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Thermodynamic theory of the 
plasmoelectric effect
Jorik van de Groep1, Matthew T. Sheldon2,3, Harry A. Atwater3 & Albert Polman1

Resonant metal nanostructures exhibit an optically induced electrostatic potential when 
illuminated with monochromatic light under off-resonant conditions. This plasmoelectric effect is 
thermodynamically driven by the increase in entropy that occurs when the plasmonic structure aligns 
its resonant absorption spectrum with incident illumination by varying charge density. As a result, the 
elevated steady-state temperature of the nanostructure induced by plasmonic absorption is further 
increased by a small amount. Here, we study in detail the thermodynamic theory underlying the 
plasmoelectric effect by analyzing a simplified model system consisting of a single silver nanoparticle. 
We find that surface potentials as large as 473 mV are induced under 100 W/m2 monochromatic 
illumination, as a result of a 11 mK increases in the steady-state temperature of the nanoparticle. 
Furthermore, we discuss the applicability of this analysis for realistic experimental geometries, and 
show that this effect is generic for optical structures in which the resonance is linked to the charge 
density.

Surface plasmons are collective oscillations of charge density in metal nanostructures during optical excitation. 
Recently, there has been significant interest in the relationship between plasmonic and electrical phenomena1–11. 
For example, localized plasmon resonances have been shown to influence the photoconductivity of films of metal 
nanoparticles coated with self-assembled monolayers12,13, and plasmon-induced hot electrons have been shown to 
generate macroscopic currents in plasmonic energy conversion devices6. Furthermore, it has been demonstrated 
that electrostatic charging influences the plasmon resonance frequency11. The plasmonic response of metal nano-
particles is determined by geometry, dielectric surrounding and material properties14. In the visible spectral range 
the dielectric function of the metal can often be well described by a Drude model. In this model the plasmon 
resonance frequency depends on electron density, ne, via the bulk plasma frequency ωp 15,16:

ω ω
ε

∝ = .⁎
n e
m (1)

plasmon p
e

2

0

Here, e is the electron charge, m* is the effective electron mass17, and ε0 is the free-space permittivity. 
Equation 1 shows that the plasmon resonance frequency is directly linked to the electron density ne, and thus may 
be tuned by varying ne. Indeed, recent experiments have demonstrated spectral shifts up to 43 nm in the plasmon 
scattering spectrum of Au nanoparticles by adding chemical reductants to the nanoparticle solution that induce 
a negative charge at the surface of the particles15. Also, spectral shifts up to 11 nm have been demonstrated using 
electrostatic biasing of Au nanoparticles in electrochemical cells18–20. Electron density changes as high as 11% 
relative to the electron density in the uncharged state were observed. These experiments show a clear relationship 
between the optical properties of metal nanoparticles and their electron density, as predicted by the Drude model.

Recently, we have demonstrated a plasmoelectric effect in which an optically induced electrostatic potential 
is generated if a metal nanostructure is illuminated off-resonance21. This effect is driven by a thermodynamic 
increase in entropy, which originates from the dependence of the plasmon resonance on electron density. Here, 
we discuss in detail the thermodynamic theory underlying the plasmoelectric effect. We first explore a simplified 
model consisting of a single plasmonic nanoparticle in vacuum to describe the fundamental theory, and subse-
quently discuss implications for realistic experimental geometries.
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Plasmoelectric effect
To introduce the plasmoelectric effect, we explore the reversed phenomenon of electrostatic modulation of a plas-
mon resonance via the dependence on electron density18–20. Consider a silver nanoparticle in vacuum with radius, 
R, that is electrically connected to ground (Fig. 1a). Thermal fluctuations will cause electrons to randomly enter 
or exit the nanoparticle, thereby inducing minute fluctuations of electron density. In the dark and under equi-
librium conditions the net electron flux is zero. For the analysis here, we first assume radiation provides the only 
pathway for transferring thermal energy in or out of the particle. Now, consider if the nanoparticle is illuminated 
with monochromatic radiation at wavelength λ and intensity Iλ that is blue-shifted with respect to the plasmon 
resonance of the nanoparticle. Small thermal fluctuations in electron density will cause small fluctuations in the 
absorption cross section at the illumination wavelength Cabs(λ) (Fig. 1b). Since optical absorption induces heat-
ing of the nanoparticle, these small fluctuations result in small changes of the nanoparticle temperature T and, in 
turn, thermodynamic quantities such as entropy and internal energy. For the situation with blue-shifted incident 
light, thermal fluctuations that add electrons to the nanoparticle thus increase temperature and entropy, which 
implies that spontaneous increases of charge density are thermodynamically favored. Vice versa, if the incident 
light is red-shifted with respect to the plasmon resonance, a decrease of electron density increases entropy. At the 
same time, Coulombic interactions induce a counteracting force against charging of the nanoparticle. To calculate 
the charge of the nanoparticle during illumination in steady state, we consider the thermodynamic free energy of 
the system Ftot, and minimize it with respect to the number of electrons in the nanoparticle N.

∂
∂

= .
F
N

0 (2)
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As the nanoparticle temperature T also depends on N, Eq. 2 can be expanded as
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Next, we recognize the general definition for the chemical potential μ
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so that Eq. 3 can be written as
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Figure 1. (a) Schematic of the model: a silver nanoparticle with radius R in vacuum is electrically connected 
to ground. Monochromatic illumination with wavelength λ and intensity Iλ is absorbed and excites a plasmon 
resonance, heating the particle to temperature T. Thermal radiation is the only power loss channel. (b) Calculated 
absorption cross section for a Ag nanoparticle (R =  10 nm) in vacuum with an electron density 2% higher (blue), 
lower (red), or equal to that of neutral silver (black). Under off-resonance monochromatic illumination, changes 
in the electron density increase the absorption cross section (gray arrows).
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Equation 6 demonstrates the essence of the plasmoelectric effect: a non-zero electrochemical potential results 
from the dependence of temperature on electron number in a plasmonic nanoparticle. This analysis is based 
upon the minimization of the thermodynamic free energy of the system, which we argue to be accurate for the 
steady-state conditions considered here (see Discussion section). Note that electron density ne and number of 
electrons in the nanoparticle N are related by N =  neV, where V is the (constant) particle volume.

The amplitude and spectrum of the plasmonically induced electrochemical potential (i.e. the plasmoelec-
tric potential, VPE) can be calculated, fully analytically, in five steps. First, we use Mie theory to calculate the 
dependence of the absorption cross section Cabs(ne, λ) on electron density. Second, we use this cross section in 
a steady-state power balance to calculate the particle temperature T(N, λ). The derivative of this function with 
respect to N for fixed λ yields dT(N)/dN in Eq. 6. Third, we determine the total free energy of the system using 
well-known definitions for the free energy of a free electron gas and crystal lattice. Fourth, we use Eqs 4 and 5 to 
derive definitions for μ(N, T) and S(N, T) in Eq. 6. Finally, Eq. 6 can be solved for N for a range of λ to determine 
N(λ), from which we calculate the surface potential VPE(λ). In the remainder of the paper, we will discuss each 
step in detail and finally explore the influence of geometrical parameters and illumination conditions on VPE.

Absorption cross section and steady-state temperature
We use Mie theory22 to calculate the electron density dependence of the absorption cross section Cabs(ne, λ). For 
the dielectric function of Ag, we apply a sixth-order multiple Lorentz-Drude fit (see Supplemental Information) 
to data from Palik23, analogous to the method outlined by Rakic et al.24. This dielectric function depends explic-
itly on the electron density ne through the bulk plasma frequency, as described in Eq. 1. This method has been 
demonstrated to accurately describe charge carrier-dependent shifts of the plasmon resonance in both metal 
nanoparticles15,19, and doped semiconductor quantum dots16,25.

Figure 2a shows the calculated absorption cross section for a Ag particle (R =  10 nm) in vacuum. A clear peak 
in absorption as a result of the lowest order dipolar plasmon resonance can be observed around λ =  367 nm for 
the neutral particle; it shows a monotonic blue-shift with increasing electron density, as expected from Eq. 1. 
Next, we use the results from Fig. 2a to calculate the steady-state particle temperature T(ne, λ). Note that for the 
illumination powers considered here, the electron temperature equals the phonon temperature due to the fast 
electronic relaxation rate and electron-phonon coupling rate in a metal26:

≈ =T T T (7)electron phonon

In steady state, the power absorbed by the particle is balanced by the power going out:

=P P (8)in out

The absorbed power includes both the absorbed monochromatic radiation and the ambient thermal back-
ground radiation (Tamb =  293 K), which is given by the Stefan-Boltzmann law:

λ σ ε= + .λP C N I A T( , ) (9)in abs amb
4

Here, σ is the Stefan-Boltzmann constant, A is the particle surface area, and ε is the emissivity. The nano-
particle emissivity is taken to be equal to that of bulk silver, ε =  0.01, as no modulation to the bulk properties is 
predicted by Mie theory in the spectral range of thermal radiation. Indeed, despite that plasmonic nanoparticles 
can be strong absorbers at wavelengths close the the plasmon resonance, the low emissivity of the bulk material 
results in a low IR emissivity27. In vacuum, the only power loss channel is through thermal radiation:

σ ε= .P A T (10)out
4

Using Eqs 9 and 10 to solve Eq. 8 for T yields the steady-state particle temperature

Figure 2. (a) Calculated electron density dependent absorption cross section (color) for a Ag nanoparticle 
(R =  10 nm) in vacuum, for 0.9 ≤  ne/nAg ≤  1.1. (b) Steady-state particle temperature (color) for Iλ =  100 W/m2 
(monochromatic).
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Figure 2b shows the calculated steady-state particle temperature for Iλ =  100 W/m2. A peak temperature of 
634 K is observed for a neutral particle at resonance, and the temperature profile clearly follows the absorption 
profile as expected from Eq. 11. Finally, converting the x-axis from ne to N and taking the derivative with respect 
to N at a given wavelength yields dT(N)/dN, the last term in Eq. 6.

Free energy calculations
The free energy of the system can be obtained by considering the separate contributions of the electrons Fe, and 
phonons, Fp in the nanoparticle as well as those of the substrate (the electrical ground, subscript s):

= + + + .F N T N F N T N F T N F N F( , ( )) ( , ( )) ( ( )) ( ) (12)tot e p e s p s, ,

Note that Fe,s is a function of N through the conservation of total charge Ntot =  N +  Ns: i.e. if N >  N0, with N0 
the number of electrons in a neutral nanoparticle, the chemical and electrostatic potential of the substrate also 
changes (Ns <  N0,s). Fe is composed of the electron chemical potential μe, and the electrostatic potential, Φ :

∫ ∫µ= ′ ′ ′ + Φ ′ ′.
−
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Here, μe is the temperature dependent chemical potential of a free electron gas28:
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where kb is Boltzmann’s constant, and εF is the Fermi energy
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with  the reduced Planck constant. The temperature-dependent term in Eq. 14 is < 0.01% at the temperatures 
considered here28. The electrostatic potential is easily obtained from the self-capacitance of a sphere c =  4πRε0εm, 
where εm is the relative permittivity of the surrounding medium. The work W required to charge a capacitor with 
charge Q =  N′ e is

π ε ε
= =

′W Q
c

N e
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1
2

1
2 4

,
(16)m

2 2 2

0

where e =  − 1.602 ×  10−19 C is the electron charge, so that

π ε ε
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Fp is expressed in terms of the speed of sound in the particle vs, as obtained from the high-temperature classi-
cal limit of the Debye model29,30:

θ
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k T N A( ( )) 3 ( ) ln

( )
( ) ,

(18)p b b0 0

where A0 is the number of atoms in the nanoparticle (equal to N0 for Ag), and θ the Debye temperature29:
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We use θAg =  215 K30.
To quantify the free energy of the substrate, we assume the substrate (electrical ground) is a macroscopic silver 

sphere with radius Rs and volume Vs at fixed ambient temperature (Tamb), containing A0,s atoms and N0,s electrons 
in a neutral state. If the number of electrons transferred from the substrate to the nanoparticle is N −  N0, Fe,s and 
Fp,s are given by

∫ ∫µ
π ε ε

= ′ ′ +
′

′
− − − −
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respectively.

Electrochemical potential and entropy
Equation 4 is applied to Eq. 12 to obtain the electrochemical potential. Starting with Fe(N, T(N)), we use
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Next, since Fp does not depend on N for constant T,
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Using the fact that the substrate is macroscopic (e.g. Rs >  1 cm, −N N N( )s ,0 0  and cs ≫  c), the effect of 
electrostatic charging of the substrate is negligible and the derivative of Fe,s can be simplified to
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Note that Eq. 25 simplifies to − εF(N0, V) if the temperature dependence is neglected. Finally,







 =

d
dN

F 0,
(26)

p s
T

,

such that the complete definition for μ(N, T(N)) in Eq. 6 is given by:
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Next, we obtain a definition for the entropy of the system by applying Eq. 5 to Eq. 12. Since the electrostatic 
potential does not depend on T,

∫
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The nanoparticle phonon entropy is easily obtained as
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Finally, since the grounded substrate has constant temperature Ts =  Tamb,
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Master equation
Based of the definitions of μ (Eq. 27), S (Eq. 31) and dT/dN (Eq. 11 and Fig. 2b), the free energy minimization 
can now be applied to find the steady-state (time-averaged) charge state of the nanoparticle for each illumination 
wavelength λ. As it is instructive to explore the terms in Eq. 6 individually we first calculate μ, S and dT/dN for the 
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20 nm Ag nanoparticle model system. Figure 3 shows the electrochemical potential (a), entropy (b) and plasmon-
ically induced temperature dependence dT/dN (c) for Iλ =  100 W/m2.

The electrochemical potential (Fig. 3a) shows a monotonic, wavelength independent increase with elec-
tron density. Comparing this trend with the particle temperature in Fig. 2b, which shows a clear wavelength 
dependence as a result of the resonance, indicates that the temperature dependence of μ is indeed negligible. 
Furthermore, from the linear increase with ne (and thus N), is it clear that the electrostatic Coulombic interaction 
dominates over the Fermi energy, which scales with ∝ N 2/3 (see Eq. 15). Indeed, comparing the increase in Fermi 
energy (Eq. 15) and electrostatic potential (Eq. 17) as a result of the addition of a single electron to the neutral 
particle shows that the effect on the electrostatic potential is 4 orders of magnitude larger than that on εF.

Equation 31 shows a dependence of S on N through the first and second term. The first term corresponds to 
the entropy of the electron gas, which is negligible compared to the lattice entropy. The second term scales with 
∝ log(T(N)). Finally, the third term in Eq. 31 is constant and only determined by the number of atoms A0 in 
the nanoparticle. Hence, the entropy will be constant with a small modulation that scales logarithmically with 
the particle temperature (Fig. 2b). This is confirmed by the trend in Fig. 3b, which clearly follows that of T. The 
entropy of the system is thus clearly dominated by the entropy of the lattice.

Figure 3c shows dT(N)/dN, calculated from Fig. 2b. Three distinct features can be observed. First, dT/dN =  0 
at the resonance wavelength of the neutral particle. Since S ×  dT/dN is the thermodynamic driving force for the 
plasmoelectric potential, this implies that VPE =  0 at the resonance wavelength of the neutral particle. Second, it 
is important to realize that VPE is calculated for fixed incident wavelength. Hence, it is the horizontal cross cut 
through Fig. 3c that determines the magnitude of the thermodynamic driving force. Third, with this in mind it 
is clear from Fig. 3c that it is beneficial to have plasmonic resonances with high quality factor (Q), but it is the 
sensitivity of the resonance wavelength to the electron density that determines the magnitude of VPE in the end. 
This sensitivity is characterized by the slope of the white line in Fig. 3c.

Equation 6 shows that the free energy minimum can be found by equating μ to S ×  dT/dN, corresponding to 
where data in Fig. 3a equals the product of data in Fig. 3b,c. Considering the order of magnitude of the different 
terms in Fig. 3b,c shows that S ×  dT/dN <  9 ×  10−20 J/e. Comparing this with the magnitude of the electrostatic 
potential in Fig. 3a (up to 5 ×  10−16 J/e) shows that the free energy minimum will occur very close to charge neu-
trality. Indeed, adding a single electron to a 20 nm nanoparticle leads to a change in surface potential of 144 mV.

Finally, note that the master equation can be greatly simplified. Neglecting the temperature dependence in the 
chemical potential (Eq. 27), using that −N N N( )s ,0 0 , and neglecting the electron entropy (Eq. 28), simplifies 
the equation to

ε ε
π ε ε

θ
− +

−
= −











+N V N V N N e
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dT N
dN

k A dT N
dN

( , ) ( , ) ( )
4
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( )

( ) 4 ( )
(32)F F

m
b b0

0
2

0
0 0

with < 0.25% error in the maximum calculated potential. All results in this work are calculated using the full 
equation rather than the simplified one.

Results
Solving Eq. 6 for N for a range of λ yields N(λ). Figure 4a shows the time-averaged number of electrons trans-
ferred from the substrate to the nanoparticle (N −  N0) as a function of wavelength for a 20 nm Ag particle 
(Iλ =  100 W/m2). Three trends are worth noting in Fig. 4a. First, a clear bisignated signal is observed which is 
positive on the blue side and negative on the red side of the neutral particle resonance wavelength (λres =  367 nm). 
The shape of the signal clearly indicates the trend of the plasmoelectric effect: electrons are added to the nano-
particle for λ <  λres to blue-shift the absorption resonance and thereby increase the entropy. Vice versa, electrons 
are removed from the particle for λ >  λres to red-shift the absorption resonance. Second, the signal is maximized 

Figure 3. Electrochemical potential μ (a), entropy S (b), and plasmonically induced temperature 
dependence dT/dN (c) for a Ag particle (R =  10 nm) in vacuum under 100 W/m2 monochromatic 
illumination as a function of electron density and wavelength.
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when S ×  dT/dN is maximum, which roughly corresponds to where the slope in the absorption spectrum is max-
imum. Third, the signal is asymmetric: the amplitude of the signal is larger above λres than below. This is caused 
by: 1) the non-resonant intrinsic interband absorption in the silver, and 2) the fact that Cabs ∝  λ2 according to Mie 
theory.

Three observables can be derived from N(λ). First, a static surface potential will be induced on the nanopar-
ticle if N ≠  N0, which is defined by both the difference in Fermi energy as well as the potential due to electrostatic 
charging of the self-capacitance:

λ
ε λ ε λ

π ε ε
=

−
+

−
.V N V N V

e
N N e

R
( ) ( ( ), ) ( , ) ( ( ) )

4 (33)PE
F F

m

0 0

0

Second, the plasmoelectric effect is driven by an increase in absorption as a result of electron transfer. 
Therefore, the relative increase in absorption compared to a neutral particle can be calculated as

λ λ
λ λ λ

λ
∆ =

−
.C N C N C N

C N
( ( ), ) ( ( ), ) ( , )

( , ) (34)abs
rel abs abs

abs

0

0

Finally, the increase in absorption results in an increase in the particle temperature:

λ λ λ λ λ∆ = −T N T N T N( ( ), ) ( ( ), ) ( , ) (35)0

Figure 4b–d show the calculated plasmoelectric potential (b), relative increase in absorption (c) and corre-
sponding increase in temperature (d) as a result of the plasmoelectric effect. VPE scales with − N since the elec-
trostatic potential dominates the amplitude of the potential. Therefore, the potential has the same but negative 
trend as Fig. 4a. As a result of the small capacitance of the nanoparticle the potential reaches several 100 mV for 
the transfer of only a few electrons.

Due to the small number of electrons transferred, the spectral shift of the plasmon resonance is very small. 
Therefore, the relative increase in absorption is limited to a maximum of 8 ×  10−3%, corresponding to a maxi-
mum increase in temperature due to the charge transfer of ~11 mK. Note that this small increase in temperature 
is with respect to that of a neutral particle under steady-state illumination. Starting from a neutral particle in the 

Figure 4. Steady-state configuration as a function of wavelength of a 20 nm Ag particle in vacuum under 
Iλ = 100 W/m2 monochromatic illumination. (a) Time-averaged number of electrons transferred from the 
substrate into the nanoparticle. (b) Induced plasmoelectric surface potential. (c) Relative increase in absorption 
as result of plasmoelectric effect. (d) Corresponding increase in particle temperature compared with a particle 
that remains neutral.
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dark, T increases from Tamb to T ~ 630 K due to steady-state absorption of monochromatic radiation. Then, by 
adding or subtracting on average 2–3 electrons (Fig. 4a) the temperature is further increased by ~11 mK (Fig. 4d). 
Finally, unlike the potential, the increase in absorption and temperature is always positive due to the requirement 
of entropy maximization. Interestingly, the increase in absorption and temperature vanishes at λres, which distin-
guishes the plasmoelectric effect from e.g. the thermoelectric effect, which would be maximum at λ =  λres due to 
the maximum induced temperature at that wavelength.

Illumination conditions
The intrinsic thermodynamic nature (entropy maximization and free energy minimization) of the plasmoelectric 
effect indicates that it is not a linear optical phenomenon. However, the amplitude of the potential is not directly 
described by higher-order non-linear susceptibility terms χ(i), as is, for example, plasmon-enhanced second har-
monic generation31. The scaling of VPE with Iλ is determined by the steady-state particle temperature, and thereby 
the power gain and loss channels available to the system. For a nanoparticle in vacuum, Pin is linear with Iλ. 
However Pout is limited to thermal radiation, which scales with ∝ T4 (Eq. 10). Therefore, VPE initially shows a rapid 
increase with increasing Iλ, but saturates as Pout increases ∝ T4. To demonstrate this, we calculate the induced 
potential for the same 20 nm Ag nanoparticle as considered in Figs 2–4, but now for 0 ≤  Iλ ≤  250 W/m2.

Figure 5 shows the calculated VPE (a) and maximum particle temperature (b) as a function of Iλ. Both the 
potential and the steady-state temperature show a strong increase at low intensities, which is clearly visible from 
the closely spaced iso-potential lines (a). The saturation as a result of the rapid increase in thermal radiation is 
also clearly visible in both figures. Furthermore, the iso-potential lines in Fig. 5a show a strong spectral shift 
away from λres with increasing Iλ. As a result, the thermodynamic driving force increases with Iλ such that dT/dN 
increases at the shoulders of the resonance spectrum, thereby increasing the spectral bandwidth of the plasmo-
electric effect.

Note that for realistic experimental geometries (i.e. particles on a substrate in air), thermal diffusion and con-
vection rather than radiation dominate the thermal response, thereby changing the proportionality of VPE ∝  Iλ. 
The thermal power balance also dictates the maximum intensity that can be used in experiments, since the power 
loss channels determine the damage threshold of the resonant structure.

Particle size
Next, we study the influence of particle size on the plasmoelectric potential. The localized plasmon resonance 
is strongly sensitive to the particle geometry14, and shows a red-shift with increasing particle diameter32. 
Furthermore, the electrostatic capacitance of the nanoparticle scales with R, such that the number of electrons 
transferred to/from the nanoparticle will increase for a given potential. Figure 6a shows the calculated extinction 
efficiency, which is defined as σext/σgeo, where σgeo =  πR2 is the geometrical cross section of the nanoparticle. The 
dipolar (D) resonance, observed at λres =  367 nm for the 20 nm particle (Fig. 1b), shows a clear red-shift and 
increase in extinction efficiency with increasing diameter. For d >  100 nm, a higher order quadrupolar resonance 
(Q) occurs, which also red-shifts with increasing particle diameter. A maximum extinction efficiency of 9.38 is 
observed for d =  68 nm, showing the strongly resonant behavior of the nanoparticle. Comparing the trends in 
Fig. 6a with the 20 nm particle considered in Figs 1–5 could suggest that larger plasmoelectric potentials can be 
obtained for d ~ 70 nm than for d =  20 nm. However, the albedo (σscat/σext) of the resonance also increases with 
particle size33. Hence, a smaller fraction of the extinction is due to absorption by the nanoparticle. Figure 6b 
shows the absorption efficiency (σabs/σgeo) as a function of particle size. It shows both the dipolar and quadru-
polar resonance, and a strong reduction in the absorption efficiency is observed for d >  70 nm as a result of the 
increased scattering rate. An optimum absorption efficiency of 6.37 is observed for d =  48 nm. Note that this is 
not necessarily the optimum geometry for the plasmoelectric effect either, since it is the increase in absorption 
per added electron (dT/dN), which depends on radius, that determines the magnitude of the potential rather than 
the absolute absorption.

Figure 5. (a) Plasmoelectric potential on a 20 nm Ag sphere in vacuum as a function of monochromatic 
illumination intensity and wavelength. The gray lines show iso-potential lines. (b) Corresponding maximum 
temperature of the nanoparticle.
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The average number of electrons transferred to the nanoparticle (Fig. 6c) shows a general positive trend for 
λ <  λres, and a negative trend for λ >  λres, for all particle sizes. The zero-point crossing line (i.e. where N −  N0 =  0) 
clearly follows the dipolar and quadrupolar resonances observed in Fig. 6b, indicating that the plasmoelectric 
effect is not limited to the dipolar nature of the lowest order plasmon resonance. Furthermore, a significant 
increase in N −  N0 is observed for increasing particle diameter. Since Ne =  cVPE and c ∝  R, the number of charges 
strongly increases as a result of the reduced electrostatic repulsion on larger particles. Note that the capacitance, 
and thereby the number of transferred number of electrons can be drastically enhanced by embedding the nano-
particle in a water-based electrolyte, as a result of the large static dielectric constant of water and the double-layer 
screening by counter ions19. Finally, the charge transfer induced by the dipolar and quadrupolar resonance coun-
teract each other for λ λ λ< <res

Q
res
D . The dipolar resonance induces an increase in charge density, whereas the 

quadrupolar resonance induces a reduction. This balance causes a “dead” region in between the two resonances 
around d =  100 nm.

Next, we calculate the potential induced on the nanoparticle by the charge transfer (Fig. 6d). The poten-
tial follows roughly the same trends as the charge transfer (Fig. 6c), except that a strong reduction is observed 
with increasing particle diameter. Comparing Fig. 6d with Fig. 6b shows why: the absorption efficiency shows 
a strong decrease with increasing particle size, suggesting that the increase in N −  N0 in Fig. 6c is dominated by 
the increase in c. A maximum potential of 554 mV is observed for d =  38 nm and λ =  384 nm. Figure 6c,d show 
that the particle geometry can be tuned to optimize the plasmoelectric effect for maximum charge transfer (large 
particle) or maximum potential (small particle).

Thermodynamic potential
Figure 6 shows that the absorption profile (Fig.  6b) does not unambiguously predict the plasmoelec 
tric potential (Fig. 6d); i.e. the potential is not maximum where absorption is maximum. To explain this  
we consider S and dT/dN separately as a function of particle size. Similar to Fig. 4c, the increase in tempera 
ture as a result of the plasmoelectric effect can be studied by considering the intuitive quantity 

∫ λ λ∆ = ′ ′ = −T dT dN dN T N T N/ ( , ) ( , )
N

N
0

0
. Figure 7a shows ΔT (log10, color) obtained from the results of 

Fig. 6. A small overall increase in temperature is observed for wavelengths close to the λres (corresponding to the 
dark blue line). The oscillations in the dark blue line with increasing particle diameter correspond to the subse-
quent transitions from dipole to quadrupole, and quadrupole to octopole plasmon resonance modes dominating 
the plasmoelectric effect, respectively. Although the increase in temperature is significant for small particles (up 
to 25.4 mK for d =  10 nm), it rapidly decreases with increasing particle diameter. In fact, for d =  200 nm ΔT peaks 

Figure 6. (a) Calculated extinction efficiency (σext/σgeo) for a Ag sphere in vacuum as a function of particle 
diameter. The dipolar (D) and quadrupolar (Q) resonant modes are labeled accordingly. (b) Calculated 
absorption efficiency (σabs/σgeo) showing the increase in albedo for larger particle diameters. (c) Transferred 
average number of electrons (c) and induced plasmoelectric potential (d) as a result of the dipolar and 
quadrupolar resonance under 100 W/m2 monochromatic illumination.
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at only 6 μK, which indicates a three orders of magnitude reduction in ΔT compared to small particles. Yet still, a 
significant potential =V( 107mV)PE

max  is observed for such large particles (Fig. 6d).
To understand why, Fig. 7b shows the entropy of a neutral nanoparticle S(N0) (color) as a function of parti-

cle size and incident wavelength. Note that S(N) ≈  S(N0) due to the logarithmic dependence on the very small 
variations in T(N). The particle entropy shows a drastic increase with particle size, as A0 ∝  R3 (Eq. 31). Indeed, 
S increases from ~10−17 J/K for d =  20 nm with three orders of magnitude up to ~10−14 J/K for d =  200 nm. Note 
that the small variation of S with λ originates from the dependence of the temperature on N: S(T(N)), see Eq. 31 
and Fig. 3b.

Finally, Fig. 7c show × | =S N dT N dN( ) ( )/ N N0 0
, which corresponds to the thermodynamic potential experi-

enced by a neutral particle under monochromatic illumination. Figure 7a,b show that for larger particles the 
increase in temperature drops by three order of magnitude, whereas the entropy increases by three orders of 
magnitude. As a result, the product (Fig. 7c) has the same order of magnitude for the entire range of particle 
diameters. Indeed, comparing Fig. 7c with Fig. 6d shows that the product S ×  dT/dN scales with the calculated 
potential (converted from J/e to V). This example demonstrates that for large systems, the increase in temperature 
as a result of the plasmoelectric effect can be very small. However, due to the large entropy of the system, the 
energetic pay-off of this small increase in temperature is sufficiently large to induce significant surface potentials. 
Thus more realistic experimental geometries can still be expected to exhibit appreciable plasmoelectric potentials, 
e.g. particles on a substrate in air, where thermal convection and conduction may significantly lower the temper-
ature obtained under illumination.

Discussion
Generalization. The plasmoelectric effect is not limited to plasmonic resonators. It is generic for a resonant 
optical cavity that tends to spectrally align its resonance with the pump light to optimize absorption. Conditions 
to achieve this are: First, the system has an optical resonance that exhibits non-radiative losses, i.e. absorption. The 
absorption generates heat and thereby entropy, which is the underlying thermodynamic driving force. Second, 
there exist a feedback mechanism between the resonance frequency and the electron density of the structure. 
Essential for the bisignated signal is that the feedback mechanism works in both ways: e.g. an increase (decrease) 
in electron density causes a blue- (red) shift of the optical resonance. Third, the system is electrically connected to 
ground or a (large) electron bath, which allows exchange of electrons with the resonator. Note that the simplified 
model system considered here neglects the influence of such an electrical connection to ground on the dielectric 
environment of the nanoparticle. In reality, the presence of e.g. a conductive substrate may red-shift the reso-
nance wavelength and give rise to spectral broadening. Although these effects may change the spectral shape and 
amplitude of the plasmoelectric potential, the physical mechanism governing the plasmoelectric effect remains 
unaltered.

These requirements can also be met with non-plasmonic resonators such as for example whispering gal-
lery cavities based on doped semiconductor or transparent conductive oxides structures, which can be heavily 
doped34. Significant changes in the refractive index of such materials have been demonstrated through electrical 
gating35, and electrically tunable resonances in these devices using this effect have been realized36. This offers great 
potential for the use of these structures in plasmoelectric circuitry.

Free energy minimization for local-equilibrium systems. The thermodynamic analysis discussed in 
section is based upon the minimization of the thermodynamic free energy of the system. By definition, this 
analysis is strictly warranted when describing the equilibrium state of a closed system with fixed total energy37. 

Figure 7. (a) Log10 of increase in temperature (in K, color) as a function of particle diameter and wavelength 
for Iλ =  100 W/m2, showing a rapid decrease with increasing particle size. (b) Entropy of the nanoparticle (for 
N =  N0), showing a strong increase with increasing particle size. (c) Thermodynamic potential S ×  dT/dN 
(evaluated at N =  N0) driving the plasmoelectric effect.
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Although the system we model here does not approach a true thermodynamic equilibrium, i.e. we do not con-
sider a closed system which includes the thermodynamic state of the optical source, we argue that free-energy 
minimization still gives an accurate description. The steady-state power balance dictates a well defined particle 
temperature: in Fig. 2b, a maximum temperature of 634 K was observed. For the optical intensities considered, the 
electronic and phononic distribution of the particle is not driven to a non-thermal state, but is expected to be well 
described by conventional Fermi-Dirac and Boltzmann statistics, respectively26. We stress that similar arguments 
hold for the well-established detailed-balance calculation of the limiting efficiency of a photovoltaic cell38, which 
also considers a steady-state system that is not in thermal equilibrium with a source but assumes the validity of a 
thermal distribution among the excited carriers in the conduction band.

Conclusions
In conclusion, we present a thermodynamic theory of the plasmoelectric effect using a model system composed of 
a 20 nm Ag sphere in vacuum. We show that minimization of the thermodynamic free energy of the system leads 
to an electrostatic surface potential on a resonant metal nanoparticle, driven by the increase in absorption - and 
thereby entropy production - as a result of electron injection. The spectral shift induced by the electron injection 
gives rise to a small increase in the steady-state temperature of the particle, in addition to the elevated tempera-
ture obtained by a neutral particle as a result of plasmonic absorption. We find that for our model system, poten-
tials up to 473 mV are induced under 100 W/m2 monochromatic illumination as a result of an 11 mK increase 
in the steady-state particle temperature. Furthermore, the plasmoelectric potential is found to be non-linear 
with the illumination intensity, as the amplitude of the potential is dictated by the steady-state thermal balance. 
We determine how the plasmoelectric potential scales with particle size, and find that for large systems, minute 
increases in temperature can induce significant surface potentials as a result of the large entropic pay-off. Finally, 
we discuss the conditions required for manifestation of the plasmoelectric effect, and predict that the effect is 
generic for any resonant system in which optical absorption and charge density are coupled.
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