Then, in a least-cost separating equilibrium, the ~,,-
type seller plays (s}, vn), where s§ = sg and s}, n > 0, is defined recursively as
the solution to

C(S:w’yn—l) =Yn — Yn—1T+ 0(32—17771—1)-

A Continuum of Types. To conclude this subsection, suppose that I' =
[v,7] € R4 (d.e., T is an interval). Maintain the same payoffs, but assume
now that c¢(-,-) is twice differentiable in each argument. The Spence-Mirrlees
condition can now be given by

9?c(s,7) _

905 <0; (4.24)
that is, the marginal cost of the signal is falling in the seller’s type. The goal is
to derive a separating equilibrium in which a y-type seller plays (5(7), 7), where
s(+) is a differentiable function.

Because all s € s([y,7]) are potentially played in equilibrium, a necessary
condition is B
7y € argmaxy’ — ¢(s(v'),7) (4.25)
y'er
for all 4. All functions are differentiable, so consider replacing (4.25) with the
first-order condition
~0e(s().)

for all 4. Because dc/ds > 0, (4.26) implies s(-) is strictly increasing—higher
types signal more than lower types. In addition, recall the lowest-quality type
doesn’t signal at all in a separating PBE:

s(y) = s0- (4.27)

It follows that a function s*(-) that solves the differential equation (4.26) given
initial condition (4.27) is part of a separating PBE provided (4.26), with s(y) =

{eq:ContSig-Argmax}

{eq:ContSig-DE}

{eq:ContSig-Initial}
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s*(7y), is a sufficient condition for a maximum. That it is follows from the
Spence-Mirrlees condition:

Bc(s*(v'), 7) 30(5*(7/)7 7/) -
| 2l < o ) (4.28)

=s*'(7")

is negative for all v/ > ~ and positive for all v/ < ~.
As an example, suppose s = 0 and c(s,~y) = s?/~. Expression (4.26) implies

v =25(7)s'(7).

The class of solutions to this differential equation is s(y) = v2/2 + k, k a
constant. Expression (4.27) implies k = —~?/2; that is,

For more on signaling games with a continuum of types, see Mailath (1987).

4.3 EXPERIENCE GOODS AND SELLER REPUTATION

Buyers often frequent the same seller repeatedly. If the quality of the seller’s
good is constant, then buyers will learn its quality over time through experience.
Beyond issues of getting buyers to try the product in the first place—which
resemble the issues of the one-shot analysis considered so far—such settings are
straightforward and, thus, of little independent interest. A more interesting
setting is one in which the quality of the seller’s good varies over time; as
might occur if there are variations across batches (e.g., random fluctuations in
chemical processes) or the product is agricultural (e.g., variation across vintages
of a given vineyard’s wine).%3 In such settings, a seller may be able to develop
a reputation for truthfully revealing quality.

Let v € I' denote the quality of the seller’s good in period ¢. The set of
possible qualities, I, is time invariant, but realized quality can vary period to
period. To keep the analysis straightforward, assume each period’s quality is
independently drawn from the same distribution, G : T' — [0,1]. Assume the
unit cost of producing a quality-y good is c¢(v).64

63Quality is here determined exogenously. This is what distinguishes the analysis in this
section from that of models of seller reputation with endogenous quality, such as those of
Klein and Leffler (1981) and Shapiro (1982); see Section 5.1 infra.

64 A natural assumption, given that quality is exogenous, is c(7) is a constant. On the other
hand, recalling that what is relevant is opportunity cost, it is also plausible that c(-) is an
increasing function (e.g., rather than selling its grapes as wine under its own label, a vineyard
can sell the grapes to another winery or it sell the wine under a generic label, with the return
from such activity being c(v)).
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Assume the per-period payoffs of the buyer and seller, respectively, to be

Up =xz(y—p) and Ug = :v(p— 0(7)) )

where z € {0,1} again indicates trade.

4.3.1 A Basic MODEL

Suppose that T' = {vr,vu}, 7o < vm, and define g = G(v1). Let ¢(y) = ¢ for
both 7. Assume, critically, that at least some trade is desirable: vg > ¢é. For
convenience, consider pure-strategy equilibria only. In a one-shot game, there
are two possibilities: if

vp =9vL+ (1 —9)vm > ¢, (4.29)

then an equilibrium exists in which both types of seller set p = «p and the
buyer purchases; or, if the inequality in (4.29) does not hold, then the seller sets
p > vp and the buyer does not purchase in equilibrium (there is no market).
Now suppose that the game is repeated infinitely. Let § € (0,1) be the
seller’s discount factor. Consider the following strategy for the buyer to play in
any given period:
e if the seller has never lied, believe the seller’s announcement of her type

and buy if the price she quotes does not exceed her announced type; but

o if the seller has ever lied, disregard the seller’s announcement of her type
and buy if the price she quotes does not exceed yp.

Clearly if the seller has never lied and her type is vy, her best response to the
buyer’s strategy is to announce her type as vy and set p = yg. What if her
type is y? If she tells the truth, then the expected present discounted value
(PDV) of her payoffs is

(o =&+ 6 (g — &+ (1= g)(vu — )

= (1= &)+ s (o~ + (1 g)(om — ), (130)

where (2)T = 2z if 2 > 0 and equals 0 if z < 0. If she lies, then the expected
PDV of her payoffs is

= N R d R
v —E+) 0 =0 =qn =i+ —(p )" (4.31)

t=1

65Given the assumption of quasi-linear utility, there is no further loss of generality in letting
~ denote the buyer’s utility from a good of quality v (recall footnote 53 supra). Given the
opportunity-cost definition of cost, the seller’s utility could equivalently be written

Us=azp+ (1 —z)c(v).

{sect:SellerReputationiBasicModel
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Suppose yp > ¢é (i.e., trade will incur in the equilibrium of the one-shot
game). From (4.29), if v > ¢, then (4.30) is less than (4.31): a low-quality
seller will lie. Hence, there is no equilibrium in which the seller is truthful. Note,
the condition under which this holds, vz > ¢, means the one-shot equilibrium is
efficient—trade should always occurs and does. There is no efficiency loss from
being unable to support truth-telling in equilibrium.

Continue to suppose yp > ¢, but now assume v;, < ¢é& trade will always
occur in the one-shot equilibrium, but it is inefficient with a low-quality seller.
Straightforward algebra reveals that (4.30) is at least (4.31) provided:

Yu — €

0= (v —¢) =gl —¢)

(4.32)

In other words, if the seller is sufficiently patient (has a discount factor greater
than the RHS of (4.32)), then her best response to the buyer’s strategy is to
always tell the truth (here, seek to sell if and only if she has high quality to
offer). Given she is telling the truth, the buyer’s strategy is clearly a best
response for him—this is an equilibrium. Observe that the RHS of (4.32) is
decreasing in g—the greater the likelihood of low quality, the easier it is to
sustain an efficient equilibrium.%%

Finally, suppose vp < ¢ that is, trade never occurs in the equilibrium of
the one-shot game, which is inefficient. Necessarily, v, < ¢. Straightforward
algebra reveals that (4.30) is at least (4.31) provided:

1

0> . (4.33)
For the same reasons just given, if (4.33) holds, then an equilibrium exists in
which the seller tells the truth (i.e., seeks to sell if and only if she has high
quality to offer). Observe that the RHS of (4.33) is decreasing in g—the less

likely low quality is, the easier it is to sustain an efficient equilibrium.%7
As is the rule with repeated games, the feasibility of sustaining a desired
outcome (here, efficient trade) is easier the worse the punishment for deviating.
Here, a deviating seller is effectively punishing herself (regardless of equilibria,
the buyer’s expected surplus is always zero). Put slightly differently, the issue
is whether a current seller sufficiently internalizes the externality that her lying
imposes on her future selves who will have a high-quality product. The pun-
ishment that deters dishonesty is losing the future gains from efficient trade.
Hence, when the one-shot equilibrium is already efficient, there is no scope for
sustaining truthful revelation. When the one-shot equilibrium is inefficient (i.e.,
1 < ¢), efficiency gains arise from the use of valuable information. It follows
that the more valuable is the information, the more feasible an efficient outcome
is (i.e., the lower the cutoff § below which efficiency is not sustainable). From

66Given that vp > ¢, it must be that g < (yg — &)/(vmg — 7).

67Given that vp < ¢, it follows g > (yg — &)/(vg — 7L)-

{eq:delta-SimpleRepModell}

{eq:delta-SimpleRepModel2}
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the analysis of (4.32) and (4.33), efficient trade in a repeated context (given
1 < &) is most feasible (the § cutoff is smallest) when

_JH—¢ (4.34)
YH — VL
Straightforward algebra shows that when g takes that value, yp = ¢; that is,
absent information revelation, the seller is indifferent between selling and not
selling. This reflects a general result: information is most valuable when, absent
the information, the decision maker is indifferent between alternative decisions
(see Proposition 19 infra). To summarize:

Proposition 18. A seller’s type (quality) varies independently period to period.
If trade would be efficient in a one-shot game despite the buyer’s ignorance of
quality, then there is no equilibrium of a repeated game with truthful revelation
of type. If trade would be inefficient with positive probability in a one-shot
game, then an equilibrium with truthful revelation exists in a repeated game if
the seller is sufficiently patient (has a high enough discount factor, 6). It is
easier to sustain such an equilibrium (i.e., § can be lower) the more valuable is
information about type.

4.3.2 AN ASIDE: THE VALUE OF INFORMATION

It was noted that information is most valuable when the decision maker would
otherwise be indifferent between different actions in the absence of that infor-
mation. This subsection establishes that insight more formally.

A decision maker can make one of two decisions: dy or dy. Given there
are only two possible decisions, there is no loss of generality in assuming two
possible states, so and s,.%% Assume that decision d; is best for the decision
maker in state s;. Formally, let her payoff if she makes decision d; in state s;
be U(d;|sj). The assumption d; is best given s; means U(d;|s;) > U(d;|s;) for
any ¢ and j, i # j. Define

L(dj|si) = Ul(dilsi) — U(d;]s:)
as the loss from choosing d; in state s;. Let g; denote the probability that the

true state is s;.
Absent information as to the state, the decision maker decides d*, where

d* = argmax qoU(d|so) + 1U(d]s1).
de{do,d1}

The value of information, V', is the difference between the decision maker’s
expected payoff if she makes her decision with information about the state and
her expected payoff if she makes it in ignorance:

V = (qoU(do|so) + q1U (d1s1)) — (qoU(d*]s0) + q1U(d*|s1))

681f there are more than two states, we can view the state space as partitioned into two: the
set of states in which one decision is optimal and the set of states in which the other decision
is optimal. Relabel these two sets (events) as the relevant states.

{prop:SellerRepl}
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Without loss of generality, suppose d* = d;. Algebra reveals

hence, the value of information is decreasing in the probability of state in which
d; is the correct action and increasing in the loss from choosing d; in state s_;.
The probability g; cannot be too low ceteris paribus, because otherwise d* would
no longer be d;. Similarly, L(d;|s;) cannot be too great ceteris paribus, because
otherwise d* # d;. These insights yield

Proposition 19. Consider a binary decision problem. Holding constant all
other parameters, the value of information is greatest when the probabilities of
the two states are such that the decision maker would be indifferent between
her two alternatives in the absence of information. Similarly, holding constant
all other parameters, the value of information is greatest when the losses from
making the wrong decision are such that the decision maker would be indifferent
between her two alternatives in the absence of information.

4.3.3 SELLER REPUTATION WITH SIGNALING

Return to the model of Section 4.3.1. Suppose, now, though the seller can signal:
specifically, at cost C(s, ), she can send signal s. Assume C : [0,00) X {7V, vm}
satisfies the Spence-Mirrlees condition:

0C(s,vm) < 0C(s,vr)
0s 0s '

For example, s could be the number of positive reviews or tests the seller can
produce.®? Consistent with the usual notion of cost, C(0,7) = 0 for both ~
and 0C(s,v)/0s > 0 both . Assume for all k¥ € R an s € R exists such that
kE=C(s,vL).

Define s* as the value of s that solves

max{0,v, — ¢} = vy — ¢ — C(s,7L) . (4.35)

It is readily shown that the assumptions given imply that s* exists and is unique.
The Spence-Mirrlees condition and (4.35) ensure that

va — &~ C(s",vm) > max{0,yr — ¢} ;

hence, a high-type seller would prefer to send signal s* than to shutdown or be
seen as a low-quality seller. It is readily seen that the one-shot game satisfies
the conditions of Proposition 17. Consequently, the only reasonable PBE of the

69 Consider v to be the average quality of the product in a given period and assume all parties
are risk neutral. Suppose reviews or tests are hard information: the seller can suppress those
she does not like, but if she reports a review or test it must be accurate. A seller with higher
average quality (i.e., a greater ) will find it easier ceteris paribus to generate s favorable
reports or reviews than will a seller lower average quality.

{prop:Value-of-Info}

{eq:LeastCostSignalSellerRep}
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one-shot game is the least-cost separating equilibrium in which a low-quality
seller either does not sell (if vz, < ¢€) or sells without signaling (if vz, > ¢), while
a high-quality seller sells at price vy and transmits signal s*.

Consider, now, a infinitely repeated version of this game.”™ Again § € (0, 1)
denotes the seller’s discount factor. The goal is to determine conditions such
that an equilibrium exists in which the seller announces her type truthfully
without signaling. To that end, consider the following strategy for the buyer:

e if the seller has never lied, believe the seller’s announcement of her type
and buy if the price she quotes does not exceed her announced type; but

e if the seller has ever lied, disregard the seller’s announcement of her type.
Believe her type that period is vy if she sends a signal s* or greater and
believe her type is 7 otherwise. Buy if the price she quotes does not
exceed the quality her signal indicates.

In other words, if the seller ever lies, then the game reverts to infinite repetition
of the one-shot game with play defined by the sole PBE that satisfies the Intuitive
Criterion of Cho and Kreps (1987).

As in Section 4.3.1, a high-quality seller has no incentive to lie about her
type. The issue is whether a low-quality type would lie. Her payoff from telling
the truth is

(L =&+ 6 (g — T+ (1= g) (v — )

= (1= &)+ s (o~ + (1= g)(om — ) (136)

Her payoff from lying is
T —é+ Z5t(g(% —)T+ (A -g)(ym -~ C(S*,WH)))
t=1

=y — ¢+ %(g(yL -t +(1- g)(WH —é— C(s*,WH))) . (4.37)

Truth-telling dominates lying (i.e., (4.37) does not exceed (4.36)) if

) N . .
151~ 90 m) 2w — e~ (- ONE (4.38)
that is, should the expected discounted cost of future signaling (if her reputation
for truth-telling be lost) exceed the one-period gain from fooling the buyer, then
the seller’s best response is to tell the truth every period. Given she will tell the
truth, the buyer is also playing a best response and we have an equilibrium.

"OMester (1992) considers a finitely repeated game of signaling in which the signaler’s type
is correlated across periods (in contrast to here, where it is independently drawn each period).

{eq:TSellerRepSignal}
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The fraction ﬁ is increasing in ¢. It follows, therefore, from (4.38) that the
greater the likelihood the seller is high type or the greater the cost of signaling,
the lower is the cutoff value of ¢ for which truth-telling can be sustained. To
summarize:

Proposition 20. A seller’s type (quality) varies independently period to period.
Suppose the seller has access to a costly signal and the cost of signaling function
satisfies the Spence-Mirrlees condition. An equilibrium of the repeated game
exists in which there is no signaling in equilibrium, but rather the seller simply
announces her type truthfully each period if the seller is sufficiently patient (has
a high enough discount factor, §). It is easier to sustain such an equilibrium
(i.e., & can be lower) the more likely the seller is to be the high type or the greater
the high type’s cost of signaling.

In Proposition 18, a truth-telling equilibrium did not exist if trade was effi-
cient in the one-shot game. Here, trade is efficient in the one-shot game insofar
as it occurs if and only if v > ¢. But the one-shot game here is never wholly
efficient because the high-type seller engages in costly signaling. If v, > ¢,
then this signaling is completely wasteful from a welfare perspective. If v < ¢,
then signaling enhances efficiency insofar as it ensures trading efficiency, but the
first-best is nevertheless not achieved.

In this model, as opposed to the one of Section 4.3.1, what deters a low-
quality seller from lying is the knowledge that her future selves will have to pay
signaling costs in the future. The effectiveness of this deterrent is increasing in
both the amount of those costs and the likelihood that they will have to be paid.
This is why, in contrast to the result in Proposition 18, the ease of sustaining
a truth-telling equilibrium is monotonically increasing in the probability of the
high quality.

A final question is what if (4.38) does not hold: does this imply the equi-
librium is infinite repetition of the equilibrium of the one-shot game (i.e., the
seller sends signal s* when she is high quality)? To answer this, we need to ask
if there could be an equilibrium of the repeated game with only some signaling.
Specifically, we seek an equilibrium of the following sort: when high type, the
seller announces her type as vy and sends signal § € (0, s*); when low type, she
announces her types as vz and sends no signal. The buyer believes the seller’s
announcement if accompanied by the appropriate signal, provided he’s never
been lied to. If he’s been lied to, then the game reverts to infinite repetition
of the one-shot equilibrium. As before, the issue is whether a low-type seller’s
payoff from truth telling,

4]

(1 =& + =5 (90 = + (1= g) (v == CGm) ), (439)

exceeds her payoff from lying,

i~ &= 08, 7m) + o (901 — &) + (L= g) (o — &~ O™ ) ) - (4:40)

{prop:SellerRepSignal}
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Expression (4.39) exceeds (4.40) if

(= ) (Ol ) C16,7m) > (o — ) — Gy — & — C(5, )
=C(s*,v) — C(8,vL), (4.41)

where the equality follows because s* is the least-cost level of signaling in the
equilibrium of the one-shot game. Observe that (4.41) reduces to (4.38) if § = 0.
Given Spence-Mirrlees, if (4.41) holds for § it must hold for all § € (8,s*].
Consequently, if, as conjectured, (4.38) does not hold, then (4.41) fails to hold
for all § € (0,s*). To conclude:

Proposition 21. Given the signaling game of this section, the equilibrium of
the infinitely repeated game is either one with honest announcements of type and
no signaling or it is simply infinite repetition of the equilibrium of the one-shot

game.™

5 ENDOGENOUS ASYMMETRIES OF INFORMATION AT
TIME OF CONTRACTING

To this point, the parties have been endowed with private information. In many
situations, their private information arises because of actions they take; that is,
it is endogenous. For instance, a seller’s decisions about materials, production
methods, and the like could determine the quality of her product. As a second
example, a buyer could make investments in complementary assets that affect his
utility from purchasing the seller’s product (e.g., a buyer’s utility from buying
a new DVD player could depend on the number of DVDs previously acquired).

Suppose that private information is the consequence of actions. These
actions—typically investments—fall into two broad categories: selfish and co-
operative (to use the terminology of Che and Hausch, 1999). Selfish actions
directly affect the actor’s payoff from trade. Cooperative actions directly affect
the payoffs of the actor’s trading partner. For instance, a seller’s investment in
the quality of her product is cooperative, while a buyer’s acquisition of comple-
mentary assets is selfish. Given the focus here on situations in which the seller
possesses all the bargaining power (makes TIOLI offers), only three possibilities
are of interest:”? cooperative action by the seller, cooperative action by the
buyer, and selfish action by the buyer. Selfish actions by the seller are not of
interest because the seller’s (contract proposer’s) private information about her
own payoffs generally do not create distortions.

71 This result is, in part, due to the signal’s not being directly productive. In a game in which
signaling is partially productive, equilibria with honest announcements and limited signaling
are possible. See Hermalin (2007) for an example.

72Recall, in this chapter, that “seller” and “buyer” are shorthand for contract proposer and
contract recipient, respectively.

{eq:TFPartSig}
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5.1 COOPERATIVE SELLER ACTIONS

Suppose the seller takes an action, ¢ € Q, that affects the buyer’s payoff should
trade occur. In a buyer-seller relationship, a natural interpretation is that ¢
affects or is the quality of the seller’s product.

As a basic model: the buyer wants at most one unit, @ = [g, 00), ¢ > 0, and
the payoffs of seller and buyer are B B

Us =x(p—c(q)) and Up = z(q —p),

respectively; where z € {0,1} indicates whether trade occurs, p is price, and
c: Q — R,. Critically, assume the seller’s cost is increasing in the quality of the
good she produces: ¢ > ¢’ = ¢(q) > ¢(q'). Assume there exist ¢ € Q such that
q > c(q) (i.e., trade is efficient for some quality levels), but that there exists a
finite g such that ¢ < ¢(q) for all ¢ > G (i.e., too much quality is inefficient to
produce).

If the buyer could observe the seller’s choice of ¢, then the seller would do
best to choose p and ¢ to solve

maxp — c(q)
p.q
subject to
qg—p=0.

It was earlier established that the buyer’s participation constraint binds (see
Proposition 1), so substituting the constraint the problem is

rnélxq—c(q). (5.1)
In other words, were the buyer able to observe quality, the seller would have an
incentive to choose a quality that maximizes welfare: efficiency would attain.
If the buyer cannot observe quality, then one of two possibilities arises: if
q > ¢(q), the seller offers a product of that quality and sets a price of p = g; or,
if ¢ < ¢(gq), then there is no market. To understand these conclusions, observe
that if p is the maximum price the buyer will accept, then, anticipating a sale
at p, the seller’s choice of quality is

max p — c(q) .
The sole solution is ¢ = q. Hence, the highest quality the buyer can expect is q.
If trade is to occur, the largest price he will accept is p = ¢. Knowing this, the
seller either shuts down if ¢ < c(¢) (she cannot make a profit at that price); or
she charges p = ¢ and provides the lowest possible quality. Unless ¢ is a solution
to (5.1), the outcome is inefficient. To summarize: -

Proposition 22. Suppose the quality of an experience good is endogenous, with
higher quality costing the seller more. Then the equilibrium of the one-shot game
is inefficient unless minimum quality is welfare maximizing.

{sect:endo-quality}
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5.1.1 SELLER REPUTATION MODELS

A better outcome than the Proposition 22 outcome can attain in an infinitely
repeated game if the seller is sufficiently patient.”® To wit, suppose ¢* is a
solution to (5.1). To make the problem of interest, assume ¢ is not a solution.
Define B

7 =max{0,qg—c(q)};

that is, « is the seller’s profit in the equilibrium of the one-shot game. Observe
that repetition of the one-shot game means the seller is free to change her quality
each period if she wishes.

Observe that if the buyer believes quality will be ¢, then the seller’s best
response is either shutdown (¢ < ¢(q)) or offer quality q at price ¢. Hence, even
in the infinitely repeated game, there is a subgame-perfect equilibrium in which
the seller’s per-period payoff is .

Consider the following strategy for the buyer:

e if the seller has never provided quality less than ¢*, then believe she is
offering quality ¢* this period; and buy if and only if the price she charges
does not exceed ¢*;

e but if the seller has ever provided quality less than ¢*, then believe she is
offering quality g if she offers to sell; and buy if and only if the price she
charges does not exceed g.

If the buyer is expecting quality ¢*, then the seller’s best deviation from offering
quality ¢* remains ¢g. Hence, offering quality ¢* and charging price ¢* is the
seller’s best response to the buyer’s strategy if

> ot g —clq) = ¢ —clg) + ) o'z,
t=0 t=1

where § € (0,1) is again the seller’s discount factor. Straightforward algebra
reveals that condition holds provided

~—

6>

o 52

q clq)

If the seller’s discount factor satisfies condition (5.2), then there is an equilib-
rium in which welfare-maximizing quality is provided. That and readily done
comparative statics yield:

)

Proposition 23. Consider an infinitely repeated game in which the seller chooses
quality each period. If the seller is sufficiently patient (as defined by condition

73This analysis is along the lines of that in Klein and Leffler (1981). A difference is that
Klein and Leffler allow for multiple sellers to enter the market and compete. This enriches
the analysis, but does not matter for the points being made here.

{eq:KL-delta}



ENDOGENOUS ASYMMETRIC INFORMATION 75

(5.2)), then an equilibrium exists in which the welfare-maximizing level of qual-
ity is provided each period. Such an equilibrium is supported for a larger set
of discount factors the smaller is the cost difference between producing welfare-
mazimizing quality and producing minimal quality ceteris paribus.

The last part of the proposition follows because what tempts the seller to cheat
on quality is the cost savings from producing minimal quality versus higher
quality: the smaller the temptation, the easier it is to sustain an equilibrium
with honest provision of high quality.

If ¢ > ¢(q), then (5.2) becomes

c(q*) —c(g)
o —-q

(5.3)

If ¢(-) is a strictly convex function, then the RHS of expression (5.3) is increasing
in ¢*.™ Hence, if the seller’s discount factor is less than the rRHS of (5.3), then
there may exist a § € (g, ¢"*) such that

c(q) —clg)
= 5. (5.4)

It follows, from now familiar logic, that if (5.4) holds, then there is an equi-
librium of the infinitely repeated game in which the seller supplies quality ¢.
Given the assumed convexity of ¢(-) and the optimality of ¢*, it must be that
supplying ¢ is welfare superior to supplying minimum quality. To summarize:

Proposition 24. Assume an infinitely repeated game in which the seller chooses
quality each period. Assume the cost-of-quality function, c(-), is strictly convex
and the production of minimum quality, q, is welfare superior to shutting down
(i.e., ¢ > ¢(q)). Then there is an equilibrium of the repeated game in which
quality greater than minimal quality is supplied provided the seller is sufficiently
patient; that is, provided her discount factor § satisfies’®

5>t 9@ (5.5)
alg q—4q

"Proof: Let ¢’ > q > g. Convexity entails

Subtracting c(g) from both sides yields

—4g

olq) — clg) < 2 (e(q') — e(g)) -

The claim follows.

"5Because c(-) is convex, the limit in (5.5) (the right derivative) exists. See van Tiel (1984,
Theorem 1.6).
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5.1.2 ONE-TIME QUALITY CHOICE WITH CONSUMER LEARNING

Suppose that the seller chooses quality, ¢, once and for all at time 0.7® The
cost of producing a unit of quality ¢ remains ¢(q). Assume that the seller will
potentially trade with the buyer in T periods (where T' could be infinity). Once
the buyer has experienced the good, he knows for sure what its quality will be
in future periods. To keep the analysis straightforward, assume trading minimal
quality yields non-negative surplus (i.e., assume q > ¢(q)).

To construct an equilibrium, suppose that the seller plays a pure strategy
with respect to her choice of quality. In equilibrium, the buyer must correctly
anticipate this.”” Let ¢ be the quality he anticipates the seller will choose.
Hence, if the buyer has not yet purchased, he will buy if the seller offers the
good at price ¢¢ or less and won’t purchase otherwise.”® Once the buyer has
purchased, he knows quality for sure and the seller can, therefore, charge him
price equal to actual quality, ¢. Because ¢¢ > ¢ > ¢(q), the seller can have no
reason to avoid a sale in the initial period, 0. Hence, if her actual choice is g,
her discounted profit is

T—1
1
— € t _ e T T
I=gq —C(Q)+;5 (@ —cl@) =a"+ 750 =0")g = (1=6")elq)) .
Maximizing II is equivalent to maximizing
§—oT
max ;——rq = c(q) . (5.6)

Because § < 1, % < 1. Hence, the solution to (5.6) cannot exceed the mini-

mum level of quality that maximizes welfare. Under standard assumptions—c(+)
is strictly convex and everywhere differentiable—the solution to (5.6)—call it
q*®—is strictly less than the, then, unique welfare-maximizing quality, ¢*. Ob-
serve that if 7' = 1-—this is just the one-period game—then ¢°® = ¢, as is to be
expected. In equilibrium, the buyer must correctly anticipate the seller’s quality
choice; that is, ¢¢ = ¢°®. To summarize:

Proposition 25. Suppose buyer and seller potentially trade in T periods (1 <
T < ), but the seller sets quality for all time prior to the initial period of
trade. Suppose trade is welfare superior to no trade even at minimal quality
(i.e., ¢ > ¢(q)). Then there is an equilibrium in which the seller sets the same
price every period, which equals the quality of the good, and there is trade in

76The analysis in this section is similar in spirit to that in Section 2 of Shapiro (1982).

77The notion that the buyer—consumers more generally—can engage in such game-theoretic
reasoning separates the analysis here from some of the analysis in Shapiro (1982) and from
Shapiro (1983) (as well as some earlier literature), in which they buyer’s estimation of quality
follows a more exogenously given path. The analysis below leading up to Proposition 26
illustrates how the analysis changes with less rational consumers.

78Given his beliefs, the buyer anticipates no gain from experimenting.

{eq:0One-TimeMax}

{prop:0OneTimeQuality}
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every period. The quality of the good solves the program (5.6) and is never
greater than any welfare-mazimizing quality. It is strictly less for all T if c(-)
is strictly convex and everywhere differentiable.

Continuing to assume c(-) differentiable and strictly convex, the following is
readily shown:

Corollary 4. Maintain the assumptions of Proposition 25. Assume, in addi-
tion, that c(-) is everywhere differentiable and strictly convex. Let ¢® be the
solution to the program (5.6); that is, equilibrium quality and price. Then

(i) ¢* = q (minimal quality) if =37 < ¢'(q);

(i) ¢*° > q if % > d(q); and
(i11) ¢°® is nondecreasing in the number of periods, T, and strictly increasing

at T if ‘15:5; > c(q)-

The last result follows because % is increasing in 7. Because the limit of

that ratio is strictly less than 1 as T — oo, maximum welfare will not attain
even if there are infinite periods of trade.

A prediction of Corollary 4 is that consumers will expect higher quality from
a product they anticipate a manufacturer selling for a long time than from a
product they anticipate will be sold for a short time.

Proposition 25 might strike one as odd insofar as there is no deception on the
equilibrium path—the buyer always “knows” the quality he will receive and the
seller provides him that quality—yet somehow welfare is not maximized. The
reason it is not maximized is that the seller cannot commit not to cheat the
buyer. In particular, the seller’s discounted profit, II, is the sum of discounted
total surplus plus a payment that is independent of any choice she makes (¢¢) less
a cost that does depend on what she does (the first ¢(¢) term in the expression
for II). If she chose g = ¢*, then she would maximize the sum of the discounted
surplus. Since that is a maximum, lowering ¢ slightly from that level would
represent a second-order loss. But she would enjoy a first-order gain by lowering
her initial period cost. It follows, therefore, that she cannot be expected to
choose the welfare-maximizing level of quality.

In some of the original literature in this area (e.g., Shapiro, 1982, 1983), the
buyer was less sophisticated than modeled above. As an example, suppose that
the buyer’s estimate of quality after consumption at time ¢ — 1, given a prior
estimate of ¢f ; and actual quality g, is

g =g+ (1 —=Ngiy, (5.7)
where A € [0,1]. A X = 0 represents no learning and a A = 1 represents
immediate learning. Assuming the buyer has bought in all periods 0, ... ,t —

1, solving the recursive expression (5.7) reveals his estimate of quality at the
beginning of period ¢ is

g =1-1=XN"g+(1—=N'g, (5.8)

{corr:OneTimeQuality}

{eq:BuyerLearnRecursion}
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where ¢ is his estimate prior to any exchange.

For the sake of brevity, limit attention to ¢(-) strictly convex and everywhere
differentiable.

Assume the seller knows ¢j. Because even selling minimal quality is weakly
profitable, the seller will wish to sell in every period and her price in each period
will be gf. The seller’s choice of ¢ solves:

1-671 - NT

T—1
i 20" (af = ela)) = e w5
t=0

SA+0T(1=8)(1 =T =6T(1-06(1-N)
(1—-8)(1-5(1-N)

+4q

1—6T
(1-06)(1-6(1-=X)"

—c(q)

That program is equivalent to

maxgq Arr-aa ZA_)::;T_ -0 -%) —c(q) .- (5.9)

R(GAT)

It is readily shown that OR(5, A\, T)/0T > 0 and limp_,oc R(6,A,T) = dA < L.
Consequently, (5.9) implies the seller will choose a quality level less than the
welfare-maximizing quantity.

Let ¢(A\) denote the solution to (5.9). Observe that if A = 1 (learning is
immediate), then
§— 6T
1—67"
The program (5.9) thus reduces to the program (5.6) if A = 1; hence, §(1) = ¢**.
Because R(5,\,T) < 62, it follows that as A | 0 (the buyer ceases to learn),
R(5,\,T) — 0, which implies ¢(0) = ¢: if the buyer never learns, then the seller
will cheat him by providing minimal quality. Finally, observe

R(5,1,T) =

OR(ANT) 1-67 ToTi(1 - Tt s L 57

_ psT—1
o T 1-s 215 T8

The rightmost term is positive for 7' = 1. For T > 2, the rightmost term is
the difference between the slope of the chord between (8,67) and (1,17) and
the derivative of 67 at §. Because the power function is a convex function for
powers greater than 1, the slope of the chord must exceed the derivative; that
is, the rightmost term is positive. It follows, therefore, that 9R/9A > 0, which
in turn entails that the quicker the buyer is at learning true quality, the greater
will be the quality the seller provides (assuming quality is not a corner solution,
q). In other words, () is nondecreasing in A\ and strictly increasing at any
point at which §(\) > ¢. To summarize:

{eq:BuyerLearnsMax}
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Proposition 26. Consider the model of gradual buyer learning just articulated.
If learning is immediate (i.e., A = 1), then the equilibrium is identical to the
one of Proposition 25 with respect to the seller’s choice of quality (i.e., she will
choose ¢ ). If the buyer never learns, the seller will provide minimal quality
(i.e., q). Finally, the faster the buyer’s rate of learning (i.e., \), the weakly
greater will be the seller’s choice of quality.

From expression (5.9), it follows that the seller’s choice of quality is inde-
pendent of the buyer’s initial expectation, ¢§. In particular, even if the buyer
correctly anticipates the seller’s quality initially in equilibrium, §(A) < ¢*® if
A < 1. In other words, the possibility that the buyer will not immediately
detect that the seller has provided quality other than what he expected puts
a downward pressure on quality. In essence, the ability to fool the buyer (at
least in a limited fashion for a limited time), further erodes the seller’s ability
to commit to high quality.

Observe for any A (including A = 1), the seller would do better if she could
commit to the welfare-maximizing level of quality, ¢*. To the extent that war-
ranties or similar measures provide such commitment, the seller would have an
incentive to offer them.

5.2 SEMI-COOPERATIVE SELLER ACTIONS

The selfish-cooperative dichotomy set forth above can, in some contexts, be too
stark. Consider a scenario where the seller is a homebuilder. Again, she chooses
the quality of the house—perhaps through the quality of the materials she uses.
Assume, critically, however, that she (i) incurs the costs prior to sale and (ii)
has, as an alternative to sale, living in the house herself. That is, the seller’s
action is cooperative if sale occurs, but selfish if it does not.™ Sale is, however,
always welfare superior to no sale.

To study such a scenario, let the payoffs of seller and buyer be, respectively,

Us=2a(t—q)+ (1 —x)bs(q) —q and U = x(bB(q) — t) ,

where x € {0, 1} indicates the amount of trade, ¢t € R is payment in the event of
sale, and b; : Ry — R is party 4’s benefit (possibly expected) from possession of
a good of quality ¢q. Observe, as a normalization, the cost of supplying quality
q is, now, just q.

Some assumptions on the benefit functions:

e The functions b;(-) are twice continuously differentiable, strictly increas-
ing, and strictly concave functions (i.e., there is a positive, but diminish-
ing, marginal benefit to increased quality).

e Forall ¢ > 0, bp(q) > bs(q) (i.e., trade is strictly welfare superior, at least
if the seller has chosen positive quality).

7The analysis in this section draws heavily from Hermalin (forthcoming).

{prop:Shapiro-like}

{sect:Semi-Coop_Seller}
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e Zero quality is not privately optimal for the seller if she is certain to retain
possession: b(0) > 1.

¢ Infinite quality is not optimal: there exists a § < oo such that bz(¢) < 1

if ¢ > q.
In light of these assumptions, a unique welfare-maximizing quality, ¢*, exists
(i.e., ¢* maximizes bg(q) — q). If trade were impossible (i.e., autarky held),

then the seller would choose quality to maximize

bs(q) —q- (5.10)

The earlier given assumptions ensure that program has a unique interior solu-
tion: call it §. To eliminate a case of minor interest, assume®®

b5(0) < bs(q) — ¢; (5.11)

that is, maximum welfare under autarky exceeds welfare given trade but zero
quality.

As is common in settings such as these (see, e.g., Gul, 2001, for a discussion),
no pure-strategy equilibrium exists:

Proposition 27. No pure-strategy equilibrium ezists.

Proof: Suppose, to the contrary, the seller played a pure-strategy of ¢q. Sup-
pose ¢ > 0. In equilibrium, the buyer must correctly anticipate the seller’s
action. Hence, he is willing to pay up to bg(q) for the good. As the seller has
the bargaining power, that is the price she will set. However, knowing she can
receive a price of bp(q) regardless of the quality she actually chooses, the seller
would do better to deviate to 0 quality (bg(q) — ¢ < bp(q) if ¢ > 0). Suppose
g = 0. The seller can then obtain only bp(0) for the good. But given (5.11),
the seller would do better to invest ¢ and keep the good for herself. The result
follows reductio ad absurdum. |

Because welfare maximization requires the seller to choose ¢* with certainty and
trade to occur with certainty, Proposition 27 implies that the first-best outcome
is unattainable in equilibrium.

What about the second best? As demonstrated by Proposition 27, there is
a tradeoff between trading efficiently and providing the seller investment incen-
tives. The second-best welfare-maximization program can be written as

max zbp(q) + (1 - 2)bs(q) — ¢ (5.12)
subject to
q € argmaxat + (1 — x)bs(q) — q, (5.13)
q
be(q) > t, and (5.14)
wt+ (1 —x)bs(q) —q = bs(q) — 4. (5.15)

80See Hermalin (forthcoming) for an analysis with this case included.

{eq:Autarky_beats_ZeroInvestment}

{prop:NoPS-HermalinHoldup}

{eq:SB-HermalinHoldup}
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Constraint (5.13) is the requirement that the choice of ¢ be incentive compatible
for the seller. Constraints (5.14) and (5.15) are, respectively, the buyer and
seller’s participation (IR) constraints.

The previously given assumptions imply that the program in (5.13) is glob-
ally concave in ¢ with an interior solution. Hence, that constraint can be re-
placed with the corresponding first-order condition:

(1 - 2)bls(q) —1=0.
This, in turn, defines the probability of trade as

1
x:l—m. (5.16)

Note that z = 0 if ¢ = §. Because marginal benefit is decreasing in quality, it
follows that ¢ € [0, ¢]. Substituting that back into (5.12) makes the program:

1 1
ma <1 - m) bo(0) + rrbs(@) 0 (5.17)

Because the domain is compact and the function to be maximized continuous,
the program must have at least one solution. Let M equal the maximized value
of (5.17). Let Q¢ denote the set of maximizers of (5.17). A second-best level
of quality is, therefore, ¢°® € Q4.

This analysis has ignored the participation constraints, expressions (5.14)
and (5.15). There is no loss in having done so: given ¢ is played, these will
hold for a range of transfers, including ¢ = bp(¢°®).

The next proposition finds that the second-best solution is supportable as
an equilibrium:

Proposition 28. A perfect Bayesian equilibrium exists in which the second best
is achieved.8" Specifically, it is an equilibrium for the seller to choose a second-
best quality (an ¢°®) with certainty and offer the good to the buyer at price
bg(¢™). The buyer plays the mized strategy in which he accepts the seller’s
offer with probability x,
1
bs(g™)

The buyer believes a price less than bg(¢°®) means the seller has chosen quality 0;
a price of bp(q™) means the seller has chosen quality ¢°®; and a price greater
than bp(q*®) means the seller has chosen a quality no greater than ¢*°.

Tr =

Because of the buyer’s playing of a mixed strategy, the seller may retain
ownership and that possibility gives her an incentive to provide quality. Hence,

81 As Hermalin (forthcoming) notes, this equilibrium is not unique. The outcome (level of
quality and probability of trade) of this PBE can, however, be part of an essentially unique
equilibrium if the contract space is expanded to allow the seller to make TIOLI offers of mech-
anisms. See Hermalin for details.

{eq:x-HermalinHoldup}

{eq:Exp6-HH}
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it is possible to have an equilibrium in which quality is provided. The problem—
and the reason the first best cannot be attained—is that the final allocation may
prove to be inefficient: the good may remain in the seller’s hands. This reflects
the fundamental tradeoff in this situation: the seller’s incentives to provide
quality are greatest when she is certain to retain ownership, but her retention
of ownership is inefficient; conversely, if trade is certain, she has no incentive to
provide quality. The second-best solution balances these competing tensions.

5.3 COOPERATIVE BUYER ACTIONS

Suppose that prior to trade, the buyer can make an investment, I € Z C R,
that affects the seller’s cost. Assume 0 € Z (i.e., the buyer can choose not to
invest). One interpretation is that by investing I, the buyer facilitates delivery
by the seller. Another interpretation is that the investment lowers the seller’s
cost of customizing her product for the buyer. Assume that the parties may
trade x € [0, 7], Z < oo units.®? Let the payoffs be

Us=t—c(z,I) and Ug =b(x) —t— 1T,

respectively, for seller and buyer, where ¢ € R is a transfer between them (possi-
bly contingent on x), b : Ry — R is an increasing function, and ¢ : Ry xZ — R4
is increasing in its first argument and decreasing in its second. Assume, for all
I > 0, a positive and finite quantity solves

max b(z) —c(z,I).
z€[0,z]

Denote the solution to that equation by x*(I).
The welfare-maximizing level of investment solves

I}lea%(b(x*(f)) —c(z*(I),I) - 1. (5.18)

Assume the program has a unique, finite, and positive solution. Denote it as
I*.
Suppose the seller believes the buyer has invested I¢. Her best response is

to offer the buyer z*(I°) units for a total payment of b(2*(I¢)). Anticipating
this, the buyer understands his choice of investment as the program

r}lg%(b(x*(le)) —b(z*(I%) -1 = max —I. (5.19)

The obvious solution is I = 0. Because the seller appropriates the benefit of
his investment, the buyer has no incentive to invest. In other words, a holdup

82The analysis here also encompasses the case in which there is, at most, one unit to trade.
In this case T = 1 and x denotes the probability of trade. The benefit function would be
b(xz) = zv, v a constant, and the cost function C(I).
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problem arises.®?

Could a better outcome be obtained by allowing the buyer to play mixed
strategies? The answer is no: suppose the buyer played a mixed strategy over
his investments. The seller can, at no cost, induce the buyer to reveal his in-
vestments by offering the mechanism (z*(I),t(I) = b(z*(I))). Since, regardless
of what he announces, the buyer always gets surplus zero, he has no incentive
to lie and can be presumed to tell the truth in equilibrium.®* But, as just seen,
if he gains no surplus, he has no incentive to invest.

To conclude:

Proposition 29. If the buyer’s actions (e.g., investments) are purely coopera-
tive, then there is no equilibrium in which he takes an action other than the one
that is least costly to him (e.g., he makes no investment) when the seller has all
the bargaining power (makes TIOLI offers).

5.3.1 BUYER INVESTMENT IN AN INFINITELY REPEATED GAME

As has become evident, infinitely repeated play often yields a better outcome
than the one-shot game. Unlike earlier analyses in this chapter, here both buyer
and seller must be induced to cooperate: the buyer must invest and the seller
cannot gouge him.3?

Let 6 be the common discount factor. Define

Ud = b(z*(0)) — c¢(2*(0),0) .

The quantity U2 is the seller’s payoff should the parties revert to repetition of
the equilibrium of the one-shot game. Given he has no bargaining power, the
buyer’s payoff under such reversion is 0.

Suppose the timing within each period is the buyer chooses his investment
for that period, which the seller cannot observe. The seller makes an offer {x, t).
The buyer accepts or rejects it. If he accepts, then there is trade. Because
of this trade, the seller will know her costs, from which she learns what the
buyer’s investment was. Let the parties wish to support an outcome in which
the buyer invests I > 0 each period, the seller offers <:E*(f),f> each period,
and the buyer accepts that offer. If either player deviates from that, then each

83 A holdup problem arises when the party making an investment cannot fully capture its
benefit because some portion of that benefit is being captured by another party. Williamson
(1976) is often credited as introducing the holdup problem into the literature, although in
essence the holdup problem is another version of the familiar under-provision of positive
externalities.

84 Although the fact that he obtains zero surplus might suggest consideration of allowing
the buyer to mix over accepting the seller’s offer, that cannot represent an equilibrium: the
seller can trivially induce truth telling and acceptance by offering <90*(I)7 b(x* (I)) - E>, e>0
but arbitrarily small.

851n its logic, the analysis here is similar to the analysis of followers paying a leader tribute
in Hermalin (2007), among other literatures (including the literature on relational contracting;
see MacLeod, 2007, for a survey).

{prop:NoInvestBuyerCoop}
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expects future play to revert to infinite repetition of the one-shot equilibrium
and plays accordingly.56

Given the threat of reversion, buyer rationality dictates he accepts an offer
(x,t)—even if not <x*(f), t)—provided

b(x) —t>0.

As noted, the buyer must be given incentives to invest and the seller incen-
tives not to overcharge. These conditions are, respectively, equivalent to8”

b(a* (1)) —t—1> (1-4) (b(:v*(f)) - f) and (5.20)

i—c(a*(D),1) > (1-0) (b(:v*(f)) - c(w*(f),f)) + 609 (5.21)
Taking the limit as § — 1, (5.20) and (5.21) imply
b(z* (D)) —e(z*(1),1) — I > UJ. (5.22)

By definition (5.22) holds—indeed is a strict inequality—if I = I*. By continu-
ity, it follows that if the parties are sufficiently patient (§ is large enough), then
an equilibrium of the repeated game exists in which the buyer invests. Observe,
critically, that such an equilibrium requires that the seller not capture all the
surplus—she must leave the buyer with some.33

5.4 SEMI-COOPERATIVE BUYER ACTIONS

As noted in Section 5.2, the selfish-cooperative dichotomy is sometimes too
stark. Suppose a buyer can produce the relevant good himself or buy it from the
seller. In either scenario, assume an investment by the buyer reduces production
costs (e.g., the buyer needs a service performed—which he can do himself or
have provided by the seller—and the cost of the service is reduced for either by
the buyer’s preparatory investment). As in Section 5.2, sale is welfare superior
to no sale (i.e., the seller is the more efficient provider).
To study this situation, let the payoffs of seller and buyer be, respectively,

Us=uz(t—cs(I)) and Up=b—at — (1 —a)cp(l) — I,

86To be complete, certain subtle issues can arise when parties deviate in terms of offers, but
not actions. See, for example, Halac (2012).

87Observe

o0 o0 1
Tw > Tz ——w> .
DwEy+y e —w>y+ 2

7=0 T=1

The claimed equivalence follows immediately.
88Expression (5.20) is equivalent to
i< 6(b(w*(f)) - t) ;

the cost of investing today must not exceed the present discounted value of consumer surplus
tomorrow.

{eq:BuyerInvestRep}

{eq:SellerNoGougeRep}
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where x € [0, 1] denotes the probability of trade, ¢ € R is payment in the event
of trade, b is the inherent benefit the buyer obtains from the good or service,
and ¢; : Ry — Ry is party ¢’s cost of providing the good or service as a function
of the buyer’s preparatory investment, I. As the parameter b has no bearing on
the analysis to follow, there is no loss in setting it to 0.5

Some assumptions on the cost functions:

e The functions ¢;(-) are twice continuously differentiable, strictly decreas-
ing, and strictly convex functions (i.e., there is a positive, but diminishing,
marginal benefit to greater preparatory investment).

e Forall I > 0, cg(I) > es(I) (i.e., trade is strictly welfare superior to no
trade, at least if the buyer has invested).

e Zero investment is not privately optimal for the buyer if no trade is certain:
/
cg(0) < —1.

e Infinite investment is not optimal: there exists an I < oo such that c(I) >
—1if I > 1.

These assumptions imply a unique interior welfare-maximizing investment
level, I*, exists (i.e., I* maximizes —cg(I)—I). If there were autarky, the buyer
would invest to maximize

—cpg(I)—1. (5.23)

The assumptions just given ensure that program has a unique interior solution:
call it I. To eliminate a case of minor interest, assume??

—cs(0) < —ep(I) — I; (5.24)

that is, maximum welfare under autarky exceeds welfare given trade but zero
investment.
For the same reasons as in Section 5.2, no pure-strategy equilibrium exists:

Proposition 30. No pure-strategy equilibrium exists. Moreover, there is no
equilibrium in which the buyer invests a given amount as a pure strategy.

Because welfare maximization entails the buyer’s investment of I* and certain
trade, this proposition implies that the first-best outcome is unattainable in
equilibrium. It also implies that, in equilibrium, the buyer must mix over dif-
ferent investment levels.

The analysis is facilitated by working with the buyer’s production cost, C,
if no trade occurs: Define C = ¢p(I). Because cp(-) is strictly monotone, it
is invertible. Define ¢(-) as the inverse; that is, ¢(cg(I)) = I for all I. Earlier
given assumptions entail that «(-) is strictly decreasing, strictly concave, and

89The model set forth in this section yields the same results as would the model of Section 5.2
if the buyer possessed all the bargaining power in that model.

90 Again, see Hermalin (forthcoming) for an analysis with this case included.

{eq:BuyerInvestsAutarky}
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twice continuously differentiable. The analysis proceeds by acting as if the
buyer chooses his cost should trade not occur, C.

Recall the seller does not observe the buyer’s investment; that is, C' is the
buyer’s private information. It can, thus, be considered to be the buyer’s type.
Let C = [C, C] denote his type space. As will become evident,

C C [ep(I),cp(0)];

that is, the buyer will never invest more than the autarky level, I. To economize
on notation, let €' = ¢p(I) and C° = ¢p(0).

Assuming the buyer has played a mixed strategy in terms of his investment,
the seller’s problem of what contract to offer is a mechanism-design problem,
akin to those considered in Section 2.1. A mechanism is, here, a pair <:1:(), 7'(-)>,
where z : C — [0,1] is a probability of trade and 7 : C — R is the seller’s
payment. (By the Revelation Principle—Proposition 2—there is no loss of gen-
erality in restricting attention to direct-revelation mechanisms.)

Let

UuC) = —(1 - x(C’))C’ —7(0C) (5.25)

denote the buyer’s utility if he truthfully announces his type. Note (i) at the
time the mechanism is being played, the buyer’s investment is sunk; and (ii)
consistent with the approach in Section 2.1, what the buyer pays the seller is
contingent on his announcement only (i.e., it does not depend on whether trade
actually occurs).

As preliminaries to studying such mechanisms, we have:

Lemma 17. Given an incentive-compatible mechanism, x(-) is non-decreasing
and U(+) is a convex function.

We can now characterize incentive-compatible mechanisms:

Proposition 31. Necessary conditions for a mechanism to be incentive com-
patible (induce truth-telling by the buyer) are (i) that the probability of trade,
x(+), be non-decreasing in the buyer’s cost and (i) that the buyer’s utility as a
function of his type be given by

U(C) :Q—/ (1—2(2))dz, (5.26)

where U is a constant.

Moreover, any mechanism in which x(-) is non-decreasing and expression
(5.26) holds is incentive compatible (i.e., conditions (i) and (ii) are also suffi-
cient).

Anticipating the mechanism the seller will offer him, the buyer is willing to

invest +(C) if and only if it maximizes U(C) — ¢(C). Tt follows:

Proposition 32. If «(C) > 0 is a level of investment chosen by the buyer with
positive probability in equilibrium, then the subsequent probability of trade given
that investment is 1 4+ /' (C).

{eq:BuyerUtility_inCost}

{lemma:MonoX-HH}
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A corollary is

Corollary 5. There is no equilibrium in which the buyer invests more than his
autarky level of investment, I.

We seek to construct an equilibrium. To that end, suppose the buyer mixes
over C according to the distribution function F' : C — [0,1]. To facilitate the
analysis take F to be differentiable on (C,C), with derivate (density) f(C).
The possibility that there is a “mass” at C is permitted: defining 3(-) as the
corresponding survival function, it may be that 3(C) > 0.9* Take f(C) > 0 for
all C € [C,0), C < C < C <CY Of course, these properties will need to be
verified.

The first-order condition for maximizing U(C) — «(C) (expression (A.23)
in the appendix) holds for any C < C° that the buyer chooses with positive
probability (i.e., such that f(C) > 0). Moreover, because the buyer could invest

I and refuse to trade, his equilibrium utility cannot be less than —C' — 1(C).
Hence,

U(C) =€) =U~4(C) > =C —(C)
for all C € [C, C), where use has been made of both (5.26) and Proposition 32.
Because the seller makes a TIOLI offer, this constraint is binding.
The seller choose z(-) and U to maximize her expected profit:

c

(7(©) = a(Cles () z(@) + [

c

(7€) = 2(C)es (UC)) ) F(C)dC . (5.27)

Using (5.25), (5.26), and defining o(C) = —f(C) (hence, o(C) = ¥/(C)), this
last expression can be rewritten as

— — — — é —
-U- (x(C’)cS («(C) + (1—=(0))C —/ (1- x(z))dz) 2(C)

c

c

(&) (&

+ / ¢ (:E(c)cs(b(c;)) L (1-2(C)C - /

(1- x(z))dz) o(C)dC . (5.28)
Integration by parts permits rewriting that expression as

~ U~ (a(C)es(1(C) + (1 - (C))C)=(C)

%(0)

c

91Here,

C
S(C)=1- /C F(2)dz.

]
—I—/ <x(C’)cS (L) + (1 —=2(C))C + (1 —z(0)) a(C)) o(C)dC'. (5.29) {eq:BuyerEqUtility-HH}
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From Proposition 32, if the buyer plays C < C < C° with positive probability,
then z(C') must equal 1+ //(C). Differentiating, pointwise, the seller’s expected
profit (i.e., expression (5.29)) with respect to z(C) reveals that consistency with
Proposition 32 and seller optimization is met if and only if

=cs(u(0)) -C (5.30)

for C < C < O, because, then, the seller is indifferent as to her choice of x(:)
and might as well choose z(-) to be consistent with the buyer’s mixing (i.e.,
such that x(-) = 1+ /(+)).

Using (5.30), expression (5.29) can be rewritten as

B 3 3 B 3 C
—U- (x(C’)cS ((C)) + (1 - a:(C))O)E(O) + / (Co(C) + %(C))dC
C

=—U-C+ (0 cs(ul0)))(C)S(C)

=—C—uC) — (= C = u(0)) + (C = s (u(C)))=(C)=(O), (5:31)

where the last equality follows because the buyer’s participation constraint
binds. Because C' maximizes —C' — ¢(C), (5.31) cannot exceed

(@ ey (L(C))):c(é)z(é).

At the same time, the seller could deviate from offering the mechanism by simply
offering to sell at price C, which would net her expected profit

(c e (L(C)))E(C).

From (5.31), it follows she will do so unless C = C' and, if £(C) > 0, z(C) = 1.
The following can now be established:

Proposition 33. There exists a subgame-perfect equilibrium in which the seller
makes the buyer a TIOLI offer in which the buyer plays a mized strategy whereby
he chooses C € [C,C°] according to the distribution function

© 1
F(C)=1—exp </C Wdz) (5.32)

and seller offers the mechanism (x(-),7(-)) such that
1+J(0), if C < C°
z(C) = ‘
1, ifC=C°

and

7(C) = C+4(C) —1(C) — (1 - 2(C))C. (5.33)

{eq:Hazard-HH}

{eq:magic-HH}

{prop:Unseen-Cost}

{eq:mixF-HH}

{eq:tau-HH}
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Because the buyer is playing a non-degenerate mixed strategy, the equilib-
rium of Proposition 33 is not even second best insofar as the buyer is, with
positive probability, making investments that are welfare inferior to the second-
best investment level. If, contrary to the maintained assumption, he had the
bargaining power, then there is an equilibrium in which he invests at the second-
best level with certainty (the equilibrium would be similar to the one in Proposi-
tion 28). In other words, the holdup problem that arises when the non-investing
party has the bargaining power further exacerbates a situation already made im-
perfect by asymmetric information. To reduce the degree to which he is held
up, the buyer must mix—otherwise he would be vulnerable to being held up
completely—and this undermines his incentive to choose the right level of in-
vestment.??

5.5 SELFISH BUYER ACTIONS

We now turn to wholly selfish actions by the buyer. As a somewhat general
framework suppose that the timing of the game between buyer and seller is the
following:

e Buyer sinks an investment I € Ry . This affects his benefit, b € R, should
he obtain a unit of some good, asset, or service from the seller. The buyer
is assumed to want at most one unit.

e The seller observes a signal, s, that may contain information about b.

e The seller makes a TIOLI offer to sell one unit at price p.

e After observing b and s, the buyer decides whether to buy or not.
The payoffs to buyer and seller are, respectively,

Ug=2x(b—p)—1I and Ug = zp,

where x € {0, 1} is the amount of trade. Note, for convenience, the seller’s cost
has been normalized to zero.
5.5.1 NO ASYMMETRIC INFORMATION

Suppose that the seller’s signal, s, is just b; that is, there is no asymmetry
of information. The seller will obviously set p = s (equivalently, p = b) in
equilibrium. The buyer will buy in equilibrium. Hence, his equilibrium payoff
is —I. He maximizes this by choosing I = 0. In this case, holdup destroys all
investment incentives:

Proposition 34. If the seller can observe the buyer’s benefit, then the buyer
will tnvest nothing in equilibrium.

92Note, critically, this distortion does not mean he “underinvests”: his average investment
can actually be higher when he doesn’t have the bargaining power than when he does. See
Hermalin (forthcoming) for details.
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To the extent positive investment is welfare superior to no investment (i.e.,
if 0 ¢ argmax; E{b|I} — I), this outcome is undesirable.

5.5.2 DETERMINISTIC RETURN

Suppose there is a function B : Ry — Ry such that an investment of I re-
turns a benefit b = B(I). Assume, primarily to make the problem interesting
and straightforward, that B(-) is twice differentiable, strictly increasing (benefit
increases with investment), and strictly concave (diminishing returns to invest-
ment). In addition, assume there is a finite I* > 0 such that B'(I*) = 1.
Observe that I* is the unique welfare-maximizing level of investment.

Unlike the previous subsection assume the seller does not observe b. Nor
does she observe I (which, here, would be equivalent to observing b). In fact,
let her signal, s, be pure noise (or, equivalently, assume she observes nothing).

For reasons similar to those explored above (see, e.g., Proposition 30), there
is no equilibrium in which the buyer invests a positive amount as a pure strategy:

Proposition 35. There is no equilibrium in which the buyer invests a positive
amount as a pure strategy.

Proof: Suppose not. Then, in equilibrium, the seller would set p = B([I),
where I is the buyer’s pure-strategy investment level. The buyer’s equilibrium
payoff would, thus, be —I < 0. Given the buyer can secure a payoff of 0 by not
investing at all, it follows this is not an equilibrium. The result follows reductio
ad absurdum. |

As Gul (2001) observed, the equilibrium in a game such as this depends
critically on whether B(0) = 0 or B(0) > 0. In the former case, trade is
worthless unless the buyer invests; in that latter, it has value even there is no
investment.

Lemma 18. Suppose B(0) = 0 (trade is worthless absent buyer investment).
Then there is an equilibrium in which I = 0 and the seller charges some price
p.p>B(I").

Note, critically, that what sustains the Lemma 18 equilibrium is the willingness
of the seller to charge an exorbitant price. That willingness goes away if B(0) >
0 (trade is valuable even absent investment). Knowing that the buyer will always
accept B(0) regardless of how much he has invested, the seller can ensure herself
a positive profit by offering p = B(0).

Lemma 19. Suppose trade is valuable even absent investment (i.e., B(0) > 0).
Then, in equilibrium, neither the buyer nor the seller plays a pure strategy.

To analyze the mixed strategies played in equilibrium, it is easier to treat
the buyer as choosing a benefit, b, and, thus, making investment B~*(b). For

93Technically, whether B(0) equals or exceeds the seller’s cost of production.

{prop:HK09-1}

{lemma:NotGul}

{lemma:Gul0o1-1}
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convenience, denote B~1(+) by «(-). The seller’s strategy is a distribution func-
tion, GG, over prices and the buyer’s strategy is a distribution function, F', over
benefits. Let p, and pp be the lowest and highest prices the seller might play
(technically, p; = sup {p|G(p) = O} and pp, = inf {p|G(p) = 1}) Let by and by,
be the lowest and highest benefits the buyer might play (they have analogous
technical definitions). Some initial observations:

e By construction, by > B(0) (no negative investment).

e From Lemma 19, p, > p; and by, > by. Let BT denote the set of b > B(0)
played by the buyer with positive probability. Note that set is nonempty
by Lemma 19.

e The seller can guarantee herself a profit of by by playing p = b,. Hence,
pe > be.

e The buyer’s utility, up, from playing by is —¢(by):
up = max{0,b; — p} — t(be) = —¢(be)
where the second equality follows from the previous bullet point.
e Hence, b, = B(0).

Note that the last bullet point means the buyer’s equilibrium expected payoff
is zero.

Lemma 20. In equilibrium, p, = B(0).
An immediate corollary is that the seller’s expected profit in equilibrium is B(0).
Lemma 21. In equilibrium, b, = B(I*) if pp < B(I*).
Consider the following strategies for the seller and buyer, respectively:
D bn
G(p) = G(B(0)) —I—/ g(z)dz and F(b) =1— f(z)dz. (5.34)
B(0) b
Because the buyer’s expected utility given any b he plays is zero, we have
b
bG(B(0)) + / (b—p)g(p)dp — 1(b) =0. (5.35)
B(0)
Since that is an identity, differentiating implies
G(b) —/(b)=0.

Hence, the strategy for the seller is

G(p) = (p). (5.36)

{lemma:pell}

{lemma:Gul01-11}
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Because «(+) is convex and ¢/(B(I*)) = 1, this strategy requires p, = B(I*).
Similarly, the seller’s expected profit given any p she plays is B(0); hence,

p(l — F(p)) = B(0).

It follows that

in other words, the strategy for the buyer is

{1—§@,ﬁb<m

F(b) = (5.37)

b
1, if b= by

Expression (5.37) does not directly pin down b,. But given p, = B(I*), it
.94

follows from Lemma 21 that b, = B(I*). To summarize:
Proposition 36. An equilibrium is the seller mizes over price in the interval
[B(0), B(I*)] according to the distribution

P

mm:/m@»+éwﬂ@w

and the buyer mizes over benefit in the interval [B(0), B(I*)] according to the
distribution 50)

1-BO < B

ﬂm_{ v () (5.38)

1, if b= B(I*)

Proof: As the analysis in the text shows, the parties are indifferent over all
actions in [B(0), B(I*)]. As established in the proof of Lemma 21 any b > B(I*)
is dominated for the buyer if p, = B(I*). That proof also established that any
p > by, is dominated for the seller. |

Observe that as B(0) | 0, the buyer’s strategy, expression (5.38), converges
to his not investing with probability 1. This suggests a link between this propo-
sition and Lemma 18. Indeed, when B(0) = 0, there is no equilibrium in which
the buyer invests with positive probability:*®

Proposition 37. If B(0) = 0, then the buyer’s expected level of investment is
zero in equilibrium.
5.5.3 STOCHASTIC RETURN

Suppose now that the buyer’s benefit b is stochastic, with a distribution that
depends on his investment, I. Denote the survival function for this conditional

94This proposition is essentially Proposition 1 of Gul (2001).
95This is essentially Proposition 4 of Hermalin and Katz (2009).

{eq:Gulol-eq2}

{eq:GulO1l-eqF}

{prop:xx1}
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distribution by D(-|I); that is, the probability of the buyer’s benefit equaling or
exceeding b is D(b|T). The use of the letter “D” is not accidental. Let the set
of possible b be [0,b), where 0 < b < oo.

Assume D is twice differentiable in each argument. Using integration by
parts, it follows, for a given b, that

E{max{b—b,o}}:/:(b—b) (—%) db:/:D(b|I)db.

Further assume: the buyer gets no benefit with certainty absent investment (i.e.,
D(0]|0) = 0) and there is a finite positive level of investment that maximizes
welfare (i.e., there is an I* € (0,00) that maximizes fob D(b|I)db — I).

Two possibilities will be considered here about what the seller knows prior
to trade: (i) the seller observes the buyer’s investment, but not his benefit; or
(ii) the seller observes neither the buyer’s investment nor his his benefit. In
terms of earlier introduced notation, case (i) corresponds to s = I and case (ii)
corresponds to s being pure noise.”

In case (ii), a degenerate equilibrium exists along the lines of the Lemma 18
equilibrium in which the buyer does not invest because he anticipates the seller
will offer an exorbitant price and because she believes the buyer has not invested,
the seller may as well charge such an exorbitant price given D(0|0) = 0.

Our interest here, though, is non-degenerate equilibria. To see that there
are functions that support non-degenerate equilibria, suppose b = oo and

D(|I) = exp (-%) , (5.39)

where « is constant. In case (i), the seller chooses p to maximize

pD(p|I) = pexp (—%) :

the solution to which is p(I) = v/I/a. Anticipating this response, the buyer
chooses I to maximize
°° 1
poinas—1=Y1 1.
p(I) ae

where e = exp(1l), the base of the natural logarithm. The solution to the

maximization problem is

. 1
I=——. 5.40
4a2e? ( )

96Hermalin and Katz (2009) consider the case in which s is an imperfect, but informative
signal of b; that is, there is some joint distribution of s and b given I. See Hermalin and Katz
for details.

eq:ExampleD
q P

{eq:HK09-I1}
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In case (ii), if the seller anticipates the buyer has chosen I , then she will play
p(I). To have an equilibrium, I must in fact be a best response for the buyer

to p(I). Tt will be if

Te argmax/ _D(b[I)db—1I;
1 p(I)

equivalently if I is a solution to the first-order condition

p(I)exp (—p(Nea/VI)  exp(—p(I)a/VT)

0=-1+ +
21 20/ T
\/}Nexp (— IN/I) exp (— IN/I>
=1+ + :
21« 2(1\/7
The solution is 1

Comparing the two equilibria for this example—expressions (5.40) and (5.41)
—we see that, when the seller can observe the buyer’s investment (case (i)), the
buyer invests less in equilibrium than when the seller cannot observe it (case (ii)).
At first blush this might seem a general phenomenon: being able to observe the
buyer’s investment allows the seller to better holdup the buyer, correspondingly
reducing the buyer’s incentives to invest. This logic, although tempting, proves
to be incomplete. As Hermalin and Katz (2009) show, the result depends on the
properties of the demand function, D: in particular, the buyer invests less when
his investment is observable if the buyer’s demand becomes less price elastic the
greater is his investment.””

The welfare consequences of observable investment are also less than clear
cut. Although Hermalin and Katz provide conditions under which welfare is
greater with unobservable investment than with observable investment, that
cannot be seen as a general result. What is a general result is that the buyer
actually does better when his investment is observable than when it is not:

Proposition 38. The buyer’s equilibrium expected utility is at least as great
when the seller can observe his investment than when she cannot.

Proof: Define -
U(p,I):/ DIT)db.
p

Suppose the buyer’s investment is observable. Then the buyer can “pick” the
price he faces in the sense that he knows an investment of I will result in a price
of p(I). By revealed preference:

Up(D),I) —1>U(p(I),1) -1, (5.42)

97For this example, elasticity is pa/\ﬁ, which is clearly decreasing in I.

{eq:HK09-I2}

{eq:HKO9-RP}
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where I and I are as defined above. But the RHS of (5.42) is the buyer’s ex-
pected utility in equilibrium when investment is unobservable. |

Intuitively, when investment is observable, the buyer becomes the Stackelberg
leader of the game. This result illustrates a very general point: consider, as in
case (ii), a game in which the second mover does not observe the first mover’s
action. If that game has an equilibrium in which the first mover plays a pure
strategy, then the first mover would necessarily be better off in equilibrium in
the variant of that game in which the second mover can observe the first mover’s
action.”®

6 FINAL THOUGHTS

As the introduction sought to make clear, the economics of asymmetric informa-
tion is a vast topic. A complete survey, even if that were a feasible task, would
necessarily yield a massive tome. This chapter has, of necessity, had to consider
a narrow subset of literature: attention has been limited to buyer-seller relations
and, then, largely to those involving a single buyer and a single seller, in which
the asymmetry of information between them arises prior to their establishing a
trading relationship.?®

Much of the literature surveyed in this chapter, especially in Sections 24,
although novel when I began my career, has become part of the established liter-
ature. More recent literature has, as hinted at in Section 5, involved asymmetries
that arise endogenously.'%C This topic remains an area of active research.

With respect to ongoing and future research, a key issue is the modeling
of bargaining. This chapter has focused almost exclusively on take-it-or-leave-
it (TIOLI) bargaining. Assuming that bargaining vastly simplifies matters. In
some contexts, however, it is unrealistic. Hence, despite the complications of
non-TIOLI bargaining, allowing for such bargaining is an important area of ex-
ploration.

Related to the issue of bargaining is the “money on the table” problem
(recall, e.g., Section 3.3 supra): many mechanisms require the parties to commit
to honor ez post inefficient outcomes (possibly only off the equilibrium path).
But if it is common knowledge that an outcome is inefficient and there is no
impediment to renegotiation, then it is unreasonable to expect the parties will
not take action to remedy the situation. Anticipation of such action would,
in many cases, undermine the original mechanism, creating some doubt as to
whether such mechanisms are good predictors of actual behavior. This, thus,

98This is true even if in the unobservable-action version the second mover plays a mixed
strategy in equilibrium: think of U in expression (5.42) as expected payoff given the mixed
strategy p(-).

99 As observed previously, however, many of the techniques considered are more broadly
applicable.

1001y addition to some of the articles cited above in this regard, the reader is also directed
to Gonzélez (2004) and Lau (2008).
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represents an important area of research.'0!

Beyond the suggestions for future work contained in this section and also
made earlier, I hope the reader has been motivated to ask his or her own ques-
tions about alternative assumptions or possible extensions. At the very least, I
hope this chapter has provided the reader a good foundation from which to his
or her own research.

APPENDIX: PROOFS

Proof of Lemma 2: The IR constraint for 8’ and the Spence-Mirrlees condi-
tion imply

u(@(8'), B) — t(8') > u(zo, B) — 0 = ur;

hence, 8 must do better to buy than not buy. The Spence-Mirrlees condition
also implies strictly increasing differences (Proposition 3):

u(x(ﬁ/)aﬁ) - u(x(ﬁ/)aﬁ/) > U((EO,B) - U(J;Q,B/) =0.
That v(8) > v(8’) then follows from (2.10). |

Proof of Lemma 3: Suppose not. Let (x(-),#(-)) be the seller’s expected-
payoff-maximizing mechanism. Consider a new mechanism (z(-),#(-)), where

t(B) = t(8) +v(B) —ur

for all 8 > /3 and t(B) =t(B) =0 for B < B. Using (1¢), it is readily verified that
that if type § participates, he does best to purchase the same z(5) as he would
have under the original mechanism. By design, B is still willing to purchase.
From Lemma 2,

u(xz(B),B) — t(B) > v(B) = u(x(B),B8) —(B) > ur.

So all types 5 > 3 who participated under the original mechanism participate
under the new mechanism. (Clearly those types that “participated” by purchas-
ing nothing continue to participate in the same way.) Given the buyer’s true
type, the seller incurs, in equilibrium, the same cost as she would have under
the old (i.e., c(:v(ﬁ), ﬁ) remains unchanged), but her transfer is strictly greater
under the new; this contradicts the supposition that the original mechanism
maximized her expected payoff. The result follows reductio ad absurdum. W

Proof of Proposition 4 (completion): Consider n > m. A chain of reason-

101 Beaudry and Poitevin, in a series of articles in the 1990s (see, e.g., Beaudry and Poitevin,
1993, 1995), made some progress on the topic, but much remains unsettled.
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ing similar to that in the main text provides:

’U’(I(ﬁm)v Bn) - t(ﬁm)

= w(@(Bm), Bn) = u(z(Bm), Bm) +ur + D Rj(x(8;-1)) — > Ri(2(Bj-1))

j<n j=m+1

n

= U(.%‘(Bm),ﬁn) - u(x(ﬁm)u Bm) + U(ﬁn) - Z Rj (x(ﬁj—l))

j=m+1

m

=0(Ba) = 3 (Ri(@(Bi0) = Ry (2(5m)) ) < v(8u)
j=n+1
(note, in this case,

n

u(@(Bin)s Bn) = w(@(Bm) Bm) = D Ry(w(Bm))

j=m+1

and z(8j_1) > z(By,) for j > m+1). |

Proof of Proposition 5: Lemma 1 established the necessity of z(-) being
nondecreasing.
Using the fundamental theorem of calculus, (2.10) can be rewritten as

/’8 8u(az(ﬁ),z) B 8u(z(ﬁ’),z)
, 0B / B

The function v(+) is absolutely continuous.!®? An absolutely continuous function
has a derivative almost everywhere (see, e.g., Royden, 1968, p. 109). Dividing

dz > U(ﬂ) — ’U(ﬂ/) > / dz . (Al) {eq:DoubleIneq}

102proof: The function 8u(:c(6_),)/86 is continuous and bounded, it thus has a finite
maximum, M, and a maximizer S8;. By Spence-Mirrlees,

du(x(B), Bm)  du(x(B), ) S du(z(B), )

oB - oB oB 7
for any 8 and 8’ € B. Pick any € > 0 and let § = ¢/M. Consider any finite non-overlapping
collection of intervals {(B;, Bl)}l ; such that

=

M =

T
> (Bi—B) <6
i=1
The conclusion follows if
I
S Jo(B) — (8] < e
i=1
(see, e.g., Royden, 1968, p. 108). Because v(+) is nondecreasing (Lemma 2), the absolute value
can be ignored (i.e., |v(B;) —v(B])| can be replaced with just v(8;) —v(5})). From (A.1) and
the intermediate value theorem, there is some Bl € (B!, B;) such that

) ’ B = Biiau(x(ﬁi),z) 2z > v(B;) — v(B:
M(5 - ) 2SI m—é s > (B — v(B)

’
i
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(A.1) through by 8 — 3’ (recall this is positive) and taking the limit as 8’ — 8,
it follows the derivative of v(-) is given by

dv(B) 3u(w(6),6)

dp op

almost everywhere. An absolutely continuous function is the integral of its
derivative (see, e.g., Yeh, 2006, p. 283), hence

B ou(z(z),2)

95 dz. (A.2)

v(B) = v(B) + /@

Because v(8) = u(z(3), 8) — t(B), (A.2) implies

s u\r\z),z
8) = u(a(8).8) ~v(® - [ %ﬁ))

dz. (A.3)
Setting 7 = v(f), the necessity of (2.18) follows.

The logic for establishing sufficiency is similar to that in the proof of Propo-
sition 4; hence, I will be brief. The proof of participation is the same. To
establish incentive compatibility, one needs to show that a S-type buyer won’t
pretend to be a /’-type buyer. His utility were he to do so is

u(@(8'), 8) — t(B)

B r\z), 2 B u\r\z), 2
~u(el#).8) —u(el).8) + 7+ [ 2 S I
B ou(x(z), 2
:u(x(ﬁ/),ﬁ)—u(w(ﬁ’%ﬁ)-ﬁ-v(ﬁ)—// 0 (8([3)7 )dz
B w(z(2), z w(z(B'), 2
—u9)- [ (a ez) ulel 7, )>dzgv<ﬂ>, (A4)

where the first two equalities follow from (2.18) and the last from the funda-
mental theorem of calculus. That the integral in the last line is positive follows
from Spence-Mirrlees because x(-) is nondecreasing: the integrand is positive
if 8 > B’ and integration is the positive direction; it is negative if 5 < 8’ and
integration is in the negative direction. |

Summing over % yields

I

I
e=M5>MY (Bi—B)>D (v(B:) —v(B)) -

i=1 i=1

{eq:GenMech-v}

{eq:GenMech-t}

{eq:ContCase-suffl}
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Proof of Lemma 5: The result is immediate if Yz > Y7, so suppose Y < Y};.
By assumption,

Bu(Y) + (1= B)u(a) = Bu(Yy) + (1= Bu(Y).

Hence,
8 (w02 = uVD) + (u(¥h) — u(¥w) ) > u(Viy) — u(Ve)
Because § > ', it follows that
B((u(¥0) = u(¥D) + (u(¥er) = ul¥ir)) ) > u(¥Y) = u(¥Vir):
and, thus, that Su(Y7) + (1 — B)u(Yu) > Bu(Y]) + (1 — B)u(YE). |

Proof of Proposition 12: Suppose such a mechanism existed. Because it is
efficient x(b,¢) = 1 if b > ¢ and = 0 otherwise. Hence, from (3.18),

b rc b rz
u(b):u(())—i—/ / x(z,c)g(c)dcdz:u(())—i—/ / g(c)dedz
0 Je 0 Je
=€p(2)
b
:u(())—l—/ G(z)dz, (A.5) {eq:Ms-EffU}

where the second equality follows because z(b,c¢) = 1 for ¢ < b and = 0 for
¢ > b. A similar analysis reveals

b
w(c) = () + / (1-F(z))d=. (A.6) {eq:Ms-Effpi}

Realized surplus is b — ¢ if b > ¢ and 0 otherwise. Hence, ex ante expected

surplus is
b b
S 2/0 (/c (b—c)g(c)dc) f(b)db

b b
= /0 ((b —b)G(() — (b—0)G(0) +/ G(c)dc) f(b)db

integration by parts

b b
= / / G(c)dcf(b)db (A?) {eq:MS-ex_ante_surp}
0 Je

If the mechanism is balanced, then 5* = Ey{u(b)} +E.{7(c)}. But, from (A.5),

b b
Ep{u(b)} = /0 <u(0) —I—/ G(z)dz) F(0)db =u(0) + 5, (A.8)
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where the last equality follows from (A.7). The mechanism can, thus, be bal-
anced only if u(0) = 0 and Ec{m(c)} = 0; but, from (A.6), E.{r(c)} > 0.
Reductio ad absurdum, no balanced, efficient, and interim IR mechanism can
exist. |

Proof of Lemma 10: Consider b > b'. Then, for all ¢, z(b,c) > z(V,c).
Hence,

0 [ (albe) = alt'.))gle)de = €(6) — €a(0).

So £p(+) is non-decreasing as desired. The proof for £g(-) is similar. |

Proof of Lemma 11 and Corollary 3: Consider the functions:

= —0'1_7}7(()) an C,0) =¢C O'G(C)
Vs(b,o) =b O d Ve(e,0) =c+ ER

The premise of the lemma is that Vp(-,1) and Vi (-, 1) are non-decreasing func-
tions. Observe, given previous discussion, that one needs to show

A A
VB <', H——A> and VC (', H—)\)

are non-decreasing functions. Note A/(1 4+ A) € (0,1). We have

0°Va(b,o)  d (1—F(b) 0°Ve(c,o)  d (G(o)
7 ( 7 ) wnd e ‘%(g@)' (4-10)

If the expressions in (A.10) are non-negative, then

(A.9)

dcob  db

o 6V3(b, 0) < 6VB(b,U)

0<1 % = b

(and similarly for Vi) for all o > 0. So the result would follow. If the expressions
in (A.10) are negative, then

_ Vs(b,1) _ 0Vi(bo)

. 0b - 0b

(and similarly for Vi) for all o < 1 (where the first inequality follows by as-
sumption). This proves the lemma.

The corollary follows because, given the assumptions of the corollary, Vs (-, 1)
and Vo (-, 1) are non-decreasing functions. |

Proof of Proposition 14: Suppose that pi(c) # p1(c) for ¢ # ¢ (this is
verified below). Assume the buyer’s belief upon seeing p;(c) is the seller’s type
is ¢ with probability 1. If p; # p1(c) for any ¢, assume the buyer believes that
¢ = ¢. Suppose the buyer is playing a linear strategy. The objective is to show
that a linear strategy is the seller’s best response regardless of c. Consider an

{eq:MS-c-funcs}

{eq:MS-c-funcs-dif}
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arbitrary period ¢. Assume all normalized types greater than w; have purchased
by t. The expected present value of the seller’s profit discounted back to ¢ is

(1 -0 = (wy — amy)my + Z 8" Ham,_1 — amy)m,,
T=t+1

where the scaling (1 — ¢) reflects that w is distributed uniformly on [0,1 — c].
Maximizing II; with respect to my, m¢y1, ... yields the first-order conditions:

wy — 2amy + damyy; =0
o7 (Oémt+7-,1 - 20¢mt+7 + 5O[mt+7-+1) =0

Solving this system of difference equations yields:

Cw(1=VT=3\ 1-1=3
Mpyr =— (| ———— =|—— ) x amyir—1 (A.11)
« 1) ad N

=Wt4r—1
if 7> 1 and

5 (A.12)

So a linear rule is, indeed, a best response for the seller regardless of her cost.

The linear rule has
1—+v1-=9
V=
ad
Next, verify that the buyer wishes to follow a linear rule in response to the
seller’s linear rule: let b be the indifferent type at time ¢, then we have

my = (ﬂ) .

b—pt:5(b—pt+1)<:>w—mt:5(w—'yw),

where the equivalence follows by adding and subtracting ¢ on the LHS and rec-
ognizing that pi11 = mi41 + ¢ = yw + ¢. Solving:
1

w:71_6+57mt

So we also have a linear rule for the buyer with

1

R R v

We can solve our linear rules:

(=8 +VI=D 1

vy = 5 and o = =

(9]
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Note, critically, that neither v nor o depend on c. Finally, observe that
pi(c) =mi(c) +ec=v(1—-c)+c=7+(1—-7)c,
so p1(c) #p1(d) if ¢ # . |

Proof of Lemma 14: First, suppose, contrary to the lemma, that there at
least two distinct pairs the 4 type plays that do not include sg: (s, p) and (s',p’).
The order is arbitrary, hence one is free to assume sy < s < s’. Given the v
type plays the two pairs with positive probability (mixes): B

xp —c(s,y) = z'p" —c(s',7)

where x and 2’ are the equilibrium probabilities the buyer accepts the seller’s
offer. Spence-Mirrlees (i.e., expression (4.14)) implies:

ap —c(s,7) <a'p’ = (s, 7).

Consequently, the ¥ type never offers (s,p) in equilibrium. The buyer must,
therefore, believe the seller is low quality upon seeing (s,p). Because s > sq,
seller rationality dictates that x > 0; so buyer rationality dictates p < . But
the v type can guarantee herself a payoff v by playing (so,7). The chain

v = xy = c(s0,7) = xp — c(s0,7) > xp — c(s,7)

indicates that (s,p) is strictly dominated for the low-quality type, which con-
tradicts that she plays it with positive probability. The first part of the lemma
follows reductio ad absurdum.

We just saw that an action (s,p), s > sg, not played by the high-quality
type is strictly dominated for the low-quality type, which proves the lemma’s
second part. |

Proof of Lemma 15: Given the previous lemma, there is at most one such
signal, s > sg, that the low-quality seller could send. Let 7 be the expected pay-
ment sellers who play that signal get. Because s > sg, seller rationality dictates
that m > 0, which entails buyer acceptance with strictly positive probability. It
must be that 7 < 4. To see this, note the buyer never accepts a price greater
than 7; hence, m ¥ 7. If m = 4, then the buyer always accepts when faced with
(s,7). Hence, the only price that would be rational for the seller to offer given
signal s is p = 4. But, by supposition, the v plays the signal s with positive
probability; hence, the buyer’s Bayesian beliefs dictate that E{y|s} < ¥ and so
the buyer should not accept p = 7. Reductio ad absurdum, m < 7 follows.
Define § by
- C(évl) =7 = C(Svl) )

that is, a low-quality seller would be indifferent between playing signal § in
exchange for receiving 7 for sure and playing s in exchange for receiving expected
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payment m. That such a § exists follows because c(-,7) is unbounded and
continuous. Because 7 < 7, it follows that § > s. Spence-Mirrlees (4.14) entails

¥ —c(8,7) >m—c(s,7).

These last two expression imply that there exists 6 > 0 such that

¥ —=06—c(3,7) <m—c(s,y) and (A.13)
y—0—c(8,7) >m—c(s,7). (A.14)
Consider the deviation (8,7 — §):'9 expressions (A.13) and (A.14) imply that

I'% = {~}. But as
L((3,7 =)\ = {3},
Br (D((5.5 = 9\, (5,5 = 8)) = {1},

which, given (A.14), means (4.12) holds. As claimed, the equilibrium fails the
Intuitive Criterion. |

Proof of Proposition 17: It needs to be shown (a) this is an equilibrium; (b)
it satisfies the Intuitive criterion; and (c), in light of the earlier lemmas, that no
other separating PBE satisfies the Intuitive criterion.

With respect to (a): the buyer’s beliefs and strategy are obviously consistent
with a PBE. Given that, a seller’s expected payment, m, is at most ~ if s < s*
and at most 7 if s > s*. A low-quality seller will not wish to deviate:

>y —c(s,7) (A.15)
for all s > s¢ and, by (4.23),
T=7—cs" ) 27 —c(s,7)
for all s > s*. Nor will a high-quality seller:
y—c(5,7) <y <y—c(s,7) (A.16)

for all s < s*, where the second inequality follows from (4.14) (i.e., Spence-
Mirrlees) and (4.23), and

’7_0(87/7) < ’7_0(8*7’7) (A17)

for all s > s*.

With respect to (b), I® =T'if p ¢ (v,7] or s > s*, in which case the Intuitive
Criterion holds trivially. Consider s € (so, s*) and p € (v,7]. If v > p — c(s,7),
then, given v = 5 — ¢(s*, v), Spence-Mirrlees implies B B

’7_0(8*7/7) >p—C(S,’7);

103 This must be a deviation—out-of-equilibrium play—because otherwise (A.14) implies the
high-quality seller would never play s.

{eq:LowTypeNoMotive}

{eq:HighTypeMotive}

{eq:RileyLH-IC}

{eq:RileyHL-IC}
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in other words, v € I'” implies 5 € T'°. Hence, I'(a)\I'” can equal §, {}, or I.
If the first, the Intuitive Criterion holds trivially. If the latter two,

min Via,z,v) <y —cls,7) <73
TEBR (F(a)\l"“,a) - -

hence, (4.12) could not hold given (A.15) and (A.16); that is, the Intuitive
Criterion is satisfied.

Turning to (¢): in a separating PBE, the v type plays (sp,7) and the buyer
accepts all p < v. Let (5,5) be an action of the 7 type that she plays with
positive probability in a separating PBE.

Claim. In a separating PBE that satisfies the Intuitive Criterion, p =7 and the
buyer must accept the high-quality seller’s price offer with probability one.

Proof of Claim: Suppose not. The parties’ rationality rules out an equilib-
rium in which p > 4. Let 7 be the expected payment the seller receives if she
plays (5,p). By supposition, 7 < 7. There exists a 6 > 0 such that

¥y—c(38+06,7) =7 —c(5,7). (A.18)

By Spence-Mirrlees,
:Y_C(§+5;;Y) > W—C(g,’_}/) .

Hence, there exists an € > 0 such that
y—e—c(5+6,7%) >m—c(357). (A.19)
It follows from (A.18) and the definition of equilibrium that
y2m—c(8,7)>F—ec—c(5+0,7). (A.20)

Expressions (A.19) and (A.20) reveal that the deviation (5 + §,5 — ¢) is such
that the PBE fails the Intuitive Criterion. O

In light of the claim, there is no PBE satisfying the Intuitive Criterion such that
5§ < s*. Consider § > s*. Define
E =

(C(E, ’7) - C(S*v ’7)) .

Note £ > 0. In light of the claim, definition of &, and condition (4.23):

DN | =

7>7—e—c(s%,7) and 7 —¢(5,7) <y —e—c(s7,7),

where the terms on the left of the inequalities are the relevant payoffs under the
PBE. Considering the deviation (s*,5 —€), it is readily seen that these last two
inequalities mean the PBE fails the Intuitive Criterion. |

Proof of Proposition 28: Given his beliefs, the buyer is indifferent between
accepting and rejecting an offer at price bg(¢®®). He is, thus, willing to mix.

{eq:NoMixIC-claima}

{eq:NoMixIC-claimb}

{eq:NoMixIC-claimc}
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Given the probabilities with which the buyer mixes, it is a best response for the
seller to choose quality ¢*® if she intends to offer the good at price bp(g®). All
that remains is to verify that the seller does not wish to deviate with respect to
investment and price given the buyer’s beliefs. Given that bg(-) is increasing,
the buyer, given his beliefs, will reject any price greater than bg(¢®®) or in
the interval (bp(0),b5(¢*)). Because the seller’s expected payoff is M on the
purported equilibrium path, she cannot do strictly better under autarky; that
is, she has no incentive to induce the buyer to reject her offer. Finally, setting
a price of bp(0) cannot be a profitable deviation for the seller given

bp(0) —g <M
for all q. |
Proof of Proposition 30: Given the seller makes a TIOLI offer, if the buyer
invests a given amount, I, as a pure-strategy, the seller’s best response is to

offer trade at price
t=cp(I) >cs(I).

But Proposition 29 rules out a pure-strategy equilibrium in which the buyer
invests a positive amount and trade is certain to occur. There is thus no equi-
librium in which the buyer plays I > 0 as a pure strategy. If the buyer doesn’t
invest, then trade would occur. But from (5.24), the buyer would do better to
deviate, invest I, and not trade. |

Proof of Lemma 17: A revealed-preference argument yields:
UC)>—(1-z(C")C—7(C")=U(C") — (1 —2(C"))(C—C") and (A.21)
U(C") > —(1—2(C))C" = 7(C) = U(C) — (1 —2(C))(C" = C).

Hence,

(1-z(O)(C'-C)=UC)-UIC") = (1-z(CH)(C"-0O). (A.22)

Without loss take C” > C, then z(C") > z(C) if (A.22) holds.
Pick C' and C" € C and a A € (0,1). Define Cy = AC + (1 — A)C". Revealed
preference implies:

AU(C) > M\U(Cy) — /\(1 — x(C’A))(C —C)) and
(1=NU(C") = (1 =NU(Cr) = (1= A)(1 = 2(C))(C" = C).
Add those two expressions:

AU(C) + (1= NU(C") > U(Cy) — (1= 2(Cy)) (AC + (1 = N)C' = Cy) .
=0

The result follows. [ |

{eq:RP-RnotRPrime}

{eq:HH-pinch}
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Proof of Proposition 31: The necessity of condition (i) follows immediately
from Lemma 17. Convex functions are absolutely continuous (see, e.g., van
Tiel, 1984, p. 5). As noted earlier (see proof of Proposition 5), an absolutely
continuous function has a derivative almost everywhere and, moreover, is the
integral of its derivative. Hence, dividing (A.22) through by C’ — C and taking
the limit as ¢’ — C reveals that U’(C) = —(1 — 2(C)) almost everywhere.
Expression (5.26) follows.

To establish sufficiency, suppose the buyer’s type is C' and consider any
C’ > C. We wish to verify (A.21):

c’

(1—=(2))dz > / (1-2(C"))dz = (1—=z(C"))(C'-C),

C

C/
U(C) - U(C) :/

c
where the inequality follows because z(-) is non-decreasing. Expression (A.21)
follows. The case C' < C' is provide similarly and, so, omitted for the sake of
brevity. |

Proof of Proposition 32: By supposition, the buyer chooses C' with positive
probability in equilibrium, hence C' € C. Consequently, C' must satisfy the
first-order condition

0=U'(C)—/(C)=—-(1—-=(C)) = /(C). (A.23)
The result follows. |

Proof of Proposition 33: Expression (5.32) solves the differential equation
(5.30). By assumption, ¢, (.(C)) < C for all C < C°. So, if C' < C°, then
the integral in (5.32) exceeds —oo, implying 3(C) > 0. That, in turn, would
entail 2(C) = 1, but that is inconsistent with Proposition 32 when C' < C°.
Reductio ad absurdum, C' = C°. Expression (5.33) follows from Proposition 31
because 1 — z(C) = —//(C). The remaining steps were established in the text

that preceded the statement of the proposition. |

Proof of Lemma 18: If the buyer has not invested, he will reject all offers
at positive prices. Hence, the seller cannot expect to earn more than zero from
any price offer. Given this, p is a best response for her. Expecting a price of p,
the buyer would accept the offer only if he has invested I > I*. In that case,
his payoff would be

B(I)-I—-p<B(I)—-I-B(I*)+I*<0,

where the second inequality follows because I'* = argmax, B(z) — z. The buyer
would not deviate to an I > I*. Because he won’t buy if I < I*, he prefers
not investing to investing an I € (0, I*]. So not investing and rejecting is a best
response for the buyer. |

Proof of Lemma 19: From Proposition 35, there is no equilibrium in which
the buyer invests a positive amount as a pure strategy. Suppose, then, he

{eq:HH-buyerC-FOC}
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invests 0 as a pure strategy in equilibrium. The seller’s unique best response is
p = B(0). But if the seller would play p = B(0) as a pure strategy, the buyer’s
best response is I*: because B(I*)—I* > B(0)—0, B(I*) > B(0) (the buyer will
buy if he invested) and his overall utility is positive (i.e., B(I*)—I*—B(0) > 0).
Reductio ad absurdum, there is no equilibrium in which the buyer plays a pure
strategy.

Suppose the seller played a pure strategy of p. Because the seller can secure
herself B(0), the buyer must accept an offer of p with positive probability; that
is, he must play an I such that B(I) > p and B(I) — I —p > 0. Note that if the
second condition holds, the first automatically holds; hence, the buyer must be
playing investment levels that maximize

B(I)—I-p.

But there is a unique maximizer, I*; that is, the buyer can only play I* as a best
response to p. But this contradicts the first half of the proof, which established
he doesn’t play a pure strategy in equilibrium. Reductio ad absurdum, there is
no equilibrium in which the seller plays a pure strategy. |

Proof of Lemma 20: Suppose not. Observe then that buyer rationality rules
out his playing any b € (B(0),p¢). Let b = inf B". Observe b must strictly
exceed py:

0 < Eg{max{0,b—p}} — (b)) <b—pr—u(b) <b—py,

where the last inequality follows because ¢(b) > 0. The seller’s expected profit
from playing py is
(1= F®)pe < (1 - F(B)b.

But this means the seller would do better to deviate to b, a contradiction. W

Proof of Lemma 21: There is no equilibrium in which p > by, since oth-
erwise the seller’s profit is zero from p;, whereas she gets a profit of B(0) by
playing p,. So the buyer’s payoff if he plays by, is

up = bh — L(bh) — E{p} (A24)

If by, < B(I*), the buyer would do better to deviate to B(I*). Hence, b, >
B(I*). Suppose by, > B(I*). Given pp, < B(I*), then (A.24) remains a valid ex-
pression for the buyer’s expected payoff with by, replaced by any b € [B(I*), by).
But since such a b enhances the buyer’s expected payoff, it follows the buyer
would deviate if by, > B(I*). |

Proof of Proposition 37: Proposition 35 rules out an equilibrium in which
the buyer invests a positive amount as a pure strategy.

Suppose, contrary to the proposition, that the buyer invests a positive
amount in expectation. There must exist a b > 0 such that 1 — F (13) > 0.
It follows that the seller can guarantee herself an expected profit of

= (1-F(b)b>0.

{eq:Gulol-eql}
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Hence, py > 7. Buyer rationality dictates that
b—ub)—pe >0

for any b > 0 he is willing to play with positive probability. It follows that
b= inf BT > p,. But then, as shown in the proof of Lemma 20, the seller could
increase her profit by charging b rather than py; hence, p; isn’t the infimum
of prices the seller charges. Reductio ad absurdum, the buyer cannot invest a
positive amount in expectation. |
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