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ABSTRACT OF THE DISSERTATION

Improving Acute Ischemic Stroke Diagnosis Using Medical Imaging and Deep

Learning Methods

by

Haoyue Zhang

Doctor of Philosophy in Bioengineering

University of California, Los Angeles, 2023

Professor Corey W. Arnold, Chair

Acute ischemic stroke (AIS) is a cerebrovascular disease caused by deceased blood flow in the

brain. Treatment of AIS is heavily dependent on the time since stroke onset (TSS), either

by clock time or tissue time. AIS treatments aim to restore blood flow in the stroke-affected

area to minimize infarction. Current clinical guidelines recommend thrombolytic therapies

(e.g. Intravenous(IV) or Intra-arterial (IA) tissue Plasminogen Activator (tPA) for patients

presenting within 4.5 hours of TSS and Mechanical Thrombectomy (MTB) (e.g. surgical re-

moval of the clot) for patients with TSS up to 24 hours. This research attempts to use both

CT and MRI to predict the eligibility of AIS patients and their response to treatment while

addressing several challenges in neuroimaging and AIS diagnosis in clinical settings using

novel machine learning and deep learning approaches. A Self-supervised Learning approach,

called intra-domain task-adaptive transfer learning, is the first proposed to predict TSS us-

ing limited training data. A hybrid transformer model that utilizes spatial neighborhood

information in brain regions is proposed to predict MTB success. A pure transformer and

a specifically designed Masked Image Model are developed to predict Large Vessel Occlu-

ii



sion (LVO). Last, a transformer-based super-resolution framework is proposed to generate

synthesized thin-slice images from thick-slice images. Together, these models demonstrate

the effectiveness of the attention mechanism and the usefulness of self-supervised learning

for clinical deep learning applications given the limited data resources compared to natural

images.

iii



The dissertation of Haoyue Zhang is approved.

Yingnian Wu

Holden H. Wu

Dan Ruan

William F. Speier

Corey W. Arnold, Committee Chair

University of California, Los Angeles

2023

iv



Dedicated to my family and friends

Special gratitude to my beloved parents, my wife, and my children

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Identifying Patients Within Thrombolytic Treatment Window . . . . 2

1.1.2 Predicting Thrombectomy Success Using Pre-treatment Imaging . . . 3

1.1.3 Predicting Large Vessel Occlusion . . . . . . . . . . . . . . . . . . . . 3

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Acute Ischemic Stroke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Thrombolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Thrombectomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Large Vessel Occlusion . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Stroke Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Computed Tomography . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Attention Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Vision Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4 Self Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . 30

vi



2.4 Super Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Using 2D and 3D Attention CNN and Self-supervised Learning to Deter-

mine Acute Ischemic Stroke Onset Time with Pretreatment MRI . . . . . . 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Dataset and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 2D and 3D Model Architectures . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 Training Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Experiment and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.8.1 Additional Experiments Results . . . . . . . . . . . . . . . . . . . . . 61

4 Predicting Thrombectomy Outcomes Using Machine Learning and Deep

Learning Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.2 MR Acquisition and Preprococessing . . . . . . . . . . . . . . . . . . 67

vii



4.3.3 CT Acquisition and Preprococessing . . . . . . . . . . . . . . . . . . 69

4.3.4 Deep Learning Model Architecture . . . . . . . . . . . . . . . . . . . 69

4.3.5 Contrastive Self Supervised Learning . . . . . . . . . . . . . . . . . . 71

4.3.6 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.7 Training and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Patient Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.2 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Large Vessel Occlusion Classification: A Masked Imaging Model Trans-

former Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 CT Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.3 Evaluation metrics and Statistical Analysis . . . . . . . . . . . . . . . 85

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.2 Impementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.3 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

viii



5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Transformer Volumetric Super-Resolution from CT Scans . . . . . . . . . 92

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Dataset and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.1 RPLHR-CT Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.1 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.2 Domain Gap Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.7 Internal Test Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.8 External Test Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

ix



LIST OF FIGURES

2.1 Two types of stroke. This figure is credited to [Jaf19] . . . . . . . . . . . . . . . 8

2.2 A brief illustration of large vessel occlusion. This figure is credited to [RWS19] . 13

2.3 a simple 3-layer CNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Timeline of attention mechanism development. This figure is credited to [GXL22] 22

3.1 Sample cases of DWI-FLAIR Mismatch. Sequences from left to right: DWI

b1000, DWI B0, FLAIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Preprocessing pipeline for patient series. . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Sample case of Registered Output. Sequences from top to bottom: DWI(b1000),

FLAIR, T2w(DWI b0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Architectures for 2D (top) and 3D (bottom) models. Our 2D Self-weighted Slice-

wise Attention model took DWI b1000, T2w(b0), and FLAIR as a 3-channel

input to a feature extraction backbone. Each slice of the brain was individually

fed through four Resblocks of ResNet-18 to generate a 512x7x4 feature map, then

pooled to a 512x1 feature vector [HZR16]. A soft attention module at the 256-

channel convolutional layer was added to generate a 256x28x14 attention feature

map and then pooled to a 256x1 feature vector. The feature map and attention

feature map were aggregated for each slice with a learnable weighting factor for

final classification. Our 3D model first used the entire structure of a 3D U-Net to

train an initial weight using Models Genesis. Then volumetric DWI, T2w, and

FLAIR were directly fed into the encoder part of the network. Two soft attention

modules were added at 128 and 256-channel convolution layers. Feature maps

from the original network and the two attention modules were pooled globally

and concatenated for classification. . . . . . . . . . . . . . . . . . . . . . . . . . 48

x



3.5 A summary of our training schema. Each phase utilized a unique classifica-

tion label, as enumerated in the Outputs boxes for each phase. At the end of

each training phase, the weights of certain components were frozen; these frozen

weights were then initialized for the model at the start of the following phase. . 50

3.6 On second phase task TSS< 3 hours, for 2D model, our proposed transfer learning

approach has a 5.1% increase, whereas for the 3D model, there is a 8.3% increase

in ROC-AUC score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 On third phase task TSS< 4.5 hours, for 2D model, our proposed transfer learning

approach has a 22.1% increase in AUC; for 3D model, there is a 20.9% increase 53

3.8 ROC curves for classifying TSS < 4.5 hours. +P = with pretraining. . . . . . . 54

3.9 Grad-CAM visualizations of the penultimate convolutional layer for 2D and 3D

models, both from scratch and with pretraining. . . . . . . . . . . . . . . . . . . 57

4.1 Sample DWI and FLAIR images. Left are original images, middle are registered

images, and right are mapped regions for input . . . . . . . . . . . . . . . . . . 68

4.2 Sample NCCT and CTA images. Left are original images, middle are registered

images, and right are mapped regions for input . . . . . . . . . . . . . . . . . . 70

4.3 FPE prediction framework. The top is the self-supervised learning approach, the

bottom is the model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Inclusion Criteria for patient cohort . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 ROC curves both MR and CT test performance . . . . . . . . . . . . . . . . . . 77

5.1 (a) Illustration of the proposed swin transformer LVO detection framework. STL

stands for the swin transformer layer, which is detailed at the bottom right.

Multiple STLs form a swin block. The input is 3D volume Non-contrast CT. The

masking blocks are cubes for MIM. . . . . . . . . . . . . . . . . . . . . . . . . . 86

xi



5.2 ROC curves for ResNet and Swin-T performance . . . . . . . . . . . . . . . . . 89

6.1 (a) Three categories of slice-pairs according to their spatial relationship in thin

CT and thick CT. Match: same position, shown in blue; Near: 1mm apart, shown

in red; Far: 2mm apart, shown in green. (b) The degree of similarity between

the three slice-pairs on the three datasets. (Color figure online) . . . . . . . . . 96

6.2 (a) Illustration of the proposed Transformer Volumetric Super-Resolution Net-

work architecture. (b) Details of TAB. The purple dashed box represents two

consecutive swin transformer layers. The batch dimension is indicated in paren-

theses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 (a) Quantitative comparisons of our TVSRN and other state-of-the-art methods.

∗ indicates p < 0.001. (b) PSNR vs. processing time of each volume with the

number of parameters shown in circle size. (c) quantitative results of pseudo

images experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 Visual comparisons of different methods against TVSRN. The first and second

rows show the axial view and coronal view respectively, displayed as lung window.

The third row is sagittal view, displayed as bone window. Yellow arrows point to

areas of marked difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Sample-by-sample performance scatterplot on the internal test set. . . . . . . . . 105

6.6 Sample-by-sample on the external test set. . . . . . . . . . . . . . . . . . . . . . 108

6.7 Sample-by-sample performance scatterplot on the internal test set of ablation study.109

xii



6.8 Comparison of different degradation strategies. First use bicubic interpolation

to downsample the thin-CT to the same number of slices as the thick-CT, then

perform Gaussian filtering. Four σ were set for the Gaussian filter, 0, 0.5, 1.0, and

1.5. When the σ = 0, it means that Gaussian filtering is not performed. Using

peak signal-to-noise ratio (PSNR) to compare the similarity between pseudo-LR

volumes and real-LR volumes obtained by four different degradation strategies,

the results are shown in the lower right corner. When σ = 1.0, the pseudo-LR

volume has the highest PSNR with the real-LR volume, but it still has a visible

difference in appearance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xiii



LIST OF TABLES

2.1 Modified TICI score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Patient cohort demographics. Numbers are n (%) or median (interquartile ranges).

MRI indicates magnetic resonance imaging; NIHSS, National Institutes of Health

Stroke Scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Performance metrics across tasks and architectures. Double lines separate models

with different outputs. Sens = Sensitivity, Spec = Specificity, Acc = Accuracy,

AUC = Receiver Operating Characteristic Area Under Curve, Rad = Radiologist,

Agg Rad = Aggregate Radiologist. . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Internal and external patient cohort demographics. Numbers are n (%) or median

(interquartile ranges); NIHSS, National Institutes of Health Stroke Scale. . . . 62

3.4 Performance metrics for Deep Learning (DL) and Machine Learning (ML). Models

trained on internal, external, or both and tested on the internal and external test

sets. Sens = Sensitivity, Spec = Specificity, Acc = Accuracy, AUC = Receiver

Operating Characteristic Area Under Curve . . . . . . . . . . . . . . . . . . . . 63

4.1 Demographics of patients included in model development. N, number of patients;

SD, standard deviation, IQR, interquartile range; NIHSS, National Institutes of

Health stroke scale; mTICI, modified treatment in cerebral infarction score; tPA,

intravenous thrombolysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Ablation study on MRI cross-validation folds . . . . . . . . . . . . . . . . . . . 76

4.3 Ablation study on CT cross-validation folds . . . . . . . . . . . . . . . . . . . . 76

4.4 Deep learning model performance on prospective MRI and CT test set . . . . . 77

xiv



5.1 Patient cohort basic demographics. Numbers are n (%) or median (interquartile

ranges). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Quantitative evaluation of methods on the test set. The best results are in bold. 90

6.1 Results of ablation study for TVSRN in terms of PSNR and SSIM. The best

results are bolded, and the second best results are underlined. * denotes statisti-

cally significant (p < 0.001) against the above method with a one-sided Wilcoxon

signed-rank test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Quantitative evaluation of methods on the internal test set. The best results

are in bold. 95% confidence intervals are in square brackets. * denotes the

statistically significant difference (p < 0.001 in one-sided Wilcoxon signed-rank

test) between the current method and TVSRN. . . . . . . . . . . . . . . . . . . 104

6.3 Quantitative evaluation of methods on the external test set. The best results

are in bold. 95% confidence intervals are in square brackets. * denotes the

statistically significant difference (p < 0.001 in one-sided Wilcoxon signed-rank

test) between the current method and TVSRN. . . . . . . . . . . . . . . . . . . 107

xv



ACKNOWLEDGMENTS

I would like to express my utmost gratitude to my Ph.D. advisor, Dr. Corey Arnold

for his continuous support and guidance throughout my Ph.D. study. I would not have

switched to research and academia without his inspiration. I also want to thank my other

committee members: Dr. William Speier, Dr. Dan Ruan, Dr. Yingnian Wu, and Dr.

Holden Wu for their expertise from fundamentals to applications, for their kindness and

enthusiasm, and for their patience and understanding. I want to thank Dr. Kambiz Nael

for providing constructive suggestions and clinical insights for the projects. I am extremely

thankful to my colleague, Dr. Jennifer Polson for her help, clinically and technically. Her

dedication and focus inspired me during my Ph.D. journey. I would also like to acknowledge

all current and past members of the computational diagnostics (CDx) group and medical

imaging informatics (MII) group for their support. Special thanks to my colleagues Zichen

Wang, Wenyuan Li, Jiayun Li, Karthik Sarma, Johnny Ho, Yimen Meng, Shiwen Shen, Lew

Andrada, Yanan Lin, Leihao Wei, Tianran Zhang, Carlos Olivares, Saarang Panchavati,

Mara Pleasure, Ashwath Radhachandran, Katya Redekop, Nathan Siu, Eric Yang, Ilyass

Majji, Simon Han, David Gordon, Nova Smedley, Panayiotis Petousis, and many more.

Special thanks to our staff members Shawn Chen, Isabel Rippy, Denise Luna, and Rushi

Kulkarni for all their help and support. In addition, I want to thank our collaborators Dr.

John Hoffman, Dr. Suzie El-Saden, Dr. Noriko Salamon, Dr. Bryan Yoo, Dr. Shingo Kihira,

and Dr. Iris Chen.

I would also like to thank the UCLA Graduate Division, UCLA Bioengineering Depart-

ment, and NIH for providing financial support through my Ph.D. study. This research is

mainly supported by NINDS R01NS100806 and Dissertation Year Fellowship.

Last, I would like to thank my friends and my family. They are the most invaluable

assets in my life and no words can easily express my gratitude.

xvi



VITA

2010–2014 B.S. (Mathematics/Economics, Statistics), UCLA

2014-2016 M.S. (Computational Science and Engineering), Rice University

2016-2017 Data Visualization Engineer, Acumen LLC

2017-2018 Data Scientist, UCLA Health - Radiology

2018-2023 PhD. Bioengineering (expected), UCLA

2021-2023 Machine Learning Intern and research collaborator, Infervision

2022-2023 Machine Learning Intern, Genentech/Roche

SELECTED PUBLICATIONS

1 Yang, X., Yu, P., Zhang, H., Zhang, R., Liu, Y., Li, H., ... & Yang, Q. (2023). Deep

Learning Algorithm Enables Cerebral Venous Thrombosis Detection With Routine Brain

Magnetic Resonance Imaging. Stroke, 54(5), 1357-1366.

Polson, J. S.*, Zhang, H.*, Nael, K., Salamon, N., Yoo, B. Y., El-Saden, S., ... & Arnold,

C. W. (2022). Identifying acute ischemic stroke patients within the thrombolytic treatment

window using deep learning. Journal of Neuroimaging, 32(6), 1153-1160.

1*denotes equal contribution

xvii



Yu, P.*, Zhang, H.*, Kang, H., Tang, W., Arnold, C. W., & Zhang, R. (2022, September).

RPLHR-CT Dataset and Transformer Baseline for Volumetric Super-Resolution from CT

Scans. MICCAI 2022 Proceedings, Part VI (pp. 344-353)

Tang, W.*, Zhang, H.*,... & Zhang, R. (2022, July). MMMNA-Net for Overall Survival

Time Prediction of Brain Tumor Patients. International Conference of the IEEE Engineering

in Medicine & Biology Society (EMBC)

Zhang, H.*, Polson, J. S.*, ... & Arnold, C. W.. ”Predicting Thrombectomy Recanalization

from CT Imaging Using Deep Learning Models.” 2022 Medical Imaging with Deep Learning

(2022).

Polson, J.*, Zhang, H.*, ... & Arnold, C. W. (2021, November). A Semi-Supervised

Learning Framework to Leverage Proxy Information for Stroke MRI Analysis. International

Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)

Zhang, H.*, Polson, J.*, ... & Arnold, C. (2021, July). A machine learning approach

to predict acute ischemic stroke thrombectomy reperfusion using discriminative mr image

features. IEEE EMBS International Conference on Biomedical and Health Informatics (BHI)

Zhang, H.*, Polson, J. S.*, ... & Arnold, C. W. (2021). Intra-domain task-adaptive transfer

learning to determine acute ischemic stroke onset time. Computerized Medical Imaging and

Graphics, 90, 101926.

Ho, K. C., Speier, W., Zhang, H.*, Scalzo, F., El-Saden, S., & Arnold, C. W. (2019). A

machine learning approach for classifying ischemic stroke onset time from imaging. IEEE

transactions on medical imaging, 38(7), 1666-1676.

xviii



CHAPTER 1

Introduction

Stroke is a cerebrovascular disease accounting for 2.7 million deaths worldwide every year. In

the United States, it is the fifth leading cause of death, with approximately 795,000 people

having a stroke and out of which 140,000 cases lead to death per year [Ben19]. Patients who

have experienced strokes can suffer from severe and life-altering consequences. The physical

and cognitive impairments that can result from a stroke, such as paralysis, communication

difficulties, and cognitive impairment, can have long-lasting and detrimental effects on the

patient’s quality of life and ability to live independently. These disabilities can also lead

to institutionalization and long-term care, which can pose a significant economic burden on

healthcare systems and society as a whole. Therefore, there is a strong incentive to minimize

the incidence of stroke and improve patient outcomes, given its high frequency, impact, and

cost. There are two types of stroke: ischemic stroke and hemorrhage stroke, where 87%

are ischemic strokes. For Acute Ischemic Stroke (AIS), timely and accurate diagnosis and

treatment are crucial for a better outcome. Treatment of AIS is heavily dependent on the

time since stroke onset (TSS), either by clock time or tissue time [RT14]. AIS treatments

aim to restore blood flow in the stroke-affected area to minimize infarction. Current clinical

guidelines recommend thrombolytic therapies (e.g. Intravenous(IV) or Intra-arterial (IA)

tissue plasminogen activator (tPA) for patients presenting within 4.5 hours of TSS and

mechanical thrombectomy (e.g. surgical removal of a clot) for patients with TSS up to 24

hours [TFO14, UFZ18].
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1.1 Motivation

1.1.1 Identifying Patients Within Thrombolytic Treatment Window

The goal of thrombolysis as a medical intervention is to dissolve blood clots that have

developed within blood vessels. The current clinical guidelines recommend it be used on

patients with a known symptom onset time ( time since stroke TSS) within 4.5 hours [PRA19,

DKA16]. Favorable outcome is expected for patients within the treatment window [LBK10].

On the other hand, administration of thrombolysis outside of the treatment window may

lead to hemorrhage or even worse, mortality. More than 35% of the AIS patients have

an unknown TSS [UFZ18] and only 6.5% of patients hospitalized for AIS in the United

States have received intravenous thrombolysis, and unknown TSS has been determined as

the primary reason for treatment exclusion [JWG16]. Extensive research projects and clinical

trials have been conducted to extend the eligibility of AIS patients for thrombolysis, many

of them are using imaging, such as DWI-FLAIR mismatch, Diffusion-perfusion mismatch,

etc [TSB18, NJH18, AMK18, BZL19].

Within minutes of a stroke, diffusion-weighted imaging (DWI) can identify reduced appar-

ent diffusion coefficient (ADC) of ischemic lesions, while fluid-attenuated inversion recovery

(FLAIR) can reveal a net increase in water contents within 1 to 4 hours. This difference in

signals between DWI and FLAIR can be utilized as a tissue clock. However, this tissue clock

signal does not necessarily provide reliable TSS information and the inter-reader agreement

is moderate to low. Given this situation, Machine Learning (ML) has shown great potential

in predicting TSS using MRI, either using traditional radiomics features and ML models

[LLH20] or using end-to-end approaches with Deep Learning (DL) models [HSZ19, ZJZ21].

However, previous work either requires infarct core segmentation or the use of perfusion

images, limiting the usage in real-world clinical settings.
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1.1.2 Predicting Thrombectomy Success Using Pre-treatment Imaging

Endovascular thrombectomy (EVT) is a medical procedure used to remove blood clots from

blocked blood vessels in the brain or other parts of the body, typically by inserting a catheter

through an artery into the site of the clot and restoring the blood flow of the infarct area. Suc-

cessful EVT has many potential factors that could influence a patient’s response to treatment.

In practice, success is measured by restoration of blood flow to the stroke area, quantified

by the modified treatment in cerebral infarction (mTICI) score [NJH18, AMK18, Ban11].

Clinical trials and other studies have illustrated that patients who experience partial and/or

full recanalization of the blood vessel typically experience better outcomes, particularly if

recanalization is achieved in three attempts or less [DCB17, GTF19, VCS17]. Pre-treatment

MRI and CT may provide useful information regarding the success of endovascular thrombec-

tomy, providing critical information for neurosurgeons before they create a treatment plan

for AIS patients.

1.1.3 Predicting Large Vessel Occlusion

Large Vessel Occlusion (LVO) stroke is a type of ischemic stroke with complete or partial

blockage of a major blood vessel in the brain. The occlusion can disrupt blood flow to a

significant area of the brain, leading to a stroke or other serious neurological complications.

LVO accounts for 24% to 46% of the AIS [RWS19] and EVT has shown to be far more

effective than thrombolysis for LVO strokes [BFB15, CMK15, GDM15, JCC15]. Timely de-

termination of LVO stroke is crucial for the following EVT treatment and outcome [MHO20].

1.2 Challenges

Deep Learning (DL) has demonstrated its superiority in both computer vision and natu-

ral language processing tasks. Particularly, in medical imaging, CNN-based and recently

3



proposed transformer-based architectures are widely used in different modalities, organs, di-

agnosis, detection, and lesion segmentation. However, DL approaches require a large amount

of training data. Depending on the specific tasks, the data required to let the model converge

can scale up easily. Particularly, the recent success of the vision transformer is established

on an even larger data scale. On the other hand, medical images, particularly stroke-related

neuroimaging, are scarce due to the limitation and regulations of medical institutions, rare

diseases, and different protocols. Therefore, the first challenge is that we need to effectively

train DL models with limited data. The second challenge is the significant human effort re-

quired for annotation, especially for tasks involving segmentation and detection. To achieve

optimal performance, certain disease diagnosis, classification, or prediction tasks may require

lesion segmentation to enable the model to concentrate on the specific area of interest rather

than the entire input. The third hurdle pertains specifically to AIS and involves the need

for the algorithm to produce results in a timely manner within the fast-paced environment

of real-world clinical settings. The utilization of AI algorithms may be restricted due to the

low quality of images and the thick slice thickness associated with the AIS imaging protocol,

which presents the fourth challenge.

1.3 Contributions

The main contributions of this dissertation can be summarized in the following specific aims:

Aim 1. Develop an intra-domain task-specific self-supervised learning approach and at-

tention based 2D and 3D CNN models to classify time since stroke using diffusion

weighted MRI.

a. To Investigate the effectiveness of different pretraining approaches, including

self-supervised and supervised pretraining tasks to help the model converge on a

relatively small dataset.

b. To develop attention-based 2D and 3D CNN models that achieve end-to-end
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training to predict TSS and evaluate on an external center.

c. To propose a semi-supervised approach to predict DWI-FLAIR mismatch from

the TSS model.

Aim 2. Develop a CNN-transformer hybrid model to predict EVT outcome using both

CT and MRI.

a. To develop radiomics-based ML models to examine the feasibility of predicting

mTICI using pre-treatment MRI.

b. To develop a CNN-transformer hybrid model to predict mTICI using non-

contrast CT and CT angiography.

c. To further add contrastive self-supervised learning pretraining to the model

and evaluate the performance on both CT and MRI.

Aim 3. Develop a pure vision transformer model to predict large vessel occlusion.

a. To develop a swin transformer model to predict large vessel occlusion using

non-contrast CT.

b. To develop a masked imaging self-supervised learning approach for pretraining

the model.

Aim 4. Develop a transformer-based super-resolution model to synthesize 1mm slice thick-

ness from 5mm slice thickness.

a. To develop a transformer-based super-resolution model to generate 1mm slice

from 5mm slice CT images using real-paired CT data.

b. To further improve the model with better performance and efficiency and

evaluate on multiple external centers.
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1.4 Outline of the Dissertation

This dissertation is organized as follows:

Chapter 2 provides the background on acute ischemic stroke, the diagnosis, and treat-

ment, the role of medical imaging in stroke, ML and DL, attention mechanism,

transformers, and a selected review of related work.

Chapter 3 presents a novel intra-domain task-adaptive self-supervised approach to predict

time since stroke using MRI, composed of previously published work.

Chapter 4 summarizes the efforts to predict thrombectomy outcomes using ML and DL

approaches, including published work.

Chapter 5 demonstrates a transformer-based self-supervised learning approach to predict

large vessel occlusion from non-contrast CT data.

Chapter 6 builds a transformer-based super-resolution algorithm to generate thin-sliced

CT images from thick-sliced CT images.

Chapter 7 concludes the dissertation and discusses limitations and potential future direc-

tions.
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CHAPTER 2

Background

2.1 Acute Ischemic Stroke

Stroke is the second leading cause of death and the second largest healthcare burden es-

timated in disability-adjusted life-years globally. In terms of stroke incidence, the highest

rates were observed in East Asia, followed by the Eastern European region, while the lowest

rates were reported in central Latin America. The age-specific incidence rates were similar

between women and men up to the age of 55 years, but men had higher rates than women

between 55 and 75 years of age, with the rates leveling out at older ages [Gor19]. 87% of

the strokes are ischemic strokes and 13% are hemorrhage strokes. Figure 2.1 illustrate the

two types of stroke. This dissertation focuses on acute ischemic stroke (AIS), a condition in

which one or multiple occlusions narrow or block arteries to the brain, leading to severely

reduced blood flow (ischemia) and tissue death. On the other hand, hemorrhagic stroke

occurs when a weakened blood vessel ruptures, causing bleeding inside the brain. When AIS

happens, the clot blocked the artery from supplying blood to the brain, causing brain cells

to become deprived of oxygen and nutrients, leading to dysfunction and eventual death if

the blood flow is not restored quickly. The symptoms of acute ischemic stroke can vary de-

pending on the location and extent of the blockage, but they may include sudden weakness,

numbness, or paralysis in the face, arm, or leg, usually on one side of the body, difficulty

speaking or understanding speech, vision problems, severe headaches, and loss of balance or

coordination [Wal22]. The infarct core is the region of the stroke where the brain tissues

are already infarcted and irreversibly dead regardless of reperfusion. The penumbra area
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Figure 2.1: Two types of stroke. This figure is credited to [Jaf19]

is defined as the regions where the brain tissues are at risk of becoming infarcted. There

are mainly two types of treatment, thrombolysis, and thrombectomy. The treatment goal is

to remove the clot and restore the blood flow in a timely manner so that the extent of the

damage can be minimized. The specific treatment options depend on various factors, such as

the severity and location of the stroke and the time since the onset of symptoms. The design

of the treatment plan follows the guidelines from American Heart Association/American

Stroke Association [PRA19].

2.1.1 Thrombolysis

Thrombolysis is a medical treatment that involves the use of drugs to dissolve blood clots that

have formed inside blood vessels. This treatment is commonly used for acute ischemic stroke

and other conditions caused by blood clots, such as deep vein thrombosis and pulmonary

embolism.

The most common thrombolytic drug used for acute ischemic stroke is Intravenous (IV) or

Intra-arterial (IA) tissue plasminogen activator (tPA). tPA is a protein that occurs naturally

in the body and helps to break down blood clots. When administered as a medication,

tPA can dissolve the clot causing the stroke and restore blood flow to the affected area
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of the brain. Thrombolysis may be administered through an intravenous infusion or by

directly injecting the medication into the affected artery. This treatment requires close

monitoring in a hospital setting and may be followed by other treatments, such as mechanical

thrombectomy or supportive care.

Thrombolysis is most effective when administered as soon as possible after the onset

of symptoms (or Time since stroke, TSS) of acute ischemic stroke. This is because the

longer the blood flow is blocked, the greater the risk of irreversible brain damage. How-

ever, thrombolysis also carries a risk of bleeding, so it must be carefully considered in each

individual case. Efforts have been made to expand the treatment window of thrombolysis

to 4.5 hours [HKB08] and onset within 4.5 hours is currently used in clinical guidelines.

Multiple pieces of research aimed to extend the treatment window to up to 6 to 9 hours

[Ahm13, RSS02, MCP19] with the guidance of imaging. Due to the trade-off between the

risk of hemorrhage for AIS patients with longer onset time and benefits directly related to

outcome, tPA administration requires reliable symptom onset time. However, up to 35% of

the AIS population have unknown onset time [EBS18]. Per clinical Guidelines, patients with

unknown TSS are excluded from thrombolysis treatment. Two recent clinical trials have

provided solutions for unknown TSS using MRI. The WAKE-UP trial uses DWI-FLAIR

mismatch to differentiate the signals in DWI and FLAIR sequences to determine a patient’s

eligibility for thrombolysis [Tho11, TFO14, TSB18]. The WAKE-UP trial showed that AIS

patients with unknown TSS that were treated by tPA achieved significantly better functional

outcomes. MR WITNESS trial uses a quantitative mismatch of DWI and FLAIR (qDFM) to

treat AIS patients with a median TSS of 11.2 hours using thrombolytics and demonstrated

the safety of the treatment beyond recommended time windows [SWS18]. Therefore, using

MRI to extend the eligibility of thrombolysis is practical in a real-world setting.
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2.1.2 Thrombectomy

Thrombectomy, also known as endovascular or mechanical thrombectomy (EVT or MTB), is

a minimally invasive medical procedure in which a blood clot, also known as a thrombus, is

removed from a blood vessel in the brain. This procedure is typically performed in patients

who have had an ischemic stroke, which is caused by a blockage in a blood vessel in the

brain. Before the procedure, the patient is typically given a sedative to help them relax.

The patient’s vital signs, such as blood pressure and heart rate, are monitored throughout the

procedure. The physician may also administer an anticoagulant medication to help prevent

future blood clots. The physician makes a small incision in the patient’s groin to access the

femoral artery. A thin, flexible catheter is then inserted through the incision and guided

up to the site of the clot in the brain. Using real-time imaging, such as Digital Subtraction

Angiography (DSA) [KBW19], the physician is able to locate the clot and determine the best

approach for removing it. There are several types of mechanical devices that can be used to

remove the clot, including stent retrievers and aspiration catheters [FS16]. Stent retrievers

are mesh-like devices that are threaded through the catheter and positioned around the clot.

Once in place, the retriever is expanded, trapping the clot within its mesh. The physician

then gently pulls the retriever and clot back through the catheter and out of the body.

Aspiration catheters work by using suction to draw the clot into a catheter and out of the

body. Once the clot has been removed, the physician monitors the patient’s vital signs

and neurological status to ensure that there are no complications. Once the procedure is

complete, the catheter is removed and pressure is applied to the incision site to stop any

bleeding. The patient may be required to lie flat for a period of time to prevent bleeding.

EVT is most effective when performed as quickly as possible after the onset of stroke

symptoms, ideally within six hours of symptom onset. However, in some cases, it may still

be beneficial to perform an EVT up to 24 hours after the onset of symptoms [AMK18, Ben19].

Specifically, the DAWN trial showed that AIS patient whose TSS was between 6 to 24 hours

and had a mismatch between clinical deficit and infarct achieved better outcomes through
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EVT than standard care [NJH18]. Diffusion-weighted MRI or perfusion CT was used for

the measurement of clinical deficit and infarct volume. Further study showed that advanced

imaging such as perfusion CT does not provide extra benefit with regard to clinical outcomes,

deeming non-contrast CT and CT angiography enough for the assessment [NHL21]. On the

other hand, DEFUSE 3 trial uses CT perfusion or MR diffusion perfusion imaging to assess

EVT eligibility and showed that patients with TSS of 6 to 16 hours had better outcomes

following EVT plus standard care [AMK18]. and EVT is considered to be a highly effective

treatment for ischemic stroke, particularly for patients who are not able to receive intravenous

(IV) thrombolytic therapy, or who have not responded to IV thrombolytic therapy [LBG17].

The success of EVT is evaluated by Thrombolysis in Cerebral Infarction (TICI) score,

proposed by [HF03], modified from the Thrombolysis in Myocardial Infarction (TIMI) scale.

TIMI is a scoring system used to assess the severity of coronary artery disease and predict

the risk of adverse outcomes in patients with acute coronary syndromes (ACS), including

myocardial infarction (MI). TICI score evaluates the extent of blood flow restoration in the

brain after each attempt of EVT using Angiography. The scale range from no perfusion

(grade 0) to complete perfusion (grade 3). modified TICI (mTICI) score was proposed

to amend the grading system to better reflect different grades of recanalization. Table

2.1 showed the details of the mTICI score. During EVT, if a complete or near-complete

recanalization is achieved after one attempt of clot retrieval, it is called First-pass Effect

(FPE). Research has shown that patients who experienced FPE correlated with significantly

improved clinical outcomes, decreased mortality, and a significantly lower rate of hemorrhagic

transformation [ZCL18, JCW19, DPG20].

2.1.3 Large Vessel Occlusion

Large vessel occlusion (LVO) refers to the complete or partial blockage of a major blood vessel

in the brain, such as the middle cerebral artery (MCA), internal carotid artery (ICA), or

basilar artery. LVO is a medical emergency that requires immediate attention and treatment,
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Table 2.1: Modified TICI score

Score Modified Thrombolysis in Cerebral Infarction Scale

0 No perfusion

1 Penetration but no perfusion. Antegrade reperfusion past the initial occlusion,

but limited distal branch filling with little or slow distal reperfusion

2a Antegrade reperfusion of less than half of the occluded target artery previously

ischemic territory (e.g. in 1 major division of the MCA and its territory)

2b Antegrade reperfusion of more than half of the previously occluded target

artery ischemic territory (e.g. in 2 major divisions of the MCA and their

territories)

2c Near-complete perfusion except for slow flow in a few distal cortical vessels or

presence of small distal cortical emboli

3 Complete antegrade reperfusion of the previously occluded target artery is-

chemic territory, with an absence of visualized occlusion in all distal branches.

as it can lead to severe brain damage or even death.

The most common cause of LVO is a blood clot that forms inside a blood vessel in the

brain. This can occur due to a variety of conditions, including atherosclerosis (narrowing

and hardening of the arteries), embolism (the blockage of a blood vessel by a foreign object

such as a blood clot or air bubble), or thrombosis (the formation of a blood clot within a

blood vessel) [VAB20, HTC13]. As shown in figure 2.2, up to 46% of AIS are LVO.

The symptoms of LVO can vary depending on the location and severity of the blockage.

Common symptoms may include sudden weakness or numbness on contralateral hemibody

and face, contralateral homonymous hemianopsia, ipsilateral gaze deviation, aphasia, neglect,

dizziness, nausea, vomiting, gait, and balance issues, etc [RWS19].

If LVO is suspected, immediate medical attention is necessary. EVT is the standard
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Figure 2.2: A brief illustration of large vessel occlusion. This figure is credited to [RWS19]

treatment for stroke with LVO [GTF19]. In fact, LVO is a major inclusion criterion for EVT

treatment. Overall, LVO is a serious condition that requires urgent medical attention to

prevent potentially life-threatening complications. Early detection and treatment can greatly

improve the chances of a positive outcome and minimize the risk of long-term disability. EVT

has been shown to significantly improve outcomes for patients with LVO when performed

within a certain time window. However, it is not appropriate for all types of stroke or all

patients. It is important to determine if a stroke patient has large vessel occlusion (LVO)

because it can affect the course of treatment and the patient’s prognosis. LVO is associated

with more severe strokes and can result in a higher risk of disability or death and early

identification of LVO can help guide the choice of treatment. In addition, identifying LVO

can also help in the decision-making process for other treatments, such as thrombolytic

drugs or antiplatelet medications. These treatments can be effective in certain cases but

may increase the risk of bleeding in patients with LVO, and careful consideration of the risks

and benefits is necessary.
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Currently, there are different approaches to determining LVO before treatment [NIM22].

The gold standard to confirm the presence of LVO is digital subtraction angiography (DSA).

The Los Angeles Motor Scale (LAMS) is used in the pre-hospital environment and showed

good sensitivity (76%) and low specificity (65%) for a cut-off of ¿= 4 [NSS18]. The Cincinnati

Prehospital Stroke Scale (CPSS) is another pre-hospital scoring system that showed a better

specificity (88%) but lower sensitivity (41%) for a cut-off score of 3 [RHT18]. The Rapid

Arterial oCclusion Evaluation (RACE) scale is a recently developed scoring system with a

sensitivity of 85% and specificity of 73% [CCC17, LSD20]. Glasgow Coma Scale (GCS) has

shown very high sensitivity (94%) and specificity (90%) for a cut-off of ¡ 15 [HHJ21].NIH

Score Scale (NIHSS) is also modified and adopted for LVO prediction in multiple studies

[PHR17, HHB16]. There are also several novel scales that were developed recently but further

investigation is needed to verify their robustness [TVC17, TSS19, VAF19]. Other than a

scoring system, imaging and physiological monitoring methods are also commonly used.

Computed tomography angiography (CTA) is most widely used in many centers with very

high sensitivity (83% to 97%) and specificity (87% to 99%) [LLR21, BJB20, FBH21]. On the

MRI side, black-blood MRI is a unique modality that demonstrated high diagnostic accuracy

and reliability with 100% sensitivity and specificity [AAE19]. Fluid Attenuated Inversion

Recovery (FLAIR) also showed good sensitivity (98%) and specificity (86%) [BTL20].

2.2 Stroke Imaging

Radiology plays a critical role in stroke diagnosis and treatment. CT and MRI are the most

commonly used in clinical settings. MRI provides a more sensitive AIS diagnosis than CT

while non-contrast CT (NCCT) is good at quickly ruling out hemorrhage at the initial stage

during admission. Studies show that standard MRI is five times more sensitive and twice

more accurate than NCCT in diagnosing AIS and both MRI and NCCT perform similarly

at diagnosing hemorrhage [CKN07]. However, historically more centers use CT machines for
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standard stroke diagnosis. Cost, time, and availability are several major factors that lead to

more usage of CT than MRI. [PSL19] showed that although MRI scan duration is longer than

CT, the overall time frame for imaging diagnostics of AIS patients with MRI is comparable

to CT, not delaying the treatment or impacting the outcomes. Typical MRI series for

stroke protocol include Diffusion imaging such as Diffusion Weighted Imaging (DWI) at

B0 and B1000, Apparant Diffusion Coefficient (ADC), Fluid-attenuated Inversion Recovery

(FLAIR), Perfusion MRI such as raw Perfusion Weighted Imaging (PWI) and perfusion

parameter maps including Cerebral Blood Flow (CBF), Cerebral Blood Flow (CBV), Mean

Transit Time (MTT), Time-to-peak (TTP) and Time-to-Maximum (Tmax). Typical CT

series for stroke protocol include NCCT, CT Angiography (CTA), and CT perfusion with

the same parameter maps as in perfusion MRI.

2.2.1 Magnetic Resonance Imaging

MRI (Magnetic Resonance Imaging) is a noninvasive medical imaging technique that uses

strong magnetic fields and radio waves to generate detailed images of internal body struc-

tures. The fundamentals of MRI are based on the physical properties of the body’s atomic

nuclei specifically, their interaction with magnetic fields [PK12].

When a patient is placed in a strong magnetic field, the hydrogen atoms in their body

align with the magnetic field, producing a net magnetic moment. By applying a brief pulse of

Radiofrequency (RF) energy, these hydrogen atoms can be excited and emit their own radio

frequency signals, which are detected by the MRI scanner. The nuclei return to the resting

alignment through relaxation. After a while, the emitted signals are measured. These signals

provide information about the location and intensity of the magnetic field in the body, which

can be used to generate images through Fourier transformation. Different types of tissue

generate different signals, depending on their chemical composition and physical properties.

By analyzing these signals, MRI can provide detailed images of soft tissues, such as the

brain, spinal cord, and internal organs, as well as bones and other hard tissues. By varying
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the RF pulse sequences and measurements, MRI can be used to selectively encode spatial

information into the signals generated by the hydrogen atoms to highlight different types

of tissues. This allows for the generation of detailed, three-dimensional images of internal

structures.

T1-weighted scans and T2-weighted scans are the two most common MRI sequences.

Short TE and TR times are used to produce T1-weighted images. On the other hand, longer

TE and TR times are utilized to produce T2-weighted images. The contrast and brightness

of different tissues displayed differently on T1-weighted and T2-weighted sequences. For

example, Cerebrospinal Fluid (CSF) is dark on the T1-weighted sequence and bright on the

T2-weighted sequence.

2.2.1.1 Diffusion Weighted Imaging

Diffusion Weighted Imaging (DWI) is designed to detect the Brownian (random) movement

of water molecules within a voxel of tissue. Due to the influence of different cell structures,

water molecules cannot move freely. Inside the human body, water in the extracellular en-

vironment can move relatively freely or is called diffused freely while diffusing restrictively

in the intracellular environment. During ischemia of tissues, water moves from the extracel-

lular to the intracellular environment due to the osmotic gradient and when this happens,

the water movement is restricted intracellularly, therefore showing a bright signal on DWI

by measuring the attenuation of the T2 signal based on how easily water molecules are able

to diffuse in that region. The more easily water can diffuse, the less initial T2 signal will

remain. Simply put, DWI is generated by applying a diffusion-related gradient pulse to a

standard MRI sequence. Therefore, DWI is very sensitive in detecting infarct of AIS, within

minutes. [BDS16]. Clinically for stroke diagnoses, DWI is widely used for early identification

of ischemic stroke and differentiation of acute from chronic stroke. The DWI generation is

as follows: First, obtain a T2-weighted image with no diffusion attenuation (b=0). Next,

the ease with which water can diffuse is assessed in various directions (x,y,z). Next, b-value
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generation by applying a strong gradient symmetrically on either side of the 180-degree

pulse. The b-value measures the degree of diffusion weighting applied, the higher the b-

value, the stronger the signal attenuation. Eventually, four sets of images are generated: T2

B=0 images and three DWI images in x, y, and z directions with the T2 signal attenuated

according to how easily the water diffuses in that direction [KP06]. For stroke, B=500 and

B=1000 sequences are usually used. The Apparent Diffusion Coefficient (ADC) Map can be

generated by the log of isotropic DWI divided by the initial T2 signal:

ADC = −lnS/S0

b
(2.1)

where S is the signal intensity at the given b value, S0 is the intensity of no diffusion gradient

and b is the b value. Commonly, DWI and ADC are used together by radiologists to identify

infarct core where it is bright on DWI and dark on ADC [Lai14].

2.2.1.2 Fluid Attenuated Inversion Recovery

Introduced by Hajnal et al in 1992 for brain diagnostics [HBK92], Fluid Attenuated Inversion

Recovery (FLAIR) is a special inversion recovery (IR) series with a long inversion time (TI)

before the signal is acquired, followed by a short TI to null the signal from CSF. Therefore,

CSF is shown as dark while preserving signals from other brain tissues thus FLAIR remains

similar to T2-weighted images with CSF inverted. Briefly, we can interpret FLAIR as T2-

weighted images with free-flowing water as dark and non-free-flowing water and fat are

bright. The high contrast between the brain tissues and CSF allows for better visualization

of the brain tissues and any pathology that may be present. FLAIR is a standard sequence

in many neuroimaging protocols, providing high-quality images of brain tissues, and is useful

in diagnoses of stroke, tumor, and multiple sclerosis.

A brief summary of FLAIR generation is as follows: first, an inversion pulse is applied

to invert the magnetization of all the protons in the tissue. Then, a delay is introduced to

allow the inverted magnetization to reach its steady state which is set to long enough for the
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CSF to return to the null point [BAD96].

In stroke diagnoses, FLAIR MRI can be used to detect the presence of ischemic lesions,

which appear as areas of increased signal intensity due to the accumulation of water in the

affected brain tissue. FLAIR images can also be used to distinguish between acute and

chronic strokes, as acute ischemic lesions typically appear hyperintense on FLAIR images

within the first few hours of the stroke onset. In addition, FLAIR MRI can help to identify

other conditions that may mimic stroke, such as brain tumors, abscesses, or inflammatory

diseases.

2.2.1.3 Perfusion Weighted Imaging

Perfusion MRI is a non-invasive advanced imaging technique that is widely used in the assess-

ment of various neurological disorders, including stroke. Perfusion MRI measures blood flow

in the brain by tracking the passage of a contrast agent through the cerebral vasculature. Dy-

namic Susceptibility Contrast-enhanced (DSC) MR perfusion, Dynamic Contrast-Enhanced

(DCE) MR perfusion, and Arterial Spin Labeling (ASL) are among the common MR perfu-

sion techniques. Note that DCE is T1-weighted, DSC is T2*-weighted, and ASL requires no

contrast agents.

For example, for a DSC perfusion MRI, the process of perfusion MR generation is as

follows: first, a contrast agent, such as Gadolinium-based contrast, is injected into the

patient’s bloodstream. Then, a series of images are acquired over time as the contrast agent

passes through the brain tissue. As the contrast agent passes through tissues, it induces

a reduction of T2* signals in the nearby water molecule due to the susceptibility effect

of the contrast agent that distorts the local magnetic field. By analyzing the changes in

time-signal intensity in the images through relaxation, various perfusion parameters can

be calculated, including cerebral blood flow (CBF), cerebral blood volume (CBV), mean

transit time (MTT), and time to peak (TTP). These perfusion parameters provide valuable

information about the hemodynamic status of the brain tissue and can be used to identify
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regions of the brain that are ischemic [ESN13].

Perfusion MRI is particularly useful in the evaluation of stroke patients, as it can help

to determine the extent of the ischemic damage and the potential for tissue recovery. In

acute ischemic stroke, perfusion MRI can identify areas of the brain that are salvageable and

may benefit from reperfusion therapy, such as thrombectomy or tissue plasminogen activator

(tPA). Perfusion MRI can also be used to monitor the progression of stroke and to evaluate

the effectiveness of treatment over time.

In addition to its clinical applications in stroke, perfusion MRI has also been used in

research settings to investigate various aspects of cerebral physiology and pathophysiology.

For example, perfusion MRI has been used to study the effects of aging on cerebral blood

flow and to identify biomarkers of neurodegenerative diseases such as Alzheimer’s disease.

Overall, perfusion MRI is a powerful imaging tool that provides valuable information

about the hemodynamic status of the brain tissue and is widely used in the assessment and

management of stroke patients.

2.2.2 Computed Tomography

Computed tomography (CT) is an imaging technique that uses X-rays and computer pro-

cessing to produce detailed images of the body’s internal structures, including the brain. CT

is the first-line used imaging modality in the diagnosis and management of stroke patients.

In CT, an X-ray source rotates around the patient, and detectors measure the radiation

that passes through the body. The resulting data is processed by a computer to generate

cross-sectional images of the body. Both contrast-enhanced and non-contrast CT (NCCT)

scans are widely used. NCCT can be rapidly acquired with a relatively low dose of radiation.

NCCT is particularly useful in the initial image review of stroke patients because it can

provide a rapid and accurate diagnosis of acute ischemic stroke and other stroke-related

conditions, such as hemorrhagic stroke. Guidelines recommend at least 50% stroke patients
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undergo NCCT within 25 minutes of arrival to determine whether there is ICH or a large

hypo-attenuating infarct [PRA19].

CT angiography (CTA) is a type of CT that is used to visualize the blood vessels in

the brain and to identify the location of the clot. CT angiography should be performed

immediately after NCCT scan to identify intracranial LVOs in patients with acute MCA or

intracranial internal carotid artery (ICA) syndromes for EVT preparation [PVG19]. When

injected iodine-based contrast agent, a series of CT images can be acquired at different time

intervals and reconstructed by maximum intensity projection (MIP), as well as generating

CT perfusion (CTP) images that can be further processed similarly as MR Perfusion to

acquire perfusion parameter maps.

2.3 Deep Learning

2.3.1 Convolutional Neural Network

Convolutional neural network (CNN) is a special type of Artificial Neural Network (ANN)

that excels at many computer vision tasks in the recent decade. The ”neocognitron” proposed

by Fukushima [Fuk80] is considered the pioneer of CNN. Modern CNNs were established by

introducing back-propagation by [RHW86]. Waibel et al proposed the first one-dimensional

CNN called Time Delay Neural Network (TDNN) [WHH89]. LeCun et al developed the

LeNet CNN architecture for handwritten digit recognition from U.S. Postal Service and

defined the basic components of a CNN which contains convolutional layers, pooling layers,

and fully connected layers [LBD89]. 2.3 shows an example of a CNN.

Convolutional layers is the backbone of a CNN. It performs a mathematical operation

called convolution, which involves sliding parameterized kernels (also known as filters) that

convolve over the input data to extract features and generate new feature maps. This

process helps the model learn local patterns, such as edges, corners, or textures, in the case

of images. Convolutional layers can have multiple filters, enabling the model to learn various
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Figure 2.3: a simple 3-layer CNN architecture

features from the input data [KSH17]. Two advantages of CNN compared to ANN are 1)

local connectivity means that each neuron is only connected to a small number of neurons

or units from the previous layer. It helps reduce the number of parameters and the model

convergence; 2) Weights of different filters within a feature map are shared across different

spatial locations, further reducing the number of parameters.

Pooling layers reduce the spatial dimensions of the feature maps by aggregating repre-

sentations within a small region into one, effectively down-sampling the features. Common

pooling operations are mean or max pooling. The pooling layer reduces the number of param-

eters required by the following layers and controls overfitting by passing through summary

statistics to the next layer rather than direct weights.

Fully connected layers connect all the neurons from one layer to the next layer. Fully con-

nected layers have significantly more parameters than Convolutional layers. Fully connected

layers are usually attached at the end of CNN before the final output layer.

In addition, activation layers [HKM22] (e.g. Sigmoid, Tanh, ReLu, LeakyReLu), batch

normalization [IS15], and dropout [SHK14] are added to CNN as intermediate layers to pre-

vent overfitting and accelerate model convergence. CNNs are built by stacking convolutional

layers and other intermediate layers to extract imaging features from low level to high level

in a hierarchical way. Shallower layers extract low-level patterns such as edge and texture

features while in the later deep layers, the model extracts high-level features such as global
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Figure 2.4: Timeline of attention mechanism development. This figure is credited to [GXL22]

information when the image is downsampled to be captured by the model in fewer param-

eters and a larger receptive field. CNNs have been improved over the years with notable

architectures including AlexNet [KSH17], VGG [SZ14], ResNet [HZR16], DenseNet [HLV17],

EfficientNet [TL19], and ConvNeXt [LMW22]. Although in recent years, transformer ar-

chitecture shows more promising performance on large-scale datasets, the development by

ConvNeXt shows that with modern modifications, CNN still has strong performance.

2.3.2 Attention Mechanism

The attention mechanism enables models to selectively focus on certain parts of the input

data while processing it, essentially mimicking the human ability to pay attention to specific

aspects of an input. In computer vision, an attention mechanism is a technique used to

focus the processing of an image or video sequence on specific regions or objects of interest.

The attention mechanism allows a model to selectively attend to relevant parts of the input

while filtering out irrelevant information, which can improve the accuracy and efficiency of

the model. 2.4 shows a brief summary of key development in attention in computer vision

[GXL22].

The attention mechanism was first introduced by Bahdanau et al in 2014 [BCB14] to

address the limitations of fixed-length context vectors in sequence-to-sequence models for

machine translation. It allows the model to dynamically weigh the importance of input
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elements and assign different levels of focus to them, resulting in improved performance.

Attention mechanisms can be applied to different types of computer vision tasks, such as

object recognition, segmentation, and detection. In object recognition, attention mechanisms

can be used to focus on specific parts of an image that contain the object of interest, while

ignoring other distracting elements in the scene. In segmentation, attention mechanisms

can be used to highlight the boundaries between objects in an image, which can improve

the accuracy of the segmentation process. In detection, attention mechanisms can be used

to highlight the regions of an image that contain potential objects, which can improve the

speed and efficiency of the detection process.

Attention mechanisms can be categorized into two major types: Hard attention and soft

attention. Soft attention is most commonly used in literature, which calculates a probability

distribution range from 0 to 1 that provides a continuous weighting across inputs [XBK15].

Soft attention assigns weights to different parts of the input, thus all the weights are smoothed

and differentiable and can be learned through back-propagation. These weights are then used

to compute a weighted sum of the input features, which emphasizes the relevant parts of the

input while suppressing the irrelevant parts. In the hard attention mechanism, the weights

follow the Bernoulli distribution which takes values of 0 or 1. Therefore, the weights are not

differentiable and the gradients cannot be updated by back-propagation [MHG14].

Attention mechanisms can also be categorized by data domain. Channel Attention gen-

erates attention masks across the channel dimension and uses them to select important

channels. Squeeze-and-Excitation network (SENet) is among the representative works of

this type [HSS18]. SENet designed a squeeze-and-excitation (SE) block that is composed

of a squeeze module and an excitation module. Using global average pooling, the squeeze

module collects the spatial information and the excitation module collects channel-wise re-

lationship information. The attention vector is generated by using FC layers and non-linear

activation layers. Spatial Attention guides the model to focus on important regions while

suppressing unrelated regions. RAM [MHG14] uses Recurrent Neural Network (RNN) [HS97]
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and Reinforcement Learning (RL) [SMS99] to model the attention mechanism as a sequential

decision process to let the model pay attention to the region of interest. Self-attention is

the foundation of the successful Non-local Network [WGG17] and later becomes the foun-

dation of transformer [VSP17] architecture which becomes the backbone for state-of-the-art

Natural language processing (NLP) and computer vision (CV) models. Due to the locality

characteristics of CNN, the global understanding capability is limited by narrow receptive

fields. To overcome this, self-attention is introduced to CV. The self-attention can be defined

as:

1. Linear projections of input embeddings:

QueryQ = WQ ∗X (2.2)

KeyK = WK ∗X (2.3)

V alueV = W V ∗X (2.4)

Where X represents the input sequence embeddings, WQ, WK , and W V are learnable

weight matrices, and Q, K, and V are the projected query, key, and value matrices, respec-

tively.

2. Scaled dot-product attention:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (2.5)
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Where QKT represents the dot product between the query and key matrices, dk is the dimen-

sion of the key vectors, and the result is normalized using the square root of this dimension.

The softmax function is applied to the result, followed by the matrix multiplication with the

value matrix V .

However, the main drawback of self-attention in direct application in CV is its complexity

due to its quadratic scaling by unit-to-unit computation.

2.3.3 Vision Transformers

Vision Transformer, also known as ViT, is a state-of-the-art Deep Learning (DL) architecture

for both NLP and CV tasks. It was proposed by researchers at Google in 2020 [DBK20] and

is based on the Transformer architecture that was originally developed for natural language

processing (NLP) tasks [VSP17].

The key innovation of ViT is the use of self-attention mechanisms to capture the long-

distance relationships between different parts of the image. In traditional convolutional

neural network (CNN) architectures, the input image is processed by a series of convolutional

layers that extract local features, which are then aggregated by pooling layers to create a

global representation of the image. In contrast, ViT uses a sequence of attention blocks,

each of which attends to different parts of the input image, allowing it to capture both local

and global relationships.

The ViT architecture consists of three main components: a patch embedding layer, a

transformer encoder, and a classification head. In the patch embedding layer, the input

image is divided into a grid of fixed-size patches, which are then projected into a high-

dimensional feature space. The transformer encoder consists of a series of attention blocks,

each of which applies self-attention to the input features, followed by a feedforward network

that applies non-linear transformations. The classification head is a simple fully connected
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layer that maps the final output of the transformer encoder to the class labels.

1. Input Image and Patch Embeddings:

Given an input image I ∈ RH×W×C with height H, width W , and C channels, the image is

divided into N fixed-size non-overlapping patches Pi ∈ RPH×PW×C , where PH and PW are

the patch height and width, respectively. Each patch is then linearly embedded into a flat

vector xi ∈ RD, where D is the desired embedding dimension:

xi = Flatten(Pi)WE (2.6)

Where WE ∈ R(PH ·PW ·C)×D is a learnable embedding matrix.

2. Position Embeddings:

Position embeddings are added to the patch embeddings to incorporate the spatial informa-

tion of each patch:

X = x1 + p1, x2 + p2, ..., xN + pN (2.7)

Where pi ∈ RD are the learnable position embeddings.

3. Adding a Learnable Classification Token:

A learnable classification token c ∈ RD is prepended to the sequence of patch embeddings:

X ′ = [c;X] (2.8)

4. Transformer Layers:

The modified input sequence X ′ is then fed through L layers of the Transformer architecture.

Each layer consists of multi-head self-attention and position-wise feed-forward networks, as

well as layer normalization:

Z(l) = LayerNorm(X(l) +MultiHeadAttention(X(l))) (2.9)

X(l+1) = LayerNorm(Z(l) + FFN(Z(l))) (2.10)
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Where l represents the layer index, and X(l) and Z(l) are the input and output of the

l-th layer, respectively.

5. Classification:

After the final Transformer layer, the classification token is extracted, and a linear layer

followed by a softmax function is applied to produce the probability distribution over the

target classes:

y = Softmax(c(L+1)WC + bC) (2.11)

Where c(L+1) is the classification token after the final Transformer layer and WC and bC

are learnable weight and bias parameters for the classification layer.

ViT has achieved state-of-the-art performance on several benchmark datasets, including

ImageNet, COCO, and CIFAR, with significantly fewer parameters than previous CNN-

based models. It shows that by using large-scale training, the model overcomes the CNNs

inductive bias characteristics that help the model generalize. Its success has demonstrated

the potential of self-attention mechanisms for image classification tasks and has opened up

new avenues for research in DL for CV.

2.3.3.1 Swin Transformers

Swin Transformer (Swin-T) is a recently proposed DL architecture for image recognition

tasks, which was introduced by researchers from Microsoft Research Asia in 2021 [LLC21].

Swin-T is an extension of the ViT architecture, which improves upon its limitations and has

achieved state-of-the-art results on several benchmark datasets.

The main innovation of the Swin-T is its hierarchical architecture, which allows for the
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efficient processing of images at multiple scales. In ViT, the input image is divided into

fixed-size patches, which are processed independently by the transformer network. However,

this approach can be limiting for high-resolution images, as it requires a large number of

patches and therefore a large number of parameters.

In contrast, Swin-T uses a hierarchical approach, where the input image is first divided

into a small number of patches, which are processed by a local transformer network. The

output of this network is then grouped into larger patches, which are processed by a higher-

level transformer network. This process is repeated several times, creating a hierarchy of

transformer networks that can efficiently process images at multiple scales.

Another key innovation of Swin-T is its use of shift operations, which enable it to capture

spatial relationships between neighboring patches. In the original ViT, the self-attention

mechanism is used to capture relationships between different parts of the input but does not

explicitly model the spatial structure of the input. The shift operation in Swin Transformer

allows the model to capture spatial relationships between patches without the need for

additional convolutional layers.

The detailed Swin Transformer architecture is as follows: 1. Image Patch Partitioning

and Embeddings:

Similar to ViT, the input image I ∈ RH×W×C is divided into non-overlapping patches Pi ∈
RPH×PW×C . Each patch is linearly embedded into a flat vector xi ∈ RD:

xi = Flatten(Pi)WE (2.12)

Where WE ∈ R(PH ·PW ·C)×D is a learnable embedding matrix.

2. Local Window Partitioning:

The patches are then partitioned into non-overlapping local windows of size M ×M . For an

image with H ×W patches, there are H
M
× W

M
local windows.
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3. Shifted Window-based Self-Attention:

Shifted window-based self-attention is applied to each local window. In each layer, the local

windows are shifted by a half-window size in both horizontal and vertical directions. The

self-attention mechanism can be described as follows:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (2.13)

Where QKT is the dot product between the query and key matrices, and dk is the

dimension of the key vectors.

4. Hierarchical Processing:

The Swin Transformer processes images in a hierarchical manner by successively merging

adjacent non-overlapping patches. This is achieved by applying a patch merging layer,

which consists of a linear transformation followed by element-wise addition of the position

embeddings:

X ′ = LayerNorm(X + PositionEmbedding) (2.14)

Z = X ′WM (2.15)

WhereWM ∈ RD×D′
is a learnable weight matrix, andD′ is the desired output dimension.

5. Transformer Layers:

Similar to the Vision Transformer, the Swin Transformer has several layers of multi-head
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self-attention and position-wise feed-forward networks, as well as layer normalization:

Z(l) = LayerNorm(X(l) +MultiHeadAttention(X(l))) (2.16)

X(l+1) = LayerNorm(Z(l) + FFN(Z(l))) (2.17)

Where l represents the layer index, and X(l) and Z(l) are the input and output of the

l-th layer, respectively.

6. Classification:

After the final Transformer layer, global average pooling is applied to the output feature map,

followed by a linear layer and a softmax function to produce the probability distribution over

the target classes:

y = Softmax(GlobalAveragePooling(X(L+1))WC + bC) (2.18)

Where WC and bC are learnable weight and bias parameters for the classification layer.

Swin Transformer exceeds the performance of ViT on various tasks without the require-

ment of large-scale training data by introducing back inductive bias and translational invari-

ance that is ignored by ViT.

2.3.4 Self Supervised Learning

Self-Supervised Learning (SSL) is a subfield of Unsupervised Learning. SSL involves training

a model on unlabeled data by solving auxiliary tasks, often referred to as pretext tasks, where
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the model is provided with a set of inputs and is tasked with predicting some aspect of the

input data, without any explicit labels or annotations. The learned representations can

then be used for downstream tasks, such as classification or regression, with little or no

fine-tuning.

One of the main challenges in Supervised Learning is the reliance on large amounts of

labeled data, which can be expensive and time-consuming to obtain. SSL aims to address

this issue by leveraging the vast amount of raw, unlabeled data available, allowing models to

learn useful features and representations without the need for manual annotation. In SSL,

the model is trained on a large amount of unlabeled data, such as images, text, or audio,

which is much easier and cheaper to obtain than labeled data. By learning to predict some

aspect of the input data, such as predicting the rotation, colorization, or context of an image,

the model can learn meaningful representations of the input data, which can be used for a

wide range of downstream tasks, such as image classification, object detection, and natural

language processing.

SSL has shown promising results in a variety of domains and has been particularly suc-

cessful in computer vision and natural language processing tasks. In NLP, it revolutionized

the field along with Transformers. Masked language models such as BERT [DCL18] and

GPT series [BMR20] are the two main representative SSL frameworks. BERT predicts the

missing word in a sentence while GPT predicts the next word after seeing a sequence. In

CV, SSL can be categorized into two groups: Contrastive Learning and Generative Learning

and we will cover these two topics in the following sections.

2.3.4.1 Contrastive Learning

Contrastive Learning is a type of SSL that involves training a model to distinguish between

pairs of similar and dissimilar inputs. In Contrastive Learning, the model is trained on a

set of inputs, such as images or text, which are divided into pairs of similar and dissimilar

samples.
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The objective of Contrastive Learning is to learn a representation space where similar

samples are mapped close together, while dissimilar samples are mapped far apart. This is

achieved by minimizing the distance between similar samples and maximizing the distance

between dissimilar samples, using a loss function such as contrastive loss or triplet loss.

By learning to distinguish between similar and dissimilar inputs, the model can learn to

capture the underlying structure and regularities in the input data, which can be useful for a

wide range of downstream tasks, such as image classification, object detection, and natural

language processing.

SimCLR [CKN20] and MoCo [HFW20] are the two most popular approaches for Con-

trastive Learning. In MoCo, the design leverage instance discrimination by substantially

increasing negative samples through a Momentum-updated encoder that stores a dynamic

dictionary. The MoCo framework consists of

Contrastive Learning shows that discriminative models can learn useful feature repre-

sentations, breaking the longtime belief that the generative model is the only choice for

representation learning. The MoCo framework consists of two encoders, fq and fk, which

are used to compute the query and key representations, respectively. fq is the main encoder,

which is updated by backpropagation, while fk is the momentum encoder, which is updated

as a moving average of fq. The momentum update is defined as follows:

fk ← m · fk + (1−m) · fq (2.19)

where m ∈ (0, 1) is the momentum coefficient. The higher the value of m, the smoother

the update process.

In MoCo, the contrastive loss function is the InfoNCE loss, which aims to maximize the

mutual information between the query and key representations. Given a query q = fq(xq)

and a set of keys K = k1, . . . , kN , with k+ = fk(x+) being the positive key and the remaining
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keys being negatives, the InfoNCE loss is defined as:

L(q,K) = − log
exp(q⊤k+/τ)∑N
i=1 exp(q

⊤ki/τ)
(2.20)

where τ is the temperature hyperparameter to control the sharpness of the distribution. A

higher value of τ produces a softer distribution, making the model less sensitive to small

differences between similarities, while a lower value results in a more focused distribution.

However, MoCo v1’s positive sample pair does not use transformation or augmentation,

making the model too easy to distinguish. In SimCLR, the authors demonstrated the im-

portance of hard positive samples by introducing augmented views of the same data samples

to construct positive and negative pairs in 10 forms such as crop and resize, color distort,

flipping, noise, and rotation. The details are as follows: Given an input image x, we generate

two augmented views xi and xj using the data augmentation module. These views are then

passed through the base encoder f(·) and the projection head g(·) to compute the represen-

tations zi = g(f(xi)) and zj = g(f(xj)). SimCLR uses a contrastive loss called NT-Xent

(Normalized Temperature-Scaled Cross-Entropy) loss. The positive pair in this case is the

two augmented views of the same image, while the negative pairs are other augmented views

in the same batch. The NT-Xent loss for a positive pair (i, j) is given by:

Li, j = − log
exp(sim(zi, zj)/τ)∑

k = 12N⊮[k ̸=i] exp(sim(zi, zk)/τ)
(2.21)

Here, sim(zi, zj) =
z⊤i zj
|zi||zj | is the cosine similarity between the representations zi and zj, τ

is a temperature hyperparameter. N is the minibatch size. However, SimCLR returns to the

old large-scale negative samples approach that is hard to train unless the batch size is very

large (e.g. 8196). MoCo v2 [CFG20] adopt the findings in SimCLR and further improve

the performance. Many more following works aim to further improve the performance of

Contrastive Learning. BYOL [GSA20] is one of the latest popular choices in Contrastive

SSL. There are still several major limitations. For instance, the COCO object detection task
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does not benefit from contrastive SSL. Although a lot of efforts have been made to reduce

batch size, it is still a lot bigger than the batch size usually seen in the medical domain.

2.3.4.2 Masked Image Model

Masked Autoencoder (MAE) [HCX21], is the first Masked Image Model (MIM) framework

proposed to use along with ViT for SSL. MAE is based on Autoencoder (AE), which is a

type of generative modeling, as opposed to Contrastive Learning, which uses discriminative

modeling.

Like other AE architectures, the MAE consists of an encoder network and a decoder

network. The encoder network maps the input data into a lower-dimensional latent space,

while the decoder network maps the latent representation back into the original input space.

The objective of the AE is to minimize the reconstruction error between the initial input

and the reconstructed output.

The key difference between an MAE and a standard AE is that the input data to the

MAE is partially masked or corrupted by replacing some of the input values with a mask

value. Instead of attempting to reconstruct the entire input, MAE focuses on reconstructing

a masked or corrupted portion of the input, thus encouraging the model to capture the

underlying structure and semantics of the data. The mask value can be chosen randomly or

systematically, such as by setting a random subset of pixels to zero in an image.

Let’s denote the input data as x ∈ Rd, and letM(x) be a masking function that produces a

corrupted version of the input, with some portion masked or removed. The encoder, denoted

as fθe(·), maps the corrupted input to a latent representation z ∈ Rl:

z = fθe(M(x)) (2.22)

The decoder, denoted as fθd(·), reconstructs the masked portion of the input from the

latent representation:
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x̂ = fθd(z) (2.23)

The goal of the Masked Autoencoder is to minimize the reconstruction error between the

original input and the reconstructed input. This can be measured using a loss function such

as the mean squared error (MSE). The loss function can be written as:

L(θe, θd) =
∑

i∈M

D(xi, x̂i) (2.24)

whereM is the set of indices corresponding to the masked elements in the input, and D is

a distance metric, such as the squared error (xi − x̂i)
2 or the cross-entropy −xi log x̂i − (1−

xi) log(1− x̂i), depending on the nature of the input data.

The MAE can be used for a variety of tasks, such as image denoising, inpainting, and

anomaly detection. It has also been used as a pre-training step for downstream tasks,

such as classification and clustering, to learn more effective representations of the input

data. Recently, there are also other popular MIM frameworks. BEiT [BDP21] is a slightly

earlier work than MAE that first uses a discrete variational autoencoder (dVAE) to tokenize

image patch to discrete visual tokens, then use masked strategy to do reconstruction. MAE

demonstrated that the image patch tokenize is not necessary by direct reconstructing the

RGB values of the image patches. At about the same time as MAE work, SimMIM [XZC21]

was proposed with a reduced decoder that contained only one linear layer. Unlike MAE

which only input masked region, SimMIM input all the image patches. More importantly,

SimMIM is designed to work with SwinT, which is a hierarchical structure that a simple

patching strategy like MAE cannot process.

2.4 Super Resolution

Super-resolution (SR) refers to the task of generating a high-resolution (HR) image or video

from one or more low-resolution (LR) input images or frames. The goal is to recover missing
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details and enhance the quality of the LR images, making them visually similar to HR

images.

SR is an important problem in image and video processing, with applications in a wide

range of domains such as medical imaging, satellite imaging, surveillance, and consumer

electronics.

There are different approaches to SR, including interpolation-based methods, which use

interpolation techniques such as the nearest neighbor, bilinear pooling, or bicubic to increase

the resolution of an image, and learning-based methods, which learn a mapping from LR

images to HR images using DL.

Learning-based SR methods have shown promising results in recent years, particularly

with the development of CNN architectures. The primary goal is to learn a mapping function

between the low-resolution input image and its high-resolution counterpart, typically through

a dataset containing pairs of low- and high-resolution images using different loss functions,

such as mean squared error or perceptual loss. Using SRCNN [DLH15] as an example, the

problem can be formulated as: Given a low-resolution input image Y ∈ RW×H×C , where

W , H, and C are the width, height, and number of channels, respectively, the objective of

the SRCNN is to learn a mapping function F that reconstructs the high-resolution image

X ∈ RW ′×H′×C :

X = F (Y ; Θ) (2.25)

Here, Θ denotes the learnable parameters of the SRCNN.

The training process involves minimizing a loss function, which measures the difference

between the ground-truth high-resolution image X and the reconstructed image F (Y ; Θ). A

common loss function used for this task is the mean squared error (MSE) loss:

L(Θ) =
1

n

n∑

i=1

|X(i) − F (Y (i); Θ)|2 (2.26)
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Here, n denotes the number of training samples, and X(i) and Y (i) are the ground-

truth high-resolution image and its corresponding low-resolution input for the i-th sample,

respectively.

There are other more advanced DL models for super-resolution, such as the Enhanced

Deep Residual Networks for Single Image Super-Resolution (EDSR) [LSK17], the Very Deep

Super-Resolution (VDSR) [KLL16], and the Generative Adversarial Networks-based super-

resolution (SRGAN) [LTH17]. These models employ more complex architectures and loss

functions to improve the quality of the reconstructed high-resolution images. SR can also

be applied to video frames, with methods such as temporal super-resolution, which uses

information from multiple frames to generate HR frames, and video SR, which generates HR

videos from LR videos.
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CHAPTER 3

Using 2D and 3D Attention CNN and Self-supervised

Learning to Determine Acute Ischemic Stroke Onset

Time with Pretreatment MRI

3.1 Introduction

Self-supervised learning attempts to use unlabeled data to pretrain a model and fine-tunes it

for downstream tasks. However, pretraining on the same labeled dataset with some pretext

objections may also help the model converge on the downstream task without introducing

large-scale external unlabeled datasets. In this chapter, we will first introduce our early ex-

ploration of self-supervised learning, namely ”intra-domain task adaptive transfer learning”

to predict stroke onset time using pretreatment MRI. The work described in this chapter is

in press as Intra-domain task-adaptive transfer learning to determine acute ischemic stroke

onset time [ZPN21b] and Identifying acute ischemic stroke patients within the thrombolytic

treatment window using deep learning [PZN22]. A follow-up study on DWI-FLAIR mis-

match is also covered in appendix [PZN21].

3.2 Overview

Acute Ischemic Stroke (AIS) is a type of cerebrovascular disorder responsible for approx-

imately 2.7 million deaths globally each year [Ben19]. he approach to AIS treatment is

significantly influenced by the time since stroke onset (TSS); current clinical guidelines ad-
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vocate for thrombolytic therapies for AIS patients who present within a 4.5-hour window

from stroke onset and endorse endovascular thrombectomy for those presenting within a 24-

hour window. A sizable proportion of AIS cases, up to 25%, occur without a clearly defined

TSS [TFO14, UFZ18]. This could be due to strokes that are unwitnessed, strokes that occur

during sleep, or situations where patient reporting is unreliable. For this particular group of

patients, the most recent American Heart Association (AHA) guidelines suggest the use of

specific MRI sequences to determine patient eligibility for thrombolytic therapy [PRA19].

Following the WAKE-UP trial [TSB18], which used DWI-FLAIR mismatch to select

patients for extending the time window for intravenous thrombolysis, the use of MRI (DWI-

FLAIR mismatch) is now recommended (level IIa) to identify unwitnessed AIS patients who

may benefit from thrombolytic treatment [PRA19]. Specifically, diffusion-weighted imaging

(DWI) displays the increased signal in ischemic areas within minutes of stroke occurrence,

while fluid-attenuated inversion recovery (FLAIR) imaging can show fluid accumulation after

a few hours [EBS18], as shown in Figure 3.1. A DWI-positive, FLAIR-negative mismatch can

identify stroke lesions that could benefit from the administration of thrombolytics. However,

assessing this mismatch is subject to high variability compared across multiple readings

and/or radiologists [Tho11]. Hence, the ability to accurately ascertain stroke onset solely

through imaging could expand the pool of patients eligible for thrombolytic treatments,

potentially leading to enhanced patient outcomes.

Several Machine Learning (ML) approaches have been used for automated determination

of stroke onset time. These approaches typically involve creating features — either hand-

crafted, radiomics-based, or derived through Deep Learning (DL) — from clinical reports or

imaging data. These features are then utilized as input for a diverse range of ML models.

[HSZ19, HSE17, LLH20]. The extraction of these features has traditionally been dependent

on predetermined regions of interest, which are usually identified through image thresholding

or using a parameter map. By focusing solely on these immediate regions, we may overlook

crucial imaging traits within the surrounding area. Considering the interconnected nature
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Figure 3.1: Sample cases of DWI-FLAIR Mismatch. Sequences from left to right: DWI

b1000, DWI B0, FLAIR
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of cerebral blood flow, these characteristics could hold vital information in determining TSS

[Ban11]. Moreover, prior approaches have often applied stringent exclusion criteria, based on

either the location of the stroke or image-related factors associated with preprocessing. As

a result of these strict criteria, a substantial number of patients, up to 40% in some studies,

were deemed ineligible for evaluation [LLH20].

DL models have excelled in medical imaging for segmentation and classification tasks

[Shi16, MNA16, CSH20, TZY22, WHM18]. Specifically, convolutional neural networks (CNNs)

have produced state-of-the-art results even in small datasets that are commonly seen in med-

ical imaging research [Lit17]. Convolutional operations, which collectively analyze neighbor-

hood pixels across multiple layers, can be conducted in either two or three dimensions.

Although a broad spectrum of 2D Convolutional Neural Networks (CNNs) have been ap-

plied to medical imaging tasks, 3D CNNs provide the additional benefit of incorporating

information along the vertical dimension (z-axis). However, these potential benefits of 3D

convolutions come at the expense of increased model complexity, which typically necessitates

larger volumes of data and greater computational power for effective training.

Due to the large number of parameters in a deep neural network, a high volume of data is

typically required for training. For particularly complex classification tasks, transfer learning

has proven effective in not only reducing computational demands and shortening the time

required for model convergence but also enhancing performance, when compared to training

models entirely from scratch [PY10]. Transfer learning generally follows a two-step process:

initially, a model is trained on one dataset, then it’s further refined on another dataset for

a different task. Cross-domain transfer learning involves training on data from a source

domain, and using those learned weights in a model trained on data from a different target

domain [WKW16], e.g., from the natural image domain to the medical image domain or

from the CT modality domain to the MR modality domain. Many DL approaches applied

to medical images have used established architectures pre-trained on large natural image

datasets such as ImageNet [RDS15] and refined the model to domain-specific tasks. This
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method is believed to enhance model convergence and leverage the low-level features, initially

learned on a large-volume dataset, for use on a smaller dataset. This strategy is especially

pertinent to medical image models, given the significant costs associated with acquiring

sufficient volumes of medical data. However, the differences in natural images and those

in the medical domain limit the wide applicability of this method, likely due to the over-

parameterization of the original models [CTB19]. Efforts have been made to pretrain models

on public medical datasets, but access to such medical datasets is still limited. Moreover,

higher-level features of medical images vary significantly for different medical domains. To

combat the limitations of cross-domain transfer learning and increase feature reuse across

models, intra-domain transfer learning has been implemented for both natural image and

medical image tasks [RZK19]. Commonly, a model is initialized in a self-supervised or

unsupervised fashion. The advantage of this approach is that it does not require outside

datasets or labels. However, even intra-domain pretraining may result in limited feature

reuse beyond the first convolutional layer [VVM20]. A task-adaptive approach, which uses

the same data set for pretraining and then refines the model using two different label sets,

has been demonstrated to increase feature reuse and enhance performance [Elm93, BLC09].

However, this has not yet been applied in the medical image domain.

We propose an intra-domain task-adaptive transfer learning approach and implement it

for TSS classification. The approach uses a multi-stage training schema, leveraging features

learned by training on an easier task (stroke detection) to refine the model for a more

difficult task (TSS classification). We developed both 2D and 3D CNN models to classify

TSS, and we demonstrated our proposed transfer learning approach enhanced classification

performance for both architectures when compared to other pretraining schemas, with our 2D

model achieving the best performance for classifying TSS < 4.5 hours. We also showed that

adding soft attention mechanisms during the latter stages further improved the performance.

To offer clinical insight, we compared our model performance to both previously published

methods and radiologist assessment of DWI-FLAIR mismatch. Our DL models were able
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to achieve greater classification sensitivity while maintaining specificity achieved by expert

neuroradiologists. By visualizing network gradients via Grad-CAM [SCD19], we illustrated

that our pre-trained models were able to localize the stroke infarct more precisely than the

models trained from scratch. To our knowledge, this is the first end-to-end, DL approach

to classify TSS on a patient dataset with minimal exclusion criteria; moreover, our model

exceeds the performance of previously reported state-of-art ML models.

3.3 Dataset and Preprocessing

A total of 422 patients treated for AIS at the UCLA Ronald Reagan Medical Center from

2011-2019 were included in this study. This work was performed under the approval of

the UCLA Institutional Review Board (#18-000329). A patient was included if they were

diagnosed with AIS, had a known stroke onset time, and underwent MRI prior to any

treatment if given. Clinical parameters were gathered from imaging reports and the patient

record, with demographic data summarized in Table 3.1. The study cohort had a median

age of 70 (55-80) years, a mean National Institutes of Health Stroke Scale (NIHSS) score

of 8(4-15), and 56% female. The median onset to MRI was 222(105-715.25) minutes. For

performance evaluation, we used 64% for training (272), 16% for validation (68), and 20%

(82) as a hold-out test set. In order to prevent information leakage across tasks, the same

test set was used across a set of experiments. The training and testing sets had similar

distributions of these clinical factors and TSS. For each patient in the test cohort, DWI-

FLAIR mismatch was assessed independently by three senior neuroradiologists with full

access to all sequences used in our model.

For each patient, the T2w(DWI b0), DWI(DWI b1000), and FLAIR imaging sequences

were retrieved from the institutional picture archiving and communication system (PACS).

All patients underwent MRI using a 1.5T or 3T echo-planar Siemens MR imaging scan-

ner, performed with 12-channel head coils. The FLAIR images were acquired using a TR
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Figure 3.2: Preprocessing pipeline for patient series.
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Training Set Test Set

(n = 340) (n = 82)

Age (years) 70 (55-80) 68 (57-79)

Female 176 (52%) 46 (56%)

NIHSS 8 (4 - 16) 6.5 (2 - 18)

Onset to MRI (min) 210 (105-683) 230 (107-661)

Table 3.1: Patient cohort demographics. Numbers are n (%) or median (interquartile ranges).

MRI indicates magnetic resonance imaging; NIHSS, National Institutes of Health Stroke

Scale.

range of 8,000-9,000ms and a TE range of 88-134ms. The pixel dimension varied from

0.688x0.688x6.000mm to 0.938x0.938x6.500mm. The DWI images were acquired using a TR

range of 4,000-9,000ms and a TE range of 78-122ms. The corresponding pixel dimensions

varied from 0.859x0.859x6.000mm to 1.850x1.850x6.500mm. The DWI b0 sequence was used

as a T2w proxy, as it denotes the first step of DWI acquisition with no diffusion attenuation,

and the DWI here represents the sequence with a b-value equal to 1000. The rationale for

using these sequences was: (1) T2w represents the anatomical image, so we theorized it

might provide contrast information when input along with DWI and FLAIR sequences; (2)

since our goal is to classify TSS, and the DWI-FLAIR mismatch is only a surrogate for this

goal, extra anatomical imaging information could provide more features related to TSS; and

(3) we used three sequences to mimic the RGB channels used in many image classification

models, enabling us to compare our training schema to other pretraining approaches. After

image retrieval, the sequences were fed into our automated preprocessing pipeline. First,

N4 bias field correction [TAC10] was applied to all sequences. Then, each image series was

reoriented to the T2w MNI-152 atlas [FEM09]. Next, the neck and skull were removed using

FSL BET [SJW04]. The T2w sequence was registered using FSL FLIRT to a version of

the T2w MNI-152 atlas that was resized to 224x224x26 using linear interpolation in order
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Figure 3.3: Sample case of Registered Output. Sequences from top to bottom: DWI(b1000),

FLAIR, T2w(DWI b0).

to match the z dimension of the stroke sequences. After a second run of FSL BET was

performed to remove remnant artifacts, the remaining sequences were co-registered to the

T2w volume. Finally, the intensity was normalized, and histogram matching was performed

using a reference study. A visual quality check was manually performed for all cases before

the experiments. This data preprocessing pipeline is summarized in Figure 3.2 and sample

output is shown in Figure 3.3.
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3.4 Method

3.4.1 2D and 3D Model Architectures

We tested our intra-domain transfer learning schema on custom 2D and 3D architectures.

The 2D network takes individual slices as input and feeds them through a convolutional

backbone (ResNet-18) adapted from [HZR16] for feature extraction. To account for the

large pixel input of an individual MRI slice, we also incorporated a soft attention gate into

the architecture [SOS19]. This module uses the final and penultimate convolutional outputs

to generate individual pixel weights which identify the most salient regions for the task. This

attention module was refined during the TSS tasks later in training to avoid the possibility of

convergence at a local minimum and precluding further optimization during model refinement

[OSF18]. The attention module output and convolutional output were concatenated into a

feature vector, which was then fed into a fully-connected layer to generate a single, slice-

level output. To aggregate these slice-level predictions into an image-level prediction, we

implemented a trainable weighting factor, ranging from 0 to 1, to assign a weight to each slice,

and the slice-level outputs were summed in a weighted fashion, resulting in one probability

label. The attention module and trainable weight factor ascribe pixel-level and slice-level

importance that can be trained and optimized, which enables the model to localize to salient

regions.

Given the 3D anatomical information in our dataset, we also evaluated a 3D model

architecture. Our 3D model used the encoder part of the 3D U-Net as the model backbone

[CAL16]. U-Net [RFB15], like ResNet, uses connections between layers for model training

and also has been widely used in medical image research. Our 3D approach also used

soft attention modules at the 128- and 256-channel intermediate outputs in the encoder

part of 3D U-Net in order to allow the network to capture relevant information in the

early stages of classification. Training a 3D CNN model from scratch does not necessarily

yield better performance than 2D models due to the higher number of parameters and the
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Figure 3.4: Architectures for 2D (top) and 3D (bottom) models. Our 2D Self-weighted

Slice-wise Attention model took DWI b1000, T2w(b0), and FLAIR as a 3-channel input to

a feature extraction backbone. Each slice of the brain was individually fed through four

Resblocks of ResNet-18 to generate a 512x7x4 feature map, then pooled to a 512x1 feature

vector [HZR16]. A soft attention module at the 256-channel convolutional layer was added

to generate a 256x28x14 attention feature map and then pooled to a 256x1 feature vector.

The feature map and attention feature map were aggregated for each slice with a learnable

weighting factor for final classification. Our 3D model first used the entire structure of a

3D U-Net to train an initial weight using Models Genesis. Then volumetric DWI, T2w,

and FLAIR were directly fed into the encoder part of the network. Two soft attention

modules were added at 128 and 256-channel convolution layers. Feature maps from the

original network and the two attention modules were pooled globally and concatenated for
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potential for over-fitting. To address these challenges, we first adapted a self-supervised

learning approach, known as Models Genesis [ZZ19], to train a full 3D U-Net in order

to generate initial weights for the stroke detection task. Using Models Genesis, we first

modified the original images using non-linear transformation, local shuffling, in-painting,

and out-painting and then trained the model to restore the original image, enabling the

model to learn important high-level features in the original image. We then used the encoder

component of the 3D U-Net network, along with two soft attention modules, to train this

classification model to detect the stroke side and classify TSS. Figure 3.4 illustrates the 2D

Self-weighted Slice-wise Attention Model structure and the 3D Attention Model structure.

The Models Genesis and soft attention modules bolstered 3D model performance.

3.4.2 Training Schema

To train the models, each brain volume was split into hemispheres along the midsagittal plane

on the registered volume. For each hemisphere, three imaging series, T2w, DWI, and FLAIR,

were concatenated and input as channels with values normalized to a range of 0 to 1 and input

dimension of 112x224x26. The right hemispheres were flipped on the vertical axis in order to

spatially align with the left hemispheres for inputs. Our models used a multi-phase training

regimen. The first phase consisted of stroke detection, where hemispheres were fed into the

model separately and labeled as positive (1) if they had a stroke lesion in the hemisphere and

as negative (0) if they had no stroke lesion in the hemisphere. The 2D model was trained from

random initialization on this task. For our 3D model, initial weights were generated in a self-

supervised fashion before the stroke side detection task for more rapid convergence. Once the

model finished training, the first two convolutional layers/blocks were frozen. Specifically, for

2D models, in the ResNet-18 backbone, we froze the first 7x7 convolutional layer as well as

the following two Resblocks, where the 7x7 convolutional layer is denoted conv1 and the two

Resblocks each contains two 3x3 convolution layers denoted conv2 x from table 1 of [HZR16].

For 3D models, we froze the two layers in the downward path of the 3D U-Net backbone. As
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Figure 3.5: A summary of our training schema. Each phase utilized a unique classification

label, as enumerated in the Outputs boxes for each phase. At the end of each training phase,

the weights of certain components were frozen; these frozen weights were then initialized for

the model at the start of the following phase.
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described in [CAL16], each layer represents two 3x3x3 convolutions each followed by a ReLU,

then a 2x2x2 max pooling with strides of two. This pre-trained network was then utilized

in a second phase of training, whereupon only hemispheres with stroke lesions (positive

cases in the stroke side detection task) were used as input. In the second phase, we froze

early convolutional weights to refine later layers and trained our model on TSS < 3 hours,

given the clinical correlation of DWI-FLAIR mismatch to this binarization. For the third

phase, we used the pre-trained weights of the TSS < 3 hours model to train on the TSS

< 4.5 hours task. The last phase of our training schema (Figure 3.5) involved fine-tuning

the soft attention modules to further enhance performance. We compared this multi-phase

training regimen to training on TSS labels from scratch, pretraining on natural images, and

pretraining on external datasets of brain MRIs [CHC15, BSM19].

3.5 Experiment and Results

3.5.1 Evaluation Metrics

We trained the stroke detection algorithm for 100 epochs with early stopping, minimizing

binary cross-entropy loss functions. All models were trained with the AdaBound optimizer

[LXL19], which used bounds on a dynamic learning rate to transition smoothly from an

adaptive method to the more traditional stochastic gradient descent. This approach allowed

the model to maintain a higher rate of convergence in early training epochs. Hyperparameters

were selected using a validation set during training. The batch size was 16 for the stroke

detection task and 8 for the TSS classification tasks. The early stopping criteria was based

on the validation AUC during training with a patience of 10. For Adabound, in the stroke

side detection task, the initial learning rate was 0.0005 and the final learning rate was 0.01;

in the TSS classification task, the initial learning rate was 0.00001 and the final learning

rate was 0.001. The code was written in PyTorch, and experiments were run on an NVIDIA

DGX-1. Our memory usage during training for the 2D models was 4GB VRAM with batch
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Figure 3.6: On second phase task TSS < 3 hours, for 2D model, our proposed transfer

learning approach has a 5.1% increase, whereas for the 3D model, there is a 8.3% increase

in ROC-AUC score.

size 8 and 6GB VRAM with batch size 16; for the 3D models, memory usage was 7GB

VRAM with batch size 8 and 12GB VRAM with batch size 16.

3.5.2 Results

The performance metrics for all of our training phases are summarized in Table 3.2. For

stroke detection, the 2D and 3D architectures achieved ROC-AUC values of 0.8905 and

0.9460, respectively. This indicates that the models were able to reliably identify stroke

at both the slice and volume level, which aligns with intensity differences usually observed

for stroke lesions on DWI and FLAIR series. For the second training phase, classifying

TSS < 3 hours, our pretraining approach improved the performance of 2D model by 14.0%

and our 3D model by 21.6% when compared to random initialization or to pretraining on

natural images (2D model only). For both models, we also examined TSS classification

performance with weights pre-trained on medical image datasets. We used models trained for

brain tumor classification and segmentation to initialize our 2D and 3D models, respectively,
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Figure 3.7: On third phase task TSS < 4.5 hours, for 2D model, our proposed transfer

learning approach has a 22.1% increase in AUC; for 3D model, there is a 20.9% increase

given that these tasks are in the same domain and use the same medical imaging modalities

[CHC15, BSM19]. We froze the weights from earlier layers for both models, and we compared

the effect of this pretraining to frozen weights learned from our stroke detection task. While

performance improvement was observed using medical image pretraining, our pretraining

approach was able to achieve higher performance for both models when compared to both

natural image and domain-specific pretraining, with the 2D and 3D models achieving 76.48%

and 74.52% increase in AUC, respectively.

In the third phase, we train the models to classify TSS < 4.5 hours using weights from the

second phase. As shown in Figure 3.7, both the 2D and 3D models improved classification

performance by 22.1% and 20.9%. For the 2D model, pretraining on natural images reduced

performance, which has been observed for other medical-image-specific tasks [RZK19]. As in

Phase 2, We also show the results from ImageNet, Tumor detection, and segmentation weight

transfer for comparison. As expected, due to the similarity of the dataset, the performance

improvement is high, from AUC 0.6311 to 0.6684 and from 0.58 to 0.66 for the 2D and

3D models, respectively. However, the performance improvement (12.9% and 5.9%) is still
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Figure 3.8: ROC curves for classifying TSS < 4.5 hours. +P = with pretraining.

lower than our proposed method (17.1% and 20.9% to AUC 0.7392 and 0.7087). For both

tasks, the 2D model achieves higher performance than the 3D model, even with random

initialization.

In the last of our proposed training phases, fine-tuning the attention modules yields

improved performance for both the 2D and 3D models, though the improvement was more

notable for the 3D model. The optimal ROC-AUC scores for classification of TSS < 4.5

hours are 0.7407 and 0.7370 for 2D and 3D respectively with 17.4% and 25.7% performance

gain compared to training from scratch.
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Stage Model Weights Sens. Spec. Acc. AUC

Phase 1 2D Random 0.7347 0.9286 0.8316 0.8905

Stroke Detection 3D Random 0.7732 0.9579 0.8646 0.9460

Phase 2 2D Random 0.2444 0.9310 0.5135 0.6720

TSS < 3 hrs ImageNet 0.7879 0.5510 0.6463 0.6733

Medical 0.6970 0.7142 0.7073 0.7297

Phase 1 0.8222 0.6552 0.7568 0.7648

3D Random 0.7143 0.4848 0.6220 0.6129

Medical 0.5952 0.7750 0.6829 0.7173

Phase 1 0.8904 0.6000 0.7724 0.7452

Phase 3 2D Random 0.2162 0.9189 0.5676 0.6311

TSS < 4.5 hrs ImageNet 0.8789 0.4285 0.6098 0.6054

Medical 0.6666 0.6939 0.6829 0.6684

Phase 2 0.5405 0.7838 0.6622 0.7392

3D Random 0.3750 0.6429 0.5122 0.5863

Medical 0.8788 0.4489 0.6220 0.6619

Phase 2 0.6279 0.7895 0.7037 0.7087

Phase 4 ML 0.6522 0.7143 0.6363 0.7174

TSS < 4.5 hrs 2D Phase 3 0.7027 0.8108 0.7568 0.7407

attention+fine-tune 3D Phase 3 0.5405 0.8378 0.6892 0.7370

DWI-FLAIR Rad 1 0.5476 0.8500 0.6951

Mismatch Rad 2 0.4286 0.9250 0.6707

Rad 3 0.5714 0.6500 0.6098

Agg Rad 0.5730 0.8750 0.7195

Table 3.2: Performance metrics across tasks and architectures. Double lines separate

models with different outputs. Sens = Sensitivity, Spec = Specificity, Acc = Accuracy, AUC

= Receiver Operating Characteristic Area Under Curve, Rad = Radiologist, Agg Rad =

Aggregate Radiologist.
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For each model, we computed Youden’s J statistic and reported the sensitivity, specificity,

accuracy, and ROC-AUC score. We compared our model to the performance metrics of each

radiologist’s DWI-FLAIR mismatch assessments, which served as a proxy for TSS. We also

compared our model to the previously-published model with the highest performance metrics

by applying this model to our own dataset [LLH20]; these metrics are included in Table 3.2.

Of note, the inter-reader agreement (Fleiss’ kappa) was 0.46 among all three radiologists,

which is typically regarded as a moderate level of agreement and aligns with previous findings

of high variability among reader assessments. We also reported the ROC-AUC curves for

each of our models in Figure 3.8.

We generated GradCAMs to visually assess model activation. To evaluate the utility of

GradCAMs in a clinical context, an expert radiologist evaluated the overlap of the activation

map and stroke lesion. The radiologist found that, for slices most representative of stroke

lesion, 96% of cases evaluated had substantial overlap (>50%) between the lesion and acti-

vation, while the remainder of cases had moderate overlap. This indicates that Grad-CAM

can qualitatively localize to stroke lesions when trained on the TSS tasks.

3.6 Discussion

Among the models tested, the pre-trained 2D model achieved the highest performance met-

rics with a sensitivity of 0.70 and a specificity of 0.81 in classifying TSS < 4.5 hours. Our

model was more sensitive than the DWI-FLAIR assessments performed by the neuroradiolo-

gists, which we treated as a surrogate for determining a TSS < 4.5 hours. We also compared

our model to the previously published state-of-the-art method. The threshold method imple-

mented in [LLH20], which was used to create the ROI, was very stringent, in that only 221

of our original 422 patients had a large enough ROI from which features could be extracted.

Thus, their performance metrics represent a subset of our larger dataset. We also tested our

model performance on this subset and achieved a ROC-AUC of 0.76. Nevertheless, on the
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Figure 3.9: Grad-CAM visualizations of the penultimate convolutional layer for 2D and 3D

models, both from scratch and with pretraining.
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entire dataset, the optimal 2D model with pretraining was able to outperform the previous

model. From a clinical perspective, these results indicate that our model may be able to

correctly identify more patients within the 4.5-hour window and therefore eligible to receive

thrombolytic therapy when compared to both DWI-FLAIR mismatch assessment and the

threshold-based Machine Learning (ML) method. There are many tasks within the medi-

cal image domain to which our proposed task-adaptive pretraining schema can be applied.

For example, this schema could be used for brain tumor classification, where brain tumor

detection is the pretraining task.

The optimal 2D model has a ROC-AUC comparable to that of the 3D model; however,

the sensitivity (0.54) and specificity (0.84) of the 3D model are less balanced, indicating that

while the rate of true negatives is high, there are less true positives identified by that model.

In total, our model metrics illustrate that the progressive pretraining schema enhances per-

formance for our task considerably, for both our proposed 2D and 3D architecture. For both

models, attention modules enhance performance. The use of GradCAM for our models high-

lights regions of the brain that impact decisions, as illustrated in Figure 3.9. The GradCAMs

illustrate that the pre-trained model is able to more precisely localize to the stroke infarct

and highlight other regions outside of the infarct that may inform this classification task.

Our model performance metrics are comparable to previous approaches in TSS classifica-

tion. However, this study has a few factors that increase its potential clinical applicability.

The patients in our dataset comprise a wider range of stroke locations and other clinical

demographics than in previously assessed datasets. Additionally, our model leverages the

entire brain hemisphere, which may contain more relevant information among this broader

patient cohort. This has the potential to reduce bias in our model, and the convolutional

architecture, allows this information to be incorporated into decision-making.

That said, DL generally requires a high volume of data. While many medical image-

related tasks have used DL with a comparable amount of patient data used here, a higher vol-

ume of data would greatly enhance the model performance. This model only uses diffusion-

58



based imaging, as these are the images used in current clinical practice. Incorporating

perfusion-based imaging and its derivatives such as perfusion maps may better inform TSS.

There is a substantial body of work using perfusion imaging parameters for stroke outcomes

[Sca13, dTP17, HSZ19, LLH20]. Based on our examination, registration quality was not

affected by the ischemic lesion in the T2w images, as the lesion was not apparent in the T2w

sequence. While this type of registration failure was not a concern in our dataset, it could

possibly affect other neuroimaging studies. Finally, the use of clock time as a label for TSS

may not fully encompass the physiology underlying ischemia in the brain; for example, the

cerebral collateral flow may compensate for a hypoperfused area within the brain and reduce

the amount of ischemia that tissue is experiencing during a stroke [Ban11], which may be

the biological reason for DWI-FLAIR mismatch.

3.7 Summary

This approach uses 2D and 3D CNN models to classify TSS for 422 patients and compares

model performances to DWI-FLAIR mismatch readings performed by three expert neurora-

diologists. We demonstrate that our 2D model outperforms the 3D model when classifying

TSS < 4.5 hours, which is the current clinical guideline. We show that pretraining the model

on stroke detection, then refining the model on TSS classification yields better performance

than training on TSS classification labels alone; the incorporation of soft attention modules

also enhances the performance of both the 2D and 3D when compared to CNNs without

them. By visualizing network gradients via Grad-CAM, we show that our pre-trained mod-

els localize to stroke infarcts and surrounding regions. We demonstrate that both our 2D and

3D model is able to generalize to an inclusive dataset comprising multiple types of ischemic

stroke and that this model may be able to inform TSS for patients with unknown symptom

onset.

The results comparison demonstrated our proposed DL approach in Chapter 3 exceeds
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the previous state-of-the-art ML method in all settings, showing a more robust automated

algorithm to determine stroke onset time using pretreatment MRI.
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3.8 Appendix

3.8.1 Additional Experiments Results

We further evaluate our 2D model on an extended dataset from Asan Medical Center [LLH20]

and compare it with their proposed ML approach. We also conduct a DWI-FLAIR mismatch

reader study on both internal and external datasets for comparison.

3.8.1.1 Data

The internal dataset is comprised of a similar cohort with slightly different inclusion criteria

to align with the external dataset. Individuals were included in the cohorts based on the

following inclusion criteria: (1) diagnosis with AIS, (2) received pretreatment MRI protocol

with DWI, FLAIR, and apparent diffusion coefficient (ADC) series without motion degrada-

tion, and (3) known TSS within 24 hours of image acquisition. The internal cohort comprised

417 patients treated from 2011 to 2019. The second dataset, published by Lee et al[LLH20]

totaled 355 patients, with more extensive exclusion criteria than previously described. To

ensure consistency across both datasets, images were subjected to a preprocessing pipeline

[ZPN21b]. Demographics are shown in 3.3.

3.8.1.2 Experiments and Results

The comparing ML approach uses a thresholding approach to generate the infarct Region of

interest (ROI), then extract the radiomics features from DWI, FLAIR, ADC, and FLAIR-

ADC ratio maps and select a subset of the generated radiomics features using statistical

testing. Selected features are then fed into Random Forest, Support Vector Machine, or

Logistic Regression for classification. The comparison results of ML and DL are shown in

3.4.
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Internal External

Train Test Train Test

(n = 343) (n = 74) (n = 299) (n = 56)

Age (years) 70 (55-80) 68 (57-79) 63 (55-73) 67 (55-71)

Female 176 (52%) 46 (56%) 86 (34%) 20 (36%)

NIHSS 8 (4 - 16) 6.5 (2 - 18) 4 (2-10) 5 (2-12)

Onset to MRI (min) 210 (105-683) 230 (107-661) 270 (152-712) 240 (142-448)

In 4.5 hours onset (%) 185 (54%) 37 (50%) 153 (58%) 24 (43%)

Table 3.3: Internal and external patient cohort demographics. Numbers are n (%) or median

(interquartile ranges); NIHSS, National Institutes of Health Stroke Scale.
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Method Train set Test set AUC Acc. Sens. Spec.

Deep Learning Internal Internal .768 ± .03 .726 ± .02 .712 ± .08 .741 ± .09

External .737 ± .03 .724 ± .04 .757 ± .04 .679 ± .07

External Internal .732 ± .02 .707 ± .03 .716 ± .09 .687 ± .08

External .772 ± .02 .767 ± .03 .850 ± .08 .648 ± .09

Both Internal .840 ± .03 .789 ± .04 .777 ± .06 .802 ± .07

External .814 ± .01 .800 ± .04 .850 ± .08 .727 ± .08

Deep Learning Internal Internal .730 ± .07 .675 ± .07 .405 ± .07 .811 ± .08

External .680 ± .15 .653 ± .10 .714 ± .15 .500 ± .13

External Internal .698 ± .08 .625 ± .09 .297 ± .08 .865 ± .10

External .780 ± .05 .735 ± .05 .657 ± .05 .800 ± .08

Both Internal .783 ± .03 .750 ± .04 .405 ± .03 .892 ± .03

External .795 ± .03 .735 ± .03 .686 ± .03 .750 ± .04

Table 3.4: Performance metrics for Deep Learning (DL) and Machine Learning (ML).

Models trained on internal, external, or both and tested on the internal and external test

sets. Sens = Sensitivity, Spec = Specificity, Acc = Accuracy, AUC = Receiver Operating

Characteristic Area Under Curve
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CHAPTER 4

Predicting Thrombectomy Outcomes Using Machine

Learning and Deep Learning Approaches

4.1 Introduction

Self-attention mechanism has been shown to help the CNNmodel to focus better on regions of

interest without explicit segmentation mask supervision. Self-attention-enhanced CNN can

reduce data usage and increase the speed of convergence during training. In this chapter,

we aim to predict thrombectomy outcomes using CNN-based models specifically tailored to

small datasets and thick-sliced stroke imaging, which incorporates CNN-transformer hybrid

architecture and slice cross-attention aggregation. First, we explored the capability of pre-

treatment MRI in predicting mTICI scores using radiomics features and Machine Learning

(ML) algorithms [ZPN21a]. After the exploratory study confirming correlations, we further

applied deep learning (DL) models to predict mTICI scores using pretreatment CT images

[ZPY23]. Finally, we modified the DL model to predict the first-pass effect.

4.2 Overview

Mechanical Thrombectomy (MTB), also known as Endovascular Thrombectomy (EVT),

stands as the primary treatment for patients experiencing clots in large blood vessels. This

procedure involves the surgical removal of a blood clot from an artery, with the objective of

achieving recanalization, or in simpler terms, restoring blood flow. The success of an EVT
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procedure is determined by the extent to which blood flow is reinstated, ideally to a full or

near-full extent, to the brain region affected by the stroke. To gauge the level of recanal-

ization achieved, patients undergo an evaluation post-treatment, receiving a score based on

the modified Treatment in Cerebral Ischemia (mTICI) scale [Tom07, DCB17, FKK13]. This

post-treatment score is clinically significant, as it has been shown that favorable scores, i.e.,

mTICI 2c or greater, are associated with better long term clinical outcomes [CBL17]. Un-

favorable scores (mTICI less than 2c) indicate that the treatment did not effectively clear

the blood vessel. Clinical trials have illustrated that patients who experience significant

and/or full recanalization of the blood vessel typically experience better outcomes, particu-

larly if recanalization is achieved on the first attempt – known as the first pass effect (FPE)

[LFH19, BRC17, DPG20, FBF21]. Imaging has been identified as one modality to illustrate

patient physiology that could influence the likelihood of a successful EVT procedure. Pre-

dicting the final mTICI score and FPE prior to a procedure can provide doctors with more

information when considering treatment options.

The available evidence indicates that despite similar clinical history, stroke characteris-

tics, and procedural factors, patients tend to experience different outcomes when it comes

to recanalization. In an effort to better understand the factors that contribute to a pa-

tient’s likelihood of successful recanalization, several early studies have been conducted,

many of which have relied on non-invasive imaging methods to identify clinical correlates.

Similar to assessments for thrombolytic therapy, the amount of time that has elapsed since

the onset of the stroke has been shown to be positively associated with long-term clini-

cal outcomes following EVT. Moreover, the identification of the penumbra region through

the use of MR or CT imaging has proven to be useful in determining treatment outcomes.

In addition to these factors, the presence of compensatory flow from collateral circulation,

known as collateral flow, has also been found to have a strong correlation with prognosis

following EVT. [Ban11, PSG19, SBM11]. DL has been shown to leverage the amount of

detail in images to improve prediction accuracy in neuroimaging, such as stroke or glioblas-
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toma [YYZ, TZY22, HSZ19, ZPN21b]. Current literature presents models that perform

semi-automated prediction of mTICI score based on pre-treatment CT imaging that relies

on manual segmentation of the clot by an expert neuroradiologist which does not fit the

urgency of EVT treatment under current guidelines [HBR20, QKN19, HRO19].

Our exploratory studies around EVT treatment outcome predictions using pretreatment

imaging are as follows: We first propose a fully automated ML model to classify mTICI

scores using pretreatment MRI [ZPN21a]. Second, we designed a hybrid transformer DL

model to predict mTICI using pretreatment CT and CTA [ZPN21a]. Last, we improve the

design of the DL model to predict FPE using pretreatment MRI and CT to evaluate the

predictive capability of both modalities. In the first two studies, both ML and DL approaches

on CT and MRI showed promising performance. In this chapter, we introduce in detail our

efforts in predicting FPE using both MRI and CT. We hypothesize that DL may extract

useful information from pretreatment MR and CT that are correlated with FPE. We report

performance metrics for two cohorts of patients: those who underwent CT and MRI before

treatment, respectively. We design the framework specifically tailored to the small sample

size and the thick slice nature of pretreatment stroke imaging. We incorporate contrastive

learning to leverage a larger imaging dataset of AIS patients that triage to different treatment

avenues and/or have missing clinical information to pretrain the model, thus helping the

model to better generalize on a small dataset.

4.3 Method

4.3.1 Dataset

The cohort used for this study was retrospectively collected from UCLA Ronald Reagan

Medical Center from 2014-2021. AIS patients were included if they were diagnosed with

a large-vessel occlusion (LVO), had an MRI or CT acquired upon admission under stroke

protocol, and received EVT treatment. Exclusion criteria were as follows: the presence of
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significant hemorrhage and failed image registration, and low image quality such as motion

blur or spike. As part of the EVT protocol at UCLA, mTICI is assessed during the procedure

after each clot retrieval pass. This study defined successful recanalization as an mTICI of

2b, 2c, or 3. Baseline features such as age, sex, NIHSS at admission, and time since stroke,

were compared between patients who did or did not experience FPE using the chi-square

test, student’s t-test, and Wilcoxon’s rank sum test as appropriate. The cohort’s clinical,

imaging, and procedural characteristics are listed in Table 1. All statistical analysis was

performed using R software 4.1.3(https://www.r-project.org).

4.3.2 MR Acquisition and Preprococessing

Patient MR imaging was acquired on 1.5T and 3T echo-planar MR scanners with 12-channel

head coils (Siemens, Germany). In the stroke MRI brain imaging admission protocol,

the diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) se-

quences were acquired using the following parameters: DWI: TR 4000-9000, TE 78-122ms,

corresponding pixel dimensions 0.859x0.859x6.000 to 1.850x1.850x6.500 mm; FLAIR: TR

8000-9000ms, TE 88-134ms, corresponding pixel dimensions 0.688x0.688x6.000 to 0.938x

0.938x6.500 mm. Apparent diffusion coefficient (ADC) maps were calculated from DWI b0

and DWI b1000 using the following formula:

ADC = −lnSb1000/Sb0
1000

(4.1)

Where Sb1000 and Sb0 are the intensity values of DWI b1000 and DWI b0 images. From

MRI, the series used included DWI, FLAIR, and ADC sequences, Automated preprocessing

steps described in [ZPN21b] is performed to segment vascular regions for stroke. Briefly, all

sequences are subjected to N4-bias field correction using the ANTs library [ATS09], intensity

normalization, and histogram matching. Finally, registration to MNI-space enabled the use

of a vascular territory atlas for stroke region localization. Sample MRI original images and

the processed inputs are shown in Figure 4.1.
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Figure 4.1: Sample DWI and FLAIR images. Left are original images, middle are registered

images, and right are mapped regions for input
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4.3.3 CT Acquisition and Preprococessing

Two CT scanners, a Lightspeed VCT (GE Health Care, Milwaukee, USA) and a SOMATOM

Definition (Siemens, Forchheim, Germany), were used for CT imaging. After administering

50 mL of contrast agent intravenously at 5 mL/second, a single-phase CT-angiography (CTA)

was obtained (120 kV, 120 reference mAs, 0.3 second rotation time, 0.6 pitch, effective dose

of about 3 mSv). Following intravenous injection of contrast agent, totaling 50 mL at a rate

of 5 mL/second, CTP included 30 successive spiral acquisitions (80 kV, 150 mA, effective

dose = 3.3mSv, 100 mm in the z-axis) in a total of 60s acquisition. Saline was used after

each contrast agent injection, with 30mL being used for each injection. Both non-contrast

CT (NCCT) and CTA image series were included as inputs for the imaging-based models.

The preprocessing protocol for CT images included field-of-view removal, skull stripping,

and registration to MNI space. Sample CT original images and the processed inputs are

shown in Figure 4.2.

4.3.4 Deep Learning Model Architecture

The proposed DL model is an end-to-end hybrid neural network consisting of both convo-

lutional and transformer attention components, namely the multi-sequence neighborhood

transformer model (MNT-DL). MNT-DL is a hybrid transformer architecture that incorpo-

rates modifications and enhancements to the widely used ResNet backbone. Each convolu-

tional block is modeled after ResNet residual blocks, consisting of the following sequence:

convolutional kernel, batch normalization, rectified linear unit activation function, second

convolutional kernel, and second batch normalization. The initial component is a global fea-

ture extractor that utilizes residual convolutional blocks to extract relevant features from ev-

ery slice. Subsequently, the extracted slice-level features are passed onto local networks that

are designed to learn representations of neighboring slices, while also sharing weights during

the training process. In the local network, a self-attention module is utilized to identify the
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Figure 4.2: Sample NCCT and CTA images. Left are original images, middle are registered

images, and right are mapped regions for input

70



most significant regions within each slice. The self-attention module uses a 1x1 convolution

on the intermediate features to generate single-head attention for each image patch, com-

puting attention with respect to all other patches. The significant regions identified in each

slice using the self-attention module are then combined through matrix multiplication and

SoftMax activation. The transformer self-attention modules are integrated into the network

easily without incurring significant computational overhead.

After passing through the local networks, the outputs are fed into the volumetric clas-

sifier, which comprises two modules. The first module is a cross-attention module. The

low-level features extracted from each slice are fed into the cross-attention module, which

employs multi-head attention operations to generate slice-level importance. Similar to other

attention modules, multi-head attention involves a linear layer that generates attention across

multiple scales of the image volume. The attention operations are fused using cross-attention,

where the features from each scale are exchanged through layer normalization and residual

connection. By using this module in the network, the model is able to assign greater weight

to the slices that are more important for the final prediction, while incurring only limited

computational complexity. The output of this attention module, along with the output from

the local networks, is then fed into a linear layer that serves as the final classifier, pro-

ducing the volume-level prediction. DWI-FLAIR-ADC sequences or NCCT-CTA sequences

are used as channels to input into MNT-DL for MR or CT input. Single-sequence inputs

are also used to develop corresponding models (ADC-DL, DWI-DL, FLAIR-DL, NCCT-DL,

CTA-DL) to for ablation studies where the single sequences are stacked to fit into the same

channel requirement for corresponding models.

4.3.5 Contrastive Self Supervised Learning

Although we use multiple model designs tailored for small sample size in DL training, the

DL training still limited by the labeled data for MRI and CT scans. Therefore, we adopt a

contrastive self-supervised learning (SSL) approach called SimSiam [CKN20] to our proposed
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model. SimSiam does not require a large batch size, negative sample pairs, and a momentum

encoder. Under this approach, we facilitate more imaging data from our institutional stroke

registry that do not meet this study’s inclusion criteria, and further improve the model’s

performance. The model architecture and self-supervised learning framework are shown in

Figure 4.3.

4.3.6 Loss Function

The loss function used in this work was based on binary cross-entropy, defined as:

Total Loss = Lfusion + γ ∗ (Lsubnet1 + Lsubnet2 + Lsubnet3 + Lsubnet4 + Lsubnet5) (4.2)

where L is binary cross-entropy loss. The fusion loss, Lfusion, denotes the loss of the final

output of the global network. In addition, the loss is computed for the intermediate outputs

of each local network Lsubnetx . The losses Lsubnet1 , Lsubnet2 , Lsubnet3 , Lsubnet4 , and Lsubnet5

are added together and combined with Lfusion using weighting factor γ. In this study, the

weighting factor was set at 0.5 to give equal weights between the final output loss and the

sum of local network losses.

4.3.7 Training and Evaluation

Models were evaluated to predict a binarized FPE label for each patient. A patient was

considered positive if they had an mTICI score of 2b, 2c, or 3 after one pass of clot re-

trieval. Patients that achieved recanalization in several attempts, or who did not achieve

successful recanalization eventually, were negative. The MRI and CT cohorts were divided

into retrospective development and prospective evaluation sets if they underwent EVT be-

fore or after the year 2020. Five-fold cross-validation was used for development. In each

fold, the model was trained for 100 epochs with early stopping using the AdamW optimizer.

The learning rate was set to 0.0005 and the weight decay was set to 0.05. The training

was implemented using Pytorch 2.0 on an NVIDIA DGX-2. Following the development and
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Figure 4.3: FPE prediction framework. The top is the self-supervised learning approach, the

bottom is the model architecture

hyperparameter tuning, algorithms were evaluated on the corresponding prospective evalua-

tion set. Receiving-operator characteristic area-under-the-curves (ROC-AUC) were reported

accordingly. Sensitivity, specificity, and accuracy were calculated using Youden’s J statistics

from the ROC curve [You50]. All metrics were reported as mean±standard deviation on the

evaluation set for each cohort that reflects the model performance across each fold.
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4.4 Results

4.4.1 Patient Characteristics

This cohort included 408 patients who met the criteria; of these, 76 patients were excluded

due to missing image series (52) or degraded image quality preventing preprocessing (24).

The patient inclusion workflow diagram is shown in Figure 4.4. From this final cohort of

332 patients, 152 underwent MRI, and 180 underwent CT before EVT. The cohort had

an average age of 71.49±15.94 years and was 54.22% female. Of this cohort, 80 patients

experienced a stroke within 24 hours of the last-known well time but had an indeterminable

onset time. Among patients with known onset time, 168 (50.60%) received imaging within

the 4.5-hour window and 185 (55.72%) underwent contrast MRI or CT within 6 hours.

Median NIHSS upon admission was 16 (IQR 10-20). Prior to EVT, 96 patients (28.92%)

received intravenous thrombolytic therapy. Additional clinical variables as well as differences

between the MRI and CT cohorts are summarized in Table 4.1. For the Self-supervised

pretraining stage, we collected 599 MRI and 475 CT images from the UCLA stroke registry

that meet image sequences and quality requirements for the preprocessing steps in our study

but do not qualify for the EVT study due to different treatment triage, missing basic clinical

information, etc.

4.4.2 Model Performance

The 5-fold cross-validation performance of the DL models on MRI was summarized in Table

2. The ROC-AUC of MNT-DL was higher than those of any single-sequence models (ADC-

DL, DWI-DL, FLAIR-DL), achieving a mean ROC-AUC of 0.7505. Adding SSL further

improved the ROC-AUC to 0.8443. Similarly, as shown in Table 3, MNT-DL for CT images

achieved a ROC-AUC of 0.7801, higher than both NCCT and CTA single-sequence models

(NCCT-DL and CTA-DL). SSL further improve the ROC-AUC of MNT-DL to 0.8719. The

performance of the DL models on MRI and CT for both prospective test sets was summarized
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Figure 4.4: Inclusion Criteria for patient cohort

Parameters Measure Total (N=332) MRI (N=152) CT (N=180) p-value

Age (years) Mean±SD 71.49±15.94 70.72±16.11 72.13±15.77 0.4237

Female N (%) 180 (54.22%) 86 (56.58%) 96 (53.33%) 0.6303

NIHSS Median (IQR) 16 (10-20) 15 (8 - 19) 16 (11 - 21) 0.0496

Received tPA N (%) 96 (28.92%) 35 (23.03%) 61 (33.89%) <0.0001

Stroke Onset Time 0.6013

Onset Time (min) Median (IQR) 167 (123-255) 113 (83-191) –

Unknown Onset N (%) 80 (24.10%) 42 (27.63%) 38 (21.11%) –

Onset < 4.5 hours N (%) 168 (50.60%) 71 (46.71%) 97 (53.89%) –

Onset < 6 hours N (%) 185 (55.72%) 77 (50.66%) 108 (60.00%) –

Thrombectomy Outcome 0.5181

Unsuccessful N (%) 59 (17.78%) 28 (18.42%) 31 (17.22%) –

mTICI 0|1|2a N|N|N 20|4|34 11|2|15 9|2|20 –

Successful, 2+ Passes N(%) 133 (40.06%) 57 (37.50%) 76 (42.22%) –

mTICI 2b|2c|3 N|N|N 73|31|25 37|12|8 37|20|19 –

Successful, First Pass N (%) 140 (42.17%) 67 (44.08%) 73 (40.56%) –

mTICI 2b|2c|3 N|N|N 59|34|43 31|14|22 31|21|21 –

Table 4.1: Demographics of patients included in model development. N, number of patients;

SD, standard deviation, IQR, interquartile range; NIHSS, National Institutes of Health stroke

scale; mTICI, modified treatment in cerebral infarction score; tPA, intravenous thrombolysis.
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in Table 4. When applied to the MRI series, the DL model achieved an average ROC-AUC

of 0.7967, with an accuracy of 0.7774 on the prospective test set. The ROC curves are

shown in Figure 4.5. The model outperformed the previous method, notably achieving near-

perfect specificity across experimental replicates while maintaining high sensitivity. In the

prospective CT evaluation set, the DL method performed similarly, yielding a mean ROC-

AUC of 0.8051 and an accuracy of 0.8080. Compared to the literature, this model achieved

slightly lower average accuracy, though with a substantially narrower confidence interval.

While the accuracy was slightly lower, the model achieved a more balanced sensitivity and

specificity of 0.8615 and 0.7500, respectively, compared to the previous model that achieved

high specificity at the expense of very low sensitivity.

Model ROC-AUC Accuracy Sensitivity Specificity

ADC-DL 0.7127 (0.0492) 0.7417 (0.0995) 0.8942 (0.1138) 0.6263 (0.1324)

DWI-DL 0.6887 (0.0405) 0.7083 (0.0659) 0.7058 (0.1084) 0.7715 (0.1544)

FLAIR-DL 0.6957 (0.5011) 0.7083 (0.0833) 0.7497 (0.2163) 0.7691 (0.1913)

MNT-DL 0.7505 (0.0438) 0.7875 (0.0342) 0.7326 (0.1717) 0.8366 (0.1363)

NT-DL+SSL 0.8506 (0.0712) 0.8625 (0.0280) 0.9350 (0.0929) 0.8057 (0.0944)

Table 4.2: Ablation study on MRI cross-validation folds

Model ROC-AUC Accuracy Sensitivity Specificity

NCCT-DL 0.7404 (0.0560) 0.7813 (0.0221) 0.7882 (0.1377) 0.7629 (0.0819)

CTA-DL 0.7385 (0.0535) 0.7812 (0.0442) 0.7823 (0.1080) 0.8026 (0.1246)

MNT-DL 0.7801 (0.0320) 0.7979 (0.0592) 0.7923 (0.1303) 0.8066 (0.0947)

NT-DL+SSL 0.8719 (0.0831) 0.8688 (0.0640) 0.9381 (0.0852) 0.8058 (0.1202)

Table 4.3: Ablation study on CT cross-validation folds
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Model ROC-AUC Accuracy Sensitivity Specificity

MRI 0.7967 (0.0335) 0.7774 (0.0367) 0.7286 (0.1849) 0.8462 (0.1216)

CT 0.8051 (0.0377) 0.8080 (0.0299) 0.8615 (0.1131) 0.7500 (0.1054)

Table 4.4: Deep learning model performance on prospective MRI and CT test set

Figure 4.5: ROC curves both MR and CT test performance
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4.5 Discussion

The phenomenon known as the First Pass Effect (FPE) has been demonstrably linked to

improved patient outcomes in cases of Acute Ischemic Stroke (AIS). For more precise and

effective planning of the Endovascular Thrombectomy (EVT) strategy, it’s crucial to estab-

lish a reliable predictive association between the initial imaging performed before treatment

and the likelihood of FPE. Our study aims to explore the potential of such pretreatment

imaging in accurately predicting the occurrence of FPE during EVT procedures.

This study, to the best of our knowledge, introduces the first algorithm designed to pre-

dict the First Pass Effect (FPE) using pretreatment Magnetic Resonance Imaging (MRI)

or Computed Tomography (CT) scans of patients. Vital insights extracted from standard

pre-treatment diffusion MR images and CT scans have shown a direct correlation with En-

dovascular Thrombectomy (EVT) recanalization, thus uncovering an innovative avenue for

research into pre-treatment imaging and thrombectomy outcomes. Our usage of Deep Learn-

ing (DL) algorithms offers several advantages over traditional methods. Our methodology

eliminates the necessity for manual clot segmentation, which is typically a time-intensive

process that may inadvertently delay crucial treatment. We employ automated preprocess-

ing, registration, and region map masking to streamline the input image region of interest.

Consequently, our model autonomously identifies pertinent features from the input images,

bypassing the need for manual intervention. Moreover, our innovative application of con-

trastive self-supervised learning underscores the effectiveness of Self-Supervised Learning

(SSL) in scenarios where training data availability is limited. This serves as valuable ev-

idence for utilizing similar approaches in medical imaging training. Finally, our models

display high accuracy in predicting FPE without dependency on advanced imaging tech-

niques like perfusion imaging. The latter, which involves a long acquisition time and may

not be readily available in all stroke triage settings, is effectively sidestepped by our models.

Thus, our approach is not only accurate but also versatile, promising swift and practical
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solutions in diverse healthcare settings.

”Numerous studies have embarked on the mission to forecast recanalization for Acute

Ischemic Stroke (AIS) patients. Utilizing just clinical variables has demonstrated only mod-

erate success in this endeavor [AVC21, VMS21]. Slightly superior performance has been

achieved by employing handcrafted or statistical features derived from manually segmented

Regions of Interest (ROI). Yet, these methods still leave ample room for further enhance-

ment in accuracy [MKC21, RBT14, SDS20, GGB20]. One study used radiomics features

from manually segmented regions and ML models to predict FPE from CT images, achiev-

ing high specificity but low sensitivity [HBR20]. Contrastingly, our proposed methodology

eliminates the need for manual segmentation and strikes a balanced sensitivity-specificity

trade-off while maintaining competitive accuracy levels. The Deep Learning (DL) algorithm

we developed was assessed on cohorts who underwent either Magnetic Resonance (MR) or

Computed Tomography (CT) imaging prior to treatment. This evaluation illustrates that

both these imaging modalities harbor substantial and valuable information related to the

First Pass Effect (FPE). This study does present several limitations that need to be consid-

ered. Firstly, the potential for treatment bias is inherent in our model, as the cohort solely

consisted of patients who had undergone Endovascular Thrombectomy (EVT) due to the

study design. This could skew the outcomes in favor of EVT-receiving patients. Secondly,

another layer of bias stems from the assignment of the modified Thrombolysis in Cerebral

Infarction (mTICI) score. Given that a single neurointerventionalist subjectively assigns the

score during the procedure, the subjective nature of this assignment could introduce vari-

ability. This can generate a range of reader assessments, which may differ based on their

individual training and expertise. While patients with an mTICI score of 2c or 3 exhibit

consistent scoring reliability, it’s worth noting that there’s a significant level of inter-reader

variability for patients scoring mTICI 2b. This variability could potentially influence the

interpretation of our model’s predictive performance [HBR20]. The degree of recanaliza-

tion experienced by patients scoring 2b on the modified Thrombolysis in Cerebral Infarction
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(mTICI) scale can vary greatly, ranging from 50% to 89%. Consequently, the 2b score re-

mains highly subjective. Since its inception in 2005, the TICI scoring system has undergone

several modifications, largely in response to concerns regarding its variability and weak corre-

lation with functional outcomes. Despite these modifications, including additional categories,

mTICI 2b continues to cover a broad range of recanalization rates. Therefore, the pursuit

to enhance the reliability and accuracy of this metric remains an ongoing endeavor. Future

research could consider a reevaluation of these patients using the procedural imaging taken

during Endovascular Thrombectomy (EVT). This could potentially allow for a more precise

stratification of mTICI 2b patients, leading to a more nuanced quantification of recanaliza-

tion rates. Routine clinical imaging protocols can introduce biases into the data that could

hinder direct comparisons of imaging series inputs across different modalities. The current

Magnetic Resonance (MR) stroke protocol generates an angiogram that covers only part of

the brain, excluding lateral sections from the field-of-view. Similarly, the Computed Tomog-

raphy (CT) protocol, optimized for patients presenting within 18 hours of symptom onset,

captures perfusion imaging with an incomplete field-of-view along the superior/inferior axis.

Due to existing treatment protocols, both series could not be registered using an image pro-

cessing pipeline tailored for speed. While more sophisticated image registration techniques,

including those that utilize Deep Learning (DL), might manage to perform partial regis-

tration, preliminary experiments suggest that such processes would be too time-consuming

for practical application in real-world settings. Scanners at other institutions may have

the capability to capture complete field-of-view angiography and perfusion imaging for both

MR and CT studies. Cohorts with comprehensive coverage across all series could help to

highlight the benefits of both standard and advanced imaging in predicting the success of

Endovascular Thrombectomy (EVT). Lastly, this study serves as a proof-of-concept from a

single institution and the architecture of the model involves numerous parameters. Despite

the thoughtful split of training and evaluation cohorts to maximize evaluation capacity, and

the utilization of two cohorts with different imaging modalities, the data is still drawn from
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a single institutional dataset. Therefore, external validation is crucial to assess the wider

applicability of these models across different hospitals and institutions.

4.6 Summary

We have presented a fully automatic, end-to-end method to predict treatment response to

EVT. On a dataset of patients who received either MR or CT prior to treatment, we have

demonstrated that the volume-based DL network can distinguish whether a patient will be

successfully recanalized in one attempt or fewer, achieving peak accuracies of 88.80% using

MR imaging and 82.33% using CT image series. This method outperformed previously pub-

lished methods without requiring manual thrombus segmentation, illustrating the capability

of DL algorithms to inform treatment planning for AIS patients. The future study includes a

larger cohort for model training and a multicenter evaluation. With a larger training set, we

can remove the preprocessing steps thus making the algorithm more applicable to real-world

clinical settings.
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CHAPTER 5

Large Vessel Occlusion Classification: A Masked

Imaging Model Transformer Approach

5.1 Introduction

In Chapter 4, we discuss the CNN-Transformer hybrid model that is efficient for small

datasets. However, highly customized hybrid transformer architecture is unsuitable for

large-scale applications, notably because it diminishes the benefit of language-image uni-

fication. As the dataset grows, applying self-supervised learning such as Masked Imaging

Model (MIM), also known as Masked Autoencoder (MAE) enables us to directly use pure

transformer architecture that shows superior performance over the traditional CNN method

when the dataset is large enough. The benefits of translational invariance and inductive bias

introduced by convolution can be overcome by larger data and ultimately leads to better

generalization ability.

5.2 Overview

Endovascular Thrombectomy (EVT) is the standard treatment for acute ischemic stroke

(AIS) patients caused by large vessel occlusion (LVO) [GMV16]. The efficacy of EVT for

patients experiencing AIS caused by LVO diminishes as time progresses [SGL16], which is

optimal within 6 hours but still has some benefit within an extended treatment window from

6 hours to 24 hours. Many AIS patients are first assessed at regional centers that at most can
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only manage intravenous thrombolysis, or on Mobile Stroke Units (MSU) that are equipped

with CT machines that possess the ability to conduct both non-contrast CT (NCCT) and CT

angiography (CTA) [CBS22]. Consequently, promptly detecting LVO and swiftly triaging

patients to EVT-equipped comprehensive stroke centers (CSCs) is crucial. Although current

guidelines recommend that primary stroke centers (PSCs) and other first-line facilities that

provide initial emergency care include the administration of thrombolysis and the capability

of performing emergency noninvasive intracranial vascular imaging such as CTA or MRA

[PRA19, AKM19], many hospitals do not have CTA readily available [AAH19]. CTA is

most widely used in many centers with very high sensitivity (83% to 97%) and specificity

(87% to 99%) [LLR21, BJB20, FBH21]. On the MRI side, black-blood MRI is a unique

modality that demonstrated high diagnostic accuracy and reliability with 100% sensitivity

and specificity [AAE19]. Fluid Attenuated Inversion Recovery (FLAIR) also showed good

sensitivity (98%) and specificity (86%) [BTL20]. However, the long-acquisition time and

the lack of devices make MR a less favorable option for initial imaging screening. Even

at well-equipped centers with CT machines, up to 20% of LVO may be missed at initial

imaging evaluation when neuroradiologists are not available. When imaging devices are not

presented for prescreening, many clinical scores can be used [NIM22]. The Los Angeles

Motor Scale (LAMS) [NSS18], the Cincinnati Pre-hospital Stroke Scale (CPSS) [RHT18],

the Rapid Arterial oCclusion Evaluation (RACE) scale [CCC17, LSD20], Glasgow Coma

Scale (GCS) [HHJ21] are among the options. NIH Score Scale (NIHSS) is also modified and

adopted for LVO prediction in multiple studies [PHR17, HHB16]. There are also several

novel scales that were developed recently [TVC17, TSS19, VAF19]. However, the sensitivity

and specificity are not comparable to imaging for triaging patients accurately and efficiently.

Developing a Machine Learning (ML) algorithm capable of recognizing LVO patterns with

the most common NCCT images could expedite and streamline the selection process for EVT

candidates. By making this technology accessible to a broader array of primary stroke centers

(PSCs), it can potentially expand the pool of patients receiving improved EVT treatment,
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ultimately leading to better health outcomes. Czap et al. developed a Deep Learning (DL)

model that uses CTAs obtained from 2 Mobile Stroke Units (MSUs) to detect LVO [CBS22].

Their proposed method DeepSymNet-v2 uses the information from the contralateral side

in a siamese fashion using 3D CNN. Amukotuwa et al. developed an automated algorithm

that relies on brain registration, region mapping, and ratio calculation with CTA [ASD19].

Another commercial software MethinksLVO used DL to predict LVO with NCCT [OCG20].

However, previous methods either mainly used CTA or have a balanced dataset, which is not

aligned with real-world distribution and the performance in real-world settings needs to be

evaluated. In this chapter, we propose to use the Masked Image Model (MIM) to pretrain

a model on large NCCT data and use a 3D swin transformer (Swin-T) as the backbone to

predict LVO.

5.3 Method

The LVO readings were determined by neuroradiologists through a visual assessment of CTA.

The cohort used for this study was retrospectively collected from UCLA Ronald Reagan

Medical Center from 2014-2021. AIS patients were included if they were diagnosed with

a large-vessel occlusion (LVO) and had a CT exam upon admission under stroke protocol.

non-LVO cases were included under the same stroke protocol but had non-LVO diagnosed,

which may or may not have a stroke. Low image quality such as motion blur or spike

is excluded. Unlike our previous work, we do not implement any preprocessing or image

registration. Instead, we rely on extensive data augmentation for model training and thus

loosen the restriction of the data and expand the generalization ability of the method.

5.3.1 CT Acquisition

Two CT scanners, a Lightspeed VCT (GE Health Care, Milwaukee, USA) and a SOMATOM

Definition (Siemens, Forchheim, Germany), were used for NCCT and CTA imaging. After
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administering 50 mL of contrast agent intravenously at 5 mL/second, a single-phase CT-

angiography (CTA) was obtained (120 kV, 120 reference mAs, 0.3 second rotation time, 0.6

pitch, effective dose of about 3 mSv).

5.3.2 Implementation Details

We developed a 3D transformer architecture based on a 2D swin transformer (Swin-T)

[LLC21]. To harvest the power of the transformer architecture, we adopted the SimpleMIM

approach proposed in [XZC21] to a modified 3D version. SimpleMIM is inspired by Masked

Autoencoder (MAE) but compatible with Swin-T given the vanilla MAE does not support

the hierarchical architecture of Swin-T for the proposed masking strategy. Moreover, Sim-

pleMIM demonstrated that a simple one-layer decoder is more than enough for effective

self-supervised learning (SSL). Figure 5.1 illustrates the model’s architecture and the MIM

pretraining. It is worth noting that during MIM pertaining, the encoder is a pure 3D swin

transformer. For downstream task LVO detection, we add a residual connection for the

swin transformer layers and a convolution layer at the end to build a swin block. has

shown this approach citeliang2021swinir to enhance the translational equivariance of the

swin transformer. The residual connection allows better aggregation of multiscale features.

5.3.3 Evaluation metrics and Statistical Analysis

Categorical variables are shown in absolute numbers and percentages, and continuous vari-

ables as mean±SD or median with the interquartile range depending on the data type.

Sensitivity, Specificity, Accuracy, Area Under the Precision-Recall Curve (PR-AUC), and

Area under the receiver operating curves (ROC-AUC) are reported. The best cutoff for

sensitivity and specificity is determined by Youden’s J index. All statistical analysis was

performed using R software 4.1.3 (https://www.r-project.org).
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Figure 5.1: (a) Illustration of the proposed swin transformer LVO detection framework. STL

stands for the swin transformer layer, which is detailed at the bottom right. Multiple STLs

form a swin block. The input is 3D volume Non-contrast CT. The masking blocks are cubes

for MIM.
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5.4 Results

5.4.1 Materials

1,722 patients are included in this study based on the aforementioned inclusion criteria.

Baseline characteristics are summarized in Table 5.1. 80% of the data are used for method

development and 20% of the data construct a hold-out test set.

Dataset (n = 1722)

Age (years) 70 (56-81)

Female 845 (49.07%)

LVO 327 (18.99%)

Stroke 400 (23.23%)

Table 5.1: Patient cohort basic demographics. Numbers are n (%) or median (interquartile

ranges).

To illustrate the effectiveness of large sample sizes and self-supervised learning, we mini-

mize the preprocessing steps. The only preprocessing is resampled to 128x128x128 to fit into

the 3D Swin-T model. For the downstream LVO classification task, extensive data augmen-

tation mechanics are used, including cropping, horizontal flipping, random noise, random

elastic deformation, random affine transformation, and random anisotropy are used.

5.4.2 Impementation Details

The model is implemented using PyTorch 1.9 and trained on a DGX-1 with V100 GPUs.

Mixed precision and accumulated steps are used. The learning rate is set to 0.0005 with a

linear warmup strategy and cosine annealing learning rate scheduler. For MIM, the batch

size is 1 and trained for 800 epochs; for the LVO task, the batch size is 26 and trained for

50 epochs. Focal loss is used to account for class imbalance problems in the data. The 3D

Swin-T follows the following setup: the initial feature embedding size C is 48; The numbers
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of swin transformer blocks at the four stages are 2, 2, 2, 2, with the corresponding numbers

of attention head 3, 6, 12, 24. The patch size is 2x2x2 and the window size is 7x7x7. For

MIM, the masking patch size is 16x16x16, and random patches strategy is adopted.

5.4.3 Model Performance

The performance metrics for comparing models are summarized in Table 5.2. When trained

from scratch, 3D ResNet18 achieved the best performance with a ROC-AUC of 0.8698. 3D

ViT is hard to converge and showed a low ROC-AUC of 0.7541. 3D Swin-T achieved a

ROC-AUC of 0.8333 which is above 0.8 but still lower than 3D ResNet. However, when

incorporating MIM, the performance of the ViT and Swin-T both increased, and the Swin-

T achieved the best ROC-AUC of 0.8829. For ResNet18 3D, we use a Kinetic pre-trained

model which is commonly used in other fields that applied 3D DL models but in the medical

domain, these pre-trained weights showed no benefits. ROC comparison for 3D ResNet and

Swin-T are shown in Figure 5.2

5.5 Conclusion

Our results demonstrate that our proposed transformer framework can accurately classify

large vessel occlusion (LVO) in patients with suspected acute ischemic stroke (AIS) using

only non-contrast CT (NCCT) images. The automated DL algorithm will accelerate the

triage of EVT candidates and expand the population that would have been missed due to

the limitation of CT or MR imaging under current guidelines. Accurate prediction of LVO

using NCCT also remove the necessity of further advanced imaging exam, saving valuable

time under emergent situation. It also improves the efficiency of prehospital, primary stroke

center (PSC), and mobile stroke unit and sends the patients with LVO to the corresponding

comprehensive stroke center (CSC). The proposed method aims to remove all the prepro-

cessing steps that are commonly seen in other neuroimaging work but instead rely on more
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Figure 5.2: ROC curves for ResNet and Swin-T performance
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Table 5.2: Quantitative evaluation of methods on the test set. The best results are in bold.

Models
Holdout test set

ROC-AUC Accuracy Sensitivity Specificity

3D ResNet18 0.8698 0.9340 0.7619 0.9634

3D ViT 0.7541 0.8052 0.6675 0.7831

3D Swin-T 0.8333 0.9531 0.7222 0.9909

3D ReNet18+pretrain 0.8667 0.9167 0.7619 0.9431

3D ViT+pretrain 0.7904 0.8510 0.7034 0.8222

3D Swin-T+pretrain 0.8829 0.9444 0.8421 0.9756

data augmentation during training and the MIM pertaining, thus making the algorithm more

inclusive and can be applied to a larger population as the preprocessing steps usually lead

to some failed cases that need to be discarded. This is an exploratory study and therefore

there are some limitations that should be addressed in future work. First, we only compared

the resnet3D model and the Swin-T and their train-from-scratch and MIM performance.

More comprehensive experiments should be included for ablation study and hyperparameter

selection, such as masking strategy for MIM. This is a single-center study and a multicenter

external validation study is essential to show the robustness of the proposed method.

5.6 Summary

In this chapter, we showed the transition from CNN/hybrid transformer work in previous

studies to pure attention-based models and their superior performance when the masked

imaging model pretraining is applied. This creates a new research path that may potentially
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bridge the gap between Natural language processing and computer vision in the medical

domain as the architectures are now unified therefore leading to better modality fusion. In

the future, CLIP-alike architecture will exploit the information from the radiology report

and the image simultaneously with no or limited annotations from expert radiologists, thus

eventually leading to the development of a large foundation imaging model that can be easily

fine-tuned or adapted to different downstream tasks in the medical domain.
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CHAPTER 6

Transformer Volumetric Super-Resolution from CT

Scans

6.1 Introduction

Chapter 4 presents a hybrid CNN-transformer architecture and 5 presents a pure trans-

former architecture for computer vision tasks. In this chapter, we further explore the swin

transformer architecture and a unique application in super-resolution inspired by Masked

Image Models (MIM). Unlike other MIM approaches that are designed for self-supervised

learning for pretraining a model for downstream tasks, we directly apply the logic of mask

reconstruction in MIM to super-resolution slice reconstruction from thick slice to thin slice

in medical imaging. The work described in this chapter is partially in press as RPLHR-CT

Dataset and Transformer Baseline for Volumetric Super-Resolution from CT Scans [YZK22].

6.2 Overview

Volumetric medical imaging, such as computed tomography (CT) and magnetic resonance

imaging (MRI), is an important tool in diagnostic radiology. Although high-resolution vol-

umetric medical imaging provides more anatomical and functional details that benefit diag-

nosis [YHH20, XLG21, CHJ20], long acquisition time and high storage cost limit the wide

application in clinical practice [HHM16]. As a result, it is routine to acquire anisotropic

volumes in practice, which have high in-plane resolution and low through-plane resolution.
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However, the disparity in resolution can lead to several challenges: (1) the inability to dis-

play sagittal or coronal views with adequate detail [KFW03]; (2) the insufficiency of spatial

resolution to observe the details of lesions [YHH20] and; (3) the challenge to the robustness

of 3D medical image processing algorithms [PLK21, IJK21]. A feasible solution is to use

super-resolution (SR) algorithms [ZGD21] to upsample anisotropic volumes along the depth

dimension, in order to restore high resolution (HR) from low resolution (LR). This approach

is referred to as ”volumetric SR.”

CNN-based algorithms have achieved outstanding performance in SR for natural images

[WCH20] and these techniques have been introduced for volumetric SR [PLL20, LZL20,

GYX19, PZC21, CSC18, LLW21, LCX21, XSZ21, ZDP20, BLP18]. Though significant ad-

vances have been made, CNN-based algorithms remain limited by the inherent weaknesses of

convolution operators. On the one hand, using the same convolution kernel to restore various

regions may neglect content relevance. Liu et al. [LZL20] take this into consideration and

propose a multi-stream architecture based on lung segmentation to recover different regions

separately, but this is hard to be a one-size-fits-all solution. On the other hand, the non-local

content similarity of images has been used as an effective prior in image restoration [ZZZ20].

Unfortunately, the local processing principle of the convolution operator makes the algo-

rithms difficult to effectively model long-range dependence. Recently, transformer networks

have shown good performance in several visual problems of natural image [DBK20, LLC21],

including SR [CWG21, LCS21]. Self-attention mechanism is the key to the success of the

transformer. Compared to CNN-based algorithms, the transformer can model long-range

dependence in the input domain and perform dynamic weight aggregation of features to

obtain input-specific feature representation enhancement [KNH21]. These results prompted

us to explore a transformer-based SR method.

Another impediment to the application of volumetric SR methods is data. Most relevant

studies use HR volume as ground truth and degrade it to construct paired pseudo-LR volumes

with which to train and evaluate methods [PLL20, PZC21, CSC18, XSZ21, ZDP20]. For
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instance, Peng et al. [PLL20] perform sparse sampling on the depth dimension of thin CT

to obtain pseudo thick CT. Zhao et al. [ZDP20] simulate pseudo-LR MRI by applying

an ideal low-pass filter to the isotropic T2-weighted MRI followed by an anti-ringing Fermi

filter. However, the performance will be affected when tested on the real-LR volume [BLP18]

because of the domain gap between pseudo- and real-LR volume. To avoid it, some studies

collect real-paired LR-HR volumes [PLK21, LZL20, GYX19, LCX21, BLP18]. For example,

Liu et al. [LZL20] collect 880 real pairs of chest CTs and construct a progressive upsampling

model to reconstruct 1mm CT from 5mm CT. In the field of MRI, a large data set containing

1,611 real pairs of T1-weighted MRIs has been used to develop the proposed SCSRN method

[LCX21]. However, a benchmark to objectively evaluate various volumetric SR methods is

still lacking.

To address this deficiency, the first goal of this work is to curate a medium-sized dataset,

named Real-Paired Low- and High-Resolution CT (RPLHR-CT), for volumetric SR. RPLHR-

CT contains real-paired thin-CTs (slice thickness 1mm) and thick-CTs (slice thickness 5mm)

of 250 patients. To the best of our knowledge, RPLHR-CT is the first benchmark for

volumetric SR, which enables method comparison. The other goal of our work is to ex-

plore the potential of transformer architecture for volumetric SR. Specifically, we propose a

novel Transformer Volumetric Super-Resolution Network (TVSRN). TVSRN is designed as

an asymmetric encoder-decoder architecture with transformer layers, without any convolu-

tion operations. TVSRN is the first pure transformer used for CT volumetric SR. We re-

implement and benchmark state-of-the-art CNN-based volumetric SR algorithms developed

for CT and show that our TVSRN outperforms existing algorithms significantly. Addition-

ally, TVSRN achieves a better trade-off between image quality, the number of parameters,

and running time.
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6.3 Dataset and Methodology

6.3.1 RPLHR-CT Dataset

Dataset Description. The RPLHR-CT dataset is composed of 250 paired chest CTs from

patients. All data have been anonymized to ensure privacy. Philips machines were used to

perform CT scans and the raw data were then reconstructed into thin CT (1mm) and thick

CT (5mm) images. Thus, recovering thin CT (HR volume) from thick CT (LR volume) for

this dataset is a volumetric SR task with an upsampling factor of 5 in the depth dimension.

The CT scans are saved in NIFTI (.nii) format with volume sizes of L × 512 × 512, where

512× 512 is the size of CT slices, and L is the number of CT slices, ranging from 191 to 396

for thin CT and 39 to 80 for thick CT. The thin CT and the corresponding thick CT have

the same in-plane resolution, ranging in [0.604, 0.795], and are aligned according to spatial

location.

Dataset split and Evaluation Metric. We randomly split the RPLHR-CT dataset into

100 train, 50 validation and 100 test CT pairs. For evaluation, we quantitatively assess the

performance of all methods in terms of peak signal-to-noise ratio (PSNR) and structural

similarity (SSIM) [WBS04]. Significance is tested by one-sided Wilcoxon signed-rank test.

Dataset Analysis. To analyze the difference between the thin CT and thick CT, we group

slices in thin CT and thick CT into three categories of slice-pairs according to their spatial

relationship, as shown on the left side of Fig. 6.1. We use PSNR and SSIM to access the

changes in the similarity of three slice pairs in train, validation, and test CT pairs. As shown

on the right side of Fig. 6.1, the results indicate that the similarity of slice-pairs at the same

spatial location in thin CT and thick CT, namely Match, is the highest, while the similarity

decreases significantly as the spatial distance becomes larger.
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Figure 6.1: (a) Three categories of slice-pairs according to their spatial relationship in thin

CT and thick CT. Match: same position, shown in blue; Near: 1mm apart, shown in red;

Far: 2mm apart, shown in green. (b) The degree of similarity between the three slice-pairs

on the three datasets. (Color figure online)

6.3.2 Network Architecture

Inspired by MAE[HCX21], we treat volumetric SR as a task to recover the masked regions

from the visible regions, where the visible regions refer to the slices in the LR volume and the

masked regions refer to the slices in the corresponding HR volume. As illustrated in Fig. 6.2,

we also design our TVSRN with an asymmetric encoder-decoder architecture, but with

several targeted modifications. First, in TVSRN, the encoder and the decoder are equally

important, and to better model the relationship between the visible regions and the masked

regions, the decoder uses a larger amount of parameters than the encoder. Second, instead

of the standard transformer layer[DBK20], we use the swin transformer layer (STL)[LLC21],

which is less computationally intensive and more suitable for high-resolution image, as the

basic component of TVSRN. Third, we propose Through-plane Attention Blocks to exploit

the spatial positional relationship of volumetric data to achieve better performance.
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Figure 6.2: (a) Illustration of the proposed Transformer Volumetric Super-Resolution Net-

work architecture. (b) Details of TAB. The purple dashed box represents two consecutive

swin transformer layers. The batch dimension is indicated in parentheses.
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Encoder is used to map the LR volume to a latent representation. The consecutive slices

from LR volumes are denoted as the input X in
e ∈ R1×D×H×W of encoder, where D, H and

W are the depth, height, and width, and the channel is 1. X in
e is firstly fed into the Linear

Embedding, whose number of feature channel is C, to extract shallow features and output

Fs ∈ RC×D×H×W . Then, Fs is reshaped to F0 ∈ RCD×H×W . We stack N STLs to extract

deep features from F0 as:

Fi = HSTL
i (Fi−1), i = 1, 2, ..., N (6.1)

whereHSTL
i (·) denotes the i-th STL. Finally, FN is reshaped to 3D outputXout

e ∈ RC×D×H×W .

Decoder is used to recover the HR volume from the latent representation. As shown in

Fig. 6.2(a), mask tokens are introduced after the encoder, and the full set of Xout
e and mask

tokens is input to the decoder as X in
d ∈ RC×D′×H×W , where D′ is the depth of ground truth.

The mask tokens are a learned vector that indicates the missing slices in the LR volumes

compared to the HR counterpart. Decoder stack M Feature Interaction Modules (FIMs),

which consists of one Through-plane Attention Block (TAB), four STLs, and two reshape

operations. The reshape operations are used to reshape the input feature map into the size

expected by the next block. The output of the decoder is Xout
d with the same size as X in

d .

Note that the design of asymmetric decoder can easily be adapted to other upsampling rates

by changing the number of mask tokens.

The details of TAB are illustrated in Fig. 6.2(b). TAB is the first block in each FIM.

There are two parallel branches in TAB that perform self-attention on the input from coronal

and sagittal views, respectively. In both views, the depth dimension will become an axis of

the STL’s window, so the relative position relationship between slices will be incorporated

into the calculation. The parameter weights of the corresponding STL on the two parallel
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branches are shared. Given the input feature zin of TAB, the output is computed as:

zsag0 = P sag(zin), z
cor
0 = P cor(zin)

zsagj = HSTL
j (zsagj−1), z

cor
j = HSTL

j (zcorj−1), j = 1, 2, 3, 4

zout = zin + P sag
re (zsag4 ) + P cor

re (zcor4 ) (6.2)

where P sag(·) and P cor(·) are permutation operations that transform the input to sagittal

and coronal view, respectively. P sag
re (·) and P cor

re (·) denote re-permutation operations that

reshape the input back to its original size. In addition, TAB contains residual connections,

which allow the aggregation of different levels of features.

Reconstruction Target. TheXout
d is fed into the Linear Projection to obtain the pixel-wise

prediction Ŷ ∈ RD′×H×W . The L1 pixel loss is formulated as:

Lpixel =
1

D′ ×H ×W

∑

k,i,j

|Ŷk,i,j − Yk,i,j| (6.3)

where Y is the ground truth HR volume.

Architecture Hyper-parameters. For each STL, the patch size is 1× 1 and the window

sizes of the x-axis, y-axis, and z-axis are set to 8, 8, and 4. For Linear Embedding, the

channel number C is 8. The number of STLs in the encoder and FIMs in the decoder is set

to N = 4 and M = 1, respectively.

6.4 Experiments and Results

Implementation Details. We normalize the intensity of the CT images from [−1024, 2048]
to [0, 1]. During training, 4 × 256 × 256 cubes from thick CTs are used as input and the

corresponding 16 × 256 × 256 cubes from thin CTs are used as ground truth, in where

16 = (4 − 1) × 5 + 1. During inference, we feed cubes from thick CTs to the model in a

sliding window manner, in which the overlap of depth dimension is 1 and the rest is 0. If

the depth of untested cubes is less than 4, we feed the last 4 slices into the model. For
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Figure 6.3: (a) Quantitative comparisons of our TVSRN and other state-of-the-art methods.

∗ indicates p < 0.001. (b) PSNR vs. processing time of each volume with the number of

parameters shown in circle size. (c) quantitative results of pseudo images experiment.

multiple predictions on the same coordinate, we take the average as the final value. TVSRN

is trained with Adam Optimizer. The learning rate is 0.0001 and the batch size is 1. For the

comparison methods, we follow descriptions provided in the original papers to re-implement

the models, as none have public code available. Settings not detailed in the original paper

will remain consistent with our work. Data augmentation includes random cropping and

horizontal flipping. The framework is implemented in PyTorch and trained on NVIDIA

A6000 GPUs.

6.4.1 Results and Analysis

Fig. 6.3(a) summarizes the quantitative comparisons of our method and other state-of-the-

art CT volumetric SR methods: ResVox [GYX19], MPU-Net [LZL20], SAINT [PLL20] and

DA-VSR [PZC21]. For ResVox, the noise reduction part is removed. For MPU-Net, we

do not use the multi-stream architecture due to the lack of available lung masks. TVSRN

achieves PSNR of 38.609± 1.721 and SSIM of 0.936± 0.024 outperforms others significantly

(p < 0.001). Moreover, as shown in Fig. 6.3(b), compared to other methods, TVSRN achieves

a better trade-off in terms of the PSNR (optimal), the number of parameters (optimal), and

the running time (suboptimal). We also perform the comparison on an external test set,
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(a) Bicubic (b) ResVox (c) MPU-Net (d) SAINT (e) TVSRN (f) Ground Truth

Figure 6.4: Visual comparisons of different methods against TVSRN. The first and second

rows show the axial view and coronal view respectively, displayed as lung window. The third

row is sagittal view, displayed as bone window. Yellow arrows point to areas of marked

difference.

where TVSRN also achieved the best performance. Detailed numerical results on the internal

test set and external test set are presented in the supplementary material. In addition, a

sample-by-sample performance scatterplot is given in the supplementary material.

We visualize the axial, coronal, and sagittal views of HR CT volume obtained by different

methods. It is clear in Fig. 6.4 that TVSRN has the richest details and the least amount of

structural artifacts remaining in different views.

6.4.2 Domain Gap Analysis

We conduct a pseudo images experiment to illustrate the effect of the domain gap. Specifi-

cally, we degrade the training data to obtain pseudo-LR volumes and use these data to train

several different methods. All settings are the same as those in the previous section, except

for the training data. For testing, real-LR volumes in the internal test set are used as input
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to calculate the PSNR and SSIM. As shown in Fig. 6.3(c), the results show that both PSNR

and SSIM of various methods are significantly decreased to varying degrees (p < 0.001).

Please refer to the supplemental material for more details on degradation.

6.4.3 Ablation Study

The ablation study is used to verify the contribution of each component in TVSRN on

performance. The full TVSRN is compared to:

• TVSRNEncoder
V iT . A standard transformer-based method based on [DBK20]. We map

each patch of size 1 × 16 × 16 to a token with a length of 512 and set the number of

transformer layers to eight. Instead of asymmetric decoder, it uses subpixel conversion

[SCH16] to perform upsampling.

• TVSRNEncoder. Only the encoder of TVSRN was used. N is increasd to eight and C

is increased to 32. The upsampling method is subpixel convert.

• TVSRNw/o TAB. TAB is not used in TVSRN, that is, the relative position relationship

among slices is ignored in the network.

Model performance is summarized in Table. 6.1. Notable observations include: 1) among

all designs, TVSRNEncoder
V iT has the most parameters but the worst performance, which indi-

cates that it is not feasible to simply apply the transformer to the volumetric SR; 2) replacing

the standard transformer layer with STL can greatly reduce the number of parameters and

improve the performance by a large margin (up to 2.827dB); 3) asymmetric decoder can

improve performance slightly without changing the number of parameters; 4) improvements

can be seen from TVSRNw/o TAB to TVSRN, indicating the effectiveness of modeling the

relative position relationship among slices. Sample-by-sample performance scatterplots in

supplemental material are used to further illustrate the effectiveness of individual compo-

nents.
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Table 6.1: Results of ablation study for TVSRN in terms of PSNR and SSIM. The best results

are bolded, and the second best results are underlined. * denotes statistically significant

(p < 0.001) against the above method with a one-sided Wilcoxon signed-rank test.

Designs Param PSNR(↑) SSIM(↑)

TVSRNEncoder
V iT 17.15M 35.537± 1.353 0.918± 0.026

TVSRNEncoder 1.58M 38.364± 1.675∗ 0.934± 0.024∗

TVSRNw/o TAB 1.56M 38.497± 1.700∗ 0.935± 0.024∗

TVSRN 1.73M 38.609± 1.721∗ 0.936± 0.024∗

6.5 Conclusion

A persistent problem with volumetric SR is the lack of real-paired data for training and

evaluation, which makes it challenging to generalize algorithms to real-world datasets for

practical applications. In this paper, we presented the RPLHR-CT Dataset, which is the first

open real-paired dataset for volumetric SR, and provided baseline results by re-implementing

four state-of-the-art SR methods. We also proposed a convolution-free transformer-based

network, which significantly outperformed existing CNN-based methods and has the least

number of parameters and the second shortest running time. In the future, we will enlarge

the RPLHR-CT Dataset and investigate new volumetric SR training strategies, such as

semi-supervised learning or using unpaired real data.

103



6.6 Appendix

6.7 Internal Test Set

Numerical results are summarized in Table. 6.2. Sample-by-sample performance (PSNR and

SSIM) scatterplots for the first 15 cases are shown in Fig. 6.5.

Table 6.2: Quantitative evaluation of methods on the internal test set. The best results

are in bold. 95% confidence intervals are in square brackets. * denotes the statistically

significant difference (p < 0.001 in one-sided Wilcoxon signed-rank test) between the current

method and TVSRN.

Models
Internal test set

PSNR(↑) SSIM(↑)

Bicubic
33.508± 1.083∗ 0.902± 0.028∗

[31.628, 35.225] [0.844, 0.947]

ResVox
37.946± 1.637∗ 0.932± 0.025∗

[35.527, 40.306] [0.888, 0.968]

MPU-Net
37.140± 1.583∗ 0.924± 0.027∗

[34.854, 39.457] [0.874, 0.963]

SAINT
38.019± 1.651∗ 0.933± 0.025∗

[35.565, 40.515] [0.890, 0.969]

DA-VSR
36.672± 1.450∗ 0.924± 0.026∗

[34.469, 38.760] [0.876, 0.961]

TVSRN
38.609± 1.721 0.936± 0.024

[36.047,41.282] [0.895,0.970]
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Figure 6.5: Sample-by-sample performance scatterplot on the internal test set.
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6.8 External Test Set

We collected 18 chest CT pairs from another center as an external test set, which were

obtained using Toshiba scanners and reconstructed to thin slice CT (1mm) and thick slice

CT (5mm) volumes. All data have been anonymized. Numerical results are summarized in

Table. 6.3. Sample-by-sample performance (PSNR and SSIM) scatterplot for all cases in the

external test set are shown in Fig. 6.6.

6.9 Summary

In this chapter, we create a novel way to use Swin Transformer for the Super Resolution

task. Given the limitation of real-paired data, we can only find lung CT data for this study.

In stroke imaging, it is in fact very important to use volumetric super-resolution to enhance

the image since for stroke protocol it is usually 5mm thick slice images. Many AI algorithms

are developed to work on isotropic images and the volumetric super-resolution algorithm

expands the utility of various AI algorithms. In future studies, we plan to use unpaired data

to fine-tune this model to adapt to different organs and modalities.
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Table 6.3: Quantitative evaluation of methods on the external test set. The best results

are in bold. 95% confidence intervals are in square brackets. * denotes the statistically

significant difference (p < 0.001 in one-sided Wilcoxon signed-rank test) between the current

method and TVSRN.

Models
External test set

PSNR(↑) SSIM(↑)

Bicubic
31.592± 1.133∗ 0.902± 0.035∗

[30.288, 33.551] [0.843, 0.945]

ResVox
34.445± 1.683∗ 0.927± 0.032∗

[32.339, 37.290] [0.874, 0.965]

MPU-Net
34.012± 1.454∗ 0.918± 0.033∗

[32.175, 36.389] [0.863, 0.958]

SAINT
34.719± 1.634∗ 0.929± 0.031∗

[32.716, 37.481] [0.878, 0.967]

DA-VSR
33.296± 1.458∗ 0.911± 0.032∗

[31.458, 35.744] [0.860, 0.950]

TVSRN
35.720± 1.708 0.932± 0.030

[33.644,38.399] [0.880,0.968]
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Figure 6.6: Sample-by-sample on the external test set.
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Figure 6.7: Sample-by-sample performance scatterplot on the internal test set of ablation

study. 109
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Figure 6.8: Comparison of different degradation strategies. First use bicubic interpolation

to downsample the thin-CT to the same number of slices as the thick-CT, then perform

Gaussian filtering. Four σ were set for the Gaussian filter, 0, 0.5, 1.0, and 1.5. When

the σ = 0, it means that Gaussian filtering is not performed. Using peak signal-to-noise

ratio (PSNR) to compare the similarity between pseudo-LR volumes and real-LR volumes

obtained by four different degradation strategies, the results are shown in the lower right

corner. When σ = 1.0, the pseudo-LR volume has the highest PSNR with the real-LR

volume, but it still has a visible difference in appearance.
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CHAPTER 7

Conclusion and Future Work

This Chapter summarizes the main contributions of this dissertation and discusses potential

future directions to investigate.

7.1 Summary of Contributions

This dissertation presents models that utilize self-supervised learning pretraining and atten-

tion mechanisms to tackle the challenges of limited medical images for Deep Learning (DL)

models to converge. The dissertation also expands the utility of DL model applications that

are limited by thick slice images using transformer-based super-resolution preprocessing.

1. In Chapter 3, an intra-domain task-specific self-supervised learning approach and

attention-based 2D and 3D CNN models to classify time since stroke using diffusion-

weighted MRI. The proposed self-supervised learning approach significantly improves

the TSS classification using pretreatment MRI, demonstrating that using only the

intra-domain medical imaging for the task without imageNet or other unrelated med-

ical imaging pretraining, the model can still reach high performance.

2. In Chapter 4, a CNN-transformer hybrid model to predict EVT outcomes using both

CT and MRI was presented. we first developed radiomics-based Machine Learning

(ML) models to examine the feasibility of predicting mTICI using pre-treatment MRI.

Second, we develop a CNN-transformer hybrid model to predict mTICI using non-

contrast CT and CT angiography. finally, we further add contrastive self-supervised
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learning pretraining to the model and evaluate the performance on both CT and MRI.

This chapter demonstrated a process to use DL to explore the relationship between

medical images and EVT outcomes.

3. In Chapter 5, A pure vision transformer model is developed to predict large vessel

occlusion using only non-contrast CT images. The proposed method used an improved

3D swin transformer model to accelerate the training. a 3D modified Masked imaging

self-supervised learning approach to pretrain the model that demonstrates its effective-

ness. The model achieved state-of-the-art performance using a real-world distributed

dataset.

4. In Chapter 6, A transformer-based super-resolution model to synthesize 1mm slice

thickness from 5mm slice thickness has been developed. We also released 800 real-

paired 1mm and 5mm CT image volumes. We first demonstrate the importance of

using real-paired data for super-resolution models compared to using real 1mm and

downsampled 5mm images as training data. We then developed a swin transformer

super-resolution model to achieve the state-of-the-art performance.

7.2 Future Work

Machine Learning (ML) and Deep learning (DL) possesses the capacity to significantly ad-

vance stroke management by facilitating faster, more accurate, and highly efficient diagno-

sis and treatment of Acute Ischemic Stroke (AIS). As the development of DL algorithms

progress, medical imaging is paving the way for more tailored, patient-specific diagnostic

and therapeutic approaches. These DL algorithms excel at rapidly and accurately analyzing

extensive datasets, enabling them to detect patterns in medical imaging that are unidenti-

fiable to the naked eye. The ongoing advancements in the wider domains of ML and DL

offer a wealth of opportunities for technological innovation, harnessing methods that are

optimally suited for handling medical data and addressing clinical challenges. Particularly,
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this dissertation demonstrated the performance and the expansion of the capability of DL

through the technical advancement in attention mechanism and self-supervised learning over

recent years. By shifting from convolutional neural network (CNN) to attention-based CNN

to transformers architecture, the gap between natural language processing (NLP) and com-

puter vision (CV) has finally been closed. The large language model (LLM) has already

shown its power in NLP and the large imaging model (LIM) is on the horizon. By linking

LLM and LIM, the true potential of DL will be unleashed with large enough multimodal

datasets.

On the hand, unlike natural imaging and natural language, the medical domain has its

unique challenges. Many clinical problems are intrinsically non-deterministic, making it hard

to model by simply feeding more data and using larger models. Medical imaging modalities,

such as CT, MRI, and Ultrasound do not exist in the natural world and unlike natural

images, are very different across modalities. Specially tailored methods need to be designed

to work for different modalities and different diseases. In the foreseeable future, there still

remain a lot of challenges to create a reliable single large foundation model that works for

all or most of the situations in clinical settings.

While the long-term goals discussed above seem very challenging, the short-term goals

still are to improve sample size and expand external validation, reduce specially tailored

blocks/modules/networks, and expand the utilization of DL for different clinical problems.

Meanwhile, effectively integrating robust algorithms into the current clinical workflow that

improve real-world diagnostics accuracy and efficiency would attract more investment into

the research in DL applications for the medical domain.

This dissertation focus on the development of DL algorithms with a core consideration

of incorporating the algorithm to solve a real clinical problem and improve the current

workflow. The utilization of attention mechanisms and self-supervised learning to make

the DL algorithms work robustly with the major limitation of data size, which is common

in the medical imaging domain, particularly for rare diseases or fewer studies topics. The
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dissertation also showed a trend to not modify the network itself too much. This is crucial

given the DL community is building larger and more efficient foundation models that can be

fine-tuned for downstream tasks. These large models are shown to be much more robust and

generalizable than small models that are highly customized and trained on small datasets.

Although it is still necessary to add some modules and loss functions that may improve the

downstream tasks, it is important to have a backbone that can be directly transferred from

other well-trained general models. In the next step, although building a foundation model

for the entire medical field is extremely challenging, a foundation model that only focuses

on MRI or CT neuroimaging that use a combination of in-house and the public dataset is

warranted and will provide valuable experimental results for the community to continue the

development of large foundation models.

In addition, this dissertation mainly focuses on the development and validation of deep-

learning models for medical imaging. The reasoning behind the shift from CNN to trans-

formers is not only the superior performance when the training data is large but more

importantly it will create a unified architecture for CV and NLP, making modality fusion

more standardized. To this end, in the next step, we should exploit the rich text information

from radiology report, patients report, and other text-related clinical information to mix

with imaging features to achieve a more reliable diagnosis and treatment prediction.
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