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Single cell imaging in yeast reveals the interplay between organelle size scaling and proteosome 

dynamics that impacts major aging hallmarks 

Michael Mobaraki 

ABSTRACT 

Aging is a risk factor for many diseases, and understanding the hallmarks of aging is crucial for 

developing interventions to promote healthy aging. Despite the conservation of the aging hallmarks across 

phylogeny, the order in which these hallmarks appear and their relationship to each other remains unclear. 

To address these questions, we used the budding yeast Saccharomyces cerevisiae as a model organism due 

to its short lifespan and genetic tractability. The Li lab has developed a high-throughput microfluidics 

device to trap and monitor individual yeast cells over time. Using cell tracking technology, we quantified 

tagged proteins and classified different organelle phenotypes to predict lifespan based on cellular 

characteristics such as protein levels and organelle morphology. Our analysis revealed that the proteasome 

marker Rpn11p and size scaling is a strong predictor for proteostasis stress and mitochondrial dysfunction 

hallmarks. We identified slope changes and areas of certain organelles as strong predictors of replicative 

lifespan with differences in short-lived versus long-lived cells in maintaining a stable scaling ratio. We 

investigated the relationship between organelle scaling and protein dilution and found certain nuclear 

proteins to decrease with the increasing nuclear size. Our analysis revealed the proteasome as a regulator 

of the scaling ratio and influencer of the mitochondrial morphology and activity. We provide new insights 

into the mechanisms underlying aging and potential targets for interventions to promote healthy aging. 
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INTRODUCTION 

Aging, a complex and multifactorial process, represents a major risk factor for numerous 

diseases. Understanding the hallmarks of aging is essential for developing interventions that promote 

healthy aging. Although the hallmarks of aging are conserved across phylogeny, the order in which they 

appear, and their interrelationships remain unclear1–3. To address these questions, we employed the 

budding yeast Saccharomyces cerevisiae as a model organism, owing to its short lifespan, genetic 

tractability, and conservation of biological pathways with humans4–6. Some of the most notable aging 

pathways were first discovered in yeast such as the sirtuins and the mammalian target of rapamycin 

pathway4,6. Unlike most mammalian cells, S. cerevisiae divide asymmetrically, producing a mother and 

daughter cell. S. cerevisiae replicative life span (RLS) studies measure how many daughter cells a mother 

can produce5,7. RLS studies have been used to recapitulate aging in mitotically active cells6,7. A single 

mother will produce ~10-25 daughter cells5,6. Mother cells are larger than daughter cells and harbor 

harmful proteins that are implicated in aging itself5,8. During the division of yeast cells, a mother cell will 

retain its’ cell membrane, while a daughter cell will synthesize its own5. Past studies have used these 

differences to create microfluidic devices that can capture a mother cell by biotinylating its cell 

membrane and using streptavidin beads to bind the mother and flow pressure to remove new daughter 

cells. Other microfluidic devices relied on mothers’ cell size to separate a mother and daughter cell 5,9–11. 

Major issues in using this method stem from clogging, the strength of biotinylating, inability to screen 

many strains, and loss of daughter or mother cells11. To monitor the changing dynamics of a single yeast 

mother cell, the Li lab has developed a new microfluidics device that can perform high-throughput 

screening and imaging for S. cerevisiae. This is accomplished by using a S. cerevisiae strain that inhibits 

the expression of an essential membrane protein, Pma1p, in daughter cells, thereby arresting the daughter 

cells and allowing us to monitor single mother cells throughout their lifespan. We call the system 

daughter-arresting program (DAP). Unlike past microfluidic devices, which wash away daughter cells, 

DAP allows retention of the daughter cells, making it possible to measure lifespan by counting the 

number of daughter cells surrounding a mother cell. A mother cell can be distinguished from a daughter 
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cell by fluorescently tagging the essential membrane protein, which sequesters only to the mother cell. 

However, this method is optional as I have created an image analysis cell tracking tool to identify these 

single mother cells independent of the Pma1p membrane marker. Paring the high-throughput method with 

my image analysis pipeline; protein characterization, lifespan measurements, observations of organelle 

morphological changes, and cell cycle dynamics, all within a single cell can be monitored. The 

aggregated data reveals different trajectories in the aging process as well as relations to aging hallmarks. 

Among the twelve hallmarks of aging, four are readily observed in yeast, including genomic instability, 

epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction1,2,7. Other hallmarks are either 

inapplicable to yeast (stem cell exhaustion), may not be properly modeled by yeast (altered intracellular 

communication, cell senescence, disabled macroautophagy, chronic inflammation, and dysbiosis), or may 

not exhibit age-dependent changes (telomere attrition)1,2,7,12. In S. cerevisiae and various other organisms, 

the environmental stress response (ESR) pathway impacts cellular homeostasis7,13. While not explicitly 

classified as an aging hallmark, ESR is affected by the aging process in S. cerevisiae13. Previous studies 

have identified important cell cycle regulators that change over time and may function to arrest the cell 

cycle in aged cells14. Major age-associated pathways, such as proteostasis, have been extensively 

investigated in S. cerevisiae5,8,15,16. Heat shock and chaperone proteins, which are highly conserved across 

eukaryotes, participate in proteostasis. They respond to environmental stress or protein aggregation by 

assisting in protein folding or degradation, thus implicating them in aging hallmarks5,17–19. Hsp104p, a 

heat shock and chaperone protein in S. cerevisiae, can extend the lifespan of short-lived mutants when 

overexpressed and reduces misfolded proteins8,18,19. Hsp104p has been identified as an early predictor of 

S. cerevisiae lifespan5. Hsp104p has also been used as a marker for observing the loss of proteostasis 

aging hallmark as the Hsp104p aggregates appear during times of proteostasis stress17. When cells suffer 

from an accumulation of misfolded proteins, Hsp104p will begin to aggregate and coalesce into specific 

protein inclusions found near the vacuole and nucleus. These Hsp104p protein inclusions are named as 

IPOD (Insoluble-Protein-Deposit), INQ (Intra-Nuclear-Quality-Control), and JUNQ (Juxta-Nuclear-

Quality-Control)8,17–19. The Hsp104p aggregates also appear within aged cells5,8,17. Furthermore, when 
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misfolded proteins continue to accumulate, yeast cells upregulate the Rpn4 transcription factor to increase 

proteasome subunit proteins, such as the deubiquitinated lid protein Rpn11p20,21. Rpn11p is part of the 19s 

proteasome subunit lid and has a role in removing the ubiquitination chains of proteins that are tagged for 

degradation20. It is also one of the few proteasome proteins that can rescue mitochondrial morphology 

when overexpressed22. The proteasome is responsible for the degradation of proteins and is heavily relied 

on to remove misfolded proteins, as such the proteasome is tightly regulated to ensure proper cellular 

homeostasis. The transcription factor Rpn4p is a short-lived protein (t1/2≤2 min) and is rapidly degraded 

by the proteasome and Ubr2p20,21. Ubr2p is a ubiquitin-protein ligase (E3) and is involved in degradation 

of many cytoplasmic misfolded proteins23. Rpn4p is degraded by a Ub-dependent degradation signal via 

the recognition of the 211–229 amino acids sequence24.  Rpn4p’s Ub-independent degradation is 

mediated by the recognition of the first 1–10 amino acid sequence. The ubr2Δ extends RLS by enhancing 

proteostasis function in an Rpn4-dependent manner21. However, whether overexpression of Rpn4p alone 

is enough to increase RLS is debated as ubr2Δ impacts other pathways including the glucose repressor 

Mig1p. Additionally, Rpn4 can be overexpressed by removing both degradation sequences, the Δ1–10 

and Δ211–229. The truncated Rpn4 (Rpn4*) does not increase cellular growth despite being 

transcriptionally active and increasing the proteasome24,25. Despite the disparate results, the proteasome 

has recently been linked to various aging modes, suggesting an upstream role17,26. Even within 

mammalian cells Rpn6p overexpression is beneficial to human embryonic stem cells and removal of 

aggregates in worms26,27. Within the proteostasis pathway, extensive studies have been conducted on the 

vacuole and mitochondria in S. cerevisiae 15,16. The vacuole serves as the lysosomal and amino acid 

storage compartment in S. cerevisiae, playing a role in recycling proteins within the cell28. Changes in 

vacuole acidity have been shown to lead to defective mitochondria15,16.The relationship between these two 

aging hallmarks supports a linear cascade model of aging. Mitochondria, the powerhouse of the cell, is 

involved in various roles, including proteasome maintenance29. In yeast, cellular respiration increases 

over time. The inner membrane subunit IV of cytochrome c oxidase, Cox4p, is involved in the electron 

transport chain. Several studies used Cox4p to measure mitochondrial activity such as cellular 
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respiration30,31. In yeast, young mother cells will favor glycolysis more than cellular respiration, however, 

as the cell gets older, they will switch to cellular respiration32. What causes the switch in energy 

production remains largely unknown. One hypothesis stem from a decrease in glucose import possibly 

due to deregulated nutrient sensing or a decrease in the glucose transporters32. Different mitochondrial 

phenotypes have been associated with distinct aging trajectories15,33AInterestingly, the amount and shape 

of the mitochondria changes in response to metabolic demands, yet the size of the mitochondria correlates 

strongly with the cell volume34. Besides the mitochondria, many other cellular organelles have shown a 

strong correlation with cell size35–37. The cell size has been observed to increase with time in aged 

fibroblast cells and yeast cells34,36,38,39. The scaling of organelle sizes is a conserved phenomenon that 

happens in even the smallest to the largest of animals37,38.  However, what drives the increase in cell size 

and organelle size remains largely unknown. One theory proposes that the increase in cell size is due to 

protein translation, this is largely supported from knockout out experiments of ribosomal proteins that 

decreases cell size and increases RLS35,40. It is also unclear whether the scaling changes of organelle sizes 

is due to aging hallmarks or whether they may drive the appearance of these hallmarks. In this study, we 

explored the relationship between the proteasome and aging trajectories commonly found in long-lived 

cells. We identified the proteasome as a regulator of cell size to nucleus area ratio and discovered that 

proteasome perturbation influences mitochondrial morphology and activity. We demonstrated that the 

scaling of organelles is a strong predictor in the proteostasis stress and mitochondrial dysfunction aging 

hallmark. Our findings provide novel insights into the mechanisms underlying aging and further roles the 

proteasome may have. It also unveils for the first time a possible impact that scaling may have on the 

appearance of aging hallmarks. Furthermore, our results highlight the proteasome as an upstream 

regulator of organelle scaling. In summary, our study in Saccharomyces cerevisiae sheds light on the 

relationship between proteasome function and aging trajectories in long-lived cells, offering new 

perspectives in the intricate interplay between aging hallmarks. By elucidating the role of the proteasome 

as an upstream regulator of organelle scaling and a determinant of cell size to nucleus area ratio, our 
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findings contribute to a more comprehensive understanding of the aging process and suggest potential 

targets for interventions aimed at promoting healthy aging. 
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CHAPTER 1: Proteasome and scaling as a predictor of RLS with different aging trajectories. 
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ABSTRACT 

 This study investigates the complex interplay between various cellular components and their 

influence on Replicative Lifespan (RLS). Initially, our screen identified significant predictors for RLS, 

with a notable observation regarding the impact of Green Fluorescent Protein (GFP) tags on proteins. We 

identified Rpn11p as a strong predictor of RLS. Additionally, we identified contrasting behavior between 

the nuclear Rpn11p and cytoplasmic Rpn11p intensity. This was contrary to the chaperone protein 

Hsp104p. When examining the nucleus size changes, we identified the inverse between the increasing 

nucleus area and the decreasing Rpn11p nuclear intensity. Overall, our observational findings points to a 

possible relationship between the nucleus size and certain nuclear proteins.     
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RESULTS 

Fig. 1.1A, depicts an overview of the microfluidic device set up, which depicts a 96 well plate 

that has been modified to trap and contain 32 different strains at a time; each well can hold 220 individual 

cells. The DAP strain uses the differences in asymmetric division between the daughter and mother cells 

to delineate between mother and daughter cells. 

 

Fig 1.1. Li lab microfluidics layout  

Our microfluidics device differs from past devices, as daughter cells are being arrested by 

inhibiting an essential membrane protein, Pma1p, needed for daughter cell propagation. The microfluidic 
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device uses a pressure gradient to move the flow of new media, thus keeping the cells nourished. The 

cells are plated on a 96 well plate, which can screen up to 32 different strains at a time. Each of the 32 

wells, highlighted by the red lines in Fig. 1.1A, can hold up to 220 individual mother cells. Fig. 1.1A 

shows a layout of the device and Fig. 1.1C shows a 40X zoomed in image of cells trapped within a 

microstructure within an individual well. After exploring several datasets, we screened ~35 different 

markers and found the proteostasis and stress response pathways to be among our top hits. To quantify 

proteins and determine organelle structures, proteins were tagged with a Green Fluorescent Protein (GFP) 

on the carboxyl terminus41. Generated time series data measuring protein and phenotypic changes for over 

20-100 individual dividing S. cerevisiae mother cells, per strain, in the span of 72 hours (images are taken 

every 20 minutes). Fig 1.2 depicts the correlations between our top hits of the GFP tagged strains. After 

quantifying GFP levels between differently tagged strains and filtering out false positives, I found 

Rpn11p, part of the 19s proteasome subunit lid, as our top predictor for RLS. Interestingly, we found 

different components of Rpn11p to have strong predictive properties. 
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Fig 1.2. Screen top predictors for RLS based on protein intensity.  

(A) The graph highlights the 19 most notable protein hits. Every red 'X' symbol on the graph corresponds to a 

distinct protein that was tagged with GFP at its carboxyl terminus. The x-axis represents the time in hours, marking 

the exact moment when the maximum Pearson correlation was detected for the cells. The number of cells was 

variable among the strains, with a minimum of 20 dividing cells being used for each Pearson correlation analysis. 

Initially, many of these markers showed strong correlations, however, after careful observations 

some of the markers influenced lifespan like Rap1p or led to alternative phenotypes when tagged with 

other markers like Trx2p. Transcription factors and nuclear markers were dropped as they tended to 

influence lifespan or lead to unwanted phenotypic changes. Other nuclear markers like Fob1p, Sir2p, and 

Gsh1p had very weak GFP signal and were excluded in future downstream analysis. Cox4p is preferred 

over Mdm38p because of its relationship with cellular respiration, which tends to increase in older yeast 

cells30,31. Ost1p proved to be very intriguing, however, obtaining proper organelle morphology proved to 

be challenging. Uba1p also had a strong correlation, however it is within the same pathway as Rpn11p 

and for this reason we decided to proceed with Rpn11p42. Rpn11p is part of the proteasome subunits, 

which is found in both the cytoplasm and the nucleus43.  
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Fig 1.3. Rpn11p Intensity correlations with RLS overtime.  

These graphs integrate data collected from dual-reporter strains of Rpn11p-mCherry. (A) The x-axis displays the 

Replicative Life Span (RLS) of individual mother cells that continue to divide at the 22-hour mark. The y-axis, in 

contrast, exhibits the log10 intensity of Rpn11p, computed following the Mobaraki methodology. (B-D) delineates 

the time in hours, denoted on the x-axis, for cells in the process of division. The y-axis represents a variety of 

calculated outputs: the Pearson correlation coefficient, the t-test value, and the count of cells undergoing division 

over time. The blue dot highlights the instance at 22 hours where the Pearson correlation value reaches its apex, 

which is related to the number of cells and the t-test value. The presented data aggregates findings from 12 

independent experiments, each differing in terms of the GFP-tagged protein, but consistently featuring an Rpn11p-

mCherry tag (N= 650).    

Proteasome function has been implicated to decline with cellular aging44. Interestingly, we noticed that 

when Rpn11p regions are partitioned based on their localization, the nuclear levels of Rpn11p dropped 

significantly (Fig. 1.4B). Conversely, the cytoplasmic levels initially rise before eventually diminishing 

over time (Fig. 1.4C). To corroborate our observations, we examined the Rpn6p mCherry tagged levels in 

both subcellular regions (Fig. 1.4E-F). Rpn6p, also a component of the proteasome subunit, facilitates the 

coupling of the 19s and 20s constituents26,27. Remarkably, in both scenarios, the proteasome proteins 

exhibited a decrease in their nuclear levels. 
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Fig 1.4. Proteasome proteins subcellular regions have different trajectories over time.  

(Figure caption continued on the next page). 
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(Figure caption continued from the previous page). 

(A) The image depicts a single cell from a dual-reporter strain, expressing Rpn11p-mCherry and Hh01p-GFP. 

Colocalization is apparent in the image on the far right. A Gaussian Mixture Model (GMM) is employed to 

segregate and quantify regions based on Rpn11p intensity. This method facilitates the determination of organelle 

shape and protein localization. (B-D) represents the aggregated Rpn11p data across 12 experiments. The time in 

hours is on the x-axis, tracking live cells that continue to divide. Only time points featuring a minimum of 25 cells 

are included in the analysis. (B) charts the mean nuclear intensity of Rpn11p over time. (C) displays the mean 

cytoplasmic intensity of Rpn11p over the same period. (D) enumerates the total number of dividing cells for each 

time point. The shaded region indicates the standard errors of the mean (SEM). (E-G), is the Rpn6-mCherry strain 

with a total of 62 cells being used. (E) is the nuclear Rpn6p intensity. (F) is the Rpn6 cytoplasmic intensity. (G) is 

the number of dividing cells overtime.  

Upon noticing variations in Rpn11p levels across different subcellular regions, we next sought to 

understand how this decline relates to the Hsp104p chaperone protein, a component of the proteostasis 

pathway. Hsp104p is generally found in the cytoplasm, however, during periods of high stress the protein 

can be found to aggregate in the nucleus8. Prior studies have documented a time-dependent increase in 

Hsp104p5. To assess the interplay between proteasome and chaperone protein changes, we tagged 

Hsp104p and Rpn11p in the same cell and quantified their total mean, intensity, nuclear intensity, and 

cytoplasmic intensity. Although the combined protein sum increased over time, only Hsp104p displayed 

an overall increase in both cytoplasm and nuclear levels (Fig. 1.5). Intriguingly, this suggests that certain 

proteostasis pathway proteins, such as Hsp104p, might increase with time, while others like the 

proteasome decrease.  
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Fig 1.5. Proteostasis proteins maintain different aging dynamics.  

(Figure caption continued on the next page). 
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(Figure caption continued from the previous page). 

graphs are the average variations for Hsp104p-GFP and Rpn11p-mCherry mean protein levels in actively dividing 

live cells. It comprises separate plots for Hsp104p, Rpn11p, and a combined view of both proteins. (A-C), depicts 

the sum of proteins present within the cells. (D-F), is the protein intensities, which are normalized for the cell area. 

(G-I), is the nuclear intensity of the proteins. (J-L), is the intensity of the proteins in the cytoplasm. The nuclear and 

cytoplasmic sub-regions have been defined based on the GMM of the Rpn11p marker. The study incorporated a 

total of 127 cells, with time points that had fewer than 25 actively dividing cells being omitted. The data is the 

aggregation of two independent experiments. The SEM is represented by the shaded regions in the graph. 

 

Considering our observation that nuclear Rpn11p levels decrease over time, we aimed to ascertain if this 

trend held true for other types of nuclear proteins. For this purpose, we measured Hsf1p, Whi5p, and 

Hh01p levels. Hsf1p, the heat shock transcription factor, is known to increase under conditions of heat 

shock or cellular stress5. Whi5p is a regulator of yeast cell cycle, while Hh01p is a histone protein45,46. 

Our findings indicate that, in general, these proteins appear to increase. However, the trajectory of Hh01p 

aligns closely with that of Rpn11p (Fig. 1.6A). Conversely, the Hsf1p and Whi5p proteins seem to 

increase over time and maintain a relative steady state, illustrating a differential aging pattern amongst 

nuclear proteins (Fig. 1.6B-C). 
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Fig 1.6. Nuclear proteins Hh01p, Whi5p, and Hsf1p display distinct trajectories. 

(A-D), is the nuclear intensities of Hh01p, Whi5p, and Hsf1p all of which are tagged with GFP. The x-axis is the 

time in hours of live cells and the y-axis for the top three graphs is the mean protein nuclear intensity levels of the 

respective proteins. Times with less than 15 live dividing cells are omitted. The shaded areas are the SEM. (D-E) is 

the number of cells alive over time for the Hh01p, Whi5p, and Hsf1p tagged strains. Whi5p and Hsf1p both had an 

Rpn11p-mCherry tag. The Hh01p-GFP marker is an aggregation of our dual tagged Hh01p strains, some of which 

had Rpn11p-mCherry. 

To investigate the factors behind the observed alterations in nuclear Rpn11p levels, we found a 

relation between increasing nuclear size and decreasing Rpn11p levels. With GMM, we determined the 

relative area of the nucleus and noted a time-dependent increase. This implies an increasing nucleus size 

could be diluting Rpn11p nuclear levels or the inverse. Our findings also revealed a strong correlation 

between nucleus area and cell area (Fig. 1.7A). 
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Fig 1.7. Cell area and nucleus area are strongly correlated to each other. 

(A-C) The x-axis represents the time in hours for live dividing cells. These plots display the mean organelle areas of 

live cells. Times with less than 25 dividing cells are excluded. (A) illustrates the mean nuclear area over time. (B) 

presents the mean cellular area over time. The shaded area is the SEM. (C) concurrently is the mean nuclear and 

cellular areas over time, with the purple line indicating the nuclear area and the brown line representing the cellular 

area. (D) is the Spearman and Pearson correlation between cellular and nuclear area over time. Each dot corresponds 

to a Spearman value calculated using all dividing cells at that time, comparing their nuclear area to their cellular 

area. (E), is the t-test values calculated using the Pearson correlation. (F) Enumerates the sum of dividing cells per 

time. The blue dot represents when the strongest Pearson correlation with the highest number of dividing cells 

(time=22hrs, Pearson=.603, Spearman=.59, N= 477, t-test=16.48). 

After observing an increasing nucleus area and cell area, we wanted to ascertain whether the 

organelle sizes correlated with RLS. Interestingly, the nucleus had the strongest negative correlation with 

RLS. Longer lived cells had a smaller nucleus area at 27 hours (Fig. 1.8A, R=-.42). The ratio between the 

nucleus to cell area also had a strong negative correlation with RLS at 27 hours (Fig. 1.9A, R=-.444). The 

ratio correlation is likely driven by the nucleus area as the cell area had a relatively weak correlation with 

RLS (Fig. 2.1A, R=-.215). The data suggests a potential relationship between scaling dynamics and RLS. 
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Fig 1.8. Nucleus area negatively correlates with RLS. 

These graphs integrate data collected from dual-reporter strains of Rpn11p-mCherry. (A) is the strongest negative 

correlation between nucleus area and RLS at time 27 hours. The x-axis is the RLS of individual mother cells and the 

y-axis is the log10 nucleus area. Each blue dot represents a single mother cell. Pearson correlation is -.42, number of 

live cells is 375, P value is 4.262860e-19, and t-test value is 8.93. (B) is the Pearson correlation between the nucleus 

area and RLS overtime. (C) is the t-test value corresponding to the Pearson correlation. (D) is the number of cells 

overtime which are still dividing.  
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Fig 1.9. Ratio of nucleus area to cell area negatively correlates with RLS. 

These graphs integrate data collected from dual-reporter strains of Rpn11p-mCherry. (A) is the strongest negative 

correlation between the ratio of the nucleus to cell area vs RLS at time 27 hours. The x-axis is the RLS of individual 

mother cells and the y-axis is the ratio of the nucleus to cell area. Each blue dot represents a single mother cell. 

Pearson correlation is -.444, number of live cells is 375, P value is 1.04e-21, and t-test value is 9.573. (B) is the 

Pearson correlation between the ratio of the areas and RLS overtime. (C) is the t-test value corresponding to the 

Pearson correlation. (D) is the number of cells overtime which are still dividing. 
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Fig 2.1. Cell area does not strongly correlate with RLS. 

These graphs integrate data collected from dual-reporter strains of Rpn11p-mCherry. (A) is the strongest negative 

correlation between the cell area vs RLS at time 11 hours. The x-axis is the RLS of individual mother cells and the y 

axis is the cell area. Each blue dot represents a single mother cell. Pearson correlation is -.215, number of live cells 

is 592, P value is 9.59e-8, and t-test value is 5.334. (B) is the Pearson correlation between the cell area and RLS 

overtime. (C) is the t-test value corresponding to the Pearson correlation. (D) is the number of cells overtime which 

are still dividing. 
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Fig 2.2. Cells with decreasing slope rate have a longer RLS. 

The Slope rate of the Nucleus and Nucleus to Cell area ratio between .67-11.67 hrs and 13-26.67hrs. Cells are the 

aggregation of twelve independent experiments with a Rpn11p-mCherry tag. The x-axis is the RLS, and the y axis is 

the slope rate between the time intervals. Each Blue dot represents a single mother cell and its designated slope. (A-

C), is the slope rate between .67-11.67 hours. (D-E) is the slope rate from 13.33-26.67 hours. Pearson correlation is 

displayed as the R values and number of cells is written in the box. Cells in which missing time points appeared 

during these intervals are removed.  

Although the cell area had a relatively weak correlation with RLS, we found the slope rate of the cell area 

between .67 to 11.67 hours to be negatively correlated with RLS. Additionally, we found cells with a 

faster nuclear slope rate and ratio of nucleus to cell area between the hours of 13.3hrs to 26.6hrs had a 

shorter RLS. However, this correlation seems to be driven largely by short-lived cells (Fig. 2.2). The 

slope changes and the increasing cell area led us to explore whether trajectories between the cell area, 

nucleus area, and ratio existed between budding events. Our microfluidics device and continuous imaging 

of mother cells gives a detailed overview of cell growth and cell division dynamics, which can lead to 

mechanistic insight. We recorded the time at which each bud appeared and plotted the time interval 

between two successive budding events as a function of the generation (Fig. 2.3). We observed differing 
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dynamics between the cell area and nucleus area, where the cell area grows at a more linear rate while the 

nucleus area remains relatively consistent before increasing in size during the last few buds (Fig. 2.3B). 

Additionally, the ratio between the nucleus to cell area jumps towards the last few buds (Fig. 2.3C). 

 

Fig 2.3. Bud generations of single cells reveal different increasing trajectories of organelle sizes. 

(A-C) is the cell area, nucleus area, and ratio between the nucleus to cell area. The x-axis represents the number of 

buds left depicted as Generation and the y-axis represents the respective values. The time variable is removed as 

cells are synchronized by generation. Each blue dot represents the first budding event for the cells. The graphs on 

the bottom are the mean area curves of live budding cells. The standard error mean is depicted in the vertical pink 

line. The graphs are representative of the dynamics seen graphing 300 cells with RLS ranging from 5 – 40 buds.  

Just like in yeast, passaged fibroblast cells have an increasing nucleus area39. The nucleus area is also a 

biomarker of cellular senescence in fibroblast, astrocytes, and neuron cells36. To determine whether the 

phenomenon of increasing nucleus size exists in other tissue types, I reanalyzed publicly available 

datasets47,48. In differently aged mice liver tissue, the nucleus area increases in 24 months when compared 

to 3 months and 12-month-old mice (Fig. 2.4.1)47. Additionally, when observing the nucleus area of 

cryosection lung samples, cells displayed an increasing nucleus area with time, except for the 2-month-
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old mice (Fig. 2.4.2)48. It is important to note that for both lung and liver sections I did not separate out 

specific cell populations. In the lung tissue, immune cells such as macrophages and monocytes are highly 

prolific48. Overall, the increasing nucleus size highlights a conserved mechanism where nucleus size 

increases in older cells.   

 

Fig 2.4.1. Nucleus area increases in aged mice livers. 

 (A), the violin plot depicts the differently aged mice in months and the y-axis displays the nucleus area of the 

differently aged mice. The white dot is the nucleus area median. There are ~1034 nucleus for 3 months, 693 nucleus 

for 12 months, and 616 nucleus for 24 months. Mann-Whitney U test is used to calculate the significance with * < 

.05. The P value for 12 months to 24 months is 9.931e-22 and 24 months to 3 months is 8.245e-29. 
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Fig 2.4.2. Nucleus area increases in aged mice lungs.  

(A), the violin plot depicts the different aged mice lungs. PN5 is post-natal day. The y-axis displays the nucleus area 

of the differently aged mice. The white dot is the nucleus area median. There are 6016 cells for PN5, 2568 cells for 2 

weeks, 13041 cells for 1.5 months, 9288 cells for 2 months, 3385 cells for 13 months, and 3900 cells for 18 months. 

Mann-Whitney U test is used to calculate the significance with * < .05.   

Because of the predictive properties of organelle shape, I next explored whether different trajectories exist 

between short-lived vs long-lived cells. Short-lived cells are defined as mother cells with less than 15 

total buds and long-lived have 15 or more buds. When observing the budding rate overtime, short-lived 

cells had a longer budding rate when compared to long-lived cells overtime (Fig. 2.5A). When separating 

the sizing trajectories between the two groups, the mean nucleus area and scaling ratio of the nucleus to 

cell area was higher in short-lived cells overtime (Fig. 2.6).    
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Fig 2.5. Short-lived cells have a longer budding rate.  

Plot displays the budding rate difference between long-lived vs short-lived cells. The x-axis is the time in hours of 

live dividing cells. Time points containing less than 10 actively dividing cells are dismissed. (A), is the mean 

budding rate of dividing cells on the y-axis. The SEM is depicted as error bars. (B), is the -log10 P value calculated 

using Mann-Whitney t-test. Cells are the aggregation of twelve independent experiments with a Rpn11p-mCherry 

tag. 

 

Fig 2.6. Long-lived cells have an increasing nucleus and cell area with a steady scaling ratio.  

The figure displays the nucleus and cell area differences in short-lived vs long-lived cells. Short-lived cells are 

classified as cells with a RLS less than 15 and long-lived is classified as cells greater than or equal to 15. The x-axis 

is the time in hours of live dividing cells. Times with less than 25 actively dividing cells are excluded. The red 

curves are the short-lived cells (N=327, mean RLS=9.16) and the blue curves are the long-lived cells (N=323, mean 

RLS= 20.21). (A) is the mean nucleus area of the short-lived in red and the long-lived cells in blue (P value is 6.95e-

3). (B) is the mean cell area of the short-lived in red and the long-lived cells in blue (P value is 2.20e-8). (C) is the 

nucleus to cell area ratio (P value 6.82e-9). All P values are calculated using the Mann-Whittney U test. SEM is the 

shaded region. Cells are the aggregation of twelve independent experiments with a Rpn11p-mCherry tag. 

 

Seeing that short-lived and long-lived cells displayed distinct sizing trajectories, we sought to determine 

whether the same cells had similar Rpn11p trajectories. We found that the short-lived cells had a steeper 

decline in nuclear Rpn11p intensity and a higher cytoplasmic Rpn11p intensity (Fig. 2.7).  This is 

contrary to the chaperone protein Hsp104p, which is found to increase with time (Fig. 1.5). Fig. 2.8 
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depicts a representative curve of a single cell. Keep in mind not all cells display the same exact 

trajectories.  

 

Fig 2.7. Rpn11p nuclear and cytoplasmic levels Differ in long-lived vs short-lived cells.  

The figure displays Rpn11p differences in short-lived vs long-lived cells. Short-lived cells are classified as cells with 

a RLS less than 15 and long-lived is classified as cells greater than or equal to 15 RLS. The x-axis is the time in 

hours of live dividing cells. The red curves are the short-lived cells (N=327, mean RLS=9.16) and the blue curves 

are the long-lived cells (N=323, mean RLS= 20.21). (A) is the mean Rpn11p nucleus intensity of the short-lived in 

red and the long-lived cells in blue (P value is 3.38e-4). (B) is the mean Rpn11p cytoplasmic intensity of the short-

lived in red and the long-lived cells in blue (P value is 5.40-19). All P values are calculated using the Mann-

Whittney U test. SEM is depicted as the shaded area.  
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Fig 2.8. Single cell curve representation displaying organelle area and Rpn11p trajectories.  

Plot displays a representative image of a single cell’s organelle areas and Rpn11p changes. The x-axis is the time in 

hours. The cell is imaged every 20 minutes. The y-axis is the normalized levels of the values from 0 to 1. The blue 

vertical line is the appearance of a bud. The orange curve is the Rpn11p cytoplasmic intensity, and the red curve is 

the Rpn11p nucleus intensity. Both are identified using the GMM. The black curve displays the cell area, and the 

purple curve is the nucleus area.  
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DISCUSSION 

Our initial screen pinpointed potent predictors for RLS (Fig. 1.2). Notably absent from existing literature is 

the potential impact of GFP tags on proteins; we observed that certain tags reduced lifespan. Rpn11p emerged as 

having a robust correlation with RLS. Upon partitioning Rpn11p regions, we noted the cytoplasm's modest rise over 

time before its decline, while the nuclear region consistently decreased (Fig. 1.4). Contrarily, not all proteostasis 

proteins exhibited this decline, with Hsp104p presenting a more linear increase (Fig. 1.5). It raises the question of 

why cells might increase Hsp104p levels but not those of proteasome proteins. It's plausible that a regulatory 

disconnect exists within the proteostasis pathway since one would anticipate the cell bolstering both pathways under 

heightened proteostasis stress. Intriguingly, nuclear proteasome proteins appear to wane over time (Fig. 1.4). The 

trigger for this decline remains elusive, but our observations hint at a possible link with the expanding nucleus area 

over time (Fig. 1.7). Yet, this decrease in nuclear proteins isn't universal; proteins like Whi5p and Hsf1p displayed 

increasing concentrations (Fig. 1.6), hinting that certain proteins might adjust in proportion to organelle size. 

Whether this adaptation is promoter- or protein-driven is an open question. Our data further revealed both nucleus 

and cell areas expanding over time, with only the latter showing a steady linear trajectory (Fig. 1.7 and Fig. 2.3). 

Unlike the cell area that maintained a steady increase over time, the nucleus area displayed a rapid growth towards 

the last generations (Fig. 2.3). One possibility is that the nucleus size is adapting to match the cell size, implying that 

an increase in cell area might stimulate the nucleus to expand, potentially driven by cytoplasmic protein translation. 

This could also be propelled by an augmented extracellular protein import. This phenomenon of nucleus size 

augmentation is also evident in various mouse tissues, suggesting evolutionary conservation. In short-lived cells, we 

discerned distinct patterns in both scaling size and Rpn11p levels (Fig. 2.6 and Fig. 2.7). These varied trajectories 

imply a potential causal link between proteasome dysregulation and size scaling. 
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CHAPTER 2: Determining causal relationship between nuclear size and proteasome. 
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ABSTRACT 

The causes and drivers of aging have remained unclear for a long time. It is still uncertain 

whether aging occurs in a linear cascade model or a parallel model. In our previous chapter, we identified 

changes in nucleus size and proteasome nuclear intensity. Whether one is causal of the other remains to 

be elucidated. Methods to understand temporal patterns are often confounded by the difficulty of 

capturing nonlinear relationships. Interestingly, most real-world time series examples, including our own 

dataset, are non-linear. Here, I utilized a non-linear Granger causality approach to determine whether 

changes in the proteasome preceded those of the nuclear area. I found the proteasome to be a strong 

determinant of nucleus size. Alterations in the proteasome led to an increased nucleus size, but 

interestingly, this was not due to an influx of Rpn11p into the nucleus, suggesting a strong relationship 

between the active proteasome and nucleus size scaling. 
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RESULTS 

 

  

Fig 3.1. Granger causality reveals Rpn11p nuclear intensity as an early predictor of nucleus area.  

Predicting temporal order using Granger causality with decision trees. The following heatmaps display the -log10 P 

values calculated from an F-test. (A), is using Rpn11p nuclear intensity to predict nucleus area in later times. (B), 

predicting Rpn11p nucleus intensity based on nucleus area. The time points for both the y-axis and x-axis are the 

time in hours for the respective variables. Dataset is an accumulation of our Rpn11p-mCherry strains with ~650 

cells. Time points with less than 56 dividing cells are excluded.  

Seeing that the proteasome dynamics and scaling size seemed to be related, we wanted to 

determine the temporal order between the Rpn11p nuclear levels and nucleus area. By using Granger 

causality with decision trees, I captured the non-linear relationships of the variables and determined 

temporal ordering between the nucleus area and proteasome49–51. The exact method was tested and 

validated using our mitochondrial and vacuole dataset (see supplemental and methods). Surprisingly, our 

model indicated that Rpn11p nuclear intensity is predictive of the nucleus area during earlier times of 2-5 

hours (Fig 3.1A). On the other hand, the nucleus area seemed to be weakly predictive of Rpn11p intensity 

(Fig 3.1B). Although our non-linear Granger causality approach indicated a sequential order, it cannot 

alone determine causality. To prove causality, we sought to perturb the proteasome and determine 

whether scaling dynamics are also perturbed. Decreasing the proteasome through the rpn4Δ curtailed 

lifespan and led to a higher nucleus size and ratio between nucleus to cell area (Fig. 3.2A-E). 

Interestingly, by amplifying the proteasome via ubr2Δ deletion, both the nuclear area and the overall cell 
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size are enlarged (Fig. 3.2F-J). This facilitates the maintenance of a stable scaling ratio between the 

nuclear and cell area over an extended duration. To verify the influence of proteasome activity on the 

scaling ratio, I induced Rpn4* variant at 5.5 hours using an estradiol-inducible system. Rpn4*, is known 

for its stability and resistance to Ubr2-mediated degradation24,25 (Fig. 3.2K-O).  As expected, Rpn11p 

levels increased along with cell area, nucleus area, and the ratio. This indicated that the proteasome 

changes influence the scaling factor in cells thereby proving causality.  

 

Fig 3.2. Proteasome perturbations influence the size scaling dynamics.  

The graphs compare the different proteasome perturbations of rpn4Δ, ubr2Δ, and Rpn4* strains to the control. All 

strains have Cox4p-GFP tag and a Rpn11p-mCherry tag. The sequence of the graphs, from left to right, represents 

Rpn11p nuclear intensity, Rpn11p cytoplasmic intensity, cell area, nucleus area, and the ratio of the nucleus to cell 

area. The y-axis corresponds to the mean values depicted in the graph titles. The x-axis is the hours of live cells 

overtime. Time points with fewer than 15 live dividing cells are excluded from analysis. The red curves denote the 

mean values for the respective knockout strain, while the blue curves indicate the mean values for the control. (A-E) 

is the rpn4Δ in red (N =47, mean RLS=4.04) and in blue the control (N=47, mean RLS=11.21). (F-J), is the ubr2Δ 

in red (N=61, mean RLS=16.69) and in blue the control (N=46, mean RLS=13.24). (K-O), is the Rpn4* (N=103, 

mean RLS=13.31) in red which received 16nM of estradiol at 5.5 hours as designated by the pink vertical line. The 

blue curve is the control (N=107, mean RLS=13.72). The control contains the Rpn4* construct but received no 

estradiol. The Rpn4* experiment is the aggregated data of two independent experiments. The P values are depicted 

in the graphs and are calculated using a Mann-Whitney U test. The shaded region signifies the SEM. 

To confirm whether perturbation of Rpn4* increases Rpn11p activity and nucleus size, induction 

was performed at 19.2 hours (Fig. 3.3). Just as predicted, Rpn11p and the nucleus area increased. 
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However, whether the increase in nuclear area is due to the nuclear influx of Rpn11p proteins remained 

ambiguous. Targeting the nucleus transporter wasn't feasible due to broad protein impact. Thus, a Rpn11p 

mCherry with a SV40NLS tag was constructed. The estradiol construct was integrated into the genome in 

a strain background which had endogenous Rpn11p tagged with mCherry. Using the same fluorescent tag 

did not affect our GMM model in separating out regional intensities as the induced SV40NLS protein 

becomes significantly higher than the endogenous Rpn11p mCherry. Overexpressed Rpn11p-SV40NLS 

remained in the nucleus allowing us to observe whether nuclear size changes were due to the increasing 

Rpn11p influx. Despite no observable increase in nuclear size post-induction, there was a noticeable 

reduction in RLS and remaining buds (Fig. 3.4). This indicated that an increase in nuclear Rpn11p may 

not be beneficial to the cell. Furthermore, we did notice that there was an increase in the cytoplasmic 

Rpn11p level. This is likely the endogenous Rpn11p-mCherry, which may have been displaced due to the 

induced Rpn11p-SV40NLS protein. Attempts to solely increase Rpn11p led to difficulty in nucleus 

segmentation with no difference in lifespan or the number of buds left (supplemental). 

 

Fig 3.3. Temporally perturbing the proteasome at 19.2hrs increases the scaling dynamics.  

The graphs display the Rpn11p intensity, and the nucleus organelle changes when Rpn4* is induced at a different 

time. The sequence of the graphs, from left to right, represents Rpn11p nuclear intensity, Rpn11p cytoplasmic 

intensity, nucleus area, and the ratio of the nucleus to cell area. The y-axis corresponds to the mean values depicted 

in the graph titles. The x-axis is the hours of live cells overtime. Time points with fewer than 15 live dividing cells 

are excluded from analysis. (A-D), is the Rpn4* (N=115, mean RLS=16.5) in red which received 16nM of estradiol 

at 19.2 hours as designated by the pink vertical line. The blue curve is the control (N=114, mean RLS=18.03). The 

control contains the Rpn4* construct with no estradiol. The experiment was performed twice, and the figures 

represent the cumulative data. The P values are depicted in the graphs and are calculated using a Mann-Whitney U 

test. The shaded region signifies the SEM.  
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Fig 3.4. Nuclear size increase is not driven by nuclear influx of Rpn11p.  

(A-D), display the Rpn11p intensity, and the nucleus organelle changes when Rpn11p-SV40NLS is induced at time 

19.2 hours. The sequence of the graphs, from left to right, represents Rpn11p nuclear intensity, Rpn11p cytoplasmic 

intensity, nucleus area, and the ratio of the nucleus to cell area. The x-axis is the hours of live cells overtime. Time 

points with fewer than 15 live dividing cells are excluded from analysis. The Rpn11p-SV40NLS (N=33, mean 

RLS=11.74) is in red and received 16nM of estradiol at 19.2 hours as designated by the pink vertical line. The blue 

curve is the control (N=42, mean RLS=14.94). The control contains the Rpn11p-SV40NLS construct with no 

estradiol. The P values are depicted in the graphs and are calculated using a Mann-Whitney U test. The shaded 

region signifies the standard error mean. (E), is a survival curve with the number of generations on the x-axis and 

the fraction viable on the y-axis. (F), is the number of buds left after media is switched with or without estradiol. 

The P value is calculated using Man-Whitney U test and is 5.083e-04. 

Given the relationship between the proteasome and nucleus size, we investigated differences in 

proteasome activity in fob1Δ, sgf73Δ, and dnm1Δ mutants. Some of these mutants have been noted to 

also affect the scaling of certain organelles35,52. The fob1Δ reduces rDNA accumulation, rDNA increases 

towards the end of a cell’s lifespan, which impacts nucleus area52. In fob1Δ cells, nucleus area did not 

exhibit a significant increase at the end of the lifespan, thus affecting the scaling ratio (Fig 3.5C-E).  

Notably, Rpn11p levels in both nuclear and cytoplasmic compartments is higher in fob1Δ cells (Fig 3.5A-

B). This supports the idea that rDNA can influence proteasome proteins17. However, the absence of 

elevated scaling ratio, nucleus, and cell area in fob1Δ cells suggests that proteasome activity is not the 

exclusive determinant of the scaling ratio. Gene deletions affecting cell growth have previously been 

established to affect the cell and nucleus area35. We identified sgf73Δ to influence the nucleus and scaling 

              

    

    

    

     

     

     

     

     

       

                            

              

   

    

    

    

    

    

    

    

    

       

                            

 
 

 
 

  
 

 
 
 

 
  

 
 

  
 

  
  

  
 

 
  

 

             

                                  

 
 

 
 

  
 

 
 
 

 
  

 
  

 
  

 
 

  
  

 
  

 
 

  
 

             

                                      

              

  

  

  

   

   

   

   

   

          

                            

              

    

    

    

    

    

    

    

       

                            

             

 
 

 
 

  
 

 
  

 
 

  
  

 

                                 

 
 

 
 

  
 

  
 

  
  

 
 

 
  

 
 

  
 

  
 

  
  

  
 

             

                           

              

           

 

  

  

  

  

   

 
  

 
  

 
 

  
  

 
  

  
 

 

                 

                        

                                       

                     

 

 

  

  

  

 
 
 

 
 
  

 
  

 
 
 
 
  

 
  

   

                                    

    

  



35 
 

ratio (Fig 3.5H-J). Interestingly, we found sgf73Δ to also influence Rpn11p dynamics as the nuclear and 

cytoplasmic intensity seemed to be lower and more constant overtime (Fig 3.5F-G). This could suggest 

proteasomal decline is due to increasing protein translation. Perhaps the increase in protein translation 

drives the scaling size, which in turn dilutes the proteasome level. Interestingly, the constant proteasome 

observed in the sgf73Δ coincided with a steady scaling ratio (Fig 3.5F-G). Dnm1 is a dynamin related 

GTPase and has a role in mitochondrial fission. The knockout affects mitochondrial morphology and 

leads to aggregate mitochondrial structures53. The dnm1Δ did not seem to change the dynamic of Rpn11p, 

however, cells towards the end of life had an increasing nucleus area and nucleus to cell area ratio (Fig 

3.5N-O). The dnm1Δ also led to an initial increase in the cytoplasmic Rpn11p levels (Fig 3.5K-L). 

Overall, it appears that dnm1Δ had little influence on proteasome activity and scaling, suggesting that 

perhaps mitochondrial morphology may be more specific to the mitochondria changes. 

 

Fig 3.5. fob1Δ, sgf73Δ, and dnm1Δ display different scaling dynamics.   

The graphs compare the different fob1Δ, sgf73Δ, and dnm1Δ strains to the control. All strains have a Cox4p-GFP 

tag and a Rpn11p-mCherry tag. The sequence of the graphs, from left to right, represents Rpn11p nuclear intensity, 

Rpn11p cytoplasmic intensity, cell area, nucleus area, and the ratio of the nucleus to cell area. The y-axis 

corresponds to the mean values depicted in the graph titles. The x-axis is the hours of live cells overtime. Time 

points with fewer than 15 live dividing cells are excluded from analysis. The red curves denote the mean values for 

the respective knockout strain, while the blue curves indicate the mean values for the control. (Figure caption 

continued on the next page).  
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(Figure caption continued from the previous page). (A-E) is the fob1Δ in red (N=67, mean RLS=16.75) and in blue 

the control (N=50, mean RLS 14.6). (F-J), is the sgf73Δ in red (N = 73, mean RLS=16.52) and in blue the control 

(N=56, mean RLS=10.41). (K-O), is the dnm1Δ (N=89, mean RLS=13.66) in red and in blue the control (N=63, 

mean RLS=12.619). The P values are depicted in the graphs and are calculated using a Mann-Whitney U test. The 

shaded region signifies the SEM. 
 

We next sought to aggregate our knockout experiments and separate the aging dynamics based on short-

lived vs long-lived cells (Fig 3.6.1). We observed the fob1Δ to have a lower scaling ratio in the long-lived 

cells when compared to the short-lived cells. Additionally, the cytoplasmic Rpn11p levels are higher in 

short-lived cells when compared to long-lived cells (Fig 3.6.1). Regardless of the knockouts performed, 

we found that when cells are segregated into long-lived and short-lived, the differences between the two 

trajectories are comparable. In all cases the short-lived cells had an increasing organelle size scaling when 

compared to the long-lived cells (Fig 3.6.1 and Fig 3.6.2). Furthermore, the levels of Rpn11p in short-

lived cells is higher than the long-lived cells for all  different knockouts (Fig 3.6.1 and Fig 3.6.2).

 

Fig 3.6.1. fob1Δ, sgf73Δ, and dnm1Δ separated by lifespan display similar dynamic trajectories.   

The graphs display the fob1Δ, sgf73Δ, and dnm1Δ strains segregated into long-lived vs short-lived cells. The 

sequence of the graphs, from left to right, represents Rpn11p nuclear intensity, Rpn11p cytoplasmic intensity, cell 

area, nucleus area, and the ratio of the nucleus to cell area. The y-axis corresponds to the mean values depicted in 

the graph titles. The x-axis is the hours of live cells overtime. Time points with fewer than 25 live dividing cells are 

excluded. The red curves denote the mean values for short-lived cells with an RLS of less than 15, while the blue 

curves indicate the mean values for long-lived cells with an RLS of 15 or more. (Figure caption continued on the 

next page).  
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(Figure caption continued from the previous page). (A-E) is the fob1Δ (N=163, mean RLS=15.5), comparing short-

lived (N=77, mean RLS=8.57) and long-lived cells (N=89, mean RLS=22.03). (F-J), is the sgf73Δ (N=168, mean 

RLS=17.20), comparing short-lived (N=53, mean RLS=9.51) and long-lived cells (N=115, mean RLS=20.74). (K-

O), is the dnm1Δ (N=137, mean RLS=12.29), comparing short-lived (N=81, mean RLS = 7.80) and long-lived cells 

(N=56, mean RLS=18.79). The P values are depicted in the graphs and are calculated using a Mann-Whitney U test. 

The shaded region signifies the SEM. All graphs display the aggregation of two experiments. 

 

 

Fig 3.6.2. Overexpression of proteasome separated by lifespan maintains rapidly increasing organelle size.   

The graphs display the ubr2Δ and Rpn4* segregated into long-lived vs short-lived cells. The sequence of the graphs, 

from left to right, represents Rpn11p nuclear intensity, Rpn11p cytoplasmic intensity, cell area, nucleus area, and the 

ratio of the nucleus to cell area. The y-axis corresponds to the mean values depicted in the graph titles. The x-axis is 

the hours of live cells overtime. Time points with fewer than 25 live dividing cells are excluded. The red curves 

denote the mean values for short-lived cells with an RLS of less than 15, while the blue curves indicate the mean 

values for long-lived cells with an RLS of 15 or more. (A-E) is the ubr2Δ (N=167, mean RLS=17.86), comparing 

short-lived (N=50, mean RLS=8.24) and long-lived cells (N=117, mean RLS=22). (F-J), is the Rpn4* receiving 

16nM of Estradiol at time 5.5 hours (N=102, mean RLS=13.41), comparing short-lived (N=55, mean RLS=8.42) 

and long-lived cells (N=47, mean RLS=19.19). (K-O), is the Rpn4* control which did not receive estradiol (N=106, 

mean RLS=13.82), comparing short-lived (N=52, mean RLS = 8.71) and long-lived cells (N=54, mean RLS=18.74). 

The P values are depicted in the graphs and are calculated using a Mann-Whitney U test. The shaded region signifies 

the standard error of the mean. All graphs display the aggregation of two experiments. 

 

When comparing how the different genetic perturbations influenced lifespan, we confirmed lifespan 

extension in all our long-lived mutants except for dnm1Δ (Fig 3.7.1).  The combined stress of imaging 

cells every 20 minutes with protein tags may be too stressful for the dnm1Δ. Additionally, variations in 

lifespan measurement techniques might lead to inconsistencies in RLS. Specifically, employing 

micromanipulation on petri dishes versus using microfluidic devices with liquid media could result in 
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different RLS outcomes11. To our knowledge, this is the first time dnm1Δ has been screened on a 

microfluidic device with lifespan measurements displayed. Furthermore, we also confirmed that Rpn4* 

did not increase lifespan as well24,25 (Fig 3.7.1). This could be because of specific downstream targets of 

Rpn4* that are not beneficial to lifespan.24,25 Our growth rate curves indicate that some of these mutants 

affect the growth rate of cells. This was the case for Rpn4* induction, rpn4Δ, and sfg73Δ (Fig 3.7.2). 

Additionally, we also confirmed our proteostasis activity and found that Rpn4* increases activity almost 

as high as ubr2Δ (Fig. 3.8).  

 

Fig 3.7.1. Survival curve of different constructs.   

(A) is the survival curves for the different constructs. All strains have the Cox4p-GFP and Rpn11p-mCherry tag. 

Each strain was acquired independently at least two times and aggregated together. The Rpn4* strain is treated with 

either estradiol at 5.5hours or regular YEPD media.  
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Fig 3.7.2. Growth curve of different constructs.   

Growth measurements of ubr2Δ, rpn4Δ, sfg73Δ, dnm1Δ, fob1Δ, WT, WT estradiol, Rpn4*, and Rpn4* estradiol. 

Overnight cultures were diluted to an OD600 of ∼0.2 in galactose rich media and grown near stationary phase. Cell 

density (OD600) was measured at intervals as indicated and used to plot the growth curves. Samples given 16nM of 

estradiol were incubated during the start of the experiment.  
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Fig 3.8. Measuring proteasome activity in different perturbation strains.   

(A-B) Elevated cellular proteasomal peptidase activity in wildtype (WT), WT estradiol, ubr2Δ, rpn4Δ, Rpn4*, 

Rpn4* estradiol, dnm1Δ, fob1Δ, and sfg73Δ. Samples given 16nM of estradiol were incubated for ~14 hours with 

estradiol before harvesting. All samples were collected at an OD600 of .8-1. Strains were tested with 50 µg of total 

protein in the presence of 100 µM of the fluorogenic substrates Ac-nLPnLD-AMC (caspase activity) and Suc-

LLVY-AMC (chymotrypsin-like activity) in three independent experiments. The activity ratio is calculated using 

reactions with and without 50 µg/ml of the proteasome inhibitor MG132 to demonstrate specificity of the reactions.  
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DISCUSSION 

The intricate interplay between organelle scaling and protein levels remains a focal point of research. 

Using the non-linear Granger causality method, we identified the proteosome as a potential determinant 

of nucleus size (Fig 3.1). This was corroborated when alterations in the proteosome led to increased 

nucleus size (Fig 3.2 and Fig 3.3). Importantly, the nucleus size increase was not attributed to the influx 

of Rpn11p into the nucleus (Fig 3.4). This raises the possibility that the active proteosome plays a role in 

nucleus size scaling, perhaps by optimizing nuclear transport. Intriguingly, a majority of long-lived 

mutants, including those with proteosome alterations, exhibited changes in organelle scaling (Fig 3.5 and 

Fig 3.2). This could hint at a shared longevity mechanism. Yet, while Rpn4* influenced both nucleus and 

organelle size, it did not enhance lifespan (Fig 3.7.1). The potential accumulation of harmful proteosome 

proteins might offset the benefits of such scaling. In summary, we identify the proteosome as a modulator 

of organelle scaling.  Nevertheless, the relationship between nucleus size and the proteosome remains 

ambiguous. Our data indicate that, despite an increase in the proteosome, there is a concomitant decline in 

nuclear Rpn11p levels as the nucleus area expands (Fig 3.2 and Fig 3.3). Establishing a direct causative 

link proves challenging due to the absence of methods to exclusively perturb scaling. While we attempted 

to pinpoint the scaling effect using knockout experiments, their intrinsic effects on major pathways 

confounds proper data interpretation.  
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CHAPTER 3: The proteasome and size scaling predicts and may drive aging hallmarks. 
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ABSTRACT 

Previously, studies have suggested that the loss of vacuole acidity affects mitochondrial 

morphology15,16. This causal relationship supports a linear cascade model in which changes in the 

functionality of one organelle can lead to changes in another. To determine whether proteasome 

perturbation could affect mitochondrial morphology, we perturbed the proteasome and compared the 

trajectory of phenotypic changes across various genetic perturbations. We found that both mitochondrial 

phenotype and activity responded to proteasome changes. Our data suggest that the mitochondria may 

respond to changes in proteasomal activity, but not vice versa. Interestingly, we also identified strong 

predictive characteristics of Rpn11p levels and proteostasis stress. Overall, our findings indicate that the 

proteasome is a key predictor and possible driver of aging hallmarks. 
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RESULTS 

To perform a high-throughput classification, an artificial intelligence (AI) ResNet50 model was 

trained to identify seven cellular phenotypes54 (Fig. 4.1). Increasing proteasome activity by ubr2Δ and 

temporal overexpression of Rpn4* lead to an increase in the unclassified mitochondrial phenotype called 

other (Fig. 4.2B, E, F). Alternatively, the reduction of the proteasome by rpn4Δ led to a drastic reduction 

in every phenotype except for the circular phenotype (Fig. 4.2C). The loss of the proteasome activity has 

been tied to affecting mitochondrial activity55. In our analysis we observed a rise in the circular phenotype 

for the rpn4Δ; however, whether the circular phenotype is indicative of an overworked mitochondria 

remains to be seen. Overall, our data suggests that proteasome perturbation influences the mitochondrial 

morphology.  



45 
 

 

Fig 4.1. Classifying phenotypes and segmenting foci with AI.   

(A), Represents a confusion matrix of the ResNet50 model predictions for the validation dataset, with true labels on 

the y-axis and predicted labels on the x-axis. The validation dataset encompasses diverse experiments, integrating 

different protein organelle tags and knockout experiments. (B), Exhibits a representative image of identified 

phenotypes. The red circle delineates the cell boarder. (C-D), Relate to the Foci Segmentation Model. (C), the loss 

curve is presented, with the training data depicted by the blue curve and the validation data by the orange curve. The 

y-axis signifies the Binary Cross-Entropy with Logits Loss (BCE), while the x-axis denotes the number of epochs. 
(D), depicts a selection of mitochondrial phenotypes with foci highlighted in red. The foci count per cell is outlined 

in white, ranging from one to four. The model can detect up to four or more foci. 
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Fig 4.2. Proteasome perturbation affects mitochondria morphology.   

The eight graphs represent the percentage of live cells at each time displaying either the circular, aggregate, or other 

phenotype. The x-axis is the time in hours of live cells and the y-axis is the percentage of cells alive displaying a 

particular phenotype. The following graphs are for Wildtype (N=343), ubr2Δ (N=167), rpn4Δ (N=99), Rpn4* 

without Estradiol (N=221), Rpn4* induction at 5.5hours (N=103), Rpn4* induction at 19.2hours (N=115), fob1Δ 

(N=163), sfg73Δ (N=168), and dnm1Δ (N=137). The pink vertical line indicates when the estradiol system was 

induced. The perturbation experiments are the accumulation of two experiments performed independently. The 

wildtype and Rpn4* without estradiol are the accumulation of the controls during the induction experiments.  

  

Furthermore, since the proteasome impacted the mitochondria morphology but not the other way 

around, we wanted to determine the relation between mitochondrial morphology and mitochondrial 

activity (Fig. 4.2 and Chapter 2 Fig 3.5). The dnm1Δ influences mitochondrial morphology by preventing 

mitochondrial fission, thereby leading to mitochondrial aggregates. Likewise, dnm1Δ leads to cells 

predominantly staying in the aggregate state53 (Fig. 4.2I).  Observing our dnm1Δ Cox4p levels, we 

ascertained whether mitochondrial morphology influenced Cox4p activity and the area of the inner 

mitochondria. The Cox4p mitochondrial intensity level was significantly higher in the dnm1Δ, and the 
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trajectory was also altered, suggesting that mitochondrial morphology influences mitochondrial activity 

rather than nucleus area or proteasome (Fig. 4.3.1 and Chapter 2 Fig. 1.5).   

 

Fig 4.3.1. Perturbing mitochondrial morphology influences Cox4p and mitochondrial area.   

(A-C), displays the control in blue (n= 63) and the dnm1Δ in red (n= 89). The x-axis is the time in hours of live 

dividing cells with a minimum of 15 cells being used. A Mann-Whitney U test is calculated between the control and 

knockout curves with respective P values of 1.74E-33, 2.96E-08, and 9.81E-18. GMM is used to separate out 

regions of intensity for the Cox4p protein. (A), displays the mean Cox4p mitochondrial intensity calculated from 

dividing cells for each timepoint. (B), displays the mean Cox4p cytoplasmic intensity calculated from dividing cells 

for each timepoint. (C), displays the mean inner mitochondrial area calculated from dividing cells for each 

timepoint. Sharded areas represent the standard errors of mean between cells.  

 

Since proteasomal perturbations could influence mitochondrial morphology, we sought to 

determine whether proteasomal perturbations could also affect mitochondrial activity. Our non-linear 

Granger causality method suggested that Rpn11p levels are casual to Cox4p (Fig. 4.3.2). The causality is 

validated by perturbing the proteasome. The proteasome loss directly influenced the mitochondrial 

activity and area. The rpn4Δ had higher levels of Cox4p intensity overtime (Fig. 4.4.1A-C). Interestingly, 

when Rpn4* was temporally increased, at times 5.5hrs and 19.2 hours, the Cox4p intensity decreased 

(Fig. 4.4.1 G-L). The notable decrease was not observed in the ubr2Δ, indicating that the mitochondrial 

response is Rpn4 specific as Ubr2 can influence various proteins including the Mig1p (Fig. 4.4.1D-F). 

The timing of Rpn4* induction influenced the strength of response, where a later perturbation led to a 

substantially larger change in Cox4p intensity (Fig. 4.4.1). On the other hand, Cox4p induction did not 

affect either the Rpn11p intensity or the organelle scaling dynamics (Fig. 4.4.2). Additionally, the foci 
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area and intensity were higher in rpn4Δ (Fig 4.5). Overexpression of the proteasome leads to no major 

significant changes in the foci Cox4p intensity or foci mitochondrial area (Fig. 4.5). 

 

Fig 4.3.2. Granger causality reveals that Rpn11p intensity is causal to Cox4p intensity.   

Predicting temporal order using Granger causality with decision trees. The heatmap presented displays the -log10 P 

values, calculated from an F-test. The y-axis utilizes Rpn11p intensity to predict subsequent Cox4p levels 

represented on the x-axis. Time points for both the y-axis and x-axis indicate the hours for the respective variables. 

The dataset consolidates our Cox4p-GFP and Rpn11p-mCherry strains from six independent experiments, 

encompassing 343 cells. Time points with fewer than 56 dividing cells have been excluded. 
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Fig 4.4.1. Mitochondrial activity responds to proteasomal perturbations.   

The graphs above display the different proteasome perturbations of rpn4Δ, ubr2Δ, and temporal induction of Rpn4* 

at time 5.5hrs and 19.2hrs. The x-axis is time in hours of live cells with a minimum of 15 cells used. The Blue 

curves represent the control, and the red curves represent the proteasome perturbation. SEM is displayed in the 

shaded areas within the curves. (A-C), is the rpn4Δ (N= 47) vs the control (N= 47). (A), y-axis is the mean Cox4p 

mitochondrial intensity of live dividing cells. (B), y-axis is the mean Cox4p cytoplasmic intensity of live dividing 

cells. (C), y-axis is the mean inner mitochondrial area of live dividing cells. (D-F), is the ubr2Δ (N=61) vs the 

control (N= 46) with corresponding y-axis to (A-C). (G-I). is the Rpn4* induction (N=103) at time 5.5 hours vs the 

control with the same construct but without estradiol (N=107). (J-L) is the Rpn4* induction (N=115) at time 19.2 

hours. (Figure caption continued on the next page). 
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(Figure caption continued from the previous page). The control (N=114) represents the same construct but without 

estradiol. The pink line indicates when induction occurs. Both Rpn4* experiments were performed twice, and the 

data represents the accumulation of the separate experiments. 

 

Fig 4.4.2. Cox4p overexpression does not impact Rpn11p or organelle scaling.   

The graphs depict Cox4p-GFP temporal overexpression in a Rpn11p-mCherry strain. The blue curve represents the 

control (N=30, mean RLS=14.28), while the red curve corresponds to the Cox4p estradiol system induced with 

16nM of estradiol (N=32, mean RLS=12.84). The pink line marks the 19.2hrs when media was replaced, either with 

or without estradiol, to initiate Cox4p induction. (A) shows mean Cox4p intensity, (B) displays Rpn11p mean 

intensity, (C) represents the average nucleus area, and (D) depicts the average cell area. The x-axis measures time in 

hours for live dividing cells, excluding time points with fewer than 15 dividing cells. (E) illustrates the survival 

curve. 
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Fig 4.5. Loss of proteasome activity increases mitochondrial foci activity and size. 

The graphs above display the foci changes in the mitochondria during different proteasome perturbations of rpn4Δ, 

ubr2Δ, and temporal induction of Rpn4* at time 5.5hrs. The x-axis is time in hours of live cells with a minimum of 

14 cells used. The blue curves represent the control, and the red curves represent the proteasome perturbation. SEM 

is displayed in the shaded areas within the curves. (A-C), is the rpn4Δ (n= 47) vs the control (n= 47). (A), y-axis is 

the mean Cox4p foci mitochondrial intensity of live dividing cells. (B), y-axis is the mean foci area of live dividing 

cells. Multiple foci areas were not treated separately. (C), y-axis is the mean numb of foci in live dividing cells. (D-

F), is the ubr2Δ (n= 61) vs the control (n= 46) with corresponding y-axis to (A-C). (G-I). is the Rpn4* induction (n= 

103), the pink line indicates when induction occurs. The control (n= 107) represents the same construct but without 

estradiol.  

Seeing that proteasome perturbation can influence mitochondrial morphology and activity, we next set out 

to determine whether observational mitochondrial phenotypes had any relationship to aging trajectories. 

Phenotypes have been used to identify aging trajectories and collapses in the mitochondrial and 

proteostasis hallmarks. Using our classification tool, we can distinguish between the cells that display the 
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aggregate state more so than another phenotype, which is indicative of the mitochondrial dysfunction and 

the proteostasis stress aging hallmark15–17,33. For determining cells displaying mitochondrial dysfunction, 

we separated cells into two groups, the circular and aggregate phenotype, which is designated by the 

mitochondrial Cox4p-GFP (Fig. 4.6A). Interestingly, cells staying longer in the circular state had a longer 

RLS (Fig. 4.6B).  Indicating that the circular mitochondrial state in normal aging cells may be related to 

longer lifespan. Interestingly, cells classified in the aggregate state had a longer budding rate time when 

compared to those in the circular state (Fig. 4.6C).   
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Fig 4.6. Cells displaying the mitochondrial dysfunction aging hallmark have a shorter RLS. 

(A), is a example of the aggregate and circular phenotype. For simplicity, cells displaying binary and triple 

phenotype are reclassified into the aggregate state. Cells displaying the fragmented state are recalssified into the 

circular state. This is decided by observing phenotypes similarities to the aggregate or circular state. Next cells are 

grouped into aggregate or circular based on the time spent in the designated state. (B), is a boxplot of the RLS for 

each cell classified in the aggregate or circular state with a Mann-Whitney P value of 9.605e-03.  (C) is a scatter plot 

displaying the mean budding rate of cells in either phenotype. Times with less than 10 dividing mother cells are 

excluded. The SEM of cells dividing at that time is depicted as error bars. (D), the graph is the -log10 P values 

calculated using a Mann-whitney U test where each point represents individual cells budding rate calssified in the 

aggregate or circular state. The dataset consolidates our Cox4p-GFP and Rpn11p-mCherry strains from six 

independent experiments, encompassing 343 cells. 

When observing the trajectory of cells in aggregate or circular states more closely, it was noted that cells 

that remained in the aggregate state for longer durations exhibited a smaller mitochondrial area and cell 

area (Fig 4.7A, C). In terms of the nucleus-to-cell area ratio, circular cells maintained a stable ratio for a 

more extended period (Fig 4.7D). However, this difference in ratio is influenced by the cell area, as the 

nucleus area remained consistent (Fig 4.7B). Overall, variations in size scaling are associated with 
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different mitochondrial morphologies. It is still unclear whether size scaling in a cell drives mitochondrial 

morphology. To date, no single gene or protein has been identified that solely influences cell size scaling. 

Yet, considering that the proteasome can affect both cell size scaling and mitochondrial morphology, the 

changes might be related to the proteasome. 

 

Fig 4.7. Mitochondrial morphology displays differences in scaling dynamics. 

The graphs display the different organelle areas of cells classified in either the aggregate or circular phenotype.  The 

x-axis is the time in hours of live dividing cells, times with less than 25 cells are excluded. The blue curves represent 

the circular (n=217), and the red curves represent the aggregate (n=126). SEM is displayed as the shaded areas 

within the curves. The Mann-Whitney P value between the mean values is depicted in each box.  (A), is the 

mitochondrial inner area with the y-axis denotating the mean levelsl of the mitochondrial area (P value 1.77e-21).  

(B), is the nucleus area (P value 9.44e-8). (C), is the cell area (P value 4.27e-10). (D), is the ratio between the 

nucleus to cell area (P value 6.55e-17).  

When clustering cells based on their mitochondrial morphology, the levels of nuclear Rpn11p and 

cytoplasmic Rpn11p are higher in the circular cells (Fig. 4.8A-B). As expected, aggregate cells exhibited 

a higher Cox4p intensity, likely due to decreasing Rpn11p levels (Fig. 4.8C-D). This confirms that the 

mitochondria react to decreasing proteasome levels even in a standard aging context. Decreasing Rpn11p 

levels coincided with a larger cell area in the circular cells; however, the nucleus area did not appear to be 

substantially different (Fig 4.7B-C). This suggests differences in scaling and proteasome trajectories, 

which are related to the mitochondrial dysfunction aging hallmark. Upon further observation of 

differences in mitochondrial morphology, we found the number of foci to be lower in the aggregate cells 

(Fig. 4.9A). 
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Fig 4.8. Cox4p and Rpn11p maintain distinct trajectories based on mitochondrial morphology. 

The graphs display the Cox4p and Rpn11p regional intensities of cells classified in either the aggregate or circular 

phenotype.  The x-axis is the time in hours of live dividing cells. Times with less than 25 cells are excluded. The 

blue curves represent the circular (n=217), and the red curves represent the aggregate (n=126). SEM is displayed in 

the shaded areas within the curves. The Mann-Whitney P value between the mean values is depicted in each box.  

(A), is the nuclear intensity of Rpn11p mCherry with the y-axis denotating the mean levelsl of nuclear Rpn11p (P 

value 1.05e-2).  (B), is the cytoplasmic levels of Rpn11p (P value 8.6e-9). (C), is the mitochondrial levels of Cox4p 

intensity (P value 3.75e-3). (D), is the cytoplasmic level of Cox4p (P value 4.17e-1).  

 

Fig 4.9. Mitochondrial circular state has a greater number of foci. 

The graphs above display the foci changes in the mitochondria when cells are classified in either the aggregate or 

circular state. The x-axis is time in hours of live cells with a minimum of 25 cells used. The blue curves represent 

the circular (n=217) and the red curves represent the aggregate (n=126). SEM is displayed as the shaded areas 

within the curves. The Mann-Whitney P value between the mean values can be seen within each box. (A), y-axis is 

the mean number of foci of live dividing cells, (P value is 5.9E -35). (B), y-axis is the mean foci area of live dividing 

cells, (P value is 9.5E-1). Multiple foci areas were not treated separately.  

 

Given the distinct trajectories of Rpn11p in relation to the mitochondrial dysfunction hallmark, we sought to 

determine if Rpn11p could also be used to assess proteostasis stress. Previous reports suggest that Hsp104p leads to 

the formation of protein aggregates due to an increase in misfolded proteins 8,17,56. These aggregates can be 

mitigated by increasing the proteasome through a Ubr2 knockout. Overexpression of Hsp104p and reduction of 
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rDNAs were also found to reduce protein aggregates 17. On the other hand, the aggregate phenotype can be induced 

by reducing proteasome function through an Rpn4 knockout 17. These findings suggest a strong causal relationship 

between the proteasome and proteostasis stress. However, it remains unclear whether proteasome protein trajectories 

significantly vary in cells displaying proteostasis stress. Using our phenotype identifier, we categorized cells into 

either the aggregate or cytoplasmic state (Fig 5.1A). This classification was based on whether the cells spent more 

time in the aggregate state versus the cytoplasmic state throughout their RLS (Fig 5.1C). As previously established, 

cells displaying Hsp104p aggregates had a shortened RLS. We further validated that Hsp104p aggregates can co-

localize with nuclear Rpn11p (Fig 5.1B).  We observed minor differences in Hsp104p intensity for aggregate cells 

and cytoplasmic cells (Fig. 5.2 A-C).  Interestingly, we observed that Rpn11p levels varied in subcellular regions of 

cells showing different Hsp104p phenotypes (Fig. 5.2D-F). Similar to cells ending with mitochondrial aggregates, 

those with Hsp104p aggregates demonstrated decreasing levels of Rpn11p in nuclear regions (Fig. 5.2E).  However, 

cells with Hsp104p aggregates exhibited marginally higher cytoplasmic Rpn11p levels compared to cells 

categorized under the cytoplasmic phenotype (Fig. 5.2F). This contrasts with cells containing mitochondrial 

aggregates, which had significantly lower cytoplasmic Rpn11p levels (Fig 4.8B). Cells classified in the aggregate 

state had a smaller cell area and nucleus area (Fig. 5.2G-I).  Interestingly, the ratio between the two organelles was 

significantly higher in the Hsp104p aggregate cells. 
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Fig 5.1. Cells displaying proteostasis stress have a shorter RLS. 

Displays the Hsp104p aggregate and cytoplasm phenotype. (A), are repersentative images of the Hsp104p aggregate 

and cytoplasm phenotype. (B), is a represenative image of a single cell displaying the Hsp104p aggregate, which is 

colocolazing with Rpn11p. (C), is the RLS of cells classified in the aggregate (N = 85, mean RLS 13.73) or 

cytoplasm (N=40, mean RLS 19.35) phenotype, with a Mann-Whittney P value of 6.55e-6.   
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Fig 5.2. Hsp104p aggregates display distinct Rpn11p and size scaling trajectories. 

The graphs above display the cells classified in the Hsp104p aggregate or cytoplasmic state. The data is an 

accumulation of two separate experiments composed of the same Hsp104-GFP and Rpn11p-mCherry strain. The red 

curve represents the Hsp1040p aggregate (N = 85, mean RLS 13.73), and the blue curve represents the Hsp104p 

cytoplasm (N=40, mean RLS 19.35). (A), is the Hsp104p mean intensity overtime. (B), is the mean Hsp104p 

nuclear intensity determined by GMM of the nuclear Rpn11p-mCherry. (C), is the mean Hsp104p cytoplasmic 

intensity determined by GMM of the cytoplasmic Rpn11p-mCherry. (D). is the mean intensity of Rpn11p overtime. 

(E), is the mean nuclear intensity of Rpn11p. (F), is the mean cytoplasmic intensity of Rpn11p. (G), is the mean cell 

area between the different Hsp104p phenotypes. (H), is the nucleus area. (I), is the ratio of the nucleus and cell area 

mean overtime. SEM is depicted as the shaded regions. Time points with fewer than 25 dividing cells are excluded.  

Having observed that Rpn11p possesses predictive properties for distinguishing Hsp104p aggregate cells, 

we sought to determine whether Rpn11p could influence Hsp104p trajectories. Previous studies have 

already established the influence of Rpn4 on proteostasis stress and the Hsp104p phenotype 17. 

Additionally, it is known that Rpn4 and the Hsp104p transcription factor regulator Hsf1 can influence one 

              

             

    

    

     

     

     

     

     

 
 
 

 
 

 
 

  
 

 
  
 

  
 

 
  
 
  

 
 
 

  
                          

         

                       

              

             

    

    

    

    

    

 
 

 
 
 

 
  

 
 

 
  

 
  
 

  
 

 
  
 
  

 
 
 

  

                               

         

                       

              

             

    

    

    

    

    

    

    

    

    

 
 

 
 
 

 
  

 
 

 
  

 
 
  

 
  

  
  

 
 
  
 
 

                              

         

                       

              

             

   

   

   

    

    

    

    

    

 
 

 
 
 

 
  

 
 

 
  

 
  

 
  

 
 

  
  
 

  
 

 
  
 

                                  

         

                       

              

    

    

    

     

              

                       

              

    

    

    

    

    

    
         

                       

             

 
 
 

 
 

 
 

  
 

 
 

  
 

 
  

 
  

  
  

 
 
  
 
 

                               

             

 
 
 

 
 

 
 

  
 

 
 

  
 
  

 
  

 
 

  
  
 

  
 

 
  
 

                                   
   

   

              

             

   

   

   

   

   

   

   

 
 

   
 

  
 

  
 

 
 

  
 

               

         

                       

              

             

  

  

  

   

   

   

   

   

 
 

 
  

 
 
  

  
 

  
 

 
 

  

                  

         

                       

  

              

    

    

    

    

    

         

                       

             

 
 

  
 

  
  

 
 

 
  

 
 
  

 
 

  
 

   
 

  
 

                                         
 



59 
 

another. However, it remains largely unknown whether Hsp104p responds to a single protein of the 

proteasome subunit, Rpn11p, with predictive properties for the Hsp104p phenotype. We first attempted to 

ascertain if there was a specific time during which Rpn11p intensity is predictive of Hsp104p levels. 

Surprisingly, using our non-linear Granger causality, we found that there were no instances when Rpn11p 

could accurately predict Hsp104p levels (Fig. 2.3). To corroborate this, we transiently overexpressed 

Rpn11p-mCherry in an Hsp104p-GFP and Rpn11p-mCherry strain (Fig. 2.4). This induction elevated 

Rpn11p levels but did not alter Hsp104p-GFP levels (Fig. 2.4A-B). The RLS and the number of 

remaining buds were also consistent (Fig. 2.4 C-D). Efforts to determine the effect on organelle scaling 

were confounded by the fact that Rpn11p-mCherry overexpression made nucleus segmentation and 

identification challenging, as illustrated by a representative image of the Rpn11p approximately 2 hours 

post-induction (Fig. 2.4F).  We also could not accuarently determine if the cell area was altered during 

Rpn11p induction (Fig. 2.4E). In summary, we did not detect significant changes in Hsp104p levels 

following Rpn11p induction, thereby corroborating our non-linear Granger causality test. We then sought 

to discern if Rpn11p induction could alleviate some of the proteostasis stress, as gauged by the Hsp104p 

aggregates. We observed that Rpn11p induction led to a spike in the Hsp104p cytoplasmic phenotype 

(Fig. 2.5C). Yet, this increase was modest, suggesting that Rpn11p might only alleviate a moderate level 

of stress, which does not significantly affect lifespan (Fig. 2.4A-B). 
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Fig 5.3. Granger causality reveals that Rpn11p cannot predict Hsp104p levels. 

Predicting temporal order using Granger causality with decision trees. The heatmap presented displays the -log10 P 

values, calculated from an F-test. The y-axis utilizes Rpn11p intensity to predict subsequent Hsp104p levels 

represented on the x-axis. Time points for both the y-axis and x-axis indicate the hours for the respective variables. 

The dataset consolidates our Hsp104p-GFP and Rpn11p-mCherry strains, encompassing 125 cells. Time points with 

fewer than 56 dividing cells have been excluded. 
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Fig 5.4. Rpn11p temporal overexpression does not influence Hsp104p intensity. 

The graphs display the induction experiment of Rpn11p at 19.2 hours in a strain with a Hsp104p-GFP and Rpn11p-

mCherry tag. (A) represents the Rpn11p intensity, and (B) shows the Hsp104p intensity. The x-axis indicates the 

time in hours for live cells tracked over time. Instances with fewer than 15 cells have been excluded. The red curve 

represents the Rpn11p estradiol construct that received estradiol (N=118, mean RLS=15.71), and the blue curve 

depicts the control (N=89, mean RLS=15.54) which did not receive estradiol. The time of induction is marked by 

the pink vertical line. P values, calculated using a Mann-Whitney U test, are shown on the graphs. (Figure caption 

continued on the next page). 
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 (Figure caption continued from the previous page). (C) is a survival curve with the number of generations on the x-

axis and the fraction viable on the y-axis. (D) represents the number of buds remaining after the media switch, either 

with or without estradiol; a P value of 7.760e-01 was determined using the Mann-Whitney U test. (E) illustrates the 

nucleus area, and (F) provides a representative image, utilizing GMM to differentiate the nucleus Rpn11p from the 

cytoplasm. The top panel displays the cell before Rpn11p induction, while the bottom panel shows the same cell 21 

hours post-induction. The data is an accumulation of two separate experiments.  

 

Fig 5.5. Rpn11p may modestly increase the Hsp104p cytoplasm phenotype. 

The three graphs represent the percentage of live cells at each time displaying either the Hsp104p cytoplasm, 

aggregate, or other phenotype. The x-axis is the time in hours of live cells and the y-axis is the percentage of cells 

alive displaying a particular phenotype. (A) is the Hsp104p-GFP and Rpn11p-mCherry wildtype strain without an 

estradiol system (N=125). (B) is the Control (N=89) with the estradiol system that received no estradiol at time 

19.2hrs. (C) is the induction of Rpn11p at time 19.2hrs (N=118), which received estradiol and has the estradiol 

system. The pink vertical line indicates when the estradiol system was induced. The experiments are the 

accumulation of two experiments performed independently. The experiments for (B) and (C) are done together.  
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DISCUSSION 

We developed a phenotype identifier tool to quantify and categorize cell topologies efficiently. Using this 

tool, we pinpointed the proteosome as an influencer of both mitochondrial morphology and activity (Fig. 

4.2 and Fig. 4.3.2). Notably, there was an inverse relationship between Rpn11p and Cox4p levels (Fig. 

4.3.2 and Fig. 4.4.1), suggesting that mitochondria adapt to proteosome fluctuations. Yet, data from our 

dnm1Δ and Cox4p temporal overexpression experiments indicate the proteosome might not reciprocally 

adapt to mitochondrial changes (Fig. 4.3.1 and Fig. 4.4.2). This unidirectional response could be an 

evolutionary outcome of mitochondria integrating into cellular systems and adjusting to dynamic cellular 

environments. While Rpn11p mutations have been linked to mitochondrial morphology changes, the 

variations in mitochondrial activity might still directly correspond to escalating Rpn11p levels. This 

would align with our model where mitochondria adjust to proteosome alterations, especially since 

Rpn11p levels are modulated by Rpn4. For both mitochondrial dysfunction and proteostasis stress, we 

discerned the most significant scaling differences in cell area (Fig.4.7 and Fig. 5.2). When juxtaposing 

these scaling deviations with Rpn11p alterations, scaling deviations manifested earlier, while Rpn11p 

alterations emerged later in the process (Fig 4.7, Fig. 4.8, and Fig. 5.2). Nuclear Rpn11p levels 

consistently declined across both aging hallmarks. Conversely, cytoplasmic Rpn11p levels showed a 

decrease in mitochondrial dysfunction but an increase during proteostasis stress (Fig. 4.8 and Fig. 5.2). 

This discrepancy could stem from cell responses to either distinct or shared stressors preceding the aging 

signs, leading to varied Rpn11p trajectories. In both instances, scaling evidently serves as a predictor for 

these aging hallmarks and might even precipitate their emergence. Examining Hsp104p and Rpn11p 

intensity variations, we were intrigued that our non-linear Granger causality didn't reveal a strong 

interrelation, despite shared regulatory mechanisms (Fig. 5.3). This discrepancy might suggest divergent 

regulations our model can discern. Although demarcating between cytoplasmic and nuclear levels during 

Rpn11p overexpression proved challenging, our results implied that elevated Rpn11p levels don't 

influence Hsp104p (Fig. 5.4). This bolsters our hypothesis that Hsp104p levels might be steered by a 

distinct regulatory mechanism. 
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SUPPLEMENTAL 

Below is table 1, which indicates proteins that were temporarily overexpressed with the designated times.  

Supplementary Table 1. Estradiol System Induction Strains 

Gene Induction Times Strain Remaining Life 

Span 

Phenotypes 

Rpn4* 5hrs, 19.2hrs Cox4:GFP and 

Rpn11: mCherry 

No Difference Increase 

nucleus size 

Rpn11 0, 19.2hrs Hsp104:GFP and 

Rpn11: mCherry 

No Difference Not 

significant  

Rpn11-Sv40NLS 19.2hrs Hsp104:GFP and 

Rpn11: mCherry 

Decreased  Number of 

buds 

decreased 

Cox4 19hrs Rpn11: mCherry No Difference  No difference 

 

The estradiol system we used was based on the Hana El-Samad Z4EM system (see methods for more 

details on plasmid construction57,58. We tested the concentrations of estradiol using flow cell cytometry 

and microfluidics. Dosages below 2nM of estradiol were excluded because their fluorescent intensity was 

undetectable under the confocal microscope. We utilized the Rpn11p-GFP tag as overexpression of 

Rpn11p did not affect RLS (See chapter 3). 
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Fig. S1.1. Measuring estradiol dosage response by Rpn11p-GFP 

Dose-response curves for varying concentrations of Beta estradiol on an endogenous Rpn11p-mCherry and 

inducible Rpn11p-GFP strain. The x-axis represents time in minutes, while the y-axis depicts the fold change in 

Rpn11p-GFP intensity. Different estradiol dosages are represented by distinct colors: 2nM, 4nM, 8nM, 16nM, 

25nM, 32nM, and 64nM. Intensities are recorded at intervals ranging from 20 to 40 minutes over an 8-hour period. 

To assess the stability of estradiol under light exposure and ensure strict regulation of the construct, we 

conducted a live imaging experiment. We used the three candidate estradiol concentrations previously 

identified in Fig. S1.1 and captured images at 30-minute intervals. Due to constraints imposed by the 

number of wells compatible with a 63x oil lens, we couldn't test additional concentrations or shorter time 

intervals. Our findings suggest that RLS might be impacted by higher estradiol dosages when used in 

conjunction with the microfluidic device (Fig. S1.2A). Nonetheless, the system demonstrated tight 

control, with 16nM of estradiol emerging as the most promising candidate for gene expression (Fig. 

S1.2B). 
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Fig. S1.2. Observing Z4EM estradiol system in the microfluidics device. 

Different dosages of estradiol were tested: 16nM (N=47, Mean RLS=15.1), 32nM (N=47, Mean RLS=13.5), 8nM 

(N=48, Mean RLS=14.9), and 0nM, which served as the control (N=46, Mean RLS=15.8). (A) illustrates a survival 

curve based on various estradiol dosages administered one hour after plating. The x-axis represents time in hours. P-

values derived from the Mann-Whitney U test were calculated for the survival curve in comparison to the control: 

32nnM (P value=2.6e-4), 16nM (P value=4.5e-2), and 8nM (P value=1.6e-2). (B) depicts the intensity of Rpn11p-

GFP post estradiol induction. The x-axis indicates the time in hours for live, dividing cells, with time points having 

fewer than 15 dividing cells being excluded. The y-axis denotes the mean Rpn11p-GFP intensity. 

To determine temporal ordering, I initially employed linear models such as ARMA, ARIMA, Pearson 

correlations, and VAR models. However, the inherent noise and non-stationarity in our data posed 

challenges for these models since they are optimized for stationary data, including Granger causality. My 

efforts to denoise the data through differencing or smoothing proved unproductive, at times obscuring 

relationships or introducing spurious ones. Consequently, I turned to decision trees for their ability to 

capture non-linear relationships. To mitigate overfitting, I restricted the tree depth and used stringent 

parameters for data comparisons (See methods 2.6). By normalizing the data between 0 and 1, I focused 

on comparing trend changes. The non-linear Granger causality model parameters were designed 

specifically for our vacuole and mitochondrial dataset. Since vacuole dysfunction is known to precede 

mitochondrial dysfunction, and not the other way around, we used this established knowledge to assess if 

our model could differentiate between causal relationships (Fig. S1.3.A-B). We found Vma1p trend 

changes are predictive of mitochondrial Cox4p changes (Fig. S1.3.A-B). To validate the model against 

spurious relationships, I perturbed our times and shuffled cell IDs (Fig. S1.3.C-D). This helped to validate 

whether the model identified true signal. After utilizing our model to identify times when the proteosome 

predicted changes in the nucleus area (See Chapter 2), I evaluated its capacity to detect the transitory 

overexpression of Rpn4* at 5.5 hours. This overexpression directly influenced the proteosome and 
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subsequently the nucleus area. The results from the model were in agreement with our experimental 

findings as highlighted in Chapter 2 and supplementary figure S1.3E-F. Our non-linear Granger causality 

model proved remarkably adept at determining temporal order. Yet, a fundamental limitation of Granger 

causality is its inability to definitively distinguish cause from effect. Hence, induction experiments are 

essential to validate the findings from the non-linear Granger causality model.  
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Fig. S1.3. Validating methodology for non-linear Granger causality 

(A), the y-axis is Vma1p intensity times, and the x-axis is Cox4p intensity times. (B), displays the predictive values 

on the x-axis and the actual values on the y-axis. At 2.33 hours Vma1p is predictive of Cox4p at 11 hours. The two 

colors indicate the different features being used to predict Cox4p at 11 hours. Red is Vma1p intensity, and the green 

is Cox4p intensity. (C-D) different permutations applied to Vma1p time series. (C) is Vma1p intensity times being 

randomly permuted. (D) is Vma1p intensity of different cell labels being randomly permuted. (Figure caption 

continued on the next page).   
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(Figure caption continued from the previous page). (E-F) is applying the method on a validation dataset where 

Rpn4* is induced at 5.5 hours. (E) is observing when Rpn11p nuclear intensity is predictive of the Nucleus area. (F), 

is using the same dataset and observing whether nucleus area is predictive of Rpn11p nucleus intensity.  
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DISCUSSION 

Hsp104p increased overtime whereas both Rpn11p and Rpn6p decreased. The proteins are 

represenative of different parts of the proteostasis pathway that work together yet their behavior differs. 

As Hsf1p levels increase over time and Rpn4p is negatively regulated by rising proteasome activity, it's 

plausible that chronic stress due to aging disrupts the balance between proteasome and chaperone protein 

regulation. Intriguingly, Rpn11p overexpression did not influence Hsp104p levels. This suggests that the 

chaperone response is influenced by upstream regulators of proteostasis proteins, particularly the 

transcription factors Msn2p, and Hsf1p. Notably, Hsp104p levels have been observed to rise over time in 

conjunction with Msn2p, and Hsf1p5. This likely stems from the Hsp104p promoter possessing multiple 

binding sites for these stress-related transcription factors5,59. The transcription factors that regulate 

Hsp104p have been noted to interact with Rpn4. Our data and literature suggests that the proteosme 

indirectly affects Hsp104p aggregates by removing the misfolded proteins. It is curious that Rpn11p 

levels does not increase linearly like Hsp104p, this could be because it may not have as many binding 

sites for these stress-related transcription factors. Another possibility is the chaperone and the proteasome 

are responding differently to the increasing cell size and protein synthesis. Our data indicates a clear 

relationship of the proteasome directly influencing the scaling dynamics. However, we cannot rule out the 

impact of protein translation as the sgf73Δ affected both the proteasome and scaling trajectories. When 

explorng how certain nuclear proteins trajectories differ within the nucleus, we found that Whi5p and 

Hsf1p increased with time whereas proteins like Hh01p displayed similar trajectories to the proteasome 

proteins. The notion that some of the proteins seem to increase with time whereas others decrease may tie 

to the idea that perhaps certain protein promoters scale with organelle size whereas others do not. The 

change could also be due to certain nuclear transporters becoming dysregulated due to aging. We 

investigated the scaling dynamics between the nucleus and cell area during cellular aging, identifying an 

approximate two-fold increase in both parameters. The nucleus area also increased in differently aged 

mice tissue of the lung and liver. Our analysis revealed a negative correlation in the nucleus area (R=-

0.42) to RLS. The cell area had a milder correlation (R=-0.215). While  connection between cell area and 
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RLS appeared tenuous, a pronounced correlation emerged between the rate of change in cell area and 

RLS, highlighting that cells with accelerated growth tend to exhibit shorter RLS. Interestingly, the 

negative correlation observed in the nucleus area slope was predominantly attributable to the short-lived 

cells. This observation aligns with previous findings, in which significant enlargement of the nucleus area 

was documented towards the end of lifespan. Although the nucleus and cell area scale in size, it would 

appear that the nucleus area does not increase linearly to the cell area. Perhaps the increase in cell size is 

driven by increasing protein translation of cytoplasmic proteins more so than nuclear proteins. Our 

Hsp104p, Rpn6p, and Rpn11p data supports this notion as both cytoplasmic levels increased while the 

Rpn11p nuclear, Rpn6 nuclear, and Hh01p levels decreasing. However, when we overexpressed nuclear 

levels of Rpn11p-SV40NLS tag we did not see a dramatic increase in the nuclear size. This may suggest 

that certain key protein complexes are needed to increase the nucleus size and simply increasing a nuclear 

protein, especially a deubquinase, may not be enough. This suggests that the difference in size scaling 

may be related to nuclear and cytoplasmic transport of specific proteins. Our studies cannot rule out the 

impact of increasing extracellular transport which could be attriubuting to the rapid increase of the 

cytoplasm over the nucleus. It has been posited that size scaling dilutes and mediates protein production. 

Our findings support the notion that perturbations in the proteasome can affect the nucleus area, but it is 

unclear how this occurs. Our SV40NLS tag indicated that this increase in nucleus area is not due to 

increasing nuclear Rpn11p. Despite overexpressing the proteasome, a gradual decline in Rpn11p nuclear 

trajectory persists, leading us to consider the possibility that this decrease might be influenced by the 

expanding nucleus area. As the nucleus area increases, we observe a significant reduction in the 

proteasome. Perhaps the decrease is due to the nucleus area diluting the proteasome levels. However, this 

hypothesis does not account for the continued decline in Rpn11p intensity when the nucleus area 

stabilizes, as seen with the fob1Δ and sgf73Δ mutants. The major decrease in nuclear Rpn11p cannot be 

accounted for by the increasing cytoplasmic Rpn11p. Further investigation is required to unravel these 

complex interactions of what is decreasing nuclear Rpn11p. When classifying strains into short-lived cells 

or long-lived cells, we found different trajectories between the nucleus area, cell area, and ratio of the 
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areas. The short-lived cells’ organelle areas were found to increase more so than the long-lived cells. The 

phenomenon is observed in all knockouts and proteasome overexpression experiments, indicating that 

perhaps the scaling dysregulation is a universal path. The observations also indicate the proteasome is not 

the predominant controller of the size scaling as different perturbations, sgf73Δ and fob1Δ, influenced 

scaling independent of Rpn11p changes. Apart from fob1Δ, the RLS extending knockouts displayed an 

initial smaller cell area, yet all the life extending mutants maintained the ~ two-fold increase from the 

initial state. The idea of cells growing to a certain point supports the loss of scaling as a possible endpoint 

for a cell. It also opens the idea of utilizing size scaling to predict age or RLS. It is still unclear how the 

cell knows when it reaches this ultimate size. In both mitochondrial dysfunction and proteostasis stress, 

differential scaling is apparent. Mitochondrial dysfunction, marked by Cox4p aggregates, yielded cells 

with significantly smaller cell and nucleus areas but a higher nucleus-to-cell area ratio. A similar pattern 

was observed in proteostasis loss, characterized by Hsp104p aggregates. These variations in organelle 

scaling proved more distinctive than Rpn11p and seem to relate with aging hallmarks, possibly even 

driving their appearance. The overexpression of Rpn4* was associated with an increase in nucleus area 

and altered mitochondrial morphology. Whether the changes in mitochondrial morphology occur because 

of the proteasome or the changes in scaling dynamics remains to be elucidated. Despite overexpression of 

Rpn4* and the similarities to that of the ubr2Δ, we did not observe a major lifespan increase in the cells. 

While Rpn4 enhances the activity of the proteasome, it's possible that under stressful conditions, the 

proteasome could become overwhelmed with damaged proteins. This could lead to a delay in removing 

the harmful Rpn4 target proteins, subsequently reducing the viability of the cell. Currently, there has been 

no lifespan measurement study to soley overexpress Rpn4 in cells as most studies rely on ubr2Δ to 

increase RLS. However, just like ubr2Δ we observed that induction of Rpn4* could influence scaling 

trajectories as well as mitochondrial morphology. Whether the healthspan of a cell is affected remains 

unclear. The dnm1Δ has been reported to increase RLS through an unknown mechnsim. In our hands we 

did not observe an increase in RLS. Instead, the survival curve of dnm1Δ (mean RLS=12.79) is slightly 

lower in comparison to wildtype (mean RLS=14.63). However, the dnm1Δ growth curve is similar to 
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wildtype as previously indicated60. The variations in RLS could be due to the difference in measuring 

lifespan using a microfludics device vs micromanipulation. In typical micromanipulation experiemnts, 

cells are placed in a petri dish and are generally taken in and out of a 4 celcius fridge. The changes in 

conditions could thereby alter the mutants lifespan. Another possibility is the dnm1Δ is more sensitive to 

stress and thereby the extension in lifespan may have been inhibited. However, the dnm1Δ still displayed 

the predominant mitochondrial aggregate phenotype. The dnm1Δ mutation is known to affect 

mitochondrial activity, and in line with this, we also detected an upregulation of Cox4p. Furthermore, we 

utilized the dnm1Δ mutation to assess the potential effects of mitochondrial morphology on the 

proteasome. We observed similar Rpn11p levels and trajectories compared to the control. This suggests 

that Rpn11p may not respond to the mitochondrial aggregate phenotype. Previously, it has been noted that 

Rpn11p has a role in mitochondrial morphology, yet dnm1Δ did not cause any major changes to the 

proteasome. Either the proteasome does not respond to changes in mitochondrial phenotypes or the 

mitochondrial alterations do not significantly disturb the homeostasis of the cell. Despite the 

mitochondrial morphology not having a dramatic effect on the proteasome, we cannot exclude the 

possibility that other mitochondrial phenotypes could influence the proteasome. Additionally, our data 

seems to indicate a cross talk between the proteasome and the mitochondria where perhaps the 

mitochondria activity may increase when the proteasome is comprimised. This seemed to be the case in 

our rpn4Δ, where the cells maintained a stronger presence of a circular phenotype with higher levels of 

Cox4p. We did not see an increase in the circular phenotype occuring in natural aging cells where the 

levels of Rpn11p decrease with time. Insteaed we observed a decline in the circular phenotype and an 

increase in the aggregate and other phenotype. However, we did observe an increase in Cox4p intensity 

indicating a change in mitochondrial activity. This suggests a different mitochondria response to the 

proteosome. Furthermore, we discovered Rpn11p levels to be a strong predictor for cells identified within 

the mitochondrial aggregate or circular state. Remarkably, both the nuclear and cytoplasmic levels of 

Rpn11p were found to be lower in these cells. This decline was accompanied by an increase in Cox4p 

levels, a cytochrome protein involved in the respiration chain. In yeast, a shift from glycolysis to cellular 
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respiration occurs due to aging, but the underlying reasons for the energy alteration remains unclear. Our 

investigations into proteasome perturbations revealed a causal role in mitochondrial morphology and 

cellular respiration activity. We observed that the levels of Cox4p decreased with proteasome 

overexpression and increased with proteasome downregulation. Paired with our observational findings, 

our data supports a causal relationship where the decreasing proteasome drives the increasing levels of 

Cox4p activity. These results hint at a complex interplay between the proteasome and cellular energy 

metabolism that warrants further exploration. Rpn11p emerged as a more insightful predictor for cells in 

the Hsp104p aggregate state than Hsp104p itself. Our analysis revealed that while nuclear levels of 

Rpn11p decreased, cytoplasmic levels increased. In yeast, maturation of the proteasome occurs within the 

nucleus before it is exported to the cytoplasm where it will remain active. The increasing cytoplasmic 

Rpn11p levels in Hsp104p aggregates reinforces earlier findings that have linked the Hsp104p aggregates 

to elevated proteasome activity. Strikingly, this trend contrasts with the mitochondrial dysfunction 

hallmark, where we observed a decrease in cytoplasmic Rpn11p levels. This divergence in proteasome 

activity between hallmarks highlights differences in proteasome behavior and impact. The intensity of 

Rpn11p had a larger decline in both the short-lived cells and cells classified in the mitochondrial 

aggregate state. This suggests the possiblity of the declining levels of the proteasome, which may start the 

cascade of aging hallmarks. It is still unclear, however, the cause of  decline in Rpn11p or the proteasome. 

The sgf73Δ changed the trajectory of the Rpn11p nuclear levels where it remained lower than the control 

and maintained a steady rate. This suggests that perhaps the proteasome may be responding to changes in 

protein synthesis. Whether protein synthesis leads to cell size increase or vice versa remains to be 

determined. Our data raises a question on key differences in aging pathways and their overlaps. It is also 

possible the proteasome, protein synthesis, and scaling changes may be influencing each other in a 

circular fashion, where like a spinning top one may become dysregulated, which pushes the others and 

thereby leads to a feedback mechansim.  
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CONCLUSION 

Our findings identified a causal relationship between proteasome and scaling dynamics, with 

differential scaling and proteasome activity as predictors of the mitochondrial dysfunction and 

proteostasis stress hallmark. While our findings have shed light on the influence of proteasome on nuclear 

area, the mechanisms remain elusive. This study has paved the way for further exploration of the interplay 

between proteostasis, organelle scaling, and the aging hallmarks. Importantly, our observations emphasize 

the differential responses to aging hallmarks, raising key questions about differences in aging pathways 

and their overlaps. 
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METHODS 

1.1 Strains 

By4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) was used. 

1.2 Cell Tracking and Segmentation Pipeline  

For segmentation a pretrained Unet model was trained to receive one channel 512x512 images. The 

pretrained model was trained on a curated dataset containing only segmented yeast mother cells. The 

purpose was to teach the model to differentiate between cells and the microfluidic device wells. The 

pretrained model was then retrained on a training set data composed of the YeaZ dataset and our hand 

segmented dataset of yeast cells. Cell masks are generated by turning all values, including Yeaz dataset 

into 0 or 1.  A Binary Cross Entropy with logits loss function and Adam Optimizer is used with a starting 

learning rate of .001. The model was trained for 100 epochs on batches of 5 with 755 images, each image 

contained 3-300 cells.  Out of the 755 images, 423 are images made from experiments using the Li lab’s 

microfluidics device, while the rest are composed of the YeaZ dataset. The model’s accuracy was 

determined on a testing dataset of 14 images, which were created through a separate imaging experiment 

that the model has never seen, each image contained more than 5-100 cells. Augmentations used included 

random horizontal flipping, random vertical flipping, random rotations (0,24,90,135,270), gaussian blur, 

random gaussian noise, colorjiter, CutMix, Random Crop, and translations. The final Unet model is 

trained to receive a single 512x 512 image. Out of the 17 Zstacks taken per time for each well and 

experiment, only the top two brightfield images were extracted and merged. The top two brightfield 

images for each mother cell are identified using a Laplacian absolute value mean. Images are then 

normalized to values of 0-1 and fed to the trained Unet model to determine cells. After segmentation, the 

boundary of the cell was determined by using skimage find contour function. Yeast mother cells were 

identified during the first timepoint of imaging and tracked using a python-based pipeline. Should issues 

arise due to segmentation, the pipeline used a watershed-based approach to further help separate out 

daughter cells from mother cells. The cell’s previous cell eccentricity and cell area is used to determine 
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whether segmentation proceeded correctly. If not, the model would back track to create a better 

segmentation. If the model failed to track the cell, manual hand curation is utilized. This occurred in cases 

where large shifts in the microscope occurred or several mother cells are plated relatively close, pushing 

the others. To filter out any outliers, a Pearson correlation of the cell area to timepoints up to the last 

budding time of an individual mother cell is calculated. Only cells with a Pearson value greater than .7 are 

kept for downstream data analysis.  

1.3 Segmentation of Nucleus in Liver Cells 

The data is shared through Diana Jurk. Images are of high quality and segmentation. The nucleus 

segmentation procedure was executed through the Python programming language utilizing multiple 

packages: readlif.reader, scipy.stats, time, numpy, skimage.measure, and pandas. The process was 

initialized by loading images from LIF files using the LifFile function from readlif.reader. The nucleus 

segmentation process was initiated by obtaining the DAPI-stained image of the cell nucleus. A binary 

mask of the nucleus was generated through adaptive thresholding, where pixels with intensities greater 

than the mean plus one standard deviation were set to true. Post thresholding, any remaining holes in the 

binary mask were filled using the binary_fill_holes function from scipy's ndimage module, and small 

objects less than 700 pixels in size were eliminated using the remove_small_objects function from the 

skimage.measure module. Using a similar method the cytoplasmic mask was created. For each nucleus, 

the overlap with the cytoplasm mask was determined. Only nucleus sizes that shared one overlap with a 

cytoplasm label are kept. Further filtering included removing cells where the nucleus area is larger than 

the cytoplasmic area. Cells are then checked by eye to determine proper nucleus segmentation.  

1.4 Segmentation of Cryo-Section Lung Data 

The U-Net architecture was utilized for semantic segmentation of cellular structures in microscopic 

images, beginning with a pretrained U-Net model designed for 512x512 yeast segmentation. This model 

was trained on a subset of nucleus data, augmented with additional images from various sources. The 

dataset included 81 images from a study published on the European Bioinformatics Institute website 
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(https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BSST265), 34 images from previously published 

aged fibroblast DAPI stains, and 18 miscellaneous images of lung fibroblast and passaged fibroblast cells. 

Two hand-annotated images were used for validation, these images had more than 50-100 cells each. All 

images had reasonably segmented cells. The U-Net model was trained with a dataset that was augmented 

through random rotations, zooms, shifts, CutMix, and flips. Brightness and contrast of the images were 

randomly adjusted for additional variety. Given the usage of a pretrained U-Net model, only 30 epochs 

were required for training with a starting learning rate of 0.001. The Adam Optimizer and a Binary Cross 

Entropy with Logits Loss (BCEWithLogitsLoss) were used in the training process. The Soft Dice Loss 

was deemed detrimental to model performance. A smaller batch size of 3 was favored for better learning. 

Images larger than 512x512 were patched and fed to the model for training. For segmentation, if the 

image exceeded the size of 512x512, it was cropped to patches of this size. Padding is added if the image 

is too small.  A threshold selecting for nucleus areas between 80 and 500 was applied. This filter 

eliminated most double nuclei and overlapping cells. To validate the findings of the violin plot, more 

stringent thresholds were applied using eccentricity of .6 and .7 to filter out cells that were less circular. 

The general trend of older cells possessing a larger nucleus area was maintained. The figure focused on 

using the nucleus area threshold of 80 to 500 as it captured most of the cells.  

1.5 Foci Segmentation 

For the main training set data, 628 files, focusing heavily on mitochondrial foci, were utilized. A total of 

179 images lacking proper cell segmentation were used to facilitate model training, supplemented by 13 

images of Cox4p-GFP and 16 of Rpn11p-mCherry foci that were augmented by hand. A separate hand-

curated validation set contained 25 files from an independent Cox4p-mCherry-tagged experiment not 

included in the training set data. Augmentation techniques such as CutMix, random erasing, horizontal 

and vertical flipping, random rotations, translations, gaussian blur (sigma of 2), and random gaussian 

noise were implemented to enhance model robustness. The weights were initialized using the yeast U-Net 

model, designed for 512x512 input images and segmentation. However, the image size for training and 

https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BSST265


79 
 

foci detection was reduced to 40x40. Cells were identified using our segmentation pipeline, and the 

mother cells were cropped. To maintain a consistent 40x40 image size, padding was added and blank 

areas were filled with the minimum intensity value found within the cropped cell. For model training, we 

employed the Binary Cross-Entropy with Logits Loss (BCEWithLogitsLoss) function, Adam optimizer, 

and an initial learning rate of 0.0001. The model underwent 50 epochs of training with a batch size of 25. 

1.6 Phenotype Classifier 

Seven phenotypes are classified for a training set data of 10713 images and validation dataset of 965 

images. Phenotypes are identified using GFP tagged data collected from our single reporter strains. 

Phenotypes are easier to see when performing a background subtraction on each of the 17 zstacks before 

aggregating the zstacks together. Training images and validation images are identified through a Mean 

Maximum Discrepancy Variational Autoencoder to identify novel protein characteristics and confirmed 

by hand. The phenotypes included, Circular (2022 images), Aggregate (2338 images), Cytoplasm (1549 

images), Other (1475 images), Fragmented (1357 images), Binary Aggregates (1144 images), and Triple 

(828 images). The Other phenotype included images of phenotypes not identified. The phenotype labeled 

Aggregate can be used to differentiate between Hsp104p aggregates, nuclear localization, and 

mitochondrial aggregates. The Circular, Fragmented, Binary Aggregates, and Triple phenotypes pertain 

specifically to the mitochondria but could be used on other organelles. The model was tested on two 

separate datasets to determine its accuracy. The mitochondrial marker was Mdm38p-GFP and the 

cytoplasmic was Trx2p-GFP treated with rapamycin, for a total of 965 testing images with about 120-150 

images per category. To create a classifier model, we used a pretrained ResNet50 model trained on the 

ImageNet database. The ResNet50 is then retrained on our phenotype data. Here, I merged the first layer 

of the pretrained ResNet50 model into one channel. All portions of the model were frozen except for the 

first conv1D and the last linear layer. Segmented single mother cells are fed to the model, these cells are 

resized to a 224x224, to utilize the pretrained properties of the ResNet50 model. Augmentations used: 

random rotations (0,45,90,135,180,270), horizontal flipping, vertical flipping, gaussian blur, random 
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noise, unsharp filter, and random translations. To further help the model identify key differentiating 

phenotypes, a random threshold is performed along with downsizing and then resizing the images to 

increase blurriness. The MixUp augmentation did not help with model performance. Model was trained 

with a batchsize of 32 for 100 epochs with a Adam Optimizer and a starting itineration rate of .0001. 

Accuracy is further tested by using knockout experiments to determine if the model could accurately 

identify phenotypes. The dnm1Δ is known to cause mitochondria aggregation and ablate the 

mitochondrial circular phenotype. The trained ResNet50 model corroborated this. 

1.7 Microfluidic Setup  

Cells were grown overnight in YEPG media free of glucose. Cells were then diluted from an O.D of 600 

through a 1/5 dilution and allowed to grow for 3 hours and 30 minutes before washing the cells with YEP 

three times and incubating in YEP for 1 hour. By placing in YEP for an hour most cells will be 

temporarily arrested. After incubation, cells were diluted 1:2 with YEPD and plated using a PSI of 20 to 

insert cells in the wells. Adding 135ul of fresh YEPD media, cells plated in the wells are washed using a 

pump to push new YEPD media for 2 minutes at a PSI of .5. The media is then removed and a fresh 280ul 

of YEPD is added on one side of the well and 135ul of YEPD on another. Neighboring empty wells will 

receive 250ul of water to help with hydration. Imaging begins anywhere between 20-30 minutes after 

plating.  

1.8 Confocal Imaging Protocol  

Cells are imaged every 20 minutes using the lowest laser settings possible to view tagged proteins. Cells 

are incubated at 30 Celsius. AZeiss Axio Observer Z1 at 63x oil objective is used to capture cells every 

20 minutes and 17 zstack images are acquired with .45um distance. A Zeiss microscope was used with 

two laser settings 405nm and 588nm. Laser power was at 15% and exposure time was 200ms.  

1.9.1 Protein Quantification  

Proteins were quantified using custom python code to identify single mother cells and quantify 

fluorescent protein tag. Median background pixels is obtained per zstack by observing areas without cell 
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or well occupancy. Protein tags are quantified by taking the pixel sum values per zstack of the region of 

interest designated by the mother cell segmentation program. Next the median background for that zstack 

is subtracted from the values. Protein intensity can be determined by normalizing the total pixel values by 

the area of occupancy of the respective proteins or organelle areas. Organelle areas can be determined by 

pixel occupancy. 

1.9.2 Mobaraki Method  

The analysis focuses on identifying the high region of intensity per zstack for each single cell and time. 

First, for each z-stack, the median background was identified and subtracted from the sum of the cell’s 

pixels to derive an initial measure. This value was then divided by the protein occupancy within the 

corresponding cell. The values were then summed across the seventeen zstacks. To accurately calculate 

the protein occupancy, we began by subtracting the median background for each z-stack's image and 

converting any resulting negative values to zero. This yielded an initial estimation of occupancy, which 

we further refined using a Gaussian filter with a sigma of 1, blurring the image to fill any empty regions. 

We then defined a threshold based on the mean of the blurred image, and by summing the pixels greater 

than this threshold, we isolated the occupancy of high pixel intensities within each z-stack per single cell. 

This methodical approach allowed us to establish a quantification of protein intensity by incorporating 

background correction, statistical filtering, and thresholding techniques tailored to each z-stack within 

individual cells. 

1.9.3 Gaussian Mixture Model  (GMM)  

To obtain strong differences between distributions zstacks were aggregated together, which allowed both 

signal and noise to increase. After which, a gaussian filter with a sigma of 3.5 is applied to the aggregated 

image to further distinguish distributions. The mother cell is then segmented. The Max threshold is used 

to identify pixel regions that were greater than or equal to the threshold. The min peak comprised of 

values less than the max threshold. Using the regions identified though GMM, the pixel intensity, sum, 



82 
 

and area was identified in the aggregated image before gaussian filter. Through visual inspection the 

nucleus, mitochondria, and vacuole organelle could be distinguished.   

2.1 Induction Experiment Protocol  

Fresh media containing 16nM of estradiol was made each time. Experiments were paused and media was 

removed on both well sides. 135ul of new media would be added. The well that would be induced, 

received fresh estradiol. The control would receive fresh YEPD media without estradiol. The media 

would be pumped using a PSI of .5 for 2 minutes after which the respective media would be removed and 

replaced with a new fresh media of YEPD with 16nM of estradiol or YEPD. Volume added is 280ul for 

one side of the well and 135ul on the other side.  

2.2 Protein Tagging with Fluorescent Tags 

Saccharomyces cerevisiae strains were generated using standard yeast transformation techniques to 

enable protein quantification and phenotypic analysis. Three fluorescent protein tags were employed for 

this purpose: Green Fluorescent Protein (GFP), mCherry, and a near-infrared fluorescent protein (iRFP). 

These tags were fused to the C-terminus of a target protein of interest, which was selected based on its 

well-characterized expression pattern and biological significance identified through our preliminary 

analysis. Selection markers for the fluorescent tags used are nourseothricin, Ura3, and hygromycin B. 

Plasma membrane P2-type H+-ATPase, Pma1p, is fused to iRFP to tag the individual mother cells, 

however, in our experiments the marker was not used to identify or keep track of the single mother cells.  

2.3 Gene Deletion 

Kanamycin gene was inserted between the promoter and the terminator of a gene of interest. For 

homologous recombination, Primer designs of 57bp of the start of the coding sequence and 57bp of the 

end of the terminator are used. Deletion is confirmed through gel PCR and sanger sequencing composed 

of primers 500bp upstream and downstream of the gene of interest.  For all knockouts at least 5 or more 

colonies are seen 3-4 days after plating cells on a kanamycin plate.  
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2.4 Estradiol Plasmid Construction 

The estradiol Z4EM plasmid was given to me by the Hana El-samad lab. The plasmid was remade to 

insert into the Ura3 region with a kanamycin selectable marker, site insert, and Cys4 protein. The Ret2 

promoter is used to induce the expression of the activating protein. The Ura3 region was chosen as a site 

of genomic insert as it was previously indicated to have relatively small epigenetic changes with time. 

Cys4 protein was included in the plasmid in case multiple genes needed to be overexpressed. For this 

paper only one gene was expressed at a time during induction experiments. To insert a gene of interest, 

upstream primers containing a Kozak sequence for the start of the coding sequence along with the enzyme 

AVRII were constructed and the terminator sequence 200bp at the end of the gene was added with a 

enzyme sequence SBFI. If a gene had a fluorescent tag the terminator past the GFP tag was taken. To 

insert a gene, restriction digest enzymes AVRII and SBFI were used. Inserts were checked through gel 

PCR and sanger sequencing. Induction can be measured through live microscopy and is visually seen 

within 15- 20 minutes of estradiol induction. Flow cell cytometry also confirmed rapid induction and 

stabilization.  

2.5 Proteasome Measurement Assay 

Cells were cultured to OD600 ~0.8 to 1.0 in 15ml of galactose rich media. Cell pellets were collected by 

spinning samples down at 1500RPM for 5 minutes and washing in 10ml of deionized water twice. Pellets 

were then stored in -80 for one night before resuspending in 50μl of cold lysis buffer [50 mM tris-HCl 

(pH 7.5), 0.5 mM EDTA, 5 mM MgCl2, and protease inhibitor cocktail tablet; Roche], and p200 was used 

to squirt cell mixture into a 2.0ml tube.  The capped tube was then placed in liquid nitrogen, creating 

frozen droplets within the tube. Eight 3.0 mm Diameter beads (D1032-30) were then placed inside the 

tube with frozen droplets. At this point tubes are kept in liquid nitrogen. Cell breakage was performed by 

mixer milling. Mixer milling was performed three times at a frequency of 30 Hertz for 1 minute, samples 

and rack were placed back in liquid nitrogen for two minutes between breakage times. At this point the 

frozen droplets appear as a refined powder. 15μl of cold lysis buffer was then added to the tubes and 
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samples were allowed to thaw on ice for 15 minutes before supernatant was collected at 13,000 rpm for 8 

min at 4°C. Protein concentration was determined by a Bradford assay (Bio-Rad) using bovine serum 

albumin as standard and 3-5μl of samples. Proteasomal chymotrypsin-like activity was measured by using 

Suc-LLVY-AMC (Bachem), and proteasomal caspase-like activity was measured by using Ac-nLPnL-

AMC (Bachem). Each reaction volume was 200μl, including 50μg of total lysate protein, 100μM peptide 

substrate, and lysis buffer. The fluorescent intensity was recorded after incubation for 15 min at 30°C in a 

TECAN with an excitation wavelength of 380nm and an emission wavelength of 460nm. Samples were 

recorded in the absence or presence of 50µg/ml of the proteasome inhibitor MG132.  

2.6 Temporal Ordering with Granger Causality 

The primary intention is to determine whether feature 1 is predictive of feature 2 at a later time. The 

Granger causality is expressed through a combination of Decision Trees and F-test in this analysis. Two 

datasets representing feature 1 and feature 2 activities at distinct time points were used. Both datasets 

were aligned based on a common time frame and cell population. The data points were normalized by 

Singular Value Decomposition (SVD) to equalize the scale. Moreover, the data for each cell were 

normalized to the 0-1 range to facilitate trend recognition. A Decision Tree Regressor was employed for 

the Granger causality test. Granger causality is generally used for linear relationships; however, the use of 

a Decision Tree Regressor allows us to capture the nonlinear relationships between datasets. The trees 

were optimized by setting the maximum depth as a function of the square root of the number of live cells 

in the sample, which adapts the model complexity to the data size. Furthermore, the Friedman Mean 

Squared Error criterion was applied as the function to measure the quality of a split. Time points with less 

than 56 live dividing cells are excluded. For each time point, the decision tree model predicted the future 

feature activity based on the feature activity at a previous time. For example, the model would compare 

whether Rpn11p intensity (feature 1) or nucleus area (feature 2) at time 2 is a better predictor of a later 

time, time 4 of the nucleus area. These predictions were then compared with the actual future feature 2 

activities. The difference between predicted and actual feature 2 activities were calculated and subjected 
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to an F-test, where the null hypothesis is that the variances of the two sets of differences are equal. The 

essence of the approach is to capture which model has less variation. The one that has less variation 

would thereby be a better predictor. The result of this F-test determines the Granger causality: if the p-

value of the F-test is below a given significance level (alpha), it indicates that the past feature 1 activities 

vs past feature 2 activities have a statistically significant effect on the future feature 2 activities, and hence 

we can infer that feature 1 predicts feature 2.  Finally, the log10-transformed p-values (signed according 

to the sign of the F statistic) of the F-tests were assembled into a matrix where rows and columns 

represent different time points. A rolling window approach was applied with a window size of two where 

the maximum value within each window was selected. This helped to reduce the noise and increase the 

signal. Magnitudes less than two standard deviations of the signal greater than zero were turned to zero. 

Following the thresholding step, a gaussian filter with a σ = 1.2 was used to further smooth and enhance 

true feature distinctiveness. This matrix was then visualized using a heatmap, providing a visual overview 

of the temporal relationship between feature 1 and feature 2 across all time points. The predictive 

relationships were identified through negative logarithmic p-values, indicating statistically significant 

Granger causality from feature 1 to feature 2. A greater magnitude of these values represents stronger 

evidence of causality. 
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