
UC Davis
UC Davis Previously Published Works

Title
Deep Learning Segmentation of Complex Features in Atomic-Resolution Phase-Contrast
Transmission Electron Microscopy Images

Permalink
https://escholarship.org/uc/item/75k71756

Journal
Microscopy and Microanalysis, 27(4)

ISSN
1431-9276

Authors
Sadre, Robbie
Ophus, Colin
Butko, Anastasiia
et al.

Publication Date
2021-08-01

DOI
10.1017/s1431927621000167

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/75k71756
https://escholarship.org/uc/item/75k71756#author
https://escholarship.org
http://www.cdlib.org/

Deep Learning Segmentation of Complex Features in Atomic-Resolution Phase
Contrast Transmission Electron Microscopy Images

Robbie Sadre,1, ∗ Colin Ophus,2, † Anstasiia Butko,1 and Gunther H Weber1

1Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
2NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720

Phase contrast transmission electron microscopy (TEM) is a powerful tool for imaging the
local atomic structure of materials. TEM has been used heavily in studies of defect structures
of 2D materials such as monolayer graphene due to its high dose efficiency. However, phase
contrast imaging can produce complex nonlinear contrast, even for weakly-scattering samples. It is
therefore difficult to develop fully-automated analysis routines for phase contrast TEM studies using
conventional image processing tools. For automated analysis of large sample regions of graphene,
one of the key problems is segmentation between the structure of interest and unwanted structures
such as surface contaminant layers. In this study, we compare the performance of a conventional
Bragg filtering method to a deep learning routine based on the U-Net architecture. We show that
the deep learning method is more general, simpler to apply in practice, and produces more accurate
and robust results than the conventional algorithm. We provide easily-adaptable source code for all
results in this paper, and discuss potential applications for deep learning in fully-automated TEM
image analysis.

I. Introduction

High resolution transmission electron microscopy
(HRTEM) is a very powerful technique for imaging
atomic structure, due to its extremely high spatial
resolution. HRTEM has found wide application in
studies of the local atomic structure of two-dimensional
materials, such as graphene (Meyer et al. 2007, Warner
et al. 2009, Meyer et al. 2011, Mas-Balleste et al.
2011, Robertson and Warner 2013, Rasool et al. 2013,
2015).Monolayer graphene is composed of a single 2D
sheet of carbon atoms, with the same in-plane structure
as the parent material graphite (Cooper et al. 2012).
Most synthesis methods that can produce monolayer
graphene will also produce defect structures, including
point defects (Hashimoto et al. 2004, Jeong et al. 2008,
Kotakoski et al. 2014), edges (Russo and Golovchenko
2012, Wang et al. 2014), and line defects, such as grain
boundaries (Huang et al. 2011, Yu et al. 2011).

Grain boundaries in graphene are scientifically
interesting because of their distinctive mechanical
(Rasool et al. 2013, Grantab et al. 2010, Lee et al.
2013), electronic (Jauregui et al. 2011, Tapasztó et al.
2012, Fei et al. 2013), optical (Duong et al. 2012, Podila
et al. 2012), and chemical properties (Yasaei et al.
2014, Kim et al. 2014). In a previous study, Ophus
et al. (2015) used experimental HRTEM imaging and
numerical simulations to map out the parameter space
of single-layer graphene grain boundaries, as a function
of misorientation and boundary tilt angle. This previous
work used semi-automated analysis routines to map out
the atomic positions of the boundaries. Once boundary
regions were identified, the atomic position analysis was
almost entirely automated. However, each of these
boundaries had to be hand selected and individually
masked, due to the presence of surface contaminants.

These contaminants are likely amorphous carbon (Zhang
et al. 2019), which tends to be attracted by the
charging induced by the electron beam to the boundary
regions. This previous work did not utilize a reliable
fully-automated computational method for segmenting
between the desirable and undesirable atomic structures.

Recently however, new image analysis methods have
been developed under the umbrella of deep learning
(Garcia-Garcia et al. 2017). Deep learning as an
approach to data processing problems has substantially
grown in popularity over the last decade. This
can be attributed to increasing availability of large
labeled datasets, such as Image-Net (Deng et al.
2009), breakthrough research publications in the field
(Krizhevsky et al. 2010), and availability of high
performance deep learning frameworks, such as PyTorch
(Paszke et al. 2019) and TensorFlow (Abadi et al.
2015). Convolutional Neural Networks (CNNs) have
been used for various different image processing tasks,
such as image classification (recognition of the object
class within an image), object detection (classification
and detection of objects in an image as well as generation
of the bounding box around the object) and semantic
segmentation (pixel-wise classification of an image).

Various works (Ziatdinov et al. 2018, Lee et al. 2019)
have successfully applied deep learning methodologies
to analyzing atomic defects in microscopy images of
materials. In particular, Madsen et al. (2018) used a
deep learning network trained on simulated TEM data
to recognize local structures in graphene images.

Various studies have made use of neural networks for
segmentation of images of cells, such as Akram et al.
(2016), Al-Kofahi et al. (2018), as well as other biological
datasets, such as vasculature stacks (Teikari et al. 2016),
brain tumors (Dong et al. 2017), and neuron structures
(Dahmen et al. 2019). Many works have introduced

ar
X

iv
:2

01
2.

05
32

2v
1

 [
co

nd
-m

at
.m

tr
l-

sc
i]

 9
 D

ec
 2

02
0

2

application specific architectures for their studies, e.g.,
Kassim et al. (2017), Roberts et al. (2019).

For the segmentation task considered in this
paper, we utilize the U-Net architecture as described
in(Ronneberger et al. 2015), due to its proven ability to
achieve high performance results on image segmentation
tasks with limited training data. This aspect is crucial,
as large databases of labeled data are typically not
readily available for most scientific imaging applications.
U-Net has been applied to various datasets, such as
urine microscopy images (Aziz et al. 2018), ADF-STEM
images (Ge and Xin 2018), corneal endothelial cell images
(Daniel et al. 2019), and fluorescently labelled cell nuclei
images (Gudla et al. 2019). Many other works performed
similar microscopy segmentation tasks on the nanoscale
using modified versions of the U-Net Architecture such
as EM-Net (Khadangi et al. 2020), Fully Residual U-Net
(Gómez-de Mariscal et al. 2019), Inception U-Net (Punn
and Agarwal 2020), and the domain adaptive approach
with two coupled U-Nets (Bermúdez-Chacón et al. 2018).

In this paper, we develop a deep learning-based image
segmentation pipeline for detecting surface contaminants
in HRTEM images of graphene and compare it to
a conventional Bragg filtering approach (Hÿtch 1997,
Galindo et al. 2007). Section II reviews materials
and methods used in our study. First, we describe
image acquisition and preprocessing methodologies as
well as labeling training and test data for our modeling
approach. We also review Bragg filtering as a
classical image segmentation approach for detecting
surface contaminants in graphene, which serves as
a baseline model. We then introduce our new
method that trains and evaluates a U-Net based neural
network architecture using k-fold cross validation. We
demonstrate that our neural network’s automated feature
learning capabilities outperform Bragg filtering for
detecting material properties and discuss two potential
applications of this segmentation model (Section III).
Furthermore, we show how it can be easily used to
further automate software based scientific image analysis
pipelines. Finally, we summarize results and suggest
future extensions and uses (Section ??).

II. Materials and Methods

We first describe the process through which we grow
our graphene samples, how images are extracted, and
the different classes of surface structures observed in the
data. We then introduce the mathematical definitions
for the preprocessing of this acquired data used in this
study. We then describe the conventional Bragg filtering
method for segmentation. Finally we introduce our deep
learning approach to the segmentation task.

HRTEM Imaging of Graphene Structures

The single-layer, polycrystalline graphene samples are
grown on polycrystalline copper substrates at 135 ◦C by
chemical vapor deposition. The copper substrate is first
held under 150 mTorr of pressure in hydrogen for 1.5
hours, and then 400 mTorr pressure of methane is flowed
at 5 standard cubic centimeters per minute (sccm) to
form single-layer graphene. Further information of this
sample preparation method are given by Rasool et al.
(2013), Li et al. (2009), Rasool et al. (2011).

The majority of graphene HRTEM images utilized in
the current study are published along with the measured
atomic coordinates in a previous study (Ophus et al.
2015). Some additional HRTEM images, including those
from time- and focal-series are from various studies
of the structure of graphene grain boundaries (Rasool
et al. 2013, 2014, Ophus et al. 2017) were also included
in the image dataset. All of our HRTEM images of
graphene were recorded on the TEAM 0.5 microscope, a
monochromated and aberration-corrected FEI / Thermo
Fisher Titan microscope operated at 80 kV. The imaging
conditions are optimized for fast data collection with a
relatively low electron dose in order to record as many
images as possible. The dose varied from approximately
1 000 to 10 000 electrons / Ångstrom2 across all images.

Figs. 1a-f show examples of these HRTEM images.
Note that due to the monochromation of the electron
beam, the intensity of all images varies across the
field of view. The graphene samples used in this
study contain four primary structural classes. The first
class is the graphene lattice itself, which consists of
a periodically repeating honeycomb structure. In this
structure, each carbon atom is bonded to 3 neighbors
with 120◦ between each bond, and 6 carbon atoms form
closed hexagonal rings, which are tiled in a close-packed
triangular lattice. Figs. 1g-l show these regions marked
in white. Depending on the microscope defocus, the
contrast is either white-atom or black-atom, meaning
either increased or decreased intensity at the location of
each carbon atom respectively (O’Keefe 2008). Figs. 1b,
c, d, and f show examples of white-atom contrast, while
Figs. 1a and e show black-atom contrast. These images
show varying degrees of residual imaging aberrations;
this is a consequence of the low-dose measurement
protocol used where the sample is exposed to as little
electron fluence as possible.

We can define a simple order parameter calculated
by using image convolution to measure the difference in
signals between the atoms on a hexagonal ring (using
the measured graphene lattice parameter) and the center
of the ring. If we calculate this parameter for a range
of hexagon orientations, the signal reaches a maximum
when the measurement is oriented the same as the
underlying lattice, giving an estimate for the lattice

3

FIG. 1. (a)-(f) HRTEM image examples of polycrystalline,
single layer graphene, and (g)-(l) the corresponding labels.

orientation. The regions where two different orientations
meet in a discontinuity define the second class, the
graphene grain boundaries. These boundaries are shown
as red lines in Figs. 1g-l, and were the focus of the
previous study by Ophus et al. (2015).

The third class is the vacuum regions, marked as green
areas in Figs. 1g-l. No structure is present in these
regions, and the electron beam passes straight through
with no modulation. Each of these first three classes
is easy to detect with simple algorithms. Measuring the
location of the vacuum regions is trivial after illumination
flat-field correction (described below) since these regions
have unit intensity everywhere.

However the fourth class, which corresponds to surface
contaminants such as amorphous carbon, is more difficult
to accurately segment. These regions are shown as
blue areas in Figs. 1g-l. The regions often show strong
lattice contrast of ideal or near-ideal graphene structure,
overlaid with random modulations. These modulations
can be strong or weak, and consist of a complex mix
of white-atom and black-atom contrast. Amorphous
contaminants also tend to be attracted to the structures
we would like to analyze, e.g. the grain boundaries. This
is likely due to the surface topology induced by these
boundaries (Ni et al. 2019). In the study of graphene
grain boundaries by Ophus et al. (2015), most of the
analysis steps were automated, but avoiding these surface
contaminant regions was done manually. In this work, we
tackle the segmentation of these regions, as it represents
the most difficult step to automate.

Image Preprocessing

For both the U-Net and Bragg filtering image
segmentation, we have applied the same pre-processing
and normalization steps, based on the image processing
described in Ophus et al. (2015). To normalize the
intensity variation due to the monochromation, we have
fit the average local intensity I0(r) for each image with a
2x2 Bézier surface (Farin 2001) given by the Equation 1.

I0(r) = ki,j

m∑
i=0

(
m

i

)
ui(1− u)m−i

·
n∑
j=0

(
n

j

)
vj(1− v)n−j , (1)

where (u, v) are the image coordinates normalized
to range from 0 to 1, and ki,j are the Bézier
surface coefficients. After fitting these coefficients, the
normalized intensity I(r) is given by the Equation 2.

I(r) = Imeas(r)
I0(r) , (2)

4

where r = (x, y) are the real space coordinates, and
Imeas(r) is the measured image intensity. After this step,
the mean intensity is equal to one.

Next, we scale the intensity range by calculating the
image standard deviation σ, equal to the root-mean-
square of the intensity σ =

√
〈(I(r)− 1)2〉. We then

normalize the image by subtracting the mean µ and
dividing by the standard deviation σ as described by
Equation 3.

Ioutput = I(r)− µ
σ

(3)

The images in this dataset were originally 1024x1024
or 2048x2048 images. We resize these images down to
the size of 256x256 pixels. Training/test labels were
generated by hand using the Paint S software application
for macOS.

Segmentation by Fourier Filtering

The defining feature for crystalline samples is their
high degree of ordering and long-range translation
symmetry. When crystalline samples are imaged along
a low index zone axis, the resulting images display local
periodicity inside each crystalline grain. These periodic
regions create sharply peaked maxima in the image’s 2D
Fourier transform amplitude that are closely related to
Bragg diffraction from a periodic crystal. These peaks
are not strictly speaking due to true Bragg diffraction,
but are nevertheless often referred to as “Bragg spots”
(Hÿtch 1997, Galindo et al. 2007). By applying numerical
masks around a given Bragg spot, we measure the
degree of local ordering over the image coordinates that
corresponds to the associated crystal planes (Pan et al.
1998). We have developed a “Bragg Filtering” procedure
to segment the images into two classes, corresponding to
clean atomically resolved graphene, and the amorphous
surface contaminants. Bragg filtering is a standard
procedure in many image processing routines for atomic
resolution micrographs such as lattice strain deformation
mapping (Hÿtch 1997). Our segmentation procedure is
shown schematically in Fig. 2.

After preprocessing the initial image and padding the
boundaries, we calculate a weighted Fourier transform
G(q) of the image I(r) shown in Fig. 2a, given by the
Equation 4.

G(q) = |q| |Fr→q {I(r)W (r)} |, (4)

where r = (x, y) and q = (qx, qy) are the real space
and Fourier space coordinates respectively, Fr→q is a 2D
Fourier transform from real to Fourier space, and W (r)
is a window function. Next, we find the local maxima

of this image that are above a threshold value Gthresh,
shown in Fig. 2b.

Next, we perform Bragg filtering by applying a 2D
Gaussian distribution aperture to N Bragg peaks at
positions qn, given by the Equation 5, where Fq→r is
the inverse Fourier transform, and σ is the aperture size
of the Bragg filter.

IBragg(r) = Fq→r

{
Fr→q {I(r)}

N∑
n=1

e−|q−qn|2/2σ2

}
,

(5)
Note that if symmetric pairs of Bragg diffraction

peaks are used, the output image will be real-valued
for all pixels. The resulting image is shown in Fig. 2c.
By subtracting the Bragg filtered image and the mean
intensity from the original image, we generate an image
consisting of the non-periodic components, shown in
Fig. 2d. Since we consider both negative and positive
deviations to be signals from the surface contaminants,
we take the absolute value and then low pass filter
FLP(...) the output, giving an image like Fig. 2e. In this
figure, we see weak signals in the aperiodic boundary
between the two graphene grains, and a strong signal
from the contaminants.

Finally, by choosing an appropriate mask threshold
Mthresh, we compute the desired segmentation output
Iseg(r) by the Equation 3. The output is shown in Fig. 2f.

Iseg(r) = FLP

[
|I(r)− IBragg(r)|

]
> Mthresh (6)

This image compares favorably to the training dataset
in Fig. 2g. We accurately mask the contaminant region,
while not producing a “false postive” signal at the
grain boundary. There are some false positives at the
image boundary due to the breakdown of the lattice
periodicity at the image boundaries. We use padding
and normalization of the filter output to reduce the
magnitude of these effects, but they are still present in
some images. In practice however, these edge artifacts
are insignificant, since we cannot perform accurate
measurements of the local atomic neighborhood at the
image boundaries.

In this study, we have optimized the parameters
σ, Gthresh, and Mthresh by using gradient descent to
minimize the error between the segmentation maps
generated and the training data. The Bragg filter
parameters and performance was measured using five-
fold cross validation, giving values of σ = 0.0156±0.0005
1/pixels, Gthresh = 12.5 ± 0.1, and Mthresh = 0.054 ±
0.000. The maximum number of Bragg peaks included
was coarsely tuned, but does not strongly affect the
results (as long as it is high enough) and is therefore
fixed at 24. The degree of low pass filtering both of
the initial Fourier transform for Bragg peak detection,

5

a c e

b d f

ga c e

b d f

g

initial image, normalized inverse FFT, Bragg filtered smoothed abs. difference

grain
boundary

surface
contaminants

FFT amplitude, Bragg mask

local max
above
threshold

local max
below
threshold

diff. of initial and Bragg image threshold segmentation image

training data

FIG. 2. Segmenting surface contaminants and graphene lattices using Bragg filtering. (a) Input image data and (b) its Fourier
transform amplitude. (c) Inverse Fourier transform after applying Bragg mask, and (d) difference from input image data. (e)
Absolute difference smoothed and then (f) threshold segmentation image. (g) Corresponding training data.

and of the output difference image does not strongly
affect the results. These two steps were performed by
convolution with a 2D Gaussian function with 2 and
5 pixels standard deviation respectively. The cross-
validation ensures that the segmentation map accuracy
was measured only on the validation subset of the data,
using parameters optimized from the other 80% of the
training images. This procedure prevents over-fitting of
the parameters to the training data. The accuracy of the
resulting segmentation images is summarized in Table I.

Deep Learning Segmentation

The U-Net architecture (Ronneberger et al. 2015)
is a CNN architecture based on a fully convolutional
neural network, modified and extended to improve
segmentation performance for medical and scientific
(microscopy) segmentation tasks with limited training
data. A fully convolutional neural network (FCN)
is a common baseline deep learning architecture for
semantic segmentation. It is formed using convolutional
layers, pooling layers, nonlinear activation layers, and
transposed convolution or upconvolution layers. It
generates a network output equal in dimensions to the
input, offering a classification for each input pixel. U-
Net, which is a network based on the FCN, consists of a
down-sampling path and an up-sampling path. Features
from the down-sampling path are combined with features
generated by the up-sampling path.

Each U-Net block in the down-sampling path consists

of two 3× 3 kernel convolution layers, a Rectified Linear
Unit (ReLU) layer and a a 2 × 2 Maximum Pooling
operation (MaxPool) layer. Each block in this path
doubles the number of features in the previous block.
Each block in the up-sampling path starts with an up-
convolution operation that doubles the size of the feature
maps but also reduces the number of feature by a factor of
two. The features from this up-convolution operation are
concatenated with the feature maps of the corresponding
layer of the down-sampling path, bridged across the
network. This is followed by two convolution layers, and
a single ReLU layer. The final layer in each U-Net block
is a single 1×1 convolution layer that translates the final
feature maps to two separate output classes, foreground
and background.

The original U-Net architecture consists of a total of
9 U-Net blocks. The modified U-Net architecture used
in our work is illustrated in Fig. 3. First, we use padded
convolution, allowing us to produce a segmentation map
with the same size as the input image. In order to
build a model optimized to our data, we need to select
the best hyperparameters. In the context of deep
learning, hyperparameters are configurations set by the
developer for a given data modeling problem. These
are typically factors such as the learning rate, number
of features, and depth of the network. The optimal
hyperparameters for a given data modeling problem are
not known from the start and are usually optimized
through trial and error. In this study, we used the grid
search method for hyperparameter tuning. Grid search
involves exhaustive trial and error of all combinations

6

of possible hyperparameters in a search space defined
by the programmer. Once each version of the network
was trained for 150 epochs, the model with the best
performance based on the accuracy score was selected.
The selected model was then retrained for an additional
300 epochs for two trials to generate accuracy metrics in
order to verify full convergence. We optimized across 3
hyperparameters: number of features in the first block
(with each subsequent block having an adjusted number
of features to maintain network symmetry), number of
blocks, and learning rate. We found that a U-Net with 7
blocks and 32 features in the first block with a learning
rate of .0001 achieved the highest accuracy of .9792 and a
Jaccard score of .8125. For reference, the original U-Net
model achieved an accuracy score of .9775 and a Jaccard
score of .8015 using a .0001 learning rate, which yielded
the best results for this network architecture as well. An
additional advantage of a smaller network is achieving
higher throughput which is essential for speed dependant
applications such as compression of real time tracking.

I N PUT
IMAGE
T ILE

1 32 32 232 3264

OUTPUT
SEGMENTAT ION
MAP

64 64 64

128

128

Conv 3x3, ReLU
MaxPool 2x2
Copy

Up-conv 2x2
Conv 1x1

256

256 128

FIG. 3. Our Neural Network Architecture based on a scaled
down version of U-Net. Each color arrow corresponds to
the different operation: 2D Convolution (Conv) with the
kernel size of 3x3, Rectified Linear Unit (ReLU), Maximum
Pooling (MaxPool) with the window size of 2x2, feature
map Copying (Copy), 2x2 Up (Up-conv). Each dark grey
box represents a multi-channel feature map resulting from
the previous convolution operation, where light grey boxes
represent features copied from the down path to the up path.
The number of feature maps between each convolution layer
is labeled at that top of the box.

We train this network using an Adam optimizer
Kingma and Ba (2014) to estimate parameters and pixel-
wise cross entropy as a loss function. We train for
300 epochs/approximately 41 minutes on an Nvidia an
GeForce GTX TITAN Black GPU, using a learning rate
of 0.0001. We use 5 fold cross validation for training. In
this scheme, the dataset is split into 5 different groups.
For each unique group, the data in that group is excluded,
and the model is fit (from scratch) to the remaining
4 groups. Then this model is evaluated for accuracy
metrics on the excluded fold in order to have a separate

test set from the training set. at the end, the accuracy
metrics from the 5 folds are averaged together. We
repeat this experiment twice over the different folds,
randomizing the dataset each trial, and then average the
performance results for evaluation. We train our model
using the PyTorch Deep Learning Framework (Paszke
et al. 2019).

III. Results and Discussion

In this section, we describe the results of our
experiments. We first qualitatively compare the two
methods in terms of the types of errors perceived
via two separate cases. We then define several
key performance metrics that are commonly used
for evaluating segmentation models, and report the
performance of each model across these different metrics.
We also describe how these networks can be used
in atomic position workflows and discuss the different
results of using each model. Finally, we offer an
additional usage of the segmentation model for data
reduction and sorting.

Qualitative Comparison

Fig. 4 shows the performance of each method on
two different example input images. Fig. 4a shows an
example of a critical failure by the Bragg filter to detect
amorphous carbon. The Bragg filter produces incomplete
segmentation results ignoring the bottom section of
amorphous carbon, possibly due to its low contrast with
respect to the other region of amorphous carbon at the
top of the image. On the other hand, U-Net successfully
identifies both of these regions as amorphous with
precision. The resolution of our segmented boundaries
(positional uncertainty of the edges) is roughly given
by the feature size of the structures being imaged,
approximately equal to the graphene lattice parameter.

Fig. 4b shows an example where both the U-Net and
Bragg Filter methods produce precise results; however,
the results of the Bragg filter produces a substantial
amount of false negatives, where as the U-Net method
produces visibly superior results. Furthermore, the
bright spot at the right side of the image is incorrectly
identified as deformed graphene. U-Net, in contrast, has
a much higher coverage of the main defect present in
the image, and does not incorrectly classify the bright
spot as amorphous. Moreover, the U-Net segmentation
detects false positives of amorphous graphene in the
upper left hand corner. However, if one inspects the
raw image, one will observe that there is in fact a small
amount of amorphous graphene present in this part of
the image that is overlooked during the labeling process.
This demonstrates that the capabilities of deep learning

7

Image Label

U-Net Bragg

U-Net Bragg

Image Label

U-Net Bragg

U-Net Bragg

Image

1nm

Label

U-Net Bragg

U-Net Bragg

Image Label

U-Net Bragg

U-Net Bragg

a

b

1nm

1nm

1nm

True Positives
True Negatives

False Positives
False Negatives

FIG. 4. Comparison of the performance of the Bragg filter method and the U-Net method for segmentation. Detected errors
are visualized on the left. True Positives are shown in white, True Negatives in black, false positives in red and false negatives
in blue. The sectioning generated by U-Net is shown on the original image in the middle column, and the sectioning generated
by the Bragg filter is shown in the right column.

surpass human performance on some tasks and effectively
avoid over-fitting to human labels in certain cases.

Quantitative Comparison

Performance Metric U-Net Bragg Difference [%]
Accuracy Score 0.979 0.956 2.4%
Balanced Accuracy Score 0.950 0.897 5.3%
Jaccard Score 0.812 0.688 12.4%
F1 Score 0.884 0.791 9.2%
Precision Score 0.886 0.829 5.6%
Recall Score 0.889 0.792 9.6%

TABLE I. Table of Performance Metrics

Multiple metrics for evaluting segmentations and
comparing models exist (Taha and Hanbury 2015, Udupa
et al. 2002), where the choice of a particular metric

Y ′ = 1 Y ′ = 0
Y = 1 TP FN
Y = 0 FP TN

TABLE II. Definitions of True Positive, False Positive, True
Negative, and False Negative, where Y is the ground truth
and Y’ is the value predicted by a model.

depends on the problem scope and goals. In the following
we consider and define several metrics, discuss their
typical usage as well as limitations, and use them to
compare our U-Net-based approach to Bragg filtering.
Table I summarizes all results, which were computed
using SciKit-Learn (Pedregosa et al. 2011). All metrics
are defined in terms of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN), see
Table II.

One typical score for evaluating a segmentation is pixel
wise accuracy, calculated as the total number of correctly

8

classified pixels (TP, TF) divided by the number of
predictions (i.e., total number of pixels)

PixelwiseAccuracy = TP + TN

TP + TN + FP + FN
.

Both segmentation methods achieve a pixel wise accuracy
above 95%, with U-Net performing roughly 2% better.
While this metric is easy to interpret, it fails to properly
take large class imbalances into account. In our case,
segmentations are dominated by the background class,
making the results of this metric potentially skewed.
To avoid performance metric inflation due to class
imbalance, balanced accuracy weighs samples by the
inverse prevalence of their true classes. For the binary
case, balanced accuracy is computed as

BalancedAccuracy = 1
2

(
TP

TP + FN
+ TN

TN + FP

)
.

Using this metric, we start to see the performance of our
models to diverge numerically, with a difference of around
5% in favor of U-Net.

The Jaccard score and the F1 score are two of the
most common metrics used for evaluating semantic
segmentation models or in the presence of class
imbalances. Mathematically, both metrics evaluate the
same aspects of model performance (Taha and Hanbury
2015). The Jaccard score is computed as

JaccardScore = TP
TP + FP + FN ,

and the F1 score is computed as

F1Score = 2TP
2TP + FP + FN .

Our U-Net model shows Jaccard and F1 improvements
over the Bragg filtering method of approximately 12%
and 9% respectively. This further shows that for our class
imbalanced dataset, U-Net holds significant advantages
over Bragg filtering that are not as clear when using other
metrics like accuracy.

To analyze performance differences more specifically in
terms of in terms of false positives and false negatives,
we compare the precision and recall scores. Precision
represents the ratio of correctly predicted positives to
total predicted positives, i.e.,

Precision = TP
TP + FP ,

while recall is the ratio of correctly predicted positives to
the total number of positives in the ground truth, i.e.,

Recall = TP
TP + FN .

High precision corresponds to a low false positive rate,
where as high recall indicates to a low false negative rate.
Our study shows that U-Net achieves around 4% and 10%
improvement over the Bragg filtering method in precision
and recall scores respectively.

Memory Usage and Speed

Using a workstation running an Intel Xeon 6138 CPU,
the Bragg filtering routine requires 0.0203 seconds to
process each 256x256 image. The RAM requirements for
this routine are approximately 10 times those required for
a single image, equal to 5 MB for a 256x256 pixel image.
The U-Net implementation requires 0.0294 seconds per
image, and uses 710MiB GPU RAM using an NVIDIA
Titan Black GPU, for 256x256 size images.

Segmentation in Atomic Position Workflows

First, we demonstrate the use of Bragg and U-Net
segmentation as part of an automated atom and bond
finding routine (Fig. 5). After an initial illumination
correction step, we determine candidate atom positions
using the method described by Ophus et al. (2015).
Subsequently, we discard all atom positions that fall
inside contamination regions, determined either by using
the mask output of the Bragg filtering routine or the
U-Net segmentation routines, and remove them from the
list of candidates. Finally, we connect neighboring atoms
within a given distance threshold by candidate atomic
bonds. Fig. 5 shows candidate atom positions as white
dots and candidate bonds colored by the bond angle
modulo 60◦, overlaid on the masks generated by the two
segmentation filters. For this paper, we do not perform
further any refinement of the atom positions and bonds
and focus on segmentation quality.

Fig. 5a shows scenario where both the Bragg filter
and U-Net produce suitable results. In both cases,
two surface contamination regions are correctly identified
and masked, in agreement with the training data. In
contrast, Fig. 5b shows an example where the Bragg
filter produces a series of false positive regions (type
I errors) at the boundary between the two graphene
grains. This error can be addressed by decreasing the
masking threshold Mthresh, but this change would overall
increase the error across the full dataset. Fig. 5c shows
an example of the kind of errors introduced into the
Bragg filter segmentation when Mthresh is set too low.
In this example, the Bragg filter failed to mask off a
region of surface contamination, which in turn leads
to many erroneous atom positions and bonds. These
two examples illustrate one weakness of the conventional
Bragg filtering routine, which is that it relies on a small
number of hyperparameters that cannot be set to values
that will successfully perform the segmentation across the
full dataset.

In comparison, the U-Net segmentation shown in
Fig. 5b and c outperforms the Bragg filter and produces
successful results. These examples show that the deep
learning approaches can be both more accurate and
more robust than simpler, conventional imaging filters,

9

FIG. 5. Three examples comparing Bragg and U-net filtering. (a) Output masks where both filters performed well, (b) masks
where Bragg filter produced false positive regions, and (c) masks where Bragg filter produced false negative regions. In both
(b) and (c), the U-Net filter produced a more accurate result.

i.e. Bragg filter. Both segmentation methods produce
a false positive at the left edge of Fig. 5c, due to the
correction of the low initial intensity value in that region
causing boosting of the noise. However, edge pixels
are significantly less valuable in analysis of the atomic
structure because the neighboring atomic environment is
not visible at image boundaries.

Data Reduction and sorting

Lastly, we demonstrate how our segmentation methods
can be applied to a data reduction and image sorting
problem. Scientific experiments can yield tens thousands
of images which can often have a high variance in terms of
information that is useful for the particular experiment
being practiced. To be able to sort images by content
ratio could be very useful to scientists. In the case of
graphene images, a scientist may want to sort images
by the ratio of graphene to amorphous carbon. We
demonstrate the capability of our segmentation models
to perform this task in Fig. 6. Images are sorted based
on what percentage is dominated by graphene rather
than amorphous carbon. In some cases where frame
rates of the data acquisition instrument are too high for

the transference of the data to be done in a reasonable
amount of time, it might be useful to compress certain
parts of the image data. One way approach to this is
the implementation of a run length compression on the
content class that may be less important to that specific
experiment being carried out.

IV. Conclusion

In this study, we have compared two methods to
perform segmentation of complex features in phase
contrast HRTEM images of monolayer graphene. The
two methods we used were a conventional Bragg filtering
algorithm, and a deep learning method utilizing the U-
Net architecture. The U-Net filter outperformed the
conventional method in every performance metric tested,
and was very robust against incorrect determination of
structurally important regions. The U-Net method has
the additional advantage of being adaptable to many
different pixel-wise classification problems, and only
requires a labeled dataset with a sufficient number of
images that contain the desired segmentation features to
perform the training. In the future, it may be possible
to randomly generate structures and perform image

10

FIG. 6. A subset of the images from our dataset sorted by the percentage of pixels that contain potentially useful information
as computed by U-Net in decreasing order from left to right. Regions classified as amorphous carbon are highlighted in red.

simulation to automatically generate labeled training
datasets, removing even this relatively minor barrier.
Because of their generality and robustness, deep learning
methods such as U-Net segmentation are extremely
valuable for fully-automated image processing in TEM.

Source Code Availability

The adapted U-Net source code, HRTEM images and
the amorphous region labeled images for training are all
available at our DL Segmentation HRTEM Github repo

Acknowledgements

This work was supported by the Office of Advanced
Scientific Computing Research for the Computational
Research Division, of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231. Work at
the Molecular Foundry was supported by the Office
of Science, Office of Basic Energy Sciences, of the
U.S. Department of Energy under Contract No. DE-
AC02-05CH11231. RS, AB, and GHW acknowledge
additional support of the Laboratory-Directed Research
and Development project “Network Computing for
Experimental and Observational Data Management.”
CO acknowledges additional support from a Department
of Energy Early Career Research Program award.

∗rssadre@lbl.gov
†cophus@gmail.com

J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov,
T. J. Booth, and S. Roth, Nature 446, 60 (2007).

J. H. Warner, M. H. Rümmeli, L. Ge, T. Gemming,
B. Montanari, N. M. Harrison, B. Büchner, and G. A. D.
Briggs, Nature nanotechnology 4, 500 (2009).

J. C. Meyer, S. Kurasch, H. J. Park, V. Skakalova,
D. Künzel, A. Groß, A. Chuvilin, G. Algara-Siller,
S. Roth, T. Iwasaki, et al., Nature materials 10, 209
(2011).

R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, and
F. Zamora, Nanoscale 3, 20 (2011).

A. W. Robertson and J. H. Warner, Nanoscale 5, 4079 (2013).

H. I. Rasool, C. Ophus, W. S. Klug, A. Zettl, and J. K.
Gimzewski, Nature communications 4, 1 (2013).

H. I. Rasool, C. Ophus, and A. Zettl, Advanced Materials
27, 5771 (2015).

D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack,
M. Hilke, A. Horth, N. Majlis, M. Massicotte,
L. Vandsburger, E. Whiteway, et al., ISRN Condensed
Matter Physics 2012 (2012).

A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima,
Nature 430, 870 (2004).

B. W. Jeong, J. Ihm, and G.-D. Lee, Physical Review B 78,
165403 (2008).

https://github.com/lbnlcomputerarch/graphene-u-net
mailto:rssadre@lbl.gov
mailto:cophus@gmail.com

11

J. Kotakoski, C. Mangler, and J. C. Meyer, Nature
communications 5, 3991 (2014).

C. J. Russo and J. A. Golovchenko, Proceedings of the
National Academy of Sciences 109, 5953 (2012).

W. L. Wang, E. J. Santos, B. Jiang, E. D. Cubuk, C. Ophus,
A. Centeno, A. Pesquera, A. Zurutuza, J. Ciston,
R. Westervelt, et al., Nano letters 14, 450 (2014).

P. Y. Huang, C. S. Ruiz-Vargas, A. M. Van Der Zande, W. S.
Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S.
Alden, C. J. Hustedt, Y. Zhu, et al., Nature 469, 389
(2011).

Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su,
H. Cao, Z. Liu, D. Pandey, D. Wei, et al., Nature materials
10, 443 (2011).

R. Grantab, V. B. Shenoy, and R. S. Ruoff, Science 330, 946
(2010).

G.-H. Lee, R. C. Cooper, S. J. An, S. Lee, A. Van Der Zande,
N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford,
W. Oliver, et al., Science 340, 1073 (2013).

L. A. Jauregui, H. Cao, W. Wu, Q. Yu, and Y. P. Chen, Solid
State Communications 151, 1100 (2011).

L. Tapasztó, P. Nemes-Incze, G. Dobrik, K. Jae Yoo,
C. Hwang, and L. P. Biró, Applied Physics Letters 100,
053114 (2012).

Z. Fei, A. Rodin, W. Gannett, S. Dai, W. Regan, M. Wagner,
M. Liu, A. McLeod, G. Dominguez, M. Thiemens, et al.,
Nature nanotechnology 8, 821 (2013).

D. L. Duong, G. H. Han, S. M. Lee, F. Gunes, E. S. Kim,
S. T. Kim, H. Kim, Q. H. Ta, K. P. So, S. J. Yoon, et al.,
Nature 490, 235 (2012).

R. Podila, B. Anand, J. T. Spear, P. Puneet, R. Philip, S. S. S.
Sai, and A. M. Rao, Nanoscale 4, 1770 (2012).

P. Yasaei, B. Kumar, R. Hantehzadeh, M. Kayyalha,
A. Baskin, N. Repnin, C. Wang, R. F. Klie, Y. P. Chen,
P. Král, et al., Nature communications 5, 1 (2014).

K. Kim, R. W. Johnson, J. T. Tanskanen, N. Liu, M.-G.
Kim, C. Pang, C. Ahn, S. F. Bent, Z. Bao, et al., Nature
communications 5, 4781 (2014).

C. Ophus, A. Shekhawat, H. Rasool, and A. Zettl, Physical
Review B 92, 205402 (2015).

J. Zhang, K. Jia, L. Lin, W. Zhao, H. T. Quang, L. Sun,
T. Li, Z. Li, X. Liu, L. Zheng, et al., Angewandte Chemie
International Edition 58, 14446 (2019).

A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-
Martinez, and J. Garcia-Rodriguez, arXiv preprint
arXiv:1704.06857 (2017).

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
in CVPR09 (2009).

A. Krizhevsky, I. Sutskever, and G. Geoffrey, Neural
Networks (2010).

A. Paszke, S. Gross, F. Massa, A. Lerer,
J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al., in

Advances in Neural Information Processing Systems
(2019) pp. 8024–8035.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: Large-scale machine learning
on heterogeneous systems,” (2015), software available
from tensorflow.org.

M. Ziatdinov, O. Dyck, S. Jesse, and S. V. Kalinin,
Microscopy and Microanalysis 24, 60–61 (2018).

C.-H. Lee, C. Shi, D. Luo, A. Khan, B. E. Janicek, S. Kang,
W. Zhu, B. K. Clark, and P. Y. Huang, Microscopy and
Microanalysis 25, 172–173 (2019).

J. Madsen, P. Liu, J. Kling, J. B. Wagner, T. W. Hansen,
O. Winther, and J. Schiøtz, Advanced Theory and
Simulations 1, 1800037 (2018).

S. U. Akram, J. Kannala, L. Eklund, and J. Heikkilä, in
Deep Learning and Data Labeling for Medical Applications
(Springer, 2016) pp. 21–29.

Y. Al-Kofahi, A. Zaltsman, R. Graves, W. Marshall, and
M. Rusu, BMC bioinformatics 19, 1 (2018).

P. Teikari, M. Santos, C. Poon, and K. Hynynen, arXiv
preprint arXiv:1606.02382 (2016).

H. Dong, G. Yang, F. Liu, Y. Mo, and Y. Guo, in
annual conference on medical image understanding and analysis
(Springer, 2017) pp. 506–517.

T. Dahmen, P. Potocek, P. Trampert, M. Peemen, and
R. Schoenmakers, Microscopy and Microanalysis 25, 196
(2019).

Y. M. Kassim, O. V. Glinskii, V. V. Glinsky, V. H. Huxley,
and K. Palaniappan, Microscopy and Microanalysis 23,
140 (2017).

G. Roberts, R. Sainju, B. Hutchinson, M. B. Toloczko, D. J.
Edwards, and Y. Zhu, Microscopy and Microanalysis 25,
164 (2019).

O. Ronneberger, P. Fischer, and T. Brox, “U-
net: Convolutional networks for biomedical image
segmentation,” (2015), arXiv:1505.04597 [cs.CV].

A. Aziz, H. Pande, B. Cheluvaraju, and T. Rai Dastidar, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
(2018) pp. 2230–2238.

M. Ge and H. L. Xin, Microscopy and Microanalysis 24, 504
(2018).

M. C. Daniel, L. Atzrodt, F. Bucher, K. Wacker, S. Böhringer,
T. Reinhard, and D. Böhringer, Scientific reports 9, 1
(2019).

P. R. Gudla, G. Zaki, S. Shachar, T. Misteli, and G. Pegoraro,
Microscopy and Microanalysis 25, 1376 (2019).

A. Khadangi, T. Boudier, and V. Rajagopal, bioRxiv (2020).

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/ 10.1017/S143192761800079X
https://doi.org/10.1017/S1431927619001594
https://doi.org/10.1017/S1431927619001594
http://arxiv.org/abs/1505.04597

12

E. Gómez-de Mariscal, M. Maška, A. Kotrbová,
V. Posṕıchalová, P. Matula, and A. Muñoz-Barrutia,
Scientific reports 9, 1 (2019).

N. S. Punn and S. Agarwal, ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM)
16, 1 (2020).

R. Bermúdez-Chacón, P. Márquez-Neila,
M. Salzmann, and P. Fua, in
2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
(IEEE, 2018) pp. 400–404.

M. Hÿtch, Scanning Microsc 11, 53 (1997).

P. L. Galindo, S. Kret, A. M. Sanchez, J.-Y. Laval, A. Yanez,
J. Pizarro, E. Guerrero, T. Ben, and S. I. Molina,
Ultramicroscopy 107, 1186 (2007).

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner,
A. Velamakanni, I. Jung, E. Tutuc, et al., science 324,
1312 (2009).

H. I. Rasool, E. B. Song, M. J. Allen, J. K. Wassei, R. B.
Kaner, K. L. Wang, B. H. Weiller, and J. K. Gimzewski,
Nano letters 11, 251 (2011).

H. I. Rasool, C. Ophus, Z. Zhang, M. F. Crommie, B. I.
Yakobson, and A. Zettl, Nano letters 14, 7057 (2014).

C. Ophus, H. I. Rasool, M. Linck, A. Zettl, and J. Ciston,
Advanced structural and chemical imaging 2, 15 (2017).

M. A. O’Keefe, Ultramicroscopy 108, 196 (2008).

B. Ni, T. Zhang, J. Li, X. Li, and H. Gao, Handbook of
Graphene, Volume 2: Physics, Chemistry, and Biology , 1
(2019).

G. Farin, Curves and Surfaces for CAGD: A Practical Guide,
5th ed. (Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2001).

X. Pan, W. D. Kaplan, M. Rühle, and R. E. Newnham,
Journal of the American Ceramic Society 81, 597 (1998).

D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” (2014), arXiv:1412.6980 [cs.LG].

A. Taha and A. Hanbury, BMC Med Imaging (2015),
https://doi.org/10.1186/s12880-015-0068-x.

J. K. Udupa, V. R. LaBlanc, H. Schmidt, C. Imielinska, P. K.
Saha, G. J. Grevera, Y. Zhuge, L. M. Currie, P. Molholt,
and Y. Jin, in Medical Imaging 2002: Image Processing,
Vol. 4684, edited by M. Sonka and J. M. Fitzpatrick,
International Society for Optics and Photonics (SPIE,
2002) pp. 266 – 277.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, Journal of Machine Learning Research 12,
2825 (2011).

http://arxiv.org/abs/1412.6980
https://doi.org/https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1117/12.467166

	Deep Learning Segmentation of Complex Features in Atomic-Resolution Phase Contrast Transmission Electron Microscopy Images
	Abstract
	I Introduction
	II Materials and Methods
	HRTEM Imaging of Graphene Structures
	Image Preprocessing
	Segmentation by Fourier Filtering
	Deep Learning Segmentation

	III Results and Discussion
	Qualitative Comparison
	Quantitative Comparison
	Memory Usage and Speed
	Segmentation in Atomic Position Workflows
	Data Reduction and sorting

	IV Conclusion
	 Acknowledgments
	 References

