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Abstract

Current treatments for chronic pain rely largely on opioids despite their substantial side effects 

and risk of addiction. Genetic studies have identified in humans key targets pivotal to nociceptive 

processing. In particular, a hereditary loss-of-function mutation in NaV1.7, a sodium channel 

protein associated with signaling in nociceptive sensory afferents, leads to insensitivity to 

pain without other neurodevelopmental alterations. However, the high sequence and structural 

similarity between NaV subtypes has frustrated efforts to develop selective inhibitors. Here, 
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we investigated targeted epigenetic repression of NaV1.7 in primary afferents via epigenome 

engineering approaches based on clustered regularly interspaced short palindromic repeats 

(CRISPR)–dCas9 and zinc finger proteins at the spinal level as a potential treatment for chronic 

pain. Toward this end, we first optimized the efficiency of NaV1.7 repression in vitro in Neuro2A 

cells and then, by the lumbar intrathecal route, delivered both epigenome engineering platforms 

via adeno-associated viruses (AAVs) to assess their effects in three mouse models of pain: 

carrageenan-induced inflammatory pain, paclitaxel-induced neuropathic pain, and BzATP-induced 

pain. Our results show effective repression of NaV1.7 in lumbar dorsal root ganglia, reduced 

thermal hyperalgesia in the inflammatory state, decreased tactile allodynia in the neuropathic state, 

and no changes in normal motor function in mice. We anticipate that this long-lasting analgesia via 

targeted in vivo epigenetic repression of NaV1.7 methodology we dub pain LATER, might have 

therapeutic potential in management of persistent pain states.

INTRODUCTION

Chronic pain affects between 19 and 50% of the world population (1, 2). The high 

prevalence is understandable given that a continuing pain state and its associated debilitating 

effects on quality of life accompanies virtually every diagnosis of cancer, diabetes, and 

cardiovascular disease (3). Current standard of care for chronic pain often relies on opioids, 

which have adverse side effects and profound addiction risk (4). Despite decades of 

research, the goal of achieving broadly effective, long-lasting, nonaddictive therapeutics 

for chronic pain has remained elusive.

Pain arising from somatic or nerve injury/pathologies typically arises by activation of 

populations of primary afferent neurons, which are characterized by activation thresholds 

associated with tissue injury and by sensitivity to products released by local tissue injury 

and inflammation (5). These afferents terminate in the spinal dorsal horn, where this input 

is encoded and transmitted by long ascending tracts to the brain, where it is processed 

into the pain experience (5). The cell body of a primary afferent lies in its dorsal root 

ganglion (DRG). These neuronal cell bodies synthesize the voltage-gated sodium channels 

that serve to initiate and propagate the action potential (5). Although local anesthetics can 

yield a dense anesthesia, previous work has shown that nonspecific sodium channel blockers 

such as lidocaine delivered systemically at subanesthetic concentrations were able to have 

selective effects upon hyperpathia in animal models and humans (6, 7).

It is now known that there are nine voltage-gated sodium channel subtypes along with 

numerous splice variants. Of note, three of these isotypes—NaV1.7 (8), NaV1.8 (9), and 

NaV1.9 (10)—have been found to be principally expressed in primary afferent nociceptors 

and genetically associated with pain states. The relevance of these isotypes to human 

pain has been suggested by the observation that a loss-of-function mutation in NaV1.7 

(SCN9A) leads to congenital insensitivity to pain (CIP), a rare genetic disorder. Conversely, 

gain-of-function mutations yield anomalous hyperpathic states (11). On the basis of these 

observations, the NaV1.7 channel has been considered an attractive target for addressing 

pathologic pain states and for developing chronic pain therapies (8, 12, 13). Efforts to 

develop selective small-molecule inhibitors have, however, been hampered because of the 
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sequence similarity between NaV subtypes. Many small-molecule drugs targeting NaV1.7 

have accordingly failed because of side effects caused by lack of targeting specificity or 

their limited bioavailability by the systemic route (14). In addition, antibodies have faced 

a similar situation, because there is a trade-off between selectivity and potency due to 

the binding of a specific (open or close) conformation of the channel, with binding not 

always translating into successful channel inhibition (15). Consequently, despite preclinical 

studies demonstrating that decreased NaV1.7 activity leads to a reduction in inflammatory 

and neuropathic pain (8, 9, 16, 17), no molecule targeting this gene product has been 

approved (14). We therefore took an alternative approach by (i) epigenetically modulating 

the expression of NaV1.7 using two genome engineering tool variants, clustered regularly 

interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) and zinc finger proteins (ZFPs), 

such that one could engineer highly specific, long-lasting, and reversible treatments for pain 

and (ii) targeting spinal NaV1.7 signaling through intrathecal delivery where considerable 

work has shown that viral vectors result in local effects upon the DRG cell body of the 

afferent neurons (18–20).

Through its ability to precisely target pathology-causing DNA mutations, the CRISPR-Cas9 

system has emerged as a potent tool for genome manipulation and has shown therapeutic 

efficacy in multiple animal models of human diseases (21). However, permanent genome 

editing, leading to permanent alteration of pain perception, may not be desirable. For 

these reasons, we have used a catalytically inactivated “dead” Cas9 (dCas9; also known as 

CRIS-PRi), which does not cleave DNA but maintains its ability to bind to the genome via 

a guide RNA (gRNA), and fused it to a repressor domain [Krüppel-associated box (KRAB)] 

to enable nonpermanent gene repression of NaV1.7. Previously, we and others have shown 

that through addition of a KRAB epigenetic repressor motif to dCas9, gene repression can 

be enhanced with a high level of specificity both in vitro (22, 23) and in vivo (24, 25). This 

transcriptional modulation system takes advantage of the high specificity of CRISPR-Cas9 

while simultaneously increasing the safety profile, because no permanent modification of the 

genome is performed. As a second approach for in situ epigenome repression of NaV1.7, we 

also used Zinc-Finger-KRAB proteins (ZFP-KRAB), consisting of a DNA binding domain 

made up of Cys2His2 zinc fingers fused to a KRAB repressor. ZFPs constitute the largest 

individual family of transcriptional modulators encoded by the genomes of higher organisms 

(26) and, with prevalent synthetic versions engineered on human protein chasses, present a 

potentially low immunogenicity in vivo targeting approach (27–29). We sought to produce a 

specific anatomic targeting of the gene regulation by delivering both epigenetic tools in an 

adeno-associated virus (AAV) construct into the spinal intrathecal space. This approach has 

several advantages as it permits the use of minimal viral loads and reduces the possibility of 

systemic immunogenicity.

Because pain perception is etiologically diverse and multifactorial, several rodent pain 

models have been used to study pain signaling and pain behaviors (30). In the present work, 

we sought to characterize the effects of CRISPR-dCas9 and ZFP-mediated knockdown 

of NaV1.7 using three mechanistically distinct models: (i) thermal sensitivity in control 

(normal) and unilateral inflammation-sensitized hind paw, (ii) a polyneuropathy induced by 

a chemotherapeutic yielding a bilateral hind paw tactile allodynia, and (iii) a spinally evoked 

bilateral hind paw tactile allodynia induced by the spinal activation of purine receptors. 
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Pain due to tissue injury and inflammation results from a release of factors that sensitize 

the peripheral terminal of the nociceptive afferent neuron. This phenotype can be studied 

through local application of carrageenan to the paw resulting in inflammation, swelling, 

increased expression of NaV1.7 (31), and a robust increase in thermal and mechanical 

sensitivity (hyperalgesia) (32). Chemotherapy to treat cancer often leads to a polyneuropathy 

characterized by increased sensitivity to light touch (tactile allodynia) and cold. Paclitaxel 

is a commonly used chemotherapeutic that increases the expression of NaV 1.7 in the 

nociceptive afferents (33) and induces a robust allodynia in animal models (34). Last, ATP 

(adenosine triphosphate) by an action on a variety of purine receptors expressed on afferent 

terminals and second-order neurons and nonneuronal cells has been broadly implicated 

in inflammatory, visceral, and neuropathic pain states (35). Thus, intrathecal delivery of 

a stable ATP analog [2′,3′-O-(4-benzoylbenzoyl)-ATP (BzATP)] results in a long-lasting 

allodynia in mice (36).

Our results show that the in vivo repression of NaV1.7 leads to a decrease in thermal 

hyperalgesia in a carrageenan pain model. Similarly, the results in the paclitaxel-induced 

neuropathic pain model indicate that repression of NaV1.7 leads to reduced tactile and 

cold allodynia. In addition, KRAB-dCas9–injected mice showed reduced tactile allodynia 

after administration of the ATP analog BzATP. Last, we demonstrated the efficacy of our 

epigenome strategy in reversing an established chemotherapy-induced neuropathic pain state

—relevant to the clinical setting. As many pain states occurring after chronic inflammation 

and nerve injury represent an enduring condition, typically requiring constant remedication, 

these genetic approaches provide ongoing and controllable regulation of this aberrant 

processing. Overall, these in situ epigenetic approaches represent a viable replacement 

strategy for opioids and serve as a potential therapeutic approach for long-lasting chronic 

pain.

RESULTS

In vitro optimization

With the goal of developing a therapeutic product that relieves chronic pain in a 

nonpermanent, nonaddictive, and long-lasting manner, we explored the use of two 

independent genetic approaches to inhibit the transmission of pain at the spinal level (Fig. 

1). To establish robust NaV1.7 repression, we first compared in vitro repression efficacy 

of NaV1.7 using KRAB-dCas9 and ZFP-KRAB AAV vector constructs (fig. S1, A and B). 

Because of the limited packaging capacity of AAVs (~4.7 kb), which does not typically 

accommodate the payload requirements of delivering a dCas9, the associated gRNA, and 

KRAB domain for genome repression, we used our previously developed dual-AAV split-

dCas9 platform (24) in which the Streptococcus pyogenes dCas9 is split into two fragments: 

an N-terminal dCas9 fused to an N-intein and a C-terminal dCas9 fused to a C-intein 

(fig. S1A). Toward this, we cloned 10 gRNAs (table S1) that target NaV1.7 close to the 

transcriptional start site (TSS). We also cloned the two gRNAs that were predicted to 

have the highest efficiency (SCN9A-1 and SCN9A-2) into a single construct, because we 

have previously shown that higher efficacy can be achieved by using multiple gRNAs 

(24). We next evaluated four ZFP-KRAB constructs targeting the NaV1.7 DNA sequence 
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close to the TSS (table S2). We transfected these constructs into a mouse neuroblastoma 

cell line that expresses NaV1.7 (Neuro2a) and confirmed repression of NaV1.7 relative 

to glyceraldehyde-3-phosphate dehydrogenase (Gapdh) with quantitative polymerase chain 

reaction (qPCR). Six of 10 gRNAs repressed the NaV1.7 transcript by >50% compared to 

the non-targeting gRNA control, with gRNA-2 being the single gRNA having the highest 

repression (56%; P < 0.0001) and with the dual gRNA having the highest overall repression 

(71%; P < 0.0001), which we used for subsequent in vivo studies (fig. S1C). Of the 

ZFP-KRAB designs, the Zinc-Finger-4-KRAB construct had the highest repression (88%; P 
< 0.0001) compared to the negative control (mCherry), which we chose for subsequent in 

vivo studies (fig. S1C).

In vivo evaluation of AAV9 mCherry DRG transduction along the neuraxis

As a first approach to test AAV9 transduction efficacy of sensory neurons in the DRG, we 

delivered 1 × 1010, 1 × 1011, or 1 × 1012 viral genomes (vg) per mouse of AAV9-mCherry 

into the cerebral spinal fluid by lumbar puncture into the subarachnoid space. Animals 

were euthanized 3 weeks after AAV administration, and DRGs along the neuraxis (cervical, 

thoracic, lumbar, and sacral) were harvested. Native mCherry expression was visualized 

by direct whole-cell mount fluorescent confocal imaging, and the neuraxial distribution 

of small, medium, and large DRG neuronal soma as a function of their average soma 

fluorescent intensity was quantified (Fig. 2, A and B, and fig. S2, A and B). We found 

that the intrathecal delivery of AAV9, which has neuronal tropism (37), serves to efficiently 

target the DRG. Mice injected with a fixed volume (5 μl) of AAV titers of 1 × 1012, 1 × 1011, 

or 1 × 1010 vg per mouse revealed a titer-dependent increase in lumbar DRG transduction, 

with no notable difference between the 1 × 1010 and 1 × 1011 vg per mouse injected mice 

and with a significant increase in transduction efficacy in the 1 × 1012 vg per mouse injected 

group (P < 0.0001). Transduction of thoracic and cervical DRG was observed in the 1 × 

1012 injected mice (P = 0.0224 and P = 0.0384, respectively), but not in the 1 × 1010 or 

1 × 1011 injected mice, indicating a viral load sufficient to result in robust AAV9-mCherry 

transduction along the neuraxis. Thus, we chose 5 μl of 1 × 1012 vg per mouse as our titer 

per dosage for subsequent experiments.

NaV1.7 repression

Next, we performed RNAscope hybridization on mice DRGs transduced with 1 × 1012 

vg per mouse of AAV9-mCherry or AAV9-Zinc-Finger-4-KRAB to assess the in situ down-

regulation of NaV1.7 in lumbar DRG. The amount of NaV1.7 expression in the negative 

control (AAV9-mCherry) was significantly higher than in AAV9-Zinc-Finger-4-KRAB–

injected mice (P = 0.0205) (Fig. 2, C to E).

In vivo evaluation in a carrageenan model of inflammatory pain

We next focused on testing the effectiveness of the best ZFP-KRAB and KRAB-dCas9 

constructs from the in vitro screens (Zinc-Finger-4-KRAB and KRAB-dCas9-dual-gRNA) 

in a carrageenan-induced model of inflammatory pain. Mice were intrathecally injected 

with 1 × 1012 vg per mouse of AAV9-mCherry (negative control; n = 10), AAV9-Zinc-

Finger-4-KRAB (n = 10), AAV9-KRAB-dCas9-no-gRNA (negative control; n = 10), and 

AAV9-KRAB-dCas9-dual-gRNA (n = 10). After 21 days, thermal pain sensitivity was 
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measured to establish a baseline response threshold. Inflammation was induced in all four 

groups of mice by injecting one hind paw with carrageenan (ipsilateral), whereas the other 

hind paw (contralateral) was injected with saline to serve as an in-mouse control. Mice were 

then tested for thermal pain sensitivity at 30 min and 1, 2, 4, and 24 hours after carrageenan 

injection (Fig. 3A). The mean paw withdrawal latencies (PWLs) were calculated for both 

carrageenan- and saline-injected paws (Fig. 3, B and C), and the area under the curve (AUC) 

for the total mean PWL was calculated (Fig. 3D). As expected, compared to saline-injected 

paws, carrageenan-injected paws developed thermal hyperalgesia, measured by a decrease 

in PWL after application of a thermal stimulus (Fig. 3D). We also observed a significant 

increase in PWL in mice injected with either AAV9-Zinc-Finger-4-KRAB or AAV9-KRAB-

dCas9-dual-gRNA (P < 0.0001), indicating that the repression of NaV1.7 in mouse DRG 

leads to lower thermal hyperalgesia in an inflammatory pain state. The thermal latency of 

the control (uninflamed paw) was not different across AAV treatment groups, indicating that 

the knockdown of the NaV1.7 had minimal effect upon normal thermal sensitivity. Twenty-

four hours after carrageenan administration, mice were euthanized and DRGs (L4 to L6) 

were extracted. The repression of NaV1.7 transcript expression was determined by qPCR, 

and a significant repression of NaV1.7 was observed in mice injected with AAV9-Zinc-

Finger-4-KRAB (67%; P = 0.0008) compared to mice injected with AAV9-mCherry and in 

mice injected with AAV9-KRAB-dCas9-dual-gRNA (50%; P = 0.0033) compared to mice 

injected with AAV9-KRAB-dCas9-no-gRNA (Fig. 3E). As an index of edema/inflammation, 

we measured the ipsilateral and contralateral paws with a caliper before and 4 hours after 

carrageenan injection, which is the time point with the highest thermal hyperalgesia. We 

observed significant edema formation in both experimental and control groups (P < 0.0001) 

(fig. S2C).

Benchmarking with established small-molecule drug gabapentin

To further validate the efficacy of ZFP-KRAB in ameliorating thermal hyperalgesia in a 

carrageenan model of inflammatory pain, we next conducted a separate experiment and 

tested the small-molecule drug gabapentin as a positive control. Mice were intrathecally 

injected with 1 × 1012 vg per mouse of AAV9-mCherry (n = 5), AAV9-Zinc-Finger-4-

KRAB (n = 6), or saline (n = 5). After 21 days, thermal nociception was measured in 

all mice as previously described. One hour before carrageenan administration, the mice 

that received intrathecal saline were injected as a positive comparator with intraperitoneal 

gabapentin (100 mg/kg). This agent is known to reduce carrageenan-induced thermal 

hyperalgesia in rodents through binding to spinal alpha2 delta subunit of the voltage-gated 

calcium channel (38, 39). Twenty-four hours after carrageenan administration, mice were 

euthanized and DRGs (L4 to L6) were extracted. The repression of NaV1.7 transcript 

expression was determined by qPCR, and a significant repression of NaV1.7 was observed 

in AAV9-Zinc-Finger-4-KRAB (P = 0.0007) and gabapentin groups (P = 0.0121) (fig. S3A). 

The mean PWL was calculated for both carrageenan- and saline-injected paws. We then 

calculated the AUC for thermal hyperalgesia. We observed a significant increase in PWL 

in the carrageenan-injected gabapentin group (39% improvement, P = 0.0208) (fig. S3B) 

and in the AAV9-Zinc-Finger-4-KRAB group (115% improvement, P = 0.0021) (fig. S3C) 

compared to the carrageenan-injected AAV9-mCherry control. Last, we compared PWLs of 

carrageenan-injected paws for AAV9-Zinc-Finger-4-KRAB and gabapentin groups at each 
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time point to the AAV9-mCherry carrageenan-injected control using a two-way analysis of 

variance (ANOVA) calculation to determine whether there was any reduction in thermal 

hyperalgesia (fig. S3D). When comparing carrageenan-injected hind paws, we observed that 

only AAV9-Zinc-Finger-4-KRAB had significantly higher PWL at all the time points after 

carrageenan injection when compared to the AAV9-mCherry control (P < 0.0001 after 30 

min, P = 0.0002 after 1 hour, P < 0.0001 after 2 hours, P = 0.0104 after 4 hours, and P = 

0.0028 after 24 hours). We also observed significance in PWL for the gabapentin-positive 

control group at the 30-min (P = 0.0081), 1-hour (P = 0.0276), and 4-hour (P = 0.0184) time 

points, but not at the 24-hour time point. This result reflects the half-life of gabapentin (3 to 

5 hours). Of note, the thermal escape latency of the contralateral noninflamed paw showed 

no difference among groups.

In vivo repression of NaV1.7 prevents chronic pain in a polyneuropathic pain model

After having established in vivo efficacy in an inflammatory pain model, we next evaluated 

our epigenome repression strategy for neuropathic pain using the polyneuropathy produced 

by the chemotherapeutic paclitaxel. To establish this model, mice were first injected with 

1 × 1012 vg per mouse of AAV9-mCherry (n = 8), AAV9-Zinc-Finger-4-KRAB (n = 8), 

AAV9-KRAB-dCas9-dual-gRNA (n = 8), AAV9-KRAB-dCas9-no-gRNA (n = 8), or saline 

(n = 16). Fourteen days later and before paclitaxel administration, we established a baseline 

for tactile threshold (von Frey filaments). Mice were then administered with intraperitoneal 

paclitaxel at days 14, 16, 18, and 20, with a dosage of 8 mg/kg (total cumulative dosage 

of 32 mg/kg), with a group of saline-injected mice not receiving any paclitaxel (n = 8) 

to establish the tactile allodynia caused by the chemotherapeutic. Twenty-one days after 

the initial injections and 1 hour before testing, a group of saline-injected mice (n = 8) 

were injected with intraperitoneal gabapentin (100 mg/kg). Mice were then tested for 

tactile allodynia via von Frey filaments and for cold allodynia via acetone testing (Fig. 

4A). A 50% tactile threshold was calculated. We observed a decrease in tactile threshold 

in mice receiving AAV9-mCherry and AAV9-KRAB-dCas9-no-gRNA, whereas mice that 

received gabapentin, AAV9-Zinc-Finger-4-KRAB (P = 0.0007), and AAV9-KRAB-dCas9-

dual-gRNA (P = 0.0004) had increased withdrawal thresholds, indicating that in situ NaV1.7 

repression can prevent chemotherapy-induced tactile allodynia (Fig. 4B). Similarly, an 

increase in the number of withdrawal responses is seen in mice tested for cold allodynia in 

the negative control groups (AAV9-mCherry and AAV9-KRAB-dCas9-no-gRNA), whereas 

both AAV9-Zinc-Finger-4-KRAB (P < 0.0001) and AAV9-KRAB-dCas9-dual-gRNA (P = 

0.008) groups had a decrease in withdrawal responses, indicating that in situ repression of 

NaV1.7 also leads to a decrease in chemotherapy-induced cold allodynia (Fig. 4C).

In vivo repression of NaV1.7 decreases mechanical allodynia in a model of spinally evoked 
nociception

We next tested whether in situ repression of NaV1.7 via KRAB-dCas9 could prevent 

neuropathic pain in another model and specifically focused on BzATP-induced pain. This 

molecule activates P2X receptors located on central terminals, leading to a centrally 

mediated hyperalgesic state. We first injected mice with 1 × 1012 vg per mouse of AAV9-

mCherry (n = 6), AAV9-KRAB-dCas9-no-gRNA (n = 5), and AAV9-KRAB-dCas9-dual-

gRNA (n = 6). After 21 days, tactile thresholds were determined with von Frey filaments, 
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and mice were injected intrathecally with BzATP (30 nmol). Tactile allodynia was then 

measured at 30 min and 1, 2, 3, 6, and 24 hours after BzATP administration (Fig. 4D). 

We observed a significant decrease in tactile allodynia at 30-min (P < 0.0001), 1-hour (P 
< 0.0001), and 3-hour (P = 0.0469) time points in mice injected with AAV9-KRAB-dCas9-

dual-gRNA, and an overall increase in tactile threshold at all time points (Fig. 4E).

In vivo repression of NaV1.7 reverses chronic pain in a polyneuropathic pain model

After establishing that in situ NaV1.7 repression can prevent hyperalgesia in three 

different pain models, we next tested this approach in an established chemotherapy-induced 

neuropathic pain state to determine whether epigenetic repression could reverse mechanical 

allodynia. To establish this model, we first performed a baseline for tactile threshold (von 

Frey filaments). We then intraperitoneally injected mice (n = 54) with paclitaxel at days 1, 3, 

5, and 7, with a dosage of 8 mg/kg (total cumulative dosage of 32 mg/kg), whereas a group 

of mice (n = 8) was intraperitoneally injected with saline to establish the tactile allodynia 

caused by the chemotherapeutic. After confirming paclitaxel-induced tactile allodynia, we 

intrathecally injected mice with 1 × 1012 vg per mouse of AAV9-mCherry (n = 8), AAV9-

Zinc-Finger-4-KRAB (n = 8), AAV9-KRAB-dCas9-no-gRNA (n = 7), AAV9-KRAB-dCas9-

gRNA (n = 7), or saline (n = 16). In addition, as both 1 × 1011 and 1 × 1012 vg per mouse 

of AAV9-mCherry demonstrated robust lumbar DRG transduction (Fig. 2, A and B) and to 

determine whether a 10-fold decrease in viral titer would be efficacious in ameliorating pain, 

we intrathecally injected two groups of mice with 1 × 1011 vg per mouse of AAV9-mCherry 

(n = 8) or AAV9-Zinc-Finger-4-KRAB (n = 8). Twenty-one and 28 days after, mice were 

tested for tactile allodynia via von Frey filaments, with one group of saline-injected mice (n 
= 8) injected with intraperitoneal gabapentin (100 mg/kg) 1 hour before testing (Fig. 5A). A 

50% tactile threshold was calculated. We observed a significant decrease in tactile allodynia 

for mice injected with AAV9-Zinc-Finger-4-KRAB at 21 days after AAV9 injections (P = 

0.0028 for 1 × 1011 vg dose; P < 0.0001 for 1 × 1012 vg dose) and at 28 days after AAV9 

injection (P < 0.0001 for both 1 × 1011 and 1 × 1012 vg doses). In addition, we observed 

a significant decrease in tactile allodynia for AAV9-KRAB-dCas9-gRNA gRNA–injected 

mice at both 21 and 28 days after AAV9 injections (P < 0.0001) (Fig. 5B).

Durable in situ repression of NaV1.7 for pain prevention

To determine whether in situ repression of NaV1.7 was efficacious long term, we repeated 

the carrageenan inflammatory pain model and tested thermal hyperalgesia at 42, 84, and 

308 days after intrathecal AAV injection (n = 5 to 8 per group) (Fig. 6A). We observed 

a significant improvement in PWL for carrageenan-injected paws in AAV9-Zinc-Finger-4-

KRAB groups at all three time points (P < 0.0001) (Fig. 6B), demonstrating the durability of 

this approach. To determine whether in situ repression of NaV1.7 was also efficacious long 

term in a polyneuropathic pain model, we measured tactile and cold allodynia 105 days after 

initial AAV injections and 85 days after the last paclitaxel injection (total cumulative dosage 

of 32 mg/kg; Fig. 6C). Compared to the earlier time point (Fig. 4B), we observed that mice 

from both AAV9-mCherry (n = 8) and AAV9-KRAB-dCas9-no-gRNA (n = 6) groups had 

increased tactile allodynia at day 105 as compared to day 21 and responded to the lowest 

von Frey filament examined (0.04 g). In comparison, mice receiving AAV9-Zinc-Finger-4-

KRAB (n = 5; P < 0.0001) and AAV9-KRAB-dCas9-dual-gRNA (n = 7; P < 0.0001) had 
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increased withdrawal thresholds, indicating that in situ NaV1.7 repression leads to long-term 

prevention in chemotherapy-induced tactile allodynia (Fig. 6D). As before, an increase 

in the number of withdrawal responses is seen in mice tested for cold allodynia in the 

negative control groups (AAV9-mCherry and AAV9-KRAB-dCas9-no-gRNA), while both 

AAV9-Zinc-Finger-4-KRAB and AAV9-KRAB-dCas9-dual-gRNA groups had a decrease in 

withdrawal responses (P < 0.0001), indicating that in situ repression of NaV1.7 also leads to 

long-term prevention of chemotherapy-induced cold allodynia (Fig. 6E).

Safety and specificity analysis of ZFP-KRAB and KRAB-dCas9

To determine potential side effects of NaV1.7 epigenetic repression via ZFP-KRAB and 

KRAB-dCas9, we performed a series of toxicity/side effect tests for examination of general 

health and behavior in mice. These tests evaluated changes in self-care, increases in 

distress/stress, and illness. For these, we intrathecally injected mice with 1 × 1012 vg 

per mouse of AAV9-mCherry (n = 8), AAV9-Zinc-Finger-4-KRAB (n = 8), AAV9-KRAB-

dCas9-no-gRNA (n = 7), or AAV9-KRAB-dCas9-dual-gRNA (n = 7). We then examined 

the mice 8 to 12 weeks after intrathecal injection for piloerection, arousal, muscle tone, 

as well as body weight and body temperature (fig. S4, A and B). The findings suggest 

that NaV1.7 epigenetic repression via dCas9 or zinc fingers has no general effects upon 

nonnociresponsive behaviors (fig. S4). To determine whether there was any change in motor 

function, we performed a rotarod balancing test (see Materials and Methods) (40). We found 

no changes in the time to fall (fig. S4C). We also measured grip strength and found no 

changes in grip strength (fig. S4D).

Next, we performed a marble burying test to assess anxiety-like and possibly obsessive-

compulsive–like behavior (see Materials and Methods). We found no changes in the number 

of marbles buried (fig. S4E). To determine whether mice maintained social behaviors, we 

also performed a nest building test in which nestlet material is placed in each cage, and nests 

are assessed at 2, 4, 6, 8, and 24 hours on a rating scale of 1 to 5 based on nest construction 

(41). We found no changes in the nest construction (fig. S4F). As loss-of-function NaV1.7 

mutations in individuals with CIP have anosmia (42), we performed an olfactory test, 

which examines the ability of the mice to locate a desired food item, visible or buried 

under bedding. We found no changes in the time to eat the desired food item for AAV9-

Zinc-Finger-4-KRAB– or AAV9-KRAB-dCas9-dual-gRNA gRNA–injected mice (fig. S4G) 

as compared to the controls, indicating no loss of function via epigenetic repression of 

NaV1.7. Last, we performed a cognitive test to determine whether any cognitive side effects 

were seen using a novel object recognition test (see Materials and Methods). We found no 

changes in memory retention (fig. S4H).

Next, we examined the histopathology of the DRG in the gene therapy–treated mice. We 

intrathecally injected C57BL/6J male mice with 1 × 1010, 1 × 1011, or 1 × 1012 vg per 

mouse of AAV9-mCherry (n = 3 per titer) or AAV9-Zinc-Finger-4-KRAB (n = 3 per titer) 

and harvested DRG 21 days after intrathecal treatment. Hematoxylin and eosin (H&E)–

stained paraffin sections (blinded to experimental condition) were reviewed independently 

by three neuropathologists (fig. S5A). As expected, all specimens consisted of peripheral 

nerve and ganglion, with variable small amounts of bone, marrow, skeletal muscle, and fat. 
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None of the nerves and ganglia showed axon degeneration, neuron loss, or myelin loss. In 

one specimen, several DRG neurons contained pale amphophilic intracytoplasmic inclusions 

of unknown significance, and although they did not resemble known viral inclusions, these 

could not be ruled out and were scored. Possible mild edema of nerve (versus tissue 

processing artifact) was identified by some reviewers and was also graded. All reviewers 

reported some degree of mild focal inflammatory cell presence in some specimens, ranging 

from mast cells in nerve to lymphocytes in ganglia. No acute inflammation (neutrophils) was 

observed (fig. S5B). In summary, in all cases, the DRGs showed no loss of neurons, and the 

nerves showed no axonal injury or myelin pathology.

Last, we investigated the genome-wide effects of zinc finger– and CRISPR-mediated gene 

silencing on transcriptional regulation. For this, we performed whole-transcriptome RNA 

sequencing on Neuro2a cells transfected with either Zinc-Finger-4-KRAB and mCherry, 

or KRAB-dCas9-dual-gRNA and KRAB-dCas9-no-gRNA. We confirmed robust NaV1.7 

repression in both the Zinc-Finger-4-KRAB and KRAB-dCas9-dual-gRNA conditions (fig. 

S6, A and B). Overall, the KRAB-dCas9-dual-gRNA condition resulted in fewer off-target 

transcriptomic perturbations than the Zinc-Finger-4-KRAB construct. Next, to determine 

whether Zinc-Finger-4-KRAB and KRAB-dCas9-dual-gRNA were specific in vivo in DRGs 

in repressing only NaV1.7 and not other expressed NaV channels that are implicated in 

nociceptive transmission and/or that contribute to the hyperexcitability in primary afferent 

nociceptive and sympathetic neurons, the expression of NaV1.3, NaV1.7, NaV1.8, and 

NaV1.9 was determined by qPCR (fig. S6, C and D) of mice lumbar DRG from the post-

chronic pain model (n = 6; Fig. 3, B and C). We observed significant repression of NaV1.7, 

but not of NaV1.3, NaV1.8, or NaV1.9, in mice injected with AAV9-Zinc-Finger-4-KRAB (P 
< 0.0001) and AAV9-KRAB-dCas9-dual-gRNA (P = 0.0092) (fig. S6, C and D). Together, 

we confirmed that both the CRISPR and zinc finger approaches for targeted gene regulation 

were highly specific.

Reduced excitability of DRG neurons

Last, using microelectrode array (MEA) recordings, we examined the impact of NaV1.7 

repression on excitability of DRG neurons transduced with AAV9-Zinc-Finger-4 in response 

to noxious heat. We tested firing from DRG neurons transduced in cell culture with either 

AAV9-mCherry or AAV9-Zinc-Finger-4 at both 37° and 42°C. We observed that both 

groups had increased firing when the temperature was raised, and the AAV9-mCherry group 

had more active electrodes per well as compared to the AAV9-Zinc-Finger-4 group at 37°C 

(P = 0.0248) (fig. S7).

DISCUSSION

In this study, we investigated the efficacy of the repression of NaV1.7 in the DRG using 

two distinct epigenome engineering platforms—KRAB-dCas9 and ZFP-KRAB proteins—to 

prevent and treat acute and persistent nociceptive processing generated in murine models 

of peripheral inflammation and polyneuropathy. We believe that the promising results 

reflecting efficacy, tolerability, and absence of adverse events suggest the utility of the 

approach for developing therapeutic reagents.
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Specifically, we found that mice injected with either epigenetic platform (ZFP-KRAB 

and KRAB-dCas9) had reduced expression of NaV1.7 in DRG. Other studies have shown 

that partial repression of NaV1.7 is sufficient to ameliorate pain (43–47). Using antisense 

oligonucleotides, mechanical pain could be ameliorated with 30 to 80% NaV1.7 repression 

levels (43). Using microRNA-30b, around 50% repression of NaV1.7 relieved neuropathic 

pain (44), whereas more recently microRNA-182 ameliorated pain preventing NaV1.7 

overexpression in spared nerve injury rats (45). Similarly, short hairpin RNA (shRNA)–

mediated knockdown of NaV1.7 prevented its overexpression in burn injury relieving pain 

(46). In addition, shRNA lentiviral vectors can reduce bone cancer pain by repressing 

NaV1.7 40 to 60% (47). Further studies are needed to determine what the minimum dosage 

to have an effect is.

The role of NaV1.7 has been implicated in a variety of preclinical models, including 

those associated with robust inflammation as in the rodent carrageenan and complete 

Freund’s adjuvant (CFA) model. Our studies demonstrate that NaV1.7 knockdown via 

either epigenetic platform leads to reduced hypersensitivity to heat in a carrageenan 

inflammatory pain model. Similar results were obtained with a NaV1.7 conditional knockout 

mice—NaV1.7 is deleted from sensory neurons that express NaV1.8—using a CFA 

model of inflammatory pain (48). This indicates an essential contribution of NaV1.7 to 

hypersensitivity to heat stimuli after inflammation. We also examined the effect of knocking 

down NaV1.7 in a paclitaxel-induced polyneuropathy. Previous work has shown that this 

treatment will induce NaV1.7 (33). Both epigenetic repressors ameliorate tactile allodynia 

to a greater extent as the internal comparator gabapentin and were efficacious pre-emptively 

(before the pain state), as well as after the stabilization of a polyneuropathic chronic pain 

state. Last, we further addressed the role of NaV1.7 knockdown in hyperpathia induced by 

intrathecal injection of BzATP. This was attenuated in mice previously treated with KRAB-

dCas9. Spinal purine receptors have been shown to play a pivotal role in the nociceptive 

processing initiated by a variety of stimulus conditions including inflammatory/incisional 

pain and a variety of neuropathies (49). The present observations suggest that the repression 

of afferent NaV1.7 expression in the nociceptor leads to a suppression of enhanced tactile 

sensitivity induced centrally. The mechanism underlying these results may reflect upon 

the observation that down-regulation of NaV1.7 in the afferent may serve to minimize the 

activation of microglia and astrocytes (47). These results suggest that, at least partially, pain 

signal transduction through NaV1.7 is downstream of ATP signaling.

Of note, the effects examined in the polyneuropathy and carrageenan model appeared to 

persist unchanged for at least 15 and 44 weeks for the paclitaxel-induced polyneuropathy 

and carrageenan models, respectively. Long-term expression has been similarly noted in 

other gene therapy studies (50, 51). These effects were unaccompanied by any detectable 

adverse motor, olfactory, and neurological effects after neuraxial down-regulation of 

NaV1.7.

We also confirmed the specificity of ZFP-KRAB and KRAB-dCas9 repression, via RNA 

sequencing of Neuro2a-transfected cells, with the latter approach being more specific for 

the reagents tested in this study. Toward the former, future structure-guided engineering of 
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the zinc finger backbone could be explored to reduce off-target binding while maintaining 

on-target activity (52, 53).

As other NaV channels are implicated in nociceptive transmission and/or contribute to the 

hyperexcitability in primary afferent nociceptive and sympathetic neurons, the epigenetic 

engineering platforms presented in this study could be potentially applied to target these 

channels alone or in combination as potential therapeutics for pain. Previous studies 

demonstrated that intrathecal delivery of shRNA to knockdown NaV1.3 attenuated nerve 

injury–induced pain and tactile allodynia in STZ-induced diabetic rats (54, 55). In addition, 

mechanical and thermal allodynia were ameliorated after peripheral inflammation and 

nerve injury, in a model of bone cancer pain with intrathecal delivery of antisense 

oligodeoxynucleotides (ASOs) or small interfering RNA (siRNA) targeting NaV1.8 (56, 

57), and in a model of bone cancer pain with intrathecal delivery of ASOs targeting NaV1.9 

(58).

The intrathecal route of delivery represents an appropriate choice for this therapeutic 

approach. The role played by NaV1.7 is in the nociceptive afferents, and their cell 

bodies are in the respective segmental DRG neurons. The intrathecal delivery route, as 

compared to systemic delivery, efficiently delivers AAVs to the DRG neurons that minimizes 

the possibility of off-target biodistribution and reduces the viral load required to get 

transduction. Although lumbar AAV intrathecal injections do not evade vector escape to 

the peripheral organs (59), studies in nonhuman primates (NHPs) demonstrated a highly 

reduced peripheral biodistribution and higher DRG transduction efficacy when AAV9 was 

injected as a lumbar intrathecal injection as compared to intravenously (60). At the very 

least, this reflects the lower total viral load required after spinal versus systemic delivery 

for a neuraxial target. Further, the relative paucity of B and T cells in the cerebrospinal 

fluid also serves to minimize the potential immune response. In one study, the presence of 

circulating anti-AAV neutralizing antibodies of up to a 1:128 titer had no inhibitory effect 

on the transduction efficacy in the central nervous system (CNS) after AAV9 intrathecal 

delivery in NHP (60). In addition, the extent of liver transduction after AAV9 intrathecal 

lumbar puncture was dependent on the presence of preexisting neutralizing antibodies 

against AAV9 but had no impact on CNS transduction (60, 61). The transgene can also 

provoke an immunological response, and as ZFPs are engineered on human protein chassis, 

they intrinsically constitute a targeting approach with even lower potential immunogenicity. 

A study in NHPs found that intrathecal delivery of a non–self-protein (AAV9–green 

fluorescent protein) produced immune responses that were not seen with the delivery of 

a self-protein (62).

As a potential clinical treatment, KRAB-dCas9 and ZFP-KRAB show promise for treating 

chronic inflammatory and neuropathic pain. These systems allow for transient gene 

therapy, which is advantageous in the framework of chronic pain, because permanent pain 

insensitivity is not desired. Although the treatment is transient, the long duration still 

presents a substantial advantage compared to existing drugs, which must be taken daily 

or hourly, and which may have undesirable addictive effects. The use of multiple neuraxial 

interventions over time is a common motif for clinical interventions as with epidural steroids 

where repeat epidural delivery may occur over the year at several month intervals (63). 
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It should be noted that this therapeutic regimen addresses a critical pain phenotype: the 

enduring but reversible pain state. Chronic pain defined as pain states enduring greater than 

3 months are not necessarily irreversible. Because of advances in medicine, the number 

of cancer survivors is steadily increasing in the last decades. This increase has led to a 

subsequent increase in the number of cancer-related side effects, and chemotherapy-induced 

polyneuropathy is one of the most common adverse events (64).

These results displaying target engagement and efficacy provide strong support for the 

development of these platforms for pain control. Several limitations are pertinent. Although 

this study shows promise in treating acute and persistent nociceptive processing in the 

mouse model, species differences in NaV1.7 expression (33, 65) could mean that a different 

amount of repression might be needed for a phenotypic improvement in the human setting, 

as the expression of NaV1.7 is higher in human DRG than in mice DRG. In addition, 

quantifying changes in NaV1.7 protein could strengthen the study; however, five different 

antibodies were tested without any success (ab65167, ab85015, GTX134494, ASC-008, 

and AGP-057). Other researchers have also experienced the difficulty of measuring protein 

with NaV1.7 antibodies. A recent paper (66) tried five different NaV1.7 antibodies to 

stain mice DRG without any success and instead used an enzyme-linked immunosorbent 

assay (E03N0034); however, this kit is no longer commercially available. In addition, 

in another study (67), researchers used CRISPR to introduce a hemagglutinin (HA) tag 

to NaV1.7 to be able to detect protein quantities. Because of its long-lasting effect, 

this therapy would be better suited for chronic conditions, and hence, modifications in 

delivery approach or addition of an inducible system might allow this approach to be 

used for acute pain conditions as well. In addition, further studies will be necessary to 

(i) determine what is the minimum effective AAV dosage to produce knockdown and 

therapeutic effects. (ii) Although long-term studies were performed (308 days after a single 

intrathecal injection), studies to evaluate the actual duration of treatment and whether any 

compensatory mechanisms take place because of NaV1.7 repression must be performed. 

In particular, previous work has reported compensatory changes in the endogenous opioid 

system (proenkephalin up-regulation) in response to NaV1.7 knockout in mice (68–70). (iii) 

Further studies must be performed to explore the properties of repeat dosing at the spinal 

level. (iv) Overall, we validated our approach in three mouse pain models. However, other 

models of inflammatory pain should be tested to further validate our results. (v) Last, other 

species including NHPs must be explored to further validate this approach and to determine 

potential toxicity and specificity before its translation into the clinic. Together, the results 

of these studies, albeit a proof of concept, show a promising new avenue for treatment of 

chronic pain, an important and increasingly urgent issue in our society.

MATERIALS AND METHODS

Study design

This study aimed to use two distinct epigenome engineering platforms—KRAB-dCas9 

and ZF-KRAB proteins—for targeted NaV1.7 repression in the DRG to prevent and treat 

acute and persistent nociceptive processing generated in murine models of peripheral 

inflammation and polyneuropathy, resulting in reduction of NaV1.7 RNA transcripts and a 
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decrease in carrageenan-induced thermal hyperalgesia, in paclitaxel-induced mechanical and 

cold hyperalgesia, and in BzATP-induced mechanical hyperalgesia. We identified gRNAs 

and ZFPs that repress NaV1.7 in cultured cells and in vivo. We used AAV to deliver 

both epigenome engineering platforms in vivo and evaluated NaV1.7 repression using 

quantitative reverse transcription PCR, RNA sequencing, and in situ RNA–fluorescence 

in situ hybridization (FISH) and the phenotypic effects using models of carrageenan-

induced inflammatory pain, paclitaxel-induced neuropathic pain, BzATP-induced pain, and 

electrophysiology using multielectrode arrays. Mice injected with either mCherry or KRAB-

dCas9 with no gRNA served as controls. All the experimental samples were included in 

the analysis, with no data excluded. Mice were randomized into groups, with mice from 

different AAV-injected groups being present in the same cage. Investigators performing 

behavioral assays were blinded to the experimental conditions. Sample size was selected on 

the basis of previous studies (34, 71, 72), and statistical significance using similar behavioral 

models and a power analysis was not performed.

Statistical analysis

Results are expressed as means ± SEM. Statistical analysis was performed using GraphPad 

Prism (version 8.0, GraphPad Software). Results were analyzed using Student’s t test (for 

differences between two groups), one-way ANOVA (for multiple groups), or two-way 

ANOVA (for multiple-group time-course experiments). Differences between groups with 

P < 0.05 were considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Schematic of the overall strategy used for in situ NaV1.7 repression using ZFP-KRAB and 
KRAB-dCas9 via the intrathecal route of administration (ROA).
NaV1.7 is a DRG channel involved in the transduction of noxious stimuli into electric 

impulses at the peripheral terminals of DRG neurons. In situ repression of NaV1.7 via 

AAV-ZFP-KRAB and AAV-KRAB-dCas9 is achieved through intrathecal injection, leading 

to disruption of the pain signal before reaching the brain.

Moreno et al. Page 20

Sci Transl Med. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Robust transduction of DRG via intrathecal delivery of AAVs.
(A) Representative three-dimensional maximum intensity projections from whole-mount 

DRGs along the neuraxis after intrathecal injections of AAV9-mCherry, illustrating 

distribution and transduction at different viral titers (1 × 1010, 1 × 1011, or 1 × 1012 

vg per mouse). (B) Neuraxial distribution of small, medium, and large DRG neuronal 

soma as a function of their average soma fluorescent intensity (n = 4 mice per titer; 

cross-sectional area: small ≤ 300 μm2, medium = 300 to 700 μm2, large ≥ 700 μm2). 

(C and D) Representative 20× images of mice DRG transduced with 1 × 1012 vg per 
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mouse of AAV9-mCherry (C) or AAV9-Zinc-Finger-4-KRAB (D) labeled with RNAscope 

in situ hybridization for NaV1.7 (n = 3 for mCherry and n = 4 for Zinc-Finger-4-KRAB; 

scale bar, 50 μm). (E) Quantification of NaV1.7 expression in AAV9-mCherry or AAV9-

Zinc-Finger-4-KRAB treatment conditions: Individual RNAscope probes and cells were 

identified in each respective image and used to calculate the average number of probes 

per cell (dots represent individual biological replicates; n = 3 for mCherry and n = 4 for 

Zinc-Finger-4-KRAB; error bars are SEM; Student’s t test, *P = 0.0205).

Moreno et al. Page 22

Sci Transl Med. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. In situ repression of NaV1.7 leads to pain prevention in a carrageenan model of 
inflammatory pain.
(A) Schematic of the carrageenan-induced inflammatory pain model. (B) Time course of 

thermal hyperalgesia after the injection of carrageenan (solid lines) or saline (dotted lines) 

into the hind paw of mice 21 days after intrathecal (i.t.) injection with AAV9-mCherry 

and AAV9-Zinc-Finger-4-KRAB is plotted. Mean PWLs are shown (dots represent mean of 

individual biological replicates; n = 10; error bars are SEM). (C) Time course of thermal 

hyperalgesia after the injection of carrageenan (solid lines) or saline (dotted lines) into the 

hind paw of mice 21 days after intrathecal injection with AAV9-KRAB-dCas9-no-gRNA 

and AAV9-KRAB-dCas9-dual-gRNA is plotted. Mean PWLs are shown (n = 10; error 

bars are SEM). (D) The aggregate PWL was calculated as AUC for both carrageenan- 
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and saline-injected paws (dots represent individual biological replicates; n = 10; error bars 

are SEM; Student’s t test, ****P < 0.0001). (E) In vivo NaV1.7 repression efficiencies as 

determined by qPCR (dots represent individual biological replicates; qPCR was performed 

in technical triplicates; n = 5; error bars are SEM; values normalized to Gapdh; Student’s t 
test, ***P = 0.0008 and **P = 0.0033).
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Fig. 4. In vivo efficacy of ZFP-KRAB and KRAB-dCas9 in two neuropathic pain models.
(A) Schematic of the paclitaxel-induced neuropathic pain model. i.p., intraperitoneally. 

(B) In situ repression of NaV1.7 via Zinc-Finger-4-KRAB and KRAB-dCas9-dual-gRNA 

reduces paclitaxel-induced tactile allodynia (dots represent individual biological replicates; 

n = 8; error bars are SEM; Student’s t test, ***P = 0.0007 and ***P = 0.0004). (C) In 

situ repression of NaV1.7 via Zinc-Finger-4-KRAB and KRAB-dCas9-dual-gRNA reduces 

paclitaxel-induced cold allodynia (dots represent individual biological replicates; n = 8; 

error bars are SEM; Student’s t test, ****P < 0.0001 and **P = 0.008). (D) Schematic 
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of the BzATP pain model. (E) In situ repression of NaV1.7 via KRAB-dCas9-dual-gRNA 

reduces tactile allodynia in a BzATP model of neuropathic pain (dots represent mean of n 
= 5 biological replicates for KRAB-dCas9-no-gRNA and n = 6 biological replicates for the 

other groups; error bars are SEM; two-way ANOVA with Bonferroni post hoc test, ****P < 

0.0001 and *P = 0.0469).
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Fig. 5. In situ repression of NaV1.7 reverses chemotherapy-induced neuropathic pain.
(A) Schematic of the treatment for paclitaxel-induced chronic neuropathic pain model. (B) 

In situ repression of NaV1.7 via Zinc-Finger-4-KRAB and KRAB-dCas9-gRNA reverses 

paclitaxel-induced tactile allodynia (dots represent individual biological replicates; n = 7 to 

8; error bars are SEM; two-way ANOVA with Bonferroni post hoc test, ****P < 0.0001 and 

**P = 0.0027).
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Fig. 6. Long-term efficacy of ZFP-KRAB and KRAB-dCas9 in two independent pain models.
(A) Timeline of the carrageenan-induced inflammatory pain model. (B) The AUC of the 

aggregate PWL was calculated for both carrageenan- and saline-injected paws of mice 42, 

84, and 308 days after intrathecal injection with AAV9-mCherry and AAV9-Zinc-Finger-4-

KRAB. A significant increase in PWL is seen in the carrageenan-injected paws of mice 

injected with AAV9-Zinc-Finger-4-KRAB (dots represent individual biological replicates; 

n = 5 to 8; error bars are SEM; Student’s t test, ****P < 0.0001). (C) Schematic of 

the paclitaxel-induced neuropathic pain model. (D) In situ repression of NaV1.7 via Zinc-
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Finger-4-KRAB and KRAB-dCas9-dual-gRNA reduces paclitaxel-induced tactile allodynia 

105 days after last paclitaxel injection (dots represent individual biological replicates; n = 

5 to 8; error bars are SEM; Student’s t test, ****P < 0.0001 and ***P = 0.0001). (E) In 

situ repression of NaV1.7 via Zinc-Finger-4-KRAB and KRAB-dCas9-dual-gRNA reduces 

paclitaxel-induced cold allodynia (dots represent individual biological replicates; n = 5 to 8; 

error bars are SEM; Student’s t test, ****P < 0.0001).
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