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ABSTRACT OF THE DISSERTATION

Patient-Specific Hemodynamic Modeling of Cerebral Blood Flow: 1-D Mathematical Model

by

Jingyi Kang
Doctor of Philosiphy in Mechanical Engineering

University of California, Los Angeles, 2023
Professor Jeff D. Eldredge, Chair

Ischemic stroke is one of the leading causes of death in the US. It is estimated that intracra-

nial stenosis, which refers to the narrowing of the blood vessels within the brain, accounts for

30% - 50% of ischemic strokes. Typical intracranial stenosis includes narrowing of arteries

such as the middle cerebral artery (MCA) and the internal carotid artery (ICA). Among all

types of intracranial stenosis, middle cerebral artery (MCA) stenosis poses a higher risk for

ischemic stroke. Collateral circulation occurs when occlusion happens and plays a vital role

in sustaining cerebral blood flow during ischemic strokes. However, the factors leading to the

formation of collateral circulation remain unclear and are difficult to observe through image

data alone. The imaging data provides only a snapshot, thereby limiting our understanding

of stenosis development and the formation of collateral circulation. This work developed a

computational tool that integrates patient-specific image data with fluid dynamics to inves-

tigate the development of MCA stenosis and explore possible causes of collateral circulation

between MCA and PComm.

The hemodynamic data of arterial segments is extracted from individual computed tomog-

raphy angiography (CTA) scan. The extracted network includes parent arterial segment

ICA and daughter arterial segments MCA, ACA and PComm. The inlet blood flow profile
ii



is calibrated using color-coded duplex ultrasound from young, healthy volunteers, while a

three-element Windkessel outlet boundary condition is attached to the end of each daughter

arterial segment to simulate artificial wave reflection from the downstream vascular network.

Our findings demonstrate that increases in area reduction increase the pressure of the un-

obstructed pathway and decrease the pressure of the obstructed pathway, which becomes

significant after 90% of the MCA area is occluded, aligning with clinical observations. Wave

Intensity Analysis (WIA) results reveal that the forward expansion wave (FEW) accelerates

the pressure and blood flow from the downstream vascular network, particularly when MCA

is highly occluded (90% cross-sectional area is occluded). The pressure/blood flow and WIA

results show that the formation of collateral circulation is closely related to the high resis-

tance of the upstream large artery, which aligns with the clinical hypothesis.

Furthermore, this work compares the two types of outlet boundary conditions: the three-

element Windkessel 0-D outlet boundary condition and the 1-D binary tree outlet boundary

condition. To assess their impact on the pressure and blood flow waveform of the upstream

large artery, both types of outlet boundary conditions are connected to the upstream large

artery. The findings reveal that the two types of outlet boundary conditions exhibit minimal

differences in affecting the pressure/blood flow of upstream large artery. However, it should

be noted that the utilization of the 1-D outlet boundary conditions is limited in the presented

model due to the long-wave approximation.

This work introduces a novel model that includes one parent arterial segment connected to

three daughter arterial segments. It is the first time that the collateral circulation between

MCA and PComm through the downstream vascular network is investigated. Additionally,

the WIA method is employed for the first time to study the relationship between MCA

stenosis and the formation of collateral circulation.

In summary, a computational tool is developed to understand the evolution of hemodynamic

changes in cerebral blood flow and to reveal pathology of collateral circulation and MCA
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stenosis.
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Chapter One

Introduction

1.1 Cerebral Blood Flow Modeling: Motivation

Cardiovascular disease (CVD) is one of the leading causes of death around worldwide [1]. In

2019, nearly one-third of deaths in the United States were attributed to CVD. Among all

types of CVD, stroke emerges as the third most common cause of fatality [2]. Also, it is the

leading cause of severe and long-term disabilities within the United States. 87% of stroke is

ischemic stroke, resulting from either thrombosis or arterial embolism that obstructs brain

arteries [2]. The primary causes of ischemic stroke include narrowing head and neck arteries

and general hypoperfusion. It has been estimated that intracranial stenosis may contribute

to 30% - 50% of ischemic strokes and middle cerebral artery (MCA) stenosis have a higher

risk of ischemic stroke among intracranial artery stenosis [3].

Collateral circulation refers to the alternative pathway that maintains residual blood flow to

the brain when a large artery is blocked [4]. It plays a pivotal role in the pathophysiology of

cerebral ischemia [5]. The formation of collateral circulation is crucial if the patients recover

from cerebral ischemia. However, due to the limitations of image processing techniques,

the collateral circulation vessel network cannot be extracted directly from medical images.

Moreover, the cause of the formation of collateral circulation channels remains unknown.

Computational methods have emerged as powerful tools in hemodynamic simulation, en-

abling the prediction of blood flow, pressure, and vessel deformation, as well as the inves-

1



tigation of cerebrovascular diseases. A sophisticated and accurate numerical method is in

demand for disease application, surgical planning, and medical device design. This work em-

ploys various computational methods in fluid dynamics to uncover the underlying pathology

of diseases.

We aim to investigate the collateral circulations when MCA is occluded using computational

methods in fluid dynamics. Also, two types of outflow boundary conditions are discussed in

this work and connected to the upstream large artery to provide wave reflections originating

from the downstream vascular network.

1.2 Cerebral Artery: Background

1.2.1 Circle of Willis (CoWs)

The circulation of the brain was first described by Thomas Willis in 1664, named after Willis,

which is called the Circle of Willis (CoWs). The CoWs is the joining area of several large

arteries. The two internal carotid arteries (ICA) and the vertebral arteries (VB) supply the

oxygenated blood through the COWs, where ICA supplies 80% of the cerebral blood flow

and VB supplies 20% of the cerebral blood flow [6]. The two vertebral arteries come together

intracranially in the basilar artery (BA). The CoWs begin to form when the two internal

carotid arteries (ICA) enter the cranial cavity and they branch into two main branches: the

anterior cerebral arteries (ACA) and the middle cerebral artery (MCA) [7]. Two ACA are

connected by the anterior communicating artery (ACom), which is a "connecting vessel".

The posterior cerebral arteries (PCA) are the terminal branches of the VB. PCAs connect

the MCAs at the same side and ICAs via the posterior communicating artery (PComm).

The PComm connects to the ICAs and MCAs anteriorly and communicates with the PCA

posteriorly. The two systems, ICAs and PCAs, supply the blood to the brain, and they are

connected by the PComm. Figure 1.1 demonstrates the structure of CoWs.

2



Figure 1.1 Schematic of Circle of Wills [8]

1.2.2 Collateral Circulation

Collateral circulation refers to an alternative pathway that develops around a blocked artery,

which is not present in a healthy brain. The exact mechanisms behind collateral circulation

formation remain unclear, but they are believed to be closely related to high vascular re-

sistance and ischemic conditions [5].Nevertheless, the existence of collateral circulation has
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been well-documented and can be clearly observed through CTA scans. Moreover, collateral

circulation can explain why many patients can survive and completely recover from occlusive

cerebral vascular disease [9].

There are many channels for collateral circulation and they are commonly divided into pri-

mary and secondary collateral pathways. Primary collaterals include the arterial segments

of the circle of Willis (CoWs), whereas the ophthalmic artery and leptomeningeal vessels

constitute secondary collaterals [5].

The CoWs is a ring-like structure at the base side of the brain, which also serves as a backup

system for collateral circulation. When the artery supporting the CoWs is blocked or nar-

rowed, the system preserves cerebral perfusion to prevent the occurrence of ischemia [6].

This system provides primary collaterals in the cerebral circulation and it includes AComm

(communication arteries and part of CoWs), PComm (communication arteries and part of

CoWs), and ophthalmic artery via external carotid artery [10]. For primary collaterals, the

most often occurring communication is between the anterior and MCA via AComm and be-

tween the posterior and MCA via PComm. For healthy brains, there is no net flow of blood

across the PComm and AComm [10]. However, to maintain patency and prevent thrombosis,

there is to- and fro-flow of blood inside the PComm and AComm. The primary collaterals

appear when a pressure gradient develops between large arteries connected to the PComm

and AComm. This work focuses on the primary collateral circulation between the posterior

and MCA via PComm.

When cerebral arterial is occluded, systemic blood pressure may need to be increased to aug-

ment collateral blood flow. If primary collateral pathways are not available, either because

of the patient’s anatomy (such as lack of right ICA) or because of therapeutic intervention,

secondary collaterals are available that bridge adjacent major vascular territories. These

pathways are known as the pia-to-pia collateral or leptomeningeal pathways, representing

the secondary collateral circulation [11].
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The secondary collaterals mainly include the ophthalmic artery and leptomeningeal col-

laterals, which play a vital role in acute stroke scenarios. For leptomeningeal collaterals,

collateral flow occurs through surface connections that bridge pial arteries [10]. These con-

nections bridge major arterials between ACA and PCA, ACA and MCA (Figure 1.2(a)),

MCA and PCA (Figure 1.2(b)). TThe most marvel characteristic of leptomeningeal col-

lateral is that the blood fluid can flow in both directions, enabling retrograde perfusion of

adjacent territories and preventing cellular death due to ischemia [5]. Final infarct size [12,

13] and functional outcome deficit [14, 15] vary with the presence or absence of the collateral

circulation of stroke patients based on angiographic data.

The collateral circulation confused scientists for centuries. The underlying causes of col-

lateral blood flow and the occurrence of reverse blood flow are still not fully understood.

Normal blood flow is piped from proximal large arteries to the distal small arteries by the

high-pressure blood flow from the ventricle and the resistance to flow peripheral. In collat-

eral circulation, the blood flow is allowed to flow from distal small arteries to large cerebral

arteries when occlusive occurs. Understanding the mechanisms behind this reversed blood

flow and the factors that drive collateral blood flow remains an area of ongoing research.

To gain insights into the complex nature of collateral circulation and the compensatory func-

tion of the posterior communicating artery (PComm), a simplified hemodynamic model has

been proposed in this work. The proposed model aims to investigate the collateral circula-

tion and the role played by the PComm in compensating for occlusions or disruptions in the

normal blood flow pathways. By studying the simplified model, it is expected to unravel the

underlying principles governing collateral circulation and its physiological significance.

1.2.3 Systemic Circulation

Systemic circulation is of great importance psychologically, which contains two parts: the ar-

terial part and the venous part. The arterial part transports oxygenated blood to all tissues,
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Figure 1.2 Diagram of leptomeningeal collaterals, bridging the anterior and middle cere-

bral arteries (a), the posterior and middle cerebral arteries (b), the superior and posterior

cerebral arteries (c), and the major cerebellar hemispheric arteries (d)[5]

while the venous part transports the deoxygenated blood back to the heart for reoxygenation

[16].

The heart ejects blood into the aorta and then distributes the blood flow throughout the

body via systemic circulation. The larger arteries that arise from the aorta then branch

into much smaller arterial vessels. Then the smaller arteries branch into arterioles, and the

arterioles branch into much smaller vessels and become capillaries. In the end, the capillaries

then join together to form veins and veins continue to join together to form the vena cava

and bring the blood back into the heart as shown in Figure 1.3.

The systemic arteries include the large arteries, small arteries and arterioles, which form a

vast network together. The lumen diameter (cross-section) changes from 400 to 4 cm2 from
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the aorta to the arterioles. Due to the limitation of imaging processing technique, obtaining

precise geometric parameters of these vessels can be challenging. For computational simpli-

fication, the arteries and large arterioles are often represented as a 1-D binary tree structure

or a 0-D three-element Windkessel boundary, which will be discussed in Chapter 2.1. The

smaller arterioles are not considered in these models as they have multiple branches and

loops [17].

Figure 1.3 The structure of an artery wall [18]
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1.2.4 Wave Propagation and Reflection in Arteries System

The blood is pumped into the aorta, the pressure rises, and the aorta wall is stretched. When

the cardiac ejection slows down, the pressure falls back and the aorta wall relaxes. The in-

ertial of the blood flow keeps it moving forwards after the driving difference has fallen. This

causes the initial segment of the artery wall to overshoot its equilibrium position, leading

to oscillations as the wall gradually approaches equilibrium. Simultaneously, the following

segment of the wall becomes distended. As it recoils, the fluid-driven outflow causes further

distension in the subsequent section of the wall, which also recoils, and so on [19]. The

process of recoil and distension creates the disturbance that propagates along the arterial

system. The balance between the restoring force provided by the elasticity of the artery

walls and the inertia of the blood sustains the pressure wave.

The pressure wave in the artery can propagate in both upstream and downstream directions,

composing positive and negative waves. For systemic arteries, only the wave that originates

at the heart and is reflected from the periphery is considered. Other waves, that may lack

physiological evidence and have no influence on blood pressure and velocity, are not consid-

ered in this study.

Every point of change along the arteries system will cause partial pressure reflection. There

are many slight bends and unevenness along the arteries. However, the most significant

wave reflection is from the junctions of the vessels. In this work, we will discuss the bifur-

cation effect and construct the bifurcation model. Additionally, constructing the boundary

conditions is constructing artificial wave reflection from downstream systemic arteries.
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Chapter Two

Cerebral Hemodynamics Modeling

2.1 Cerebral Blood Flow Modeling

Like all fluid systems, blood flow obeys mass, momentum, and energy conservation laws.

Researchers employ 1-D to 3-D computational fluid dynamic (CFD) models to simulate the

cerebral system, depending on the specific problem they are working on, and high accuracy

is desired. For 1-D to 3-D blood flow models, Navier-Stokes equations (partial differen-

tial equations), without neglecting nonlinear terms, are used to acquire blood pressure and

velocity [20]. The 1-D blood flow model is relatively simple and can be connected to the

complex downstream vascular network. The computational efficiency and convenience of in-

vestigating the effect of the vascular network on upstream large arteries make 1-D blood flow

models the most commonly utilized choice. In 2-D blood flow models, the 2-D axisymmetric

fluid/shell element is employed to represent blood flow and vessel walls. The 2-D blood flow

models can significantly reduce computation complexity compared to 3-D models while still

capturing blood flow patterns [20]. The 3-D blood flow model is used to analyze complex

flows in certain regions, such as flow separation at the vessel junctions and turbulence flow

caused by placing stent and cerebral aneurysm [20].

The aim of this study is to explore the blood flow patterns in the brain under various con-

ditions using 0-D and 1-D computational fluid dynamics (CFD) models. As the 3-D model

results provide similar results that the 1-D model offers [21], it suggests that the 1-D model
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is adequate when one is interested in blood pressure/flow at specific points along the vessels.

2.1.1 Blood Flow Properties

Blood is composed of plasma with red (erythrocytes), white (leucocytes) blood cells, and

platelets (thrombocytes) in suspension [17]. Blood can be treated as a liquid with a suspen-

sion of flexible particles. The Newtonian viscous fluid is a type of fluid for which the shear

stress is linearly proportional to the strain rate [22]. It can be applied to most homogeneous

liquids, including blood flow. For large arteries, it is reasonable to regard the blood flow as

a Newtonian fluid since the vessel diameters are significantly larger than the individual cell

diameters [17].

2.1.2 Cerebral Blood Flow Modeling

The axial component of the 2-D Navier-Stokes equation, expressed in cylindrical coordinates,

is utilized to describe the blood flow within the cerebral vascular network. This blood flow

can be assumed as incompressible, inviscid Newtonian flow [23]. The z-momentum equation

and the continuity equation can be simplified as Eqs. (2.1) and (2.2), respectively, based

on the following assumptions: (i) the vessel is treated as an axisymmetric cylindrical tube

and there is no dependence on θ ; (ii) the no-slip boundary condition is held is on the

vessel wall ;(iii)in the transverse direction, the fluid moves with the vessel wall, resulting in

ur|r=R = ∂R
∂t

[24, 25].

∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z
= −1

ρ

∂p

∂z
+

µ

ρ

[
1

r

∂

∂r

(
r
∂uz

∂r

)
+

∂2uz

∂z2

]
(2.1)

1

r

∂

∂r
(rur) +

∂uz

∂z
= 0 (2.2)

The blood flow rate q(z, t) and the cross-sectional area A(z, t) are defined as follows,

A (z, t) = πR (z, t)2 (2.3)
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q(z, t) = 2π

∫ R(z,t)

0

uz(z, r, t)r dr (2.4)

where R(z, t) is the radius of the vessel. The higher-order term ∂2uz

∂z2
can be neglected

aas dimensional analysis reveals its insignificance compared to other terms. We integrate

the governing equations over the cross-sectional area A(z, t) of the vessel. The governing

equations can be expressed in terms of A(z, t) and q(z, t) as follows,

∂A

∂t
+

∂q

∂z
= 0 (2.5)

∂q

∂t
+ 2π

∫ R

0

∂(uz)
2

∂z
r dr = −A

ρ

∂p

∂z
+ 2π

µ

ρ
R

[
∂uz

∂r

]
R

(2.6)

To further simplify the viscous and nonlinear term of the Navier-Stokes equation, we assume

that there is a boundary layer with a thickness δ near the wall. The velocity uz along the

long axis of the vessel can be approximated as a flat velocity [23].

uz =


u, r ≤ R− δ

u(R−r)
δ

, R− δ < r ≤ R

(2.7)

The second term of Eq. (2.6) can be eliminated by integrating Eq. (2.7) across the cross-

sectional area. Now, the governing equations are expressed in the following form.

∂A

∂t
+

∂q

∂z
= 0 (2.8)

∂q

∂t
+

∂

∂z

(
q2

A

)
= −A

ρ

∂p

∂z
− 2πνqR

δA
(2.9)

The vessel wall can be treated as an elastic thin shell and the deformation is axisymmetric

[26]. The constitutive relationship used to model the elasticity of the vessel wall is given as

follows [24].

p− p0 =
4

3

Eh

r0

(
1−

√
A0

A

)
(2.10)

where p0 and A0 are the blood pressure and cross-sectional area of the undeformed vessel

wall, respectively; h denotes the average thickness of the vessel wall [27]; A corresponds to the

cross-sectional area of the deformed vessel wall under pressure. The nonlinear relationship
11



between the pressure and cross-section area is used to capture the biological characteristic of

the vessel wall. Eq. (2.10) reveals that the blood pressure is dependent on the cross-sectional

area A and the undeformed radius r0 [28]. ∂p
∂z

can be expanded into two terms ∂p
∂A

∂A
∂z

and

A
ρ

∂p
∂r0

∂r0
∂z

, respectively. Further discussion on the governing equation will be presented in

Chapter 2.3.

2.2 Cerebral Artery Wall Modeling

2.2.1 Cerebral Artery Wall Overview

The blood vessels can be divided into five groups: arteries, arterioles, capillaries, venules,

and veins [23]. Arteries carry oxygenated blood from the heart gradually branching and

narrowing into arterioles. The arterioles supply capillaries, and the capillaries empty into

the venules. The venules in turn drain into the veins that lead back to the heart. In this

dissertation, only the arteries and arterioles are considered.

Different types of blood vessels have slightly different structures, but they have some general

features. Typically, the artery wall has three layers (See Figure 2.1). The outer layer of an

artery is known as tunica externa, which is made of collagen fibers and elastic tissue. The

inside layer is the tunica media, which is made up of smooth muscle cells, elastic tissue and

collagen fibers [29]. The inner layer is known as tunica intima. The hollow cavity where the

blood flow goes through is known as the lumen.

All arteries have relatively thick walls to hold high blood pressure. Particularly, the arteries

close to the heart have the thickest wall and contain more elastic fibers in all three of their

tunics, which are called “elastic arteries”. This property of elastic arteries allows them to

expand when the blood pumped from the ventricles passes through them, and to recoil and

drive the blood to smaller arteries [30]. The store and release ability of arteries is known

as ‘compliance’. Further from the heart, the concentration of the elastic fiber decreases and
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muscle fiber increases in the tunica media in relatively smaller arteries, which is known as

the “muscle artery” [30]. The arterioles are very small arteries that lead to the capillaries

and it is very important in slowing down or resisting the blood flow, thus the blood pressure

and velocity are changed, which is known as “resistance” [30].

Figure 2.1 The structure of an artery wall [18]

2.2.2 Cerebral Vessel’s Young’s Modulus

The behavior of an artery wall should be characterized as viscoelastic, anisotropic, and

inhomogeneous material. For computational simplification, only inhomogeneous property is

included in the study. The Young’s modulus E of the cerebral artery wall is varying with

undeformed vessel radius r0, as shown in Figure 2.2 [31].
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Figure 2.2 Young’s modulus of cerebral vessel wall

2.2.3 Cerebral Artery Geometry Model

The vessel cross-sectional area is not consistent from upstream to downstream. Typically, the

change of radius follows an exponential curve based on dog vessel experiments and human

arterial systemic measurements [23, 32, 33]. In this study, the mean radius of the large

cerebral artery is tapered along the long axis, which follows the exponential curve as shown

in Eq. (1) [34].

r(z) = rtop exp(−kz) (2.11a)

k =
log
(

rbottom
rtop

)
L

(2.11b)

where k is the tapering factor that matches the measured geological data from each vessel.
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2.3 Nondimensionalization

For facilitate computational convenience, the governing equations are nondimensionalized

with the characteristic radius rc = 1 cm, the characteristic blood flow qc = 10 cm3/s and

the characteristic blood flow density ρc = 1.06 g/cm3. Other nondimensional parameters of

blood flow are provided in Table 2.1.

Table 2.1 Characteristics parameters

Displacement z̃ = z
rc

Radius r̃ = r
rc

Flow q̃ = q
rc

Kinematic viscosity ν̃ = νrc
qc

Time t̃ = tqc
r3c

Cross-sectional area Ã = A
r2c

Pressure p̃ = pr4c
ρq2c

Boundary layer δ̃ = δ
rc

The characteristic parameters listed in Table 2.1 are applied to nondimensionalize the gov-

erning governing equations (Eq. 2.8) and (2.9).

∂(Ãr2c )

∂
(

t̃r3c
qc

) +
∂ (q̃qc)

∂ (z̃rc)
= 0 (2.12)

∂(q̃qc)

∂
(

t̃r3c
qc

) +
∂

∂(z̃r2c )

(
q̃2q2c
Ãr2c

)
= −Ãr2c

ρ

∂
(

pρq2c
r2c

)
∂ (z̃rc)

− 2πνq̃qcr̃rc

δ̃rcÃr2c
(2.13)

The above equations can be further simplified by introducing Reynold’s number Re = ρqc
µrc

.

∂A

∂t
+

∂q

∂z
= 0 (2.14)
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∂q

∂t
+

∂

∂z

(
q2

A

)
= −A

ρ

∂p

∂z
− 2πqr

δARe
(2.15)

As discussed in Chapter 2.1, the blood pressure idepends on the deformed cross-sectional

area A and the undeformed radius r0. The term ∂p
∂z

can be expanded into two terms ∂p
∂A

∂A
∂z

and A
ρ

∂p
∂r0

∂r0
∂z

respectively, as illustrated in Eq. (2.16).

∂q

∂t
+

(
2q

A

)
∂q

∂z
+

(
− q2

A2
+

A

ρ

∂p

∂A

)
∂A

∂z
= −A

ρ

∂p

∂r0

∂r0
∂z

− 2πqr

δARe
(2.16)

For computational convenience, the governing equations are written in matrix form as,

∂

∂t

A

q

+
∂

∂x

 q

q2

A
+ f

√
A0A

 =

 0

− 2πqr
δARe

+
(
2
√
A
(√

πf +
√
A0

df
dr0

)
− A df

dr0

)
dr0
dz


(2.17)

where f is 4
3
Eh
r0

.

2.4 Numerical Method

The second-order accuracy finite difference method in spatial and time, two-step Lax-Wendroff

scheme, is used to solve the governing equations for all interior points [35]. For computational

convenience, the governing equation (Eq. (2.17)) can be rewritten as follows,

∂U

∂t
+

∂F

∂z
= S (2.18)

where the dependent variable U =

A

q

 , net flux vector F =

 q

q2

A
+ f

√
A0A

 and the

outflow vector S =

 0

−2πqr
δARe

+ (2
√
A(

√
πf +

√
A0

df
dr0

)− A df
dr0

)dr0
dz

.

The dependent variable U , net flux vector F , and outflow vector S can be discretized as

Un
m = U(m∆z, n∆t), F n

m = F (m∆z, n∆t), and Sn
m = S(m∆z, n∆t) in time and space.
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The first step of the Lax-Wendroff scheme computes the value of Un
m at half grid m ± 1/2

and half-time step n± 1/2.

U
n+ 1

2

m+ 1
2

=
1

2

(
Un

m+1 +Un
m

)
+

∆t

2∆z

(
−Fn

m+1 + Fn
m

)
+

∆t

4

(
Sn
m+1 + Sn

m

)
(2.19)

U
n+ 1

2

m− 1
2

=
1

2

(
Un

m +Un
m−1

)
+

∆t

2∆z

(
−Fn

m + Fn
m−1

)
+

∆t

4

(
Sn
m + Sn

m−1

)
(2.20)

The intermediate value U
n+1/2
m±1/2 acquired from the first step is used to compute the value of

Un+1
m at the next time step.

Un+1
m = Un

m − ∆t

∆z

(
F

n+ 1
2

m+ 1
2

− F
n+ 1

2

m− 1
2

)
+

∆t

4

(
S
n+ 1

2

m+ 1
2

+ S
n+ 1

2

m− 1
2

)
(2.21)

The CFL condition ensures the stability of the scheme,

∆t

∆z
≤

∣∣∣∣∣ qA ±

√
A

ρ

∂p

∂A

∣∣∣∣∣
−1

(2.22)

where q
A

is the mean velocity of the blood flow across the cross-sectional area. The wave

speed can be solved along the characteristic line and represented as
√

A
ρ

∂p
∂A

.

17



Chapter Three

Outlet Boundary Conditions

3.1 The Review of Outlet Boundary Conditions

The boundary conditions play a crucial role in our model, as they can provide artificial wave

reflections originating from downstream vessel junctions. By including realistic boundary

conditions, the pressure wave resulting from simulations can closely resemble the physiolog-

ical pressure wave.

Depending on the specific problem being addressed and the desired level of accuracy, re-

searchers choose either the 0-D or 1-D outlet boundary model to simulate blood flow. The

0-D outlet boundary model utilizes a set of ordinary differential equations (ODEs) to repre-

sent the vasculature. Each compartment within the 0-D model is associated with two ODEs,

which capture mass and momentum conservation. This simplified representation of the sys-

temic arteries in the 0-D model allows for the inclusion of major components, such as the

heart and heart valves [20]. This feature makes the 0-D systemic arteries model useful when

constructing the global distribution of pressure and blood flow along the systemic arteries.

In contrast, the 1-D outlet boundary model employs Navier-Stokes equations to describe

blood pressure and flow [20]. The 1-D outlet boundary model allows people to acquire wave

reflection from downstream vessel junctions, which has been discussed in Chapter 1.

In this chapter, we will discuss both 0-D and 1-D outlet boundary conditions. Addition-
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ally, we will provide an illustrative example featuring the connection of 0-D and 1-D outlet

boundary conditions to the upstream large artery.

3.1.1 0-D Outlet Boundary Model

The foundation of the 0-D model lies in the observation that blood flow exhibits similarities

to electrical conduction within a circuit [3]. Consequently, conventional methods used in

electrical circuit analysis can be employed to investigate cardiovascular dynamics. In this

analogy, resistance (R), inductance (L), and capacitance (C) within the circuit correspond

to the effects of friction, inertia, and vessel elasticity on blood flow, respectively. Poiseuille’s

law governs the steady blood flow, while the linearized Navier-Stokes equations govern the

unsteady blood flow [20]. Over the course of a century, numerous 0-D models have been

developed.

The simplest and the first mono-compartment description is the famous two-element Wind-

kessel model (RC), which was first proposed by Stephen Hales in 1733, and later formulated

mathematically by Otto Frank in 1899 [36]. The RC model consists of two elements: one

is the capacitor C which represents the storage properties of large arteries and the other is

a resistor R which describes the dissipative properties of arterioles and capillaries. The RC

model effectively captures the fundamental characteristics of the systemic artery network,

making it widely utilized in clinical practice as a simple terminal boundary condition in more

complex distributed parameter representations [24]. Numerous networks have been devel-

oped based on the two-element (RC) and three-element (RCR) Windkessel models [37, 38,

39, 40, 41], incorporating additional components such as the ventricle and heart to accom-

modate specific requirements. Nowadays, as the efficiency of the computer is surging, the

RC/RCR model is used to construct the whole circulatory system and works as a terminal

for important local branch models [42, 43, 44, 45, 46, 47, 48, 49].
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Figure 3.1 Three-element Windkessel model (RCR Model)

3.1.2 1-D Outlet Boundary Model

Pressure/velocity wave propagation of systemic arteries is one of the most important prob-

lems in the study of cardiovascular/cerebrovascular physiology [20]. It is believed that the

blood pressure/velocity waveform encloses valuable information, such as cardiac function,

the elasticity of vessel walls and pathological conditions of the heart/brain [32]. Thus, wave

propagation studies have received extensive attention in cardiovascular research in recent

years [22]. Compared with the higher-dimensional models (2-D/3-D models), the 1-D model

not only captures the wave propagation characteristics of blood flow but also demands fewer

computational resources [20]. Thus, the 1-D model has greater advantages when describing

the pressure and flow variations throughout the entire systemic arteries.

In the late 20th century, researchers employed simple combinations of sine/cosine functions

to define pressure/flow waveforms for outlet boundary conditions, aiming to mimic the phys-

iological conditions of downstream vessels [36, 50, 51]. More recently, efforts have been made

to develop more realistic outlet boundary conditions, including variable resistance [52], or

connecting RCR models to the 1-D boundary model as terminal descriptions to better rep-

resent reflected waves. Some researchers focused on non-reflecting boundary conditions and
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compatibility conditions [53], while others explored non-reflection boundary conditions with

reflecting coefficients [54, 55]. Olufsen [24] proposed a binary tree outlet boundary condition

accurately describing the vessel branching of the downstream vessels .

3.2 The 0-D Three–Element Windkessel Outlet Bound-

ary Conditions

The three-element Windkessel (RCR) outlet boundary condition is one of the 0-D boundary

models we have introduced in Chapter 3.1. The computational efficiency and ease of use

make it particularly valuable when connecting the outlet boundary condition to the upstream

large cerebral artery. In this chapter, we will discuss the three-element Windkessel outlet

boundary condition and provide a detailed procedure on how to connect the outlet boundary

condition to the upstream large artery.

The three-element Windkessel outlet boundary condition is based on wave transmission the-

ory [56]. The model comprises two resistances R1, R2 along with compliance CT (Figure 3.1).

The two resistances R1, R2 represent the blood flow resistance encountered as blood flows

through the systemic arterial system. The compliance CT simulates the storage and re-

lease of blood flow by major arteries during the cardiac cycle [17]. The impedance can be

represented in the frequency domain [20],

Z̄ (0, ω) =
R1 +R2 + iωCTR1R2

1 + iωCTR2

(3.1)

The governing equation of the upstream large artery is solved in the time domain. In order to

connect with the upstream large artery, the governing equations of three-element Windkessel

boundary conditions are transformed from the frequency domain to the time domain. To

connect the exterior points with the three-element Windkessel outlet boundary conditions,

the impedance is convolved with the pressure and flow at the end of the vessel into the time

domain [56].
21



∂p

∂t
= R1

∂q

∂t
− p

R2CT

+
q (R1 +R2)

R2CT

(3.2)

The pressure and blood flow pnm and qnm can be further discretized as follows,

pn+1
m − pnm

∆t
= R1

(qn+1
m − qnm)

∆t
− pnm

R2CT

+
qnm (R1 +R2)

R2CT

(3.3)

An+1
m = An

m − ∆t

∆x

(
qn+1
m − qnm

)
(3.4)

The cross-sectional area and the blood flow An+1
m and qn+1

m ,at the boundary can be achieved

by using an iterative method. The iteration starts from an initial guess for pressure at

the boundary (pguess), and the converged result is obtained by using the first-order finite

difference method. The convergence criterion is given by

∣∣pguess − pn+1
m

∣∣ ≤ 1e− 7 (3.5)

3.3 The 1-D Binary Tree Outlet Boundary Conditions

As discussed in Chapter 1, wave reflection originating from downstream vessel junctions

adds an enhancement to the pressure waveform in the upstream large artery. To accurately

capture the wave reflection and transmission from downstream arterioles, a realistic binary

tree outlet boundary condition is constructed based on the 1-D outlet boundary model by

Olufsen [24].

The outlet boundary condition is developed on the basis of the long-wave propagation as-

sumption and incorporates the viscoelastic and distensibility of the vessel walls. The sim-

plified momentum and continuity equations govern the downstream small vessels, while the

impedance is solved in the frequency domain. The binary tree outlet boundary condition,

depicted in Figure 3.2, is connected to the upstream large artery to acquire the pressure or

blood flow waveform.

Several assumptions are made in modeling the downstream systemic arterial network [33].
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It is assumed that the binary-tree structure exhibits symmetric on both the left and right

sides, and the changes in the radius of the parent vessel and daughter vessels follow a linear

relationship [57].

rd1 = α1 rp (3.6a)

rd2 = β1 rp (3.6b)

where rp is the radius of the parent vessel and rd is the radius of the daughter vessels; α1 and

β1 are scaling factors. The scaling factor is determined based on the principle of minimum

work for a range of flow, from turbulence to laminar and area-ratio relationship between

daughter and parent vessels [58, 59, 59]. The mean value from experimental data of cerebral

vascular provides us with the scaling factors α1 and β1, which are 0.91 and 0.58, respectively.

The goal is to develop a tree-like structure that represents the downstream systemic arterial

network and can be applied at the terminal of large arteries. However, it is not practical to

include all the small arteries and the arterioles into the model. The decision to terminate the

structure is determined by the minimum radii at the end of the outlet boundary conditions.
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Figure 3.2 Binary tree outlet boundary conditions illustration

3.3.1 Governing Equations and Solution Process

The 2-D Navier-Stokes equation in cylindrical coordinates governs the blood flow. We assume

that the fluid is incompressible and Newtonian. The linear constitutive relationship is used

to model the elasticity of the vessel wall. In order to account for the viscoelastic behavior of

the vessel wall, the tethering force is included as part of the external forces. At the vessel

wall, a balance is maintained between fluid motion and solid motion, with the fluid velocity

assumed to be at rest. The governing equations are listed below [60, 61].
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Fluid Motion:

∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z
= −1

ρ

∂p

∂r
+

µ

ρ

[
∂2ur

∂ r2
+

1

r

∂ur

∂r
+

∂2ur

∂z2
− ur

r2

]
(3.7a)

∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z
= −1

ρ

∂p

∂z
+

µ

ρ

[
1

r

∂

∂r

(
r
∂uz

∂r

)
+

∂2uz

∂z2

]
(3.7b)

1

r

∂

∂r
(ru) +

∂uz

∂z
= 0 (3.7c)

Vessel Wall Motion:

M0
∂2ξ

∂t2
+ Cl

∂ξ

∂t
+ klξ = −µ

[
∂uz

∂r
+

∂ur

∂z

]
r=r0

+
∂η

∂z

Tt0 − Tθ0

r0
+

∂Tt

∂z
(3.8a)

M0
∂2η

∂t2
+ Cl

∂η

∂t
+ klη = −µ

[
p− 2µ

∂ur

∂r

]
r=r0

+
η

r20
Tθ0 −

Tθ − Tθ−

T0

+ Tt0
∂2η

∂z2
(3.8b)

where M , C, and K represent the spring coefficient, frictional coefficient of dashpot and

additional mass of tethering force of the viscoelastic behavior of the vessel wall, respectively.

Interaction Conditions:

ur (r, z, t)r=r0
=

∂η

∂t
(3.9a)

uz (r, z, t)r=r0
=

∂ξ

∂t
(3.9b)

The classical solution was proposed by Womersley [62], and later extended by Atabek [60,

61]. The solutions of velocity uz, pressure p can be assumed to be harmonic functions,

considering that the blood flow exhibits periodic behavior over time with a period T ,

uz (r, z, t) = uz (r) e
iω(t− z

c ) (3.10)

p (r, z, t) = pr (r) e
iω(t− z

c ) (3.11)

where ω = 2πk
T

is the angular frequency and c is the wave speed.

The set of governing equations is linearized, yielding an inhomogeneous Bessel function.

By solving this inhomogeneous Bessel function, the velocity profile uz can be acquired.

Additionally, the long-wave approximation is applied to further simplify the velocity and

pressure profile [24, 60, 61], shown as follows,
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uz = pc

−r0β
2
0

µw2
0

+ A
J0

(
w0r
r0

)
J0 (w0)

 (3.12a)

pr = pcJ0

(
β0r

r0

)
(3.12b)

where J0 and J1 denote the 0th and 1st order Bessel functions; A is determined by bound-

ary conditions; r0 is the inner radius of undeformed vessel; w0 and β0 are dimensionless

parameters and are given by the following relations,

w0 =
i3r20ω

ν
(3.13a)

β0 =
ir0ω

ν
(3.13b)

The 1-D volumetric flow can be determined by integrating the longitudinal velocity, which

will be utilized to simplify the continuity and momentum equations,

Q(z, t) = 2π

∫ r0

0

uz(z, r, t)rdr (3.14)

As the inlet flow for upstream large artery is periodic blood flow, both the blood pressure

and flow for upstream large artery can be expressed by complex periodic Fourier series,

p (z, t) =
∞∑

k=−∞

P (z, ω) e−iωt (3.15)

q (z, t) =
∞∑

k=−∞

Q (z, ω) e−iωt (3.16)

P (z, ω) =
1

T

∫ T
2

−T
2

p (z, t) e−iωt dt (3.17)

Q (z, ω) =
1

T

∫ T
2

−T
2

q (z, t) e−iωt dt (3.18)

The contunity and momentum equation can be re-written by using the longtitudinal velocity

solved from governing equations (Eqs. 3.7-3.9)[24, 60, 61].

iωCP +
∂Q

∂z
= 0 (3.19a)

iωQ+
A0

ρ

∂P

∂z
(1− Fk) = 0 (3.19b)
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where compliance C = dA
dP

|P=P0 = 3A0r0
2Eh

, which is obtained from constitutive relationship of

vessel wall in Eq. (2.10); and Fk =
2J1(w0)
w0J0(w0)

.

The aforementioned equations can be reformulated into the following set of equations, ex-

pressed in terms of P and Q.

Assuming the solution of pressure P and blood flow Q has the following form,

Q (z, ω) = a cos
ωz

c
+ b sin

ωz

c
(3.20)

P (z, ω) = i

√
ρ

CA0(1− Fk)

(
−a cos

ωz

c
+ b sin

ωz

c

)
(3.21)

where a and b are arbitrary constants and determined by boundary conditions.

For any Fourier mode, the frequency-dependent impedance Z̄(x, ω) can be related to pressure

and blood flow by

P (z, ω) = Z̄ (z, ω)Q (z, ω) (3.22)

Through the inverse Fourier transform, the impedance in frequency domain Z̄(z, ω) can be

transformed into time-domain z̃(z, t) which can be used to compute the transient response

of the pressure

p (z, t) =

∫ t

t−T

q (z, τ) z̃ (z, t− τ) dτ (3.23)

The periodic pressure waveform obtained through Eq. (3.23) will be applied at the terminal

of large arteries. The root impedance Z̄(0, ω) in frequency domain can be computed by and

assuming the impedance Z̄(L, ω) is known.

Z̄ (0, ω) =

i√
CAK/ρ

sin ωL
c
+ Z̄ (L, ω) cos ωL

c

cos ωL
c
+ i
√

CAK
ρ

Z̄ (L, ω) sin ωL
c

(3.24)

where the impedance Z̄(L, ω) can be found by

Z̄ (0, 0) = Z̄ (L, 0) +
8µlrr
πr3

(3.25)

at zero frequency, where µ is the viscosity, lrr is the length-to-radius ratio.
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The junction condition for impedance in the frequency domain is defined as,

1

Z̄p

=
1

Z̄d1

+
1

Z̄d2

(3.26)

where Z̄p, Z̄d1,2 are the impedances of the parent vessel and the daughter vessel, respectively.

3.3.2 Connecting to Upstream Large Arteries

The impedance in frequency domain Z̄(z, ω) is first transformed into the time domain by

using the inverse Fourier Transformation. The transfer function z̃(z, t) in the time domain

is related to pressure p(x, t) and flow q(z, t) , as follows,

q (xM , t) =

∫ T

0

p (xM , τ) z̃ (xM , t− τ) dτ (3.27)

We discussed the cerebral blood flow modeling for the upstream large arteries in Chapter 2.

The axial component of 2-D Navier-Stokes equation in cylindrical coordinates governs the

blood flow of an upstream large artery, and the interior points were solved by a two-step

Lax-Wendroff finite difference numerical scheme. In order to connect with the upstream large

artery, the convolution form of the structured tree outlet boundary conditions can be utilized

to solve the exterior boundary points by discretizing Eq. (3.28), which can be written as

qnM = q (M∆z, n∆t) =
N−1∑
k=0

pn−k
M z̃k∆t (3.28)

where qnM represents the discretized points at grid M and time step n for structured tree

outlet boundary conditions.

For computing convenience, Eq. (3.29) can be further rewritten by separating the first term

of impedance,

q (M∆z, n∆t) = pnM z̃0∆t+
N−1∑
k=1

pn−k
M z̃k∆t (n− k ≥ 0) (3.29)

The structured tree outlet boundary conditions introduce two exterior points, which are

An+1
M and qn+1

M . Two new ghost points A
n+1/2
M+1/2 and q

n+1/2
M+1/2 are introduced and Eq. (3.30)
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can be solved numerically,when the binary tree outlet boundary condition is connected to

the upstream large arteries. An iterative method is applied to solve for four unknowns An+1
M ,

qn+1
M , An+1/2

M+1/2 and q
n+1/2
M+1/2.

3.4 A Comparative Study of 0-D and 1-D Outlet Bound-

ary Conditions

To investigate the impact of two types of outlet boundary conditions on an upstream large

artery, we connect two types of outlet boundary conditions to tapered straight vessels as il-

lustrated in Figure 3.3. The top and bottom radii of the tapered straight vessels are 0.4 and

0.25 cm respectively and the length of the vessel is 100 cm. At the inlet, a physiological flow

waveform with a flat velocity profile is imposed and scaled to provide a cardiac output (CO)

of 3.228 L/min. In each study case, the three-element Windkessel outlet boundary condition

or the binary tree outlet boundary condition is specified at the end of the vessels. The root

impedance is set to be zero and the length-to-radius parameter is 50 for the binary tree outlet

boundary condition, while the impedance parameters of three-element Windkessel boundary

condition are R1 = 4860 gs−1cm−4,R2 = 540 gs−1cm−4 and Ct = 5.3384e− 6 cm4s2g−1.

The simulation starts at rest and the mean pressure reaches an oscillating steady state con-

dition after carrying out two cycles. The academic package MATLAB R2019b is used to

run all simulations. The second-order accuracy finite difference method is used for time

integration with a time step of 5e−5 s and a spatial step size of 0.5 cm.

It can be clearly observed from Figure 3.4 that the impedance of the 1-D outlet boundary

condition exhibits more oscillations (wave reflections) originating from the downstream vas-

cular networks. Additionally, it is demonstrated that the impedance curve of the 1-D outlet

boundary condition aligns more closely with physiological measured data [23]. In contrast,

the fitted impedance curve of the 0-D outlet boundary condition appears much smoother.
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We are also interested in exploring to what extent these two types of boundary conditions

contribute to the pressure waveform of the upstream large artery.

Figures 3.5 and 3.6 present the pressure and blood flow waveform from upstream large artery

when connected to two types of outlet boundary conditions. In Figure 3.5, the pressure and

blood flow waveform is measured at z = 40 cm, while in Figure 3.6, the pressure and blood

flow waveform is measured at z = 60 cm. It can be observed that the pressure profile gains

noticeable oscillation from downstream vascular arterioles modeled by both types of outlet

boundary conditions. However, Figures 3.5 and 3.6 reveal that the 0-D boundary condition

and the 1-D boundary condition contribute little differences in terms of both amplitude and

phase changes in the pressure and blood flow profile of the upstream large artery.

As discussed in Chapter 3.3.1, we employed the long-wave approximation to simplify the

governing equations and obtain solutions. It is important to note that, for the long-wave

approximation to be valid, the length of the tube should be sufficiently long compared to its

radius. However, the length of the cerebral large artery is short, below 10 cm, which does not

meet the requirements for the long-wave approximation when using the 1-D outlet boundary

condition. Considering the flexibility and the ability to provide similar wave reflection effects

from the downstream vascular network, we decide to employ the 0-D outlet boundary con-

ditions for our patient-specific case. Nonetheless, it is worth mentioning that the 1-D outlet

boundary condition is widely used for cardiovascular disease [24] and pulmonary disease [63].
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Figure 3.3 Illustration of two types of outlet boundary conditions connected to an up-

stream large artery
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Figure 3.4 Blue line: Impedance solved from 1-D outlet boundary conditions; Red line:

Fitted impedance for comparison purposes
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Figure 3.5 Comparison of two types of boundary conditions at x = 40 cm: (a) pressure

profile; (b) blood flow profile
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Figure 3.6 Comparison of two types of boundary conditions at x = 60 cm: (a) pressure

profile; (b) blood flow profile
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3.5 Sensitivity Analysis of 0-D Outlet Boundary Param-

eters

In this work, we aim to investigate the impact of resistance and compliance parameters on

the pressure and blood flow waveforms of upstream large artery. We consider two resistances,

R1 and R2, along with one compliance parameter, Ct. The original compliance is set to at

the scale of 1e−6. Figure 3.7 illustrates the pressure and blood flow profiles of upstream

large artery when we increase the scale of compliance to 1e−5 and decrease it to 1e−7.

These variations in compliance scale allow us to assess its influence on the upstream large

artery pressure and blood flow profile. Regarding to resistances, R1 take places a significant

portion of the total resistance in the configuration. Figure 3.8 demonstrates the impact of

the resistance on the upstream large artery pressure and blood waveforms, when we increase

and decrease R1 by 20%. These variations allow us to gain insights into the influence of

resistance on the pressure and blood flow profiles of upstream large artery.

Figure 3.7 shows that the amplitude of the three cases does not vary significantly, but

noticeable phase change can be observed especially from blood flow profile. In Figure 3.8

, it can be seen that both the pressure and blood flow profile undergo significant changes

in amplitude. Additionally, increasing the resistance of R1 introduces more oscillations in

diastole, as observed in the pressure waveform profile. The sensitivity analysis aligns with

the role of resistance and compliance in our 0-D outlet boundary condition. The compliance

has an impact on the phase change of impedance, as it serves as a crucial factor in modeling

the elasticity of the vessel wall. The diverse elasticity of the vessel wall give rise to the phase

variations in the blood flow profile of upstream large artery. On the other hand, the total

resistance affects the amplitude of the waveform as it reflects the resistance encountered

by the blood flow. Thus, changes in resistance can lead to the decrease or increase in the

amplitude of pressure waveform of the upstream large artery.
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Figure 3.7 Sensitivity analysis on compliance: (a) pressure profile at z = 60 cm; (b)

blood flow profile at z = 60 cm
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Figure 3.8 Sensitivity analysis on resistance R1: (a) pressure profile at z = 60 cm; (b)

blood flow profile at z = 60 cm
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3.6 A Comparative Study of Numerical Results and An-

alytical Solutions

In this section, our aim is to validate the numerical outcomes presented in Chapter 3.4

through comparison with established analytical solutions. For simplicity purposes, we utilize

the numerical results obtained from the single straight vessel attached to the 0-D outlet

boundary condition, as discussed in Chapter 3.4. Given the complexity of deriving an exact

solution for pulsatile flow within an elastic pipe, we choose to validate our numerical results

by contrasting our findings with the exact solution proposed by Womersley in 1954 for

pulsatile flow within a rigid pipe [64].

We start with the axial component of the 2-D Navier-Stokes equations. To further simplify

the governing equations, the nonlinear term in Eq. (2.1) is neglected. The simplification

results in the governing equations for describing pulsatile flow within a rigid pipe,

∂uz

∂t
=

−1

ρ

∂p

∂z
+

µ

ρ

(
1

r

∂uz

∂r
+

∂2uz

∂r2

)
(3.30)

Given the periodic nature of both pressure and blood flow, it becomes feasible to express

the pressure gradient as follows,

∂p

∂z
= Aeiωt (3.31)

We assume the solution of velocity is periodic in time and it has the similar form with the

pressure gradient,

uz (r, t) = ueiωt (3.32)

The governing equation becomes Eq. (3.26) when we plug Eq. (3.25) into the governing

equation, Eq. (3.23),
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d2u

dr2
+

1

r

du

dr
− i3ω

ν
u =

−A

µ
(3.33)

Womersley first proposed the solution of axial velocity uz of Eq. (3.26) in 1954 and it has

the form,

uz =
A

ρω

(
1−

J0
(
αyi3/2

)
J0 (αi3/2)

)
eiωt (3.34)

whereα is an dimensionless parameter, which is called Womersley number [64],

α = R

√
ω

ν
(3.35)

J0 is a Bessel function of order zero; y = r
R

is a dimensionless parameter and R is the radius

of the pipe.

We adopt an identical initial configuration to the straight vessel connected to a 0-D outlet

boundary condition, as elaborated in Chapter 3.4. The radius of the pipe is 0.4 cm and the

length of the pipe is 4 cm. The outlet is free with weakly imposed pressure equal to zero.

To facilitate a more precise comparison between numerical and analytical results, the length

of the pipe for Wormersley flow is relatively short. This adjustment aims to mitigate the

impact of outlet boundary conditions on the upstream straight vessel flow waveform.

The flow comparison result is presented in Figure 3.9. It can be seen that the amplitude

difference between the two outcomes is relatively minor, accompanied by observable phase

variation. The minor amplitude difference may result from the outlet boundary reflection

effects. The phase shift arises due to the different assumptions about the pipe wall: the

analytical solution presumes a rigid pipe, whereas the numerical solution correspond to an

elastic tube. As emphasized earlier, it is very hard to find an analytical solution for pulsatile

flow within an elastic tube. Thus, we employ the classical Womersley analytical solution

to compare with our numerical results. The comparison shows that phase shift is observed

between the numerical result and the analytical solution, which is reasonable.
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Figure 3.9 A comparative study between the numerical result and the analytical solution

of flow waveform
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Chapter Four

Patient-Specific Modeling of Circle of Wills

4.1 The Review of Patient-Specific Modeling

Patient-specific modeling is the development of computational models of human pathophys-

iology that are individualized by using patient-specific data [65]. The method has the po-

tential to improve diagnosis (noninvasive measurement of blood pressure and velocity at the

same site) and optimize clinical treatment by predicting surgical outcomes. The process

typically contains image processing and segmentation from the medical image data and per-

forms CFD simulation based on the extracted parameters from a series of medical image

data.

The patient-specific modeling was first applied in the 1960s to compute blood pressure for

an idealized and generic model. As imaging techniques are being developed, especially the

emergence of MRI (magnetic resonance image) and CTA (computed tomography angiogra-

phy), it is now possible to reconstruct patient-specific anatomic and physiological models.

In the 1990s, many groups started to use image-based modeling technologies to simulate the

blood flow [66, 67, 68]. Since then, the patient-specific model has been used to investigate

the occlusion in the coronary arteries [69], the aorta [70], and the rupture of aneurysms [71].

The workflow is illustrated in Figure 4.1.

In this work, we utilize patient-specific data extracted from CT scans to construct our numer-

ical model. The individualized data provide us with reliable results and help us investigate
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human pathophysiology and optimize clinical treatment.

Figure 4.1 Schematics approach for patient-specific CFD analysis](Graph from [72])

4.2 Extract Parameters of Circle of Wills

We generate a network of the Circle of Wills (CoWs) from a series of contract CT scan and CT

scan, which is available online (see https://github.com/lassoan/SlicerSegmentationRecipes)

[73]. The series of CT scans are imported to the open-source segmentation software 3D Slicer

(see http://www.slicer.org) for reconstruction, segmentation and extracting centerlines [73].
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The series of contrast CT scans and baseline CT scans are imported into 3D Slicer and

reconstructed with bone and tissues. The Vesselness Filtering Toolbox is used to indicate

and enhance the vessels from the bones and tissues. The Segmentaion Toolbox allows us to

segment the cerebral vascular network from the bones and tissues. As this work only focuses

on part of the CoWs, we identified the large arteries: internal carotid artery (ICA), middle

cerebral artery (MCA), anterior cerebral artery (ACA) and posterior communicating artery

(Pcomm). Next, we manually segmented all other segmental vessels and small arterioles.

The 1-D network model is reduced from the reconstructed 3-D network by extracting cen-

terlines using Vascular Modeling ToolKit (VMTK) [74]. In this 1-D network, ICA is a non-

terminal vessel, which is connected to the inlet of terminal vessels MCA, ACA and PComm.

The nonterminal vessel is defined as the parent vessel while the terminal vessel is defined as

the daughter vessel. The mean radius and length of each vessel are computed from extracted

centerlines automatically, which is shown in Table 4.1. Figure 4.2 presents the original series

contrast CT scan, the reconstructed 3D segmented network and the extracted centerlines.
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Figure 4.2 Schematic of model development, from series of contrast CT images to seg-

mentation and centerlines

Table 4.1 Arterial length and radius

Arterial segment name Arterial length L (mm) Arterial radius r0 (mm)

Internal Carotid Artery 48.85 2.21

Middle Cerebral Artery 41.93 1.58

Anterior Cerebral Artery (A1) 19.65 1.33

Anterior Cerebral Artery (A2) 12.35 1.31

Posterior Communication Artery 21.77 1.11
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Chapter Five

Wave Reflection and Variations

5.1 The Review of Bifurcations

As discussed in Chapter 1.2.4, wave reflection can arise at any point of changes along the

arterial system. The cerebral artery is not always a straight vessel; instead, there are many

slight bends and unevenness along the cerebral vascular system that can cause wave reflection.

However, the most significant wave reflection occurs at the junctions of the vessels. The

incident wave traveling from the parent vessel is partially reflected at the junction, and the

other part travels down to the daughter vessels and becomes transmitted waves. In order

to better simulate the wave reflection phenomenon of the downstream vascular network and

acquire more realistic pulsatile pressure and blood flow waveform profiles of the upstream

large artery, we will incorporate the effect of bifurcation in our study.

Bifurcation occurs at the point where the outflow of the parent vessel is balanced with the

inflow of two or three daughter vessels. It is assumed that there is no leakage at the point

of bifurcation [56]. What’s more, it is also assumed that the pressure differential across

a location where a branch diverts from the main stem is small and can be neglected [75].

Although there might be a mismatch in the radii of the parent vessel and the daughter vessel,

it will not cause significant energy loss when the wave is transmitted.

In order to investigate the effect of the communicating artery PComm on the collateral

circulation of CoWs, we have constructed two bifurcation models. One model does not
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include the communicating artery PComm, which will be discussed in Chapter 5.2. The

other model includes the communicating artery PComm, which will be introduced in Chapter

5.3. Therefore, in Chapter 5.2, a model containing one upstream parent vessel ICA and two

daughter vessels (MCA and ACA) is constructred, and in Chapter 5.3, a model consisting

of one upstream parent vessel ICA and three daughter vessels (MCA, ACA and PComm) is

constructed.

5.2 Bifurcation with Two-Daughter-Vessel Model

In the two-daughter bifurcation model, the upstream parent vessel ICA is connected to

two downstream daughter vessels MCA and ACA. To model the downstream vascular wave

reflection behavior stably and accurately, we applied the three-element Windkessel outlet

boundary conditions at the end of each daughter vessel. The inlet blood flow profile is

calibrated at the ICA using color-coded duplex ultrasound in young healthy volunteers, as

shown in Figure 5.1 [76]. Figure 5.1 illustrates the network including bifurcation. Two

additional governing equations are applied to ensure conservation law at the bifurcation [56].

(
qP
)
M

=
(
qd1
)
0
+
(
qd2
)
0

(5.1)

(
pP
)
M

=
(
pd1
)
0
=
(
pd2
)
0

(5.2)

where qPM is the outflow from the parent vessel ICA; qd10 is the inflow from the daughter vessel

MCA; qd20 is the inflow from the daughter vessel ACA.

To connect two daughter vessels and solve for the flow q and pressure p at the junction, we

introduce ghost points at the end of the upstream parent vessel (Ap
M)n+1/2, (qpM)n+1/2, and at

the start of downstream daughter vessels (Ad1
M)n+1/2, (qd1M )n+1/2, (Ad2

M)n+1/2, (qd2M )n+1/2. The

governing equations, Eq. 2.17 and Eq.5.1 – 5.2, are solved by the two-step Lax-Wendroff

method with 18 equations and 18 unknowns. The modeling and solution method of a single

vessel has been introduced in the previous section. At each time step, (i) the interior points
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of both the parent vessel and daughter vessels are solved separately; (ii) the results from all

vessels are constrained by the conservation law, and the bifurcation point is solved iteratively;

(iii) the inlet and outlet boundary conditions are attached at the start of the parent vessel

and the end of the daughter vessel, respectively.

Figure 5.1 Illustration of two-daughter-vessel bifurcation model
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5.3 Bifurcation with Three-Daughter-Vessel Model

In the three-daughter bifurcation model, the upstream parent vessel ICA is connected to

three downstream daughter vessels MCA, ACA and PComm. The three-element Windkessel

outlet boundary condition is attached to the end of each daughter vessel, while the inlet blood

flow profile is prescribed at the start of the parent vessel. Figure 5.2 visually represents

the network with the bifurcation included. In order to ensure conservation laws at the

bifurcation, two additional governing equations are applied [56].

(
qP
)
M

=
(
qd1
)
0
+
(
qd2
)
0
+
(
qd3
)
0

(5.3)

(
pP
)
M

=
(
pd1
)
0
=
(
pd2
)
0
=
(
pd3
)
0

(5.4)

where qPM is the outflow from parent vessel ICA; qd10 is the inflow from the daughter vessel

MCA; qd20 and qd30 are the inflow from daughter vessels ACA and PComm.

To connect three daughter vessels and solve for the flow q and pressure p at the junction, we

introduce ghost points at the end of the upstream parent vessel (Ap
M)n+1/2 and (qpM)n+1/2,

and at the start of downstream daughter vessels (Ad1
M)n+1/2, (qd1M )n+1/2, (Ad2

M)n+1/2, (qd2M )n+1/2,

(Ad3
M)n+1/2, (qd3M )n+1/2. The governing equations, Eq. (2.17),Eq. (5.3) and (5.4), are solved

by the two-step Lax-Wendroff method with 24 equations and 24 unknowns. The modeling

and solution method process is similar to the previous case discussed in Chapter 5.2. A

detailed derivation process is provided in Appendix A.1.
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Figure 5.2 Illustration of three-daughter-vessel bifurcation model
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5.4 Wave Intensity Analysis

Wave intensity analysis (WIA) is one method used for the analysis of 1-D pulse transmission.

WIA was introduced for the decomposition of forward and backward traveling waves [77].It

is an alternative time domain method based on the method of characteristics. WIA allows

people to capture the temporal events at any site along the circulatory system, without

assuming the linearity or periodicity. Wave Intensity (WI) is computed as the product

of the blood pressure change and the velocity change during short time intervals [78]. A

positive value of WI indicates that forward-traveling waves predominate while a negative

value indicates that backward-traveling waves predominate. Since WI is in units of power

per area (an index of energy per unit area carried by waves), the WIA method can determine

the wave directionality as well as the magnitude of the energy transferred by the waves [78].

WIA has been used in hemodynamic studies throughout the circulatory network including

the ascending aorta [79], common carotid artery [80], coronary arteries [81] and systemic

arterial system [82, 83]. It has demonstrated promising abilities in providing clinical insights

useful for early diagnosis in cardiovascular and cerebrovascular diseases.

WIA is based on the method of characteristic. The forward dI+ and the backward wave

intensity dI− can be represented by [84],

dI+ =
1

4ρc
(dP + ρc dU)2 (5.5)

dI− =
1

4ρc
(dP − ρc dU)2 (5.6)

where dI is defined as the WI in units of power per unit area (W/m2); c is the wave speed

and c =
√

A
ρ
∂P
∂A

; dP and dU are incremental changes in pressure and velocity acquired

through the 1-D network; and ρ is the density of the blood flow.

The forward and the backward wave intensities can be further decomposed based on the

compression and expansion waves. In normal circulation, forward compression waves (FCW)

originate from the right cardiac ventricle, increasing pressure and accelerating flow as blood
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travels toward the periphery. Forward expansion waves (FEW) originate from the proximal

arteries, decreasing the pressure and flow velocity. In contrast, backward compression waves

(BCW) travel from the periphery to the heart, increasing pressure and decelerating flow.

Backward expansion waves (BEW) travel from the periphery to the heart, decreasing pressure

and increasing flow [85]. Understanding the physics of these forward and backward waves is

necessary for extracting physiological information relevant to clinical practice.

In this work, WIA is performed using the numerical results of blood pressure, wave speed

and blood flow profiles. The forward and backward wave intensities are further separated

into FCW, FEW, BEW and BCW, which are used to investigate the downstream vascular

network behavior and elucidate the relationship between MCA stenosis and the formation

of collateral circulation.

5.5 Results

This chapter presents the results of both the two-daughter-vessel model and the three-

daughter-vessel model. The two-daughter-vessel model consists of a parent vessel (ICA)

connected to two daughter vessels (MCA and ACA). And the three-daughter-vessel model in-

cludes a parent vessel (ICA) connected to three daughter vessels (MCA, ACA and PComm).

The inlet blood flow profile is specified at the start of the parent vessel ICA, and a three-

element Windkessel outlet boundary condition is connected to the end of each daughter

vessel. Parameters for ICA, MCA, ACA and PComm of three-daughter-vessel model are

extracted from CT contrast images using 3D Slicer are listed in Table 4.1. For the two-

daughter-vessel model, we use radius of 0.134 cm for MCA and 0.17 cm for ACA. The

resistance and compliance for the three-element Windkessel outlet boundary conditions are

provided in Table 5.1 [76].

In each simulation, the network starts at rest and the mean pressure reaches an oscillat-
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ing steady- state condition after two cycles. The academic package MATLAB R2019b is

used to run all simulations. The second-order accuracy finite difference method is used for

time integration with a time step of 0.000016 s and a spatial step size of 0.1 cm for the

three-daughter-vessel model. Doubling the number of spatial elements with a time step of

of 0.000008 s reveals a maximum relative error less than 7% in the pressure waveform at the

middle of MCA for the three-daughter vessel model.

Figures 5.3, 5.4 and 5.5 display the pressure and blood flow waveforms for ICA, MCA and

ACA in the two-daughter-vessel bifurcation model. Figures 5.6 to 5.9 present the pressure

and blood flow waveform for ICA, MCA, ACA and PComm in the three-daughter-vessel

bifurcation model.
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Table 5.1 Parameter values for outlet boundary conditions

Arterial segment name Resistance R1 (g/cm s4) Resistance R2 (g/cm s4) Compliance CT (cm4s2/g)

Middle Cerebral Artery 11,600 12,300 7.87e-5

Anterior Cerebral Artery 17,000 15,750 2.92e-4

Posterior Communicating Artery 34,000 31,500 5.84e-4
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Figure 5.3 Two-daughter-vessel bifurcation model: (a) ICA pressure profile at x = 1 cm,

2 cm, 3 cm and 4 cm; (b) ICA blood flow profile at x = 1 cm, 2 cm, 3 cm and 4 cm
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Figure 5.4 Two-daughter-vessel bifurcation model: (a) MCA pressure profile at x = 1

cm, 2 cm, 3 cm and 4 cm; (b) MCA blood flow profile at x = 1 cm, 2 cm, 3 cm and 4 cm
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Figure 5.5 Two-daughter-vessel bifurcation model: (a) ACA pressure profile at x = 1

cm, 2 cm and 3 cm; (b) ACA blood flow profile at x = 1 cm, 2 cm and 3 cm
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Figure 5.6 Three-daughter-vessel bifurcation model: (a) ICA pressure profile at x = 1

cm, 2 cm, 3 cm and 4 cm; (b) ICA blood flow profile at x = 1 cm, 2 cm, 3 cm and 4 cm
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Figure 5.7 Three-daughter-vessel bifurcation model: (a) MCA pressure profile at x = 1

cm, 2 cm, 3 cm and 4 cm; (b) MCA blood flow profile at x = 1 cm, 2 cm, 3 cm and 4 cm
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Figure 5.8 Three-daughter-vessel bifurcation model: (a) ACA pressure profile at x = 1

cm, 2 cm and 3 cm ; (b) ACA blood flow profile at x = 1 cm, 2 cm and 3 cm
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Figure 5.9 Three-daughter-vessel bifurcation model: (a) PComm pressure profile at

x = 1 cm and 2 cm; (b) PComm blood flow profile at x = 1 cm and 2 cm
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Chapter Six

Stenosis Model and Reverse Flow Investigation

6.1 The Review of Stenosis

Intracranial Stenosis refers to the severe narrowing of an intracranial artery, mainly occuring

at ICA and the trunk of MCA. Patients with intracranial stenosis have a higher risk of stroke,

with MCA stenosis having a yearly risk of at least 8% per year [86, 87, 88, 89]. Compared

to extracranial carotid stenosis, MCA stenosis poses a higher risk of stroke [89, 90]. In this

chapter, we will incorporate the effect of MCA stenosis in our network.

Collateral circulation plays a crucial role in stroke and ischemia , and CoWs constitute

the primary cerebral collateral network. The formation of collateral circulation and the

phenomeno of reverse direction of blood flow in collateral circulation have confused scientists

for centuries [5]. As discussed in Chapter 1.2.2, the current hypothesis suggests that the

blood flow can flow from PComm to MCA when MCA is largely occluded via downstream

vascular network. Normal blood flow is piped from proximal large arteries to the distal small

arteries by the high-pressure difference between the ventricle and the peripheral resistance.

However, when MCA is largely occluded, blood flow is allowed to flow from distal small

arteries to large cerebral arteries through the downstream vascular network. The pressure

gradient between neighboring arteries and distal small arteries can cause changes in blood

flow direction and rate, leading to the formation of collateral channels[91]. This process can

take 1∼4 seconds and it can be observed on the TCD monitor as an increase in artery flow
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velocity. It is of great importance to model the effect of MCA stenosis and further investigate

the collateral circulation phenomenon.

Several groups have used patient-specific computational models to study MCA stenosis.

Park used ADINA commercial software to investigate severe M1 stenosis before and after

stenting [92],while Lan investigated MCA stenosis and its relationship with collateral flow in

ACA and PCA using ANSYS commercial software [93]. The energy loss stenosis model was

first proposed by Tsai and Young [94]. Several studies have been performed, demonstrating

that the 1-D stenosis simulation results exhibit little difference compared to 3-D stenosis

model predictions [21]. The 1-D energy loss stenosis model has been applied to the whole

circulatory system: including aortic [95], coronary [96], pulmonary [63] and carotid [97].

6.2 Stenosis for Two-Daughter-Vessel Bifurcation Model

Our mathematical model considers an intracranial stenosis of the proximal MCA, consistent

with the post-bifurcation lesion type Mori proposed [98]. This is the most common types

of lesions for M1 segment [99]. In this work, the post-bifurcation lesion for the MCA is

considered and the lesion is modeled using the pressure loss term [94],

∆p =
µKν

2πr3p
q +

ρKt

2A2
p

(
Ap

As

− 1

)2

q |q|+ Ls
ρKu

Ap

∂q

∂t
(6.1)

where Ap and rp are the unobstructed cross-sectional area and unobstructed radius, respec-

tively. The As is the obstructed cross-sectional area. The viscous loss, inertial force loss and

turbulent loss are represented by Kv, Ku and Kt, respectively. And Ls is the stenosis length.

In Chapter 5, we constructed two models: a two-daughter-vessel bifurcation model and a

three-daughter-vessel bifurcation model. In this chapter, we will include the stenosis into

these two models. In the two-daughter-vessel bifurcation model, the parent vessel ICA is

connected to two daughter vessels, MCA and ACA, with MCA being occluded. The stenosis
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is modeled as a pressure drop for the downstream daughter vessel MCA. The pressure loss

term introduced in Eq. (6.1) is combined with the bifurcation condition described in Eqs.

(5.1) and (5.2). Therefore, the pressure loss term accounts for the energy loss, and governing

equations become, (
qP
)
M

=
(
qd1
)
0
+
(
qd2
)
0

(6.2)(
pP
)
M

−∆pd1 =
(
pd1
)
0
=
(
pd2
)
0
−∆pd1 (6.3)

The governing equations provide 18 unknowns and 18 equations at the bifurcation between

the parent vessel and daughter vessels. The detailed solution process is presented in Ap-

pendix A.2.

6.3 Stenosis for Three-Daughter-Vessel Bifurcation Model

The primary collateral circulation, which serves as a backup system of CoWs, consists of

communicating arteries: PComm and AComm. PComm and AComm can preserve cerebral

perfusion to avoid ischemic when a large artery supporting the CoWs is blocked or narrowed

[6]. In healthy brains, there is no net flow of blood across the PComm and AComm [10].

However, when the large artery is occluded, a pressure gradient develops, making it neces-

sary to study PComm and AComm. In this study, our goal is to investigate the collateral

circulation through PComm when MCA is occluded through downstream vascular network.

As the main focus is to investigate the relationship between MCA stenosis and formation of

collateral circulation, we include the stenosis model in the three-daughter-vessel bifurcation

model.

In this chapter, we will discuss the stenosis model included in the three-daughter-vessel bi-

furcation model. In this model, the parent vessel ICA is connected to three daughter vessels:

MCA, ACA and PComm. Additionally, MCA is occluded while the other daughter vessels

are not occluded. The stenosis is represented as a pressure drop for the downstream daughter
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vessel, MCA. The pressure loss term in Eq. (6.1) is combined with the bifurcation condition,

Eqs. (5.3) and (5.4), to account for the energy loss. The governing equations are modified

as follows, (
qP
)
M

=
(
qd1
)
0
+
(
qd2
)
0
+
(
qd3
)
0

(6.4)(
pP
)
M

−∆pd1 =
(
pd1
)
0
=
(
pd2
)
0
−∆pd1 =

(
pd3
)
0
−∆pd1 (6.5)

The governing equations provide 24 unknowns and 24 equations at the bifurcation between

parent vessel and daughter vessels. The detailed solution process is presented in the appendix

A.3.

6.4 Stenosis Model Results

In this chapter, we will present the results for two stenosis models: the two-daughter-vessel bi-

furcation with stenosis model and the three-daughter-vessel bifurcation with stenosis model.

The first model contains one parent vessel ICA, which is connected to two daughter vessels

MCA and ACA. One of the daughter vessels, MCA, is occluded, while the other daughter

vessel ACA remains unoccluded. The second model inlcudes one parent vessel ICA, which is

connected to three daughter vessels MCA, ACA and PComm. One of the daughter vessels,

MCA, is occluded, while the daughter vessels ACA and PComm are not occluded. The inlet

blood flow profile is specified at the start of the parent vessel ICA, and the three-element

Windkessel outlet boundary condition is connected to the end of each daughter vessel. The

parameters of ICA, MCA, ACA and PComm are extracted from CT contrast images using

3D Slicer, as shown in Table 4.1. The resistance and compliance of three-element Wind-

kessel outlet boundary conditions for daughter vessels are listed in Table 5.1.

We will introduce stenosis proximal to the vessel junction. The turbulent loss and the iner-

tial force loss are set to be Kt = 1.52 and Kv = 1.2, according to the experiment result [75,
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94]. The viscous loss is represented as,

Kν = 16
Ls

rp

(
Ap

As

)2

(6.6)

The occluded area is 25%, 50%, 75% and 90% of MCA cross-sectional areas. The length

of the stenosis is set as 25% of the original vessel length. To compare the effect of stenosis

on both upstream and downstream vessels, we also compare the results of the stenosis cases

with the non-stenosis (control case) results. Therefore, this work studies how the severity

of stenosis influences the blood flow and pressure waveform in both parent and daughter

vessels.

In each simulation, the network starts at rest and the mean pressure reaches an oscillating

steady- state condition after two cycles. The academic package MATLAB R2019b is used

to run all simulations. The second-order accuracy finite difference method is used for time

integration with a time step of 0.000016 s and a spatial step size of 0.1 cm for the three-

daughter-vessel bifurcation with stenosis model. Doubling the number of spatial elements

with a time step of of 0.000008 s reveals a maximum relative error less than 11% in the

pressure waveform at the middle of MCA for the 75% MCA occlusion case.
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Figure 6.1 In two-daughter-vessel bifurcation with stenosis model, MCA is occluded by

0%, 25%, 50%, 75% and 90%: (a) ICA pressure profile at x = 3 cm; (b) ICA blood flow

profile at x = 3 cm
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Figure 6.2 In two-daughter-vessel bifurcation with stenosis model, MCA is occluded by

0%, 25%, 50%, 75% and 90%: (a) MCA pressure profile at x = 3 cm; (b) MCA blood

flow profile at x = 3 cm
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Figure 6.3 In two-daughter-vessel bifurcation with stenosis model, MCA is occluded by

0%, 25%, 50%, 75% and 90%: (a) ACA pressure profile at x = 2 cm; (b) ACA blood flow

profile at x = 2 cm
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Figure 6.4 ICA WI in two-daughter-vessel bifurcation with stenosis model: (a) MCA is

not occluded; (b) MCA is occluded by 50%; (c) MCA is occluded by 75%; (d) MCA is

occluded by 90%
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Figure 6.5 MCA WI in two-daughter-vessel bifurcation with stenosis model: (a) MCA

is not occluded; (b) MCA is occluded by 50%; (c) MCA is occluded by 75%; (d) MCA is

occluded by 90%
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Figure 6.6 In three-daughter-vessel bifurcation with stenosis model, MCA is occluded

by 0%, 25%, 50%, 75% and 90%: (a) ICA pressure profile at x = 3 cm; (b) ICA blood

flow profile at x = 3 cm
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Figure 6.7 In three-daughter-vessel bifurcation with stenosis model, MCA is occluded

by 0%, 25%, 50%, 75% and 90%: (a) MCA pressure profile at x = 3 cm; (b) MCA blood

flow profile at x = 3 cm
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Figure 6.8 In three-daughter-vessel bifurcation with stenosis model, MCA is occluded

by 0%, 25%, 50%, 75% and 90%: (a) ACA pressure profile at x = 2 cm; (b) ACA blood

flow profile at x = 2 cm
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Figure 6.9 In three-daughter-vessel bifurcation with stenosis model, MCA is occluded

by 0%, 25%, 50%, 75% and 90%: (a) PComm pressure profile at x = 2 cm; (b) PComm

blood flow profile at x = 2 cm
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Figure 6.10 ICA WI in three-daughter-vessel bifurcation with stenosis model: (a) MCA

is not occluded; (b) MCA is occluded by 50%; (c) MCA is occluded by 75%; (d) MCA is

occluded by 90%
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Figure 6.11 MCA WI in three-daughter-vessel bifurcation with stenosis model: (a) MCA

is not occluded; (b) MCA is occluded by 50%; (c) MCA is occluded by 75%; (d) MCA is

occluded by 90%

76



Figure 6.12 PComm WI in three-daughter-vessel bifurcation with stenosis model: (a)

MCA is not occluded; (b) MCA is occluded by 50%; (c) MCA is occluded by 75%; (d)

MCA is occluded by 90%
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Figures 6.1 to 6.3 present the pressure and blood flow for ICA, MCA and ACA of the

stenosis case with two-daughter-vessel bifurcation model. Figures 6.4 and 6.5 shows the

separated forward and backward expansion and compression wave intensity of ICA and MCA

of the same stenosis case, with varying degrees of MCA occlusion (0%,50%, 75% and 90%).

Figures 6.6 to 6.9 show the pressure and blood flow for ICA, MCA, ACA and PComm of the

stenosis case with three- daughter-vessel bifurcation model. Figures 6.10 to 6.12 present the

separated forward and backward expansion and compression wave intensities of ICA, MCA

and PComm of of the stenosis case when MCA is not occluded, is occluded by 50%, 75%

and 90%. Figure 6.13 clearly shows the relationship between mean pressure of MCA and

PComm with area reduction.

Figures 6.1(b) and 6.6(b) illustrate that the blood flow profile of the ICA exhibits a sharp

systolic peak followed by a less pronounced secondary peak at the start of diastole, which

matches the clinical measurement result [76]. Figures 6.2(a) and 6.7(a) demonstrate that

the pressure profile of the MCA has a characteristic plateau midway in the descending part

of the systolic peak, which is in accordance with the clinical measurement result [76].

It has been noticed from Figures 6.1 to 6.3 and Figures 6.6 to 6.9 that the pressure profile

increases as the severity of stenosis increases. Furthermore, it can be observed that the effect

of mild stenosis (less than 50% cross-sectional area is obstructed) on pressure waveform can

be negligible. The effect of stenosis becomes more significant on the pressure profile only

after about 75% cross-sectional area is obstructed. Additionally, the presence of stenosis not

only affects the peak value of the flow profile in the daughter vessel but also causes a phase

shift in the pressure and blood flow waveform.

Figures 6.1 and 6.6 present the ICA pressure and blood flow profiles when 0 ∼ 90% cross-

sectional area of MCA is obstructed. The pressure profile significantly increases when 75%

and 90% cross-sectional area is obstructed compared to the control case. It is shown in

Figures 6.1(b) and 6.6(b) that the severity of stenosis of MCA has little effect on the blood
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flow waveform of the ICA. Figures 6.2 and 6.7 present the MCA pressure and blood flow

profiles when 0 ∼ 90% cross-sectional area of MCA is obstructed. It is evident that both

the pressure and blood flow significantly decrease when 75% and 90% cross-sectional area

is obstructed compared to the control case. This outcome is expected, as the narrowed

MCA restricts blood flow passage through the vessel. Notably, a phase change is observed

in Figures 6.2 and 6.7, and the magnitude of this phase change increases as the severity of

stenosis increases.

Figure 6.3 and 6.8 present the ACA pressure and blood flow profiles when 0 ∼ 90% cross-

sectional area of MCA is obstructed. Both the pressure and blood flow exhibit a significant

increase when 75% and 90% of the MCA cross-sectional area is obstructed, in contrast to the

control case. The pronounced phase change appears between the control case and 90% cross-

sectional area obstructed case in ACA pressure profile shown in Figures 6.3(a) and 6.8(a).

Figure 6.9 presents the PComm pressure and blood flow profile when 0 ∼ 90% cross-sectional

area of MCA is obstructed. Both the pressure and the blood flow profile significantly increase

when 75% and 90% of the MCA cross-sectional area is obstructed, compared to the control

case. The redistribution of blood flow to the unobstructed vessels ACA and PComm through

downstream vascular netwrok, leads to the increased pressure and blood in the PComm.

Wave Intensity analysis results are presented in Figures 6.4, 6.5 and 6.10 to 6.12. In this

study, the forward and backward wave intensities are further separated into four components:

forward compression wave (FCW), forward extension wave (FEW), backward compression

wave (BCW) and backward extension wave (BEW). This separation allows for a better

understanding of the impact of ventricular or peripheral resistance on the wave intensity.

Figures 6.4(a) and 6.10(a) demonstrate the parent vessel (ICA) wave intensity waveform in

the control case. The dominant separated wave component is the FEW, followed by a minor

BCW that corresponds to the reflection of the initial contraction. Figures 6.4(b) and 6.10(b)

show the ICA wave intensity waveform when the cross-sectional area of MCA is occluded
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by 50%, while Figures 6.4(c,d) and6.10(c,d) show the ICA wave intensity waveform for 75%

and 90% occlusion, respectively. The stenosis has little effect on the shape of wave intensity

waveform, but it slightly increases the amplitude of FEW and decreases the amplitude of

BCW. In the 90% occluded case, the third peak of the FCW becomes more pronounced,

while the second peak of FEW nearly disappears.

Figures 6.5(a) and 6.11(a) demonstrate the wave intensity waveform of the daughter vessel

(MCA) in the control case. The predominant FEW arises first followed by the minor BEW.

The pronounced phase lag is noticed between forward expansion and backward expansion

waves. Overall, the compression wave is negligible in this case. Figures 6.5(b), (c), (d)

and 6.11(b), (c), (d) demonstrate the MCA wave intensity waveform for 50%,75% and 90%

occlusion, respectively. The stenosis has more striking effect on the wave intensity compared

to the parent vessel (ICA). In the occluded cases, MCA FEW and BCW significantly decrease

compared to the control case. Some interesting phenomenon is observed in the 90% occluded

case, where the first and second peaks of FCW decrease while the BEW increase.

Figure 6.12(a) shows the wave intensity waveform of the PComm in the control case. The

FEW is raised first, followed by the BEW. A noticeable phase lag between the FEW and

BEW can be observed, which is more pronounced compared to the parent vessel ICA. In the

90% obstructed case, there is a slight increase in the amplitude of the first peak of the FEW

compared to the control case.
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6.5 Reverse Flow Investigation

As discussed in Chapter 1.2.2, normal blood flow is piped from proximal large arteries to

distal small arteries due to the high blood pressure difference between the ventricle and the

peripheral resistance to flow. In collateral circulation, blood flow is allowed to move from

distal small arteries to large cerebral arteries when occlusions occur. Our results indicate

that the obstructed and unobstructed pathways are highly affected by stenosis, as discussed

in Chapter 6.4. In this chapter, we will further investigate the occurrence of reverse flow

that existed in MCA when it is extensively occluded. What’s more, we will explore the

compensatory function of PComm in collateral circulation.

In Figures 6.2 and 6.7, the results clearly show significant pressure drops downstream from

the lesion (MCA pressure drops), while the resistance to flow increases. On the other hand, in

the unobstructed pathways (Figures 6.3, 6.8 and 6.9), both blood flow and pressure increase.

The increase in pressure and flow may facilitate the redirection of blood flow from PComm

to MCA through the small vascular network. Our findings support these hypotheses and

demonstrate the existence of collateral blood flow in the obstructed pathway [5].

Several studies applied wave intensity analysis in investigate cerebrovascular artery function

[100, 101]. Results in Figure 6.8 reveal a large FEW in MCA during systole followed by a

smaller magnitude BEW and FCW, which rapidly decay during diastole. Additionally, we

observe that FEW increases while FCW decreases during the systole. The FEW, originating

from the microcirculatory end, accelerates the blood flow and increases the pressure, while

the FCW, also originating from the microcirculatory end, decelerates the blood flow and

decreases the pressure [100]. The FCW decreases during systole due to the presence of MCA

stenosis. In contrast, the FEW increases during systole, accelerating the blood flow and

pressure from the downstream vascular network. This scenario becomes more obvious in the

case of 75% and 90% occluded MCA. However, the same scenario is not observed in ICA
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and PComm. Our wave intensity results further support the hypothesis that the reverse flow

does exist in MCA when MCA is occluded.
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Figure 6.13 Area reduction vesus mean pressure: (a) MCA; (b) PComm
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6.6 Sensitivity Analysis of Three-Daughter-Vessel Bifur-

cation with Stenosis Model

In Chapter 3.6, we conducted a parameter variation study on outlet boundary conditions,

specifically focusing on resistance and compliance. The results of the sensitivity analysis

revealed a strong correlation between the compliance and the phase shift observed in the

upstream pressure waveform, while resistance exhibited a significant influence on the ampli-

tude of the upstream pressure waveform. In this chapter, our aim is to investigate the effects

of varing compliance parameters on the upstream pressure and flow waveforms within the

three-daughter-vessel bifurcation with stenosis model. This sensitivity analysis serves as a

valuable tool to further validate the key conclusions presented in Chapter 6.4.

The compliance in the three-daughter-vessel bifurcation with stenosis model is initially con-

figured at the scale of 1e−5. To investigate the changes in the upstream pressure and flow

waveforms resulting from compliance variations, we increases and decreases the compliance

by 20% from its original value. The sensitivity analysis is perfomed in three cases: the

control case, the 50% cross-sectional area occluded stenosis case and the 75% cross-sectional

area occluded stenosis case. Figure 6.14 illustrates the changes in ICA pressure and flow

waveforms for these cases when compliance is modified by 20% from its original value. In

a similar manner, Figure 6.15 demonstrates the variations in MCA pressure and flow wave-

forms, while Figure 6.16 presents the variations in ACA pressure and flow waveforms. These

three figures offer insights into how the compliance adjustment impacts the upstream pres-

sure and flow waveforms across different scenarios.

Figure 6.14 reveals that, as the severity of stenosis increased, there is a slight elevation in

ICA pressure, while the ICA flow waveform remains largely consistent. These findings align

with the conclusions drawn in Chapter 6.4 regarding compliance variations. Although vari-

ations in compliance does introduce subtle changes in the ICA pressure waveform, these
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differences are relatively minor. For ICA flow waveform, we observe that slight discrepancies

in amplitude when we manipulate compliance. What’s more, the feature of the ICA flow is

characterized by a sharp peak followed by a less pronounced second peak, and it remains

consistent across these compliance adjustments. In Figure 6.15, it becomes evident that

MCA pressure significantly decreases with increasing stenosis severity. This conclusion is

also applicable to the MCA flow waveform. Interestingly, the MCA pressure and flow wave-

forms exhibit only marginal variations when the compliance is increased or decreased by

20%. Furthermore, the characteristic plateau in the middle of MCA pressure waveform per-

sists consistently, irrespective of compliance adjustments. In Figure 6.16, the ACA pressure

and flow waveforms display a tendency to increase with greater stenosis severity. Notably,

variations in compliance introduce only minor discrepancies across the control case, the 50%

cross-sectional area occluded case and the 75% cross-sectional area occluded case.

In summary, we conducted compliance variations, adjusting this outlet boundary condition

parameter by 20% from its original value. Throughout this investigation, we closely exam-

ined the resulting pressure and flow waveforms in the ICA, MCA, and ACA. Our observations

revealed that while compliance variations did induce slight discrepancies in both pressure

and flow waveforms, these differences remained notably small and did not exert a significant

influence on our overall conclusions. Moreover, it’s worth highlighting that the distinctive

characteristics of the ICA flow and MCA pressure waveforms remained consistent throughout

the compliance adjustments, reaffirming the robustness of our findings.
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Figure 6.14 ICA pressure and flow waveform results under varied compliance condition:

(a) pressure waveform for control case; (b) pressure waveform for 50% cross-sectional area

occluded case; (c) pressure waveform for 75% cross-sectional area occluded case; (d) flow

waveform for control case; (e) flow waveform for 50% cross-sectional area occluded case;

(f) flow waveform for 75% cross-sectional area occluded case
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Figure 6.15 MCA pressure and flow waveform results under varied compliance condition:

(a) pressure waveform for control case; (b) pressure waveform for 50% cross-sectional area

occluded case; (c) pressure waveform for 75% cross-sectional area occluded case; (d) flow

waveform for control case; (e) flow waveform for 50% cross-sectional area occluded case;

(f) flow waveform for 75% cross-sectional area occluded case

87



Figure 6.16 ACA pressure and flow waveform results under varied compliance condition:

(a) pressure waveform for control case; (b) pressure waveform for 50% cross-sectional area

occluded case; (c) pressure waveform for 75% cross-sectional area occluded case; (d) flow

waveform for control case; (e) flow waveform for 50% cross-sectional area occluded case;

(f) flow waveform for 75% cross-sectional area occluded case
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Chapter Seven

Conclusions

Intracranial stenosis contributes to a significant portion, ranging from 30% to 50%, of is-

chemic strokes, which rank among the primary causes of mortality in the United States.

Collateral circulation becomes crucial in cases of severe intracranial stenosis where more than

90% of the cross-sectional area is occluded, playing a pivotal role in determining whether

a stroke patient can recover from an ischemic event. However, the factors underlying the

development of collateral circulation remain unclear and are challenging to observe solely

from image data. This work develops a computational model that integrates patient-specific

CTA imaging with arterial segments fluid dynamics to investigate the intracranial stenosis

and collateral circulations in CoWs.

The model includes parent arterial segment, ICA, and daughter arterial segments, MCA,

ACA and PComm, that are all extracted from individual CTA scans. Inlet blood flow pro-

file is calibrated using color-coded duplex ultrasound from young, healthy volunteers. A

three-element Windkessel outlet boundary condition is attached to the end of each daughter

arterial segment. Bifurcation conditions and stenosis are also included in the model, varying

the area reduction of MCA from 0% ∼ 90% to predict the development of collateral circu-

lations and their effect on the daughter vessel PComm.

The results show that increases in area reduction increase the pressure of the unobstructed

pathway and decrease the pressure of the obstructed pathway, which becomes significant

after 90% of the MCA area is occluded, aligning with clinical observations. Our WIA results
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indicate that the FEW of the obstructed pathway increases when area reduction increases

(90% MCA occluded scenario). WIA results also suggest that the downstream vascular net-

work pressure and blood flow increase as the area reduction of obstructed pathway increases.

The pressure/blood flow and WIA results demonstrate that when MCA is largely occluded,

collateral circulation forms between PComm and MCA through the downstream vascular

network.

Furthermore, we conduct a comparison of the three-element Windkessel outlet boundary

condition and the 1-D binary tree outlet boundary condition. The pressure and blood flow

waveform results of the upstream large artery show that the 1-D binary tree outlet boundary

condition has little difference with the three-element Windkessel outlet boundary condition,

when the resistance parameter of the 0-D outlet boundary condition is fitted to match the

impedance of the 1-D outlet boundary condition. Additionally, while the 1-D binary tree

outlet boundary conditions encompass blood flow and pressure information of the down-

stream vascular network, the long-wave propagation assumption imposes a restriction that

the upstream large artery must be long enough, which is not suitable for our model.

The computational model developed in this work offers valuable insights into the devel-

opment of stenosis and the formation of collateral circulation. Though we have access to

abundant imaging data nowadays, it is challenging to observe the dynamic progression of

stenosis solely from the medical imaging data. As the imaging data is just a snapshot of the

stenosis, we have a poor understanding of how stenosis evolves over time. Gaining insight

into how stenosis evolves over time is crucial. Our computational framework, which incor-

porates downstream vascular network reflection waveforms, helps shed light on this process.

Moreover, the versatility of our framework allows it to be applied to various arterial segments

and different inflow and outflow boundary conditions, making it highly applicable in surgical

planning and medical device design. It can be employed to investigate different types of M1
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stenosis, intracranial and extracranial stenosis, and can adapt to different anatomies. The

computational model serves as a standard protocol that can be utilized under different con-

ditions, making it a valuable tool in the investigation of numerous cerebral vascular diseases

and providing essential guidance for clinical surgical planning.

In this work, one patient anatomy is applied to the computational model. However, to ensure

its robustness and applicability, future validation will be conducted using multiple patient

anatomies. Additionally, the 1-D computational model relies on certain simplifications and

assumptions, which may limit its realism. To overcome this, a more comprehensive 2-D com-

putational model will be proposed in future studies, offering a more detailed representation

of blood flow development and reverse flow changes. The calibration of the inlet blood flow

boundary condition from healthy volunteers, while useful for initial exploration, may not

fully reflect real-world scenarios. To address this limitation, we aim to develop a method to

extract the inlet blood flow from CT perfusion images from our patient database, enabling

us to provide more realistic and personalized guidance for surgical planning.

Overall, our work presents a novel and realistic computational model that integrates patient-

specific data, enabling a deeper understanding of the evolution of hemodynamic changes in

cerebral arterial segments. The framework is also used to obseve the dynamic progression of

stenosis changes and their relationship with the formation of collateral circulation.
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APPENDIX



Appendix A

Solution Process

A.1 Iteration Method Solving Three Daughter Vessel Bi-

furcation Model

The governing equation at bifurcation provides 24 equations and 24 unknowns.

x1 = (qp)n+1
M x2 = (qp)

n+1/2
M x3 = (qp)

n+1/2
M+1/2

x4 = (qd1)n+1
0 x5 = (qd1)

n+1/2
0 x6 = (qd1)

n+1/2
−1/2

x7 = (qd2)n+1
0 x8 = (qd2)

n+1/2
0 x9 = (qd2)

n+1/2
−1/2

x10 = (Ap)n+1
M x11 = (Ap)

n+1/2
M x12 = (Ap)

n+1/2
M+1/2

x13 = (Ad1)n+1
0 x14 = (Ad1)

n+1/2
0 x15 = (Ad1)

n+1/2
−1/2

x16 = (Ad2)n+1
0 x17 = (Ad2)

n+1/2
0 x18 = (Ad2)

n+1/2
−1/2

x19 = (qd3)n+1
0 x20 = (qd3)

n+1/2
0 x21 = (qd3)

n+1/2
−1/2

x22 = (Ad3)n+1
0 x23 = (Ad3)

n+1/2
0 x24 = (Ad3)

n+1/2
−1/2

f1 : −x1 + (qP )
n
M − ∆t

∆x
(
x2
3

x12
+B(M + 1/2, x12)− (R2)

n+1/2
M−1/2) +

∆t
2
(F (M + 1/2, x3, x12)

+dB(M+1/2,x12)
dx

+ (S2)
n+1/2
M−1/2)

f2,3,19 : −x4,7,19 + (qd1,d2,d3)
n
0 − ∆t

∆x
((Rd1,d2,d3

2 )
n+1/2
M+1/2 −B(−1/2, x15,18,24)−

x2
6,9,21

x15,18,24
)

+∆t
2
(Sd1,d2,d3

2 )
n+1/2
1/2 + F (−1/2, x6,9,21, x15,18,24) +

dB(−1/2,x15,18,24

dx
)

f4 : −x10 + (AP )nM − ∆t
∆x

(−x3 − (qP )
n+1/2
M−1/2)

f5,6,20 : −x13,16,22 + (Ad1,d2,d3)
n
0 − ∆t

∆x
(−x6,9,21 + (qd1,d2,d3)

n+1/2
M+1/2)
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f7 : −x2 +
1
2
(x3 + (qP )

n+1/2
M−1/2)

f8,9,21 : −x5,8,20 +
1
2
(x6,9,21 + (qd1,d2,d3)

n+1/2
1/2 )

f10 : −x11 +
1
2
(x12 + (AP )

n+1/2
M−1/2)

f11,12,22 : −x14,17,23 +
1
2
(x15,18,24 + (Ad1,d2,d3)

n+1/2
M+1/2)

f13,14 : −x2,1 + x5,4 + x8,7 + x20,19

f15,16,23 : −(fP )
n+1/2
M (1−

√
(AP

0 )
n+1/2
M

x11
) + (fd1,d2,d3)

n+1/2
0 (1−

√
(A

d1,d2,d3
0 )

n+1/2
0

x14,17,23
)

f17,18,24 : −(fP )
n+1/2
M (1−

√
(AP

0 )n+1
M

x10
) + (fd1,d2,d3)

n+1/2
0 (1−

√
(A

d1,d2,d3
0 )n+1

0

x13,16,22
)

The first-order accuracy Newton-Raphson scheme is used to solve the 24 unknowns and 24

equations.

xj+1 = xj −D−1f (A.1)

where x represents
[
x1, x2, · · · x24

]
T and f represents

[
f1, f2, · · · f24

]
T ; D is the

Jacobian matrix. The jacobian matrix is presented below.
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−1 0 k1 0 0 0 0 0 0 0 0 k2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 k3 0 0 0 0 0 0 0 0 k4 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 k5 0 0 0 0 0 0 0 0 k6 0 0 0 0 0 0

0 0 δt/δx 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 δt/δx 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 δt/δx 0 0 0 0 0 0 0−1 0 0 0 0 0 0 0

0 −1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0.5 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0.5 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 0.5 0 0 0 0 0 0

0 −1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

−1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 k7 0 0 k8 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 k7 0 0 0 0 0 k9 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 k10 0 0 k11 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 k10 0 0 0 0 k12 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 k23 0 0 k24

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δt/δx −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0.5 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0.5

0 0 0 0 0 0 0 0 0 0 k7 0 0 0 0 0 0 0 0 0 0 0 k25 0

0 0 0 0 0 0 0 0 0 k10 0 0 0 0 0 0 0 0 0 0 0 k26 0 0


where

k1 = −∆t
∆x

2x3
x12

+ ∆t
2

dF (M+1/2,x3,x12)
dx3

k2 =
∆t
∆x(

(x3)2

(x12)2
− dB(M+1/2,x12)

dx12
) + ∆t

2 (dF (M+1/2,x3,x12

dx12
) + d2B(M+1/2,x12)

dxdx12
)
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k3 =
∆t
∆x

2x6
x15

+ ∆t
2

dF (−1/2,x6,x15)
dx6

k4 =
∆t
∆x(−

(x6)2

(x15)2
+ dB(−1/2,x15)

dx15
) + ∆t

2 (dF (−1/2,x6,x15)
dx15

+ d2B(−1/2,x15)
dxdx15

)

k5 =
∆t
∆x

2x9
x18

+ ∆t
2

dF (−1/2,x9,x18)
dx9

k6 = (−(x9)2

(x18)2
+ dB(−1/2,x18)

dx18
) + ∆t

2 (dF (−1/2,x9,x18)
dx18

+ d2B(−1/2,x18)
dxdx18

)

k7 = −dP (M,x11)
dA

k8 = −dP (0,x14)
dA

k9 = −dP (0,x17)
dA

k10 = −dP (M,x10)
dA

k11 = −dP (0,x13)
dA

k12 = −dP (0,x16)
dA

k23 =
∆t
∆x

2x19
x24

+ ∆t
2

dF (−1/2,x21,x24)
dx21

k24 =
∆t
∆x(−

(x19)2

(x24)2
+ dB(−1/2,x19)

dx24
) + ∆t

2 (dF (−1/2,x19,x24)
dx24

+ d2B(−1/2,x24)
dxdx24

)

k25 = −dP (0,x23)
dA

k26 = −dP (0,x22)
dA

And

dB(L,xi)
dxi

= fL
2

√
( (A0)L

xi
)

d2B(L,xi)
dxdxi

= (dr0dx (
1√
xi
(f
√
π + df

(dr0)L

√
(A0)L − df

(dr0)L
))

dF (L,xi1,xi2)
dxi2

= 2π(r0)L
δRe

xi1
(xi2)2

dF (L,xi1,xi2)
dxi1

= 2π(r0)L
δRe

1
(xi2)2

dP (L,xi)
dxi

= −fL
2

√
( (A0)L
(xi)3

)
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And the convergence criterion for the Newton method is,

| xj+1 − xj |≤ 1e− 8 (A.2)

A.2 Iteration Method Solving Two Daughter Vessels Bi-

furcation with Stenosis Model

The governing equation at bifurcation provides 18 equations and 18 unknowns.

x1 = (qp)n+1
M x2 = (qp)

n+1/2
M x3 = (qp)

n+1/2
M+1/2

x4 = (qd1)n+1
0 x5 = (qd1)

n+1/2
0 x6 = (qd1)

n+1/2
−1/2

x7 = (qd2)n+1
0 x8 = (qd2)

n+1/2
0 x9 = (qd2)

n+1/2
−1/2

x10 = (Ap)n+1
M x11 = (Ap)

n+1/2
M x12 = (Ap)

n+1/2
M+1/2

x13 = (Ad1)n+1
0 x14 = (Ad1)

n+1/2
0 x15 = (Ad1)

n+1/2
−1/2

x16 = (Ad2)n+1
0 x17 = (Ad2)

n+1/2
0 x18 = (Ad2)

n+1/2
−1/2

fstenosis1 : −x1 + (qP )
n
M − ∆t

∆x(
x2
3

x12
+B(M + 1/2, x12)− (R2)

n+1/2
M−1/2) +

∆t
2 (F (M + 1/2, x3, x12)

+dB(M+1/2,x12)
dx + (S2)

n+1/2
M−1/2)

fstenosis2,3 : −x4,7 + (qd1,d2)
n
0 − ∆t

∆x((R
d1,d2
2 )

n+1/2
M+1/2 −B(−1/2, x15,18)−

x2
6,9

x15,18
)

+∆t
2 (Sd1,d2

2 )
n+1/2
1/2 + F (−1/2, x6,9, x15,18) +

dB(−1/2,x15,18

dx )

fstenosis4 : −x10 + (AP )nM − ∆t
∆x(−x3 − (qP )

n+1/2
M−1/2)

fstenosis5,6 : −x13,16 + (Ad1,d2)
n
0 − ∆t

∆x(−x6,9 + (qd1,d2)
n+1/2
M+1/2)

fstenosis7 : −x2 +
1
2(x3 + (qP )

n+1/2
M−1/2)

fstenosis8,9 : −x5,8 +
1
2(x6,9 + (qd1,d2)

n+1/2
1/2 )

fstenosis10 : −x11 +
1
2(x12 + (AP )

n+1/2
M−1/2)

fstenosis11,12 : −x14,17 +
1
2(x15,18 + (Ad1,d2)

n+1/2
M+1/2)

fstenosis13,14 : −x2,1 + x5,4 + x8,7
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fstenosis15,16 : −(fP )
n+1/2
M (1−

√
(AP

0 )
n+1/2
M

x11
) + ∆P

n+1/2
M + (fd1,d2)

n+1/2
0 (1−

√
(A

d1,d2
0 )

n+1/2
0

x14,17
)

where

∆P
n+1/2
M = µKv

2πr3p
x2 +

ρKt

2A2
p
(
Ap

As
− 1)2x2 | x2 | +Ls

ρKu

Ap
(x2 − q

n−1/2
M )

fstenosis17,18 : −(fP )
n+1
M (1−

√
(AP

0 )n+1
M

x10
) + ∆Pn+1

M + (fd1,d2)
n+1
0 (1−

√
(A

d1,d2
0 )n+1

0
x13,16

)

where

∆Pn+1
M = µKv

2πr3p
x1 +

ρKt

2A2
p
(
Ap

As
− 1)2x1 | x1 | +Ls

ρKu

Ap
(x1 − qnM )

The first-order accuracy Newton-Raphson scheme is used to solve the 18 unknowns and 18 equations.

xj+1 = xj −D−1
stenosisf stenosis (A.3)

where x represents
[
x1, x2, · · · x18

]
T and f stenosis represents

[
f1, f2, · · · f18

]
T ; Dstenosis is the

Jacobian matrix. The jacobian matrix is presented below.
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Dstenosis =



−1 0 k1 0 0 0 0 0 0 0 0 k2 0 0 0 0 0 0

0 0 0 −1 0 k3 0 0 0 0 0 0 0 0 k4 0 0 0

0 0 0 0 0 0 −1 0 k5 0 0 0 0 0 0 0 0 k6

0 0 −δt/δx 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 δt/δx 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 δt/δx 0 0 0 0 0 0 0 −1 0

0 −1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 0.5 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0.5 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0.5 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0.5 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0.5

0 −1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

−1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 k13 0 0 0 0 0 k7 0 0 k∗8 0 0 0 0

0 0 0 0 0 0 0 0 0 0 k7 0 0 0 0 0 k9 0

0 0 0 k14 0 0 0 0 0 k10 0 0 k∗11 0 0 0 0 0

0 0 0 0 0 0 0 0 0 k10 0 0 0 0 0 k12 0 0



Compared with the Jacobian matrix D in the bifurcation case, Dstenosis introduces four new terms,

which are k13, k14, k∗8 and k∗11.

k13 =
µKv

2πr3d1
+ ρKt

2A2
d1
(Ad1
As

− 1)2 | x5 | ∗2 + Ls
ρKu

Ad1

k14 =
µKv

2πr3d1
+ ρKt

2A2
d1
(Ad1
As

− 1)2 | x4 | ∗2 + Ls
ρKu

Ad1

k∗8 = −dP (0,x14)
dA − ρKt(x14)

2 | x5 | x5 − Ls
ρKu

(x14)2
(x5 − (qd1)

n−1/2
0 )

k∗11 = −dP (0,x13)
dA − ρKt(x13)

2 | x4 | x4 − Ls
ρKu

(x13)2
(x4 − (qd1)

n
0 )
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And the convergence criterion for the Newton method is,

| xj+1 − xj |≤ 1e− 8 (A.4)

A.3 Iteration Method Solving Three Daughter Vessels

Bifurcation with Stenosis Model

The governing equation at bifurcation provides 24 equations and 24 unknowns.

x1 = (qp)n+1
M x2 = (qp)

n+1/2
M x3 = (qp)

n+1/2
M+1/2

x4 = (qd1)n+1
0 x5 = (qd1)

n+1/2
0 x6 = (qd1)

n+1/2
−1/2

x7 = (qd2)n+1
0 x8 = (qd2)

n+1/2
0 x9 = (qd2)

n+1/2
−1/2

x10 = (Ap)n+1
M x11 = (Ap)

n+1/2
M x12 = (Ap)

n+1/2
M+1/2

x13 = (Ad1)n+1
0 x14 = (Ad1)

n+1/2
0 x15 = (Ad1)

n+1/2
−1/2

x16 = (Ad2)n+1
0 x17 = (Ad2)

n+1/2
0 x18 = (Ad2)

n+1/2
−1/2

x19 = (qd3)n+1
0 x20 = (qd3)

n+1/2
0 x21 = (qd3)

n+1/2
−1/2

x22 = (Ad3)n+1
0 x23 = (Ad3)

n+1/2
0 x24 = (Ad3)

n+1/2
−1/2

fstenosis1 : −x1 + (qP )
n
M − ∆t

∆x(
x2
3

x12
+B(M + 1/2, x12)− (R2)

n+1/2
M−1/2) +

∆t
2 (F (M + 1/2, x3, x12)

+dB(M+1/2,x12)
dx + (S2)

n+1/2
M−1/2)

fstenosis2,3,19 : −x4,7,19 + (qd1,d2,d3)
n
0 − ∆t

∆x((R
d1,d2,d3
2 )

n+1/2
M+1/2 −B(−1/2, x15,18,24)−

x2
6,9,21

x15,18,24
)

+∆t
2 (Sd1,d2,d3

2 )
n+1/2
1/2 + F (−1/2, x6,9,21, x15,18,24) +

dB(−1/2,x15,18,24

dx )

fstenosis4 : −x10 + (AP )nM − ∆t
∆x(−x3 − (qP )

n+1/2
M−1/2)

fstenosis5,6,20 : −x13,16,22 + (Ad1,d2,d3)
n
0 − ∆t

∆x(−x6,9,21 + (qd1,d2,d3)
n+1/2
M+1/2)

fstenosis7 : −x2 +
1
2(x3 + (qP )

n+1/2
M−1/2)

fstenosis8,9,21 : −x5,8,20 +
1
2(x6,9,21 + (qd1,d2,d3)

n+1/2
1/2 )

fstenosis10 : −x11 +
1
2(x12 + (AP )

n+1/2
M−1/2)

fstenosis11,12,22 : −x14,17,23 +
1
2(x15,18,24 + (Ad1,d2,d3)

n+1/2
M+1/2)
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fstenosis13,14 : −x2,1 + x5,4 + x8,7 + x20,19

fstenosis15 : −(fP )
n+1/2
M (1−

√
(AP

0 )
n+1/2
M

x11
) + (∆Pd1)

n+1/2
0 + (fd1)

n+1/2
0 (1−

√
(A

d1
0 )

n+1/2
0

x14
)

fstenosis16,23 : −(fP )
n+1/2
M (1−

√
(AP

0 )
n+1/2
M

x11
) + (fd2,d3)

n+1/2
0 (1−

√
(A

d2,d3
0 )

n+1/2
0

x17,23
)

where

(∆Pd1)
n+1/2
0 = µKv

2πr3p
x5 +

ρKt

2A2
d1
(Ad1
As

− 1)2x5 | x5 | +Ls
ρKu

Ad1
(x5 − (qd1)

n−1/2
0 )

fstenosis17 : −(fP )
n+1
M (1−

√
(AP

0 )n+1
M

x10
) + (∆Pd1)

n+1
0 + (fd1)

n+1
0 (1−

√
(A

d1
0 )n+1

0
x13

)

where

(∆Pd1)
n+1
0 = µKv

2πr3p
x4 +

ρKt

2A2
d1
(Ad1
As

− 1)2x4 | x4 | +Ls
ρKu

Ad1
(x4 − (qd1)n0 )

fstenosis18,24 : −(fP )
n+1
M (1−

√
(AP

0 )n+1
M

x10
) + (fd2,d3)

n+1
0 (1−

√
(A

d2,d3
0 )n+1

0
x16,22

)

The first-order accuracy Newton-Raphson scheme is used to solve the 24 unknowns and 24 equations.

xj+1 = xj −D−1
stenosisf stenosis (A.5)

where x represents
[
x1, x2, · · · x24

]
T and f stenosis represents

[
f1, f2, · · · f24

]
T ; Dstenosis is the

Jacobian matrix. The jacobian matrix is presented below.
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Dstenosis =



−1 0 k1 0 0 0 0 0 0 0 0 k2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 k3 0 0 0 0 0 0 0 0 k4 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 k5 0 0 0 0 0 0 0 0 k6 0 0 0 0 0 0

0 0 δt/δx 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 δt/δx 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 δt/δx 0 0 0 0 0 0 0−1 0 0 0 0 0 0 0

0 −1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0.5 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0.5 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0−1 0.5 0 0 0 0 0 0

0 −1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

−1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 k13 0 0 0 0 0 k7 0 0 k∗8 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 k7 0 0 0 0 0 k9 0 0 0 0 0 0 0

0 0 0 k14 0 0 0 0 0 k10 0 0 k∗11 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 k10 0 0 0 0 k12 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 k23 0 0 k24

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δt/δx −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0.5 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0.5

0 0 0 0 0 0 0 0 0 0 k7 0 0 0 0 0 0 0 0 0 0 0 k25 0

0 0 0 0 0 0 0 0 0 k10 0 0 0 0 0 0 0 0 0 0 0 k26 0 0



Compared with the Jacobian matrix D in the bifurcation case, Dstenosis introduces four new terms,
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which are k13, k14, k∗8 and k∗11.

k13 =
µKv

2πr3d1
+ ρKt

2A2
d1
(Ad1
As

− 1)2 | x5 | ∗2 + Ls
ρKu

Ad1

k14 =
µKv

2πr3d1
+ ρKt

2A2
d1
(Ad1
As

− 1)2 | x4 | ∗2 + Ls
ρKu

Ad1

k∗8 = −dP (0,x14)
dA − ρKt(x14)

2 | x5 | x5 − Ls
ρKu

(x14)2
(x5 − (qd1)

n−1/2
0 )

k∗11 = −dP (0,x13)
dA − ρKt(x13)

2 | x4 | x4 − Ls
ρKu

(x13)2
(x4 − (qd1)

n
0 )

And the convergence criterion for the Newton method is,

| xj+1 − xj |≤ 1e− 8 (A.6)
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