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Abstract

Humans can learn and reason about abstract concepts quickly,
flexibly, and often from very little data. Here, we study how
people learn novel concepts within a binary grid domain, and
find that even this minimal task nonetheless necessitates the
inference of highly structured parts as well as their compo-
sitional relationships. Furthermore, by changing the presen-
tation condition of the learning examples, we reveal different
approaches involved in learning such visual concepts: given
the same images, human generalizations differ between rapid
and static presentation conditions. We investigate this differ-
ence by developing several computational models that vary in
their use of structured primitives and composition. We find that
learning in the rapid presentation condition is best described as
inference in simple models, while learning in the static presen-
tation condition is best described as inference in a more struc-
tured space of graphics programs.
Keywords: Bayesian inference; concept learning; few-shot
learning; program induction

Introduction
Human concept learning can involve remarkably fast and
flexible abstraction. When we see a bridge or appreciate a
sculpture, we not only perceive a set of objects, but also the
underlying parts and their relationships. With such intuitive
understanding of how the parts make the whole structure, hu-
man can productively compose learned primitives, generalize
to new kinds of objects, and imagine new scenes.

We wish to study the compositional structure that underlies
the richness of human visual concept learning by comparing
computationally explicit models with human behavior. Prior
work in cognitive psychology has built compositional mod-
els to describe human visual concept learning, typically by
presupposing relevant, symbolically represented parts as in-
puts to the model, rather than operating directly on images
(Shepard, Hovland, & Jenkins, 1961; Rehder & Hoffman,
2005; Goodman, Tenenbaum, Feldman, & Griffiths, 2008).
These models are limited to a small stimulus space generated
from the conjunction of the few predetermined features. In
contrast, machine vision models successfully perform classi-
fication from arbitrary natural images (Krizhevsky, Sutskever,
& Hinton, 2012), but recent work has found that these mod-
els lack the compositional structure necessary to recapitu-
late human visual concept learning in specific domains (Lake,
Salakhutdinov, & Tenenbaum, 2015).

Here, we add to this literature by introducing a new min-
imal domain to incorporate both of these necessary ingre-

“two same objects”

“a Z-shape object”

“a 2×2 square and a Z-shape”

“two connected lines”

Figure 1: Abstract visual concepts represented by sets of im-
ages on a 5×5 binary grid.

dients: the inference of primitive parts directly from im-
ages, and the discovery of compositional structure that relates
them. The domain we choose is 5×5 images with binary pix-
els. Despite the simplicity of this setup, Figure 1 shows that
the visual concepts implied by these images can be complex
and compositionally structured. In comparison to existing
datasets that also occupy this space, our dataset focuses on
occlusion and spatial juxtaposition that makes the basic parts
particularly ambiguous, as well as concepts that lack proto-
typical images.

Based on these images we develop a few-shot learning
task to be presented under either static or rapid viewing
conditions. Participants are asked to perform a 9-way
classification, for which we compare several computational
models that vary in their degree of compositionality and type
of structured primitives present. We include a hierarchical
Bayesian program learning model, and several additional
Bayesian models with alternative primitives. We evaluate
these models by quantitatively comparing how the model
predictions match human judgments in few-shot generaliza-
tion. Across the several Bayesian models tested, we find
that the ability to jointly infer parts and compose them is
critical to explain human generalizations in even this minimal
domain, so long as participants are given sufficient time to
view the stimulus. However, for rapid viewing conditions,
participants’ judgements are better explained as inference in
a much simpler model with less rich compositional structure.
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(a) Set of 20 visual concepts (b) Behavioral task

Figure 2: Visual stimuli and task paradigm used in the behavioral experiments. 60 images (rows A-C) are used for learning
concepts and 60 (rows D-F) for testing generalization.

Learning grid concepts
We manually design 20 sets of binary images in the 5×5 grid,
covering object occlusion, repetitive structures, and other in-
teresting visual patterns. Each column in Figure 2a is a set
of images representing a certain concept. For each concept,
three examples (A-C) are designated for learning and a fur-
ther three (D-F) for testing generalization behaviors. We have
60 different test trials in total.

We use a classification task to compare how humans and
models generalize from three examples. The basic task is to
learn the underlying concept from the 3 provided examples,
and then to select from 9 novel query images the one that most
likely displays the same concept. To create each trial, we
sample one query image from the same visual concept as the
three observed examples, and 8 from distinct other concepts
which are drawn uniformly at random (See Fig 2b, 2a col. 8).

To collect human judgements, 216 participants were re-
cruited via Amazon Mechanical Turk to participate in a few-
shot classification task, each completing 20 trials: Partici-
pants were instructed to observe interesting objects on the vi-
sual scenes in the grid world. Subjects were presented with
three example images, and then asked to choose one of the
new query images that most likely displays the same concept,
as is illustrated in Figure 2b.

Each participant was assigned either to the ‘rapid’ or
‘static’ viewing condition. In the ‘static’ condition, subjects
could see all three of the example images simultaneously, for
as long as required to make a judgement. However, in the
‘rapid’ condition, subjects instead watched only a video con-
taining the stimuli in quick succession, with an interval be-
tween stimulus onsets of 72ms. At the end of the video, a
5×5 grey noise patch was displayed for backward masking.

Bayesian models
Concept learning, from the computational perspective,
is fundamentally linked to the generalization problem
P(e′|e1,e2, . . . ,ek). Consider a set of k observed examples
e1,e2, . . . ,ek, and a new observation e′. A concept c natu-
rally plays a role when we factorize the conditional probabil-

ity P(e′|e1,e2, . . . ,ek) as ∑c∈C P(e′|c)P(c|e1, . . . ,ek).
In the Bayesian framework of concept learning, we have

the following according to Bayes rule and assuming condi-
tional independence of observations given the concept c:

P(c|e1, . . . ,ek) =
P(e1, . . . ,ek,c)

∑c∈C P(e1, . . . ,ek,c)
∝

k

∏
i=1

P(ei|c)P(c)

(1)

The key component is about the structure of
P(e1, . . . ,ek,c), or more specifically P(e|c) and P(c).
Here we construct four different models P(e1, . . . ,ek,c) with
various assumptions, levels of abstraction, and types of
structured representation.

Independent Pixel Model This model assumes that the la-
tent concept c ∈ C is a 25-element list of Bernoulli distribu-
tion parameters [p1, p2, . . . , p25], each of which corresponds
to one of the pixels in the grid and is sampled independently
from a prior distribution Beta(0.2,0.2). An image instance e
is generated from the concept c by sampling the binary state
of each pixel in the grid according to its Bernoulli distribu-
tion parameter, as is shown in Figure 3a. This model lacks
compositionality and complex structured representation, as
the primitive available is just a single independent pixel.

Patch Model This model assumes that the latent concept
c ∈ C is a list of patches drawn from a patch inventory of
three different sizes (1×1, 2×2, 3×3), as is shown in Figure
3b. Specifically, c consists of the total number of patches as
well as the size of each patches. To generate an image e from
the concept c, the model first randomly localizes each patch
on the grid and independently samples the Bernoulli distri-
bution parameter for each pixel within the patches. Then an
image instance is generated by sampling the binary state of
each pixel within each localized patch according to the corre-
sponding Bernoulli distribution parameter. The pixels out of
the localized patches will always be turned off. This model
has limited compositional structure, as it abstracts an image
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Figure 3: Generative process of a concept and a image for different models.

as composition of several patches. However, the model lacks
explicit structure within a patch, as the Bernoulli distribution
parameters of the pixels within a certain patch are not shared
at the concept level across multiple generated images.

Chunk Model This model assumes that the latent concept
c ∈ C is a list of n chunks that are uniformly drawn from an
inventory of line primitives (e.g. lines of various sizes and
directions), as is shown in Figure 3c. An image e is generated
by randomly placing on the grid the list of chunks from the
concept c. The locations of the chunks are sampled during
the image generation process and not shared at the concept
level. While the built-in inventory of basic chunk primitives
supports explicit structured representation, the model, how-
ever, lacks the mechanism to compose chunks into complex
objects during the generative process.

Full Program Model Drawing inspiration from Lake et al.
(2015), we design a model in which images are generated
from a sequence of consecutive drawing actions. In the full
program model, each concept c ∈ C takes the form of a prob-
abilistic action program {a,θ}, where a refers to the action
type and θ refers to the parameters of each action. Once a
concept c is generated, a binary image e is sampled from the
concept by executing each action in the program step by step.
Figure 3d illustrates how an example image is generated from
the concept ‘GROW(d,3)→ JUMP(dl,1)→ GROW(l,3)’.

To generate a concept, namely an action program in this
model, the length of the program n is first sampled from an
exponential distribution over all the possible program lengths
ranging from 1 to 5 (P(n) ∝ λn, where λ = 0.9), with pref-
erence to short programs. After that, a sequence of n ac-
tions, a, is sampled step by step from the plausible action
primitives to construct the template of the program, under
the constraints of the action transition grammar specified in
Figure3d. For each action, the plausible transitions to other

actions are uniformly distributed. The action primitives in-
clude GROW (adding pixels in a certain direction), JUMP
(skipping over pixels in a certain direction), COPY (making
copies of the current drawing trace and placing them ran-
domly on the grid), ADD (generating a square patch of certain
size and placing it randomly on the grid.), and START (plac-
ing currently generated trace on the grid and initializing a new
trace).

After sampling the program template, the parameters θi of
each action ai in the program a (e.g. the direction and size of
GROW) is uniformly sampled from the plausible values that a
certain parameter type can take. There are eight basic values
for the direction parameter, u (up), d (down), l (left), r (right),
ul (upleft), ur (upright), dl (downleft), and dr (downright).
The size parameter can take a number that is smaller or equal
to the grid width size for GROW and JUMP actions, and a
number less than 3 for COPY action. Both the direction and
size parameter can also take a special parameter value ‘any’,
which refers to randomly sampling one of the basic directions
or plausible size values during the image generation process.

Regarding the execution of an action program, the initial
empty trace starts at the reference point (0,0) on the tem-
porary canvas. Following the action instructions, we draw
pixels or move to other location on the canvas consecutively.
The trace generated on the temporary canvas will be placed at
a random place on the 5× 5 grid once we encounter the end
of the program or a START action. It is worth noticing here
that the mechanism of composing action traces and starting
new traces gives rise to the model’s ability of utilizing more
relational and object-like compositional structure. Therefore,
Bayesian program learning model has more expressive com-
positionality and explicitly structured representation.

Few-Shot Classification and Generation
In order to evaluate each model against our collected human
data, we must perform inference. However, this is computa-
tionally challenging to do exactly, and so we perform approx-
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H static H rapid M1 M2 M3 M4

Human static - 36 51 35 15 10
Human rapid 36 - 36 25 11 10

Program [M1] 51 36 - 35 15 9
Chunk [M2] 35 25 35 - 14 6
Patch [M3] 15 11 15 14 - 8
Pixel [M4] 10 10 9 6 8 -

Table 1: Proportion of the same choices between model pre-
dictions and human judgements for 60 trials.

Model Static presentation Rapid presentation
Program 0.39 0.49

Chunk 0.43 0.47
Patch 0.52 0.44
Pixel 0.78 0.78

Uniform 0.56 0.46

Table 2: Hellinger distance averaged across 60 trials for each
model compared to human data under each presentation con-
dition (lower is better)

imate inference using a neural network trained for amortized
few-shot classification in each model.

For each model, we train a separate network with a shared
architecture, comprising a single convolutional layer and two
fully connected layers with 200 hidden units. Each network
was trained on model-generated data to produce a distribu-
tion of responses for 9-way classification of novel images.
Specifically, we generate synthetic training data by sampling
9 concepts from each model’s prior, drawing one image from
each concept as the query examples, and a further 3 images
from one concept as the observed examples. We optimise the
network to classify the correct query example given the ob-
served examples.

We then evaluate each of these trained networks on the
same stimuli as presented to human subjects. Thus, regarding
the behavioral task, each model’s inference network is used
to select the most likely query image from the 9 options.

For few-shot generation, we approximate the posterior
P(c|e1, . . . ,ek) using Markov Chain Monte Carlo (MCMC)
implemented in WebPPL (Goodman & Stuhlmüller, 2014).
Then we are able to produce novel instances from the inferred
concepts.

Results
We are particularly interested in how human and the models
proposed in this work make generalizations from few exam-
ples. We evaluate model predictions with respect to human
judgments on 60 trials in the behavioral task, in each presen-
tation condition.

Evaluation results of the models are listed in Table 1. We
compute the proportion of choosing the same test images as
the top choice for each pair between different models and hu-
man judgments. It is shown that the predictions of Bayesian

program learning model largely matches the most popular
(top 1) choice of human judgments in the static condition.

We compare the probability distribution of model’s predic-
tion to the distribution of human judgments over 9 test images
for each trial in the experiment. We normalize human judg-
ments to get a distribution of choice over the 9 test items, and
similarly calculate P(e′i|e1,e2,e3) over the 9 test items for
each model. For each of 60 trials, we compute the Hellinger
distance (Hellinger, 1909) between the distribution of model
prediction and human judgement to quantify the distance be-
tween human and model responses. The average Hellinger
distances are shown in Table 2, highlighting a difference be-
tween the two presentation conditions. For static presenta-
tions of the stimulus, the highly structured Bayesian program
model is by far closest to human judgments in terms of the
distribution of the choice in each trials. However, for rapid
presentations of the stimulus, the program model suffers from
overconfidence while the less structured ‘chunk’ model pro-
vides the best prediction of human judgements. Figure 4 visu-
alizes the distribution of human judgments and models’ pre-
dictions for several trials.

Regarding the question of what type of compositional
structure supports human concept learning, the differences
among the proportions of matched choices between human
and four Bayesian models of different level of abstraction
provide some interesting insights. As is discussed before,
these Bayesian models can be summarized briefly with how
much abstraction and what level of abstraction is built into
the architecture: The pixel model does not have any compo-
sitional structures, while the patch model composes a scene
by combining several patches. However, neither of these
match human judgements well: the compositional ability of
the patch model is largely limited due to the lack of explic-
itly structured primitives in its representation, as the patch
only vaguely specify a pattern instead of clearly defining the
structure of the pattern. With more structured primitives, the
chunk model achieves significantly stronger results.

While the lack of structured representation makes it hard
for the patch model to take the advantage of compositional
structure in learning concepts, comparison between chunk
and program models further suggest that hierarchical compo-
sitional structures are important in capturing human few-shot
learning of simple visual concepts.

One final advantage of a Bayesian generative model is its
generative process. Table 3 lists three of the inferred con-
cepts by Bayesian program learning model, the approximate
log posterior probabilities of these concepts, and the posterior
samples for several sets of binary images used in the classifi-
cation experiment. We can see that Bayesian program learn-
ing model successfully inferred the program and generated
reasonable novel images of the same concept.

Discussion
Our work is an advanced investigation of similarity and gen-
eralization, along the line of research of classic Bayesian
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Figure 4: Fine-grained comparison of model responses to human responses.

concept learning (Tenenbaum, 2000; Tenenbaum & Griffiths,
2001; Kemp, Bernstein, & Tenenbaum, 2005; Goodman et
al., 2008; Stuhlmuller, Tenenbaum, & Goodman, 2010) in
computational cognitive science. We investigated visual con-
cepts with more abstract, relational, compositional, hierarchi-
cal and object-like structure.

Compared to previous work (Orbán, Fiser, Aslin, &
Lengyel, 2008) that studied learning visual scenes in a grid
world composed of simple chunks (i.e. the statistical de-
pendencies are simple associations between adjacent objects),
this work explores more complex scenes that allow for more
abstract (non-statistical) relations between objects in a scene.
Further, objects in the visual scenes might occlude each other,
which propose yet another challenge for learners, both model
and humans, in identifying the latent structure.

Other important related works are Bayesian program learn-

ing of hand-written characters (Lake et al., 2015) and abstract
visual concepts (Overlan, Jacobs, & Piantadosi, 2017). Our
study introduces a richer grid concept domain, and devel-
ops computational account of different levels of abstraction.
Although Lake et al. (2015) presents a Bayesian program
learning model for few-shot learning of hand-written char-
acters, which are images on a larger grid than what we use
here, some interesting differences are worth mentioning here.
Human might have a lot of practical experience with hand-
written characters in daily life. There could be reasonably
good prototype for hand-written characters as they are often
standardized for communication purpose. People might rely
on inferring a single visual prototype and generalize through
similarity matching to the prototypical image. In our case, in
contrast, it is hard to infer a single visual prototype for many
of our concepts, even though there are only a small number
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Examples log(P) Concepts Posterior samples

-1.41 GROW(dl,2)→ GROW(u,2)→ GROW(ur,2)→ START→ ADD(2×2)

-1.41 GROW(dl,2)→ JUMP(d,1)→ GROW(ur, 2)→ START→ ADD(2×2)

-7.65 GROW(any,2)→ JUMP(u,1)→ GROW(ur,2)→ START→ ADD(2×2)

-1.47 GROW(ur,2)→ JUMP(l,2)→ GROW(dl,2)→ COPY(1)

-6.43 GROW(dl,2)→ JUMP(r,3)→ JUMP(u,1)→ GROW(dl,2)→ COPY(2)

-12.66 GROW(dl,2)→ JUMP(r,any)→ JUMP(u,1)→ GROW(dl,2)→ COPY(any)

-2.12 GROW(dr,3)→ START→ GROW(dl,3)

-6.28 GROW(dr,any)→ START→ GROW(ur,3)

-8.35 GROW(dl,3)→ START→ GROW(any,3)

-0.42 ADD(2×2)→ START→ ADD(2×2)

-3.07 ADD(2×2)→ JUMP(any,any)→ ADD(2×2)

-23.04 ADD(2×2)→ START→ GROW(r,2)→ COPY(2)

Table 3: Programs found by MCMC for several test concepts, with corresponding posterior-predictive samples of new images.

of observations to choose and generalize from.
This work also shows that compositionality is not the

only important aspect behind human few-shot learning, in
line with previous work (Schulz, Tenenbaum, Duvenaud,
Speekenbrink, & Gershman, 2016) that demonstrates hu-
man’s preferences of compositional pattern in function learn-
ing domain. The level of abstraction in the representation
also plays an important role in building models that can better
match the generalization behaviors observed in human con-
cept learning.

We believe that our visual concept learning task contributes
to an understanding of how humans learn and reason about
novel visual concepts, addressing two questions: (1) what
kinds of representation and architecture support flexible infer-
ence of underlying abstract structure, and the impressive gen-
eralizations that humans achieve from often minimal data?
(2) Is this same architecture necessary, and is it sufficient, to
explain the kind of rapid inferences humans are able to make
given only a short glimpse of a concept? Comparisons among
several Bayesian models with different degrees of abstraction
demonstrate that, even in this minimal domain, humans can
infer concepts with a rich compositional structure, but that
the extent of this structure is dependent on the condition of
presentation.
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