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Socially-aware evaluation framework for transportation
Anu Kuncheria a,b,c, Joan L. Walkerb,c and Jane Macfarlanea,c

aSmart Cities Research Center, Institute of Transportation Studies, University of California, Berkeley, CA, USA; bDepartment of Civil and Environmental 
Engineering, University of California, Berkeley, CA, USA; cLawrence Berkeley National Laboratory Berkeley, CA, USA

ABSTRACT
Technological advancements are rapidly changing traffic management in cities. Navigation applications, in 
particular, have impacted cities in many ways by rerouting traffic. As different routing strategies distribute 
traffic differently, understanding these disparities across multiple city-relevant dimensions is extremely 
important for decision-makers. We develop a multi-themed framework called Socially- Aware Evaluation 
Framework for Transportation (SAEF), which assists in understanding how traffic routing and the resultant 
dynamics affect cities. The framework is presented for four Bay Area cities, for which we compare three 
routing strategies - user equilibrium travel time, system optimal travel time, and system optimal fuel. The 
results demonstrate that many neighborhood impacts, such as traffic load on residential streets and 
around minority schools, degraded with the system-optimal travel time and fuel routing in comparison 
to the user-equilibrium travel time routing. The findings also show that all routing strategies subject the 
city's disadvantaged neighborhoods to disproportionate traffic exposure. Our intent with this work is to 
provide an evaluation framework that enables reflection on the consequences of traffic routing and 
management strategies, allowing city planners to recognize the trade-offs and potential unintended 
consequences.
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Introduction

Massive adoption of mobile devices and cloud-based applications 
have created new mechanisms for understanding how people move 
in urban environments. This new mobility data, along with data 
generated by city infrastructure, will provide cities with a more 
detailed view of traffic dynamics and allow them to play a more 
active role in managing urban performance. In addition, emerging 
connected and automated technologies promise to create more 
efficient solutions for city management. For example, the promise 
of autonomous and connected vehicle fleets in smart cities may 
provide the possibility of optimal traffic management through mass 
control of vehicle routes. These technologies will augment current 
mechanisms for traffic management in cities, e.g., traffic lights, 
variable message signs, HOV lanes, and tolls.

Traffic flows in urban environments are currently heavily influ-
enced by real-time routing provided by various independent navi-
gation systems (e.g, Google maps, Waze, Apple maps) (Hendawi 
et al. 2017; Siuhi and Mwakalonge 2016), with up to 60% of drivers 
using them daily (2018a). These systems add another level of con-
trol that is not in coordination with existing infrastructure control. 
This has created undesired traffic dynamics, driven mainly by real- 
time route guidance systems, that often compromise safety and 
health in the neighborhoods affected (Macfarlane 2019).

In this paper, our goal is to develop a holistic framework of 
metrics that will assist in understanding how routing strategies and 
their resultant traffic dynamics impact city metrics, with the intent 
of avoiding unintended consequences and adhering to city objec-
tives. Our framework, called Socially- Aware Evaluation Framework 
for Transportation – SAEF, is an evaluation framework with multi-
ple measures related to urban performance, such as safety, mobility, 
and neighborhood congestion. The selected metrics can be evalu-
ated for cities of various sizes and at the urban scale. The framework 

is designed to allow decision-makers to assess typical routing stra-
tegies and evaluate the potential impact on different aspects of 
a city. For illustrative purposes, we present the framework for 
four cities in the Bay Area. The routing strategies we evaluate are 
(1) user equilibrium in which travel time for each user is optimized, 
(2) system optimal travel time, and (3) system optimal fuel use. The 
impact of these optimization strategies on the Bay Area is generated 
using results from a mesoscopic simulation platform called Mobiliti 
(Chan et al. 2018) that implements a Quasi Dynamic Traffic 
Assignment (QDTA) (Chan et al. 2021). The QDTA algorithm 
partitions the day into 15-minute intervals and performs a static 
traffic assignment for each interval, including trip accounting that 
allows for residual traffic from the previous time interval. Although 
the framework was developed with the primary objective of evalu-
ating the impact of traffic routing strategies, it may also be used as 
an evaluation tool for a wider array of transportation projects, such 
as infrastructure changes, connected traffic signals, and traffic 
management projects.

The remainder of the paper is organized as follows. In Section 2, 
a background of the existing transportation frameworks is pro-
vided. The design of our framework and indicators are presented 
in Section 3; the study methods, results, and interpretation is 
elucidated in Section 4. Finally, the conclusions are discussed in 
Section 5, along with possible directions for future work.

Literature review

Traffic routing in cities

There has been much previous work in the area of transportation 
modeling, and traffic route choices (Chen and Ben-Akiva 1998; 
Groot, De Schutter, and Hellendoorn 2015; Ran, Boyce, and 
LeBlanc 1993; Zhu and Ukkusuri 2015). Understanding the 
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distribution of traffic on local road networks gained popularity in 
the past decade with route guidance systems rerouting traffic dif-
ferently than before (Ackaah 2019; Paricio and Lopez-Carmona  
2019). Most route guidance systems aim to provide a user with 
the least travel time route (2015; Mahmassani and Peeta 1993). This 
might mean taking people off the highway to local streets to save 
a few minutes of travel time (Jou et al. 2005). Some services provide 
routes to users that minimize fuel consumption. This could mean 
traveling at a consistent speed and thus preferring certain roads that 
maintain that speed limit (Alfaseeh and Farooq 2020; Ahn and 
Rakha 2013). Studies evaluating the impacts of navigation systems 
model app-based and non-app-based users differently to under-
stand the resulting congestion patterns (Lazarus et al. 2018; 
Cabannes et al. 2018). Most of them model a corridor or a small 
network with varying percentages of app users to show the increase 
in congestion as app users increase by using metrics like traffic flow, 
distance, and average marginal regret. Ahmed and Hesham mod-
eled eco-routing as a feedback user equilibrium model for down-
town Los Angeles and measured the outcome in terms of fuel 
consumption and congestion levels (Elbery and Rakha 2019). It 
could be seen from the previous studies that different strategies 
have different impacts across the city network in terms of time and 
distance. However, no previous studies have explored the impacts 
of routing holistically on multiple city dimensions other than time, 
distance, or fuel.

Evaluation frameworks in transportation

We conducted an extensive review of transportation literature to 
identify frameworks or indicators that can be used to assess the 
impacts of traffic routing strategies on cities. Due to the lack of 
specific frameworks designed for routing, we reviewed the general 
frameworks in the transportation domain and assessed their usabil-
ity for routing impact evaluation. European Commission’s 
CITYkeys framework developed a set of city performance measures 
at the city level, and project level (Ahvenniemi et al. 2017). The 
framework was focused on five major themes: people, planet, pros-
perity, governance, and propagation. Out of the 116 key perfor-
mance indicators, the ones concerning transportation were in car 
waiting time, reduction in traffic accidents, quality of public trans-
portation, improved access to vehicle sharing solutions, extended 
bike route network, reduced exposure to noise pollution, and 
reduction in annual energy consumption. HASTA framework mea-
sures sustainability for a transportation project based on three 
dimensions and six sustainability indicator groups for Swedish 
cities (Koglin, Toth-Szabo, and Angjelevska 2011). They came up 
with a total of 83 indicators. Additionally, considerable work is 
ongoing through the International Standards Organization (ISO), 
European Committee for Standardization, and British Standards 
Institution (BSI) to establish proper standards in smart urban 
development project evaluation. ISO 37122:2019 provides 
a framework for a resilient city with 19 themes and multiple indi-
cators for each theme. The transportation theme has 14 indicators, 
primarily focusing on real-time technology, electric fleet, and inte-
grated payment systems (ISO 37122:2019). In addition to the fra-
meworks, there is a vast literature on transportation indicators used 
to evaluate new projects. Specific to smart cities and transportation, 
Orlowski and Romanowska developed a set of smart mobility 
indicators that encompass the following domains: technical infra-
structure, information infrastructure, mobility methods, and vehi-
cles used for this purpose and legislation with 108 metrics 
(Orlowski and Romanowska 2019). Benevolo et al. (2016) investi-
gated the role of Information and Communications Technology 
(ICT) in supporting smart mobility actions, influencing their 

impact on the citizens’ quality of life, and on the public value 
created for the city as a whole (Benevolo, Dameri, and D’Auria  
2016). They provided an action taxonomy considering three aspects 
of smart mobility actors aiming to investigate the role of ICT in 
improving the citizens’ quality of life and the public value created 
for the city as a whole.

Existing frameworks tend to have broader contexts by considering 
the entirety of transportation infrastructure (for example, transporta-
tion infrastructure cost, electric fleet mix, or transit usage) or the 
entirety of smart cities (for example, technology adoption rate or 
percentage of smart signals). A few frameworks have reasoned on 
more complex aspects, such as how different indicators interact 
reciprocally, what benefits they generate, or how they affect citizens’ 
quality of life. Moreover, the existing indicators are not specific 
enough to capture factors related to the impact of routing strategies 
on cities, such as the share of traffic in neighborhoods or traffic 
impacts near schools. While the aspects of safety and neighborhood 
are discussed in some metrics, they are primarily qualitative and 
subjective. Key challenges are centered on selecting suitable evalua-
tion methodologies to provide urban value and outcomes that 
address a city’s objectives. With this focus, our first contribution is 
developing a framework with a set of themes and indicators that 
relate to the impact of traffic routing holistically. In order to properly 
address the interactions between the different aspects of a city and 
traffic, a systemic approach is adopted. We identified relevant indi-
cators from the literature, grouped them into relevant themes, and 
developed new methodologies when needed to calculate these indi-
cators. This comprehensive set of indicators and methods will help 
understand how routing strategies and the resulting traffic dynamics 
affect cities and provide a mechanism to recognize the trade-offs 
involved. A second contribution is the application of our SAEF 
framework to four cities in the Bay area in the context of three 
different routing strategies. This helps us understand how city struc-
ture and urban form play a role in traffic dynamics. A discussion is 
provided both from a city level and a cross-city comparison. To the 
best of our knowledge, this is the first time a multi-theme, holistic 
evaluation has been used to identify the impacts of vehicle routing 
strategies for a large-scale network with cross-city comparisons.

Socially- aware evaluation framework for transportation

Framework design

To explore the city level impacts of various routing strategies, we 
develop a holistic framework called Socially- Aware Evaluation 
Framework for Transportation – SAEF. We define the term 
‘socially-aware’ to include four complementary themes of the 
neighborhood, safety, mobility, and environment that encompass 
the multitudes of traffic impacts on cities (Figure 1). In order to 
capture socially relevant aspects of these impacts, we create themes 
and indicators beyond traffic congestion measurement and thus 
reference our framework as socially-aware. The themes are 
assembled from a set of city performance indicators grounded in 
literature (Koglin, Toth-Szabo, and Angjelevska 2011; Onatere, 
Nwagboso, and Georgakis 2014; Toth-Szabo and Várhelyi 2012). 
Each theme identifies factors that are likely key concerns for that 
theme. For example, accidents are a concern when considering 
safety, similarly, emissions are a concern when considering envir-
onmental quality. Based on these factors, we defined indicators/ 
metrics (Figure 2) that could be derived from real world or simu-
lated data. These indicators were culled from a thorough review of 
literature from domestic and international journals, city policies, 
and international organizations related to transportation. A list of 
over 100 indicators with a wide range of scale and use was 
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identified. A manageable set of indicators that we assessed as sig-
nificant and measurable were created for each theme. Identified 
indicators should also be able to capture the differences in the 
system when routing strategies are varied. This resulted in 24 
indicators: 9 were selected as reflections of neighborhood quality, 
6 for safety, 5 for mobility, and 4 for environmental quality. This 
framework can then provide a basis for the following:

• comparing indicators as a function of specific traffic manage-
ment strategies,

• attaching weights to the metrics that reflect planning 
objectives,

• stressing the relationship between policy goals and intended 
city-level impact, and

• monitoring progress toward long-term policy goals.

Operationalizing the framework

Operationalizing the framework is the key to its usability for city 
managers. SAEF provides a set of measurable indicators in the context 
of a broad framework. It provides a mechanism for prioritizing the 

city’s objectives with an understanding of the trade-offs that must be 
made to achieve certain objectives. For example, if a traffic manage-
ment strategy attempts to reduce fuel consumption, it may result in 
more vehicles traveling through neighborhoods. City planners can 
then determine whether the reduced emissions are a higher priority 
than the likely safety costs of higher traffic flows on neighborhood 
streets. They can choose specific themes from the framework based on 
their objectives and values and evaluate them in the context of pro-
posed traffic management strategies.

Each indicator is detailed in Appendix A, including a description, 
the unit of measurement, and spatial/temporal levels. The indicators 
are structured in spatial and temporal dimensions. The spatial dimen-
sion is partitioned into the individual, community, and city levels 
(Figure 3). There are two temporal dimensions – peak hours or an 
entire day – based on the indicator relevance. The list of indicators is 
not intended to be exhaustive. It can be revised as new information 
becomes accessible.

The following section addresses how to quantify the indicators. 
Once the indicators are quantified, the decision-makers can weigh 
them to generate an aggregate score for decision-making. The 

Figure 1. Themes in the framework.

Figure 2. Indicators for each theme.
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weighting should reflect the goals of the city and rationalize the 
values of the indicators. An alternative method is visualizing the 
indicators in the context of various strategies for comparison.

Application of the framework

Traffic simulation

To evaluate the impacts of various routing strategies, we use the 
results from an agent-based traffic simulator Mobiliti (Chan 
et al. 2018). Mobiliti is a mesoscopic urban-scale transportation 
simulation platform that implements parallel discrete event 
simulation on high-performance computers at Lawrence 
Berkeley National lab (2018) . We employ Mobiliti as it can 
simulate the entire San Francisco Bay Area in under 15 minutes, 

allowing us to simulate multiple traffic route optimizations. The 
transportation network for the Bay Area has over 1 million 
links and 0.5 million nodes. The trip demand is defined by 
a travel demand model, which for the Bay Area is the SFCTA 
CHAMP 6 model accounting for , 19 million trips during 
a 24-hour period (2002). Mobiliti provides three optimization 
methods based on standard traffic assignment algorithms. 
Specifically, it implements a Quasi-Dynamic Traffic 
Assignment (QDTA) (Chan et al. 2021) followed by a discrete 
event simulation. The main components of the simulator are 
detailed in Figure 4. For a given demand, route choice is 
generated in the QDTA step based on the seminal Wadrop’s 
principles of user equilibrium or system optimal (Wardrop  
1952). The optimization objectives are travel time or fuel 
(refer to Appendix B for the specific objective functions). 

Figure 3. SAEF Indicators and their spatial levels.

Figure 4. Mobiliti simulation framework.
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QDTA divides the analysis period into small time steps (15 min-
utes) and uses a sequence of static traffic assignment steps to 
obtain an optimized route assignment for each time step. Route 
truncation and residual demand mechanism are included to 
address the fact that some trip legs cannot be finished in 
a single analysis time step and need to be split across multiple 
steps. The route truncation operation estimates the intermediate 
stop location a trip can reach within the interval. For long trips, 
the intermediate stop location may differ from the trip destina-
tion, and the remaining leg of the trip will enter the next time 
step as the residual demand. Determining an intermediate stop 
relies on knowing each link’s travel time (or other general 
costs), which is a function of the link flow assigned to the 
network during that time interval. Then network loading is 
conducted in the simulation step. The outputs of the simulation 

are flows, speeds, and fuel consumption for every link at 15- 
minute intervals, in addition to the trip leg metrics like travel 
time and distance and the routes of every trip.

We studied three optimization scenarios: (1) user equilibrium 
travel time (UET), (2) system optimal travel time (SOT), and (3) 
system optimal fuel (SOF). The typical optimization for trip level 
shortest travel time (UET) is compared against the system optimal 
strategies. The embedded complexity of transportation networks 
naturally requires trade-offs when optimizing for different objec-
tives. Our goal with the framework is to provide context for under-
standing the trade-offs. The results are examined for four cities: San 
Jose, San Francisco, Oakland, and Concord. These cities were 
selected to represent different-sized conurbations, relevant to their 
population and geographical area (Table 1). Figure 5 shows all Bay 
area cities with the chosen four case study cities highlighted.

Figure 5. Bay area cities colored by per capita trips.

Table 1. Case study cities.

City Area (sq.mile) Population Population density (person/sq.mile) Trips per capita

San Jose 185 1,021,795 5,524 3.1
San Francisco 49 874,961 17,847 2.2
Oakland 58 425,097 7,333 2.7
Concord 31 129,183 4,105 3.5

TRANSPORTATION LETTERS 5



Network typologies

Depending on the goals of the routing strategy, the distribution of 
traffic on the roads may change. Therefore, it is important to quantify 
these variations among different types of roads when assessing impact. 
Traditionally, road classification systems are based on mobility, and 
access for vehicular use (2000). This study seeks to incorporate the local 
context of streets, including how vehicular traffic dynamics impact 
localized populations. To this end, we created a road classification 
scheme based on the principles of USDOT complete street guidelines 
(2015). Complete streets provide guidelines for the design and opera-
tion of streets to enable safe use and support the mobility of all citizens. 
Adoption of these guidelines is underway in a variety of cities. For 
example, San Francisco has classified their street based on land use 
characteristics, transportation roles, and special characteristics. This 
resulted in 16 classes designed using extensive community surveys 
and manual labeling (e.g., downtown residential streets, downtown 
commercial streets, mixed-use streets, etc.) (2010). Similarly, San Jose 
classified streets into eight types based on a street’s primary function, 
and adjacent land use context (2018b). Because we wish to compare our 
indicators across all Bay Area cities, we created an alternative classifica-
tion scheme based on parcel-level zoning data and street functional 
classes. This classification scheme, of 8 types, allowed us to then parti-
tion and develop improved metrics that will help evaluate the themes of 
our framework.

Our classification uses the Mobiliti road network, which was 
derived from a professional map from HERE Technologies (2019). 
The HERE technologies map includes definitions of five functional 
class roads defined in Appendix C Table A2. For identifying the 
transport context, links are classified into three types – highways, 
throughways, and neighborhood streets. These are based on the 
functional classification and speeds: highways group higher func-
tional class links of 1, 2, and 3 with speeds greater than 50 mph, 
throughways group rest of class 3 and 4 links that carry greater 
volumes and higher speeds of vehicle traffic, and neighborhood 
streets group class 5 links with lower speeds and volumes. For 
identifying land use context, we use the parcel level zoning data 
obtained from Metropolitan Transportation Commission (MTC). 
The 1,956,207 parcels in the analysis region is grouped into five 
land uses – residential, commercial, industrial, public-semi public, 
and others. For each link, the side land use is determined based on 
the zoning of the adjacent parcels. If the link is associated with more 
than one parcel, the use of the largest parcel is assigned to the link. 

Thus, based on the transport and land use context for each link, 8 
street types are established. This classification composition for Bay 
Area streets is shown in Figure 6. Appendix C Table A3 details the 
network lengths associated with the classification. While slightly 
coarser than a more detailed partitioning, the classification does not 
involve the complexity of surveys and manual labeling and can still 
provide a good understanding of the network typologies. Figure 7 
shows the resulting context based link classification for the four 
cities of interest.

Methods for quantifying indicators

Quantifying the indicators described in the framework can be accom-
plished by using existing models, developing new models, and acces-
sing city data, e.g., zoning use, numbers of accidents, traffic flow and 
speeds from highway and city detectors, and locations of schools. For 
our initial approach, we chose to confine our attention to developing 
the broad framework discussed in the previous section and examine 
a subset of indicators. A list of indicators evaluated for our case study 
cities and their corresponding method for evaluation is provided in 
Table 2. The Mobiliti simulation results for each optimization sce-
nario described in the previous section provided link level and trip 
level traffic values for our evaluations.

1) Neighborhood Indicators Vehicle Miles Traveled (VMT) and 
Vehicle Hours of Delay (VHD) load are the metrics used to evaluate 
the effect of traffic routing on neighborhood residential streets. 
After identifying the neighborhood typology described in the pre-
vious section, we calculate the VMT or VHD load as the proportion 
of VMT or VHD on the neighborhood residential streets divided by 
the proportion of neighborhood residential streets. A load greater 
than one indicates disproportional impact.
Impact near schools is another indicator of the neighborhood 
theme. Exposure to traffic-related air pollutants has been associated 
with various adverse long-term and short-term health effects. Long 
term traffic-related air pollution can cause breathing and mental 
health problems, and in the short term, increased traffic flow near 
schools pose accident risk and congestion around schools. Previous 
studies have demonstrated that it is preferable to locate schools in 
areas with higher percentages of local roads in order to reduce 
exposure to air pollutants (Yu and Zhu 2015). However, vehicle 
route optimizations may have diverted traffic to local roads and 
inadvertently changed the predicted exposure levels. We examine 
these impacts by a) identifying high and medium-traffic flow links 

Figure 6. Network typologies for Bay Area. Neighborhood residential streets constitute the highest share, followed by highways. Individual cities reflect similar partitioning.
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around schools and b) estimating the increased vehicular traffic 
during morning school hours. We further examine the load borne 
by minority schools in traffic exposure.

School data on the location and characteristics of 1849 public 
schools in the Bay Area, grades pre-kindergarten through 12, was 
obtained from Elementary/Secondary Information System (ElSi), 
which is a web application of the National Center for Education 
Statistics (NCES) using data from the Common Core of Data 
(CCD) for the year 2018–2019. We evaluated roads within a 250 m 
radius of each school (Kingsley et al. 2014). Studies suggest that 
Average Daily Traffic (ADT) greater than 50,000 creates high expo-

sure to traffic emissions, and between 25,000 to 50,000 is considered 
medium exposure (Green et al. 2004; Wu and Batterman 2006). For 
all links in the buffer of each school, ADT counts were calculated to 
determine if these thresholds were exceeded. Additionally, we iden-
tify the effects of increased traffic flow between 7 and 8 am, when 
children are likely to be present, by calculating the VMT for the links 
in the 250 m school buffer.

To identify the impact on minority schools, we classified the schools 
by socio-economic indicators. A school is defined as a minority school 
if the majority (75% or higher) of students in the school belong to 
a minority race (Black, Hispanic, Asian/Pacific Islander, or American 

Figure 7. Network typologies for Oakland, San Jose, San Francisco, and Concord. Oakland has the highest percentage of highways, and Concord has the highest percentage 
of neighborhood residential streets.

Table 2. Methods used to evaluate indicators.

Theme Indicator Method

Neighborhood VMT load on neighborhood residential streets, VHD load on neighborhood residential streets Section IV-B, IV-C1
Schools near high traffic streets, Traffic load on minority schools, VMT near schools in the morning Section IV-C1
VMT load on disadvantaged communities, VHD load on disadvantaged communities Section IV-C1

Safety Estimated highway accidents/year Section IV-C2
Mobility VMT per capita, VHD, Congested network miles in the morning, Average trip length, Average trip time Section IV-C3
Environment Total fuel consumption, Average trip fuel consumption Section IV-C3

TRANSPORTATION LETTERS 7



Indian/Alaska Native). The traffic load on minority schools is calcu-
lated as the proportion of minority schools impacted by traffic divided 
by the proportion of minority schools in a city.
Disadvantaged communities often bear disproportionate impacts of 
traffic exposure. We quantify these impacts using the VMT and VHD 
load on these communities. We identify disadvantaged communities 
from the Metropolitan Transportation Commission’s (MTC) 
Communities of Concern (CoC) classification to evaluate this. CoC 
classification is based on American Community Survey (ACS) 5-year 
census tract data. CoC is identified using eight demographic factors, 
namely minority population, low income, limited English proficiency, 
zero vehicle households, senior citizens, people with disability, single- 
parent families, and severely rent-burdened households (2016). All 
census tracts with concern classes categorized as high, higher, and 
highest are considered part of our disadvantaged group (Figure 8). 
Subsequently, we computed the VMT and VHD load on disadvantaged 
communities, similar to the neighborhood residential street load. The 
VMT or VHD load on disadvantaged communities is determined as 
the ratio between the proportion of VMT or VHD occurring on streets 
within the disadvantaged communities to the proportion of network 
miles in the disadvantaged communities.

2) Safety Indicators Numerous factors like traffic flow, road 
geometry, and road type (2020) must be taken into account while 
estimating the occurrence of accidents on highways and local roads. 
California Department of Transportation (Caltrans) has developed 
safety performance functions (SPF) to estimate the occurrence of 
accidents on highways (Shankar and Madanat 2015). The SPF 
calculates the estimated number of accidents per year on a road 
segment as a function of Average Daily Traffic (ADT) and the 
length of the road. We use the Type 1 SPF, which is specified as: 

λi ¼ αþ lnðlengthÞi þ βlnðADTÞi (1) 

where: λ is the estimated number of accidents per year, ADT is the 
average daily traffic. The model parameters estimated using the 
Caltrans Performance Measurement System (PeMS) data are 
described in Appendix D.

Estimating urban road accidents is another indicator of the 
safety theme. However, we did not include this in the subset of 
indicators evaluated for the case study cities as it requires 
a detailed urban accident model estimation. Estimating this com-
plex model is out of the scope of this paper. Further, it requires 
more granular data like road geometric elements, pavement con-
dition variables, and intersection details, which are currently 
unavailable to us. If the data becomes available, we will incorpo-
rate this in future studies.

3) Mobility and Environment Indicators Mobility indicators used 
in the framework include key system performance metrics, e.g., 
Vehicle Miles Traveled (VMT) per capita, Vehicle Hours of Delay 
(VHD), congested urban VMT, and trip level metrics like average 
trip distance and trip time. VMT is typically a system performance 
measure reported for overall analysis. It is calculated as the vehicle 
flow on a link multiplied by the link lengths. VHD is the delay per 
vehicle for a given segment multiplied by the total number of 
vehicles. The delay per vehicle is calculated as the difference 
between the actual and free flow travel times. To calculate the 
congested network miles, we use the congestion definition as 
volume over capacity greater than or equal to 1 for a link. For trip 
level metrics, the average travel distance and the average time are 
calculated from Mobiliti trip data. For the environment theme, total 
system fuel consumption and average trip fuel consumption are 
calculated from Mobiliti link and trip level outputs.

Evaluation results

Fifteen indicators from the SAEF framework for each city are calcu-
lated and compiled using a color chart for visual comparison across 
the routing optimization scenarios. Since indicators are on different 
scales, we have used a min-max normalization method to rescale 
them between [0,1] for effective comparison. Figure 9 presents the 
results for San Jose. For added insights, we compare optimization 
scenarios for each of the indicators. We also compare our four focus 
cities to identify similarities and differences. Figure 13 shows the 
results for the other three cities and Appendix E provides the sum-
mary table for the results. For the rest of this section, we will discuss 
the results for San Jose. For comparison of routing strategies, we use 
UET optimized routes as our baseline.

1) City Level Indicator Comparisons  
Theme: Neighborhood

a. VMT load increases on neighborhood residential streets with 
SOT and SOF-derived routes. While the total system VMT reduces 
with SOT and SOF, the residential VMT load increases for both 
cases. With SOF-derived routes, the load has doubled on these 
streets. However, it must be noted that the load value is less than 
one for all three strategies, as neighborhood streets account for the 
majority of the total network.

b. VHD load on neighborhood residential streets decreases 
with SOT and increases with SOF. However, the share of delay 
carried by these streets out of the total system delay increases in 
both SOT and SOF compared to baseline showing both optimiza-
tions have attained its goal by routing more vehicles through 
previously less used streets. In baseline, these streets carry 
62 hours of delay as opposed to 41 in SOT and 900 in SOF. 
Looking at the percentage share of these delays with respect to 
total, in baseline, it is 0.58% of the total city VHD, which slightly 
increases with SOT (0.73%) and more than doubles with SOF 
(4.5%). This increase in system delay with SOF reflects highway 
delay being decreased significantly.

c. The number of schools exposed to high and medium traffic 
increases significantly with SOF due to traffic shift to local roads 
(Figure 10). Exposure to high and medium traffic occurs for 9% of 
schools in the baseline. This percentage slightly increases with SOT; 
and doubles with SOF. VMT in the 250 m buffer zone of the school 
also increases with SOT and SOF compared to baseline.

d. Minority schools bear disproportionate impacts of traffic 
exposure. The traffic load on minority schools is disproportionate 
(more than one) in San Jose for all routing strategies. The impact 
is lowest for the baseline UET and highest with SOF routing. 
While impacting all types of schools, it is estimated to be more 
prevalent in minority schools. 22% of the schools are categorized 
as minority schools in San Jose. The proportion of schools 
affected by this predicted exposure is 41% in the baseline. This 
percentage increases by at least five percentage points with SOT 
and SOF.

e. VMT and VHD load on disadvantaged communities is higher 
than one for all routing strategies signifying a disproportionate 
share of traffic on these streets. Street network in disadvantaged 
communities in San Jose contributes to 23% of total network miles 
but carries 36% VMT and 46% VHD with UET. This reflects the 
tendency of these communities to be located near highways with 
high flow rates.

f. The trends across the three routing strategies for these com-
munities are similar to the overall system VMT and VHD changes. 
VMT load in disadvantaged communities reduces with SOT and 
SOF routing. Delay load also shows similar trends to the overall 
system VHD.
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Theme: Safety
a. Estimated number of highway accidents significantly reduces 

with SOF, while it remains similar for SOT and baseline. The 
obvious reason for the large reduction is the shift of highway traffic 
to local roads with SOF optimization. It will be important to include 
an estimate of urban accidents, which we aim to add for future 
analysis.

Theme: Mobility
a. Overall, system VMT per capita decreases with SOT and SOF 

compared to baseline UET.
b. VHD decreases with SOT and increases with SOF. SOF shifts 

traffic from highways to local roads in an attempt to save fuel, as 
seen in Figure 11, which has resulted in an increase in total delay. In 
SOT, the total system delay reduction happens by rearranging flows 
from highways to throughways instead of neighborhood streets.

c. Congested network miles in the morning peak decreases with 
SOT and increases with SOF consistent with delay increase.

d. Average trip length remains similar for all three cases. 
However, trip time increases with SOF.

Theme: Environment
a. As expected, SOF produced the lowest total system fuel con-

sumption. SOT and baseline values are similar. Average trip fuel also 
shows similar trends with total system fuel consumption. These indi-
cators are very sensitive to the fuel model used in the Mobiliti simula-
tion, which currently considers only an average speed per link. We plan 
to improve this model in the future to account for speed variability, 
which will be necessary for local link modeling.

2) Comparison Across Cities Size, structure, land use, and density 
vary widely across cities. By comparing routing optimizations across 
cities, similarities and differences can be seen with respect to our 

framework indicators which are listed below. Figure 12 presents the 
results for all cities and routing strategies using a radar chart.

Key Similarities:
a. For all four cities, the VMT load carried by neighborhood 

residential streets increases with SOF compared to the baseline. The 
highest increase is for Oakland, followed by San Jose. The same 
trend can be observed for SOT for all cities, with the exception of 
Concord.

b. For all cities but San Francisco, VHD load on neighbor-
hood streets remains the same with SOT and increases with 
SOF. However, the percentage share out of the total system 
delay increases in both cases for all cities. With SOT, the 
percentage increase is small, and with SOF, the delay signifi-
cantly increases for all cities, with Oakland facing the worst 
impacts. Neighborhood streets in Oakland are predicted to 
experience 30 times more delay than baseline. Oakland has 
higher highway miles within the city limits. With SOF routing 
traffic to local roads, it does not have as much capacity on its 
local roads to absorb the traffic and thus would experience high 
neighborhood residential delays. For Concord, the percentage 
delay increase is not as high as the other two cities.

c. San Jose and Oakland are predicted to have a higher number of 
schools exposed to high and medium traffic with SOF compared to 
baseline.

d. Disadvantaged communities bear a disproportionate share of 
VMT load in all cities for all routing strategies.

e. In terms of delay load, disadvantaged communities bear 
a disproportionate share for all cities.

f. The VMT per capita decreases with SOT and SOF compared to 
the baseline for all cities.

Figure 8. Theme Neighborhood: Communities of Concern census tracts in the case study cities. Oakland has the highest percentage of population living in these census 
tracts and Concord the least.
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g. System level VHD is the minimum for SOT for all cities, as 
expected. Except for San Francisco, VHD increases with SOF for 
all cities.

Key Differences:
a. The VMT load on residential streets in Concord remains 

unchanged between the SOT and baseline, whereas it increases in 
all other cities. The baseline UET case in Concord showed very little 
congestion, indicating that system-level optimization had minimal 
impact. This is possibly due to the city's low density and spatial 
distribution.

b. Concord also differed in the number of schools exposed to 
high traffic – with no impacted schools in baseline and SOT and 
one with SOF. The number of affected schools for San Francisco 
remains similar for all the routing cases. Note that only 24% schools 
in San Francisco are categorized as a minority, but they account for 
47% of the schools exposed to high and medium traffic.

c. For San Francisco, the VHD load on neighborhood streets is 
low for SOT and high for UET. It is interesting to note that for San 
Francisco, neighborhood streets get the highest delay load with 
UET and not SOF, as is the case for other cities. A plausible 

explanation is that San Francisco has the lowest percentage of 
neighborhood residential streets in the network, and its gridiron 
structure may account for the different flow dissipation compared 
to other cities.

d. San Francisco also differed in the total system VHD. VHD in 
San Francisco is highest for UET compared to the other two routing 
strategies.

e. Overall, UET performs worse for San Francisco, while SOF 
performs worse for all other cities. This difference is likely due to 
the underlying network and demand characteristics such as street 
layout, street composition, trip density etc.

Our intent with this work is to provide an evaluation framework 
to enable reflection on the consequence of policies, traffic manage-
ment strategies, and network changes. With an ability to model out 
proposed traffic management strategies, the planner can consider 
the trade-offs and potential unintended consequences. Realizing 
that there will always be undesirable consequences of a specific 
strategy due to the complexity and interconnectedness of transpor-
tation systems, the planner can develop mediation strategies for the 
predicted results.

Figure 9. SAEF indicators for San Jose. Each metric is normalized to a scale between 0 and 1. Red and blue represent high and low, respectively. For instance, VHD indicator 
in the mobility theme is high for SOF and low for SOT
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Conclusion and future work

We have presented a multi-themed framework to holistically evaluate 
the impacts of traffic management policies. We specifically focus on 
routing strategies using our key themes of neighborhood, safety, mobi-
lity, and environment. A road network typology classification scheme 
that allows for the development of improved indicators is presented. 
Three traffic assignment optimization strategies are evaluated to offer 
insights into how the resulting routes and consequent traffic dynamics 
will impact the constituents of a city. Four chosen cities in the Bay Area 
were assessed for comparison purposes. The results show that while 

many mobility theme indicators improved with system-optimal time 
and fuel-based routing strategies, most neighborhood theme indicators 
degraded. For instance, neighborhood residential streets in cities 
received higher traffic loads with system-optimal routing strategies. 
Strategies also differed in their traffic exposure impacts to schools, with 
minority schools bearing disproportionate impacts in the two cities. 
The results also highlight that disadvantaged communities bear dis-
proportionate traffic exposure in all routing strategies. On the whole, it 
can be seen that SOF performs worse for all other cities, whereas UET 
performs worse for San Francisco.

Figure 11. Theme Mobility: The figure shows the difference in VMT for SOT (left) and SOF (right) compared to baseline UET for San Jose. The red or green represents the 
increase or decrease in VMT, and the thickness represents the magnitude of the difference. Only highways and neighborhood residential streets are shown. It can be seen 
that SOF has shifted a significant amount of traffic from highways (broad green lines) to residential streets (thin red lines) in an attempt to reduce fuel consumption.

Figure 10. Theme Neighborhood: The figure illustrates the schools (blue circles) affected by high and medium traffic volume. Red links have an ADT greater than 50,000, 
and yellow links have ADT between 25,000 and 50,000. The number of impacted schools is higher with SOF routing.
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Figure 12. The figure compares SAEF metrics across cities for different route optimizations. The metrics are numbered from 1 to 15 on the chart. They are normalized with 
respect to the maximum values for a city so that the relative differences can be identified. For example, in San Jose, SOF has the highest values for metrics 1, 2, 3, 4, 5, 10, 
11, and 13. In San Francisco, UET has the highest values for metrics 2, 3, 6, 8, 9, 10, 11, 14, and 15. Overall, the comparison reveals that UET performs worse for San Francisco 
whereas SOF performs worse for all other cities.
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We showed that the SAEF framework creates an assessment 
system that will enable cities to evaluate the effects of traffic routing 
and management strategies. It provides a tool for cities to assess 

their decisions in a comprehensive manner while recognizing the 
trade-offs resulting from the traffic dynamics. In future work, we 
plan to extend our analysis to include more cities and classify them 

Figure 13. SAEF results for San Francisco, Oakland and Concord.
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based on their network characteristics to determine if patterns of 
traffic distribution/dissipation based on network characteristics 
exist. More importantly, we intend to use the framework to develop 
aggregate measures of safety and neighborhood that will drive novel 
socially-aware routing strategies and road network adjustments.

Acknowledgments

We would like to thank the U.S. Department of Energy (DOE) Office of Energy 
Efficiency and Renewable Energy (EERE) managers David Anderson and Prasad 
Gupta for their support and guidance.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The work was supported by the U.S. Department of Energy (DOE) Vehicle 
Technologies Office (VTO) under the Big Data Solutions for Mobility Program, 
an initiative of the Energy Efficient Mobility Systems (EEMS) Program. The 
research used resources of the National Energy Research Scientific Computing 
Center, a DOE Office of Science User Facility supported by the Office of Science 
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

ORCID

Anu Kuncheria http://orcid.org/0000-0003-4975-2425

References

Ackaah, W. 2019. “Exploring the Use of Advanced Traffic Information System 
to Manage Traffic Congestion in Developing Countries.” Scientific African 
4 (May): e00079. doi:10.1016/j.sciaf.2019.e00079.

Ahn, K., and H. A. Rakha. 2013 December. “Network-wide Impacts of 
eco-routing Strategies: A large-scale Case Study.” Transportation Research 
Part D: Transport and Environment. 25:119–130. [Online]. https://www. 
sciencedirect.com/science/article/pii/S1361920913001259 .

Ahvenniemi, H., A. Huovila, I. Pinto-Seppä, and M. Airaksinen. 2017 February. 
“What are the Differences between Sustainable and Smart Cities?” Cities. 
60:234–245. [Online]. http://www.scopus.com/inward/record.url?scp= 
84988735775&partnerID=8YFLogxK .

Alfaseeh, L., and B. Farooq. 2020 January. “Multi-Factor Taxonomy of 
Eco-Routing Models and Future Outlook.” Journal of Sensors. 2020: 
e4362493. publisher Hindawi. [Online]. https://www.hindawi.com/journals/ 
js/2020/4362493/ 

Benevolo, C., R. Dameri, and B. D’Auria. 2016. “Smart Mobility in Smart City. 
Action Taxonomy, ICT Intensity and Public Benefits.” Jan 11: 13–28.

“Better Streets Plan, SF Planning.” [Online]: https://sfplanning.org/resource/ 
better-streets-plan 2010

Cabannes, T., F. Shyu, E. Porter, S. Yao, Y. Wang, M. A. Sangiovanni Vincentelli, 
S. Hinardi, M. Zhao, and A. M. Bayen, “Measuring Regret in Routing: 
Assessing the Impact of Increased App Usage,” in 2018 21st International 
Conference on Intelligent Transportation Systems (ITSC) Hawaii, November. 
2018, pp. 2589–2594, 2153-0017.

Cai, Xiaoyu et al “Road Traffic Safety Risk Estimation Method Based on Vehicle 
Onboard Diagnostic Data.” Journal of Advanced Transportation. 2020. https:// 
doi.org/10.1155/2020/3024101 

C. Chan, A. Kuncheria, and J. Macfarlane, “Simulating the Impact of Dynamic 
Rerouting on Metropolitan-Scale Traffic Systems,” ACM Transactions on 
Modeling and Computer Simulation, Jan. 2023, just Accepted. [Online]. 
Available: https://doi.org/10.1145/357984 

Chan, C., A. Kuncheria, B. Zhao, T. Cabannes, A. Keimer, B. Wang, A. Bayen, 
and J. Macfarlane, “Quasi-Dynamic Traffic Assignment Using High 
Performance Computing,” arXiv:2104.12911 [cs], April. 2021, arXiv: 
2104.12911. http://arxiv.org/abs/2104.12911 

Chan, C., B. Wang, J. Bachan, and J. Macfarlane, “Mobiliti: Scalable 
Transportation Simulation Using High-Performance Parallel Computing,” 
in 2018 21st International Conference on Intelligent Transportation Systems 
(ITSC) Hawaii, November. 2018, pp. 634–641, 2153-0017.

Chen, O., and M. Ben-Akiva. 1998. “Game-theoretic Formulations of 
Interaction between Dynamic Traffic Control and Dynamic Traffic 

Assignment.” Transportation Research Record: Journal of the 
Transportation Research Board. 1617(1):179–188. [Online]. doi:10.3141/ 
1617-25.

Complete streets policies, US department of transportation. [Online]: https:// 
www.transportation.gov/mission/health/complete-streets-policies 2015

Elbery, A., and H. Rakha. 2019 January. “City-Wide Eco-Routing Navigation 
Considering Vehicular Communication Impacts.” Sensors (Basel, 
Switzerland). 19(2):290. [Online]. https://www.ncbi.nlm.nih.gov/pmc/arti 
cles/PMC6359317/ 

Forbes, Gerry “Urban Roadway Classification: Before the Design Begins 
Transportation research circular 2000 .” https://www.semanticscholar.org/ 
paper/urban-roadway-classification%3a-before-the-design-forbes/ 
026aa8b39b686784d3d9b72110bda409334a8c71 

Green, R. S., S. Smorodinsky, J. J. Kim, R. McLaughlin, and B. Ostro. 2004 
January. “Proximity of California Public Schools to Busy Roads.” 
Environmental Health Perspectives. 112 (1): 61–66. https://ehp.niehs.nih. 
gov/doi/10.1289/ehp.6566 

Groot, N., B. De Schutter, and H. Hellendoorn. 2015. “Toward System-Optimal 
Routing in Traffic Networks: A Reverse Stackelberg Game Approach.” IEEE 
Transactions on Intelligent Transportation Systems 16 (1, February): 29–40. 
doi:10.1109/TITS.2014.2322312.

Hendawi, A. M., A. Rustum, A. A. Ahmadain, D. Hazel, A. Teredesai, D. Oliver, 
M. Ali, and J. A. Stankovic, “Smart Personalized Routing for Smart Cities,” in 
2017 IEEE 33rd International Conference on Data Engineering (ICDE) San 
Diego, April. 2017, pp. 1295–1306, 2375-026X.

“HERE Technologies Online 6 02 2019.” [Online]: https://www.here.com/ 2019
Jou, R.-C., S.-H. Lam, Y.-H. Liu, and K.-H. Chen. 2005 June. “Route Switching 

Behavior on Freeways with the Provision of Different Types of real-time 
Traffic Information.” Transportation Research Part A: Policy and Practice. 39 
(5):445–461. [Online]. https://www.sciencedirect.com/science/article/pii/ 
S0965856405000297 

Kingsley, S. L., M. Eliot, L. Carlson, J. Finn, D. L. MacIntosh, H. H. Suh, and 
G. A. Wellenius. 2014. “Proximity of US Schools to Major Roadways: 
A Nationwide Assessment,” Journal of Exposure Science & Environmental.” 
epidemiology. 24(3):253–259. https://www.ncbi.nlm.nih.gov/pmc/articles/ 
PMC4179205/ 

Koglin, T., A. V. Toth-Szabo, and Angjelevska, “Measuring Sustainability of 
Transport in the City – Development of an indicator-set.” January. 2011.

Lazarus, J., J. Ugirumurera, S. Hinardi, M. Zhao, F. Shyu, Y. Wang, S. Yao, and 
A. M. Bayen, “A Decision Support System for Evaluating the Impacts of 
Routing Applications on Urban Mobility,” in 2018 21st International 
Conference on Intelligent Transportation Systems (ITSC) Hawaii, November. 
2018, pp. 513–518, 2153-0017.

Macfarlane, J. 2019. “Your Navigation App Is Making Traffic Unmanageable - 
IEEE Spectrum.” https://spectrum.ieee.org/computing/hardware/your- 
navigation-app-is-making-traffic-unmanageable 

Mahmassani, H., and S. Peeta. 1993. “Network Performance under System 
Optimal and User Equilibrium Dynamic Assignments: Implications for 
ATIS.” Transportation Research Record Journal of the Transportation 
Research Board 1408 (January): 83–93.

2016. “MTC Equity Priority Communities in 2018 (ACS 2012 - 2016).” [Online]: 
https://opendata.mtc.ca.gov/maps/MTC:mtc-equity-priority-communities- 
in-2018-acs-2012-2016 

NERSC, “Cori Configuration.” http://www.nersc.gov/users/computational- 
systems/cori/configuration/, 2018, [Online; accessed 27 April 2018].

Onatere, J. O., C. Nwagboso, and P. Georgakis, “Performance Indicators for 
Urban Transport Development in Nigeria,” The Algarve, Portugal, May 2014, 
pp. 555–568. [Online]: http://library.witpress.com/viewpaper.asp?pcode= 
UT14-046-1 

Orlowski, A., and P. Romanowska. 2019. “Smart Cities Concept: Smart Mobility 
Indicator.” Cybernetics and Systems 50 (2, February): 118–131. doi:10.1080/ 
01969722.2019.1565120.

Paricio, A., and M. A. Lopez-Carmona, “Urban Traffic Routing Using Weighted 
Multi-Map Strategies,” IEEE Access, vol. 7, pp. 153 086–153 101, 2019, 
conference Name: IEEE Access.

2018a. “People Who Use Their Cell Phone for maps/GPS Navigation in the U.S. 
2018, by Age.” https://www.statista.com/statistics/231615/people-who-use- 
their-cell-phone-for-maps-gps-navigation-usa/ 

“The Popularity of Navigation Apps and Impact on Traffic Operations.” https:// 
www.ite.org/events-meetings/ite-calendar/the-popularity-of-navigation- 
apps-and-impact-on-traffic-operations/ 

2015. “Predicting Future Travel Times with the Google Maps APIs.” [Online]: 
https://cloud.googleblog.com/2015/11/predicting-future-travel-times-with- 
the-Google-Maps-APIs.html 

Ran, B., D. E. Boyce, and L. J. LeBlanc. 1993 February. “A New Class of 
Instantaneous Dynamic User-Optimal Traffic Assignment Models.” 

14 A. KUNCHERIA ET AL.

https://doi.org/10.1016/j.sciaf.2019.e00079
https://www.sciencedirect.com/science/article/pii/S1361920913001259
https://www.sciencedirect.com/science/article/pii/S1361920913001259
http://www.scopus.com/inward/record.url?scp=84988735775%26partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=84988735775%26partnerID=8YFLogxK
https://www.hindawi.com/journals/js/2020/4362493/
https://www.hindawi.com/journals/js/2020/4362493/
https://sfplanning.org/resource/better-streets-plan
https://sfplanning.org/resource/better-streets-plan
https://doi.org/10.1155/2020/3024101
https://doi.org/10.1155/2020/3024101
https://doi.org/10.1145/357984
http://arxiv.org/abs/2104.12911
https://doi.org/10.3141/1617-25
https://doi.org/10.3141/1617-25
https://www.transportation.gov/mission/health/complete-streets-policies
https://www.transportation.gov/mission/health/complete-streets-policies
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359317/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359317/
https://www.semanticscholar.org/paper/urban-roadway-classification%3a-before-the-design-forbes/026aa8b39b686784d3d9b72110bda409334a8c71
https://www.semanticscholar.org/paper/urban-roadway-classification%3a-before-the-design-forbes/026aa8b39b686784d3d9b72110bda409334a8c71
https://www.semanticscholar.org/paper/urban-roadway-classification%3a-before-the-design-forbes/026aa8b39b686784d3d9b72110bda409334a8c71
https://ehp.niehs.nih.gov/doi/10.1289/ehp.6566
https://ehp.niehs.nih.gov/doi/10.1289/ehp.6566
https://doi.org/10.1109/TITS.2014.2322312
https://www.here.com/
https://www.sciencedirect.com/science/article/pii/S0965856405000297
https://www.sciencedirect.com/science/article/pii/S0965856405000297
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179205/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179205/
https://spectrum.ieee.org/computing/hardware/your-navigation-app-is-making-traffic-unmanageable
https://spectrum.ieee.org/computing/hardware/your-navigation-app-is-making-traffic-unmanageable
https://opendata.mtc.ca.gov/maps/MTC:mtc-equity-priority-communities-in-2018-acs-2012-2016
https://opendata.mtc.ca.gov/maps/MTC:mtc-equity-priority-communities-in-2018-acs-2012-2016
http://www.nersc.gov/users/computational-systems/cori/configuration/
http://www.nersc.gov/users/computational-systems/cori/configuration/
http://library.witpress.com/viewpaper.asp?pcode=UT14-046-1
http://library.witpress.com/viewpaper.asp?pcode=UT14-046-1
https://doi.org/10.1080/01969722.2019.1565120
https://doi.org/10.1080/01969722.2019.1565120
https://www.statista.com/statistics/231615/people-who-use-their-cell-phone-for-maps-gps-navigation-usa/
https://www.statista.com/statistics/231615/people-who-use-their-cell-phone-for-maps-gps-navigation-usa/
https://www.ite.org/events-meetings/ite-calendar/the-popularity-of-navigation-apps-and-impact-on-traffic-operations/
https://www.ite.org/events-meetings/ite-calendar/the-popularity-of-navigation-apps-and-impact-on-traffic-operations/
https://www.ite.org/events-meetings/ite-calendar/the-popularity-of-navigation-apps-and-impact-on-traffic-operations/
https://cloud.googleblog.com/2015/11/predicting-future-travel-times-with-the-Google-Maps-APIs.html
https://cloud.googleblog.com/2015/11/predicting-future-travel-times-with-the-Google-Maps-APIs.html


Operations Research. 41(1): 192–202. publisher INFORMS. [Online]. https:// 
pubsonline.informs.org/doi/10.1287/opre.41.1.192 

“San Jose Complete Streets Design Standards & Guidelines.” 2018b. [Online]: 
https://sanjose.legistar.com/LegislationDetail.aspx?ID=3374912&GUID= 
91989EDD-9A4D-43D3-97CD-37DD05ED8A2A 

“SF-CHAMP Modeling.” [Online]: https://www.sfcta.org/sf-champ-modeling 2002
Shankar, V., and S. Madanat. 2015. “Methods for Identifying High Collision 

Concentrations for Identifying Potential Safety Improvements: Development 
of Safety Performance Functions for California”. Jan. number:CA15–2317. 
[Online]. https://trid.trb.org/view/1370064 

Siuhi, S., and J. Mwakalonge. 2016, December. “Opportunities and 
Challenges of Smart Mobile Applications in Transportation.” Journal 
of Traffic and Transportation Engineering (English Edition) 3 (6): 
582–592 .  h t tps : / /www.sc ienced i rec t . com/sc ience/ar t i c l e /p i i /  
S2095756416302690 .

Toth-Szabo, Z., and A. Várhelyi. 2012. “Indicator Framework for Measuring 
Sustainability of Transport in the City.” Procedia - Social and Behavioral 
Sciences. 48:2035–2047. transport Research Arena 2012 [Online]. https:// 
www.sciencedirect.com/science/article/pii/S1877042812029205 

United States and Bureau of Public Roads. 1964. “Traffic Assignment Manual: 
For Application with a Large.” High Speed Computer oCLC: 4261189.

Wardrop, J. G., “Road Paper. Some Theoretical Aspects of Road Traffic 
Research.” Proceedings of the Institution of Civil Engineers, vol. 1, no. 3, pp. 
325–362, May 1952, publisher: ICE Publishing. https://www.icevirtuallibrary. 
com/doi/abs/10.1680/ipeds.1952.11259 

Wu, Y.-C., and S. A. Batterman. 2006 September 5.“Proximity of Schools in 
Detroit, Michigan to Automobile and Truck Traffic.” Journal of Exposure 
Science & Environmental Epidemiology. 16(5):457–470. Publisher: Nature 
Publishing Group. https://www.nature.com/articles/7500484 

Yu, C.-Y., and X. Zhu. 2015. “Planning for Safe Schools: Impacts of School Siting 
and Surrounding Environments on Traffic Safety.” Journal of Planning 
Education and Research 36 (November).

Zhu, F., and S. V. Ukkusuri. 2015June. “A Linear Programming 
Formulation for Autonomous Intersection Control within A Dynamic 
Traffic Assignment and Connected Vehicle Environment.” 
Transportation Research Part C: Emerging Technologies. 55(55):363–378. 
[Onl ine] .  h t tps : / /www.sc iencedirec t . com/sc ience/ar t i c le /p i i /  
S0968090X1500008X

TRANSPORTATION LETTERS 15

https://pubsonline.informs.org/doi/10.1287/opre.41.1.192
https://pubsonline.informs.org/doi/10.1287/opre.41.1.192
https://sanjose.legistar.com/LegislationDetail.aspx?ID=3374912%26GUID=91989EDD-9A4D-43D3-97CD-37DD05ED8A2A
https://sanjose.legistar.com/LegislationDetail.aspx?ID=3374912%26GUID=91989EDD-9A4D-43D3-97CD-37DD05ED8A2A
https://www.sfcta.org/sf-champ-modeling
https://trid.trb.org/view/1370064
https://www.sciencedirect.com/science/article/pii/S2095756416302690
https://www.sciencedirect.com/science/article/pii/S2095756416302690
https://www.sciencedirect.com/science/article/pii/S1877042812029205
https://www.sciencedirect.com/science/article/pii/S1877042812029205
https://www.icevirtuallibrary.com/doi/abs/10.1680/ipeds.1952.11259
https://www.icevirtuallibrary.com/doi/abs/10.1680/ipeds.1952.11259
https://www.nature.com/articles/7500484
https://www.sciencedirect.com/science/article/pii/S0968090X1500008X
https://www.sciencedirect.com/science/article/pii/S0968090X1500008X


Appendix

A. SAEF Indicator Description
B. QDTA Formulations 

Table A1. SAEF indicator description.

Theme Indicator Description Unit Spatial level
Temporal 

level

Neighborhood VMT load on neighborhood 
residential streets

It is calculated as the proportion of vehicle miles traveled on 
neighborhood residential streets to the proportion of the network 
miles in neighborhood residential streets. City streets need to be 
classified based on complete streets guidelines to identify 
neighborhood residential streets based on land use and transport 
functionalities. A load greater than 1 signifies a disproportionate 
impact.

Ratio Community Entire day/ 
Peak 
hours

Neighborhood VHD load on neighborhood 
residential streets

It is calculated as the proportion of vehicle hours of delay on 
neighborhood residential streets to the proportion of the network 
miles in neighborhood residential streets. City streets need to be 
classified based on complete streets guidelines to identify 
neighborhood residential streets based on land use and transport 
functionalities. A load greater than 1 signifies a disproportionate 
impact.

Ratio Community Entire day/ 
Peak 
hours

Neighborhood Schools near high traffic 
streets

Streets with Average Daily Traffic (ADT) greater than 50,000 and 25,000 
are considered high-traffic streets and medium-traffic streets, 
respectively. All roads within 250 m of the school vicinity is considered 
for this analysis.

Number City Entire day

Neighborhood Traffic load on minority 
schools

The traffic load on minority schools is calculated as the proportion of 
minority schools impacted by traffic to the proportion of minority 
schools in the city. Minority schools are identified based on the 
demographic characteristics of the children in the school.

Ratio City Entire day

Neighborhood VMT near schools in the 
morning

Vehicle miles traveled in the 250 meter vicinity of schools. VMT is 
calculated for 7–8 am. This indicator helps in understanding the 
difference in traffic flow around schools for various routing strategies.

Miles City Peak hours

Neighborhood VMT load on disadvantaged 
communities

It is calculated as the proportion of vehicle miles traveled on the streets 
in the disadvantaged communities to the proportion of the network 
miles in disadvantaged communities. Disadvantaged communities 
can be identified based on city’s definition.

Ratio Community Entire day

Neighborhood VHD load on disadvantaged 
communities

It is calculated as the proportion of vehicle hours of delay on the streets 
in the disadvantaged communities to the proportion of the network 
miles in disadvantaged communities. Disadvantaged communities 
can be identified based on city’s definition.

Ratio Community Entire day

Neighborhood Average travel speed along 
neighborhood residential 
streets

Average travel speed on neighborhood residential streets can be 
calculated for morning or evening peaks. This will give an estimate of 
how the traffic moves in neighborhoods.

Miles 
per hour

Community Entire day/ 
Peak 
hours

Neighborhood Percentage vehicles above 
the speed limit in 
neighborhood streets

Percentage of vehicles traveling above the posted speed limit at 
different times of the day indicates how traffic flow affects the quality 
of life in neighborhoods.

Percentage Community Peak hours

Safety Estimated highway accidents/ 
year

Highway accidents estimated based on traffic volume and road 
geometry. Safety performance functions for highways can be used.

Number City Entire day

Safety Estimated urban accidents/ 
year

Urban accidents estimated from traffic volume, road geometry and other 
factors. Standard methods from the literature can be adopted.

Number City Entire day

Safety VMT on high pedestrian and 
ATM streets

Vehicle miles traveled on streets with high Active Transportation Mode 
(ATM) users and pedestrians. It measures the multi modal safety of 
roads. Routing strategies that increases VMT on these roads hinders 
others active users of the road.

Miles City Entire day/ 
Peak 
hours

Safety VMT on high risk streets High risk roads are roads with hot spots, steep slopes and sharp turns 
which can be dangerous when unknown drivers are routed through 
them.

Miles City Entire day/ 
Peak 
hours

Mobility Bicycle level of traffic stress Bicycle Level of Traffic Stress (LTS) rating can be calculated for road 
segments based on the type of facility, traffic volume and speed. 
Standard methods from literature can be adopted for calculation.

City/ 
Community

Peak  
hours

Mobility Pedestrian level of traffic 
stress

Pedestrian LTS rating can be calculated for road segments based on the 
type of facility, traffic volume and speed. Standard methods from the 
literature can be adopted for calculation.

City/ 
Community

Peak hours

Mobility VMT per capita Total miles traveled by all vehicles in the system divided by the city’s 
population.

Miles per 
capita

City Entire day

Mobility VHD Total hours of delay incurred by all vehicles in the system. It is computed 
as the difference between the actual travel time and free flow travel 
time for all trips.

Hours City Entire day

(Continued)
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UET :
X

a2A
ò
fa

0 caðsÞ ds (5) 

SOT :
X

a2A
facaðfaÞ (6) 

SOF :
X

a2A
famaðvaÞ (7) 

where: 

caðfaÞ ¼ c0;að1þ αð
fa

Ca
Þ

β
Þ

caðfaÞ is the travel time on link a; fa is the traffic flow assigned to link a; c0;a 
and Ca are the free-flow travel time and capacity associated with the link; α 
and β selected are BPR parameters 0.15 and 4 respectively. 

maðvaÞ ¼ laðAþ
B
va
þ Cv2

aÞ

maðvaÞ is the fuel consumption on link a; la is the length of link a; va is the 
link traversal speed calculated from BPR (Bureau of Public Roads (United 
States and Bureau of Public Roads 1964)); A;B;C are parameters estimated 
from Argonne National Laboratory drive cycle data 
A ¼ � 0:00654170;B ¼ 1:902150;C ¼ 0:00001588:

C. Bay Area Network
Bay Area network functional classification is provided in Table A2 and the 

network typologies are provided in Table A3

D. SPF Parameters Used for California Highways
The safety performance function parameters estimated using Caltrans 

Performance Measurement System (PeMS) data for the state of California is 
provided in Table A4 (Shankar and Madanat 2015).

E. Summary of Results
Summary of results is provided in Table A5 for the case study cities.

Table A1. (Continued).

Theme Indicator Description Unit Spatial level
Temporal 

level

Mobility Congested network miles in 
the morning

Congested miles are roads with volume over capacity greater than or 
equal to 1 during morning hours. This measures the congested 
network for each routing strategy.

Miles City Peak hours

Mobility Average trip length Average length of all the trips that start or end in a city. It can be 
segregated into work and nonwork trips.

Miles Individual/ 
City

Entire day

Mobility Average trip time Average travel times for all the trips that start or end in a city. It can be 
segregated into work and nonwork trips .

Minutes Individual/ 
City

Entire day

Environment Total fuel consumption Total fuel consumption for all vehicles in a city. Liters City Entire day
Environment Average trip fuel 

consumption
Average fuel consumption for all trips that start or end in a city. Liters Individual/ 

City
Entire day

Environment Per capita GHG emissions GHG emissions per person in a city. Methods to calculate emissions from 
vehicular traffic can be adopted from the literature.

CO2e City Entire day

Environment Per capita air pollutant 
emissions

Air pollutant emissions per person in a city. Methods to calculate 
emissions from vehicular traffic can be adopted from the literature.

Micrograms 
per cubic 
meter

City Entire day

Table A2. Functional road classes.

Functional Class Definition

1 Allowing for high volume, maximum speed traffic movement
2 Allowing for high volume, high speed traffic movement

3 Providing a high volume of traffic movement
4 Providing for a high volume of traffic movement at moderate speeds between neighborhoods
5 Roads whose volume and traffic movement are below the level of any other functional class

TRANSPORTATION LETTERS 17



Table A3. Network typologies for Bay Area.

Sl No Street Type
Length (thousand 

miles) Remarks

1 Neighborhood Residential 
Street

26 Neighborhood streets with adjoining residential land use

2 Residential Throughway 2.9 Throughway streets with adjoining residential land use
3 Neighborhood Commercial 

Street
1.8 Neighborhood streets with adjoining commercial land use

4 Commercial Throughway 1.1 Throughway streets with adjoining commercial land use

5 Industrial Street 1.7 Neighborhood or Throughway streets with adjoining industrial land use
6 PSP Street 2.5 Neighborhood or Throughway streets with adjoining public and semi public land use

7 Highway 3.4 Highways including ramps
8 Others 9.9 Includes streets with adjoining land use as green spaces, undeveloped land,parking lots, water 

bodies etc.

Table A4. SPF parameters for California highways.

Number of lanes alpha beta

1 −7.09 0.98

2 −7.09 0.98
3 −7.09 0.98

4 −5.78 0.82
5 −6.49 0.89
6 −6.49 0.89

7 −6.49 0.89
8 −10.75 1.24
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