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REVIEW

The Role of the Gut Microbiome in Predicting
Response to Diet and the Development of Precision
Nutrition Models. Part II: Results
Riley L Hughes,1 Mary E Kable,1,3 Maria Marco,2 and Nancy L Keim1,4

Departments of 1Nutrition and 2Food Science & Technology, University of California, Davis, CA; Departments of 3Immunity and Disease Prevention and
4Obesity and Metabolism, Western Human Nutrition Research Center, Agricultural Research Service, USDA, Davis, CA

ABSTRACT

The gut microbiota is increasingly implicated in the health and metabolism of its human host. The host’s diet is a major component influencing
the composition and function of the gut microbiota, and mounting evidence suggests that the composition and function of the gut microbiota
influence the host’s metabolic response to diet. This effect of the gut microbiota on personalized dietary response is a growing focus of precision
nutrition research and may inform the effort to tailor dietary advice to the individual. Because the gut microbiota has been shown to be malleable to
some extent, it may also allow for therapeutic alterations of the gut microbiota in order to alter response to certain dietary components. This article
is the second in a 2-part review of the current research in the field of precision nutrition incorporating the gut microbiota into studies investigating
interindividual variability in response to diet. Part I reviews the methods used by researchers to design and carry out such studies as well as analyze
the results subsequently obtained. Part II reviews the findings of these studies and discusses the gaps in our current knowledge and directions
for future research. The studies reviewed provide the current understanding in this field of research and a foundation from which we may build,
utilizing and expanding upon the methods and results they present to inform future studies. Adv Nutr 2019;10:979–998.

Keywords: gut microbiome, precision nutrition, personalized nutrition, interindividual variability, effect modification, prediction, response,
metabolism

Introduction
High rates of obesity, type 2 diabetes, and other chronic
conditions related to poor nutrition represent a large burden
of disease in the developed world (1). There is now ample
evidence to show that certain dietary factors and patterns of
dietary intake, such as high intake of refined carbohydrates
and low intake of fiber, are associated with higher risk
of obesity and associated diseases such as cardiovascular
disease and metabolic syndrome (2). Although these general
associations are meaningful, increasing attention is being
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given to the large variation in individual responses to
diet. This movement of precision nutrition is growing and
becoming more important as we recognize that, although
summary statistics of populations can give us an idea of
the incidence of chronic diseases, ultimately the processes
leading to development and maintenance of disease occur
within individuals.

Review outline and scope
This is the second article of a 2-part review covering the
research that has been done to investigate the role of the
gut microbiota in precision nutrition and its validity as
a predictive biomarker for individual metabolic response.
Studies included in the current review identify groups
of individuals that show different metabolic phenotypes,
typically in response to a dietary intervention, which
are associated with some aspect of the gut microbiota.
The first part of this review details the methods used
to conduct and analyze precision nutrition–microbiome
studies.
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The second part of this review covers the results obtained
from these studies. First, the growth of precision nutrition
and the background of the role of the gut microbiome
in precision nutrition and host metabolic response are
summarized. This includes a discussion of the stability and
variability of the gut microbiota and of host metabolic
response, as well as the potential for modifying host
metabolism. The current state of research includes the results
of the studies whose methods were discussed in Part I
of this review. For clarity, these results have been divided
into sections based on the dietary intervention used: fiber;
energy restriction and excess; and bioactives, fermented
products, and other dietary components. The complexities of
understanding the human–microbiome interaction are then
presented, including the distinction between association and
prediction as well as the relevance and applicability of results.
This is followed by a discussion of gaps in the research and
future directions such as the issue of generalizing results
across dietary and metabolic contexts, the influence of prior
dietary practices, factors in food choice beyond nutrition,
the contribution of genetics and epigenetics, and the clinical
application of this research.

Current Status of Knowledge of the Potential
Role of the Gut Microbiome in Precision
Nutrition and Variability of Human Metabolism
The gut microbiome in precision nutrition
In recent years, humans have been recognized as supraorgan-
isms, combinations of human and microbe (3). In addition,
the gut microbiome has become increasingly recognized as a
significant source of variation between individuals. There are
significant interindividual differences in microbiome com-
position, function, and diversity (4, 5). Many intervention
and observational studies have documented how variation in
the gut microbiome is shaped and influenced by host genetic,
epigenetic, and lifestyle factors such as diet (6–10). However,
the effect of this variability in the resident gut microbiome
on variability in host health and metabolism is less well
documented.

The gut microbiota produces a wide variety of metabolites
(11, 12) that have the potential to modulate pathways of host
metabolism and immunity (13, 14). The most well-known
of these metabolites are the SCFAs, which affect functions
such as glucose homeostasis and adipose tissue inflammation
(13). Given these effects of gut microbial metabolites on
host metabolism, it is important to acknowledge that the
composition, function, and diversity of the microbiome are
associated with an individual’s predisposition to a wide
variety of diseases (15, 16), many of which are also associated
with diet. Taking this a step further, we can hypothesize that
the interindividual variability seen in the microbiota may
also contribute to variability in the development of disease
via impact on the metabolism of dietary components. The
extent of the contribution of the microbiome to personalized
response and how it can be modified by other environmental
and host factors is a growing area of research that is receiving
increasing scrutiny (17–21).

Stability and variability of the gut microbiota
If an individual’s microbiome remains relatively stable, and
this translates to stability in response to diet, then the
“optimal” diet for the individual will remain stable as well.
However, if the microbiome and dietary response are more
flexible, then what is “optimal” may change over time and
thus require constant re-evaluation. Although studies have
suggested an overall stability of the microbiota over long
timescales (22–24), there are still variability and fluctuation
in microbiota composition (24–26). One confusing aspect
in this research question is how to define stability in the
microbiota. Stability can be based on specific taxa (e.g., abun-
dance, presence/absence), enterotype (i.e., compositional
grouping), or functions. Each of these metrics affects how
we interpret stability and its effect on an individual’s dietary
response over time. In order to develop an understanding
of these processes, we must determine what features of the
microbiome affect dietary response and what features may be
altered by lifestyle factors such as diet.

Results from the literature of microbiota stability.
Some general trends that have been identified by these studies
are that interindividual variability in the microbiome is
greater than intraindividual variability (23, 24, 26); variability
between body sites is greater than within body sites (23, 26),
and more specifically, variability within the skin microbiome
is greater than in the gut which is greater than in the mouth
(23, 26); and variability in taxa is greater than variability in
functions (24). When considering taxonomic composition, a
large portion of the gut microbiome seems to be relatively
stable over long periods of time (22, 25). Broad patterns
in microbiota composition such as enterotype have been
shown to remain constant in response to dietary intervention
(27–30). However, abundances of individual taxa have been
shown to be susceptible to changes in diet (10, 24). For
example, 1 study has shown that 75–88% of taxa detected in
2 individuals remained present for several months at a time,
but that specific taxa such as Clostridium, Ruminococcus, Fae-
calibacterium prausnitzii, Eubacterium rectale, Eggerthella,
Blautia, and Bifidobacteriales can fluctuate in response to
daily variation in host diet, particularly fiber (24).

Contrasting results of microbiota stability.
However, studies have obtained different and sometimes con-
trasting results, although this may be due to the different ways
in which “stability” is defined. For example, Actinobacteria
have been found to be stable over a period of 5 y (31).
Studies investigating a shorter time period (∼1 y) found
Actinobacteria to be less stable and to fluctuate on short
timescales in response to factors such as diet (24, 26). Part
of the reason for these seemingly contrasting results may be
due to the classification of “stability” based on presence or
absence (26, 31) as opposed to changes in relative abundance
(24). Two studies found the phylum Bacteroidetes to be more
stable than other phyla, whereas Firmicutes was less stable
and more susceptible to fluctuations caused by diet (24, 31).
However, other studies have suggested that Bacteroidetes are
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more susceptible to environmental regulation, whereas Fir-
micutes are more stable and heritable (8, 32). The heritability
of bacteria has implications for the stability of these taxa both
within individuals as well as between generations. Lastly,
Proteobacteria have been found to be less stable in some cases
(31), but others have found that there are varying levels of
stability within the phylum, with some classes being more
stable (i.e., Betaproteobacteria and Deltaproteobacteria) than
others (i.e., Gammaproteobacteria and Epsilonproteobacteria)
(26). The results of gut microbiome stability must be further
investigated and definitions of stability must be standardized.
This research will help contribute to our understanding of
stability in metabolism and dietary response.

Stability and flexibility of host metabolic response
In addition to the question of the stability of the gut
microbiome, the issue of host metabolic flexibility also
has implications for whether dietary recommendations for
an individual based on personal data have an expiration
date and whether we can manipulate response to diet for
therapeutic purposes. Several studies have found metabolic
phenotype and response to diet to be relatively stable over
time and to exhibit greater variability between individuals
than within individuals (33–35). Although there is strong
variability over short timescales (days) (33, 34), analysis
over longer time periods (months, years) and comparison
between repeated dietary challenges show stability in the
characteristic metabolic signature of individuals (34, 35) as
well as response to diet (28, 33, 36). As with microbiome
stability, however, metabolic stability is nuanced, with some
individuals showing greater stability than others and some
diets showing a greater capacity to shift metabolic phenotype
(33). Whereas some of these studies have directly analyzed
the microbiome (28, 36), others have inferred microbiome
contribution indirectly via the presence of metabolites
known to be produced by gut bacteria (33–35). The stability
of the microbiome and its effect on dietary response raises the
question of whether metabolism, and the gut microbiome,
can be modified over the long term. The extent to which this
is possible is unclear.

Modification of host metabolism.
One possible avenue for modifying metabolism via the
gut microbiome is through probiotic supplementation. In
1 study, probiotic supplementation altered the function
of the microbiota, particularly in relation to carbohydrate
metabolism (37), although the effect on microbiota com-
position was nonsignificant. It is an intriguing possibility
that response to certain dietary components could be
altered by supplementing with specific probiotics. Indeed,
some evidence suggests that supplementation with specific
bacterial taxa that have a known role in the production of
a certain metabolite can change the metabolic phenotype
or response of an individual (38, 39). Possemiers et al.
(38) investigated whether production of 8-prenylnaringenin
(8-PN) from isoxanthohumol (IX) could be induced or
increased by supplementation with a species of bacteria

known to be involved in this process (Eubacterium limosum).
8-PN is a potent phytoestrogen that has been used to
alleviate menopausal symptoms (40) and its production from
IX, present in hops and beer, has been found to exhibit
interindividual variability (41). Possemiers et al. (38) indeed
found that administration of this bacterium induced 8-PN
production from IX in germ-free rats and increased pro-
duction in germ-free rats transplanted with microbiota from
low 8-PN producing individuals. This probiotic approach
must be investigated further in terms of its application in
humans, the duration of effect, interindividual variability in
colonization/function, and its use for production of other
metabolites.

Results of Precision Nutrition–Microbiome
Studies
Search methods
The articles included in this review were found by searching
Google Scholar and PubMed using combinations of relevant
keywords such as “precision nutrition,” “gut microbiome,”
“inter-individual variability,” “diet,” “response,” and “effect
modification.” Additional studies were often found in the
citations of articles found via this original search method.
Studies had to include a baseline or preintervention micro-
biota sample that was used to classify or predict response to
diet. The majority of studies included a nutritional interven-
tion or challenge, although this included both animal (42–
49) and in vitro studies (38, 50, 51) as well as human studies.
A few studies analyzing cross-sectional data (52, 53) or
drug interventions (54, 55) were included because they con-
tained results pertinent to the gut microbiome–nutrition–
metabolism interaction. The heterogeneity of methods and
interventions of these studies does not invalidate this review
because the goal is to give an overview of the work done on
this topic thus far and illustrate general findings, rather than
draw scientifically valid conclusions from these data. Results
are shown in Table 1.

Response to fiber interventions: the role of the
microbiota
In the context of a fiber-type intervention, features that
have been highlighted as associated with response are the
ratio of Prevotella to Bacteroides (P:B ratio) or enterotype
(27, 28, 36, 50); diversity and richness (59, 61); functional
gene content within groups of taxa (51); the abundance and
diversity of SCFA-producing bacteria (58); and abundance
of certain groups of taxa such as Bifidobacteria (65–67,
69–71), Bacteroides (68), Ruminococci (60), Dialister and
Coriobacteriaceae (63), Eubacterium (56, 64), Clostridium
(56), and Coprobacter fastidiosus and Lachnospiraceae (57)
(Figure 1).

The P:B ratio or enterotype as well as the abundance
of Bifidobacteria are among the most common features
associated with response to fiber intake, regardless of the
outcome being investigated. The Prevotella enterotype has
been associated with diets higher in carbohydrate and fiber,
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TABLE 1 Review of results of precision nutrition studies1

Citation
Association or

prediction Results Conclusion

Fiber
Korpela et al. (56) Prediction Microbiota-R: very low or very high baseline abundance of Eubacterium

ruminantium and Clostridium felsineum.
Microbiota-NR: average abundance of Eubacterium ruminantium and C.

felsineum.
Cholesterol-R: higher Clostridium sphenoides; decrease in cholesterol;

associated with Microbiota-R.
Cholesterol-NR: lower Clostridium sphenoides; increase in cholesterol;

associated with Microbiota-NR.
HOMA-R/NR: baseline abundance of Clostridium clusters XVI and XVIa,

Bacilli, and Proteobacteria predicts response (56–79% accuracy).
C-reactive protein-R/NR: baseline abundance of Clostridium clusters VI, XI,

XIVa, and XVIII predicts response (46–80% accuracy).
Diversity, richness, or evenness not associated with responsiveness, nor

was P:B ratio.
Baseline abundance of Eubacterium ruminantium and Clostridium

felsineum predicts Microbiota-R/NR (78–100%).
Baseline abundance of Clostridium sphenoides predicts Cholesterol-R/NR

(100% accuracy).

Baseline abundances of several bacterial taxa (mostly
Firmicutes) are associated with and predictive of
microbiota and metabolic response to several
dietary interventions related to dietary CHO. The
taxa associated with/predictive of response vary
based on the response variable in question.

Korem et al. (57) Prediction R/NR: glycemic response to different bread types predicted by relative
abundance of Coprobacter fastidiosus and Lachnospiraceae bacterium
3_1_46FAA (83% accuracy).

Baseline abundances of certain bacterial taxa are
predictive of lower glycemic response to different
bread types.

Smits et al. (44) Prediction R: D3 colonized mice, dominated by Clostridiales, higher α-diversity,
marked change along principal coordinate (PC) 2 after FOS intervention,
and significant changes in taxonomic composition (decreased
Clostridiales; increased Bacteroides fragilis, Sutterella spp., Barnesielaceae).

NR: D1 and D2 colonized mice, dominated by Bacteroides and
Parabacteroides, marginal changes in PC and composition after FOS
intervention.

Metabolomic features exhibited little change compared with microbiota
composition in response to FOS intervention.

Abundance of certain taxa is predictive of changes in
microbiota composition and glycoside hydrosylate
families in response to FOS intervention, whereas
metabolomic features are better predictors of
individual donors than of response to diet.

Hjorth et al. (27) Association R: high P:B ratio, higher body fat loss on new Nordic diet vs. average Danish
diet, maintained weight at 1-y follow-up.

NR: low P:B ratio, no difference in body fat loss, regained weight at 1-y
follow-up.

Baseline enterotype (i.e., P:B ratio) is associated with
responsiveness (i.e., fat loss) to
high-fiber/wholegrain diet.

Roager et al. (28) Association R: high P:B ratio, higher TC after intervention and tendency before.
NR: low P:B ratio, lower TC after intervention and tendency before.
Enterotypes (high-/low-P:B ratio) remained relatively stable over the

course of the intervention.

Baseline enterotype (i.e., P:B ratio) is associated with
responsiveness (i.e., TC change) to
high-fiber/wholegrain diet.

Zhao et al. (58) Association R/NR: ASP index at day 28 negatively correlated with HbA1c at day 84. Abundance and diversity of SCFA-producing bacteria,
as indicated by the ASP index, at early time point
may predict later changes in host metabolic
markers in response to a high-fiber diet. Further
research must determine whether individuals may
be sorted into R and NR to a similar intervention
based on ASP index at baseline.

Kovatcheva-
Datchary et al.
(36)

Association R: high Prevotella; change in microbiota composition (increased Prevotella
and P:B ratio, increased methanogens), microbiota function (increased
complex polysaccharide fermentation), microbiota diversity (increased),
and metabolic response (improved PPGR) with BKB supplementation;
higher habitual fiber intake.

NR: high Bacteroides; no change in above parameters.
No differences in fecal SCFA or breath hydrogen between R and NR.
R/NR status stayed stable at 1-y follow-up.
Mice colonized with microbiota from R individuals after intervention

showed improved glucose tolerance and increased expression of
glycogen storage/metabolism genes (no difference when colonized by
R microbiota before intervention).

Mice colonized with Bacteroides thetaiotaomicron (abundant in NR) vs.
Prevotella copri (abundant in R) showed differential SCFA production and
improvement in PPGR (both higher with Prevotella copri colonization).

Baseline enterotype (i.e., P:B ratio) is associated with
microbiota (i.e., composition and function) and
metabolic (i.e., PPGR) response to dietary fiber. Key
species may drive this response.

Chen et al. (50) Association R: Prevotella enterotype, fermented all 3 fibers with similar high total SCFA
production, 2–3 times more propionate than NR.

NR: Bacteroides enterotype, slower fermentation of the more complicated
fiber structures and different total amounts/profiles of SCFA production
from different fibers.

Baseline enterotype (i.e., P:B) is associated with the
production of SCFAs from different dietary fiber
sources.

(Continued)
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TABLE 1 (Continued)

Citation
Association or

prediction Results Conclusion

Salonen et al. (59)
and Walker et
al. (60)

Association R: lower diversity, greater change in microbiota (lower stability), correlated
with prior dietary practices.

NR: higher diversity, less change in microbiota (higher stability), not
correlated with prior dietary practices.

Diet had stronger effect on functional output (SCFA) and insulin sensitivity
than on microbiota but no correlation with diversity on these responses
noted.

Baseline microbiota diversity is associated with
responsiveness (i.e., change in microbiota
composition) to dietary fiber. The effect of diversity
on metabolic response is unclear.

Tap et al. (61) Association R: low species richness, low microbiota stability (more change).
NR: high species richness, high microbiota stability (less change).
Link between diversity of vegetables in participants’ habitual diets and

microbiota richness.
Link between amounts of some SCFAs (caproate and valerate) and

proportions of some genera (Prevotella, Dorea, Coprococcus, Bacteroides).

Baseline species richness is associated with
microbiota response (i.e., change in microbiota
composition) to fiber. Specific taxa are also
associated with metabolic response (i.e., SCFA) but
relation to species richness not noted. Diversity is
linked to prior dietary practices (i.e., diversity of
vegetable intake).

Martinez et al.
(62)

Association R/NR: magnitude and direction of microbiota response (i.e., change in
abundance of certain taxa) different between RS types and individuals.
No shifts were observed in all 10 subjects.

Common RS2 response: increased Eubacterium rectale and Ruminococcus
bromii.

Common RS4 response: increased Bacteroidetes, Parabacteroides distasonis,
and Bif. adolescentis.

Different individuals respond differently and different
types of RS elicit different changes in the
microbiome. Baseline features of the gut
microbiome that may contribute to this variability
and the metabolic effects of it are unclear.

Martinez et al.
(63)

Association R: higher Dialister, lower Coriobacteriaceae; greater improvement in IL-6.
NR: lower Dialister, higher Coriobacteriaceae; smaller improvement in IL-6.

All treatments increased microbial diversity, Firmicutes:Bacteroidetes ratio, and
abundance of the genus Blautia.

Baseline abundances of certain bacterial taxa (i.e.,
Dialister, Coriobacteriaceae) are associated with
immunologic response (i.e., IL-6) to whole grains.

Venkataraman et
al. (64)

Association R: enhanced and high butyrate concentration before/during RS; higher Bif.
adolescentis and Ruminococcus bromii during RS (no difference before
RS); higher Eubacterium rectale before and during RS in high group.

NR: low butyrate concentration before/during RS, lower Bif. adolescentis,
Ruminococcus bromii, and Eubacterium rectale.

RS supplementation increased fecal SCFA and altered microbiota
composition in the study population as a whole.

Baseline abundance of certain taxa (i.e., Eubacterium
rectale) and metabolites (i.e., butyrate) are
associated with responsiveness (i.e., change in
microbiota, butyrate production) to RS.

Davis et al. (65) Association R: increase in Bif. in response to GOS.
NR: no increase in Bif. in response to GOS.
No taxa or operational taxonomic units (OTUs) significantly different

between R and NR.

No baseline abundance of any taxa was associated
with microbiota response (i.e., increase in Bif.) to
GOS.

Bouhnik et al. (66) Association R: lower baseline Bif.; greater increase in Bif.
NR: higher baseline Bif; smaller increase in Bif.
Bifidogenic NDCHs: short-chain fructooligosaccharides, soybean

oligosaccharides, GOSs, and RS3.
Nonbifidogenic NDCHs: lactulose, long-chain inulin, and

isomaltooligosaccharides.

Baseline abundance of Bif. in the gut is associated
with microbiota response (i.e., increase in Bif.) to
prebiotics.

Tuohy et al. (67) Association R: low baseline Bif.; greater increase in Bif.
NR: high baseline Bif.; smaller increase in Bif.

Baseline abundance of Bif. in the gut is associated
with microbiota response (i.e., increase in Bif.) to
prebiotics.

Eid et al. (68) Association R: lower baseline Bacteroides, change in microbiota (lower stability), low
baseline fiber intake.

NR: higher baseline Bacteroides, no change in microbiota (higher stability),
high baseline fiber intake.

Baseline abundance of Bacteroides is associated with
microbiota response (i.e., change in composition)
to date (polyphenol/fiber) supplementation. This
may be connected to prior dietary practices (fiber
intake).

Tuohy et al. (69) Association R: lower baseline Bif; greater increase in Bif.
NR: higher baseline Bif; smaller increase in Bif.

Baseline abundance of Bif. in the gut is associated
with microbiota response (i.e., increase in Bif.) to
prebiotics (i.e., high performance (HP)-inulin).

Kolida et al. (70) Association R: lower baseline Bif; greater increase in Bif.
NR: higher baseline Bif; smaller increase in Bif.

Baseline abundance of Bif. in the gut is associated
with microbiota response (i.e., increase in Bif.) to
prebiotics (i.e., inulin).

de Preter et al.
(71)

Association Microbiota-R1: lower baseline Bif.; greater increase in Bif.
Microbiota-NR: higher baseline Bif.; smaller increase in Bif.
Metabolite-R: higher baseline 15N (ammonia) and p-cresol; greater

decrease in 15N (ammonia) and p-cresol in response to prebiotic intake.
Metabolite-NR: lower baseline 15N and p-cresol; smaller decrease.

Baseline abundance of 1) Bif. in the gut as well as 2)
baseline metabolite concentrations (i.e., ammonia
and p-cresol) are associated with response to
prebiotics. The overlap between these 2 features
and their effects is unclear.

Sonnenburg et al.
(51)

Association R: higher abundance/specificity of genes involved in inulin metabolism
(i.e., Bacteroides caccae > Bacteroides thetaiotaomicron > Bacteroides
vulgatus); relative increase in abundance.

NR: lower specificity/abundance of genes involved in inulin metabolism
(i.e., Bacteroides vulgatus); relative decrease in abundance.

Genomic/functional content of microbiota is
associated with effect of prebiotic (i.e., inulin)
supplementation on microbiota response (i.e.,
increase/decrease in abundance).

Holscher et al.
(72)

Association R: female participants more responsive (i.e., greater shift in Bif.).
NR: male participants less responsive (i.e., smaller/no shift in Bif.).
Overall, Actinobacteria and Bif. significantly enriched after higher doses of

agave inulin.

Gender is associated with microbiota response (i.e.,
increase in Bif.) to inulin. It is unclear if this is
connected to differences in baseline microbiota
features in men and women.

(Continued)
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TABLE 1 (Continued)

Citation
Association or

prediction Results Conclusion

Fuller et al. (73) Association Inulin increased Bif. (effect not dependent on baseline abundance).
No association between change in Bif. and allyl mercapturic acid excretion.

Baseline Bif. abundance not associated with prebiotic
effect (i.e., increase in Bif.) and no effect observed
on ITC metabolism.

Energy restriction and excess
Cotillard et al. (74) Prediction R: HGC at baseline; greater improvement in inflammation (hsCRP); higher

baseline intake of fruit/veg and fish.
NR: LGC at baseline; smaller improvement in inflammation (hsCRP); greater

increase in gene richness (remained significantly lower than HGC); lower
baseline intake of fruit/veg and fish.

Model using 9 differentially abundant species able to distinguish HGC and
LGC individuals with 99% accuracy.

Baseline microbiota richness is associated with
improvement in inflammatory response (i.e., hsCRP)
to energy restriction and remains higher despite a
smaller increase in richness during intervention.
This may be linked to prior dietary practices.

The abundances of certain bacterial taxa are
predictive of HGC/LGC status.

Shoaie et al. (75)
[using data
from Cotillard
et al. (74)]

Prediction R: HGC; higher baseline Bif. adolescentis, Faecalibacterium prausnitzii, and
Eubacterium rectale; Bacteroides thetaiotaomicron significantly increased,
Lactobacillus reuteri and Faecalibacterium prausnitzii significantly
decreased after intervention.

NR: LGC; lower baseline Bif. adolescentis, Faecalibacterium prausnitzii, and
Eubacterium rectale; significant decrease only for Lactobacillus reuteri.

Correctly predicted dietary changes made by participants, metabolite
concentrations, and contribution of each bacterial species to
production of specific metabolites.

Baseline microbiota richness and abundance of
certain taxa are associated with microbiota
response (i.e., change in abundance of certain taxa)
to energy restriction.

Community And Systems-level INteractive
Optimization (CASINO) can be used to predict
metabolic changes and contributions of the
microbiota in response to energy restriction and
provide advice to alter response (efficacy not
evaluated).

Kong et al. (76) Prediction High-R: cluster A; lost more weight during energy restriction and continued
to lose weight during stabilization; lowest fasting insulinemia, highest
insulin sensitivity (HOMA-S, HOMA-IR, quantitative insulin-sensitivity
check index, McAuley, SIisOGTT, Matsuda indexes); lower systemic
inflammation (leukocytes, neutrophils, IL-6); lower adipose inflammation
(HAM56+ cells); lowest Lactobacillus/Leuconostoc/Pediococcus.

R: cluster B; lost more weight during energy restriction but did not
continue to lose weight during stabilization; higher fasting insulinemia,
lower insulin sensitivity; lowest systemic and adipose inflammation;
lower Lactobacillus/Leuconostoc/Pediococcus.

NR: cluster C; lost less weight and rapidly regained weight during the
stabilization; highest baseline insulin, IL-6, adipose tissue inflammation
(HAM56+ cells), Lactobacillus/Leuconostoc/Pediococcus.

Bayesian network analysis identified plasma insulin, IL-6, leukocyte
number, and adipose tissue (HAM56+ cells) at baseline as predictors
sufficient to characterize the 3 clusters (75.5% accuracy).

Baseline abundances of several bacterial taxa as well
as metabolic and inflammatory markers are
associated with response (i.e., weight loss) to
energy restriction.

Baseline metabolic and inflammatory markers (not
baseline microbiota composition) are incorporated
into the best-fit model to predict cluster status (A,
B, C).

Griffin et al. (42) Prediction and
association

R: lower CIV, greater diversity, higher abundance of Bacteroides, greater
change in CIV with an unrestricted diet (AMER); higher hepatic amino
acids and lactate.

NR: higher CIV, lower diversity, higher abundance of Ruminococcus, smaller
change in CIV with a calorie restricted with adequate nutrition (CRON)
diet (greater change when cohoused with CRON mice); higher
propionate.

CIV: ranges from −1 [completely associated with CRON dietary pattern
(DP)] to +1 (completely associated with AMER DP). Lower CIV
(CRON-associated), higher CIV (AMER-associated).

Baseline microbiota composition and diversity are
associated with (and predictive of ) dietary pattern.
Microbiota composition and diversity as well as
concentrations of certain metabolites are also
associated with responsiveness (i.e., change in
microbiota composition) to different dietary
patterns (i.e., AMER or CRON).

Piening et al. (77) Prediction IR: higher baseline immune/inflammatory pathways; no detectable
Oxalobacter formigenes, no increase in Akkermansia muciniphila in
response to weight gain, positive correlation between Eubacterium halli
and Parabacteroides as well as between Bacteroides vulgatus and
Eubacterium eligens.

IS: higher baseline Oxalobacter formigenes, higher Allistipes (using all time
points), increase in Akkermansia muciniphila in response to weight gain,
negative correlation between Eubacterium halli and Parabacteroides as
well as between Bacteroides vulgatus and Eubacterium eligens.

IR/IS: random forest and AdaBoost using metabolomics features able to
predict IR/IS with 87.5% accuracy, ANOVA showed 8 host metabolites
that were differentially associated with the gut microbiota in IR or IS
individuals.

Abundances of certain taxa are associated with
metabolic status (IR/IS) and response (metabolites)
to weight fluctuations. Metabolomic profile is able
to predict metabolic status but no attempt made
to predict metabolic status or response to
treatment using microbiome measures.

Santacruz et al.
(78)

Association R: higher weight loss; higher total bacteria (richness), Bacteroides fragilis,
Clostridium leptum, and Bif. catenulatum.

NR: lower weight loss; higher Clostridium coccoides, Lactobacillus, Bif., Bif.
breve, and Bif. bifidum.

Baseline differences in bacterial richness and
abundance of certain bacterial taxa are associated
with the effect of calorie restriction on weight loss
in adolescents.

(Continued)
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Hjorth et al. (29) Association No differences in response between diet groups.
P:B ratio remained stable during intervention (although many 0-Prevotella

group → low P:B ratio after intervention).
R1: high P:B ratio at baseline; higher body weight, BMI; greater weight loss

(3.8 kg more than low P:B ratio), greater body fat loss (3.8 kg more than
low P:B ratio).

R2: 0-Prevotella; greater weight loss (4.47 kg more than low P:B ratio),
greater body fat loss (3.41 kg more than low P:B ratio).

NR: low P:B ratio; less weight loss and body fat loss compared with high P:B
ratio and 0-Prevotella). In adjusted model: low P:B ratio group lost more
weight on diet above the median in CHO (%) and dietary fiber (g/10 MJ);
high P:B ratio group lost more on diet above the median in CHO (%),
fiber (g/10 MJ), and protein (%); 0-Prevotella lost more on diet above the
median in CHO (%) and fat (%). Association of fiber intake and weight
loss in high P:B ratio group explained entire difference between high
and low P:B ratio groups.

Baseline P:B ratio is associated with the effect of
calorie restriction on weight loss and body fat loss
in adults. Further research is needed to determine
why/how Prevotella below the detection limit is
associated with different response compared with
low P:B ratio. In addition, further research is needed
to determine the appropriate cutoffs for high and
low P:B ratios when measured using different
methodologies.

Kreznar et al. (45) Association R: B6 mice; susceptible to diet-induced obesity on HF/HS diet; higher
abundance of Clostridiaceae (Firmicutes), genes related to membrane
transport and lipid metabolism.

NR: CAST mice; not susceptible; high Bacteroidaceae (negatively correlated
with body weight, fasting plasma insulin, and AUC insulin during
oral-glucose-tolerance test).

B6-CAST colonized mice recapitulate metabolic phenotypes of donor
strains (effect of microbiota) but partially recapitulate strain-specific
metabolic responses (effect of genetics and other host factors).

Baseline gut microbiota composition and function are
associated with response to HF/HS diet. The final
metabolic result is also influenced by other host
factors (e.g., genetics).

Parks et al. (46) Association R: greater body fat growth, higher Lactococcus and Allobaculum
(Firmicutes).

NR: smaller body fat growth, higher Akkermansia.
Mice microbiota clustered according to diet but, within clusters, genetic

background had strong effect on microbiota composition and response
to diet (i.e., body fat growth).

Baseline abundances of certain taxa (e.g., Akkermansia
muciniphila) are associated with response to HF/HS
diet. The final metabolic result is also influenced by
other host factors (e.g., genetics).

Dao et al. (79) Association R: higher baseline Akkermansia muciniphila and gene richness; greater
improvement in insulin sensitivity and clinical parameters (TC and LDL
cholesterol) after calorie restriction; healthier baseline metabolic status
(fasting glucose, waist:hip ratio, subcutaneous adipocyte diameter, TG,
and body fat distribution).

NR: lower baseline Akkermansia muciniphila; smaller improvement in
insulin sensitivity and clinical parameters after calorie restriction.

Akkermansia muciniphila abundance not associated with dietary intake.

Baseline abundances of certain taxa (i.e., Akkermansia
muciniphila) are associated with better metabolic
health and response to calorie restriction. This was
not associated with any differences in baseline
dietary intake.

Carmody et al.
(47)

Association R/NR: magnitude and direction of microbiota response (i.e., change in
abundance of certain taxa) different between genotypes and affected
by prior dietary intake (sequential diet shifts).

Overall, HF/HS diet increased the relative abundance of the Firmicutes and
Verrucomicrobia and decreased the Bacteroidetes.

Bacteroidales (Bacteroidetes) and Clostridiales (Firmicutes) are the main
classes of diet-responsive bacteria.

Genetics and prior dietary practices are associated
with response of microbiota (i.e., change in
composition) to dietary patterns. Whether the
impact of these factors is mediated by baseline
microbiota composition is unclear.

Zou et al. (80) Association R: baseline Prevotella enterotype; higher BMI loss; increase in Enterobacter
cloacae/hormaechei and Klebsiella oxytoca, decrease in Collinsella
aerofaciens; decreased pathways for metabolism of amino sugars,
nucleotide sugar, fructose, and mannose.

NR: baseline Bacteroides enterotype; lower BMI loss; increase in 7 species
including Eubacterium rectale and Prevotella copri, decrease in 3 species
(Bacteroides stercoris, Bacteroides coprocola, and Veillonella parvula);
increased pathways for propanoate and butanoate metabolism.

Baseline enterotype is associated with BMI loss in
response to calorie restriction, with Prevotella
enterotype showing a greater loss in BMI.
Enterotype is also associated with differences in
changes in composition and functional potential of
the gut microbiome, although the dietary
intervention did result in a measure of convergence
in the gut microbiome of the 2 enterotype groups.

Muñiz Pedrogo et
al. (81)

Association R: higher baseline Phascolarctobacterium, transposase (COG3328).
NR: higher baseline Dialister, CHO metabolism genes.
No differences in baseline clinical, biochemical, and demographic

characteristics. No differences in α- or β-diversity.

Baseline abundances of CHO metabolism genes and
members of the family Veillonellaceae are
associated with weight loss success
(Phascolarctobacterium) or failure (Dialister) during
a lifestyle intervention program.

Bioactives, fermented products, and other dietary components
Faith et al. (43) Prediction R/NR: linear model using abundance of taxa in response to isolated

nutrients predicts microbiota response to meals with varying
concentrations of nutrients (61–62% accuracy).

Changes in abundances of certain taxa in response to
isolated nutrients can predict response to novel
combinations of isolated nutrients in the context of
a simplistic microbial community. The applicability
of this model in the context of a complex
community and diet (i.e., in humans) is unclear.

(Continued)
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Zeevi et al. (82) Prediction R: Eubacterium rectale and methionine degradation Kyoto Encyclopedia of
Genes and Genomes (KEGG) module (M00035) associated with
improved PPGR.

NR: Parabacteroides distasonis, Bacteroides thetaiotaomicron, Alistipes
putredinis, and the Bacteroidetes phylum associated with worse PPGR.

Model using microbiome-based features as well as features related to
meal content, daily activity, blood parameters, continuous glucose
monitor–derived features, and questionnaires able to predict glycemic
response (68% accuracy).

Model able to prescribe “good” and “bad” diets (lower PPGR on “good” diet
for 10/12 participants vs. “expert” recommendation for 8/14 participants).

Numerous characteristics of the microbiome
(composition and function) as well as host factors
contribute to prediction of PPGRs and can be used
to make dietary recommendations to improve
PPGR.

Mendes-Soares et
al. (83)

Prediction No discussion of specific factors contributing to variability in response.
Used and built upon models developed in Zeevi et al. (82) (added
abundance of Prevotella and Bacteroides).

Glycemic response is highly variable and is predicted
more accurately by a trained model, rather than the
calorie or CHO content of the food alone.

Le Chatelier et al.
(53)

Prediction R: HGC; less adiposity, weight gain over time, insulin resistance,
dyslipidemia; less inflammatory phenotype; higher abundance of
butyrate-producing bacteria.

NR: LGC; more adiposity, weight gain over time, insulin resistance,
dyslipidemia; more inflammatory phenotype; lower abundance of
butyrate-producing bacteria.

Model using 4 differentially abundant species able to distinguish HGC and
LGC individuals (98% accuracy).

Model using 9 species able to able to distinguish lean and obese
individuals (78% accuracy).

Baseline microbiota richness and abundances of
certain bacterial taxa, particularly
butyrate-producing bacteria, are associated with
and predictive of weight gain/obesity over time.

Bennet et al. (84) Prediction R: higher Phascolarctobacterium; lower baseline DI score; significant
improvement in IBS-SSS (decrease ≥50) in response to low-FODMAP
diet.

NR: higher Firmicutes (Bacilli and Clostridia) including Clostridium,
Ruminococcus gnavus, and Streptococcus; higher Bacteroides stercoris,
Pseudomonas, Acinetobacter, Desulfitispora, Coprobacillus; higher
baseline DI score; no significant decrease in IBS-SSS in response to
low-FODMAP diet.

Model using baseline and postintervention microbiota profiles predicts R
and NR to low-FODMAP diet (54% accuracy).

Baseline abundances of certain bacterial taxa are
associated with responsiveness (i.e., improvement
in IBS-SSS) to low-FODMAP diet. Baseline
microbiota composition is moderately predictive of
response to low-FODMAP (but not traditional
irritable bowel syndrome) diet.

Kolho et al. (55) Prediction R: reduction in calprotectin concentrations; higher baseline Bif., Clostridium
colinum, Eubacterium rectale, uncultured Clostridiales, and Vibrio; lower
Streptococcus mitis.

NR: no reduction in calprotectin concentrations; lower baseline Bif.,
Clostridium colinum, Eubacterium rectale, Clostridiales, and Vibrio; higher
Streptococcus mitis.

Model using baseline abundance of 9 bacterial groups predicts
calprotectin response (85% accuracy).

Model using 2 bacterial groups (Clostridium sphenoides and Haemophilus
spp.) predicts calprotectin response (above or below 200 μg/g) (88%
accuracy).

Baseline abundances of certain bacterial taxa are
associated with and predictive of response (i.e.,
reduction in calprotectin) to anti-TNF-α medication
in children with irritable bowel disease.

Cho et al. (85) Association R: high TMAO production (≥20% increase in response to eggs/beef ), lower
α-diversity, higher F:B ratio (∼2:1), higher Clostridiales (Clostridiaceae,
Lachnospiraceae, Veillonellaceae), no Archaea.

NR: low TMAO production, higher α-diversity, lower F:B ratio (1:1), higher
Bacteroidales (Bacteroidaceae, Prevotellaceae), Archaea present.

Baseline microbiota diversity and composition,
particularly the ratio of abundant phyla (e.g.,
Firmicutes, Bacteroidetes), are associated with
production of TMAO. The effect of this on clinical
variables (e.g., lipids, cell count) is not stated.

Suez et al. (86) Association R: compositional change with NAS consumption; developed significantly
poorer glycemic responses with NAS consumption.

NR: no compositional change with NAS; no significant effect of NAS on
glycemic response.

NAS R clustered differently from NR both before and after NAS
consumption.

Genetics and prior dietary practices are associated
with response of microbiota (i.e., change in
composition) to dietary patterns.

Kang et al. (30) Association R: Bacteroides enterotype (E1); response to both low and high CAP; greater
response to CAP.

NR: Prevotella enterotype (E2); response to only high CAP; lower response
to high CAP.
Response: increased ratio of Firmicutes to Bacteroidetes and abundance
of Faecalibacterium and Ruminococcaceae, decreased Bacteroidetes.
Increased GLP-1, GIP, and butyrate; decreased ghrelin.
Enterotype groups remained relatively stable during intervention.
No change in other measured metabolic or clinical outcome measures.

Baseline enterotype (i.e., P:B ratio) is associated with
microbiota response (i.e., change in composition)
to dietary CAP. The effect of this on clinical
outcomes is unclear.
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Possemiers et al.
(87)

Association High, moderate, and low O-DMA, equol, END, ENL, or 8-prenylnaringenin
producers.
END-R: lower Clostridium coccoides–Eubacterium rectale.
O-DMA-R: higher methanogens.
Equol R: higher sulfate-reducing bacteria.

Baseline abundances of certain groups of gut bacteria
are associated with production of bioactive
estrogen metabolites from food components.

Hullar et al. (52) Association R: Higher ENL production; higher microbiota diversity and abundance of
certain bacterial taxa (Moryella spp., Acetanaerobacterium spp.,
Fastidiosipila spp., and Streptobacillus spp.).
NR: Lower/no ENL production; lower diversity and abundance of taxa
above.

Baseline microbiota diversity and abundances of
certain bacterial taxa are associated with
production of bioactive estrogen metabolites from
food components.

Romo-Vaquero et
al. (88)

Association R/NR: Coriobacteriaceae discriminated between UMs and correlated with
TC, LDL, and ApoA-1; Euryarchaeota higher in UM-B;
Methanobacteriaceae, Synergistaceae, Coriobacteriaceae, Clostridiaceae,
Enterobacteriaceae, and Clostridiales incertae sedis XI more abundant in
UM-B; Lachnospiraceae and Eubacteriaceae more abundant in UM-A and
UM-0; diversity/richness at genus level lower in UM-0 than in UM-A and
UM-B (higher in UM-B at family and phylum levels); P:B and F:B ratios
similar among UMs.

Abundances of an assortment of individual bacterial
taxa, such as Coriobacteriaceae, as well as diversity
and richness are associated with polyphenol
metabolizing phenotype and CVD risk factors, such
as TC and LDL cholesterol.

Li et al. (89) Association R/NR: ex vivo fermentation of high- and low-ITC excretors showed
differences in glucosinolate metabolism but terminal restriction
fragment length polymorphism showed no statistically significant
differences in microbiota composition.

Differences in glucosinolate metabolism and ITC
excretion are not directly linked to microbiota
composition. Links to microbiome functional genes
should be further investigated.

Zmora et al. (90) Association R: permissive (significant increase in absolute abundance of probiotic
strains); lower baseline levels of probiotic strains in the lower
gastrointestinal mucosa (not in stools); in the ilea: enrichment in
immune-related pathways; after probiotics: ceca enriched in pathways
related to dendritic cells, antigen presentation, and ion transport.
NR: resistant (no significant increase in absolute abundance of probiotic
strains); higher baseline levels of probiotic strains; in the stomach:
increased abundance of genes related to adaptive and innate immune
responses, inflammation and T cell activation, and differentiation; in the
ilea: enrichment in genes elated to digestion, metabolism, and
xenobiotics metabolism; after probiotics: enrichment of pathways
associated with responses to exogenous stimuli, innate immune
activation, and antibacterial defense (especially to Gram+ bacteria).

Baseline abundance of probiotic bacteria in the gut
mucosa is associated with persistence of probiotic
bacteria in the gut and affects functional response
to probiotics at the level of pathway activation.
Further research must confirm the metabolic
effects of the permissive vs. resistant phenotype.

Zhang et al. (48) Association Rat-R: permissive (longer persistence of FMP strains); higher
Lachnospiraceae; greater variation induced by FMP.
Rat-NR: resistant (shorter persistence of FMP strains).
43 OTUs distinguish the gut microbiota of resistant and permissive rats.
Human-R: Lactococcus carriers; less Lactococcus shedding (longer
persistence); higher interindividual variation (β-diversity).
Human-NR: Lactococcus noncarriers; greater Lactococcus shedding
(shorter persistence); less interindividual variation (β-diversity).
Lactococcus carriers differ in baseline abundance of several taxa (only
Lachnospiraceae in common with rats).

Baseline microbiota composition (e.g., abundance of
Lactococcus) is associated with persistence of
probiotic bacteria in the gut.

Senan et al. (91) Association R: no change in TC or <1.72 mg/dL; greater increase in Lactobacilli; lower
baseline Firmicutes, Clostridium, and Shigella; higher α-diversity and
abundance of Eubacterium and Burkholderia.
NR: elevation in TC ≥2.509 mg/dL; decrease or smaller increase in
Lactobacilli; lower Proteobacteria; higher Escherichia, Crucella, and
Campylobacter.

Baseline microbiota composition and diversity are
associated with response (i.e., change in lipid
metabolism) to probiotic supplementation.
Disclaimers: Only 16/59 classified as R and NR; no
significant reduction in TC concentrations on
probiotic, some significant reductions in other lipid
parameters (LDL, TC:HDL, LDL:HDL) but also seen in
placebo group.

Veiga et al. (49) Association R: improvement in colitis score; higher recovery of live Bif. lactis; lower cecal
pH; higher SCFA; increase in lactate-consuming, butyrate-producing
bacteria; lower baseline Bifidobacteriaceae, Porphyromonadaceae,
Prevotellaceae, and Staphylococcaceae; higher Lachnospiraceae.
NR: no improvement in colitis score; lower recovery of live Bif. lactis;
higher cecal pH; lower SCFA; elevated baseline representation of
Lactobacillaceae.

Baseline microbiota composition is associated with
response (i.e., reduced colitis) to probiotic
supplementation.

Volokh et al. (92) Association R: lower baseline abundance of LFTs; stronger increase in levels of LFTs,
more change in microbiota composition (lower microbiota stability).
NR: higher baseline abundance of LFTs (especially Bacteroidaceae);
weaker increase in levels of LFTs, less change in microbiota composition
(higher microbiota stability).

Baseline abundance of lactose-fermenting bacteria is
associated with microbiota response to probiotic
dairy supplementation. The potential effect on the
host is unclear.

Mobini et al. (93) Association R: higher baseline α-diversity and abundance of Euryarchaeota; significant
reduction in HbA1c, increased DCA.
NR: lower baseline α-diversity and abundance of Euryarchaeota; no
significant reduction in HbA1c or increase in DCA.

Baseline α-diversity and abundances of certain taxa,
not probiotic taxa, are associated with response to
probiotic supplementation.

(Continued)
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Chumpitazi et al.
(94)

Association R: higher abundance of 21 OTUs (e.g., taxa with greater saccharolytic
activity: Bacteroides, Ruminococcaceae, Faecalibacterium prausnitzii,
Erysipilotrichaceae) and 3 KEGG gene pathways (2 related to FODMAP
CHO metabolism).
NR: higher abundance of 4 OTUs (e.g., Turicibacter).
No differences in α- or β-diversity.

Baseline abundances of certain bacterial taxa and
functions are associated with response to
low-FODMAP diet.

Spencer et al. (95) Association R: higher baseline abundance of Gammaproteobacteria and Erysipelotrichia;
lower LF/SF after choline depletion.
NR: lower baseline abundance of Gammaproteobacteria and
Erysipelotrichia; higher LF/SF after choline depletion.
Microbiota features in addition to phosphatidylethanolamine
N-methyltransferase single nucleotide polymorphism resulted in best
correlation with change in LF/SF.

Baseline abundances of certain bacterial taxa as well
as genotype are associated with impacts of choline
deficiency on LF content.

1AMER, unrestricted diet; ASP, active SCFA producer; Bif., Bifidobacterium; BKB, barley kernel bread; CAP, capsaicin; CASINO, Community And Systems-level INteractive
Optimization; CHO, carbohydrate; CIV, community indicator value; CRON, calorie restricted with adequate nutrition; DCA, deoxycholic acid; DI, dysbiosis index; DP, dietary pattern;
END, enterodiol; ENL, enterolactone; F:B ratio, ratio of Firmicutes to Bacteroides; FMP, fermented milk product; FODMAP, fermentable oligosaccharides, disaccharides,
monosaccharides, and polyols; FOS, fermentable oligosaccharide; GIP, glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide-1; GOS,
galactooligosaccharide; HbA1c, glycated hemoglobin; HF/HS, high-fat high-sugar; HGC, high gene count; HOMA, homeostasis model assessment; HOMA-S, homeostasis model
assessment of insulin sensitivity; HP, high performance; hsCRP, high-sensitivity C-reactive protein; IBS-SSS, irritable bowel syndrome symptom severity score; IR, insulin resistant; IS,
insulin sensitive; ITC, isothiocyanate; KEGG, Kyoto Encyclopedia of Genes and Genomes; LF, liver fat; LFT, lactose-fermenting microbial taxon; LGC, low gene count; NAS, noncaloric
artificial sweetener; NDCH, nondigestible carbohydrate; NR, nonresponders; O-DMA, O-desmethylangolensin; OTU, operational taxonomic units; P:B ratio, ratio of Prevotella to
Bacteroides; PC, principal coordinate; PPGR, postprandial glucose response; R, responders; RS, resistant starch; SF, spleen fat; SIisOGTT, simple index assessing insulin sensitivity
derived from oral-glucose-tolerance test; TC, total cholesterol; TMAO, trimethylamine-N-oxide; UM, urolithin metabotype.

whereas the Bacteroides enterotype has been associated
with diets higher in protein and animal fat (22, 96). Both
the dominance of Prevotella in the overall gut microbiota
community, as shown by enterotype, as well as individual
Prevotella species, such as P. copri (36), have been shown
to associate with the response to fiber intake.

Likewise, Bifidobacteria are one of the most well-known
probiotic bacteria and have been shown to ferment a variety
of carbohydrate and fiber compounds to produce bioactive
metabolites that affect host health, such as acetic and lactic
acids, B vitamins, and antimicrobial molecules (72).

Species of Eubacterium, such as E. rectale (62, 64)
and E. ruminantium (56), and Ruminococcus, such as R.
bromii (62, 64), have also been tied to the fermentation
of fiber, particularly resistant starch, and the production of
metabolites such as butyrate, which has been shown to have
many functions (97). Because SCFAs are the main products
of fiber fermentation, an index of active SCFA producers
(the ASP index) has also been developed and has been
shown to associate with improved response to a high-fiber
intervention (58). Associations such as these make sense: if
the bacteria capable of metabolizing the beneficial dietary
component being ingested are present, then the beneficial
effects of said dietary component will follow. But what about
the beneficial effects of restricting energy intake or protection
against excess of unhealthy dietary components?

Response to energy restriction and excess
interventions: role of the microbiota
In the context of an energy-restricted diet, more responsive
or higher weight-loss groups were characterized by higher
bacterial richness or diversity (42, 74, 78), a higher P:B ratio
(29, 80), as well as abundance of specific taxa such as higher

Bacteroides, Clostridium leptum, Phascolarctobacterium, and
Bifidobacteria catenulatum and lower Dialister and Lac-
tobacillus/Leuconostoc/Pediococcus (42, 76, 78, 81) (Figure
1). Similarly, when consuming a high-fat, high-sugar, or
weight-gain diet, resistance to diet-induced obesity or better
metabolic profile was associated with higher Akkermansia
(46, 77) and Bacteroidaceae (45) and lower Firmicutes (45–
47).

When focusing on fiber, the dominant bacterial groups
were Prevotella and Bacteroides. However, when the question
shifts to energy or fat intake, conversation seems to be
more focused on the ratio of Bacteroidetes to Firmicutes,
especially as this balance has been associated with obesity
(98). Akkermansia muciniphila has also become a common
name associated with higher weight loss and improvement in
metabolic parameters (79) or less weight gain (46) on energy-
restricted and high-fat diets, respectively.

Whereas diversity had a greater effect on the stability of
microbiota composition in response to a fiber intervention,
diversity and richness seem to have a greater effect on the
host metabolic response to energy and fat intake. A higher
baseline diversity and richness of the gut microbiota results
in greater weight loss and improvement in insulin sensitivity,
clinical parameters, and inflammation (74, 78, 79).

Response to bioactives, fermented products, and other
dietary components: role of the microbiota
In the context of other dietary interventions, enterotype
or ratios of predominant phyla (30, 83, 85), abundance
of other specific taxa (43, 49, 52, 55, 82–84, 87, 91, 93–
95), abundance of probiotic bacteria (90, 92), abundance of
bacterial functions (82), and bacterial diversity and richness
(53, 85, 93) have also been found to be associated with
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FIGURE 1 Shared associations between dietary components and the microbiota. Different microbiota features (e.g., taxa and diversity)
play different roles and may be involved with response to different dietary components. Identifying what microbiota features are
associated with response to which dietary components can help us identify potential pathways and networks as well as understand the
full picture of individual metabolic response to diet. P:B ratio, ratio of Prevotella to Bacteroides.

response. An additional study by Suez et al. (86) found
that responders and nonresponders to an artificial sweetener
intervention clustered separately but did not indicate which
taxa may have contributed to this clustering.

Kang et al. (30) found subjects with a Bacteroides-
dominated enterotype to be more responsive (i.e., change in
microbiota composition; increased glucagon-like peptide-1,
gastric inhibitory peptide, and butyrate) to dietary capsaicin,
responding to lower doses and having an overall higher
response than those with a Prevotella-dominated enterotype.
Gu et al. (54) also showed that the Bacteroides enterotype
predicted greater responsiveness to the antidiabetic drug
Acarbose, with individuals in this category showing greater
improvements in C peptide, fasting glucose, insulin, and
HOMA-IR than individuals with a Prevotella enterotype.
Individuals with a Bacteroides enterotype also showed greater
changes in microbiota composition in response to Acarbose
with a decrease in Bacteroides and concomitant increase in
Bifidobacterium after treatment, leading to a hypothesis that
individuals with a Bacteroides enterotype will respond better
to interventions that are bifidogenic (21). The studies by Kang
et al. (30) and Gu et al. (54) demonstrate the importance of
dietary or treatment context because a Prevotella enterotype,

rather than the Bacteroides enterotype, was generally found
to be more responsive in the context of a fiber intervention.

The gut microbiota is involved in the metabolism of
dietary polyphenols into bioactive metabolites (99). Pos-
semiers et al. (87) and Hullar et al. (52) both identified
taxa associated with production of phytoestrogens (e.g., O-
desmethylangolensin, equol, enterodiol, enterolactone, and
8-PN) from dietary precursors, with individuals ranging
from low to high production. Although both studies noted
significant associations, such as microbiota diversity and
the abundance of groups such as methanogens and sulfate-
reducing bacteria, there is little overlap in their results.
An analysis of multiple dietary interventions (100–102)
by Romo-Vaquero et al. (88) investigating the question of
the role of the microbiome in the urolithin metabotype
(UM) also found a variety of bacterial taxa associated
with metabotype group (UM-A, UM-B, and UM-0). UM-A
metabotype individuals produce urolithin A, UM-B produce
isourolithin A and urolithin B, and UM-0 individuals do not
produce final urolithins. It is worth noting that an earlier
report by this group (103) showed little overlap in bacterial
taxa identified as associated with urolithin production. In
addition, despite earlier findings of the role of the gut
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microbiota in glucosinolate metabolism (104), Li et al. (89)
found no differences in microbiota composition between
high and low excretors of bioactive isothiocyanates and
also found that, upon second feeding of glucosinolate-rich
broccoli, differences in excretion between these 2 groups
disappeared. These results beg the question of whether the
methods used to investigate microbiota effect modifiers were
comprehensive enough or whether the results observed are
just different pieces of the puzzle.

This same lack of overlap is demonstrated by the findings
of studies investigating the response to fermented milk
product or probiotic consumption (48, 49, 90–93), although
some findings such as the abundance of Lactobacilli and
Bifidobacteria have been replicated. However, these studies
were looking at different response variables as well as
different probiotic strains, suggesting that factors influencing
the response to probiotics are targeted to the specific
strain or response in question. With respect to probiotic
supplementation, it has also been suggested that presence of
bacteria in stool may not be representative of the luminal
and mucosal environment and thus may not be an adequate
marker of probiotic colonization (90). Further research in
the area of probiotic supplementation must identify accurate,
noninvasive methods of determining the extent to which
bacteria are able to colonize subjects. This will allow for better
identification of the benefits of probiotics in the individuals
in which they are able to colonize as well as the development
of personalized probiotics.

It is worth noting that the response is not always
positive. For instance, in the case of trimethylamine-N-
oxide (TMAO), a risk factor for atherosclerosis, it has been
found that individuals with a higher ratio of Firmicutes to
Bacteroidetes and lower α-diversity were more responsive
(i.e., produced more TMAO) to foods containing TMAO
precursors (i.e., choline and carnitine) (85). In this case, it
would be more beneficial to determine how to decrease this
response in individuals.

Coming to a Complete Understanding of the
Human Supraorganism
Association compared with prediction
As mentioned in Part I of this review, studies can be
divided into association and prediction studies, based on
their use and analysis of the data to complete the 2 steps
in the process towards the development of precision nutri-
tion recommendations: 1) identifying associations between
microbiome features and dietary responsiveness and 2)
predicting and validating individuals’ response to dietary
interventions and/or advice. Although features may be found
to be associated with various measures of response, this
is not the same as being predictive of response. Although
prediction studies frequently identify several features of the
microbiome that are individually associated with response
to diet, the model that provides the best fit of the data
and the best prediction of response often does not include
all of these features. This may be due to collinearity of

the microbiota variables. For instance, Kong et al. (76)
identify Lactobacillus/Leuconostoc/Pediococcus abundance as
significantly associated with groups of metabolic phenotypes
but ultimately do not include this feature in their predictive
model. Similarly, Le Chatelier et al. (53) start with 58
differentially abundant taxa and end with only 4 in their
model, whereas Kolho et al. (55) start with 9 differentially
abundant taxa and use only 2 in their predictive model.
The results obtained from association studies must be used
to guide future investigation and development of predictive
models that can inform individual dietary recommendations.

Relevance and applicability of results
Extrapolation from model systems and linking the gut
microbiota to host response.
In addition, a challenge of research using mice or in vitro
models is to predict clinically relevant indicators of health
and metabolism and validate that these effects occur in
the complex system that is the human supraorganism. For
example, although Faith et al. (43) elegantly demonstrated
the ability to predict the response of a microbial community
in response to varying concentrations of nutrients using a
linear model, the 10-strain community used was a simplistic
representation of the enormously complex and diverse
community that inhabits the human gut. The responses of
the microbiome were not connected with host features, such
as host genetic or epigenetic features, or host metabolic
indicators. Thus, results from this study require extrapolation
to infer potential effects on human health. Other studies
have also noted differences in responsiveness, but define
“response” only as a change in the microbiota or a change in
a particular species (48, 62, 65, 66, 69, 75). It is important
to make the link between observed responses and the
implications for host health and metabolism in order to
determine what features of the microbiota should be given
consideration when providing recommendations.

Building a network.
Not only is it important to connect microbiota features and
observed responses, it is also important to build a network
by making links between different observed responses and
their associated microbiota features so the generalizability
of certain features of the microbiota may be determined.
Within the context of the same dietary intervention, different
microbiota features may predict different response variables.
For instance, Korpela et al. (56) found that different groups
of bacteria predicted the response of cholesterol (Clostridium
sphenoides), homeostasis model assessment (Clostridium
clusters XVI and XVIa, Bacilli, and Proteobacteria), and
C-reactive protein (Clostridium clusters VI, XI, XIVa, and
XVIII) in the context of a fiber intervention. Conversely,
1 microbiota feature may also predict the response of
multiple metabolic outcomes (Figure 2). For instance, the
P:B ratio or enterotype has been found to be associated with
body fat loss and body composition (27), total cholesterol
(28), glucose tolerance/insulin sensitivity, incretin and gut
hormone concentrations (30), glycogen storage/metabolism
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FIGURE 2 Shared associations between metabolic response and the microbiota. Different microbiota features may be associated with
different metabolic responses to dietary interventions. Identifying what responses are associated with certain microbiota features can
help identify what factors researchers should focus on based on their primary outcome as well as inform personalized recommendations
from clinicians based on the symptoms of the patient. ENL, enterolactone; P:B ratio, ratio of Prevotella to Bacteroides; TMAO,
trimethylamine-N-oxide.

(36), and SCFA production (50), whereas bacterial diversity
and richness have been associated with SCFA production
(42), total and LDL cholesterol (91), body composition
(53), production of metabolites such as TMAO (85) and
enterolactone (52), inflammation (53, 74), insulin sensitivity
(53, 59), microbiota stability (42, 44, 59–61), and the
persistence of probiotic bacteria (48). It should be noted,
however, that the directions of some of these effects may
depend on dietary context and should not be viewed as fixed.
Building a network also means identifying commonalities
between microbiota features such as the fact that many
bacteria that are associated with a certain response are SCFA
producers (58) or, conversely, that many of the responses
affected by a certain microbiota feature are all involved in or
stem from a certain pathway. This will allow us to develop
mechanistic hypotheses, which can then be investigated
using in vitro or animal model systems.

Inconsistency in results.
However, results have not always been consistent, even
within the same type of intervention, and it is important
to understand why results are not always replicated. For
instance, Korpela et al. (56) observed that neither P:B
ratio nor diversity were associated with responsiveness to
fiber interventions, despite measuring some of the same
outcome variables (e.g., total cholesterol, glucose/insulin) as
studies that did find these aspects of the microbiome to
influence response to fiber (28, 36). Similarly, Fuller et al.
(73) found no effect of baseline abundance of Bifidobacterium
on the enrichment of this taxa by a fiber intervention,
a common finding by others (67, 69–71). In addition,
Chumpitazi et al. (94) and Bennet et al. (84) both found

differences among irritable bowel syndrome patients in the
efficacy of a low fermentable oligosaccharides, disaccharides,
monosaccharides, and polyols diet at decreasing symptom
severity and found taxa associated with responder status.
However, some of the taxonomic groups associated with
responders in Chumpitazi et al. (94) were associated with
nonresponders in Bennet et al. (84) (e.g., Clostridia and
Bacteroides). These studies raise the question of how specific
or universal certain microbiome features are in terms of
their association with certain dietary factors or with certain
metabolic responses.

Gaps in the Research and Future Directions
Applicability in different dietary and response contexts
As detailed above, different groups of taxa are associated with
different dietary components and with different measures
of metabolic response. However, a focus only on certain
nutrients is an overly simplistic view of nutrition. Foods are
composed of complex matrices of nutrients, which interact
with one another and with the consumer to produce the final
metabolic outcome. In addition, meals and overall dietary
patterns are composed of a multitude of food components
that combine to create a vast web of nutrients. Therefore,
bacterial taxa associated with or involved in the metabolism
of certain nutrients may not be affected by or predictive of
the response to other dietary nutrients, to broader dietary
patterns, or even to the same nutrients when combined with
other nutrients and food types. For example, Sawicki et al.
(105) discuss the methodology of studies investigating the
effect of fiber on the gut microbiota and human health,
identifying high-fiber, whole-diet interventions as a gap
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in the research. Many studies investigating fiber simply
supplement with a specific type of fiber in a standard form
and dose. However, this then begs the question of whether
effects may differ between individuals based on the content
of the remainder of their diet. In addition, in Christensen
et al. (21), differences in effects of fiber interventions based
on the gut microbial enterotype of the individual are shown
but differences between different types of fiber are an
area of investigation that is identified as needing further
research. This complexity may contribute to the lack of
universality in the association of certain taxa with response
both between and within types of dietary interventions. It is
important to acknowledge this limitation as well as explore
the applicability of different features of the microbiome in the
context of other nutrients or broad dietary patterns as well as
on different measures of responsiveness.

Prior dietary practices and metabolic flexibility
Some features of the microbiome that are associated with
response are also dependent on long-term or prior dietary
practices (22, 36, 47, 59), such as fiber intake. Thus,
studies should always survey participants’ dietary habits to
determine any effect of baseline intake on the microbiota
and how this may prime the response to a specific dietary
intervention.

Metabolic flexibility was discussed at the beginning of
this article when considering the longevity of an individual’s
metabolic response. However, metabolic flexibility may also
refer to the short-term ability of an individual to adapt
their metabolism to available fuel sources (106), which may
have implications for their response to diets of different
compositions. This flexibility may be influenced by factors
such as physical activity, age, and diet and it is unclear
whether or to what extent this flexibility can be restored
once an inflexible state has been established as a result of
obesity, diabetes, or aging (106). What stimulus is needed to
significantly shift metabolism, the duration of this stimulus
and its effect, and the magnitude of this effect are all
important questions that must be answered, especially with
respect to the effects of sustained shifts in diet. In addition,
the answers to these questions will certainly differ based
on the starting point of the individual in terms of their
physical health as well as their age, genetics, epigenetics, and
microbiome because this has already been demonstrated to
an extent in mice (46).

The gut microbiome is a factor that is completely absent
from these investigations and it is therefore of interest to
determine whether certain features of the gut microbiome
may confer greater metabolic flexibility on the host and
if this can be utilized to manipulate metabolic flexibility
or tendencies. In addition, as detailed below, metabolism
and the microbiome are also influenced by genetics and
epigenetics that remain stable throughout most of an
individual’s lifetime, such as lactase persistence status or
persistent epigenetic marks that are established in utero (107,
108). These factors may limit the potential effects of the

microbiome and its predictive ability, at least when it is
considered in isolation.

Contribution of genetics and epigenetics
Contribution of genetics and epigenetics to personalized
response.
Currently, few studies have combined microbiome, genetic,
epigenetic, metabolomic, and clinical markers in a compre-
hensive attempt at developing precision nutrition models.
Genetics and epigenetics also contribute to an individual’s
metabolic phenotype and may therefore contribute to limits
on metabolic flexibility and the microbiome. For example,
Atkinson et al. (109) showed that individuals with higher
copy numbers of salivary α-amylase gene (AMY1) digest
starchy foods faster and show higher postprandial responses
and lower breath hydrogen excretion than individuals with
fewer copy numbers. Although these are both significant
factors in prediction of dietary response, they are beyond the
scope of this review and have already been comprehensively
reviewed elsewhere (110–112). These factors, as well as
others, also influence an individual’s unique fingerprint of
dietary response (Figure 3) and must be taken into account
when designing predictive models or defining the limits to
which the microbiome can be used as a definitive predictor
of response. For example, the models used in Zeevi et
al. (82) and Mendes-Soares et al. (83) incorporate both
microbiota features and other individual features such as
glycated hemoglobin, age, sex, BMI, physical activity, and
many others, although host genetic data were not included.

Contribution of genetics and epigenetics to the microbiota
and response to diet.
In addition, genetics and epigenetics are not independent of
the microbiome and this interaction must also be taken into
account. An individual’s genetics has a role in determining
their microbiome, particularly, although not surprisingly,
with respect to genes involved in immunity and metabolism,
the most well-known and consistent association being that
of variants in the lactase (LCT) gene region with the
abundance of Bifidobacteria (7–9, 32). A study by O’Connor
et al. (113) investigated the interaction between genetics,
diet, and the microbiome as it concerned cardiometabolic
response to atherogenic nutrients. This study did identify
certain taxa that were significantly associated with genetic
strain, diet, or both as well as cardiometabolic phenotypes
associated with strain, diet, and taxa before or after the
diet intervention. However, it remained unclear how all
of these factors could be integrated to define or predict
response. In addition, the applicability of these taxa as well
as the relevant genes that affect this gene–microbiome–diet
interaction must be identified and confirmed in humans.
Although some studies such as Rothschild et al. (114)
indicate that the contribution of genetics to the microbiome
is small (1.9–8.1%), it is agreed that this field requires more
research.

In addition to genetics, early-life environmental exposures
and epigenetic programming in utero that may persist
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FIGURE 3 Contribution to the fingerprint of personalized response. In addition to the microbiota, other individual factors such as
genetics, epigenetics, and lifestyle factors contribute to an individual’s personalized response to diet.

throughout the individual’s lifetime add another layer of
regulation of the microbiome (107, 115). However, this is
not a one-sided relation. The gut microbiome has been
shown to shape both genetic and epigenetic expression
and development (116). Mechanisms by which this occurs
include regulation of microRNA production, which regulates
host gene expression as well as feedback that regulates mi-
crobiota composition, or production of metabolites involved
in epigenetic processes, which can act as substrates used for
epigenetic modification or modify the activity of enzymes
involved in epigenetic modifications (117, 118). The limits
of this effect and how diet may be used to modulate this
interaction are unclear.

Limits of genetic and epigenetic effects on the microbiota
and response to diet.
Despite the influence of genetics and epigenetics, it has
been found that diet affects the microbiota in certain ways
regardless of genotype. For instance, studies have shown
that the microbiota of different genetic strains of mice fed
either a high-fat/high-sucrose diet or an unpurified/low-fat,
high–plant polysaccharide diet cluster by diet, illustrating
the robust reproducible effect of diet on the microbiome
(46, 47). However, these studies also demonstrate that the
genetic background of the mice can affect the plasticity of the
microbiome, with strains clustering separately within each
diet cluster and some showing a greater shift in microbiome
composition than others. In addition, many twin studies have
shown that, although genetics does contribute to similarity
in microbiome composition, lifestyle factors such as diet
and differential acquisition of epigenetic marks have a
significant effect as well (119, 120). Furthermore, there is
a wealth of evidence that early-life and neonatal exposures
have long-lasting effects on metabolism (121, 122) and the
gut microbiome (115, 123), and the extent to which these
can be mitigated or change later in life requires further
investigation.

Metabolomics and the microbiome
Metabolites, although more indicative of the result of the
interaction between the microbiome, genetics, and epigenet-
ics, are often informative and can also be used to predict
responsiveness. Although some metabolomic studies have
identified microbial metabolites that are associated with or
predictive of response to diet or drugs (33, 124), they have
not always directly interrogated the composition or function
of the gut microbiome. Likewise, some studies have found
differences in baseline clinical characteristics associated with
response to intervention (125–128), particularly measures of
insulin and glucose metabolism (129), but again have failed
to incorporate the gut microbiome. This integration is crucial
to the success of the efficacy of these models because each of
these components contributes significantly to the individual’s
health and metabolic response to diet.

Clinical and specialty applications
As discussed above, a complete, or at least adequate, under-
standing of the human-microbiome supraorganism requires
the integration of a multitude of factors and understanding
how they interact to produce an individual’s metabolic
phenotype. That being said, it is also crucial to identify those
factors (i.e., genetics, microbiome, etc.) and subsets of factors
(i.e., specific genes, bacterial taxa, etc.) that contribute the
most to an individual’s metabolic phenotype and to develop
methods to easily measure these characteristics in a clinical
setting. If this is not done, even the best model will fail to
have any meaningful impact because it will not be accessible
to the majority of individuals who would benefit from
personalized dietary advice. It is therefore crucial to increase
not only the efficacy of such models but also their efficiency
and accessibility. This will require both mechanistic as well
as technological advances in the field in order to identify
significant factors and make their identification in a clinical
setting affordable and practicable.

Although the research thus far has focused primarily
on response to diet with respect to improvement and
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maintenance of general health and well-being, this approach
can be utilized for a whole spectrum of health concerns
from nutrient supplementation in malnourished populations
to optimization of performance in athletes. The efficacy
of nutrient supplementation interventions in food-insecure
populations is mixed, with some trials showing modest
overall effects and others showing no significant effects
(130). The potential of the gut microbiota to modify the
effects of these interventions is a line of research that has
not yet been pursued but may be relevant, especially when
considering supplementation in infants. Early gut microbiota
composition in children has been shown to predict later
growth and health outcomes (131, 132), underscoring the
importance of early microbiota composition in development.
Furthermore, the infant diet, primarily composed of breast
milk or formula, has a distinct effect on the assembly
and development of the infant microbiota (123, 133–135).
Therefore, it may be of interest to determine if certain
taxa or patterns of microbiota composition may modify the
effects of micro- or macronutrient supplementation in these
populations and determine whether the addition of pre- or
probiotics to supplements may act as adjuvants to bolster
their effect.

Another potential application of this area of research is
in the field of athletic performance nutrition. Athletes are
individuals for whom optimal performance is crucial, and
optimal nutrition is critical in achieving this aim. Therefore,
future research in the field of precision nutrition should also
explore outcomes such as muscle protein synthesis, glycogen
formation, fuel utilization, and inflammatory markers such
as creatine kinase and the responses of different individual
athletes to different protein sources (e.g., whey, casein, and
soy), carbohydrates, and fats in combination with their
training regime. As mentioned, optimal performance is of
paramount importance to athletes, making them extremely
motivated to capitalize on any factors that could enhance
their fitness and performance, thus making them prime
targets for precision nutrition.

Beyond nutrition
It is also important to remember that “food is not only
nutrition” (136), meaning that food is more than just a
combination of nutrients. Food is an important social,
cultural, and personal aspect of individuals’ lives and these
factors must also be taken into account when providing
personalized dietary advice. The best diet is useless if not
followed, and adherence is much more likely when the food
is accessible, palatable, and culturally appropriate. Although
these qualitative factors are not as much of an issue when sim-
ply trying to determine how an individual will quantitatively
respond to diet, they become much more important when
ultimately devising dietary recommendations. Therefore, it
is important to take into account factors such as ethnicity,
socioeconomic status, religion, and lifestyle when tailoring
dietary advice to the individual.

Conclusion
Although studies are beginning to address the questions of
precision nutrition and the role of the gut microbiome, we
are far from gaining conclusive or comprehensive answers.
Although the answers provided by the studies outlined in
this review are parts of the puzzle, they also show us how
many pieces are still missing: enterotypes, diversity, richness,
specific taxa, and functions have all been found to have
some association with different responses in different dietary
contexts. The field of precision nutrition is still in its infancy,
although the rate at which it is developing resembles more the
growth spurt of a gangly teenager. Growing pains are to be
expected and an abundance of frustration is unavoidable, as
with any typical teenager. However, as we nurture and invest
in this endeavor, the field will develop and mature, becoming
more coherent and useful over time.

Acknowledgments
The authors’ responsibilities were as follows—RLH: per-
formed the literature review and conceived and composed
the manuscript; MM, NLK, and MEK: provided content and
formatting advice and edited the final manuscript; and all
authors: read and approved the final manuscript.

References
1. Bauer UE, Briss PA, Goodman RA, Bowman BA. Prevention of

chronic disease in the 21st century: elimination of the leading
preventable causes of premature death and disability in the USA.
Lancet 2014;384(9937):45–52.

2. Liu S. Intake of refined carbohydrates and whole grain foods in relation
to risk of type 2 diabetes mellitus and coronary heart disease. J Am Coll
Nutr 2002;21(4):298–306.

3. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM,
Knight R, Gordon JI. The human microbiome project. Nature
2007;449(7164):804.

4. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG,
Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP,
et al. Human gut microbiome viewed across age and geography. Nature
2012;486(7402):222–7.

5. Koppel N, Balskus EP. Exploring and understanding the biochemical
diversity of the human microbiota. Cell Chem Biol 2016;23(1):18–30.

6. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet
JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet
in shaping gut microbiota revealed by a comparative study in
children from Europe and rural Africa. Proc Natl Acad Sci U S A
2010;107(33):14691–6.

7. Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang
M, Oh PL, Nehrenberg D, Hua K, et al. Individuality in gut
microbiota composition is a complex polygenic trait shaped by
multiple environmental and host genetic factors. Proc Natl Acad Sci
U S A 2010;107(44):18933–8.

8. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R,
Beaumont M, Van Treuren W, Knight R, Bell JT, et al. Human genetics
shape the gut microbiome. Cell 2014;159(4):789–99.

9. Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila
AV, Deelen P, Vatanen T, Schirmer M, Smeekens SP, et al. The effect of
host genetics on the gut microbiome. Nat Genet 2016;48(11):1407–12.

10. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE,
Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. Diet
rapidly and reproducibly alters the human gut microbiome. Nature
2014;505(7484):559–63.

994 Hughes et al.



11. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W,
Pettersson S. Host-gut microbiota metabolic interactions. Science
2012;336(6086):1262–7.

12. Lamichhane S, Sen P, Dickens AM, Oresic M, Bertram HC. Gut
metabolome meets microbiome: a methodological perspective to
understand the relationship between host and microbe. Methods
2018;149:3–12.

13. Janssen AW, Kersten S. Potential mediators linking gut bacteria to
metabolic health: a critical view. J Physiol 2017;595(2):477–87.

14. Lee WJ, Hase K. Gut microbiota–generated metabolites in animal
health and disease. Nat Chem Biol 2014;10(6):416–24.

15. Zhang Y-J, Li S, Gan R-Y, Zhou T, Xu D-P, Li H-B. Impacts of gut
bacteria on human health and diseases. Int J Mol Sci 2015;16(4):7493–
519.

16. Musso G, Gambino R, Cassader M. Interactions between gut
microbiota and host metabolism predisposing to obesity and diabetes.
Annu Rev Med 2011;62:361–80.

17. Healey GR, Murphy R, Brough L, Butts CA, Coad J. Interindividual
variability in gut microbiota and host response to dietary
interventions. Nutr Rev 2017;75(12):1059–80.

18. Bashiardes S, Godneva A, Elinav E, Segal E. Towards utilization of the
human genome and microbiome for personalized nutrition. Curr Opin
Biotechnol 2017;51:57–63.

19. Adalsteinsdottir SA, Magnusdottir OK, Halldorsson TI, Birgisdottir
BE. Towards an individualized nutrition treatment: role of the
gastrointestinal microbiome in the interplay between diet and obesity.
Curr Obes Rep 2018;7(4):289–93.

20. Sonnenburg JL, Bäckhed F. Diet–microbiota interactions as
moderators of human metabolism. Nature 2016;535(7610):56–64.

21. Christensen L, Roager HM, Astrup A, Hjorth MF. Microbial
enterotypes in personalized nutrition and obesity management. Am
J Clin Nutr 2018;108(4):645–51.

22. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh
SA, Bewtra M, Knights D, Walters WA, Knight R, et al. Linking
long-term dietary patterns with gut microbial enterotypes. Science
2011;334(6052):105–8.

23. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R.
Bacterial community variation in human body habitats across space
and time. Science 2009;326(5960):1694–7.

24. David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn
MC, Perrotta A, Erdman SE, Alm EJ. Host lifestyle affects human
microbiota on daily timescales. Genome Biol 2014;15(7):R89.

25. Davenport ER, Mizrahi-Man O, Michelini K, Barreiro LB, Ober C,
Gilad Y. Seasonal variation in human gut microbiome composition.
PLoS One 2014;9(3):e90731.

26. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A,
Stombaugh J, Knights D, Gajer P, Ravel J, Fierer N. Moving pictures
of the human microbiome. Genome Biol 2011;12(5):R50.

27. Hjorth MF, Roager HM, Larsen TM, Poulsen SK, Licht TR, Bahl MI,
Zohar Y, Astrup A. Pre-treatment microbial Prevotella-to-Bacteroides
ratio, determines body fat loss success during a 6-month randomized
controlled diet intervention. Int J Obes (Lond) 2018;42(3):580–3.

28. Roager HM, Licht TR, Poulsen SK, Larsen TM, Bahl MI. Microbial
enterotypes, inferred by the Prevotella-to-Bacteroides ratio, remained
stable during a 6-month randomized controlled diet intervention
with the new Nordic diet. Appl Environ Microbiol 2014;80(3):
1142–9.

29. Hjorth M, Blædel T, Bendtsen L, Lorenzen JK, Holm JB, Kiilerich
P, Roager HM, Kristiansen K, Larsen LH, Astrup A. Prevotella-to-
Bacteroides ratio predicts body weight and fat loss success on 24-
week diets varying in macronutrient composition and dietary fiber:
results from a post-hoc analysis. Int J Obes (Lond) 2019;43(1):
149–57.

30. Kang C, Zhang Y, Zhu X, Liu K, Wang X, Chen M, Wang J, Chen H,
Hui S, Huang L, et al. Healthy subjects differentially respond to dietary
capsaicin correlating with specific gut enterotypes. J Clin Endocrinol
Metab 2016;101(12):4681–9.

31. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf
H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL,
et al. The long-term stability of the human gut microbiota. Science
2013;341(6141):1237439.

32. Goodrich JK, Davenport ER, Waters JL, Clark AG, Ley RE. Cross-
species comparisons of host genetic associations with the microbiome.
Science 2016;352(6285):532–5.

33. Heinzmann SS, Merrifield CA, Rezzi S, Kochhar S, Lindon JC,
Holmes E, Nicholson JK. Stability and robustness of human metabolic
phenotypes in response to sequential food challenges. J Proteome Res
2012;11(2):643–55.

34. Assfalg M, Bertini I, Colangiuli D, Luchinat C, Schafer H, Schutz B,
Spraul M. Evidence of different metabolic phenotypes in humans. Proc
Natl Acad Sci U S A 2008;105(5):1420–4.

35. Bernini P, Bertini I, Luchinat C, Nepi S, Saccenti E, Schäfer H, Schütz
B, Spraul M, Tenori L. Individual human phenotypes in metabolic
space and time. J Proteome Res 2009;8(9):4264–71.

36. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder
F, Arora T, Hallen A, Martens E, Bjorck I, Backhed F. Dietary
fiber-induced improvement in glucose metabolism is associated
with increased abundance of Prevotella. Cell Metab 2015;22(6):
971–82.

37. McNulty NP, Yatsunenko T, Hsiao A, Faith JJ, Muegge BD,
Goodman AL, Henrissat B, Oozeer R, Cools-Portier S, Gobert G.
The impact of a consortium of fermented milk strains on the gut
microbiome of gnotobiotic mice and monozygotic twins. Sci Transl
Med 2011;3(106):106ra106.

38. Possemiers S, Rabot S, Espín JC, Bruneau A, Philippe C,
González-Sarrías A, Heyerick A, Tomás-Barberán FA, De
Keukeleire D, Verstraete W. Eubacterium limosum activates
isoxanthohumol from hops (Humulus lupulus L.) into the potent
phytoestrogen 8-prenylnaringenin in vitro and in rat intestine. J Nutr
2008;138(7):1310–16.

39. Routy B, Le Chatelier E, Derosa L, Duong CP, Alou MT, Daillère R,
Fluckiger A, Messaoudene M, Rauber C, Roberti MP. Gut microbiome
influences efficacy of PD-1–based immunotherapy against epithelial
tumors. Science 2018;359(6371):91–7.

40. Heyerick A, Vervarcke S, Depypere H, Bracke M, De Keukeleire D. A
first prospective, randomized, double-blind, placebo-controlled study
on the use of a standardized hop extract to alleviate menopausal
discomforts. Maturitas 2006;54(2):164–75.

41. Bolca S, Possemiers S, Maervoet V, Huybrechts I, Heyerick A,
Vervarcke S, Depypere H, De Keukeleire D, Bracke M, De Henauw S.
Microbial and dietary factors associated with the 8-prenylnaringenin
producer phenotype: a dietary intervention trial with fifty healthy
post-menopausal Caucasian women. Br J Nutr 2007;98(5):950–9.

42. Griffin NW, Ahern PP, Cheng J, Heath AC, Ilkayeva O, Newgard
CB, Fontana L, Gordon JI. Prior dietary practices and connections
to a human gut microbial metacommunity alter responses to diet
interventions. Cell Host Microbe 2017;21(1):84–96.

43. Faith JJ, McNulty NP, Rey FE, Gordon JI. Predicting a human
gut microbiota’s response to diet in gnotobiotic mice. Science
2011;333(6038):101–4.

44. Smits SA, Marcobal A, Higginbottom S, Sonnenburg JL, Kashyap PC.
Individualized responses of gut microbiota to dietary intervention
modeled in humanized mice. mSystems 2016;1(5):00098–16.

45. Kreznar JH, Keller MP, Traeger LL, Rabaglia ME, Schueler KL,
Stapleton DS, Zhao W, Vivas EI, Yandell BS, Broman AT, et al. Host
genotype and gut microbiome modulate insulin secretion and diet-
induced metabolic phenotypes. Cell Rep 2017;18(7):1739–50.

46. Parks BW, Nam E, Org E, Kostem E, Norheim F, Hui ST, Pan C,
Civelek M, Rau CD, Bennett BJ, et al. Genetic control of obesity and
gut microbiota composition in response to high-fat, high-sucrose diet
in mice. Cell Metab 2013;17(1):141–52.

47. Carmody RN, Gerber GK, Luevano JM, Jr, Gatti DM, Somes L,
Svenson KL, Turnbaugh PJ. Diet dominates host genotype in shaping
the murine gut microbiota. Cell Host Microbe 2015;17(1):72–84.

Gut microbiome and precision nutrition 995



48. Zhang C, Derrien M, Levenez F, Brazeilles R, Ballal SA, Kim J, Degivry
MC, Quere G, Garault P, van Hylckama Vlieg JE, et al. Ecological
robustness of the gut microbiota in response to ingestion of transient
food-borne microbes. ISME J 2016;10(9):2235–45.

49. Veiga P, Gallini CA, Beal C, Michaud M, Delaney ML, DuBois
A, Khlebnikov A, van Hylckama Vlieg JE, Punit S, Glickman JN.
Bifidobacterium animalis subsp. lactis fermented milk product reduces
inflammation by altering a niche for colitogenic microbes. Proc Natl
Acad Sci U S A 2010;107(42):18132–7.

50. Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR. Fiber-
utilizing capacity varies in Prevotella- versus Bacteroides-dominated
gut microbiota. Sci Rep 2017;7(1):2594.

51. Sonnenburg ED, Zheng H, Joglekar P, Higginbottom SK, Firbank
SJ, Bolam DN, Sonnenburg JL. Specificity of polysaccharide use
in intestinal Bacteroides species determines diet-induced microbiota
alterations. Cell 2010;141(7):1241–52.

52. Hullar MA, Lancaster SM, Li F, Tseng E, Beer K, Atkinson C, Wahala
K, Copeland WK, Randolph TW, Newton KM, et al. Enterolignan-
producing phenotypes are associated with increased gut microbial
diversity and altered composition in premenopausal women in the
United States. Cancer Epidemiol Biomarkers Prev 2015;24(3):546–54.

53. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G,
Almeida M, Arumugam M, Batto JM, Kennedy S, et al. Richness of
human gut microbiome correlates with metabolic markers. Nature
2013;500(7464):541–6.

54. Gu Y, Wang X, Li J, Zhang Y, Zhong H, Liu R, Zhang D, Feng Q, Xie
X, Hong J. Analyses of gut microbiota and plasma bile acids enable
stratification of patients for antidiabetic treatment. Nat Commun
2017;8(1):1785.

55. Kolho KL, Korpela K, Jaakkola T, Pichai MV, Zoetendal EG,
Salonen A, de Vos WM. Fecal microbiota in pediatric inflammatory
bowel disease and its relation to inflammation. Am J Gastroenterol
2015;110(6):921–30.

56. Korpela K, Flint HJ, Johnstone AM, Lappi J, Poutanen K, Dewulf
E, Delzenne N, de Vos WM, Salonen A. Gut microbiota signatures
predict host and microbiota responses to dietary interventions in obese
individuals. PLoS One 2014;9(6):e90702.

57. Korem T, Zeevi D, Zmora N, Weissbrod O, Bar N, Lotan-Pompan M,
Avnit-Sagi T, Kosower N, Malka G, Rein M, et al. Bread affects clinical
parameters and induces gut microbiome-associated personal glycemic
responses. Cell Metab 2017;25(6):1243–53.e5.

58. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C,
Ma J. Gut bacteria selectively promoted by dietary fibers alleviate type
2 diabetes. Science 2018;359(6380):1151–6.

59. Salonen A, Lahti L, Salojarvi J, Holtrop G, Korpela K, Duncan SH,
Date P, Farquharson F, Johnstone AM, Lobley GE, et al. Impact of
diet and individual variation on intestinal microbiota composition and
fermentation products in obese men. ISME J 2014;8(11):2218–30.

60. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown
D, Stares MD, Scott P, Bergerat A, et al. Dominant and diet-responsive
groups of bacteria within the human colonic microbiota. ISME J
2011;5(2):220–30.

61. Tap J, Furet JP, Bensaada M, Philippe C, Roth H, Rabot S, Lakhdari O,
Lombard V, Henrissat B, Corthier G, et al. Gut microbiota richness
promotes its stability upon increased dietary fibre intake in healthy
adults. Environ Microbiol 2015;17(12):4954–64.

62. Martinez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant starches
types 2 and 4 have differential effects on the composition of the fecal
microbiota in human subjects. PLoS One 2010;5(11):e15046.

63. Martinez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG,
Louk JA, Rose DJ, Kyureghian G, Peterson DA, et al. Gut microbiome
composition is linked to whole grain-induced immunological
improvements. ISME J 2013;7(2):269–80.

64. Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR,
Schmidt TM. Variable responses of human microbiomes to dietary
supplementation with resistant starch. Microbiome 2016;4(1):33.

65. Davis LM, Martinez I, Walter J, Goin C, Hutkins RW. Barcoded
pyrosequencing reveals that consumption of galactooligosaccharides

results in a highly specific bifidogenic response in humans. PLoS One
2011;6(9):e25200.

66. Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C, Flourié B,
Brouns F, Bornet FR. The capacity of nondigestible carbohydrates
to stimulate fecal bifidobacteria in healthy humans: a double-
blind, randomized, placebo-controlled, parallel-group, dose-response
relation study. Am J Clin Nutr 2004;80(6):1658–64.

67. Tuohy KM, Kolida S, Lustenberger AM, Gibson GR. The prebiotic
effects of biscuits containing partially hydrolysed guar gum and fructo-
oligosaccharides – a human volunteer study. Br J Nutr 2007;86(3):
341–8.

68. Eid N, Osmanova H, Natchez C, Walton G, Costabile A, Gibson
G, Rowland I, Spencer JP. Impact of palm date consumption
on microbiota growth and large intestinal health: a randomised,
controlled, cross-over, human intervention study. Br J Nutr
2015;114(8):1226–36.

69. Tuohy KM, Finlay RK, Wynne AG, Gibson GR. A human volunteer
study on the prebiotic effects of HP-inulin—faecal bacteria
enumerated using fluorescent in situ hybridisation (FISH). Anaerobe
2001;7(3):113–18.

70. Kolida S, Meyer D, Gibson GR. A double-blind placebo-controlled
study to establish the bifidogenic dose of inulin in healthy humans.
Eur J Clin Nutr 2007;61(10):1189–95.

71. de Preter V, Vanhoutte T, Huys G, Swings J, Rutgeerts P, Verbeke K.
Baseline microbiota activity and initial bifidobacteria counts influence
responses to prebiotic dosing in healthy subjects. Aliment Pharmacol
Ther 2008;27(6):504–13.

72. Holscher HD, Bauer LL, Gourineni V, Pelkman CL, Fahey GC, Jr,
Swanson KS. Agave inulin supplementation affects the fecal microbiota
of healthy adults participating in a randomized, double-blind, placebo-
controlled, crossover trial. J Nutr 2015;145(9):2025–32.

73. Fuller Z, Louis P, Mihajlovski A, Rungapamestry V, Ratcliffe B,
Duncan AJ. Influence of cabbage processing methods and prebiotic
manipulation of colonic microflora on glucosinolate breakdown in
man. Br J Nutr 2007;98(2):364–72.

74. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier
E, Almeida M, Quinquis B, Levenez F, Galleron N, et al. Dietary
intervention impact on gut microbial gene richness. Nature
2013;500(7464):585–8.

75. Shoaie S, Ghaffari P, Kovatcheva-Datchary P, Mardinoglu A, Sen
P, Pujos-Guillot E, de Wouters T, Juste C, Rizkalla S, Chilloux J,
et al. Quantifying diet-induced metabolic changes of the human gut
microbiome. Cell Metab 2015;22(2):320–31.

76. Kong LC, Wuillemin PH, Bastard JP, Sokolovska N, Gougis S, Fellahi S,
Darakhshan F, Bonnefont-Rousselot D, Bittar R, Dore J, et al. Insulin
resistance and inflammation predict kinetic body weight changes in
response to dietary weight loss and maintenance in overweight and
obese subjects by using a Bayesian network approach. Am J Clin Nutr
2013;98(6):1385–94.

77. Piening BD, Zhou W, Contrepois K, Rost H, Gu Urban GJ, Mishra
T, Hanson BM, Bautista EJ, Leopold S, Yeh CY, et al. Integrative
personal omics profiles during periods of weight gain and loss. Cell
Syst 2018;6(2):157–70.e8.

78. Santacruz A, Marcos A, Warnberg J, Marti A, Martin-Matillas M,
Campoy C, Moreno LA, Veiga O, Redondo-Figuero C, Garagorri JM,
et al. Interplay between weight loss and gut microbiota composition in
overweight adolescents. Obesity (Silver Spring) 2009;17(10):1906–15.

79. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E,
Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L, et al.
Akkermansia muciniphila and improved metabolic health during a
dietary intervention in obesity: relationship with gut microbiome
richness and ecology. Gut 2016;65(3):426–36.

80. Zou H, Wang D, Ren H, Fang C, Shi Z, Zhang P, Chen P, Wang J,
Yang H, Cai K, et al. Nonobese subjects of Bacteroides and Prevotella
enterotypes responded differentially to calorie restriction intervention.
bioRxiv 2019:514596.

81. Muñiz Pedrogo DA, Jensen MD, Van Dyke CT, Murray JA, Woods
JA, Chen J, Kashyap PC, Nehra V. Gut microbial carbohydrate

996 Hughes et al.



metabolism hinders weight loss in overweight adults undergoing
lifestyle intervention with a volumetric diet. Mayo Clin Proc
2018;93(8):1104–10.

82. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger
A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, et al.
Personalized nutrition by prediction of glycemic responses. Cell
2015;163(5):1079–94.

83. Mendes-Soares H, Raveh-Sadka T, Azulay S, Edens K, Ben-Shlomo Y,
Cohen Y, Ofek T, Bachrach D, Stevens J, Colibaseanu D. Assessment of
a personalized approach to predicting postprandial glycemic responses
to food among individuals without diabetes. JAMA Network Open
2019;2(2):e188102.

84. Bennet SMP, Bohn L, Storsrud S, Liljebo T, Collin L, Lindfors P,
Tornblom H, Ohman L, Simren M. Multivariate modelling of faecal
bacterial profiles of patients with IBS predicts responsiveness to a diet
low in FODMAPs. Gut 2018;67(5):872–81.

85. Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF,
Yan J, Sutter JL, Caudill MA. Trimethylamine-N-oxide (TMAO)
response to animal source foods varies among healthy young men
and is influenced by their gut microbiota composition: a randomized
controlled trial. Mol Nutr Food Res 2017;61(1):1600324.

86. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O,
Israeli D, Zmora N, Gilad S, Weinberger A, et al. Artificial sweeteners
induce glucose intolerance by altering the gut microbiota. Nature
2014;514(7521):181–6.

87. Possemiers S, Bolca S, Eeckhaut E, Depypere H, Verstraete
W. Metabolism of isoflavones, lignans and prenylflavonoids by
intestinal bacteria: producer phenotyping and relation with intestinal
community. FEMS Microbiol Ecol 2007;61(2):372–83.

88. Romo-Vaquero M, Cortés-Martín A, Loria-Kohen V, Ramírez-de-
Molina A, García-Mantrana I, Collado MC, Espín JC, Selma MV.
Deciphering the human gut microbiome of urolithin metabotypes:
association with enterotypes and potential cardiometabolic health
implications. Mol Nutr Food Res 2019;63(4):1800958.

89. Li F, Hullar MA, Beresford SA, Lampe JW. Variation of glucoraphanin
metabolism in vivo and ex vivo by human gut bacteria. Br J Nutr
2011;106(3):408–16.

90. Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash
M, Bashiardes S, Kotler E, Zur M, Regev-Lehavi D, Brik RB-
Z. Personalized gut mucosal colonization resistance to empiric
probiotics is associated with unique host and microbiome features. Cell
2018;174(6):1388–405.e21.

91. Senan S, Prajapati JB, Joshi CG, Sreeja V, Gohel MK, Trivedi S, Patel
RM, Pandya H, Singh US, Phatak A, et al. Geriatric respondents and
non-respondents to probiotic intervention can be differentiated by
inherent gut microbiome composition. Front Microbiol 2015;6:944.

92. Volokh O, Klimenko N, Berezhnaya Y, Tyakht A, Nesterova P,
Popenko A, Alexeev D. Human gut microbiome response induced
by fermented dairy product intake in healthy volunteers. Nutrients
2019;11(3):547.

93. Mobini R, Tremaroli V, Ståhlman M, Karlsson F, Levin M, Ljungberg
M, Sohlin M, Bertéus Forslund H, Perkins R, Bäckhed F. Metabolic
effects of Lactobacillus reuteri DSM 17938 in people with type
2 diabetes: a randomized controlled trial. Diabetes Obes Metab
2017;19(4):579–89.

94. Chumpitazi BP, Cope JL, Hollister EB, Tsai CM, McMeans AR,
Luna RA, Versalovic J, Shulman RJ. Randomised clinical trial: gut
microbiome biomarkers are associated with clinical response to a low
FODMAP diet in children with the irritable bowel syndrome. Aliment
Pharmacol Ther 2015;42(4):418–27.

95. Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor
AA. Association between composition of the human gastrointestinal
microbiome and development of fatty liver with choline deficiency.
Gastroenterology 2011;140(3):976–86.

96. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB,
Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in
shaping gut microbiota revealed by a comparative study in children

from Europe and rural Africa. Proc Natl Acad Sci USA 2010;107(33):
14691–6.

97. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost F, Brummer
RJ. The role of butyrate on colonic function. Aliment Pharmacol Ther
2008;27(2):104–19.

98. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon
JI. An obesity-associated gut microbiome with increased capacity for
energy harvest. Nature 2006;444(7122):1027–31.

99. Bolca S, Van de Wiele T, Possemiers S. Gut metabotypes govern health
effects of dietary polyphenols. Curr Opin Biotechnol 2013;24(2):
220–5.

100. Selma MV, González-Sarrías A, Salas-Salvadó J, Andrés-Lacueva
C, Alasalvar C, Örem A, Tomás-Barberán FA, Espín JC. The gut
microbiota metabolism of pomegranate or walnut ellagitannins yields
two urolithin-metabotypes that correlate with cardiometabolic risk
biomarkers: comparison between normoweight, overweight-obesity
and metabolic syndrome. Clin Nutr 2018;37(3):897–905.

101. González-Sarrías A, García-Villalba R, Romo-Vaquero M, Alasalvar
C, Örem A, Zafrilla P, Tomás-Barberán FA, Selma MV, Espín
JC. Clustering according to urolithin metabotype explains the
interindividual variability in the improvement of cardiovascular risk
biomarkers in overweight-obese individuals consuming pomegranate:
a randomized clinical trial. Mol Nutr Food Res 2017;61(5):1600830.

102. Cortés-Martín A, García-Villalba R, González-Sarrías A, Romo-
Vaquero M, Loria-Kohen V, Ramírez-de-Molina A, Tomás-Barberán
F, Selma M, Espín J. The gut microbiota urolithin metabotypes
revisited: the human metabolism of ellagic acid is mainly determined
by aging. Food Funct 2018;9(8):4100–6.

103. Romo-Vaquero M, García-Villalba R, González-Sarrías A, Beltrán D,
Tomás-Barberán FA, Espín JC, Selma MV. Interindividual variability
in the human metabolism of ellagic acid: contribution of Gordonibacter
to urolithin production. J Funct Foods 2015;17:785–91.

104. Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P. Human
metabolism and excretion of cancer chemoprotective glucosinolates
and isothiocyanates of cruciferous vegetables. Cancer Epidemiol
Biomarkers Prev 1998;7(12):1091–100.

105. Sawicki CM, Livingston KA, Obin M, Roberts SB, Chung M, McKeown
NM. Dietary fiber and the human gut microbiota: application of
evidence mapping methodology. Nutrients 2017;9(2):125.

106. Storlien L, Oakes ND, Kelley DE. Metabolic flexibility. Proc Nutr Soc
2004;63(2):363–8.

107. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES,
Slagboom PE, Lumey L. Persistent epigenetic differences associated
with prenatal exposure to famine in humans. Proc Natl Acad Sci U
S A 2008;105(44):17046–9.

108. Comerford KB, Pasin G. Gene–dairy food interactions and health
outcomes: a review of nutrigenetic studies. Nutrients 2017;9(7):710.

109. Atkinson FS, Hancock D, Petocz P, Brand-Miller JC. The physiologic
and phenotypic significance of variation in human amylase gene copy
number. Am J Clin Nutr 2018;108(4):737–48.

110. Ortega A, Berna G, Rojas A, Martin F, Soria B. Gene-diet interactions
in type 2 diabetes: the chicken and egg debate. Int J Mol Sci
2017;18(6):1188.

111. Ramos-Lopez O, Milagro FI, Allayee H, Chmurzynska A, Choi MS,
Curi R, De Caterina R, Ferguson LR, Goni L, Kang JX, et al. Guide for
current nutrigenetic, nutrigenomic, and nutriepigenetic approaches
for precision nutrition involving the prevention and management of
chronic diseases associated with obesity. J Nutrigenet Nutrigenomics
2017;10(1–2):43–62.

112. Wang DD, Hu FB. Precision nutrition for prevention and management
of type 2 diabetes. Lancet Diabetes Endocrinol 2018;6(5):416–26.

113. O’Connor A, Quizon PM, Albright JE, Lin FT, Bennett BJ.
Responsiveness of cardiometabolic-related microbiota to diet is
influenced by host genetics. Mamm Genome 2014;25(11–12):
583–99.

114. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T,
Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N, et al. Environment

Gut microbiome and precision nutrition 997



dominates over host genetics in shaping human gut microbiota. Nature
2018;555(7695):210–15.

115. Indrio F, Martini S, Francavilla R, Corvaglia L, Cristofori F, Mastrolia
SA, Neu J, Rautava S, Russo Spena G, Raimondi F, et al. Epigenetic
matters: the link between early nutrition, microbiome, and long-term
health development. Front Pediatr 2017;5:178.

116. Sook Lee E, Ji Song E, Do Nam Y. Dysbiosis of gut microbiome
and its impact on epigenetic regulation. J Clin Epigenet 2017;3(2):
100048.

117. Dalmasso G, Nguyen HT, Yan Y, Laroui H, Charania MA, Ayyadurai
S, Sitaraman SV, Merlin D. Microbiota modulate host gene expression
via microRNAs. PLoS One 2011;6(4):e19293.

118. Hullar MA, Fu BC. Diet, the gut microbiome, and epigenetics. Cancer
J 2014;20(3):170–5.

119. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-
Suner D, Cigudosa JC, Urioste M, Benitez J, et al. Epigenetic differences
arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S
A 2005;102(30):10604–9.

120. Xie H, Guo R, Zhong H, Feng Q, Lan Z, Qin B, Ward KJ, Jackson MA,
Xia Y, Chen X, et al. Shotgun metagenomics of 250 adult twins reveals
genetic and environmental impacts on the gut microbiome. Cell Syst
2016;3(6):572–84.e3.

121. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in
utero and early-life conditions on adult health and disease. N Engl J
Med 2008;359(1):61–73.

122. Jirtle RL, Skinner MK. Environmental epigenomics and disease
susceptibility. Nat Rev Genet 2007;8(4):253–62.

123. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling
I, van den Brandt PA, Stobberingh EE. Factors influencing the
composition of the intestinal microbiota in early infancy. Pediatrics
2006;118(2):511–21.

124. Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK.
Pharmacometabonomic identification of a significant host-
microbiome metabolic interaction affecting human drug metabolism.
Proc Natl Acad Sci U S A 2009;106(34):14728–33.

125. Westerman K, Reaver A, Blander G, Nogal B, Ward C, Benard T, Katz
D, Blumberg J. An algorithm-based personalized nutrition platform
improves metabolic biomarkers. J Acad Nutr Diet 2017;117(9):
A99.

126. O’Donovan CB, Walsh MC, Nugent AP, McNulty B, Walton J, Flynn
A, Gibney MJ, Gibney ER, Brennan L. Use of metabotyping for the
delivery of personalised nutrition. Mol Nutr Food Res 2015;59(3):
377–85.

127. Lefevre M, Champagne CM, Tulley RT, Rood JC, Most MM. Individual
variability in cardiovascular disease risk factor responses to low-fat
and low-saturated-fat diets in men: body mass index, adiposity, and
insulin resistance predict changes in LDL cholesterol. Am J Clin Nutr
2005;82(5):957–63.

128. Gower BA, Bergman R, Stefanovski D, Darnell B, Ovalle F, Fisher
G, Sweatt SK, Resuehr HS, Pelkman C. Baseline insulin sensitivity
affects response to high-amylose maize resistant starch in women: a
randomized, controlled trial. Nutr Metab (Lond) 2016;13(1):2.

129. Hjorth MF, Zohar Y, Hill JO, Astrup A. Personalized dietary
management of overweight and obesity based on measures of insulin
and glucose. Annu Rev Nutr 2018;38:245–72.

130. Bhutta ZA, Das JK, Rizvi A, Gaffey MF, Walker N, Horton S, Webb
P, Lartey A, Black RE; The Lancet Nutrition Interventions Review
Group. Evidence-based interventions for improvement of maternal
and child nutrition: what can be done and at what cost? Lancet
2013;382(9890):452–77.

131. Kalliomäki M, Collado MC, Salminen S, Isolauri E. Early differences
in fecal microbiota composition in children may predict overweight.
Am J Clin Nutr 2008;87(3):534–8.

132. Azad MB, Konya T, Guttman DS, Field CJ, Sears MR, HayGlass KT,
Mandhane PJ, Turvey SE, Subbarao P, Becker AB, et al. Infant gut
microbiota and food sensitization: associations in the first year of life.
Clin Exp Allergy 2015;45(3):632–43.

133. De Leoz ML, Kalanetra KM, Bokulich NA, Strum JS, Underwood MA,
German JB, Mills DA, Lebrilla CB. Human milk glycomics and gut
microbial genomics in infant feces show a correlation between human
milk oligosaccharides and gut microbiota: a proof-of-concept study. J
Proteome Res 2015;14(1):491–502.

134. Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E, Lemay
DG, Van Tassell ML, Miller MJ, Jin YS, German JB, et al. Maternal
fucosyltransferase 2 status affects the gut bifidobacterial communities
of breastfed infants. Microbiome 2015;3:13.

135. LoCascio RG, Ninonuevo MR, Freeman SL, Sela DA, Grimm R,
Lebrilla CB, Mills DA, German JB. Glycoprofiling of bifidobacterial
consumption of human milk oligosaccharides demonstrates strain
specific, preferential consumption of small chain glycans secreted in
early human lactation. J Agric Food Chem 2007;55(22):8914–19.

136. Kohlmeier M, De Caterina R, Ferguson LR, Gorman U, Allayee H,
Prasad C, Kang JX, Nicoletti CF, Martinez JA. Guide and position
of the International Society of Nutrigenetics /Nutrigenomics on
personalized nutrition: part 2 - ethics, challenges and endeavors of
precision nutrition. J Nutrigenet Nutrigenomics 2016;9(1):28–46.

998 Hughes et al.




