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Ĥ
p , 

T̂
p  probability density function of H and T magnitude via Gaussian bivariate 

approach 

tp  probability density function of T magnitude via Chi-square bivariate 

approach 
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ABSTRACT OF THE DISSERTATION 

 
Uncertainty Quantification in Vibration-Based Structural Health Monitoring for Enhanced 

Decision-Making Capability 
 
 

by 
 

Zhu Mao 
 
 

Doctor of Philosophy in Structural Engineering 
 

University of California, San Diego, 2012 
 

Professor Michael D. Todd, Chair 
 

 

This dissertation aims to augment current structural health monitoring (SHM) practice with 

an approach to model and quantify uncertainty to enable confidence-based decision-making. The 

SHM application domain is vibration data-based system identification, and more specifically, 

transmissibility and frequency response function (FRF) estimations are considered, as these are 

the primary forms of transfer function estimation in the frequency domain. A finite element (FE) 

model is established in order to supply a benchmark of transmissibility evaluations, and by 

tuning the FE model, structural damages can be simulated. Two SHM features are proposed to 
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detect and localize defects by analyzing the features calculated at certain interest point arrays. 

Considering a realistic test condition, all of the model parameters and data are subject to 

uncertainty from various sources leading to ambiguous system identification results that cause 

false alarms (Type-I error) when evaluating hypothesis testing for damage. Based upon stationary 

Gaussian random process, this dissertation statistically establishes uncertainty quantification (UQ) 

models for different estimators, and uncertainties of transmissibility and FRF are therefore 

quantified. A perturbation approach is implemented ending up with standard deviation and bias 

coefficient of transmissibility magnitude estimations. Probability density functions (PDFs) of 

transmissibility and FRF estimation are derived, for both magnitude and phase, via different 

methods, namely Chi-square and Gaussian bivariate approach. 

The proposed statistical models are validated by Monte-Carlo test on both FE simulation 

model and real lab-scale structure. To obtain a more stringent validation condition, extraneous 

artificial noise is added onto the raw measurements. Compared to the pre-set confidence interval, 

validation results are illustrated via outlier percentage, which is the observed outlier amount, at 

each frequency line, normalized by the number of total test cases. Comparison of the UQ results 

among different statistical models, estimators, and noise contamination levels is presented, for 

the purpose of guiding users towards using optimal estimators under certain circumstance. 

Hypothesis tests are implemented, with statistical models available, and the detection 
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performance is compared for different detectors, damage levels, and noise contaminations. 

Receiver operating characteristic curves are used for quantitative visualization of the 

abovementioned performance qualities. Using area under curve (AUC) metric, it is concluded 

how detection rates trend as damage level and signal-to-noise condition changes, suggesting 

optimal frequency bands for implementing detection. For example, even for 

heavily-contaminated cases, there is still acceptable detectability at resonances.  

As a decision-making problem, SHM probabilistically involves making correct decisions 

with acceptable (application-dependent) type-I errors. In the end of this dissertation, probability 

of detection for different cases and test conditions are optimized and compared, as given certain 

false alarm tolerance thresholds. By having optimal detections, the damage identification 

problems have a clearer outline with respect to different hypothesis designs. 

  



 

 

1 

 

1. Introduction 

1.1. Background of Structural Health Monitoring  

1.1.1. Definition of Structural Health Monitoring 

Structure health monitoring (SHM) is the process of implementing a damage assessment 

strategy for any system, including detection, localization, and classification, via measured in-situ 

structural performance data. In the context of SHM, damage is typically defined in a 

performance sense, in that there is change in material and/or geometric properties adversely 

affecting structural functionality [1, 2]. Usually SHM applications are organized into four steps 

including: (i) operational evaluation (which includes target damage identification and 

specification of implementation constraints), (ii) data acquisition and processing, (iii) extraction 

of relevant features from measured data that will be used for assessment, and (iv) decision 

making based on appropriate detection/classification of the features. The fundamental 

assumption is that that damage will alter certain characteristics of a system, which will manifest 

themselves in some observation of measured data, ideally enhanced by the feature extraction 

process. The primary goals of such an SHM strategy are typically some form of structural 

ownership cost reduction, usually through maintenance optimization (or automation), 

performance optimization during operation, and minimization of unscheduled downtime, and/or 

life cycle advantage through catastrophic failure mitigation [1]. Damage prognosis (DP) is
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regarded as the future of SHM, which predicts system performance by assessing the current 

status, prior experience and model simulation. Extending damage identification, DP integrates 

other technologies such as predictive structural modeling, probability evolution and uncertainty 

propagation and quantification. Because of its potential for structural safety, DP is regarded as a 

'grand challenge' in the 21st century [8].  

Since damage defined as above is not directly measurable and thus indirectly affects 

observable properties, many SHM strategies have partially or wholly enveloped paradigms in 

statistical pattern recognition. Pattern recognition is divided into three general categories: group 

classification, regression analysis, and identification of outliers [1, 2]. Other than this 

fundamental challenge of indirect observability, other challenges in SHM include the 

optimization of sensor count and location, damage-sensitive feature extraction, elimination of 

operational variability and environmental effects that lead to false positives, and quantifying the 

uncertainty present in any SHM assessment. Despite these challenges, there is a significant body 

of literature describing current developments in methods for implementing the paradigm across a 

wide array of different applications [3-7]. 

Any SHM/DP strategy ultimately requires a decision-making process, which inherently 

requires, as listed above in the primary challenges of SHM/DP, quantification of uncertainty.  

Decision-making performance is gaged by metrics such as detection/localization/classification 

rate, rate of false positives, and/or the optimal trade-off of these properties. This area forms the 
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central intellectual core of this dissertation for a certain type of application. 

 

1.1.2. Survey of SHM applications and methodologies 

There has been tremendous applications of SHM to mechanical, aerospace, and civil 

structures over the last twenty or so years, and some excellent review articles are available in 

References [9-11]. As examples, some represented works will be introduced from different 

aspects of the overall SHM picture. SHM features based on some form of modal analysis are the 

most traditional damage indicators, and for situations involving nonlinearities or output-only data, 

novel methods are proposed to identify the damage, such as transmissibility and nonlinear output 

frequency response functions [12-16]. Modal analysis is one form of system identification, which 

generally forms a basis for what classes of features are proposed to be used for implementation 

of the SHM strategy. Besides purely data-based approaches for structural diagnosis, finite 

element model updating is also considered or hybridized with data-based methods [17, 18]. 

Different sensing techniques are adopted to acquire the needed data such as fiber optic sensors 

[19], piezoelectric sensors [20], and MEMS sensors [21]. Novel sensor networks [22, 23] are 

also adopted to enhance SHM practicality, and a review of wireless sensors and sensor networks 

is available in [24]. Techniques and topics relevant to the scope of this dissertation will be 

introduced and reviewed in more detail next. 
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1.1.3. Scope of this dissertation 

As defined, SHM aims to provide a current assessment of structures based upon 

measurements and appropriate feature analysis, in a way that facilitates some hierarchy of 

decision-making with regard to operations, maintenance, or performance. DP aims to extend the 

process by integrating probabilistic future load models and failure mode models, with the SHM 

assessment in order to forecast performance-level metrics, such as remaining useful life [25]. As 

such, a DP-enabling SHM framework is shown in Figure 1-1, which including four tandem parts: 

(i) data acquisition and processing, (ii) statistical modeling and uncertainty quantification of 

detection process, (iii) hypothesis testing for current decision-making, and (iv) probabilistic 

prediction for potential future actions. From the stand point of damage detection, a decision 

threshold is obtained after optimal trade-off between detection significance and costs, while for 

DP, loading and failure models are included into a new stage of probabilistic decision-making 

with regard to future action. 
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Mathematical approaches describing various input/output or output/output relationships 

have been applied in both the time and frequency domains in order to identify, characterize, or 

control aspects of global system behavior [27]. Frequency domain approaches, which typically 

involve estimation of the frequency response function (FRF) in a way that supports modal 

parameter estimation, are among the most common due to their clear physical interpretation and 

well-defined computational algorithms, which most commonly involve the Fast Fourier 

Transform (FFT). Brincker et al. compared the classical frequency-domain modal analysis with 

other time domain identification approaches and concluded the frequency approach to be more 

user-friendly and computationally efficient to use [28]. Other system identification applications 

are reviewed in [29, 30], where specific nonlinear modeling and stochastic system identification 

for operational modal analysis are surveyed. 

For mechanical/structural system identification processes, the frequency domain approach 

often involves vibration-based testing (e.g., experimental modal analysis via the FRF) to obtain 

the relationship between structural parameters (mass, stiffness, and damping), the characteristic 

eigenstate (resonant frequencies, mode shapes, and sometimes damping), and measured vibration 

responses [31]. In this situation, vibration inspection is often helpful for damage identification. 

Cawley in early years proposed using measurements of changes in the lower structural natural 

frequencies, where identification of damage is accomplished combining with dynamic FE 

structural analysis [32]. A comprehensive review of modal parameter vibration-based damage 
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identifications is presented in [33], emphasizing signal processing techniques. Based upon 

vibration features, four categories are summarized as natural frequency-based methods, mode 

shape-based methods, curvature mode shape-based methods and mode shapes frequencies 

combined methods, with thorough comparison, and implementation-wisely, five often-used 

damage detection algorithms are studied, namely, frequency-based single damage indicator (SDI) 

method, mode shape-based generalized fractal dimension (GFD) method, mode shape curvature 

(MSC) method, gapped smoothing method (GSM), and damage index method (DIM). Pros and 

cons of each vibration feature and detection algorithm are reviewed [33]. 

 

1.2.2. Motivation of rapid state awareness 

The US Air Force Research Laboratory aims to develop modular plug-and-play (PnP) 

satellite architectures in support of the their Operationally Responsive Space (ORS) initiative, in 

which rapid (~days) assembly, integration, and test (AI&T) of the satellite, with sufficient 

strength, stiffness, and alignment accuracy is required [34]. A multifunctional PnP satellite 

structure is shown in Figures 2-2 and 2-3: 
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techniques for fastener loosening detection have been deployed via chaotic guided ultrasonic 

waves (CGUW) tests, and state space reconstruction to identify preload loss [39, 40]. However, 

traditional vibration-based SHM, which is more compliant with current testing capabilities and 

qualification regulations, is considered as another possible candidate and forms application 

domain for work in this dissertation. 

 

1.2.3. Transmissibility and FRF 

As mentioned in section 1.2.1, frequency domain based system identification and SHM 

applications are widely used. But any frequency domain approach that relies on frequency 

response function (FRF) estimation, however, requires either direct measurement of or an 

assumption of the input excitations to the system [28]. It is well-known that for some 

applications such measurements are impossible or difficult to obtain, and/or such assumptions 

would be poor or inappropriate; for these situations, estimation of a transmissibility function is 

possible. Similar to a traditional input-output transfer function such as the FRF, the 

transmissibility function is defined as the frequency-domain ratio between two outputs, and it 

describes the relative admittance between the two measurements. Devriendt et al. interpret the 

transmissibility concept versus transfer function as response data normalized by a reference 

response instead of by the input excitation [41]. The transmissibility also contains less general 
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but more specific (local) information compared to the FRF, because the characteristic polynomial, 

which contains all the system poles (resonances), will be cancelled in calculating 

transmissibilities, and only the system zeros (anti-resonances) will remain. Therefore, 

transmissibility-derived features are entirely independent of system poles but solely dependent 

on zeros. Unlike the system resonances, which are influenced by structural parameters globally, 

system anti-resonances are more affected by local properties and are more sensitive to detailed 

structural modeling and change detection (such as for damage identification). As a result, 

transmissibility appears to be a useful characteristic in identification with more sensitivity to 

local structural details and effects [16, 42]. 

A generalization of the transmissibility concept is introduced by Ribeiro et al. [42]. For a 

multi-DOF structure, the transmissibility can be derived from the FRF matrix, where the FRF 

matrix is obtained from either testing or analytical/numerical modeling. This relates the set of 

measureable coordinates and the set of interest coordinates together and makes the identification 

process more convenient. Mottershead [44] suggests a useful alternative for modal analysis and 

demonstrated that the sensitivity of the zeros estimated from response measurements and FRF 

estimations may be expressed as linear combinations of the sensitivities of natural frequencies 

and mode shapes, where the closer modes contribute more to the sum. He et al. [45] study the 

sensitivity about local mass and stiffness with respect to the anti-resonance locations when 

applying relocation of zeros for vibration reduction purposes. 
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One application area receiving lots of attention is using transmissibility estimation for better 

quality modal parameter evaluation. Considering the operational modal analysis context with 

output-only measurements available, Devriendt et al. [42] successfully generalize the modal 

identification process where the excitation can be any type of input, not constrained to be a white 

noise sequence. By combining transmissibility data under different loading conditions, they show 

a good consistency between the modal parameters estimated from transmissibility measurements 

and the actual system poles. They report that by considering two different transmissibility 

estimations corresponding to the same positions but with different input excitation, the 

estimations cross each other at the system resonances, which means different estimations are 

exactly the same value at system poles. This value is directly related to scalar mode shapes and is 

used for modal parameter extraction in a multiple-input/multiple-output (MIMO) procedure and 

for accurate system poles localization [41, 46]. 

Transmissibility-based system identification, for many of the reasons described above, is 

also getting increased attention in the area of damage detection and structural health monitoring 

[47-49]. Johnson et al. apply transmissibility-based diagnostic technology to reduce the 

dimension of response measurements and demonstrated analytically and experimentally the 

sensitivity of transmissibility to both linear and nonlinear system changes [16 47], as well as 

significantly enhanced localization capability since the system zeros are only sensitive to the 

parameters in certain localized region, and anti-resonance frequencies show significant variations 
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with different measurement positions [16, 50]. Worden et al. [15, 49] implement system 

damage/fault detection via neural network training and outlier analysis, demonstrating that the 

system transmissibility provides a sensitive feature for the detection of small stiffness variation. 

Therefore, with the transmissibility-based technique, it is straightforward to identify the 

appearance and location of the system parameter changes. System identification results have 

shown that the localization is effective on both discrete [16] and continuous [50] system 

applications. Worden et al. [51-53] go through the entire process of experimental validation of a 

SHM methodology, based upon the measured transmissibilities and novelty detection. The 

investigation expands from simple laboratory structures to complex and realistic structures such 

as aircraft wing, and both the results from detection and localization are validated. 

 

1.3. Uncertainty Quantification 

In reality, there is uncertainty existed, which compromises any engineering problems at 

different levels, and uncertainty quantification (UQ) technique is demanding in order to 

minimize the influence from uncertainties.  

In system identification application, frequency domain estimations are compared to FE 

model prediction, but both modeling and testing involve a number of different sources of 

uncertainty, and model updating techniques are used to drive model/test correlation to 



13 

 

 

 

convergence [55]. Therefore, quantifying the uncertainty associated with both model and 

experimental data, and studying the propagation of uncertainties through FE simulation and 

signal processing are critical [56]. 

For vibration-based practices, inherent to any quality assessment is the quantification of 

uncertainty, as it is well known the sensitivity of any feature derived from transmissibility (or 

any other system identification quantity such as FRF) is compromised by noise, generally 

categorized into four classes: operational, environmental, measurement, and computational [54]; 

these compromised estimates may lead to significant false-positive (Type-I) errors in the 

interpretation of system identification results, regardless of specific application.  

For applications of risk/reliability analysis, and SHM where decision-making is directly 

involved via some form of hypothesis testing, the field of UQ is used to reduce corresponding 

costs and provide robust decision-making information [57]. Mace et al. point out that generally 

the application of UQ with any degree of comprehensiveness is a formidable task which has 

three major aspects: quantification of variability in current theories, fusion of descriptions by 

different theories, and propagation of uncertainty through various processes [58]. 

There are a lot of research been done in the past decades. For general UQ methodologies in 

different research areas, there is a brief review in section 1.3.1. For specific statistical modeling 

of vibration-based SHM feature uncertainties, which is central core part of this dissertation, and 
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probabilistic SHM/DP, which is the a further step beyond the scope of this dissertation, 

state-of-art is reviewed in section 1.3.2 and 1.3.3. 

 

1.3.1. A review of uncertainty quantification 

The most traditional UQ method in many engineering disciplines is to carry out a 

Monte-Carlo simulation, starting from a given/assumed probability distribution of inputs or 

model parameters, and ultimately specifying probabilistically the distribution of any 

characteristics of interest. For example, Reference [56] compares the statistics of FRFs of an 

Euler-Bernoulli beam and a thin plate obtained from both FE models and experimental modal 

analysis on one hundred nominally identical specimens. However, for FE models with large 

degrees of freedom and likely a relatively large number of uncertain parameters, a very large 

number of simulations are required to cover the entire random variate domain before reaching 

sufficient statistics to quantify the model uncertainty [57-60]. More sophisticated statistical 

models have been proposed to quantify the imprecision in structural dynamics and spectral 

analysis in a less computation-expensive way, but the Monte-Carlo approach remains the 

benchmark because of its universality and stability [55, 58].  

Uncertainty in transfer function estimations has been classified into aleatory and epistemic 

types; aleatory uncertainty is from the inherent baseline randomness and imperfection in the 
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simulation/experiment, and epistemic uncertainty is caused by lack of information/knowledge. 

Accordingly, the UQ processes are divided into two types. The aforementioned Monte-Carlo 

method is of the probabilistic approach, which considers the aleatory uncertainty and quantifies 

the uncertainties in acquired data. On the other hand, the possibilistic approach only 

characterizes the bounds in which all parameters lie without knowing the actual distribution, and 

therefore it considers the epistemic uncertainty and applies well in FE model updating [58, 60, 

61]. The possibilistic approach deals with, but is not limited to, evidence theory (also known as 

Dempster–Shafer Theory), interval analysis, fuzzy theory, Bayesian Theory, Convex Model 

Theory, and information gap decision theory for severe uncertainty [62]. 

No matter what type of uncertainty is being quantified, reducing computation complexity is 

one of the core parts of UQ research. Manson et al. proposed interval analysis and affine analysis 

to assess the parametric uncertainties on the FRF, which, compared to the traditional 

Monte-Carlo approach, give conservative bounds that are much faster to obtain [63]. A 

nondeterministic identification method is proposed to quantify the uncertainty of modal 

parameters with experimental data by [55], and a fuzzy formalism is used to provide confidence 

level because of its compatibility with data imprecision and incompleteness. Other possibilistic 

UQ analysis such as evidence theory is developed with both epistemic and aleatory uncertainties 

approximately taken into account. The algorithm has a flexible framework for imprecise 

information and is more cost effective compared to traditional approaches [60].  
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The Monte-Carlo method samples output distribution accordingly based upon distributions 

of inputs and parameters, ending up ultimately with probabilistic models. A lot of research has 

been done by approximating the original model with a lower-order transformation with less 

computational expense. Reference [64] describes an efficient technique to probabilistically 

quantify the parameter uncertainty by maximizing the likelihood of experimental measurements, 

in which polynomial perturbation is adopted to simplify the original model and compute 

likelihood. The perturbation approximation shows sufficient accuracy if the response is not a 

highly nonlinear function of parameters. Dealing with system response Probability Density 

Function (PDF) with acceptable computation consumptions, Polynomial Chaos Expansion (PCE) 

is another replacement model considering the sparsity-of-effect principle, and PCE with points of 

monomial cubature rules is constructed. Different from a perturbation method, PCE uses a set of 

multi-dimensional Hermite polynomials as orthogonal bases to expand the probability space and 

is convergent in the mean-square sense [65]. A non-intrusive PCE model is developed to predict 

uncertainty of FE model-derived FRFs with PDF given [62]. By using a Bayesian metamodel, 

Reference [61] also focuses on analyzing the uncertainty of FRFs obtained via FE model, and the 

emulator reduces the number of FE evaluations. Point-wise uncertainty intervals and uncertainty 

envelope function are developed by considering, respectively, the uncertainty at discrete 

frequency lines and continuous frequency range. Response surface and first-order reliability 

method (FORM) are also good surrogates to expedite the evaluation of the original FE model [57, 
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59]. A general symbolic regression using genetic programming is deployed in [59], in which the 

improvement has been demonstrated on both univariate and multivariate problems with both 

computational and experimental data. 

The same ideas of UQ may be applied to other models and applications. With probability 

preservation, the probability density evolution equation of nonlinear dynamic response for 

stochastic structures can be uncoupled from the dynamics, and the instantaneous PDF for any 

system response is obtained as the system is evolving in time; and research about parametric 

sensitivity of the importance measure based upon the corresponding cumulative distribution 

function (CDF) is also developed [66, 67]. Reference [68] quantifies the uncertainty of a neural 

network regression model via interval set techniques, in which the multi-layer perceptron 

network with Bayesian evidence training is adopted for experimental fatigue life measurements 

in glass fiber composites. UQ is also applied to investigating a plant model for robust control 

oriented identification, in which perturbation method is used for quantification of corrupted plant 

frequency responses [69]. 

The counter part of FE model-based transfer functions computation is data-based estimation, 

in which the FRF is often obtained by calculating the input-output transfer spectrum through 

time series measurements from vibration-based experiments. Besides of the modal parameter 

extraction, those frequency domain transfer functions, including FRF and other spectral forms, 

are often selected as indicators of (especially online) assessment of structural state of health [70, 
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71]. However, the uncertainty in FRF estimations will cause misidentification of test results, and 

induce non-damage-caused change, i.e. false positives. This motivates a UQ model to filter out 

those Type-I errors to support more robust decision-making, and section 1.3.2 specifically 

reviews the vibration-based feature UQ via statistical modeling. 

 

1.3.2. Current statistical modeling 

Some research has been done to statistically model the uncertainty and variation of 

estimations of transfer functions, e.g. transmissibility and FRF. Doebling and Hemez give an 

overview of a project at Los Alamos National Laboratory that aims at UQ methodology and 

assessing the total predictability of structural dynamics simulations, and the uncertainty 

propagation through numerical simulations is also discussed [72].  

Other related research proposed various ways to quantify variation of transfer functions 

[73-75]: an asymptotic variance is proposed of the transfer function estimated via a 

frequency-domain Gaussian maximum-likelihood estimator; by using a mixed 

probabilistic-worst-case approach, Reference [74] identifies error bound of a linear nominal 

model which is made up of a deterministic component due to unmodeled dynamics, and a 

probabilistic component due to noise; and variance is derived through perturbations of true 

power spectrum in [75]. In addition, time-variant coherent causality-based analysis is 
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implemented by Trethewey [76], where nonstationary time variant excitation sources are 

separated via Short Time Fourier Transform (STFT), in which noise effects in the vibration can 

be distinguished. Goodman formulates the confidence bands for all elements in the FRF matrix 

approximately using an F-distribution, and the confidence bands are given as functions of 

coherence [77, 78]. With a Gaussian input and optimized channel assumption, Bendat and Piersol 

apply perturbation analysis and derive the standard deviation of FRF estimations with respect to 

coherence function between input and output, through which the uncertainty bounds for different 

confidence levels could be expressed approximately in a Gaussian way [79-81]. Reference [82] 

applies multivariate uncertainty analysis and extends Bendat's model in [79-81] getting the 

sample covariance matrices for FRF of a linear system. With zero input noise, the model 

characterizes the same situation as Bendat's model does, and the derived expressions are identical 

to those from Reference [79-81]. But for the cases that noise existed on both input and output 

side, the model does not explicitly give a closed-form.  

In this dissertation, the distribution of data-based transmissibility and FRF estimations, both 

magnitude and phase, by deriving order statistics and PDFs, is characterized, which outperforms 

the existing models mentioned above. 

 

1.3.3. Probabilistic SHM/DP 
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Adopting current statistical models, SHM process can be enhanced and extended to DP, 

among which, Bayesian probabilistic SHM approach is one of the most active areas [25, 83, 84]. 

An improvement in fatigue diagnosis and prognosis of structures is achieved using Bayesian 

probabilistic techniques by [85-87], and frequency-wave-number migration technique, 

image-segmentation technique, Bayesian autoregressive integrated moving average (ARIMA) 

model and probability of detection methodologies are developed. Probabilistic SHM and damage 

identification are also implemented by [88-91], by means of stochastic subspace-based 

covariance-driven identification method, design of detection algorithms, Bayesian inference and 

imprecise probabilities with fuzzy parameters. Considering the statistical model established in 

this dissertation, this filed is suggest as future work. 

 

1.4. Contributions of the dissertation 

Motivated by the demanding of rapid structural state assessment, transmissibility-related 

features are adopted in the SHM framework. Statistical modeling process is deployed fulfilling 

the need of SHM application, in which features are evaluated subject to uncertainties and 

decision boundaries of state assessment are desired in statistical sense. Itemized contributions are 

list below: 

1) Development of two metrics of transmissibility change for the purpose of damage 
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detection; 

2) Case study of damage localization via proposed two metrics; 

3) Analysis uncertainty sources in data based transmissibility estimations and comparing 

different estimators of transmissibility and FRF; 

4) Uncertainty quantification of different estimators via different statistical modeling 

approaches; 

5) Validate statistical models via Monte-Carlo test, designed outlier percentage and other 

quantitative metrics; 

6) For UQ models with full characterization of PDFs, implement hypothesis tests regarding 

different paradigms of SHM and damage identification problems; 

7) Quantify the sensitivity and specificity of different features in the decision-making 

process established in (6); 

8) Quantify the trade-off between probability of false alarms and probability of detection, 

for different features, including FRF and transmissibility, magnitude and phase.  

 

  



 

 

22 

 

2. Vibration-based inspection and SHM features 

Based upon the structural state awareness motivation addressed in Chapter 1, 

vibration-based inspection is deployed onto a surrogate satellite FE model to initiate the 

transmissibility-related SHM process. Transmissibility definition will be introduced in this 

chapter and evaluated on this specific structure as a benchmark, comparing which to the 

evaluations from damaged case with fastener loosening simulated in FE model. For damage 

identification purpose, features of transmissibility change are presented, leading to a damage 

detection and localization capability. For real structural test, transmissibility are usually not 

assessable through well-performed FE model, but through experimental data instead. Therefore, 

the end of this chapter will review and compare different data-based estimation algorithms (often 

called estimators) and give an overview of their accuracies. 

 

2.1. Simple satellite model 

2.1.1. FE model 

In this work, the problem is investigated on a simplified representative PnPSat structure (e.g. 

CubeSat) within a finite element computational model. A cubic shell (plate)-frame assembly is 

designed in ABAQUS, shown in Figure 2-1(a), to present a simplified satellite structure. Six 

plates, whose dimension is 1m×1m and 2mm thick each, are connected onto the cubic frame, 
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whose thickness is 50mm, with fixed-base boundary conditions as shown in Figure 2-1(b). The 

material is chosen as linear elastic aluminum and specific finite element details are given in 

Table 2-1. In the finite element model built in ABAQUS, 19,922 elements are used and the 

physical size of each element varies from 0.025 to 0.04 m, deemed sufficient by a model 

convergence investigation. This model places tunable (in stiffness) linear elastic connections 

along all sections of the frames, mounting the plate to the frame to simulate the 

displacement-dependent load transfer property of bolt connections. For specific damage 

behavior-learning purposes, the edges of plates were divided into small blocks first, so that the 

contact stiffness is tunable at each localized area, as Figure 2-1(c) shows. The original 

(undamaged) contact stiffness of the updated model is set to be 1012 N/m/m2, which is 

approximately calculated as the Young’s modulus divided by the frame thickness, and damaged 

contact stiffness is then specified to simulate preload loss, which will be addressed in detail next 

section. 

 

Figure 2-1: (a) geometric model, (b) assembled geometric model, and (c) FE mesh model with 
fixed boundary at the base 

 

(c) (b) (a) 
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Table 2-1: finite element properties of the model 

Component 
Number of 

nodes 
Number of 
elements 

Elements 
Number of 

parts 

Plate 3119 3042 

2994 Linear quadrilateral 
elements of type S4R 

48 Linear triangular elements of 
type S3 

6 

Frame 3389 9283 
Linear tetrahedral elements of 

type C3D4 
1 

 

The initial thrust was to consider modal analysis to observe possible changes in dynamic 

behavior between completely fastened and unfastened states. A modal simulation is implemented 

on this shell-frame assembly in the fully-fastened connection, and natural frequencies and mode 

shapes are extracted. Because of spatial symmetry, there are repeated modes, and only the first 

six of the non-repeated mode shapes are shown in Figure 2-2. Superimposed on top of the 

displacement patterns are the local von Mises strain levels. The corresponding first six 

(non-repeated) natural frequencies were about 22, 45, 66, 81, 101, and 130 Hz. 
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Figure 2-2: first six distinct fully-fastened mode shapes 



26 

 

 

 

 

 

 
Figure 2-3: mode shape change due to local loosening 

 

When a local region is unfastened, the hypothesis is that modal properties would change. 

Figure 2-3 shows such a (subtle) change for a particular mode shape, where there is a slight loss 

in the shape symmetry, as well as local strain concentrations. Not surprisingly, we observed that 

individual frequencies were fairly insensitive to low damage levels (i.e., only small regions of 

preload loss, corresponding to 1-2 bolt pressure regions,) but perhaps wide-band frequency 

information, coupled with mode shape estimations, could provide sufficient evidence to 

implement a simple, yet robust verification test. 
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2.1.2. Percussion test and feature extraction 

 

Percussion test is generally the simplest way to excite a structure with (theoretically) broad 

energy distribution across a band of interest, resulting in multi-mode excitation. This test is 

simulated in ABAQUS by exciting the structure with a narrow-band pulse and choosing a grid of 

nodes (interest points) at which to sample the resulting acceleration. The width of the impulse is 

set to be one millisecond, which is technically not “zero-width” and not exactly “white” in 

frequency domain, as shown in Figure 2-4(c), but much shorter than the period of the highest 

mode being interested in. (The highest mode in this analysis has a period of about 0.01 second.)  

Further percussion tests (with both center and offset excitation, at point #1 and #9 labeled in 

Figure 2-5) are implemented under different damage circumstances, and the contact stiffness is 

varied from 99% to almost 0% of the original stiffness, which is plotted in log-scale in Figure 

2-6, while in the undamaged areas (red areas in Figure 2-5), the contact stiffness is 100% (1012 

N/m/m2).  
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Figure 2-4: (a) impact time history, (b) acceleration response, and (c) Fourier Transform 
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Figure 2-5: interested points and location of damages (purple blocks) 

 

 

Figure 2-6: specific preload loss levels 
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According to Figure 2-5, there are seventeen interest points (IPs) in total, marked for 

convenience, where acceleration responses will be calculated with impulse excitation applied 

onto point #1 and #9. Hence, the dimension of transmissibility matrix will be 17-by-17 with all 

pairs of IPs covered, and any off-diagonal term will be reciprocal of its transpose entry. For 

traditional FRF, there are 2-by-17 evaluations in this test. 

 

 

2.2. Formulation of transfer functions 

Motivated by the specific kind of vibration tests used in system identification process, as the 

FE structural simulation and percussion test stated in last section, this work will consider a 

single-input/multiple-output (SIMO) data flow without losing generality of methodology. In 

Figure 2-8, u(t) denotes the input excitation into a structure, and vi(t) and vj(t) represent the 

output responses at arbitrary degree-of-freedom i and j. Although the above-mentioned input and 

output signals can be any measurable kinetic/kinematic quantities, such as force, strain, 

displacement, velocity, acceleration, etc., the most common measurement convention--which 

will adopted here--is force input and acceleration output. 
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model. This model places a tunable (in stiffness) elastic spring at certain locations connecting the 

plate to the frame to simulate the displacement-dependent load transfer property. The damaged 

areas are chosen arbitrarily as shown in pink in Figure 2-5. As mentioned before, the degradation 

of the specified contact stiffness in the contact areas is regarded as damage (preload loss), 

thereafter seeing change of transmissibilities induced by this damage is anticipated. For 

quantitative study, because the amount of change may be highly cohered with the severity of 

damages, two transmissibility-based features are proposed to quantify this issue. 

 

2.3.1. Features 

The working hypothesis is as fastener preload changes, the relative local stiffness of the 

structure changes, and measured transmissibility paths should be changed. In order to quantify 

transmissibility changes more compactly, two such evaluation metrics are considered in this 

section. One is the root-mean-square difference (RMSD), defined in Equation (2-3): 

( )2

1

1 ( )
1

binn
ij ij l ijl

bin

RMSD T T
n

ω
=

= Δ − Δ
− ∑ , (2-3) 

where difference between undamaged and damaged transmissibility set ,fastened ,unfastenedij ij ijT T TΔ = − , 

ijTΔ  is the average difference over entire frequency domain, and nbin is the total amount of bin 

numbers (frequency lines). The interpretation of RMSD is an average Euclidean “distance” 
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between the two feature sets describing how different the two vectors are.  

A second metric, dot-product-difference (DPD), considers the projection of the baseline 

(undamaged) and test transmissibilities via the dot product, normalized subsequently by the 

length of the feature vectors. The result is the cosine of the projection angle, or shown in 

Equation (2-4): 

,fastened ,unfastened

,fastened ,unfastened

cos ij ij
ij

ij ij

T T
T T

θ
⋅

= . (2-4) 

From this definition, we can see that if the two feature vectors are orthogonal, the 

evaluation will be zero, and if they are parallel, the evaluation is 1 or -1. For normalization, we 

define the DPD metric as1 cos ijθ− : 

,fastened ,unfastened

,fastened ,unfastened

1 ij ij
ij

ij ij

T T
DPD

T T
⋅

= − . (2-5) 

Compared to the RMSD metric, this metric has the advantage of scaling between 0 and 1. 

 

2.3.2. Damage detection 

Figure 2-8 and 2-9 show two example sets of transmissibility curves and quantified metrics 

via above-described percussion tests, which are between IP pairs 10-16 and 11-15, with different 

damage levels. Upper rows in Figure 2-8 and 2-9 are from center excited percussion and lower 
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rows are from offset excitations. Metrics evaluations are plotted as well, with RMSD on the top 

and DPD underneath. 

Generally speaking, both of the metrics increase as stiffness loss occurs (increasing damage). 

For severe damage cases, as an example, the damaged stiffness lower to 1% of the original, it is 

very easy to capture the raw transmissibility curve shift, but for small damage cases, the metrics 

are necessary for magnifying and determining the differences. From the two figures, it roughly 

looks that DPD metric is more sensitive for detecting the transmissibility change in 

center-excited percussion tests, and RMSD is more unbiased between the two metrics and could 

capture very little change of structure. However, this preliminary conclusion is only for these 

specific IP pairs, and under different circumstances with different IP locations relative to damage 

positions, there might be a different observation, and this will be addressed in next section. 
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Figure 2-8: transmissibilities and change of metrics for measurement points 10-16 

 

Figure 2-9: transmissibilities and change of metrics for measurement points 11-15 
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2.3.3. Damage localization 

Figure 2-8 and 2-9 just showed that certain metrics can capture change of transmissibility 

easily with examples at two pairs of IPs and two different percussion locations. One further 

demand is illustrating the transmissibility feasibility for damage localization. In Figure 2-10 to 

2-14, the transmissibility error matrices for selected damage levels with all the combinations 

between any two IPs are color-plotted, and for each level of the damages, we will have 4 maps of 

transmissibility errors, for both center (left column) and offset (right column) excitation, and for 

both RMSD (upper row) and DPD (lower row) metric. Due to the limited space, only necessary 

plots from selected damage levels are included for illustrative purposes. 

In these color maps, some of the peaks are marked, especially those peaks where the 

measuring pairs are close to the damage regions, such as points 7, 10, 15, 16 and 17, which are 

labeled in red. From these error maps, we have the following observations: 

 For damage existence recognition, the transmissibility change is quite obvious to be 

detected, and DPD metric is less noisy than RMSD, and it is also more sensitive to capture 

the transmissibility changes. 

 For damage localization, which is a higher level of structural health monitoring, some 

peaked pairs are correlated with damaged areas, such as points #10, #16 and #17, but due to 
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the coarseness of the interest points array, and the possible coupling and reflecting of 

structural dynamics, there is no clear determination of damage position correlated with the 

error peaks, which encourages better detectors in the future. 

 On the other hand, some error peaks tend not to correlate with the actual damaged areas, but 

these peaked pairs are very consistent in different damage levels, such as the dot product 

metric at pair #12 and #14 for center-excitation at all damage levels. In this case, the relation 

between error-peak location and fastener loosening area should be investigated for a better 

localization quality. 

 

 
Figure 2-10: error maps for 99% stiffness retention 
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Figure 2-11: error maps for 95% stiffness retention 

 

Figure 2-12: error maps for 75% stiffness retention 
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Figure 2-13: error maps for 50% stiffness retention 

 
Figure 2-14: error maps for 10% stiffness retention 
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2.4 Transmissibility and FRF Estimation 

 

2.4.1. Background 

In the past section, the feasibility of damage occurence detection and localization has been 

shown via two transmissibility-based features we defined, namely RMSD and DPD. The 

transmissibility evaluations, for illustration purpose, are directly from responses calculated from 

FE model with ideal impact excitation, in which case all test results can be regarded as "true 

value".  

However, broad-band random excitations are more often used in real experiments, and in 

this case with stationary implementations, various ways of calculations are used to compute the 

FRF and transmissibility; while the rigorous definitions given by Equations (2-1) and (2-2) give 

simple ideas but not practical and accurate evaluations. Those various estimation algorithms, 

often called estimators, differently reflect all the uncertainties from imperfect experimental 

conditions, limited-band input, sampled measurement records, and imprecise calculation, and 

should be accordingly selection based upon the actual implemental conditions.  
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2.4.2. Formulation of Estimators 

Considering a more realistic data flow, compare to Figure 2-8, noise terms are included in a 

SIMO model shown in Figure 2-15. In this updated model, m(t) and ni(t), nj(t) are the external 

noise contaminated in real measurements x(t) and yi(t), yj(t). 

 

Figure 2-15: SIMO data flow model 

According to the more general data flow in Figure 2-15, Equations (2-1) and (2-2) are 

updated as: 

( ) ( )
( ) ( )

, ,,
,

( )
( )

( )
i j i ji j

i j

y t n tV
H

U x t m t
ω

ω
ω

⎡ ⎤−⎣ ⎦= =
⎡ − ⎤⎣ ⎦

F

F
, (2-6) 

and 
( )
( )

( ) ( )
( ) ( )

( ) i ii
ij

j j j

y t n tV
T

V y t n t
ω

ω
ω

⎡ − ⎤⎣ ⎦= =
⎡ ⎤−⎣ ⎦

F

F
. (2-7) 

Because the true input and output u(t) and v(t) and their Fourier transforms are never 

Σ
vi(t)

ni(t)

yi(t)

Σ
vj(t)

nj(t)

yj(t)

…
…

…

Σ
m(t)

u(t)
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hj(τ)
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approachable, spectral techniques are used to estimate transfer functions more robustly in order 

to eliminate the uncertainty influence, which has been mentioned in last section.  

These estimators include, but not limited to, the H1 and H2 estimators for FRF: 

( ) ( )
( )

( )
( )

ˆ ˆ
ˆ

ˆ ˆ
xy yy

xx yx

G G
H

G G
ω ω

ω
ω ω

= = , (2-8) 

and estimators for transmssibility: 

 ( ) ( )
( )

ˆ
ˆ

ˆ
i

j

xy
ij

xy

G
T

G

ω
ω

ω
= , (2-9) 

( ) ( ) ( )
( ) ( )

( )
( )

ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ
i

j

xy xx i
ij

jxy xx

G G H
T

HG G

ω ω ω
ω

ωω ω
= = , (2-10) 

( ) ( )
( )

ˆ
ˆ

ˆ
i i

j j

y y
ij

y y

G
T

G

ω
ω

ω
= , (2-11) 

ˆ ˆ,  xyG H  and T̂ ∈^ , and ˆ ˆ,  xx yyG G +∈\ , ∀i or j. The ˆ  sign denotes the spectral estimation 

instead of the true value itself, and ˆ
xxG , ˆ

xyG , ˆ
yxG  and ˆ

yyG are the auto and cross power 

density estimations between corresponding input x(t) and output measurement y(t) corrupted by 

noise. 

Welch proposes an averaging algorithm [92], which has become a standard implementation 

for real applications, to enhance the quality of spectral estimations. In this method, the original 

time series are split into nd segments, and the Fourier Transform of each segment is calculated 
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and averaged, therefore a smoother estimation will be achieved. Equation (2-12) illustrates how 

ˆ
xyG  is estimated via Welch’s algorithm as an example: 

( ) ( ) ( )*

1

1ˆ
dn

xy k k
kd

G X Y
n

ω ω ω
=

= ⋅∑ � � , (2-12) 

where the  �  sign denotes the Fourier Transform of each single segment and *  indicates the 

complex conjugate. It is necessary to point out that if noise is independent from either system 

input or output and nd is sufficiently big, the cross power density function estimations ˆ
xyG  and 

ˆ
yxG  will converge to the true value of uvG  and vuG , but the auto power densities will not. 

Equation (2-13) addresses this issue mathematically using ˆ
xxG and ˆ

xyG  as example [79]: 

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ
xx uu mu um mm uu mm

xy uv mv un mn uv

G G G G G G G

G G G G G G

= + + + → +

= + + + →
. (2-13) 

Reconsidering the data flow in Figure 2-15, noise terms m and n are independent from each 

other and also independent from both input u and output v, therefore the cross power between 

these corresponding series approach zero if the number of averages is large enough. As a 

consequence, the H1 and H2 estimators in Equation (2-8) are both biased, and 

under/overestimate FRF respectively, for which people should find a suitable estimator by 

comparing the noise conditions on input and output channels to get a more accurate auto power 

density and subsequently more accurate frequency response estimations.  

For transmissibility estimators given by Equations (2-9) and (2-10), they are both unbiased 
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estimations; but for estimator in Equation (2-11), the auto-powers for noise cannot be ignored 

therefore it is a biased estimator since the expected value of the noise-contaminated form does 

not converge to the expected value of the noise-free form 
i i j jv v v vG G . However, if the second 

order series expansion is considered: 

( )2
ˆ ˆ ˆ ˆ ˆ(1 )
ˆ ˆ ˆ ˆ ˆ(1 )

1i i i i i i i i i i

j j j j j j j j j j

y y v v n n v v i v v
i j i j

y y v v n n v v j
j

v v

G G G G G

G G G G G

+
+ − −

+
= = ≈

+ +
+

ε
ε ε ε ε ε

ε
, (2-14) 

where ˆ ˆ/nn vvG G=ε  and has the physical meaning of noise-to-signal ratio (NSR), or the 

reciprocal of signal-to-noise ratio (SNR), which is the more usual metric. For the conditions with 

light noise contamination, i.e. small iε  and jε , or close enough SNR on each channel, the 

estimator in Equation (2-11) may be regarded approximately as an unbiased estimation. 

Dealing with different transmissibility estimators, the estimator in Equation (2-10) relates 

FRFs from two single channels with transmissibility, and in other words, transmissibility can be 

not only estimated through data-based FRF estimations but also FRFs obtained from FE 

modeling. For some situations where input time series are not available, estimator in Equation 

(2-11) is compatible to conditions with output-only data, which is very useful for online 

assessment.  

 

A portion of this chapter has been published in Proc. SPIE 7650, Zhu Mao and Michael 
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Todd, 2010. The title of this paper is “A structural transmissibility measurements-based approach 

for system damage detection”. The dissertation author was the primary investigator and author of 

this paper. The fourth section of this chapter, in part, has been published in Mechanical Systems 

and Signal Processing, Zhu Mao and Michael Todd, 2012. The title of this paper is “A model for 

quantifying uncertainty in the estimation of noise-contaminated measurements of 

transmissibility”. The dissertation author was the primary investigator and author of this paper. 
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3. Statistical Modeling for Uncertainty Quantification 

 

This chapter proposes statistical models to quantify uncertainty of transmissibility and FRF 

estimations, for both magnitude and phase. Different approaches are adopted, suiting to different 

estimators. Equation (3-17) gives the variance of transmissibility magnitude estimations via 

perturbation. Equation (3-20) gives the PDF of auto-power density estimations, and Equation 

(3-28) gives PDF of transmissibility magnitude estimation estimated by auto-power densities, via 

a Chi-square bivariate approach. Equation (3-33) and (3-36) provide the PDFs of transmissibility 

and FRF magnitude estimations, and Equation (3-44) and (3-46) provide the PDFs of 

transmissibility and FRF phase estimations, and all four models are derived via Gaussian 

bivariate approach with different variable transformations. 

 

3.1. Overview of uncertainty accumulation and statistical modeling 

 

Figure 3-1 illustrates how transfer functions, especially for the estimation algorithms 

introduced in Chapter 2, are estimated and uncertainties accumulated step by step. Usually for 

engineering problems involved with signal processing, the input and output are 

measured/quantized with specific precision and sampled into discrete time domain, literally 
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Uncertainty quantification (UQ) is rooted modeling the estimation process as a random 

variable in order to obtain order statistics, or, if possible, a probability density function, from 

which any statistical order and other statistical properties are all derived. The primary result is 

that the accuracy of the estimation process may be quantified, given by the variance and/or 

significance level, which facilitates better understanding of system identification results in a way 

that facilitates quantitative decision-making. As an example central to this work, proper 

quantification of transmissibility estimation from a test establishes, through confidence bounds, 

statistically-sound hypothesis testing when using the estimations to determine the presence 

and/or location of damage.  

For real vibration-based system identification implementations, Gaussian white noise is 

often used as excitation to stimulate structure for its stationary, broadband frequency 

characteristics. The Gaussian nature will be preserved when the input is passed through any 

linear process (the structure itself, a Fourier transform, etc.); this is an example of internal 

uncertainty. For external uncertainty, it is feasible to assume that other corrupting influences 

(“noise”) may also be modeled as Gaussian (though not necessarily correlated to the excitation) 

because many sources of uncertainty are, indeed, Gaussian or near-Gaussian, and under central 

limit theorem arguments, their superposition could be expected to converge to Gaussian. 

Therefore, in the next two sections, uncertainty propagation of transmissibility and FRF 

estimations will be computed considering the inherent Gaussian nature of the underlying 
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uncertainty.  

In the following sections, magnitude and phase uncertainty of transmissibility and the 

traditional FRF will be modeled through different statistical approaches. Representative 

estimators are adopted for the purpose of illustrating modeling processes and validating their 

applicability. Three quantification models are proposed in section 3.2 for transfer function 

magnitude estimations, namely perturbation, Chi-square bivariate and Gaussian bivariate 

approaches. Perturbation approach in 3.2.1 gives uncertainty bounds with respect to variance and 

the other two in 3.2.2 and 3.2.3 supply a full characterization of probability density functions. In 

section 3.3, phase estimations are studied and probability density function of phase estimations 

are derived via two-dimensional Gaussian distribution. 

 

3.2. Magnitude uncertainty 

3.2.1. Perturbation approach 

By means of linear perturbation, Bendat and Piersol derived standard deviation of FRF 

magnitude estimations obtained from a single-input/single-output (SISO) model with noise-free 

input [79-81]. Following the same idea, standard deviation of transmissibility is derived in this 

section, where Bendat and Piersol's model is extended for transmissibility uncertainty modeling. 

Recall the SIMO signal model in Figure 2-15, a reshaped structure connecting both responses at 
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location i and j with a new equivalent SISO flow is shown in Figure 3-2, and according to the 

optimized channel assumption in [79-81], where noise power densities are minimized in 

measurements, there will be two coinstantaneous relations: 

( )21
i i j i i in n v y y yG Gγ= −  and ( )21

j j i j j jn n v y y yG Gγ= − . (3-1) 

in which 2
j iv yγ and 2

i jv yγ are the coherence functions between corresponding series shown in 

Figure 3-2. 

  
Figure 3-2: transformed data flow for transmissibility 

 

In the new data flow shown in Figure 3-2, output measurements yi and yj are regarded as 

input and output of each other, with transmissibility hij connecting them. Since noise can appear 

independently on both response locations, noise must be included on both variables 

independently. In the signal flow model of Figure 3-2, this section aims to establish an analytical 

formula in which the uncertainty of transmissibility hij may be characterized, given noisy 

measurements yi and yj.  

hij(τ)

Σ

Σ

yi(t)

ni(t)

vi(t) vj(t)

nj(t)

yj(t)
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Firstly, consider the reformed estimator in Equation 2-11, and the theoretical relation holds: 

2

i i j jv v ij v vG T G=
, (3-2) 

with regard to auto-power density function of noise-free responses vi and vj, since the actual 

input excitation u and noisy measurement x is eliminated in this transmissibility case. 

Taking differential increment of Equation (3-2), there will be: 

2 2

i i j j j jv v ij v v ij v vG T G T GΔ = Δ + Δ
, (3-3) 

where the ∆ operator means the difference between an estimate of a quantity (the same 

convention as Equation 2-12, indicated by ˆ  over the quantity) and the quantity itself, e.g., 

22 2ˆ
ij ij ijT T TΔ = − , and so forth.  

Then, square both sides of 
2 2

j j i i j jij v v v v ij v vT G G T GΔ = Δ − Δ , which is the equivalent form 

of Equation (3-3), there will be: 

( ) ( ) ( )
2 222 2 42 2

j j i i i i j j j jv v ij v v v v v v ij v v ijG T T G G T G TΔ = Δ − Δ Δ + Δ , (3-4) 

and take expectation operation [ ]E ⋅  on both sides of Equation (3-4), there will be: 

( ) ( ) ( )
2 222 2 42 E E 2 E E

j j i i i i j j j jv v ij v v ij v v v v ij v vG T G T G G T G⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤Δ = Δ − Δ Δ + Δ⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
. (3-5) 

Consider the definitions of order statistics, variance and covariance, which are
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( ) ( )
2 2ˆ ˆvar E Eφ φ φ φ⎡ ⎤ ⎡ ⎤⎡ ⎤ = − = Δ⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦

 and ( )( )ˆ ˆ ˆ ˆcov , E Ei j i i j j i jφ φ φ φ φ φ φ φ⎡ ⎤⎡ ⎤ ⎡ ⎤= − − = Δ Δ⎣ ⎦⎣ ⎦ ⎣ ⎦ , 

Equation (3-5) can be updated as: 

2 2 42 ˆ ˆ ˆ ˆˆvar var 2 cov , var
j j i i i i j j j jv v ij v v ij v v v v ij v vG T G T G G T G⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤= − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

, (3-6) 

in which variance and covariance of auto power densities are given by Reference [79], and nd is 

number of averages: 

ˆvar
i i i iy y y y dG G n⎡ ⎤ =⎣ ⎦  and ( )2

2 2 2ˆvar 1
i i i i j i i iv v y y v y y y dG G G nγ⎛ ⎞⎡ ⎤ = − −⎜ ⎟⎣ ⎦ ⎝ ⎠

;  

ˆvar
j j j jy y y y dG G n⎡ ⎤ =⎣ ⎦  and ( )2

2 2 2ˆvar 1
j j j j i j j jv v y y v y y y dG G G nγ⎛ ⎞⎡ ⎤ = − −⎜ ⎟⎣ ⎦ ⎝ ⎠

;  

and 
21ˆ ˆcov ,

i i j j i j i i j jv v v v v v v v v v d
d

G G G G G n
n

⎡ ⎤ = =⎣ ⎦ .  

Substitute all the terms back to Equation (3-6), replace 
i iy yG  and 

j jy yG with 2
i i j iv v v yG γ and 

2
j j i jv v v yG γ , and divide both sides by 

i iv vG , there is: 

( ) ( )2 22
2 2 4

2 2 2

2 21 2 1ˆvar i j j ii i i i

i j j j j j j i

v y v yy y v v
ij ij ij

d v y y y d v v d v y

G G
T T T

n G n G n

γ γ

γ γ

− −⎡ ⎤ = − +⎢ ⎥⎣ ⎦
. (3-7) 

In Equation (3-7), term
i i j jv v v vG G can be replaced by 

2

ijT according to Equation (3-2), and 

therefore, the variance of magnitude square yields to: 

( )2 2 2 2
2 4

2 2

2 2
ˆvar i j j i i j j i

i j j i

v y v y v y v y

ij ij
d v y v y

T T
n

γ γ γ γ

γ γ

+ −⎡ ⎤ =⎢ ⎥⎣ ⎦
. (3-8) 

To get the variance of magnitude, consider the following derivation with notation φ 



53 

 

 

 

representing any random variable: 

( ) ( )2 22 2 2 2ˆ 2φ φ φ φ φ φ φ φ φΔ = − = + Δ − = Δ + Δ .  

Proceeding by squaring the expression and taking the expectation on both sides: 

( ) ( ) ( ) ( )2 2 3 42 24 4φ φ φ φ φ φΔ = Δ + Δ + Δ ,  

( ) ( ) ( ) ( )2 2 3 42 2E 4 E 4 E Eφ φ φ φ φ φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⇒ Δ = Δ + Δ + Δ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
,  

( ) ( )3 42 2 2 2 ˆE var 4 var 4 E Eφ φ φ φ φ φ φ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⇒ Δ + Δ = + Δ + Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , (3-9) 

while 2 2 2ˆ ˆE E varφ φ φ φ⎡ ⎤ ⎡ ⎤⎡ ⎤Δ = − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦  and 2 2 2 2ˆ ˆvar var varφ φ φ φ⎡ ⎤ ⎡ ⎤⎡ ⎤Δ = − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , and assume 

Δφ is zero mean Gaussian random variable, the third and fourth moment in Equation (3-9) will 

be 0 and 2 ˆ3var φ⎡ ⎤
⎣ ⎦  respectively [93], then substitute these equations back into Equation (3-9), 

it yields to:  

2 2 2ˆ ˆ ˆ2var 4 var var 0φ φ φ φ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . (3-10) 

The positive solution of ˆvar φ⎡ ⎤
⎣ ⎦  in Equation (3-10) is: 

2 4 21ˆ ˆvar var
2

φ φ φ φ⎡ ⎤ ⎡ ⎤= − + +⎣ ⎦ ⎣ ⎦ , (3-11) 

and if 2ˆvar φ⎡ ⎤
⎣ ⎦  

is small, a first order approximation of Equation (3-11) is available, which has a 

simpler form: 
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2

2

ˆvar
ˆvar

4

φ
φ

φ

⎡ ⎤
⎣ ⎦⎡ ⎤ ≈⎣ ⎦ . (3-12) 

Apply the calculation in Equation (3-12) to (3-8), and the variance of îjT  will be: 

2 2 2 2
2

2 2

2ˆvar
2

i j j i i j j i

i j j i

v y v y v y v y
ij ij

d v y v y

T T
n

γ γ γ γ

γ γ

+ −
⎡ ⎤ =⎣ ⎦ . (3-13) 

If noise on either side is zero, i.e., either 2
i jv yγ or 2

j iv yγ is equal to one, Equation (3-13) will be 

reduced to the model presented in Reference [79-81], which is used to quantize uncertainty of 

FRF magnitude without input noise. 

As Equation (2-14) illustrates, the estimator in this model is biased, according to Equation 

(3-1): 

2 2

2 2
i i j i i ji i

j j j j i j j i

v v v y v yy y
ij

y y v v v y v y

GG
T

G G

γ γ

γ γ
= = , (3-14) 

indicating that the estimator has a bias coefficient 2 2
i j j iv y v yγ γ , compared to the true ijT . 

However, in reality, the coherence functions in Equation (3-13) and (3-14) are not available, 

since vi and vj are not measurable. Therefore further modeling is needed to achieve coherence 

information. Consider the H1 and H2 estimators for input-output transfer function (FRF) in 

Equation (2-8), the definition should be equal without input noise in the auto power density 

terms, thus: 
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i j j j

i i j i

y y v v

v v y y

G G

G G
= .  

Substitute Equation (3-1), there is: 

2

2
i j i j j j

j i i i j i

y y v y y y

v y y y y y

G G

G G

γ

γ
= ,  

which is identical to: 

2

2 2 2i ji j j i

j i i j i j

i i j j i i j j

y yy y y y
v y v y y y

y y y y y y y y

GG G

G G G G
γ γ γ= = = . (3-15) 

Equation (3-15) relates the two unknown coherences 2
i jv yγ and 2

j iv yγ with the coherence of 

two measurable contaminated series yi and yj. In order to get Equation (3-13) and (3-14) 

compatible with contaminated data, a further assumption is made in Equation (3-16) that the two 

input-output channels should be "balanced": 

2 2 2
j i i j i jv y v y y yγ γ γ= = . (3-16) 

Once this assumption is made, the random error of transmissibility magnitude estimation 

can be described with its variance: 

2
2

2

1
ˆvar i j

i j

y y

ij ij

d y y

T T
n

γ

γ

−
⎡ ⎤ =⎣ ⎦ , (3-17) 

and the bias error is negligible thereafter. 
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3.2.2. Chi-square Bivariate approach 

Instead of quantifying uncertainty with order statistics, this approach considers the estimator 

in Equation (2-11), in which auto-power densities of two responses are involved, as listed again: 

( ) ( )
( )

ˆ
ˆ

ˆ
i i

j j

y y
ij

y y

G
T

G

ω
ω

ω
= .  

For a stationary Gaussian random input process (denoted by x), the exact output v will be 

also Gaussian for a linear system. Even if the input random series is not Gaussian, the output v, 

which are the convolution of input series with structure impulse response, will converge to 

Gaussian due to averaging under the central limit theorem. Therefore, the smooth output 

auto-power spectrum estimation ˆ
vvG  will follow a Chi-square distribution fluctuating around 

the true value vvG  [93], and the estimation satisfies Equation (3-18) where 2
2 dnχ  represents a 

Chi-square distributed random variable with 2nd degrees-of-freedom, and nd has been pointed out 

being the number of averaging times in Welch’s smooth power spectrum estimation: 

2
2ˆ

2
dn

vv vv
d

G G
n

χ
= , (3-18) 

where nd is an integer. Therefore, the transmissibility estimation according to Equation (2-11) is 

the square root of the ratio between two (perhaps correlated) Chi-square distributed random 
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variables. 

For the situation where measurements are subject to extraneous noise or other sorts of 

environmental and operational variability, like the condition in Figure 2-15, the auto-power 

spectrum estimation is also Chi-square distributed under the assumption of independent Gaussian 

noise characteristics, as shown in Equation (3-19): 

2 2
2 2 1ˆ 1

2 2
d dn n

yy yy vv
d d

G G G
n n SNR

χ χ ⎛ ⎞= = +⎜ ⎟
⎝ ⎠

, (3-19) 

where the signal-to-noise ratio /vv nnSNR G G=  is defined in the same way as before. Compared 

to Equation (3-18), there is a scaling factor with SNR involved, and this shows more clearly (than 

Equation (2-14)) that when the signal-to-noise ratios at both measurement DOFs i and j are 

nearly equal or the SNR of each channel is very small, the noise terms in transmissibility 

estimator in Equation (2-11) are negligible, and the transmissibility estimation is approximately 

unbiased, as previously stated.  

The probability density function 2 ( )p z
χ

 of a Chi-square distributed variable z  with 2nd 

degrees-of-freedom may be expressed as [93]: 

( )2

1 2e( ;2 )
2

d

d

z
n

d n
d

zp z n
nχ

−− ⋅
=

⋅ Γ
, (3-20) 

where ( )Γ ⋅  is the Gamma function. As an outgrowth, Equation (3-20) can be used to quantify 
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the uncertainty of auto-power spectra estimation for any Gaussian time series with nd times of 

averages. 

Consider the summation of the magnitude square of complex iY�  and jY� , which are the 

Fourier transform of each round of measurements iy  and jy  in Figure 2-15, the argument iI  

shown in Equation (3-21) is equal to nd times of the auto-power density estimation ˆ
i iy yG : 

( )2 2
, ,

1

ˆ
d

i i

n

i iR k iI k d y y
k

I Y Y n G
=

= + =∑ � � , (3-21) 

where  ( = 1)i iR iIY Y Y= + ∈ −i i� � � ^  and
 

,iR i iI iY Y Y Y⎡ ⎤ ⎡ ⎤= ℜ = ℑ⎣ ⎦ ⎣ ⎦
� � � � , and the same relationship for 

measurements at position j. The covariance matrix TE [ , , , ]  [ , , , ]iR iI jR jI iR iI jR jIY Y Y Y Y Y Y Y⎡ ⎤= ⎣ ⎦C � � � � � � � �  

takes the form in Equation (3-22), where the subscripts A and C in the covariance terms 2
A i jY Yc  

and 2
C i jY Yc  represent auto- and cross- with respect to the real and imaginary parts of iY�  and jY�  

[94]: 

2 2 2

2 2 2

2 2 2

2 2 2

0

0

0

0

i A i j C i j

i C i j A i j

A i j C i j j

C i j A i j j

Y Y Y Y Y

Y Y Y Y Y

Y Y Y Y Y

Y Y Y Y Y

c c

c c

c c

c c

σ

σ

σ

σ

⎡ ⎤−
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

C . (3-22) 

According to Reference [94], the joint probability density function ( ),I i jp I I of arguments 

iI  and jI  illustrated in Equation (3-21) can be rewritten as Equation (3-23), with the 

covariance terms in Equation (3-22) involved: 
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( )
( ) ( )

( ) ( ) ( )

( )

2 2 1
2

2 2 2 2

1
1 2 2 2 2 2 2 2

2 2

1 2 2 2 2

exp
2

,
2

I

d
j i

i j A i j C i j

d

d

i j A i j C i j A i j C i j

A i j C i j

d

i j A i j C i j

n
Y i Y j

i j

Y Y Y Y Y Y

I i j n
n

Y Y Y Y Y Y Y Y Y Y d

Y Y Y Y i j

n
Y Y Y Y Y Y

I I
I I

c c
p I I

c c c c n

c c I I

c c

σ σ

σ σ

σ σ

σ σ

−

−
+

−

⎛ ⎞+⎜ ⎟− ⋅
⎜ ⎟− −⎝ ⎠=

⋅ − − ⋅ + ⋅Γ

⎛ ⎞+⎜ ⎟× ⎜ ⎟− −⎜ ⎟
⎝ ⎠

,

 (3-23) 

where ( )1I
dn − ⋅  denotes the modified Bessel function of the first kind. 

Given the joint probability density function ( ),Ip ⋅ ⋅  of two Chi-square arguments shown in 

Equation (3-23), the the distribution of their ratio λ can be derived, expressed as the probability 

density function ( )ratiop ⋅ : 

( ) ( )Prob ,
i

j

i
ratio I i j i j

Ij
I

Id dp p I I dI dI
d I d

λ

λ λ
λ λ

<

⎛ ⎞
⎛ ⎞ ⎜ ⎟⎛ ⎞

= < =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎜ ⎟
⎝ ⎠

∫∫ ,  

( ) ( ) ( )
0

0

, ,
j

j

I

ratio I i j i j I i j i j
I

dp p I I dI dI p I I dI dI
d

λ

λ

λ
λ

+∞ +∞

−∞ −∞

⎛ ⎞
⎜ ⎟⇒ = +
⎜ ⎟
⎝ ⎠
∫ ∫ ∫ ∫ . (3-24) 

Denote function ( ),i jQ I I  as the indefinite integral ( ),I i j ip I I dI∫ , and therefore the 

derivative ( ) ( ), ,i j I i j
i

Q I I p I I
I
∂

=
∂

. The definite integrals in Equation (3-24) can then be 

expressed as:  

( ) ( ) ( ), ,
i j

j

j I i j i i j I I
I

Q I p I I dI Q I I
λ

λ

+∞ +∞

− =
= =∫  and ( ) ( ) ( ), ,

j
j

i

I
I

j I i j i i j I
Q I p I I dI Q I I

λ
λ

+ =−∞
−∞

= =∫ . (3-25) 
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Because the probability density function ( ),Ip ⋅ ⋅  converges to zero at ±∞, the two integrals 

( )jQ I∓  in Equation (3-25) are simplified to ( ),j jQ I Iλ∓ . Change the sequence of differential 

and integral, Equation (3-24) is updated to:  

( ) ( )( ) ( )( )

( ) ( )

0

0

0

0

, ,

, ,

ratio j j j j j j

j I j j j j I j j j

d dp Q I I dI Q I I dI
d d

I p I I dI I p I I dI

λ λ λ
λ λ

λ λ

+∞

−∞

+∞

−∞

= − +

= − ⋅ + ⋅

∫ ∫

∫ ∫ ,

  

( ) ( ),ratio j I j j jp I p I I dIλ λ
+∞

−∞

⇒ = ⋅∫ . (3-26) 

Considering the magnitude of transmissibility estimation is the square root of the 

above-mentioned ratio, another transformation via change-of-variable is required. For a 

continuous random variable λ whose probability density function is ( )ratiop λ , define a square 

root transformation : uλΨ → , and denote the probability density function of u  as ( )sqrtp u . 

Because of the equal probability on both side of Ψ , the relationship of

( )( )sqrt ratiop u du p dλ λ⋅ = ⋅  holds, and replace variable λ with 2u , then the probability density 

relationship between λ and its square root u is: 

( ) ( ) ( )
2

2 2( ) 2sqrt ratio ratio

d u
p u p u u p u

du
= = ⋅ . (3-27) 

where u +∈\ . 

By substituting the joint probability density function in Equation (3-23) into the 
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transformations in Equation (3-26) and (3-27), it will arrive at the final closed form of ( )sqrtp ⋅ , 

which exactly describes the statistics of transmissibility estimations in Equation (2-11), subject to 

a Gaussian random process. Equation (3-28) renames the function derived from Equation (3-27) 

to ( )tp ⋅ , and shows the probability density function of the transmissibility magnitude estimation 

with respect to variable T̂ : 

( ) ( )( )

( )
( )

( )

2 12 2 2 2

1
22 2 2 2

2
2 2 2

2
2 2 2

1ˆ2 1
2ˆ( )

ˆ4ˆ 1
ˆ

d
dd

i j

d

d i j

i j

i j

nnn
Y Y d

t
n

n Y Y
Y Y d

Y Y

T n
p T

T
T n

T

ρ σ σ

ρ σ σ
π σ σ

σ σ

−

+

⎛ ⎞− Γ +⎜ ⎟
⎝ ⎠=

⎛ ⎞
⎜ ⎟+ − Γ⎜ ⎟
⎜ ⎟+⎝ ⎠ , 

(3-28) 

where the correlation coefficient
2 2

2 2
A i j C i j

i j

Y Y Y Y

Y Y

c c
ρ

σ σ

+
= . 

It is recalled, of course, that the transmissibility is a function of frequency, so the probability 

density function in Equation (3-28) should be evaluated at every frequency point with the 

corresponding ( )2
iYσ ω , ( )2

jYσ ω  and ( )ρ ω  at that frequency line. 

This general result quantifies exactly the uncertainty in transmissibility amplitude 

estimation for the estimator given in Equation (2-11). Computation of this exact probability 

density function allows the computation of more accurate order statistics, as necessary, in order 

to quantify uncertainty from an estimate of transmissibility. This is of particular importance 

when transmissibility is being used as a feature for system identification or structural health 

monitoring applications. Although Equation (3-28) nicely characterizes the distribution of 
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transmissibility magnitude estimations calculated from estimator in Equation (2-11), there is a 

limitation of the estimator itself. According to Equation (3-19), if 1/SNR is not ignorable, or not 

equal on ith and jth channel, the estimations will be biased and degraded, despite of how many 

averages there are. This makes the statistical model less useful and motives another UQ approach 

in the next part. 

 

3.2.3. Gaussian Bivariate approach 

From Equation (2-13), it is known that the estimators ˆ ˆˆ
i jij xy xyT G G= and ˆ ˆ ˆ

ij i jT H H= are 

unbiased if the additive noise is uncorrelated with the measurements. Considering central limit 

theorem, both numerator and denominator in the two estimators are the results from nd averages, 

and therefore the transmissibility magnitude could be approximated as the ratio between two 

Gaussian random variables. 

As secondary consideration, however, note that the former uses the cross power spectral 

density estimates while the latter uses the FRF estimates. Formulas for normalized error ( )ε ⋅  

for cross power spectra and transfer function estimates with zero input noise m(t) are given by 

[79], where 2
ixyγ is the usual coherence function: 

( ) ( ) ( ) ( ) 2

22

ˆ ˆ 11ˆ ˆ  and  
2

i i

i

ii i

xy i xy
xy i

i d xyxy d xy

G H
G H

H nG n

σ σ γ
ε ε

γγ

−
≡ = ≡ = , (3-29) 
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From Equations (3-29), the normalized error for the FRF estimate decreases with both 

averaging (nd) and with improved coherence ( 2 1
ixyγ → ), while the normalized error for the 

cross-power spectrum can only improve with averaging, even with perfect coherence. Figure 3-3 

compares the normalized error for these two estimators for fixed nd=100 averages. For this 

performance reason, the transmissibility estimate, approached by the ratio of Gaussian-like 

transfer function estimates, is considered “optimal”. However, in this section, the non-optimal 

estimator is selected, for a purpose of uncertainty quantification illustration, since the modeling 

process in this section is not specific for estimations through FRF or auto-power density. 

 

Figure 3-3: comparison of normalized error for a fixed number of averages 

Recalling the estimator of transmissibility in Equation (2-9), the magnitude estimation is: 

( )
( )
( )

ˆ
ˆ

ˆ
i

j

xv
ij

xv

G
T

G

ω
ω

ω
= , (3-30) 

in which the cross power spectrum ( )ˆ
xyG ω  at any frequency ω has a histogram that is 

well-described by a gamma distribution, although the actual distribution of this random variable 

0 0.2 0.4 0.6 0.8 1
10-3

10
-2

10
-1

100

101

102

γxy

re
la

tiv
e 

er
ro

r c
oe

ffi
ci

en
t

normalized random error ε for different estimations

 

 
ε[Gxy]

ε[Hxy]

nd = 100



64 

 

 

 

is not accessible, assuming the time series x(n) and y(n) are Gaussian, and when the number of 

averaging is sufficient, the degree of both Gamma distributions will be high enough to make both 

distributions adequately Gaussian. As a result, the transmissibility magnitude estimation in 

Equation (3-30) can be modeled as the ratio between two correlated Gaussian random variables 

with each mean and variance, i.e., 

( ) ( ), , ,

2ˆ ~ ,
i j i j i jxy C CG ω μ σN , (3-31) 

in which the subscript C denotes cross power density and i and j represent order statistics from 

each channel. Joint probability density function of two cross power density magnitude 

estimations ,i jp  is therefore stated in Equation (3-32): 

( ) ( )( ) ( )22

2 2 2

,

1 2
2(1 )

2

1( , )
2 1

i Ci j Cj j Cji Ci

Ci CjCi Cj

i j

g g gg

i j

Ci Cj

p g g e

μ μ μμ
ρ

σ σρ σ σ

πσ σ ρ

⎛ ⎞− − −−⎜ ⎟− − +⎜ ⎟− ⎜ ⎟
⎝ ⎠=

−
, (3-32) 

where ig  and jg  are the variables of ˆ
ixyG  and ˆ

jxyG  in the sampling domain, and ρ is the 

correlation between the two random variables. By integrating over the domain of i jg g h≤ , 

Fieller gives explicitly the probability density function of Gaussian ratio distribution [95], and 

rewriting it with above-mentioned parameters, the probability density function of the 

transmissibility magnitude estimation T̂  is expressed with respect to sampling variable h as 

Equation (3-33) shows: 
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( )
22 2

2 2 2
1 2

2(1 ) 2
ˆ 3/2
( ) Erf

2 2

Ci Cj CjCi Ci Cj
Ci CjCi Cj

T
p e e

μ μ μμ μ μ
σ σρ σ σ αγ β β

πα πα αγ

⎛ ⎞
−⎜ ⎟− − + −⎜ ⎟− ⎝ ⎠

⎛ ⎞
= ⋅ + ⋅ ⋅ ⎜ ⎟

⎝ ⎠

hh

h , (3-33) 

in which 2 2 22Ci Ci Cj Cjα σ ρ σ σ σ= − +h h , ( ) ( )Ci Ci Cj Cj Ci Cj Cj Ci Ci Cjβ σ ρμ σ μ σ σ ρμ σ μ σ= − + −h , 

21 Ci Cjγ ρ σ σ= − , 
( )cov ,i j

Ci Cj

g g
ρ

σ σ
= , and ( )Erf ⋅  is error function. 

Similarly, considering the magnitude H1 estimation of FRF in Equation (3-34): 

( )
( )
( )

ˆ
ˆ

ˆ
xy

xx

G
H

G

ω
ω

ω
=

, 
(3-34) 

the auto-power density on denominator is proved to be Chi-square distributed in 3.2.2, which is a 

special case of Gamma distribution, therefore, with sufficient averages, the Gaussian bivariate 

approach can be also applied onto statistical modeling of FRF magnitude estimations. Denote 

parameters of Gaussian ( )ˆ
xxG ω in Equation (3-35):  

( ) ( )2ˆ ~ ,xx A AG ω μ σN , (3-35) 

where subscript A represents auto-power spectrum. Following the same derivation, it will come 

up to Equation (3-36), which is the PDF of H1 estimation of FRF magnitude: 

( )
2 22

, ,
,2 2 2

, ,

,

1 2
2(1 )

2
ˆ 3/2

( ) Erf
2 2

A C Ci j i jA A Ci j
A CA Ci j i j

i jH
p e e

μ μ μμ μ μ
σ σρ σ σ

αγ β β
πα πα αγ

⎛ ⎞
⎜ ⎟ −− − +⎜ ⎟ −− ⎝ ⎠

⎛ ⎞
= ⋅ + ⋅ ⋅ ⎜ ⎟

⎝ ⎠

hh

h , (3-36) 

in which the notations follow the same convention but different coefficients: 
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, ,

2 2 22
i j i jA A C Cα σ ρ σ σ σ= − +h h , ( ) ( ), , , , ,i j i j i j i j i jA A C C A C C A A Cβ σ ρμ σ μ σ σ ρμ σ μ σ= − + −h , 

,

21
i jA Cγ ρ σ σ= − , and 

( ),

,

cov ,
i j

i j

A C

A C

g g
ρ

σ σ
= . 

The H2 estimator of FRF magnitude will have the same form of PDF with only the 

parameters different from H1 estimator, and will not be explicitly presented in this section. 

 

3.3. Phase uncertainty 

For complex transfer functions, the phase estimation, at arbitrary frequency ω, is related 

with its real and imaginary part via four-quadrant arctangent function ( atan 2( )⋅ ), and phase 

estimation of transmissibility is mathematically shown in Equation (3-37): 

( ) ( )( ) ( ) ( )ˆ ˆ ˆ ˆarg atan 2( , )I RT T T Tω ω ω ω= =( , (3-37) 

and real and imaginary parts [ ]RT T= ℜ  and ( )IT T= ℑ . For the same purpose as modeling 

magnitude estimations, the estimations of real and imaginary parts at frequency ω, ( )R̂T ω  and 

( )ÎT ω , can be regarded as two Gaussian distributed random variables, i.e., 

( )
( )

2

2

ˆ ~ ,

ˆ ~ ,
R

I

R T T

I T T

T

T

μ σ

μ σ

N

N
. (3-38) 

In Equation (3-38), the real and imaginary parts have the same variance, because both parts 

are originally from the same Gaussian time series, and the Fourier Transform does not 
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discriminate the variance of each part. Moreover, because the real and imaginary parts are always 

orthogonal, the correlation between these two variables is zero. Therefore, the uncertainty of 

phase estimation may be modeled starting from the joint probability density function of 

uncorrelated Gaussian bivariates: 

( ) ( )2 2

2
1
2

ˆ ˆ 2,

1( , )
2

R T I TR I

T

R I R IT T
T

p e

μ μ

σ

πσ

⎛ ⎞− + −⎜ ⎟− ⎜ ⎟
⎜ ⎟
⎝ ⎠=

h h

h h . (3-39) 

In order to quantify the uncertainty of random variable defined in Equation (3-37), variable θ is 

introduced, which is variable of the PDF in the phase sampling domain, and define a transform 

: , ,R I R θ→h h hΨ  to relate the real and imaginary samples in Equation (3-39): 

( )atan 2 ,
R R

I Rθ
=⎧⎪

⎨ =⎪⎩

h h
h h

, (3-40) 

so the inverse transform 1 : , ,R R Iθ− →Ψ h h h will be: 

( )tan
R R

I Rθ
=⎧⎪

⎨ =⎪⎩

h h
h h

. (3-41) 

Thus, the joint probability density function pΘ of the transformed variables is given by 

Equation (3-42): 

( )1
ˆ ˆ ˆ ˆ, ,( , ) ( , ) ( , )
R I R IR R I RT T T Tp p pθ θ−

Θ = ⋅ = ⋅J J Ψh h h h , (3-42) 
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where ( )
( ) ( )2,

sec
,

R I
R

R

θ
θ

∂
= =

∂
J

h h h
h

 is the Jacobian determinant and ˆ ˆ, ( , )
R IT Tp ⋅ ⋅  is the joint PDF 

in Equation (3-39). 

Once the joint PDF in Equation (3-42) is obtained, the marginal distribution may be 

calculated by integrating Equation (3-42) over the entire Rh  domain so that the PDF of phase 

estimation is achieved. Because the inverse transform defined in Equation (3-41) loses the 

four-quadrant information which originally existed in the forward transform in Equation (3-40), 

the marginal integration must be calculated for the right and left half-planes separately: 

( ) ( )

( ) ( )

2
ˆ ˆ ˆ, & ,0 0

0 0 2
ˆ ˆ ˆ, & ,

( ) ( , ) sec ( , tan )

( ) ( , ) sec ( , tan )

R I

R I

R R R R R RT I IV T T

R R R R R RT II III T T

p p d p d

p p d p d

θ θ θ θ

θ θ θ θ

+∞ +∞

Θ

Θ−∞ −∞

= = ⋅

= = − ⋅

∫ ∫
∫ ∫

(

(

h h h h h h

h h h h h h
, (3-43) 

and this means the distribution of phase estimation is described in a piecewise function. However, 

the final closed-form solution after substituting Equation (3-39) into Equation (3-43) simplifies 

to a unified equation: 

( ) ( )( )22 2

2 2

sin cos

2 2

ˆ ( ) 1 Erf
2 2 2 2

T TT T R IR I

T T

T
T T

e ep

μ θ μ θμ μ

σ ση ηθ
π πσ σ

−+
− −

⎛ ⎞⎛ ⎞⋅
= + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

( , (3-44) 

where ( ) ( )cos sin
R IT Tη μ θ μ θ= + , and ( )Erf ⋅  is the error function. This PDF quantifies the 

uncertainty of phase estimation and is supposed to be evaluated within any 2π period, 

independent of the absolute phase reference point. 
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In fact, Equation (3-44) characterizes not only the phase estimation distribution of 

transmissibility, but any phase estimation of complex Gaussian variables. In the context of 

transfer function, we can also quantify FRF phase uncertainty by slightly modifying this equation. 

Assuming the Gaussian bivariate parameters are shown in Equation (3-45): 

( )
( )

2

2

ˆ ~ ,

ˆ ~ ,
R

I

R H H

I H H

H

H

μ σ

μ σ

N

N
, (3-45) 

the final form of FRF phase estimation's PDF is: 

( ) ( )( )22 2

2 2

sin cos

2 2

ˆ ( ) 1 Erf
2 2 2 2

H HH H R IR I

H H

H
H H

e ep

μ θ μ θμ μ

σ ση ηθ
π πσ σ

−+
− −

⎛ ⎞⎛ ⎞⋅
= + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

( , (3-46) 

in which ( ) ( )cos sin
R IH Hη μ θ μ θ= + . 

 

This chapter, in part, has been published in Proc. SPIE 7650, Zhu Mao and Michael Todd, 

2010. The title of this paper is “A structural transmissibility measurements-based approach for 
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Processing, Zhu Mao and Michael Todd, 2012. The title of this paper is “A model for quantifying 

uncertainty in the estimation of noise-contaminated measurements of transmissibility”. The 
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4. Statistical Model Validation 

 

In Chapter 3, the uncertainty of transfer function estimations, both magnitude and phase, 

has been quantified through different models, where these models assumed an underlying 

stationary Gaussian process/noise assumption. The equations derived are specific for certain 

estimators, but the modeling approach is generic for the UQ of other estimators, with similar 

derivation. In this chapter, some of the representative estimators will be used as examples to 

estimate transmissibility/FRF and quantify uncertainty and demonstrate the validation process. 

Besides the cubical FE model introduced in Chapter 2, several test structures are adopted to 

validate these proposed statistical models, providing simulated data with “ideal” testing and real 

lab measurements, respectively. For the test structure providing simulation data, structural output 

responses can be calculated analytically from modal superposition; and the input excitation can 

be ideally Gaussian and white without any coupling effect from shaker or structure. Simulation 

data are contaminated with white noise to validate UQ models under more conditions. For a real 

structure, the same validation process is applied onto a lab-scale clamped plate; the actual data 

will contain both internal and external uncertainties, where further contamination is also added to 

the lab measurements with extraneous artificial noise, so as to validate the statistical models via a 

more stringent test. 
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4.1. FE satellite model 

 

Gaussian white noise is applied onto the aforementioned surrogate PnPSat model in 

ABAQUS (section 2.1), to validate the transmissibility statistical quantification model 

established in 3.2.1 via linear perturbation. Standard deviation is used as bounds of uncertainty, 

and the FE model is run nt=128 times for a Monte-Carlo test. With certain pre-set “number of σ”, 

i.e. significance, outliers at each frequency point are counted and percentage over the entire nt 

realizations is compared to Bendat and Piersol's classical model presented in [79-81]. 

In Figure 4-1, an example of outlier percentage is plotted, which is the amount of 

transmissibility estimations beyond 1σ error bounds, at every frequency point, divided by the 

total number of tests nt, and the green line represents the average over entire frequency range, 

compared with the red line, which is the 1-σ Gaussian threshold (around 32%.) The upper plot in 

Figure 4-1 is obtained from Bendat's model with noise on ith channel (input side of Figure 3-2) 

ignored, and the lower plot is the result calculated from our model derived in 3.2.1. 
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intervals, is included in Table 4-1. From this table, there is a consistency over various noise 

levels, and an acceptable agreement with the theoretical Gaussian probabilities. For a comparison 

purpose, outlier percentages calculated from classical model with input noise ignored are also 

listed in the table. 

Because running FE models are expensive and time consuming, the results in Table 4-1 are 

from data sets sufficient for only nd=16 times of averages and nt=128 total Monte-Carlo 

realizations. Results are good enough to show a consistency and validation. 

 

Table 4-1: percentage of outliers with perturbation uncertainty bounds 

Noise to Signal Ratio 1σ (68%) 2σ (95%) 3σ (99%) 

Input Output w/ noise w/o noise w/ noise w/o noise w/ noise w/o noise

0.200 0.190 33.9 33.7 6.35 6.24 0.879 0.865

0.100 0.095 34.1 34.1 6.54 6.23 0.811 0.796

0.059 0.057 34.3 34.2 6.35 6.25 0.732 0.739

0.020 0.019 34.1 34.2 6.32 6.26 0.765 0.743

0.0050 0.0047 34.0 33.9 6.39 6.28 0.704 0.721

The number of averages is nd =16 in power spectrum calculation. 
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4.2. Beam simulation 

Instead of generating input and output data through sophisticated FE model, this section, 

statistical quantification models derived in Equations (3-20, 28, 33, 36, 44 and 46) are validated. 

Taking advantage of the availability of analytical FRF/transmissibility, structural responses are 

much more easily accessible, therefore big amount of Monte-Carlo realizations will be practical 

and more number of averages can make the Gaussian assumption better satisfied. 

 

4.2.1 Model description and transfer functions 

A beam test structure with proportional damping is considered as the test structure for 

generating frequency response function and transmissibility from which surrogate 

“experimental” data will be obtained in order to test the model derived in the previous chapter. 

The structure is excited with Gaussian white noise, and the vertical acceleration responses at two 

arbitrary positions are considered as measured outputs. According to knowledge of dynamics, the 

frequency response function between input and output at any location can be approximated 

analytically by the superposition of first N mode shapes, as shown in Equation (4-1), where pkΨ

and jkΨ are the kth mode shape functions at input and output coordinates p and j, and kΩ  and 

kζ  are the natural frequency and damping ratio for kth mode, respectively: 
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where 1,2,3...k n=  and 2 2

2tan k k
k

k

ζ ω
θ

ω
Ω

=
− Ω

. 

As a benchmark for the statistical model, Equation (4-2) shows the analytically-calculated 

transmissibility as the ratio between the two FRFs: 
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i

i

i

, (4-2) 

Figure 4-2 shows the setup of beam structure designed with a standard W40 I-shape 

cross-section, 12-meter length span, and 3% proportional damping. The input and two output 

positions are arbitrarily picked at 15%, 30% and 70% of the entire beam length respectively. 

 
Figure 4-2: simply-supported beam with excitation and measurements positions for model 

validation 

After calculating the analytical FRFs and transmissibility via Equation (4-1) and (4-2), these 
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transfer functions are plotted in logarithm scale in Figure 4-3, with first five modes taken into 

account. 

  
Figure 4-3: theoretical FRFs and transmissibility for the simple beam structure 

 

4.2.2 Validation for transmissibility 

Estimation of transmissibility is achieved from estimator defined in Equation (2-11), which 

supplies only magnitude estimation. In the meantime, auto-power density is also verified to be 

Chi-square distributed in this part. For case 1, no extraneous noise will be included, i.e. pure 

responses calculated from modal superposition and NSR=0. For case 2, different levels of 

contamination are considered to simulate a stricter test situation. 
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in the estimators are ignored, and only internal estimation uncertainty is considered. In other 

words, the test "measures" v1 and v2 from the two locations in Figure 4-2. 

In Figure 4-4, a sample of auto-power spectrum estimations ˆ
vvG  from noise-free responses 

v1 and v2 is plotted, with the 90% confidence bounds from Equation (3-20) shown in dashed 

lines, and the expectation value calculated from the proposed PDF. Similarly, an arbitrary sample 

of transmissibility estimation from one test is shown in Figure 4-5, with uncertainty bounds 

calculated from Equation (3-28). The two figures show how the estimation of power density and 

transmissibility from single test falling in between the upper and lower boundaries. 

 

  

(a) Gv1v1 estimation and uncertainty bounds (b) Gv2v2 estimation and uncertainty bounds 
Figure 4-4: auto-power spectrum estimations at the two response locations respectively, and 90% 

confidence bounds under noise free condition 
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Figure 4-5: transmissibility estimation and 90% confidence bounds, noise free case 
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density function Equation (3-20) and (3-28).  

  

 (a) outlier percentage of auto-power density 
estimation, with 90% threshold 

(b) outlier percentage of transmissibility 
estimation, with 90% threshold 

Figure 4-6: Outlier percentage of estimations at every frequency point 
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in Equation (3-20) and the transmissibility in Equation (3-28)). At one representative frequency 

line, Figure 4-7 illustrates the agreement between the actual histogram from the Monte-Carlo test 

and the predicted distribution curve (red curve), with predicted 5% and 1-5% boundaries (green 

dots) and the expectation (green line). The histogram is extremely well-predicted by the model, 

including the tails, suggesting that well-quantified uncertainty in the test estimates are possible at 

even high-order statistical moments, if desirable. 
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Figure 4-7: histogram of auto-power density and transmissibility estimations with modeled 

distribution 

 

Case	2:	 	 Noise‐contaminated	output	measurements	
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external noise-free condition in last case. 

From Figures 4-8 and 4-9, the statistical model continues to accurately predict the actual 

pre-set confidence of 90% (as verified by Monte-Carlo outlier count), although, as mentioned, 

the auto-spectra and transmissibility disappear in the background noise floor at frequency lines 

with sufficiently low SNR. 
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Figure 4-8: Estimations and uncertainty bounds with 90% confidence, and outlier percentages, 

SNR=20dB 
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Figure 4-9: Estimations and uncertainty bounds with 90% confidence, and outlier percentages, 

SNR=10dB 

 

4.2.3. Statistical model validation for transmissibility with other thresholds 
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different signal-to-noise levels, where a Monte-Carlo outlier percentage was used as the 

validation criterion. For a more comprehensive validation, the outlier percentage of the 

estimations was evaluated for multiple confidence thresholds. For brevity, the outlier percentages 

at every frequency line will not be presented, but rather the histogram of observed average 

percentage over the entire frequency domain (up to about 750 Hz) with four pre-set thresholds, 

which are 99%, 95%, 90%, and 75%, is shown in Figure 4-10.  

  

  
Figure 4-10: histogram and quartiles of averaged outlier percentages for three noise levels and 

four different thresholds 
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Figure 4-10 illustrates the histogram of observed average outlier percentage in Monte-Carlo 

simulation, where the color-scale index counts the number of appearances of outlier percentages 

indicated at intervals along the vertical axis. Each subplot represents a case with a different 

pre-set threshold, from which the uncertainty bounds of the estimations are given. In each 

subplot, there are three groups of histograms representing three noise levels, and in each group 

there are three columns of data representing the results from 
1 1y yG , 

2 2y yG  and 12T  from left to 

right. The horizontal lines are the anticipated percentages for each picked threshold, while the 

black dots are the mean values of all the observation, with corresponding quartiles showing in 

vertical bars which indicate half of the observed average outlier percentages fall inside the 

delimited areas. Excellent agreement is concluded from Figure 4-10 when high numbers of 

appearances (determined by the dark red colors) are coincident with the black dots and 

secondarily with the interquartile ranges. It appears from the figure that the distribution of 

auto-power spectra and transmissibility estimations given by the statistical model are accurate for 

all multiple levels of confidence and external noise levels. 

 

4.2.4. Validation for FRF magnitude and phase 

In this part, FRF between y1 in Figure 4-2 and excitation x is estimated via H1 estimator in 

Equation (2-8). Figure 4-11 shows the magnitude and phase of the FRF for the two different 
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contamination conditions, and also the 90% of confidence interval obtained from the proposed 

PDF models in Equation (3-36) and (3-46). For the external noise-free condition, uncertainties in 

both magnitude and phase are very small; a zoomed-in plot is overlaid to show how estimations 

are bounded. When the simulated output is contaminated by noise at 1% noise-to-signal level in 

Figure 4-11(b) and (d), the estimations degrade, as expected, and correspondingly, the confidence 

interval becomes wider.  

Instead of visualizing only the 90% confidence interval along all frequencies, Figure 4-12 

shows the histogram and modeled distribution for the same four cases, at an arbitrarily picked 

frequency line, (around 584 Hz.) Quantiles of 5% and 95%, regarding a 90% of confidence 

interval, are marked with stars. The same conclusion, that noise broadens the distribution of both 

magnitude and phase estimations, is made. 
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(a) magnitude estimation, noise free (b) magnitude estimation, noise contaminated 

(c) phase estimation, noise free (d) phase estimation, noise contaminated 
Figure 4-11: FRF estimations of beam structure with 90% of confidence interval 
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(a) magnitude estimation, noise free (b) magnitude estimation, noise contaminated 

(c) phase estimation, noise free (d) phase estimation, noise contaminated 
  Figure 4-12: histogram of beam structure estimations at single frequency line with 

characterized distribution and 90% quantiles 
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(a) polar histogram of phase estimation (b) linear histogram of phase estimation 

Figure 4-13: histograms of beam structure phase estimations 

 

As phase angles with any number of 2π multiples are identical, we use wrapped phase for 

simplified visualization of the phase estimation and the corresponding confidence intervals, so 
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usually defined from –π to π, although [0, 2π) and other conventions are also used in different 

contexts. And for the cluster of phase estimations shown in Figure 4-13(a), we used [–π, π) as the 

evaluation field, and as a result, the whole distribution will be separated into two parts near far 

left and right side on the linear histogram shown in Figure 4-13(b), so that the quantiles with 90% 

of confidence embrace almost the entire 2π region. Again, in real implementation, this can be 

easily transformed into single-peak distribution by changing the 2π evaluation field, without 

affecting the statistics. 
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Figure 4-11 and 4-12 illustrate how the boundaries quantify the uncertainty of estimations 

qualitatively, but a more thorough validation is implemented by running a Monte-Carlo test and 

calculating the outlier percentage at each frequency line. By comparing the outlier percentage 

with the complement of pre-set confidence threshold, the statistical model would be validated in 

a more quantitative way. Multiple confidence thresholds are pre-set to be 99%, 95%, 90% and 

75%, and the outlier percentages over the entire frequency domain (0~750 Hz) for magnitude 

and phase estimations (both noise contamination conditions) are plotted from Figure 4-14 to 

4-17. 

In Figure 4-14 to 4-17, outlier percentage observations are plotted in cross marker and the 

complements of confidence threshold (1-α value) are plotted as a horizontal line for reference. 

All four groups of results are very consistent with the anticipated lines, and stable across the 

frequency domain. For this beam model simulation test, all uncontaminated data are truly 

noise-free, which means operational and environmental uncertainties are non-existent, i.e., 

uncertainty is from the random input and the estimation algorithm itself. There are some 

frequency regions in Figure 4-16, especially near 250 Hz, where the consistency is not as good as 

other regions, because of the imperfect Gaussian propagation from input to real and imaginary 

part of frequency response function. Once the data are contaminated with noise, more normality 

comes directly into FRF estimations, as a result the models works better, as what we can see 

from Figure 4-15 and 4-17. 
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Figure 4-14: outlier percentages of beam structure magnitude estimations, noise free condition 

 
Figure 4-15: outlier percentages of beam structure magnitude estimations, noise contaminated 

condition 

 
Figure 4-16: outlier percentages of beam structure phase estimations, noise free condition 

 
Figure 4-17: outlier percentages of beam structure phase estimations, noise contaminated 

condition 

 

4.3. Plate structure 
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Figure 4-19: plate structure setup 

 

4.3.2. Validation of FRF magnitude and phase 

Magnitude and phase estimations of the plate structure are plotted in Figure 4-20, also with 

90% of significance interval. Compared to the results of beam simulation without external noise 

(Figure 4-11), the distribution of plate estimations for non-contaminated condition is apparently 

wider, because of the naturally unavoidable noise in the measurements. As the measurements get 

further contaminated by artificial noise, the uncertainty bounds with 90% of confidence become 

more separated. 

Figure 4-21 shows the same observation more directly by overlapping the histogram of 

estimations with modeled probability density and 90% quantiles at a single frequency line 
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(arbitrarily picked at 332 Hz). Despite of the good consistency between proposed statistical 

models and histogram, there is a slight skewness of the histogram in Figure 4-21(b), indicating 

the predicted PDF does not fully characterize the actual distribution. The reason is that the 

magnitude estimations cannot be negative numbers, even though the final probability density 

model was defined for the entire real field. As a result, at those frequency lines with small 

estimations, the left tail of the predicted PDF will traverse the negative side and mismatch the 

histogram. Thus, for some of those special cases, the left quantile is negative and cannot be 

illustrated in logarithm scale, as shown in frequency region 0 to 100 Hz in Figure 4-20(b). 

(a) magnitude estimation, noise free (b) magnitude estimation, noise contaminated 

(c) phase estimation, noise free (d) phase estimation, noise contaminated 
Figure 4-20: FRF estimations of plate structure with 90% of confidence interval 
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(a) magnitude estimation, noise free (b) magnitude estimation, noise contaminated 

(c) phase estimation, noise free (d) phase estimation, noise contaminated 
Figure 4-21: histogram of plate structure estimations at single frequency line with 

characterized distribution and 90% quantiles 
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distribution with real histogram, due to the skewness previously mentioned in Figure 4-21 for 

non-negative magnitude, and also the slight violation of Gaussian assumption made before 

statistical modeling. There is also possibly slight nonlinearity in the structure, which clearly is 

not controllable, that can distort the statistics. This issue will be discussed in section 4.4. 

 

 
Figure 4-22: outlier percentages of plate structure magnitude estimations, original data 

 
Figure 4-23: outlier percentages of plate structure magnitude estimations, noise contaminated 

data 

 
Figure 4-24: outlier percentages of plate structure phase estimations, original data 

 
Figure 4-25: outlier percentages of plate structure phase estimations, noise contaminated data 
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4.3.3. Validation of transmissibility magnitude and phase 

Using the same plate structure, transmissibility, both magnitude and phase, are estimated 

from the measured data for many testing rounds in order to compare with the predicted 

distributions. Again, to simulate in-situ testing, the data are contaminated with artificial white 

noise to make the environment stricter and estimations more realistic.  

Figure 4-26 plots the magnitude and phase estimation of transmissibility for both noise free 

and contaminated conditions, with 90% of confidence boundaries also shown. For condition with 

extraneous noise, the estimations become much more variable, and accordingly, the confidence 

boundaries given by the statistics models are more widely separated. 

For magnitude estimations, the predicted expectations at all the frequency lines are also 

plotted. It is clear to see the consistency between the expectation (blue) and the noisy estimations 

(green) from Figure 4-26(c), but not as clear from Figure 4-26(a) because the estimation itself is 

very good , and all the curves fall on top of each other. In some region of Figure 4-26(c), such as 

0~150Hz, the lower bound is not plotted. This is because the magnitude is always positive, but 

the probability density function in Equation (3-33) is evaluated in the entire real number field. 

For these areas, the lower boundary is evaluated to be negative so that cannot be plotted in 

logarithm scales. This issue, same as the problem in FRF magnitude distributions, will be 

discussed in the next section. 
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(a) magnitude, noise free condition (b) phase, noise free condition 

(c) magnitude, contaminated condition (d) phase, contaminated condition 
Figure 4-26: transmissibility estimations of plate structure with 90% of confidence interval 
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Green stars are the 5% and 95% of significance, also given by the statistical models. Histograms 

show good consistency at this frequency line with the modeled distribution, and for 

noise-contaminated condition all the estimations are wider distributed. 

a) magnitude, noise free condition b) phase, noise free condition 

c) magnitude, contaminated condition d) phase, contaminated condition 
Figure 4-27: histograms and predicted distributions of transmissibility estimations in plate 

structure 
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Among all the frequency lines, the statistical models give stable and consistent outlier 

predictions. For the conditions with artificial noise, which is a stricter test condition, although the 

general trend is still consistent, the stationarity of outlier percentage is getting poor. However, the 

test data obtained have a fixed length; therefore there is limited opportunity to improve the 

number of averages nd in order to reduce the noise influence. But in fact, the estimator in 

Equation (2-9) does converge to the true value as nd increases, and thus the statistical models will 

have improved performance with increasing number of averages. 

 

(a) magnitude, noise free condition (b) phase, noise free condition 

(c) magnitude, contaminated condition (d) phase, contaminated condition 
Figure 4-28: transmissibility outlier percentages of plate structure estimations 
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4.4. UQ models comparison 

In this Chapter, Monte-Carlo tests from different structures are implemented to validate 

statistical models of transmissibility and FRF established in Chapter 3. There are uncertainty 

models for different magnitude and phase estimators, which require different information from 

random excited inspections.  

Uncertainty model obtained from perturbation approach only requires output series, from 

which the bias and deviation of transmissibility magnitude are expressed in coherence function. 

This quantifies uncertainty in the fastest way with least calculation consumption, but only gives 

order statistics without fully characterizing the distribution. For the Chi-square bivariate 

approach, the estimator of transmissibility is compatible with output-only data and this is useful 

for the situation where input excitation is ambient or unable to be measured. The Chi-square 

bivariate uncertainty model quantifies transmissibility and FRF estimated through auto-power 

density functions, and the estimators are biased if the NSR is not negligible. In other words, the 

estimator is not accurate but the statistical model accurately describes the full distribution. For 

magnitude estimations through cross-power densities and phase estimations through real and 

imaginary parts, statistical models are established via Gaussian bivariate method, and these 

models are overall the most stable and robust models with noise influence. Having enough 

averages, the Gaussian bivariate models work very efficiently, although they are approximate 

models. In the plate test, limited by certain data acquisition parameters, the data collected are 
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sufficient for only eight averages, which is way less than the number of averages in other 

simulation tests. As a result, the auto/cross power density estimations are not Gaussian 

distributed enough to permit this model to accurately characterize the uncertainties. In other 

words, by improving the number of average in spectral estimation, the normality will be 

improved, leading to greater consistency with Gaussian modeling assumptions. 

 
Figure 4-29: zoom-in of poor uncertainty quantification when the magnitude is small 

 

Figure 4-29 shows the aforementioned limitation of the magnitude uncertainty model 

established via Gaussian bivariate approach, being addressed in Figure 4-20(b) and 4-26(c). 

Because the assumption of normality does not consist the non-negative fact of power spectrum 

magnitude, the lower bound in Figure 4-29 (or left tail of distribution) traverses below zero, 

when the true magnitude (blue) is very small. Moreover, increasing number of averages will 

reduce the variation of estimates and therefore better performance for the statistical model to 

capture the skewed distribution in the positive domain and avoid the negative tails. Figure 4-30 
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illustrates how the negative left tails and non-zero skewness are avoided by increasing number of 

averages, and meanwhile the normality is improved. 

 

 

Figure 4-30: avoiding negative left tails and improving normality 

 

With uncertainty fully characterized by means of the proposed PDF models, there is a 

clearer picture of the actual distribution of transfer function estimations, which is very useful for 
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system identification and health monitoring/damage prognosis applications and other related 

areas. Given the distribution of estimations, it is possible to detect statistical significance, which 

in the context of structure health monitoring, is used in hypothesis testing for damage detection. 

Consequently, with the significance level provided by the statistical models established, a 

quantitative understanding of the estimations is obtained and also a quantified confidence for 

decision making of any kind that relies on the estimations.  

 

This chapter, in part, has been published in Proc. SPIE 7650, Zhu Mao and Michael Todd, 

2010. The title of this paper is “A structural transmissibility measurements-based approach for 

system damage detection”. The dissertation author was the primary investigator and author of 

this paper. A portion of this chapter has been published in Mechanical Systems and Signal 

Processing, Zhu Mao and Michael Todd, 2012. The title of this paper is “A model for quantifying 

uncertainty in the estimation of noise-contaminated measurements of transmissibility”. The 

dissertation author was the primary investigator and author of this paper. A portion of this chapter 

has been submitted to Mechanical Systems and Signal Processing, by Zhu Mao and Michael 

Todd. The title of this paper is “Statistical modeling of frequency response function estimation 

for uncertainty quantification”. The dissertation author was the primary investigator and author 

of this paper. A portion of this chapter has been published in Proc. SPIE 8348, Zhu Mao and 

Michael Todd, 2012. The title of this paper is “Uncertainty propagation of transmissibility-based 
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structural health monitoring features”. The dissertation author was the primary investigator and 

author of this paper. A portion of this chapter has been submitted for publication in Proceedings 

of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 

SMASIS 2012-7935, Zhu Mao and Michael Todd, 2012. The title of this paper is “The 

quantification of uncertainty in SHM features derived from frequency response estimation”. The 

dissertation author was the primary investigator and author of this paper. 
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5. Application to damage identification by hypothesis testing 

In Chapter 3, multiple statistical models were established by which the uncertainty levels in 

various FRF and transmissibility estimators were quantified, and in Chapter 4 those models were 

validated via Monte-Carlo testing by comparing outlier percentages in observations with the 

significance level of boundaries computed from the models. These estimators are often directly 

used in outlier detection (unsupervised learning) modes for the damage detection problem via 

binary hypothesis testing, although no claim is made that these are optimal detection tools 

displaying good sensitivity and specificity. 

 

5.1. Damage identification paradigm 

5.1.1. Damage detection in FE cubical model 

In section 2.2, a contrived satellite with cubical shape was a surrogate data source, and in 

section 4.1, the derived standard deviation of transmissibility magnitude estimation was 

validated with structural response under white noise excitations. For a given confidence level, 

the upper and lower error bounds of transmissibility estimation may be computed, so two new 

metrics are proposed to evaluate the results: (i) calculate the amount/percentage of outliers OP at 

each frequency point, or the average over the whole frequency domain, which has been used for 

model validation in section 4.1:
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( ) ( ) ( )11
binn

l

bin

B l T l B l
OP

n
=

⎡ ⎤≤ ≤⎣ ⎦= − ∑ . (5-1) 

where ( )B l and ( )B l  are the lower and upper bounds of uncertainty with certainty 

significance setting at lth frequency bin; meanwhile, (ii) calculate all the outliers’ 

root-mean-squared distance to the uncertainty bounds (RMSE), as shown in Equation (5-2): 

[ ]1, binl n∀ ∈ , define 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

, ,

0, ,

, ,

Q l B l T l T l B l

Q l T l B l B l

Q l T l B l T l B l

⎧ = − ∈ −∞
⎪⎪ ⎡ ⎤= ∈⎨ ⎣ ⎦
⎪

= − ∈ +∞⎪⎩

,  

and therefore: 

( )( )2
1

1
1

binn

l
bin

RMSE Q l
n =

=
− ∑ . (5-2) 

In RMSE definition, only the root-mean-square error of outliers is counted, and Figure 5-1, 

as an example, illustrates how far away the outliers exist beyond the error bounds. Because both 

OP and RMSE metric evaluate the average outlying level among all frequency bins, it is different 

from Monte-Carlo simulation and does not require many trials, although averaging among 

multiple tests will make these metrics more stable predictors. 
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Figure 5-1: root-mean-square metric illustration 

 

Implementing Gaussian excited simulation on the aforementioned FE model with damage 

pre-set as shown before in Figure 2-5, with each level of stiffness change defined in Figure 2-6, 

both OP and RMSE metrics for the baseline and damaged transmissibilities between two 

arbitrary IPs are calculated and plotted in Figure 5-2 and 5-3, with center-located excitation and 

off-center excitation, respectively. 

From the four plots, there are some qualitative observations: (i) if the damage is small, i.e. a 

damaged stiffness that is close (a few percent) to that of the frame stiffness, the OP and RMSE 
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structural stiffness, then the metrics become saturated as the stiffness decreases further, zero 

stiffness for the furthest, and nearly 100% of the estimations are beyond the error bounds; (iii) 

there is certain region of "moderate" damage, where both metrics are monotonic with the loss of 

connecting stiffness, and compared to small and severe damages, this region has good sensitivity 

of damage severity. 

 

Figure 5-2: OP and RMSE for center excitation results 

  

Figure 5-3: OP and RMSE for offset excitation results 

From the results presented in Figure 5-2 and 5-3, which are from single test, the OP and 
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propagates into any features used in the damage detection problem. For these lightly-damaged 

cases, it may occur that the damaged OP and RMSE drop below some the undamaged metric 

evaluations. To visualize this issue regarding damage detection, there are 128 rounds of tests for 

several damage levels (from 99% down to 10% of original stiffness) implemented, and the group 

results with baseline cases are compared.  

Figures 5-4 and 5-5 show a very clear picture of damage detection for light stiffness 

degradation, using offset excitation as example. For 100% of the original stiffness, the damaged 

structure is identical to the undamaged one, except for the contaminated noise (external 

uncertainty in each run), and the OP and RMSE from both groups agree very well, so the mean 

value (marked as small circles) are very close. But for other conditions with degraded stiffness, 

the metrics disagree, which denotes damage existence. 

Similar to the results in Figure 5-2 and 5-3, there is not perfect consistency and sensitivity 

observed for relatively heavier damage, i.e., those metrics do not increase accordantly. The 

reason is that the damaged/degraded stiffness may be still relatively high, so that the dynamics 

from frame dominates the response. Comparing the two metrics, a cursory conclusion can be 

made that the OP metric would be the better to detect the damage, because there are no 

intersections for damaged and undamaged values according to Figure 5-4 and 5-5. 
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Figure 5-4: OP for light damaged cases 

 

 

Figure 5-5: RMSE for light damaged cases 
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5.1.2. Damage detection in plate model  

An external spring is placed underneath the plate structure introduced in section 4.3 as 

structural damage (a local stiffness perturbation), as shown in Figure 5-6, and transmissibility 

magnitude is estimated between IP #2 and #4, using different estimators. In this section, the 

outlier threshold is fixed to be 90%, (for perturbation model without PDF available, threshold is 

picked as ±1σ,) and compare the outlier percentage of every UQ model, with different noise 

contamination conditions. Corresponding confidence bounds are calculated from the three 

uncertainty models derived in Chapter 3. 

 

 
Figure 5-6: test structure and spring damage 
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Figure 5-7 shows again the estimated transmissibility magnitude and uncertainty bounds 

given by a different UQ model. The left column of Figure 5-7 represents the extraneous noise 

free condition, which means the uncertainty is primarily from well-controlled lab noise and the 

estimation algorithm itself; as a result, the estimations are very accurate, and all the confidence 

bounds are very close to each other. The right column of plots in Figure 5-7 represents the 

condition with 1% NSR Gaussian white noise added in order to simulate a more realistic 

environment with other sources of ambient noise and variability. For the noise-contaminated 

conditions, transmissibility magnitude estimations are corrupted with obviously larger 

uncertainty, but the quantification models also capture the change and reflect wider uncertainty 

intervals. 
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(a) ±1σ bounds, perturbation approach, noise free (b) ±1σ bounds, perturbation bivariate, 
contaminated 

  

(c) 90% confidence, Gaussian bivariate, noise 
free 

(d) 90% confidence, Gaussian bivariate, 
contaminated 

  

(e) 90% confidence, Chi-square bivariate, noise 
free 

(f) 90% confidence, Chi-square approach, 
contaminated 

Figure 5-7: undamaged transmissibility estimation between position 2 and 4, with confidence 
bounds plotted in green. 
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(a) Perturbation approach, noise free (b) Perturbation approach, noise contaminated 

(c) Gaussian bivariate, noise free (d) Gaussian bivariate, noise contaminated 

(e) Chi-square bivariate, noise free (f) Chi-square bivariate, noise contaminated 
Figure 5-8: Transmissibility estimation outlier percentage at each frequency line, blue: 

undamaged condition; red: damaged condition 
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One observation from Figure 5-7(f) is that, unsurprisingly, the estimator expressed in 

Equation (2-11) involved with output auto-power density function does not require information 

from input. Consequently, when the extraneous noise is added onto outputs, the estimation 

quality degrades without the reference from input series, and sharp peaks and notches are not 

observed as in Figures 5-7(b, d). 

Specific performance comparison among the methods may be achieved by comparing 

experimental outliers to predicted outliers (based on percentage). A 500-round Monte-Carlo test 

was implemented, and at every frequency line the uncertainty models were evaluated. The 

percentage of outliers was calculated and plotted in Figure 5-8. For statistical models established 

via Gaussian and Chi-square bivariate approaches, probability density functions are available, 

and the confidence level is set to be 90%, anticipating 10% outliers. For the statistical model 

given by perturbation approach, there is only standard deviation of estimations available, without 

full knowledge of the actual underlying distribution; therefore in Figure 5-7(a, b) and 5-8(a, b) 

only the estimations and outlier percentages bounded by one standard deviation limits are plotted 

for fair comparison. 

From the outlier percentage plots in Figure 5-8, it can be concluded that all the uncertainty 

models are stable in different frequency lines and different noise contamination conditions, and 

all are sensitive to capturing the structural parameter changes. For extraneous noise-free 

conditions, a dramatic increase of outlier observations is present, no matter which quantification 
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model is applied. When the measurements are suffered to extraneous noise, the outlier detection 

can still capture most of the statistical significances. 

There is a very narrow frequency region below 300 Hz for the noise free condition in 

Chi-square outlier percentage plot (Figure 5-8(e)) where baseline values are not as consistent 

with the pre-set confidence threshold. This is because of a violation of the stationary Gaussian 

time series requirement, and therefore weak satisfaction of Chi-square characteristics in 

auto-power density magnitude. By increasing the length of measurement or adding extraneous 

Gaussian noise, the stationarity will become much better, and this can be seen from Figure 5-8(f). 

From the entire frequency domain point of view, conclusions can be made that perturbation 

approach gives the fastest damage detection possibility, but it is not as stable or accurate as the 

other two. Gaussian bivariate approach is the most stable/reliable method in quantifying the 

confidence. However, once extraneous noise is present in measurements or the record is long 

enough to show stationarity, the Chi-square model also has very good performance for 

uncertainty quantification. From damage detection point of view, degradation can be seen from 

both Gaussian and Chi-square bivariate approaches once there is contamination, but the noise 

influence in estimations given by Equation (2-9) can be improved by increasing number of 

averages, hence outperforms the estimator in Equation (2-11). Therefore, Gaussian bivariate 

statistical model is the overall best-performing significance detection tool if a high number of 

averages are possible. 
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5.1.3. Damage localization in plate model  

 

Continue studying the same data set obtained from plate structure, there are responses at 

four differrent locations from which FRFs and transmissibilities between different IPs can be 

estimated. Generally speaking, damage localization is complicated problem suffered to 

incompleteness of structural dynamics and dynamics coupling/influence between substructures. 

Therefore, only the orignal time series obtained without further artificial noise contamination  is 

considered, in order not to get the problem too sophisticated. 

Figure 5-9 listed twenty realizations for each one of all four transfer functions' magnitude, 

and both baseline and damaged conditions are included. All those estimations are overlapped on 

top of each other, and for some specific frequency regions, it is easy to visually distinguish the 

damaged/undamaged groups without quantitative evaluation, as circled in the figure for 

examples. 
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Figure 5-9: magnitude of transfer function H, at each measurement point 

 

Figure 5-10 plot multiple realizations of phase estimation from both undamaged and 

damaged conditions, according to the same four FRFs. Red dots represent the estimations from 

damaged condition, and it is clear to see the non-overlapped estimations, and may suggest a 

better sensitivity of damage detection than magnitude estimation. 
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Figure 5-10: phase of transfer function H, at each measurement point 

 
Figure 5-11: transmissibility T between 1~2 and 3~4 
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3~4 are plotted in Figure 5-11. Compared to Figure 5-9 and 5-10, the transmissibility estimation 

is much less fluctuating and has narrower uncertainty intervals, for both magnitude and phase. 

This could make transmissibility a more sensitive detector to capture the changes caused by 

system parameter change, which is damage in this context. 

Adopting the magnitude and phase statistical models in Gaussian bivariate approach, there 

are decision boundaries with certainty confidence level available. Similar to previous work, two 

metrics are defined as expressed in Equation (5-3) and (5-4):  

( )( )
1

1 binn

l
lbin

pct pct q
n =

= −∑ , (5-3) 

( )( )2

1

binn

l
l

MSE pct q
=

= −∑ , (5-4) 

which are respectively the average outlier percentage over all the frequency lines and the mean 

square error of the outlier percentage offsetting from the pre-set threshold q, which is 10% here. 

Notation nbin is the total number of frequency bins and pct(l) is the outlier percentage at lth 

frequency line. 

 

Evaluation of the metrics in Equation (5-3) and (5-4) are plotted in Figure 5-12, with the 

data from H1, H3, T12 and T34 taken into account. Both plots show metrics consistently 

overlapping in undamaged cases, and a clear separation in damaged cases, no matter what 
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spectrum it represents. Metric evaluations for transmissibility are bigger than the evaluation for 

FRF, which indicates the previously mentioned better sensitivity of transmissibility, and in the 

meantime, the evaluations for H1 and T12 are bigger than H3 and T34 respectively, this could be 

caused by the location of damage, which is very close to the measurement point #1, referring to 

Figure 5-6. 

Based on the data from this plate test, Figure 5-12 shows the feasibility using outlier 

analysis to localize structural defect. With a more refined sensing mesh, and thorough 

comparison between any combinations of measurement points for both magnitude and phase, 

there will be clearer and more robust localization decisions. Moreover, this outlier analysis 

should be synthesized with structural analysis, from which sensitivity of change of 

FRF/transmissibility could be studied, and correlation between metrics and locations will be 

better known since they might not be monotonically correlated. 
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Figure 5-12: metric evaluation for transfer function magnitude outliers with different pre-set 

confidence threshold, upper: pct ; lower: MSE  
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5.2 Receiver operating characteristics (ROC) 

 

In section 5.1, the damage detection and localization are implemented via quantified 

uncertainty bounds. The detection process is in fact statistical significance detection under 

hypothesis testing, which will be focused on in the next section. Here the question is raised: what 

is the performance, as measured in detection rate and false positive rate, of the approach 

developed in the last section? Receiver operating characteristics (ROC) is adopted to evaluate the 

detectability of each problem and suggest the best threshold for decision making. 

A sample 3-DOF model is established, for implementing hypothesis test of transmissibility 

change detection, where analytical expressions of FRF and transmissibility are available from 

Equation (4-1) and (4-2). Figure 5-13 shows the structure where Gaussian noise is applied on 

mass #3 and corresponding responses are measured at the other two masses. The stiffness of 

spring #1 is tuned slightly to make the system change like damage presence. Figure 5-14 shows 

the cluster of analytical FRFs and transmissibilities of the structure, where the stiffness of k1 

drops from 100% to 99%, 98%, 97%, 95%, 90% and 75%, so the spectral curves shift 

accordingly to lower frequency. The left hand side y-axis is for FRF magnitude and the right 

hand side y-axis is for transmissibility magnitude, and all spectra are plotted in dB scale. 
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Figure 5-13: test structure used for hypothesis test 

 

 

Figure 5-14: analytical transfer functions H1, H2 and transmissibility T12 spectra for different 
damage levels 

 

A random process is applied onto the test structure to simulate a realistic system 

identification progress. Gaussian random series will be added to mass #3, and the estimation of 

transmissibility magnitude is evaluated from Equation (2-11), contaminated with different levels 

of independent Gaussian noise. In order to illustrate how noise affects the transmissibility 

estimation, and how the distributions for undamaged and damaged cases overlap, a small number 
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of nd=4 averages are chosen. In a real implementation, there will be many more averages made 

and the quality of estimation will be much better. Figure 5-15 plots the transmissibility 

estimations for different damage levels, and for 0, 1% and 10% of NSR levels.  

Using the model given in Equation (3-28), the uncertainty of the estimation can be 

quantified, rather than qualitatively observing the curve shift, by determining if there is 

statistically significant separation between different sets of data. Two arbitrary frequency lines 

are picked as examples to evaluate the probability density and the operating characteristics below. 

The example frequency points are at 0.87 Hz, close to FRF resonance and having bigger 

input-output gain, and 3.12Hz, with low input-output gain. 

  

Figure 5-15: transmissibility estimations with nd=4, left: no extraneous noise; middle: 1% NSR; 
right: 10% NSR 

Figure 5-16 lists the probability density evaluations for three noise-contaminated conditions 

and at the mentioned two frequency lines. It can be seen both decrease of input-output gain, and 

more uncertainties and heavier overlapping in the distributions caused by noise contamination.  
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alarms) existing simultaneously. As shown in Figure 5-17, with a random threshold represented 

by a vertical line, the area marked in green and yellow is false positive, while the area marked in 

red and yellow is true positive. In order to quantify the separation of distributions in Figure 5-16, 

the receiver operating characteristic (ROC) curves are calculated, which compare the true 

positive detection rates versus false positive rates for a given decision boundary (threshold); 

these curves are often used in detection optimization and decision making [96]. 

Figure 5-18 shows the ROC curves with the same groups of settings, and the results are 

consistent with the above qualitative observations. For the steepest curves, upper left one, the 

close-to-one true positive rate only costs an almost negligible number of false positives, and this 

means the distributions from different data sets can be completely separated, without any 

overlapping. Conversely, the lower right plot in Figure 5-18 shows the poorest binary 

classification among the six plots, which is not much better than random guess, and high/low 

true positive and false positive rates appear simultaneously. The 45° straight line corresponds to a 

random guess, meaning equal detections and false alarms like coin flipping. 

Although the direction that the probability density curve moves toward is not monotonic 

with the stiffness loss, here in this Chapter, the null hypothesis is not changed to make the ROC 

curve always remain above random guess line (45-degree line). Therefore, a ROC curve that 

moves down and to the right (compared to a random guess) is also interpreted as equally optimal 

to the traditional interpretation of one that moves up and to the left. 
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Figure 5-16: probability density function of transmissibility estimations for different damage 
levels. Upper left: 0.87Hz, external noise free; mid left: 0.87Hz, 1% NSR.  Lower left: 0.87Hz, 
10% NSR; upper right: 3.12Hz, external noise free; mid right: 3.12Hz, 1% NSR; lower right: 

3.12Hz, 10% NSR 
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Figure 5-17: true positive rate and false positive rate 

 

 

Figure 5-18: ROC curves for different frequencies and settings with nd=4, upper left: 0.87Hz, 
external noise free; upper mid: 0.87Hz, 1% NSR; upper right: 0.87Hz, 10% NSR; lower left: 

3.12Hz, external noise free; lower mid: 3.12Hz, 1% NSR; lower right: 3.12Hz, 10% NSR 
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frequency region with low gains, there is no clear data separation, even when the damaged 

stiffness is 25% lower than its original value. 

As the level of extraneous noise goes higher, shown in middle and right plots in Figure 5-20, 

the AUC evaluations, as expected, drop dramatically at all frequencies. But at the frequencies 

where large input-output gain is available, there will be better detection performance, but the 

range of frequencies to choose is becoming narrower as NSR goes high, and shrinking to the area 

near resonances. This indicates that it is the easiest to implement binary classification of 

transmissibility estimations near resonant frequencies.  

 

   
Figure 5-20: AUC metric evaluation v.s. frequency, left: external noise free; middle: 1% of NSR 

right: 10% of NSR 

Figure 5-21 highlights the AUC metric evaluation at two previously-mentioned sample 

frequency lines, i.e. 0.87Hz and 3.12Hz, referring to frequencies with large and small 

input-output gains. As damage becomes severe, the detectability is better, and for big enough 

damage, the AUC value is still good for noise-contaminated conditions and small-gain frequency 
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lines. 

 

Figure 5-21: Comparison of AUC for different damage levels and noise-to-signal levels 
 

Different from the ideal 3-DOF theoretical model, a quick baseline-damage-separation is 

also studied on the lab-scale plate structure presented in 5.1.2. Different estimations quantified 

by three UQ models are compared. Figure 5-22 shows the visualization of each model for 

damaged/undamaged structure at an arbitrary frequency line, with both noise-free and 1% NSR 

noise-contaminated data. Perturbation approach only gives standard deviation (without 

underlying PDFs), but histogram of measurements are plotted in Figure 5-22 (a, d) with asterisks 

highlighting ±1σ uncertainty bounds. For each model, there is overlap between the two 

distributions, although it may appear that the chi-square model performs the best purely based on 

visual observation. Thus quantitatively, ROC curves for the two approaches supplying analytical 

PDFs are plotted in Figure 5-23. The two curves with noise contamination are much closer to the 

random guess line (45-degree line) than the two noise-free ROC curves, as would be expected. 

Comparing the results between the models, it is clear to see that Chi-square results are furthest 
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alarms there will be more true detections. Therefore, despite from the conclusion made in 5.1.2 

for entire frequency domain that Gaussian bivariate approach gives the most stable detection, 

there is a slightly more sensitive and specific detection at single frequency line through 

Chi-square bivariate distribution modeling. Thus in real applications, selection of estimators and 

UQ models should consider a variety of factors, such as the signal to noise quality, availability of 

input data, and also the specific SHM features involving only single frequency lines or the entire 

frequency domain. 

(a) Histogram and 1-σ bounds 
of perturbation model, noise 

free 

(b) PDF of Gaussian bivariate 
model, noise free 

(c) PDF of Chi-square 
bivariate model, noise free 

(d) Histogram and 1-σ bounds 
of perturbation model, 

contaminated 

(e) PDF of Gaussian bivariate 
model, noise contaminated 

(f) PDF of Chi-square 
bivariate model, noise 

contaminated 
Figure 5-22: statistical model visualization for transmissibility estimation at an arbitrary 

frequency 
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5.3.1. Introduction of hypothesis test 

 

Statistical hypothesis test is well founded by Neyman and Pearson [96], and it turns 

decision making problems into acceptance or rejection of given statistical hypotheses under 

certain confidence. Following Neyman-Person theorem, the damage detection is to choose 

among two mutually exclusive hypotheses, namely null hypothesis and alternative hypothesis: 

( )
( )

0

1

:

:
u

d

z

z

Φ

Φ

Λ

Λ

∼

∼

H

H
, (5-5) 

where z is the feature measurement and Φ is PDF of z, with undamaged parameter set Λu or 

damaged parameter set Λd. To maximize probability of detection PD for any given significance α, 

i.e. given probability of false alarms PFA, decide H1 if the likelihood ratio: 

( ) ( )
( )

1

0

;
;

z
L z

z
γ

Φ
= >

Φ

H

H
, (5-6) 

where the threshold γ is associated with α by: 

( )
( ){ }FA 0:

P ;
z L z

z dz
γ

α
>

= = Φ∫ H , (5-7) 

and the corresponding optimal probability of detection is therefore: 

( ) ( )
( ){ }1 1 1:

P ; ;D z L z
z dz

γ>
= Φ = Φ∫H H H . (5-8) 
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From the hypothesis point of view, the two types of errors mentioned in last section, namely 

false positive and false negative, can be expressed as: Type I error is the false alarm when a true 

null hypothesis is rejected, and type II error is the cases that false null hypothesis fails to be 

rejected [96]. 

In the hypothesis tests to be shown in this section, the statistical significance detection 

problems are classified into four cases, shown in Figure 5-24. 

 

 
Figure 5-24: hypotheses for different conditions 

For the first two cases, the damaged distribution differs from baseline primarily as mean 

shift without distinct change of variation, so that the region of rejection only needs to be on one 

r

case #1
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side of the distribution domain. Case #1 and#2 represent respectively the increasing and 

decreasing mean shift of damaged distribution. Different from the single tail test, Case #3 and #4 

show more obvious changes in variation than mean, so both tails should be considered as critical 

region. In particular, the detectors regarding four cases in Figure 5-24 can be expressed explicitly 

as Equation (5-9): 

Case #1, 0

1

:
:

z
z

γ

γ

≤

>

H

H
; Case #2, 0

1

:
:

z
z

γ

γ

≥

<

H

H
; 

(5-9) 

Case #3 and #4, 0 1 2

1 1 2

:
:

z
z z
γ γ

γ γ

≤ ≤

< ∪ >

H

H
, 

in which γ is obtained via Equation (5-7) associated with significance level α, while γ1 and γ2 in 

the double tailed hypothesis test are associated to α/2 and 1-α/2 percentile on each side. 

 

5.3.2. Example of hypothesis test 

In this part, the proposed hypothesis test in Equation (5-9) is implemented based upon the 

baseline and damaged transmissibility/FRF, both their magnitude and phase obtained from beam 

and plate structure introduced in section 4.2 and 4.3. Probability of detection PD will be 

presented for different test conditions with various PFA thresholds, and at each frequency line, PD 

is color-coded indicating which case the detection problem at this frequency is. Legend of the 

color-coded PD is illustrated in Figure 5-25. 
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Figure 5-25: legend of PD of different cases 

 

The null/alternative hypotheses in Equation (5-9) for the two double-tail tests are identical, 

but Case #3 and #4 are still differentiated, because Case #4 will have a poor PD which is always 

less than PFA, no matter how the hypothesis is designed. Therefore it is group classified as poor 

detection condition. 

Firstly consider the hypothesis test with beam damage detection, in which the vibration test 

has been characterized in Figure 4-2. Figure 5-26 plots the expectation of FRF (H and Hd) and 

transmissibility (T and Td) for both magnitude and phase. Two pre-set PFA tolerance levels are 

selected and detection problems with different noise contamination conditions are also 

considered, in which 0, 1% and 10% NSR are shown from Figure 5-27 to 5-30. 

case #1: right tail
case #2: left tail
case #3: double tails
case #4: poor detection
pre-set PFA threshold
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Figure 5-26: magnitude (left) and phase (right) of transfer functions of beam structure, baseline 

and damaged conditions. 

 

Comparing Figures 5-27 and 5-28, there is mostly near 100% detection for noise free 

condition, with both PFA thresholds. For contaminated cases, transmissibility outperforms FRF 

slightly, but both detectors perform only well at low frequency region, which matches to the 

bandwidth with high input-output gain addressed in Figure 5-26(left), therefore good local 

SNR(ω). In high frequency area, because of the fairly poor estimation quality, according to 

Figure 4-11, the detection of statistical significance is very hard. Figures 5-29 and 5-30 illustrate 

the same observations on phase detection, and in these figures, there are obviously more 

presence of Case #3 for both transmissibility and FRF than what is seen in magnitude results, 
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which means for phase estimation, damaged data often appear increasing of variance. Moreover, 

for this specific test and damage setting, magnitude detector has better PD than phase detector. 

 

 

  
Figure 5-27: PD of beam structure T magnitude with 1% (upper row) and 10% (lower row) of 

pre-set PFA threshold. Left to right columns: 0, 1% and 10% NSR contamination. 
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Figure 5-28: PD of beam structure H magnitude with 1% (upper row) and 10% (lower row) of 

pre-set PFA threshold. Left to right columns: 0, 1% and 10% NSR contamination. 

 

 

 
Figure 5-29: PD of beam structure T phase with 1% (upper row) and 10% (lower row) of 

pre-set PFA threshold. Left to right columns: 0, 1% and 10% NSR contamination. 
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Figure 5-30: PD of beam structure H phase with 1% (upper row) and 10% (lower row) of 

pre-set PFA threshold. Left to right columns: 0, 1% and 10% NSR contamination. 

 

Then consider hypothesis test with plate structural assessment, which has been 

characterized in Figure 4-18. Similar to aforementioned beam structure, Figure 5-31 plots the 

transfer functions with respect to their magnitude and phase, with subscript d denoting the 

damaged situation. 

Tolerance of 1% and 10% of PFA is preset, with the same noise contamination configuration. 

Figures 5-32 to 5-35 plot the optimal PD for each detector with the same color convention. 

Again, this lab scaled test does not provide as clean data as simulation supplies, so for the 

external noise free condition, there is generally good detection quality, but not as good as the 

hypothesis test for beam simulation. For this structure, magnitude and phase of FRF have better 

0 250 500 750
0

0.5

1

 

 

0 250 500 750
0

0.5

1

 

 

0 250 500 750
0

0.5

1

 

 

0 250 500 750
0

0.5

1

 

 

0 250 500 750
0

0.5

1

 

 

0 250 500 750
0

0.5

1

 

 



144 

 

 

 

detection robustness suffering to noise, while the PD of magnitude and phase for transmissibility 

is overall poor for those contaminated cases. Similar to beam structure, there is more appearance 

of Case #3 for phase detection than magnitude. 

 

 
Figure 5-31: magnitude (left) and phase (right) of transfer functions of plate structure, baseline 

and damaged conditions. 
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Figure 5-32: PD of plate structure T magnitude with 1% (upper row) and 10% (lower row) of 
pre-set PFA threshold. Left to right columns: original data, 1% and 10% NSR artificial noise 

contamination. 

 

 

 
Figure 5-33: PD of plate structure H magnitude with 1% (upper row) and 10% (lower row) of 
pre-set PFA threshold. Left to right columns: original data, 1% and 10% NSR artificial noise 

contamination. 
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Figure 5-34: PD of plate structure T phase with 1% (upper row) and 10%(lower row) of pre-set 

PFA threshold. Left to right columns: original data, 1% and 10% NSR artificial noise 
contamination. 

 

 

 
Figure 5-35: PD of plate structure H phase with 1% (upper row) and 10%(lower row) of pre-set 

PFA threshold. Left to right columns: original data, 1% and 10% NSR artificial noise 
contamination. 
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5.3.3. Summary 

 

In this section, hypothesis testing for damage detection in both beam and plate structures 

have been investigated, using both transmissibility and FRF, both magnitude and phase. 

Consistent conclusions can be made, referring to ROC analysis in section 5.2: external noise 

degrades the detectability and for the frequency lines with good local SNR(ω), PD is always good 

no matter transmissibility or FRF, magnitude or phase. For different conditions, there are some 

detection cases with less sensitivity and even very poor performance. Figure5-36 specifically 

illustrates good detection in Case #3 and poor detection problem of Case #4. Cumulative 

probability density (CDF) are plotted on the right column, from which there is a weak difference 

in the lower right plot corresponding to a tiny Kolmogorov–Smirnov distance, and the upper 

right CDF with big distance thus more confidence to reject null hypothesis. 

 



148 

 

 

 

 

Figure 5-36: example distributions for baseline and damaged phase statistics. Left: PDF; right: 
CDF; upper row: good separation (Case #3); lower row: poor separation (Case #4) 
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paper. A portion of this chapter has been published in Proceedings of IMAC, Society for 

Experimental Mechanics Series, Volume 29, Zhu Mao and Michael Todd, 2012. The title of this 

paper is “Rapid Structural Condition Assessment Using Transmissibilities with Quantified 

Confidence for Decision Making”. The dissertation author was the primary investigator and 

author of this paper. A portion of this chapter has been submitted for publication in The 

Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and 

Intelligent Systems, SMASIS 2012-7935, Zhu Mao and Michael Todd, 2012. The title of this 

paper is “The quantification of uncertainty in SHM features derived from frequency response 

estimation”. The dissertation author was the primary investigator and author of this paper. 
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6. Conclusions and Future Research 

 

Due to the intensive time consumption of current maintenance and operation costs in 

structural status evaluation, more and more research has been done towards a fast damage 

identification and real-time structural health monitoring (SHM), by which the time/economic 

cost could be dramatically reduced. Motivated by the structural rapid state awareness demanding, 

this dissertation adopts vibration-based inspections and deploys statistical significance detection 

in order to identify the possible structural defects. 

 

6.1. Conclusions 

Power spectral measurements are of the most useful category for structural health 

monitoring, because of the clear physical interpretation and easy-accessibility through fast 

Fourier Transform. For various SHM applications, optimal features are always anticipated to 

characterize structural status, and those features are selected to be sensitively and specifically 

indicating structural parameter change and therefore the type I and type II error can be both 

minimized as possible. This dissertation quantifies the uncertainty existed in power spectral 

SHM features and enhances decision-making capabilities in damage identification. 

Firstly, this dissertation proposes two transmissibility-based features for a rapid structural 
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state awareness, specifically fastener loosening identification. A contrived cubical finite element 

(FE) model is established through which transmissibilities with different excitations are extracted. 

Paradigmatic damages are applied onto FE model illustrating a good detection capability via 

change of transmissibilities.  

For realistic SHM strategies, random excitation is often applied for stationary baseline 

training, and in this situation, multiple algorithms of transmissibility and frequency response 

function (FRF) evaluations are compared, with respect to their accuracy and compatibility of test 

conditions. These estimators are unavoidably subject to noise and uncertainties from different 

sources, and estimation of features will be a random variable falling into certain distribution. 

This makes the optimal feature selection more demanding, because under this circumstance, 

some of the feature estimations are highly overlapped between baseline and damaged data sets, 

and a trade-off between sensitivity and specificity is consequently inevitable. Statistical models 

for different features by different estimators are presented in this dissertation, so as to quantify 

the uncertainty and significance in feature estimations, and all the uncertainty quantification (UQ) 

models are validated through Monte-Carlo testing with data obtained from both simulation and 

real laboratory experimental data. Outlier-based metrics, outlier percentage and 

root-mean-square error, are proposed to quantitatively assess the accuracy of UQ models. To 

validate UQ models in a more stringent condition, artificial noise is added to contaminate feature 

estimations, and very good consistency between the prediction and Monte-Carlo results is also 
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observed, revealing the robustness of proposed models. 

Probability density functions of FRF/transmissibility estimations are derived in this 

dissertation, for both magnitude and phase. With uncertainty fully characterized by means of the 

proposed UQ models, statistical significance detection techniques are implemented, which in the 

context of SHM, is used in hypothesis testing for damage detection. In each of the feature 

evaluations, the performance comparison is proceeded under the condition of best trade-off 

between sensitivity and specificity, adopting receiver operating characteristics (ROC). 

Consequently, with the significance level provided by the statistical models established, there is a 

quantitative understanding of the estimations and quantified confidence for decision-making that 

relies on the estimations. Suggestion of good detection quality is given after comparing different 

estimators and noise contaminated condition, with respect to area under curve (AUC) of ROC.  

Finally, research of probability of detection is studied by varying the level of false alarm 

tolerance, and detection problems are classified into four categories regarding mean-shift and 

variation-change dominated types. Detection qualities through different features are classified 

and compared. 

 

6.2. Future research 

Relevant future work in this area will include further investigation of detectors, especially 
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for damage localization detectors. Propagation of predicted transmissibility/FRF uncertainties to 

other features selected for various specific applications will be studied. Tailored algorithms will 

be considered in the fields of online structural health monitoring with certainty requirements 

according to the applications. Probabilistic damage prognosis research is anticipated to be carried 

out via a Bayesian model selection/updating process, where decision boundaries on user end are 

optimized and performance metrics such as “probability of detection” are of prime importance. 
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