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Abstract

A symplectic multi-particle tracking model is implemented on the Graphic Pro-

cessing Units (GPUs) using the Compute Unified Device Architecture (CUDA)

language. The symplectic tracking model can preserve phase space structure

and reduce non-physical effects in long term simulation, which is important for

beam property evaluation in particle accelerators. Though this model is compu-

tationally expensive, it is very suitable for parallelization and can be accelerated

significantly by using GPUs. In this paper, we optimized the implementation of

the symplectic tracking model on both single GPU and multiple GPUs. Using a

single GPU processor, the code achieves a factor of 2-10 speedup for a range of

problem sizes compared with the time on a single state-of-the-art Central Pro-

cessing Unit (CPU) node with similar power consumption and semiconductor

technology. It also shows good scalability on a multi-GPU cluster at Oak Ridge

Leadership Computing Facility. In an application to beam dynamics simulation,

the GPU implementation helps save more than a factor of two total computing

time in comparison to the CPU implementation.
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1. Introduction

Numerical simulation plays an important role in beam physics study and

the design of high intensity particle accelerators, where the space charge ef-

fects from Coulomb interactions of charged particles dominate. Most simulation

codes in the accelerator community use the particle-in-cell (PIC) method as the

self-consistent space charge solver [1, 2, 3, 4, 5, 6, 7, 8, 9]. The PIC method

is an efficient algorithm to include self-consistent space charge effects in the

simulation. In this algorithm, at each step, particles are deposited onto a com-

putational grid to obtain charge density distribution on the grid. The Poisson

equation is solved on the grid to yield space-charge fields. These fields are then

interpolated from the grid back to the locations of particles to advance particles’

momenta. Using this method, the computational complexity is reduced from

N2
p of the direct particle to particle method to αNp + βNcells logNcells. Here,

Np is the number of macroparticles used in the simulation, Ncells is the number

of numerical grid cells, α is a constant depending on the scheme of deposition

and interpolation, and β is a constant associated with the numerical method

used to solve the Poisson equation. Here, we have assumed that an efficient

numerical method (e.g. FFT) is used to solve the Poisson equation on the grid.

In accelerator beam dynamics simulation, for a multi-particle Hamiltonian

system, an important constraint is the symplectic condition. If the symplectic

condition is not satisfied, some non-physical effects resulting from numerical

algorithms would be introduced into the simulation, and eventually disturb the

results of beam dynamic study [10]. For widely used momentum conserved PIC

model, this condition is nevertheless violated. Symplectic integrators without

including self-consistent space-charge effects were constructed for single particle

Hamiltonian systems [10, 11, 12]. Recently, a fully symplectic multi-particle

tracking model including space-charge effects was introduced and proved to be

effective in serving as symplectic Poisson solver in long-term simulation [13].

This model uses a gridless spectral method to calculate the space charge fields.

Here, the gridless model refers to a method that the self-consistent space-charge

2



fields are computed directly from the ensemble of particles instead of the den-

sity distribution on a computational grid. It can effectively reduce the emit-

tance growth associated with numerical grid heating compared with the PIC

algorithm.

The gridless particle tracking model was studied for a periodic system in

plasma physics with the advantage of avoiding the numerical grid heating error

in the PIC model [14, 15, 16]. These gridless finite-size particle plasma models

are either electrostatic or gyrokinetic and are not particle tracking models typi-

cally employed in beam physics study. The gridless particle tracking model has

not been used to study space-charge effects in high intensity beams through a

particle accelerator (non-periodic system) until the recent study for symplectic

multi-particle tracking.

The gridless method is slower than the PIC method on serial computer. The

computational complexity of this model is αNpNmodes, where Nmodes is the

number of modes used to solve the Poisson equation. If one uses 16 × 16 × 16

modes in the simulation, it would cost a few hundred times more computing time

than the PIC model. Fortunately, this model has a very regular data structure.

It can be parallelized using a particle-decomposition method with perfect load

balance (This was also observed in reference [15]). Moreover, there is only one

global communication at each step for the space-charge fields calculation. This

makes it very suitable for massive parallelization, especially on GPUs.

The GPU, which was originally developed for computer graphics and video

game, now becomes a general-purpose computing processor. In contrast to

the CPU, one GPU contains several hundreds or even thousands of cores, as

shown in Fig. 1. Figure 2 shows the architecture of a common house-use GPU

processor, GeForce GTX 1060 [17, 18]. It is composed of a number of Stream-

ing Multiprocessors (SM) blocks, and each SM block contains 32 CUDA cores.

It uses high-bandwidth bus (∼200Gb/s) to connect the on-chip memory with

the computing cores and is optimized for simultaneous parallel computation,

particularly for single instruction multiple data (SIMD) operations [19]. Man-

ufacturers of GPUs have approached general-purpose computation with their
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own application program interfaces (APIs). The CUDA language is a parallel

computing platform and programming model for GPUs developed by NVIDIA

[20]. It enables a fast implementation of numerical models on GPUs and dra-

matically increases computing performance by harnessing the computing power

of GPUs.

The PIC model has been implemented on GPUs in previous studies [21, 22,

23, 24, 25]. For example, a significant improvement of computing performance

by a factor of 40 on a GPU with respect to a single CPU core computer was

reported in [24]. To implement the PIC code on a GPU, one has to deal with

the data locality during the deposition/interpolation stage, and the global com-

munication during the solution of the Poisson equation. To the best of our

knowledge, the implementation of the gridless model on GPUs has not been re-

ported before. Using the CUDA language, the gridless symplectic multi-particle

tracking code can be sped up significantly on GPUs. When running on a single

GTX 1060 GPU, it achieves a speedup of a factor of 2−10 for a range of problem

sizes compared with the computing time on a single CPU node using 32 cores

with vector processing turned on. Also, the speedup increases almost linearly

with the number of GPUs for some problem sizes on a multi-GPU cluster.

In this paper, after the introduction, the symplectic multi-particle tracking

model is reviewed in Section 2. Then, we present the code structure and its

GPU implementation in Section 3 and performance test of the tracking code

in Section 4. After that, an application example using this implementation is

presented in Section 5. Finally, conclusions are drawn in Section 6.

2. Symplectic multi-particle tracking model

In beam dynamics simulation, a transfer map mi is symplectic if and only

if its Jacobian matrix Mi satisfies the following condition [26, 27]:

MT
i JMi = J (1)
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Figure 1: A schematic plot of a GPU vs a CPU.

where J is a 6N × 6N matrix defined as:

J =

 0 I

−I 0

 (2)

and I is the 3N × 3N identity matrix.

For a multi-particle system including space charge Coulomb interactions, an

approximate Hamiltonian of the system can be written as:

H = H1 +H2 (3)

where:

H1 =
∑
i

p2i /2 +
∑
i

qψ(ri) (4)

H2 =
1

2

∑
i

∑
j

qϕ(ri, rj) (5)

The H1 includes contributions from external fields, and H2 includes those

from space charge effects. With transfer maps m1 and m2 derived from H1 and

H2, a second order integrator m (τ) can be written as [11]:

m (τ) = m1 (τ/2)m2 (τ)m1 (τ/2) (6)
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Figure 2: The architecture of the GeForce GTX 1060 GPU processor [17, 18].
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If both m1 and m2 are symplectic, the integrator m would be symplectic.

The symplectic transfer map, m1, can be obtained by using the single particle

magnetic optics method in most accelerator elements, while the transfer map

m2 can be written as:

ri(τ) = ri(0) (7)

pi(τ) = pi(0) − ∂H2(r)

∂ri
τ (8)

And its Jacobian matrix is

M2 =

 I 0

L I

 (9)

where

Lij =
∂pi(τ)

∂rj
= −∂

2H2(r)

∂ri∂rj
τ (10)

is a symmetric matrix, so that the M2 satisfies the symplectic condition.

In a 3D bunched beam, the H2 can be written as:

H2 = κγ0
∑
i

∑
j

ϕ(ri, rj) (11)

where κ = q/(lmC2γ20β0), l = C/ω is the scaling length, β0 = v0/C, and the ϕ

is the space-charge Coulomb interaction potential which can be obtained from

the solution of the Poisson equation. The above Hamiltonian includes both the

electric potential and the longitudinal magnetic vector potential. The electric

potential in the beam frame can be obtained from the solution of the Poisson

equation:
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= − ρ

ε0
(12)

with approximated boundary conditions:

φ(x = 0, y, z) = 0, φ(x = a, y, z) = 0

φ(x, y = 0, z) = 0, φ(x, y = b, z) = 0

φ(x, y, z = 0) = 0, φ(x, y, z = c) = 0

(13)

where a, b and c are the length of boundary in each direction respectively and

c is large enough so that the potential goes to zero at this boundary.
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The potential φ and the density ρ can be expanded as:

ρ(x, y, z) =

Nl∑
l=1

Nm∑
m=1

Nn∑
n=1

ρlmn sin(αlx) sin(βmy) sin(γnz) (14)

φ(x, y, z) =

Nl∑
l=1

Nm∑
m=1

Nn∑
n=1

φlmn sin(αlx) sin(βmy) sin(γnz) (15)

where

ρlmn =
8

abc

a∫
0

b∫
0

b∫
0

ρ(x, y, z) sin(αlx) sin(βmy) sin(γnz)dxdydz (16)

φlmn =
8

abc

a∫
0

b∫
0

b∫
0

φ(x, y, z) sin(αlx) sin(βmy) sin(γnz)dxdydz (17)

and

αl =
lπ

a
, βm =

mπ

b
, γn =

nπ

c
(18)

Substituting the above expansions into the Poisson equation and making use

of the orthonormal condition of the sine functions, we obtain

φlmn =
ρlmn

ε0(α2
l + β2

m + γ2n)
(19)

In the multi-particle tracking, the charge density ρ(x, y, z) can be represented

as:

ρ(x, y, z) =

Np∑
j=1

wδ(x− xj)δ(y − yj)δ(z − zj) (20)

where w is the charge weight of each individual particle and δ is the Dirac

function.

Using the above equations, we obtain the electric potential as:

φ(x, y, z) =
1

ε0

8

abc
w×

Np∑
j=1

Nl∑
l=1

Nm∑
m=1

Nn∑
n=1

sin(αlxj) sin(βmyj) sin(γnzj) sin(αlx) sin(βmy) sin(γnz)

(α2
l + β2

m + γ2n)
(21)
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From the above electric potential, the interaction potential ϕ between particles

i and j can be written as:

ϕ(xi, yi, zi, xj , yj , zj) =
1

ε0

8

abc
w

Nl∑
l=1

Nm∑
m=1

Nn∑
n=1

1

α2
l + β2

m + γ2n
sin(αlxj) sin(βmyj) sin(γnzj)

× sin(αlxi) sin(βmyi) sin(γnzi) (22)

Then, the Hamiltonian H2 corresponding to the space-charge interactions can

be expressed as:

H2 =
1

2ε0

8

abc
wκγ0

×
Np∑
i=1

Np∑
j=1

Nl∑
l=1

Nm∑
m=1

Nn∑
n=1

[
sin(αlxj) sin(βmyj) sin(γnzj)

(α2
l + β2

m + γ2n)

× sin(αlxi) sin(βmyi) sin(γnzi)]

(23)

Finally, we obtain the transfer map m2 for the space-charge kick in the x

direction as:

xi(τ) = xi(0)

pxi(τ) = pxi(0) − τ
1

ε0

8

abc
wκγ0

×
Np∑
j=1

Nl∑
l=1

Nm∑
m=1

Nn∑
n=1

[
αl sin(αlxj) sin(βmyj) sin(γnzj)

(α2
l + β2

m + γ2n)

× cos(αlxi) sin(βmyi) sin(γnzi)]

(24)

where momentum pxi is normalized by mC, and the maps in y and z directions

are similar, and can be found in [13].

3. Code optimization on GPU

In most accelerator elements, particles are advanced by a number of steps in

the simulation. Using the second-order symplectic integrator described in the

above section, at each step, a particle is first pushed using the external transfer

map for half step, then kicked by the space charge transfer map for one step, and

then pushed by external transfer map for another half step. The space charge
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kicker can consume more than 90% of the total computing time for some problem

size. Porting the CPU code to the GPU, we optimized the implementation to

make it more suitable on the GPU architecture and to improve the computing

efficiency. The code computes the space charge fields in three subroutines:

subroutine one computes the trigonometric function, subroutine two computes

the Φlmn, and subroutine three computes the space-charge fields and pushes the

particle. Each subroutine consists of one or two kernels, and the optimization

strategy for each kernel is different. Details about optimization strategies are

discussed in the following subsections. All real number numerical operations

use double precision accuracy in the GPU implementation.

3.1. Calculation of trigonometric function

The computing of a trigonometric function is computational expensive since

it involves many floating point operations. In order to save computational cost,

it is important to minimize the number of trigonometric function calculations

inside the code. In this study, we defined three temporary variables for each

particle to calculate the trigonometric functions as:

Sl
j = sin(αlxj), Cl

j = cos(αlxj)

Sm
j = sin(αmxj), Cm

j = cos(αmxj)

Sn
j = sin(αnxj), Cn

j = cos(αnxj)

(25)

where j is the index of a particle, and l, m and n are the indices of a spectral

mode in three directions.

Then, the transfer map m2 (equation 24) in one direction is rewritten as:

pxi(τ) = pxi(0) − τ
1

ε0

8

abc
ωκγ0

Nj∑
j=1

Nl∑
l=1

Nm∑
m=1

Nn∑
n=1

αlS
l
jS

m
j S

n
j C

l
iS

m
i S

n
i

(α2
l + β2

m + γ2n)
(26)

Compared with the equation 24, the new transfer map saves a lot of compu-

tational costs by avoiding computing these trigonometric functions inside four

loops. In this subroutine, each particle takes one thread. Its structure is rela-

tively simple and does not require significant change from the CPU code.
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This subroutine takes only about 2% of the total computing time consumed

by the space charge kicker. However, it generates 2 × (Nl + Nm + Nn) × Nj

data, which uses most space of the global memory and limits the problem size

that can be solved. This is an example of saving computing time at the cost of

memory usage. On the GTX 1060 GPU with 6 GB global memory, including

the inevitable memory fragmentation, the code can handle about one million

particles with 64 ∗ 64 ∗ 64 modes.

The speed of this subroutine is limited by the global memory accessing band-

width. To further improve this part, the layout of particle data is modified to

form structure of array (SoA) instead of array of structure (AoS), in order to

get coalesced memory access. The particle data on the CPU side is allocated

with page-locked memory, to achieve a faster data copy speed between the CPU

and the GPU.

3.2. Calculation of Φlmn

In the transfer map Eq. 26, the summation of index j is for every particle,

and the sequence of summation can be switched to save computational cost.

Using a three-dimensional temporary variable Φlmn:

Φlmn ≡
Nj∑
j=1

Sl
jS

m
j S

n
j , (27)

if we compute the Φlmn for Nl × Nm × Nn modes using all particles first and

store this three dimensional variable, the transfer map Eq. 26 can be rewritten

as:

pxi(τ) = pxi(0) − τ
1

ε0

8

abc
wκγ0

Nl∑
l=1

Nm∑
m=1

Nn∑
n=1

ΦlmnαlC
l
iS

m
i S

n
i

(α2
l + β2

m + γ2n)
(28)

In this way, the computational complexity is reduced from O(N2
p ∗ Nmodes) to

O(Np ∗Nmodes), which makes the symplectic particle tracking model feasible.

The purpose of this subroutine is to get the Φlmn for each mode, so it is

natural for every thread to take a mode. However, in a typical simulation, one

uses only 16×16×16 modes, the number of threads is too small for a GPU with

many cores (1280 cores on the GTX 1060). To achieve better load balancing,
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the CUDA stream technique is used to attain higher concurrency. We divide

particles into several groups and introduce a temporary variable Φlmn
temp,i as:

Φlmn
temp,i ≡

Nendi∑
j=Nstarti

Sl
jS

m
j S

n
j (29)

Then, the total Φlmn is obtained by the summation:

Φlmn =
∑
i

Φlmn
temp,i (30)

The speed of this subroutine is also limited by the memory bandwidth. In

the implementation, before we calculate the Φlmn, a transpose of the Sj is

performed first in order to make use of coalesced reading.

3.3. Calculation of particle pushing

Take x direction as an example, the change of momentum can be rewritten

as:

∆pxi ≡ τ
1

ε0

8

abc
ωκγ0

Nl∑
l=1

Nm∑
m=1

Nn∑
n=1

ΦlmnαlC
l
iS

m
i S

n
i

(α2
l + β2

m + γ2n)
(31)

The ∆pxi is obtained using Φlmn, Si and Ci which we had discussed in the

above two subsections. The transfer map 28 can be rewritten in a concise form:

pxi(τ) = pxi(0) − ∆pxi (32)

Limited by the number of registers, the calculation of ∆pxi and the particle

pushing are executed separately in three directions in order to achieve high GPU

occupancy. Because the innermost loop will access Φlmn in different sequence,

a transpose for Φlmn is necessary before calling this subroutine to achieve coa-

lesced reading.

In the subroutine of each direction, each thread takes one particle. Limited

by the size of the constant memory and the size of the shared memory, the

subroutine three has two branches: one is for the case that mode number is less

than 20 × 20 × 20, and the other is for the case that mode number is greater

than 20 × 20 × 20.
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3.3.1. Branch 1: number of modes <= 20 × 20 × 20

When the mode number is less than 20 × 20 × 20, the constant memory is

used to store Φlmn. Constant memory is a special memory on GPU optimized

for broadcasting. It is fast when multiple threads access the same address at

the same time. Hence, it is suitable to hold Φlmn, which would be read by

every thread. It is the constant memory size that determines the threshold

mode numbers in the two branches. The total amount of constant memory in a

common GPU card is 65536 bytes, which can only hold 8192 double-precision

floating numbers. This corresponds to about 20 × 20 × 20 modes.

In this branch, the kernel in each direction uses shared memory to store Si

and Ci in the innermost loop. The on-chip shared memory is small, only 64

KB per Streaming Multiprocessor block. It is much faster to access this shared

memory than the global memory. Limited by the size of the shared memory,

the GPU occupancy is only 25%. This is still useful since the share memory

latency is much lower (roughly 100 times) than the uncached global memory

latency [19].

One test was done to evaluate the speed of using the global memory rather

than the shared memory. In this test, the global memory accessing latency is

hidden by carefully arranging the memory and by letting all threads in a warp

access the sequent memory address. Here, a warp is the minimum number of

threads that execute the same instruction at the same time (usually 16 or 32 on

a GPU). The GPU occupancy can reach near 100% because it is not limited by

shared memory size any more. However, the time spent in this global memory

test is nearly as twice as that using the shared memory since the global memory

accessing is slow and frequent.

3.3.2. Branch 2: number of modes > 20 × 20 × 20

When the mode number is greater than 20×20×20, both the shared memory

and the constant memory limit the speed of this kernel. The straightforward

way to obtain ∆pxi and to push particle in the above branch will not work.

Due to the constant memory size limitation, the Φlmn will be stored in the
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global memory instead of the constant memory in this branch. Due to the use

of coalesced reading by multiple threads to access the same address, the speed

of using the global memory is only 10% slower than that using the constant

memory.

Limited by the size of the shared memory, we separate the calculation of ∆pxi

and the pushing particle. In the calculation of ∆pxi, the modes are divided into

several groups to meet the limitation of the shared memory size. This is similar

to that in section 3.2. Each particle takes several threads and each thread

handles corresponding modes and obtains temporary variable ∆ptemp,j
xi :

∆ptemp,j
xi ≡ τ

1

ε0

8

abc
ωκγ0

Nl∑
l=1

Nm∑
m=1

Nendj∑
n=Nstartj

ΦlmnαlC
l
iS

m
i S

n
i

(α2
l + β2

m + γ2n)
(33)

Then the ∆ptemp,j
xi is summed up to push the particle using the Eq. 32.

∆pxi =
∑
j

∆ptemp,j
xi (34)

There are trade-offs in this way. By dividing the number of modes into

multiple segments, more memory is needed to store the temporary variable

∆ptemp,j
xi . The additional memory usage is proportional to both the number of

particles and the number of modes. This results in reduction of the maximum

allowable number of particles by about 20% with the given memory size.

4. Performance test on GPUs

We have done two tests to measure the efficiency and scalability of the sym-

plectic multi-particle tracking model on GPUs. The first one is to run the

code on a common home-use GPU card and the efficiency is compared with

that running on a single state-of-the-art CPU node with 32 cores (Intel Xeon

PhiTM 7250) at the National Energy Research Scientific Computing Center

(NERSC) [28]. The second test is to run the code on a GPU cluster, Titan, a

hybrid-architecture supercomputer located at the Oak Ridge Leadership Com-

puting Facility (OLCF), to show the speedup scaling with the number of GPUs.
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4.1. Single GPU Speedup

We tested the performance of the symplectic tracking code implemented us-

ing the CUDA language on a single GPU processor. The single GPU is GeForce

GTX 1060 with 6 GB global memory (Pascal architecture), and the implementa-

tion uses CUDA version 8.0. The power consumption for this GPU is 130 W and

the semiconductor technology used in this processor is based on 16-nanometer

manufacturing technology. The speedup is calculated by using the CPU run-

time divided by the GPU runtime. The CPU code with the same optimization

of the trigonometric function and the potential calculation as discussed in the

preceding section was run on a node (Intel Xeon PhiTM processor 7250) using

32 cores with vector processing turned on. The power consumption of the Intel

Xeon Phi processor node is 215 W and the semiconductor technology used in the

processor is based on 14-nanometer manufacturing technology. The Intel Xeon

Phi processor node consists of 68 cores. Here, we used only about half of the

number of cores so that the power consumptions in both the GPU computing

and the CPU computing are about the same.

In the measurement of computing time, two comparisons are made sepa-

rately for space charge kicker only and the entire code. The space charge kicker

includes the time of copying data from the CPU side to the GPU side, getting

the space charge fields, kicking particles, and copying data back to the CPU

side, while the entire code includes functions, besides the space charge kicker,

such as initialization, external element field transfer map kicker, coordinate

transformation, parameter input, and diagnostic output.

As a performance comparison, we calculated the speedup by comparing with

the time on a CPU node (Intel Xeon Phi with 32 cores and vector processing

turned on) with similar power consumption and semiconductor technology.

Figure 3a shows the speedup of the space charge kicker with different problem

sizes. The speedup of the GPU implementation for the space charge kicker is

about a factor of two and does not change significantly with different problem

sizes. This is due to the improvement of computing efficiency on both the GPU

processor and the CPU node with larger problem size. Figure 3b shows the
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(b) Speed up of the entire code on a single GPU.

Figure 3: Speedup versus mode number on a single GPU card compared with a CPU node

with different number of macroparticles in the simulation.
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speedup of the total computing time with different problem sizes. When the

number of spectral modes is relatively small (e.g. 8 × 8 × 8), the speedup can

reach beyond 10. This is due to the fact that for this problem size, the time spent

in the space charge kicker is small. The computing time spent in the other part

of code becomes dominant. This part of code (e.g. external transfer map) makes

better use of the large number of cores in the GPU and has higher speedup in

comparison to the CPU implementation. When the number of spectral modes

increases, the time spent in the space charge kicker becomes dominant and the

speedup approaches a factor of two in comparison to the CPU implementation.

In the above speedup measurement, on the single CPU node, the vector

processing capability was turned on during the simulation. Without using the

vector processing, the GPU speedup can be doubled for larger problem sizes.

4.2. GPU cluster speedup

A strong scaling test of the symplectic GPU code was done on a multi-

GPU cluster to check how this model performs with an increasing number of

GPUs. With advanced 16-core AMD Opteron CPUs and one NVIDIA K20x

Kepler GPU in each node, Titan is one of the most powerful supercomputers

in the US [29]. In the Titan cluster, each computing node contains one GPU.

The data exchange among GPUs is done through copying the data from the

GPU to the CPU within the node, communicating using the Message Passing

Interface(MPI) among CPUs, then copying it back from the CPU to the GPU.

In this scaling test, we used 16×16×16 modes, which is a typical configuration

in real simulation. Figure 4 shows the speedup of the symplectic code running

on multiple nodes compared with that running on a single node for different

problem sizes.

As shown in Fig. 4a, the speedup of space charge kicker increases almost

linearly (up to 16 GPUs) with the number of GPUs at the beginning and then

gradually reaches a limit around 256 GPUs. The linear increase of speedup at

the beginning is due to small amount of data exchange, i.e. communication

among different nodes, which is a great advantage of the gridless symplectic
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(b) speedup of the entire code.

Figure 4: Speedup of the symplectic multi-particle tracking code on Titan GPU cluster.
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tracking model and depends only on the mode number and is independent of

the particle number. On the other hand, the maximum speedup it can achieve

is also limited by the particle number, and the linear range will extend with the

use of more particles, which means more computational workloads. Taking the

example of 160, 000 particles on 64 GPUs (the green dot-marked line in Fig. 4a),

it reaches a maximum speedup of about 40. With each GPU containing 2688

cores, we used total 172, 032 cores, which is even more than the particle number.

As a result, the speedup becomes saturated after 64 GPUs. However, with the

increase of the number of particles, the maximum number of GPUs that can

be effectively used also increases. With 640, 000 particles in the simulation, the

speedup saturates around 128 on 256 GPUs.

Figure 4b shows the speedup of the entire code, including the transfer map,

coordinates conversion, and diagnostic output. Those functions listed above are

also parallelized, but it’s more difficult to achieve a high parallel efficiency due

to the intrinsic small computational workload. The speedup of the entire code

decreases slightly compared with that of only the space charge kicker.

The above speedup measurements show that the performance of the GPU

implementation varies with the problem size. In the beam dynamics simulation,

the choice of the problem size such as the number of modes and the number of

particles depends on specific beam physics application. In a typical application,

16×16×16 modes and 160, 000 particles would be a reasonable choice. In some

other applications involving complex phase space distribution, more spectral

modes and particles would be needed in order to have sufficient accuracy.

5. Application to beam dynamics simulation

Using the GPU symplectic multi-particle tracking code, we carried out beam

dynamics simulations through a periodic focusing channel with different cur-

rents. In the simulation, we set the phase advance per turn with 0 current to

be 2.398. Here, each turn of lattice consists of 10 identical cells. Each cell is

1 meter long with two transversely linear focusing elements, two longitudinally

19



0 500 1000 1500 2000
Turn

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
E
m

it
.A

v
g
.g

ro
w

th
 (

%
)

0.1A 0.2A 0.4A 0.6A 0.8A

Figure 5: Emittance evolution with different currents.

linear focusing elements, and four drifts. With increasing beam current, the

tune will be depressed and moves across the third order resonance line of 2.333

with a 0.6A beam current. There is a thin lens sextupole at the end of each

turn to excite the resonance.

Figure 5 shows the emittance growth with different currents. The simulations

were done using 16 × 16 × 16 modes and 160, 000 particles. The emittance

(a measure of beam property) stays almost constant at 0.1A and 0.2A beam

currents, where the depressed tunes are away from 2.333. However, it keeps

growing at 0.4A, 0.6A, and 0.8A currents, where the depressed tunes approach

and go below 2.333. This emittance growth is due to the space charge enhanced

third-order nonlinear resonance.

The Poincaré maps of phase space coordinates of a few particles near the

third-order resonance is plotted in figure 6. In these contour plots, darker color

means larger particle density. Different plots denote the particles starting from

different initial positions. Caused by the third-order resonance, the Poincaré

map is distorted and shaped into a triangle with three islands around it. The

particles affected by the resonance would gradually move outward towards large
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amplitude. Eventually, these particles would become part of beam halo and get

lost.

The comparison between the above symplectic gridless particle model (with

CPU implementation) and the traditional momentum conserved particle-in-cell

tracking model was reported in reference [13]. For the above application, we

also ran the simulation using the Intel Xeon Phi CPU node with 32 cores at

NERSC. Using the above GPU implementation reduces the total computational

time by more than a factor of two.

6. Conclusions

A gridless symplectic multi-particle tracking model was implemented on

GPUs using the CUDA language. The gridless spectral tracking algorithm has

the advantage to satisfy the symplectic condition and effectively reduce the nu-

merical noise driven emittance growth. On a single GPU processor, using a

common home-use GPU, GTX 1060, we achieved a factor of 2 − 10 speedup

for a range of problem sizes with respect to the computing time from a similar

power consumption and semiconductor technology CPU node. This symplec-

tic model also shows good scalability on a multi-GPU cluster. Several beam

dynamics simulations were done using the GPU implementation with different

currents through a periodic focusing channel. No emittance growth is seen when

the depressed tune is far away from the third-order resonance, while it keeps

growing when the tune approaches the resonance. Using the GPU implemen-

tation discussed in this paper helps save the total computational time by more

than a factor of two for this application in comparison to the time using the

CPU implementation with similar power consumption. In the future study,

we will continue to extend this code and to compare the parallel efficiency of

this code on different architectures. We would also like to compare this gridless

symplectic model with the PIC model on multiple GPUs.
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Figure 6: Poincare maps of the normalized phase space coordinates for four particles starting

with different initial conditions.
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