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Simultaneous Perfect Bending and Polarization Rotation of Electromagnetic
Wavefront using Chiral Gradient Metasurfaces

Hamidreza Kazemi,∗ Mohammad Albooyeh,† and Filippo Capolino‡
Department of Electrical Engineering and Computer Science,

University of California, Irvine, California 92697, United States

We introduce chiral gradient metasurfaces that allow perfect transmission of all the incident wave
into a desired direction and simultaneous perfect rotation of the polarization of the refracted wave
with respect to the incident one. Besides using gradient polarization densities which provide bending
of the refracted wave with respect to the incident one, using metasurface inclusions that are chiral
allows the polarization of the refracted wave to be rotated. We suggest a possible realization of
the proposed device by discretizing the required equivalent surface polarization densities realized by
proper helical inclusions at each discretization point. By only using a single optically thin layer of
chiral inclusions, we are able to unprecedentedly deflect a normal incident plane wave to a refracted
plane wave at 45° with 72% power efficiency which is accompanied by a 90◦ polarization rotation.
The proposed concepts and design method may find practical applications in polarization rotation
devices at microwaves as well as in optics, especially when the incident power is required to be
deflected.

I. INTRODUCTION

From the beginning of the 21st century, the investi-
gation of metasurfaces, i.e., optically thin layers of ar-
rayed subwavelength inclusions, to shape the wavefront
of the electromagnetic waves at will is dramatically in-
creased compared to that of bulky metamaterials [1–25].
This is because metasurfaces have in general less losses
and easier manufacturing processes compared to bulky
engineered metamaterials. Quite recently, by applying
the so-called generalized laws of reflection and refrac-
tion, specifically designed phase gradient metasurfaces
achieved about 25% of transmitted power for manipu-
lation of transmitted waves [26, 27]. Such designs were
suffering from a lack of degrees of freedom for control-
ling the polarization of the refracted wave. Subsequent
attempts, based on generalized boundary conditions, ac-
complished more efficient power operation (about 80%)
and also enabled manipulation of polarization [28, 29].
Simultaneous control of reflected or transmitted phase
and amplitude is achieved using anisotropic metasurface
elements with enough degrees of freedom as the Y shaped
elements in [30] leading to both deflection and polariza-
tion rotation, yet without devising a robust method that
maximizes power transfer.

Most recently, a theoretical scheme for gradient (spa-
tially dispersive) metasurfaces, which offers a perfect con-
trol of refracted/reflected waves (i.e., 100% power effi-
ciency), was introduced in the seminal studies in Refs.
[3, 19, 21]. Based on that scheme, metasurface designs
several interesting applications involving wavefront con-
trol were proposed (see e.g., Refs. [31–36]). However, yet
no work has been carried out based on that scheme for the
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concurrent control of both the direction and polarization
of refracted wavefront. Therefore, we found it timely and
essential to introduce the realization of gradient metasur-
faces that not only desirably deflect the wavefront but
also manipulate its polarization at will.

Metasurfaces for both polarization conversion and
wavefront manipulation may find a wide range of appli-
cations in problems in frequency ranges spanning from
microwaves to optics. For instance, metasurface based
polarization rotators are suitable to replace bulky wave
plates (quarter, half wavelength, etc.). Next, metasur-
face based wave deflectors are handy candidates to take
over the commonly used bulky optical beam splitters that
deflect the wavefront of light (45°deflection with 50%
power efficiency) in optical systems [9, 37, 38]. More-
over, polarization selective metasurfaces are applied for
coding the information into different polarization states
[39–41]. Furthermore, they may find practical applica-
tions as both polarization rotators or wavefront deflec-
tors at microwave frequencies especially in the design of
antenna systems, etc [10, 39, 42, 43].

Here, we synthesize a planar transmitting metasurface
which perfectly deflects the normal (with respect to the
metasurface plane) incoming wavefront by 45° and con-
currently rotates its polarization by 90°, while we ex-
press that a similar design procedure can be performed
for any arbitrary angles of deflection and any polariza-
tion rotation. Our synthesis approach is based on the re-
alization of the desired electric and magnetic equivalent
surface polarization densities which are connected to the
total fields at both sides of the metasurface through the
“sheet boundary conditions” as described in Sec. II. We
further analyze the metasurface performance for the ob-
tained electric and magnetic polarization densities when
they are discretized into five sampling points for each
supercell. In Sec. III we present a physical realization
design that almost satisfies the required equivalent po-
larization densities which were obtained in the previous
section. The design is composed of five unit cells which
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Figure 1. (a) The general gradient metasurface and depiction
of incident, reflected and transmitted waves. (b)The incident
and refracted waves and polarization of the fields for a reflec-
tionless metasurface.

form a supercell. Each unit cell consists of four inter-
laced helices which fulfills the desired polarization den-
sities, when judiciously engineered. The performance of
this metasurface design is compared with the ideal case,
and a power transmission efficiency of 72% is achieved for
a 90° polarization rotation and a 45° wavefront deflection
which is much higher than 25% efficiency reported in the
literature for a smaller angle of wavefront deflection (e.g.,
30°) using the so-called generalized laws of reflection and
refraction (see e.g., Ref. [44]).

We emphasize that besides being electromagnetically
thin, our proposed strategy offers two simultaneous func-
tionalities, i.e., wavefront bending along with polariza-
tion rotation of the incoming wavefront, in a single layer
design with an unprecedentedly high efficiency. Such a
device dramatically reduces the required space by com-
bining the advantages of these two functionalities. In-
deed, it can be used in place of two most commonly-used
optical apparatus i.e., a wave plate and a beam splitter
which are bulky and occupy substantial spaces. More-
over, our proposal has the advantage of perfect perfor-
mance (refraction and polarization rotation) when com-
pared to these devices.

II. PROBLEM DESCRIPTION

Let us consider a general metasurface that perfectly re-
fracts an incident plane wave with incoming angle θi to
a plane wave with a desired refraction angle θt, and con-
verts the incident field polarization to a favorable one in
the refracted field [see Fig. 1]. To elaborate the concepts
in a simple manner, let us now make our analysis more
specific and consider an incident plane wave with a trans-
verse magnetic (TM with respect to z) polarization which
is going to be refracted as a transverse electric (TE) po-
larized plane wave as shown in the subset of the Fig. 1(b).
In this example the polarization of the refracted wave is

hence rotated by 90° with respect to that of the incident
wave. Next, assuming time a harmonic wave with time
dependence ejωt which travels downward, i.e., in the −z
direction [see Fig. 1(b)], the electric field vector of the
incident wave reads Ei = Ei0

(
ŷ cos θie

−jk0(sin θiy−cosθiz)

+ẑ sin θie
−jk0(sinθiy−cos θiz)

)
and that of the refracted

wave reads Et = −x̂Et0e−jk0(sin θty−cosθtz)−jϕt . Here, x̂,
ŷ, and ẑ are the unit vectors in Cartesian coordinates,
whereas y and z are accordingly the position variables.
Moreover, k0 is the free-space wave number, Ei0 and Et0
are the electric field amplitudes of the incident and re-
fracted waves, respectively, and ϕt accounts for a possi-
ble phase shift between the incident and refracted waves
upon crossing the metasurface. The tangential electric
Et and magnetic Ht fields (the subscript t denotes the
tangential component with respect to the metasurface
plane) at the boundary of the metasurface, on both the
upper and the lower sides, assuming the metasurface is
located on the z = 0 plane, read

Et+ = ŷEi0 cos θie
−jk0 sin θiy, (1)

Et− = −x̂Et0e−jk0 sin θty−jϕt ,

n̂×Ht+ = ŷ
Ei0
η0
e−jk0 sin θiy, (2)

n̂×Ht− = −x̂cos θt
η0

Et0e
−jk0 sin θty−jϕt ,

respectively. Here, “t+” and “t−” subscripts refer to the
tangential fields at the upper (z > 0) and lower (z < 0)
metasurface boundaries, respectively. Furthermore η0 =√
µ0ε0 is the intrinsic wave impedance of the free space,

and n̂ is the unit vector normal to the metasurface plane
in the +z direction [see Fig.1(b)]. From Eq. (1), the
phase of the transmission coefficient reads

Φt = k0 (sin θi − sin θt) y + ϕt, (3)

which is obviously not uniform over the surface since θi 6=
θt and indeed it varies linearly with y. (Other nonlinear
variation may be required for other applications, e.g.,
focusing [30, 45].)

In the next step, we write the boundary conditions
which connect the jump of tangential fields on both sides
of the metasurface to the induced equivalent electric P
and magnetic M surface polarization densities as [1, 46,
47]

Et+ −Et− = jωn̂×M, (4)
n̂×Ht+ − n̂×Ht− = jωP, (5)

where ω is the angular frequency. Therefore, by plugging
Eqs. (1), (2), and (3) into Eqs. (4) and (5), the required
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electric and magnetic equivalent surface polarization den-
sities for the proposed field manipulation, respectively,
read

P =
Ei0
jωη0

e−jk0 sin θiy
[
− cos θt txye

−jΦt x̂ + ŷ
]
, (6)

M =
Ei0
jω

e−jk0 sin θiy
[
cos θix̂− txye−jΦt ŷ

]
. (7)

Here, the TM to TE polarized wave transmission coef-
ficient txy = Etx/E

i
y = Et0/

(
Ei0 cos θi

)
, and by neglecting

losses it is approximated as (see Appendix A for a proof)

txy =
1√

cos θi cos θt
, (8)

where we consider Etx = Et0 and Eiy = Ei0 cos θi. Note
that the transmission coefficient here is defined with re-
spect to the transverse component of the electric field in
the two half spaces, thus, txy can be larger than unity
for an oblique incident or transmission angle, without
contradicting the power conservation law.

A. Illustrative example

Let us now consider a specific example where θi = 0
and θt = π/4 and with each unit cell having the dimen-
sion d along x and D along y axes as shown in Fig. 2(a).
Figure 2(b) and (c) show the required electric and mag-
netic equivalent polarization densities described by Eqs.
(6) and (7) in a unit cell (supercell) for such a metasur-
face with the mentioned characteristic, i.e., θi = 0 and
θt = π/4.

The obtained equivalent polarization surface densities
are continuous, uniform in the x direction, and periodic
in the y direction (with period D). However, in gen-
eral a metasurface is practically composed of discrete
elements that mimic such continuous polarization den-
sities. In order to realize a practical design with discrete
elements, we take a finite number of sampling points
(here five equi-distance points, D = 5d) in y direction
within each supercell to sample the desired continuous
equivalent polarization densities given in Fig. 2(b), (c).
To demonstrate how the discretization procedure affects
the performance of the design we substitute the equiv-
alent polarization densities with electric and magnetic
point sources with equivalent magnitudes and phases as
sampled at these five sampling points. By implement-
ing the electric and magnetic point sources which mimic
the required continuous equivalent polarization densities,
we plot the simulation results (using the finite element
method implemented in COMSOL multiphysics [48]) of
the electric field distribution: the y-component of the in-
cident electric field and the x-component of the refracted
field, in Fig. 3.
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Figure 2. (a) Schematic of the incident electric field polarized
along y (Ey) normally propagating and of the transmitted
wave propagating at an angle from the normal direction with
a rotated polarization along x (Ex). (b) The desired mag-
netic and (c) electric polarization densities of a supercell for
y-polarized to x-polarized electric field conversion in transmis-
sion. The black circles in this figure show the discretization
points of the polarization densities on the y axis.

It is clear from the field distribution maps that the
power is perfectly refracted by 45◦ and rotated by 90◦,
and moreover, as expected the energy density of the re-
fracted wave is lower than the incident one since the total
power of the refracted wave is imposed to be equal to the
incident power (see the Appendix A for more discussion
about energy and power densities). There is no reflection
as it can be observed by the lack of any standing wave.

B. Possible physical topologies

The result of the previous section indicates the re-
quired polarization densities without any discussion
about a feasible realization. In order to understand pos-
sible topologies for the realization of a metasurface that
acquires the proposed equivalent polarization densities,
it is helpful to understand what kinds of scatterers (ele-
ments or inclusions) are able to create such polarization
densities. Considering inclusion realizations that are well
approximated by dipole moments, the electric and mag-
netic polarization densities so far described are realized
by using electric pt = PS and magneticmt = MS equiv-
alent dipole polarizations per unit cell where S is the
unit cell area (see Figure 1(a)). One practical tool is
to study the relation between the fields and the equiva-
lent dipole polarizations per unit cell, i.e., the constitu-
tive relations. Indeed, the tangential components of the
equivalent dipole polarization densities pt and mt and



4

5

0

5−

/y d /y d

4

4−

z 
/ 
λ

0

E
 [

V
/m

] 
×

1
0

5

1   2    3   4   5

1   2    3   4   5

2.5− 2.50 2.5− 2.50

iEiH

ik

tE

tk

tH

Figure 3. Electric field distribution (snapshot at a given
time) of a perfectly refracting and polarization rotating meta-
surface on both sides of the metasurface. The result is based
on calculating the scattered field as generated by electric
and magnetic point-dipole sources evaluated of five sampling
points. The incident field is polarized along y (Ey) and does
not experience reflection, i.e., no standing wave is present.
The transmitted electric field is polarized along x (Ex) and it
is refracted at an oblique angle θt = 45◦. Total transmission
is achieved, i.e., there is no reflection.

the tangential incident field components Eit and Hi
t are

related through tangential components of the collective
polarizabilities ¯̄αee

t , ¯̄αem
t , ¯̄αme

t , and ¯̄αmm
t of the metasur-

face unit cells via constitutive relations [1, 49, 50]

pt = ¯̄αee
t ·E

i
t + ¯̄αem

t ·Hi
t, (9)

mt = ¯̄αme
t ·E

i
t + ¯̄αmm

t ·Hi
t. (10)

In the above equations, ¯̄αee
t , ¯̄αem

t , ¯̄αme
t , and ¯̄αmm

t

are collective electric, magnetoelectric, electromagnetic,
and magnetic polarizability dyadics in the metasurface
plane, relating the incident field to the electric and mag-
netic dipoles. The word collective means that the po-
larizability accounts also for the coupling with all the
dipoles in the other unit cells of the array [1, 49, 51].
Each polarization dyad has four components αij , where
ij = xx, xy, yx, or yy in Cartesian coordinates, i.e., in
terms of matrix representation is given by

¯̄αt =

[
αxx αxy
αyx αyy

]
. (11)

Note that in the general case polarizability dyadics
have nine components, however, for our analysis it is
enough to consider only tangential components (see Ref.
[46, 47] for a more elaborated discussion). Next, by plug-
ging the fields from Eqs. (1) and (2) into Eqs. (9) and
(10), the equivalent dipole polarizations in term of polar-
izability components and the incident field read

pt =

[
x̂

(
αee
xy cos θi +

αem
xx

η0

)
(12)

+ŷ

(
αee
yy cos θi +

αem
yx

η0

)]
Ei0e−jk0 sin θiy,

mt =

[
x̂

(
αme
xy cos θi +

αmm
xx

η0

)
(13)

+ŷ

(
αme
yy cos θi +

αmm
yx

η0

)]
Ei0e−jk0 sin θiy.

Based on the above equations, there is obviously not
a unique scatterer’s topology to deliver the desired per-
formance since the above are four scalar complex-value
equations with 8 complex-value unknown polarizabil-
ity components (four in each polarizability dyad, how-
ever, the selected polarizations in this particular case
imply that only eight dyad entrees need to be deter-
mined). Nevertheless, among all possible solutions, both
electric and magnetic polarizations must be simultane-
ously nonzero, which this limits the number of possi-
ble solutions. Moreover, in the following we suppress
the cross-components of the polarizabilities (i.e, αee

xy =
αem
yx = αme

xy = αmm
yx = 0) to narrow down the possible

sets of topologies. As a result, the remaining polariz-
ability components imply that the metasurface consti-
tutive inclusions must be chiral since we require that
αem
xx = −αme

xx , 6= 0 or αem
yy = −αme

yy , 6= 0, for reciprocal
lossy and lossless inclusions. By using Eqs. (6) and (7)
in Eqs. (12) and (13) the collective polarizabilities for
the proposed chiral metasurface are

αem
xx = − S

jω
cos θttxye

−jΦt ,

αee
yy =

S

jω

1

η0 cos θi
, (14)

αmm
xx =

S

jω
η0 cos θi,

αme
yy = − S

jω

txy
cos θi

e−jΦt .

In the next section we propose a physical element that
exhibits these polarizability components, i.e., the desired
equivalent dipole polarizations, and hence, the required
equivalent surface polarization densities under the given
illumination.

III. PHYSICAL REALIZATION

In this section, we first propose a unit cell design that
perfectly rotates the polarization of the incoming wave
at a normal incidence by 90◦. Hence, in the first step,
we do not generate plane wave deflection. This latter
feature will be realized as a second step by applying the
designed unit cell of this first step and constructing a
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gradient metasurface, to achieve a perfect deflection of a
normal incident wave to a 45◦ refracted wave.

A. Unit cell design for polarization rotation

It is well-known that a helical wire particle if excited
properly may acquire the polarizabilities described by
Eqs. (14) (see Ref. [52, 53]). Here we use helices
with axes belonging to the transverse metasurface plane
since we are interested in inducing transverse electric
and magnetic dipoles. To optimize the performance of
a chiral particle Semchenko et al. introduced optimal
helices in Ref. [54] (i.e., helices with equal electric, mag-
netic, and magneto-electric polarizabilities which means
|αem| = |η0α

ee| = |αmm/η0|) which we use here as a
part of the design. Such an inclusion provides a maxi-
mum cross-polarized transmission when implemented as
the building block of a metasurface. The basic building
block of a metasurface unit cell is a single optimal helix
shown in Fig. 4(a). In particular we consider a single
helix made of one turn. The structural parameters i.e.,
helices radius r = 14 mm, helix pitch p = 16.3 mm, unit
cell period d = 56.5 mm of the designed helices are illus-
trated in Fig. 4(a). Moreover the helix axis is oriented
along the ϕ = −45◦ direction as shown in Fig. 4(a),
and the metal is assumed to be a perfect conductor with
radius rw = 0.1 mm.

The co-polarized (i.e., along the same direction as the
incident electric field) and cross-polarized (i.e., orthog-
onal to the direction of the incident electric field) field
components that defined the reflection and transmission
coefficients of a metasurface composed of the unit cell
with single helix in Fig. 4(a) are shown in Fig. 4(b). The
subscripts yy and xy refer to co and cross polarization
components, respectively, in a linear polarization basis
with the incident electric polarization oriented along the
y direction. As stated earlier, in the first step we seek
a metasurface that is able to perfectly refract the nor-
mal incident plane with 90◦ rotation of the polarization
with respect to that of the incident wave, without gener-
ating any angular deflection, i.e., the transmitted wave is
propagating along the normal direction (the z direction).
In terms of reflection/transmission coefficients, it means
that

txy = 1 (15)
tyy =rxy = ryy = 0,

As it is clear from Fig. 4(b), such a design although pro-
vides a maximum possible cross-polarized transmission
with individual single-turn helix as unit cell, it does not
grant perfect transmission of all the incident power to the
desired rotated polarization (see that |txy| 6= 1). Indeed,
the incident power is approximately shared evenly be-
tween all components of the reflection and transmission
spectra at the desired frequency (here around 1.5 GHz),
hence Eqs. (15) are not satisfied. However, when we in-
crease the number of helices in a unit cell with a proper

orientation as mentioned in Ref. [55], i.e., four helices
which are rotated by 90 degrees around the z axis with
respect to each other, then, remarkably, a reflectionless
surface can be achieved. Nevertheless, the design in Ref.
[55] has a unit cell size that exceeds the operational wave-
length, hence it is not a practical design for metasur-
faces with incident (refracted) angles rather than normal.
Therefore, here we use four interlaced helices in a single
unit cell to be sure the unit cell size is subwavelength, a
feature that is useful for the implementation of a gradient
metasurface which generates a transmitted wave with a
45◦ deflection, discussed in the next subsection. Figure
4(c) shows the configuration of the four interlaced he-
lices in each unit cell that provide a fully transmittive
(i.e., reflectionless) metasurface which perfectly rotates
the polarization of the normal incoming wave by 90◦.
This unit cell is composed of four identical co-centered
helices in which their axes lie on the xy-plane and they
are rotated by 90 degrees around the z axis. The ori-
entation, spatial position, and structural parameters of
the designed helices are illustrated in Figure 4(c), where
the structural parameters for each helix are the same as
those for the single-helix unit cell in Fig. 4(a). Note that
the helices in this design have no electrical connection.
A periodic array composed of an infinite number of such
chiral unit cells with d =

√
2λ/5 where λ is the plane

wave’s wavelength shows a perfect y to x polarization ro-
tation at the frequency of 1.5 GHz,as shown in Fig. 4(d),
since the reflection and transmission coefficients of such
a metasurface satisfy Eqs. (15). Deduced from this fig-
ure, the incident wave with its electric field polarization
along y is perfectly transmitted into a transmitted wave
with electric field polarization along x, propagating in the
lower half space. It is obvious from this Figure that at
the 1.5 GHz, both the x- and y-polarized reflected waves
are negligible.

B. Supercell design for wavefront deflection

In this section we use a modulation of the metasur-
face parameters that based on the generalized Snell’s law
leads to the transmission phase in Eq. (3). Following
this approach, the shape of the wavefront refracted by
the array relies on the gradual increase of the trans-
mission phase along the supercell constitutive elements
[19, 26, 30, 45, 56]. Such gradual phase increase along the
metasurface is provided by suitably engineering each con-
stitutive inclusion in the so called “supercell”, and since
the phase variation is along the y direction, the supercell
is defined by modulating a few unit cells along the y di-
rection, while it has the dimension of a single unit cell in
the x direction. According to the example in the previ-
ous section and Eq. (3), considering a normal incidence,
a required 45◦ transmission angle deflection, and assum-
ing ϕt = 0 without loss of generality, the transmission
phase shall increase linearly in the y direction as
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Figure 4. (a) The top view of a single-helix unit cell with
subwavelength dimensions. (b) Reflection and transmission
coefficients of y- and x-polarized waves for the infinite planar
periodic array of unit cells in (a). (c) Geometry and different
view angles of the designed particle composed by four inter-
laced helices as in (a). (d) Reflection and transmission coef-
ficients of the y- and x-polarized waves for an infinite planar
periodic array of unit cells shown in (c).

Φt(y) = − k0√
2
y. (16)

This required transmission phase is a continuous func-
tion of position y along the surface. However, as dis-
cussed before, for a practical realization the continuous
distribution of electric and magnetic polarization den-
sities is realized in a discretized fashion, i.e., by a finite
number of electric and magnetic induced dipole moments
in each supercell. The desired phase distribution across
the metasurface is obtained by meticulously optimizing
the dimensions of the four interlaced helices in a few unit
cells that make the supercell. In the present realization
the supercell is divided into five unit cells as shown in
the figure below Table I, that shows the optimized di-
mensions of the helices in each of the five unit cells. The
required transmission phases at the location of the five
different unit cells are obtained from Eq. (16) where
y = ±nd where n = 0, 1, 2. Note that all the four helices
in each individual unit cell are identical.

Therefore the metasurface is made of an array of su-
percells with dimension d along the x direction and 5d
along the y direction. The design of the supercell ele-
ments is done as follows: First, we design five distinct
metasurfaces, each one made of a periodic array of each
unit cells in table I, with period d in both x and y di-
rections. The full-wave simulation based on the finite

# 1 # 2 # 3 # 4 # 5

r (mm) 13.23 13.76 14.24 13.30 14.24

p (mm) 17.13 17.8 18.43 17.22 18.43

handedness L L L R R

Φt (deg.) 120 80 41 −73 −140

#1 #2 #3 #4 #5

z

y

Table I. Helix radius, helix pitch and the handedness of the 5
different inclusions (helices are identical in each cluster). In
the table R,L denote the right and left handed helices.

123 45

12
3

4
5

xyt

xyt

(a)

(b)

Figure 5. Magnitude and phase of txy transmission coefficient
for the five different metasurfaces, each one based on one unit
cell design in Table I: (a) Magnitude and (b) Phase of the cross
polarization transmission coefficient txy . When it reaches 1
all the power is transmitted with a polarization rotation of 90◦

as discussed in Sec. IIIA. The phase gradient metasurface
is then made with a supercell with dimension d × 5d , by
arranging sequentially the five properly designed unit cells.

element method is based on periodic boundary condi-
tions. Therefore, a single unit cell of dimension d × d
is simulated for normal plane wave incidence, and the
transmitted phase is evaluated for each type of these five
metasurfaces. For each metasurface, dimensions are opti-
mized to provide a perfect cross-polarized transmittance
(this is possible based on the results of the previous sub-
section) and transmission phase given in Table I. The
resulting magnitude and phase of the y- to x-polarized
wave transmission coefficient txy is depicted in Fig. 5
for the five different metasurfaces, each one based on a
different inclusion’s dimensions given in Table I.

Next, the gradient metasurface to provide an angular
deflection of 45◦ is made of a periodic arrangement of
supercells with dimension d along the x direction and 5d
along the y direction. As a result the designed meta-
surface has a desired periodic phase distribution along
the y direction (see Eq. (16)) and a uniform phase dis-
tribution along the x direction. The field distribution in
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proximity of the engineered gradient metasurface, excited
with a normally incident plane wave polarized along the
y direction, is illustrated in Fig. 6(a) where the field dis-
tribution is calculated with a full wave simulation based
on the finite element method. The distribution of the
y-polarization (left) and the x-polarization (right) of the
electric field are plotted in Fig. 6(a) at the frequency of
f = 1.5 GHz. In this simulation based on the finite ele-
ment method, periodic boundaries are chosen to mimic
the infinite extension of the metasurface along both x
and y directions, i.e., modeling a periodic supercell of di-
mensions d× 5d. In this combined design we account for
losses, i.e., helices are made of copper and are embedded
in a foam (FR 3703 from General Plastics) with dielec-
tric constant of 1.06 and loss tangent of 0.0004 as in Fig.
4. As it is clear from Fig. 6, the gradient metasurface
rotates the polarization of the incident wave by 90◦ and
refracts it into θt = 45◦. The result in Fig. 6(a) does not
show the perfect polarization rotation and deflection as
the ideal case in Fig. 3 because in the actual design of the
gradient metasurface, we have used the concept of local
periodicity in designing the five unit cells of the supercell,
which is a standard approximation in metasurface and re-
flectarray design [30, 57] but it is not fully accurate. As
a measure of the metasurface performance we define the
polarization conversion ratio (PCR) in transmission as

PCR =
|txy|2

|tyy|2 + |txy|2
(17)

where |txy| and |tyy| are the magnitude of y- to x-
polarized (cross-pol component) and y- to y-polarized
(co-pol component) transmission coefficients, respec-
tively. Fig. 6(b) shows the PCR versus frequency, as
well as the y- to x-polarized reflectance and transmit-
tance of a y-polarized incident wave. As it is obvious
from this figure we obtain a perfect (100%) polarization
conversion and 72% power transmission into the deflected
wave with the engineered metasurface. To the best of our
knowledge, this is an unprecedented result, i.e., this is
the first design of a metasurface that provides simultane-
ous deflection and polarization rotation of the incoming
wavefront with such a high efficiency.

IV. CONCLUSION

In the framework of gradient metasurfaces we have
shown that in principle, using chirality, it is possible to
obtain perfect polarization rotation of the electromag-
netic wavefront with concurrent full transmission into
a desired deflected direction. The chirality character-
istic of a metasurface serves for polarization rotation of
the transmitted plane wave with respect to the incident
one, whereas the gradient property (i.e., the spatial dis-
persion) of the metasurface grants for the wavefront de-
flection. Furthermore, we have demonstrated a possible

(a)
3

0

3−

/y d

1

1−

z 
/ 
λ

0

2.5− 2.50
/y d

2.5− 2.50

1    2      3    4    5

1    2     3     4    5

i
Ei

H

i
k

t
E

t
k

t
H

(b)

PCR

2

xyt

2

yyr

2

xyr

2

yyt

Figure 6. (a) Full wave simulation for the field distribution
resulting from normal plane wave incidence from the top on
the designed metasurface whose supercell is made of five unit
cells with parameters given in Table I. (Left) y-polarization
of the electric field showing mainly the incident. (Right) x-
polarization of the electric field showing mainly the deflected
transmitted field. It is clear that the metasurface besides
deflecting the wavefront also rotates the polarization by 90◦

degrees. (b) Plot of the PCR, the y- to x-polarized power re-
flection and power transmission coefficients versus frequency
showing an almost 100% polarization rotation, and the y- to
x-polarized power transmission coefficient (i.e, the the cross
polarized power transmission) showing a 72% power trans-
mission efficiency. Metal and dielectric losses are accounted
for in this simulation.

physical realization of the proposed device by engineering
a proper metasurface unit cell inclusion that realizes the
aforementioned combined functionalities. Our full wave
simulation results demonstrate high transmission power
efficiency of 72% at an angle of 45◦ by using only one sin-
gle layer of inclusions (i.e., a single metasurface) which
is accompanied by a perfect 90◦ polarization rotation.
Despite the fact that the results are shown for a specific
illustrative case, the method outlined in this paper is very
general and can be used for conceiving metasurfaces that
deflect wavefronts at any angle with arbitrary polariza-
tion conversion and with (in theory) perfect transmit-
tance.

In short, in a single metasurface we have combined
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iP

tP

z

y

t

Figure 7. Schematic of the power flow for a propagating wave
when passing through the deflecting metasurface. The meta-
surface is passive and changes the polarization and the direc-
tion of the transmitted wavefront with respect to the incident
one.

two interesting functionalities, i.e., a wave refraction at
a given angle and a polarization rotation, with very high
efficiency and subwavelength thickness, by using chiral
metasurface inclusions.
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Appendix A: Energy densities of the incident and
refracted waves, power balance relation, and
transmission coefficient for perfect power
transmission and polarization conversion

The characteristic of the proposed fully-transmissive
metasurface is such that the wave passes through it with-
out changing its total time-average power (when the
metasurface is lossless) and the metasurface changes the
polarization and the direction of the transmitted wave-
front with respect to the incident one. Therefore, the

total incident and refracted powers crossing the metasur-
face along the ray tube in Fig. 7 are equal. Under such
condition, the total time-average incident and transmit-
ted field energy densities are required to satisfy

E i

Et
=

cos θt
cos θi

. (A1)

Therefore in this scenario, since the total time-average
incident and transmitted energy densities, E i and Et,
are different, the wave intensity changes when passing
through the fully-transmissive metasurface. This can be
described also in the following manner, by observing the
power crossing a plane with constant z, right above and
below the metsurface. Of course such powers are equal
to each other when considering a lossless metasurface,
which implies the conservation of the normal component
of the Poynting vector from above to below the metasur-
face, i.e.,

1

2
Re

(
Et+ ×H∗t+

)
=

1

2
Re

(
Et− ×H∗t−

)
. (A2)

Substituting fields described in (1) and (2) into (A2)
leads to

Ei 2
y

cos θi
= cos θtE

t 2
x , (A3)

where Eiy = Ei0 cos θi and Etx = Et0, then

txy =
1√

cos θi cos θt
, (A4)

for a reflectionless surface. Thus for normal incidence,
txy = 1/

√
cos θt which is larger than unity for an oblique

transmission angle, without contradicting the power con-
servation law.
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