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Abstract

Background: The multiplier method is one of the most frequently used population size

estimation (PSE) methods for key populations, yet estimates from this method are often

inconsistent with each other, other PSE methods and local knowledge. We developed a

novel Bayesian approach, the ‘Anchored Multiplier’, which synthesizes estimates from

multipliers coupled to an a priori estimate to arrive at a single consensus estimate and

credible range.

Methods: Data for size estimation were collected from three cross-sectional bio-behav-

ioural surveillance studies of people who inject drugs (PWID) in San Francisco, CA, USA

(2005, 2009 and 2012). We demonstrate the application of the Anchored Multiplier and a

Variance Adjusted-Anchored Multiplier using PSE produced by multipliers in the three

surveys and the literature for the USA. Size estimates were compared with estimates

from other available PSE methods.

Results: Using the Anchored Multiplier, we estimated the PWID population made up

2.41% [95% credible interval (CI): 1.9–2.85] of the adult population in 2005, 2.1% (95% CI:

1.8–2.48) in 2009 and 2.3% (95% CI: 2.03–2.61) in 2012. The Variance Adjusted-Anchored

Multiplier calculated similar point estimates, with wider 95% credible intervals. Credible

intervals from both approaches were substantially narrower than from other standard

PSE methods and, unlike other methods, indicated that the prevalence of PWID was sta-

ble over time.

Conclusions: The Anchored Multiplier is a promising new approach to size estimation,

which generates a single estimate to inform programmatic strategies to counter the HIV

epidemic, and provides a robust denominator to quantify the burden of disease for key

populations.

Key words: Bayes Theorem, Delphi technique, HIV infections, population size, population surveillance, substance

abuse, intravenous
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Background

Population size estimation (PSE), especially for key popula-

tions at high risk for HIV, is fundamental to disease sur-

veillance and public health resource mobilization.

Increasingly, the Centers for Disease Control and

Prevention (CDC), the World Health Organization

(WHO) and the Joint United Nations Programme on HIV/

AIDS (UNAIDS) are prioritizing PSE of key populations in

their support for national HIV control programmes.1,2

Notably, population size estimates are needed to gauge

progress towards the UNAIDS 90–90-90 goals. Unless the

denominator of populations at risk for HIV is known, we

cannot determine whether 90% of people living with HIV

have been diagnosed, 90% are on anti-retroviral treatment

and 90% are virally suppressed.3 Unfortunately, estimating

the size of key populations is challenging and fraught with

many uncertainties in the absence of a gold standard.4

One of the most frequently used PSE methods is the mul-

tiplier method because it leverages programmatic data with

a survey of the key population.5,6 This method requires two

data sources: the ‘benchmark’ (n), which is a count of the

number of people within the target population who received

a service or unique object, and the ‘multiplier’ (p), which is

the proportion of people from a representative sample of

the target population who report receiving the service or

unique object. Dividing the benchmark by the multiplier

gives an estimate of the size of the target population (e).

Multiplier Method ¼ e ¼ n

p

The ease with which this PSE method is integrated into

bio-behavioural surveillance surveys of key populations

speaks to its popularity among investigators.7 In fact, sur-

veys can simultaneously integrate multiple multipliers into

one survey of a key population at little cost.

Despite being one of the most frequently used PSE meth-

ods, the multiplier method may be especially vulnerable to

biased estimates. A recent systematic review found that mul-

tiple estimates using the multiplier method (i.e. using differ-

ent benchmarks) are often discrepant and the confidence

intervals do not overlap.6 We developed and propose an im-

provement to the multiplier method that can recover from

potentially biased data and reduce variability across multiple

estimates. This novel method, which we call the ‘Anchored

Multiplier’, uses a Bayesian framework to synthesize multi-

ple data points, namely estimates from several multipliers,

and stakeholder knowledge or estimates from the published

literature as a priori belief. Estimates from the multiplier

methods (likelihood) and prior belief (prior) are converted

into probability distributions and combined according to

Bayes Theorem to generate a posterior probability distribu-

tion that reflects the updated knowledge of the population

size, driven by the strength (i.e. precision) of the individual

inputs, as detailed below:

pðhjxÞ / pðxjhÞpðhÞ

posterior / likelihood � prior

With this approach, we arrive at a ‘consensus estimate’

that synthesizes both local or published knowledge and em-

pirical data. Thus, estimates from the multiplier methods are

‘anchored’ to prior knowledge, limiting the influence of po-

tentially biased estimates, reducing the influence of chance

and making estimates more reasonable and acceptable to

stakeholders. Here, we describe this novel PSE method and

apply it as a case study to estimate the size of the population

of people who inject drugs (PWID) in San Francisco, CA, us-

ing published data from 2005, 2009 and 2012.8

Methods

We used published data from the San Francisco

Department of Public Health (SFDPH) to re-estimate the

Key Messages

• Population size estimates are fundamental to epidemiology; providing a denominator for the population at risk and

justification for resource mobilization.

• The multiplier method is the most frequently used population size estimation method for key populations, and yet

estimates from this method are often biased and discrepant.

• We developed a Bayesian model to synthesize estimates from multiple multiplier methods and mitigate bias, while

incorporating local knowledge.

• Using this method, we show that the population of injection drug users in San Francisco, CA, has remained stable

over time, contrary to previous claims of a growing population.
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number of PWID in San Francisco. SFDPH conducted

three cross-sectional bio-behavioural surveillance studies

of PWID in 2005, 2009 and 2012 as part of the National

HIV Behavioral Surveillance (NHBS).8–10 Each round of

NHBS used respondent driven sampling (RDS), a peer

referral-based method of recruitment, to sample and re-

cruit study participants.11 Full details of the study design

and main outcomes have previously been reported.9,10

Chen et al.8 recently used data from these bio-behavioural

surveillance studies to estimate the number of PWID in San

Francisco using several PSE methods: namely, the multi-

plier method, the wisdom of the crowds and the successive

sampling population size estimation method (SS-PSE). The

median of all point estimates from each PSE method for

each NHBS round was reported as the final estimate for

the number of PWID in San Francisco. The same approach

was taken for the upper and lower bounds of each esti-

mate. We used the calculated population size estimates

from each multiplier method reported by Chen et al. as in-

put for our demonstration of the Anchored Multiplier.

The number of PWID in San Francisco were converted

to population proportions using the number of adults liv-

ing in San Francisco in 2005 as the denominator (777 660:

U.S Census Bureau).12 We then estimated the beta distribu-

tion that closely matched the details of the estimated popu-

lation size; that is, the mean of the beta distribution

matched the population proportion, and at least 70% of

the probability density was contained within the upper and

lower bounds of the original estimate (also converted to

population proportions). Beta distributions are probability

distributions that are frequently used to describe prior un-

certainty about disease prevalence. They are flexible and

mathematically convenient for quantities constrained to lie

between 0 and 1.13 We estimated the beta distributions for

all priors and estimates from the multiplier methods. The

population size estimates, population proportions and

shape parameters for corresponding beta distributions for

each of the multiplier method estimates are reported in

Table 1.

We calculated the variance for each population size esti-

mate, assuming a symmetrical distribution, using the fol-

lowing equation:

Upper bound � l
1:96

� �2

¼ variance

where l refers to the population size estimate as a propor-

tion. We then used the following equations to calculate the

alpha (a) and beta (b) shape parameters for the beta distri-

bution from the mean (l) and variance of the estimated

population size:14,15

a ¼ � lðr2 þ l2 � lÞ
r2

b ¼ ðr
2 þ l2 � lÞðl� 1Þ

r2

Table 1. Population size estimates of people who inject drugs (PWID), population prevalence and beta distribution shape param-

eters from multiplier methods. San Francisco, CA 2005, 2009, 2012

Shape parameters

Year Source Estimate % Prevalence alpha beta

2005 HIV/AIDS surveillance cases 23 779 (16 027 to 31 534) 3.06 (2.06 to 4.05) 35.55181 1126.272

Arrests 20 909 (14 960 to 26 861) 1.3 (0.42 to 2.19) 8.084233 613.7798

Participants of the UFO Study32 10 158 (3273 to 17 044) 2.69 (1.92 to 3.45) 46.91609 1697.177

Walden House group home clients 10 130 (2998 to 17 263) 1.3 (0.38 to 2.22) 7.55863 573.8744

2009 San Francisco City Clinic HIV tests 81 500 (658 to 162 343) 10.5 (0.1 to 20.9) 3.39032 28.95956

San Francisco City Clinic STI tests 7000 (2945 to 11 056) 0.9 (0.4 to 1.4) 11.33028 1247.399

HIV/AIDS surveillance cases 45 315 (24 576 to 66 057) 5.8 (3.2 to 8.5) 17.20889 278.1164

San Francisco General Hospital ER visits 18 250 (4675 to 31 826) 2.3 (0.6 to 4.1) 6.755769 281.1177

Anonymous HIV tests 12 857 (0 to 41 780) 1.6 (0.0 to 5.4) 0.7300264 43.42587

Walden House group home clients 5200 (1003 to 9398) 0.7 (0.1 to 1.2) 5.848229 868.7545

2012 The Stonewall Project applications 64 000 (37 951 to 90 050) 8.2 (4.9 to 11.6) 21.19706 236.3671

The Stonewall Project treatment 60 000 (0 to 178 574) 7.7 (0.0 to 23.0) 0.8305923 9.934714

HIV/AIDS surveillance cases 43 973 (20 943 to 67 006) 5.7 (2.7 to 8.6) 13.15351 219.4655

Bayview-Hunter’s Point methadone clients 34 600 (0 to 75 615) 4.5 (0.0 to 9.7) 2.567747 55.14422

Davies Medical Center, overdose visits 11 250 (0 to 28 111) 1.5 (0.0 to 3.6) 1.671008 113.8379

San Francisco City Clinic STI tests 8057 (3450 to 12 667) 1.0 (0.4 to 1.6) 11.60237 1108.255

ER, emergency room; STI, sexually transmitted infection.
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Bayesian priors were selected from the literature. Lansky

et al.16 reported 2.6% [95% confidence interval (CI):

1.8%–3.3%] of the adult US population had ever injected

drugs in their lifetime, based on a meta-analysis of data

from four national household-based surveys. This became

our prior for the proportion of the population who had ever

injected drugs. To assess the robustness of the Anchored

Multiplier to the choice of priors, we specified two addi-

tional priors. Lansky et al. also reported 0.3% (95% CI:

0.19%–0.41%) of the US population had injected drugs in

the past year. This became our prior for the proportion of

the population who recently injected drugs. Finally, we

specified a uniform prior distribution, representing little

prior knowledge of the population size, with a lower bound

of zero and an upper bound of 12.88%. This upper bound

corresponds to the upper bound of the proportion of PWID

in San Francisco in 2005, estimated by the SS-PSE

method,17,18 the highest estimated upper bound among the

PSE methods used by Chen et al.8

Analysis

Because the beta distribution is the conjugate prior for the

binomial distribution, we used the binomial distribution as

the sampling distribution to calculate the Anchored

Multiplier. For each estimate of the population size from

the multiplier method, the alpha shape parameter was used

as the number of ‘successes’ and the sum of the alpha and

beta shape parameters became the ‘sample size’ for the

binomial distribution. We used the ‘rjags’ package in R

statistical software to specify our Bayesian model and to

use Markov Chain Monte Carlo (MCMC) simulation to

estimate the posterior distribution.19,20 To calculate the

Anchored Multiplier, the prior (beta) distribution was

combined with the data (binomial) distribution for a single

multiplier method estimate. MCMC diagnostic plots of the

resulting posterior distribution (trace plots, autocorrela-

tion plots, density plots) were visually inspected using the

‘bayesplot’ R package to assess model convergence, follow-

ing the recommendations of Hamra et al.21,22 Shape

parameters of the corresponding beta distribution were cal-

culated from this posterior distribution, to be used as the

new prior distribution, which was then combined with the

data (binomial) distribution from another multiplier

method estimate. This process continued iteratively until

all multiplier method estimates were incorporated into the

Bayesian model. For all simulations we specified three

chains, each with 5000 iterations and a burn-in period of

2500. From the final posterior distribution, we calculated

the mean, 2.5th percentile, and 97.5th percentile to report

the point estimate and 95% credible interval for the

Anchored Multiplier.

To account for the extremely narrow credible intervals

resulting from increasingly strong priors that result from the

incorporation of more data, we incorporated additional vari-

ance into the estimation of the posterior distributions. We

followed the methodology for calculating random effects

variance from the meta-analysis literature.23 The calculations

for this Variance Adjusted-Anchored Multiplier are detailed

in Supplementary materials, available as Supplementary data

at IJE online.

For comparison, we plotted the estimates from the

Anchored Multiplier and the Variance Adjusted-Anchored

Multiplier with other population size estimates from Chen

et al. and visually inspected these plots for trends over time

by method. Linear trends were further assessed quantita-

tively by metaregression (‘metareg’ macro in Stata24,25),

regressing the estimated proportion of PWID on year. We

subtracted 2005 from each year, and divided the difference

by five so that the coefficient for year could be interpreted

as the expected unit change in the population proportion

for each 5-year interval. Last, as a separate sensitivity

analysis, we assessed the impact of varying both the priors

and the data on the final estimated population size.

Following a jackknife approach, we estimated the popula-

tion size using the Anchored Multiplier after leaving out

one of the multipliers from the 2005 cross-sectional study.

We repeated this analysis for all combinations of leaving

one multiplier out, for the three priors used in our main

study. To provide a comparison with standard practice, we

again implemented the jackknife approach and reported

the median of the remaining three multipliers, for all ‘leave

one out’ combinations.

Results

The Anchored Multiplier method estimates the population

of PWID to be 2.42% of the adult population of San

Francisco in 2005, or roughly 18 820 adults (95% CI:

15 553–22 241). This estimation was based on a prior esti-

mate that 2.6% of the adult population had ever injected

drugs in their life, and data from four service multipliers

applied to the San Francisco PWID population in 2005.

When the between-method variance is incorporated

(Variance Adjusted-Anchored Multiplier), the PWID popu-

lation proportion increases to 2.47% (19 208 adults), and

the 95% credible interval widens to reflect greater uncer-

tainty (95% CI: 13 842–25 740). These results are depicted

as a forest plot, comparing estimates from the Anchored

Multiplier with the prior and the data inputs (Figure 1).

Population size estimates from individual multiplier

methods ranged from 1.3% to 3.06% of the adult popula-

tion in San Francisco in 2005, 0.7% to 10.5% in 2009 and

1% to 8.2% in 2012 (Figure 2). Final point estimates from
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Chen et al. suggest an increase in the population propor-

tion of PWID over time; however, the upper and lower

bounds in 2009 and 2012 are too wide to discern if this in-

creasing trend is meaningful. Similarly, the 95% credible

intervals for the SS-PSE in 2005 and 2009 both range from

0% to over 10% of the adult population in San Francisco.

In comparison, the 95% credible intervals for both the

Anchored Multiplier and the Variance Adjusted-Anchored

Multiplier are substantially narrower. The overlapping

95% credible intervals for each of the Anchored Multiplier

methods indicate that this population proportion is stable

over time. All 95% confidence intervals for coefficients for

‘year’ from the metaregression included the null, confirm-

ing no meaningful change in the population proportion

from 2005 to 2012 (Supplementary Table 1, available as

Supplementary data at IJE online).

Figure 1. Population proportion of people who inject drugs (PWID) in San Francisco, CA (2005). *Anchored Multiplier-VA ¼ Variance-Adjusted

Anchored Multiplier.

Figure 2. Comparison of the proportion of people who inject drugs (PWID) in San Francisco, CA, at three cross-sections using different population

size estimation (PSE) methods. *Anchored Multiplier-VA ¼ Variance-Adjusted Anchored Multiplier.
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Using a uniform prior as a starting prior value, final

estimates for both the Anchored Multiplier and the

Variance Adjusted-Anchored Multiplier were similar to

estimates when the prior for lifetime injection drug use was

used (Table 2). The 95% credible intervals for both sets of

Anchored Multiplier estimates derived from these two dif-

ferent prior values indicate that the estimates are not statis-

tically different from each other. In contrast, when we used

the prior that reflected recent injection drug use (0.3%;

0.19%–0.41%), estimates from the Anchored Multiplier

and Variance Adjusted-Anchored Multiplier were substan-

tially decreased. Population proportions ranged from

0.94% to 1.26% for the Anchored Multiplier and were

lower when adjusting the variance. Although there was an

increasing trend in point estimates, these estimates were

not meaningfully different from each other, indicated by

their marginally overlapping credible intervals.

The results of the sensitivity analysis are shown

in Figure 3. Jackknife estimates using the Anchored

Multiplier were always in agreement with each other, in

terms of similar point estimates and 95% credible inter-

vals. In contrast, jackknife estimates using the standard ap-

proach of calculating the median of estimates showed

greater variability in point estimates and marginally over-

lapping intervals.

Discussion

In this study, we developed a novel PSE method that uses a

Bayesian framework to synthesize prior knowledge con-

cerning the size of a population with empirical results using

the multiplier method. In contrast to the previous PSE

analysis that used the median of all estimates,8 our results

suggest that the population proportion of people who have

ever injected drugs in San Francisco has remained stable

from 2005 to 2012, as indicated by the Variance Adjusted-

Anchored Multiplier estimates (2005: 2.48%; 2009:

2.81%; 2012: 3.05%). Accounting for and incorporating

Table 2. Anchored Multiplier estimates of the prevalence of people who inject drugs in San Francisco at three different cross-

sections, using three different priors

Prior ¼ 2.6% (1.8% to 3.3%) Prior ¼ 0.3% (0.19% to 0.41%) Prior ¼ uniform (0, 12.88%)

Anchored Multiplier Variance-Adjusted Anchored Multiplier Variance-Adjusted Anchored Multiplier Variance-Adjusted

2005 2.41 (1.9 to 2.85) 2.48 (1.77 to 3.32) 0.94 (0.79 to 1.11) 0.50 (0.38 to 0.64) 2.43 (1.99 to 2.93) 2.47 (1.60 to 3.54)

2009 2.1 (1.8 to 2.48) 2.81 (2.13 to 3.55) 1.06 (0.91 to 1.23) 0.67 (0.53 to 0.83) 2.11 (1.78 to 2.46) 2.92 (2.14 to 3.80)

2012 2.3 (2.03 to 2.61) 3.05 (2.36 to 3.82) 1.26 (1.10 to 1.43) 0.76 (0.60 to 0.93) 2.27 (1.96 to 2.60) 3.21 (2.43 to 4.11)

Figure 3. Sensitivity analysis of the estimated proportion of people who inject drugs (PWID) in San Francisco, CA, in 2005, comparing the Anchored

Multiplier (with three different priors) with calculating the median of individual estimates. *VA ¼ Variance-Adjusted estimate. **Legend and x-axis in-

dicate which multiplier method estimate is left out of the data synthesis.

International Journal of Epidemiology, 2018, Vol. 47, No. 5 1641



between-group (multiplier method) variance widened the

credible intervals, reflecting greater uncertainty compared

with the Anchored Multiplier estimates. These variance-

adjusted credible intervals were still narrower than other

reported size estimates of the same population, allowing

for better inference of both population size and trends in

the population size over time.

Iteratively incorporating more data resulted in narrower

credible intervals (Supplementary Figure 1a–e, available as

Supplementary data at IJE online). In our application, the

amount of data included through the iterative addition of

estimates from the multiplier method resulted in 95% cred-

ible intervals that were extremely and perhaps implausibly

narrow. We thought that these narrow credible intervals

would communicate a false sense of certainty or raise sus-

picion in the value of using the resulting estimate;we there-

fore incorporated additional between-group variance as

done in meta-analysis. In our case study, adjusting the vari-

ance did not meaningfully affect the point estimates (mean

of the posterior distribution) when comparing estimates

from the Anchored Multiplier with the Variance Adjusted-

Anchored Multiplier, yet it did somewhat widen the credi-

ble intervals. Therefore, we recommend that investigators

use and report the variance-adjusted estimate.

As is common in Bayesian analyses, the Anchored

Multiplier is influenced by the strength of the prior. In

real-world practice, the Anchored Multiplier would take

into account confidence in peer-reviewed publications or

stakeholder opinion on how reasonable the empirical esti-

mates are while still producing estimates consistent with

local evidence. In our case example, the mean estimates

from the posterior distribution using recent injection drug

use as a prior are substantially lower than mean estimates

using lifetime injection drug use as a prior. This can be

explained by the relative strengths of the priors. The width

of the interval for the recent injection use prior is less than

one-sixth of the width of the interval for lifetime injection

drug use (0.22 vs 1.5). This difference in interval width

translates to the prior on recent injection drug use being a

stronger prior, relative to the prior on lifetime injection

drug use, having greater influence on the posterior distri-

bution of the population size.

In contrast, mean estimates from the posterior distribu-

tion when a uniform prior was used were similar to mean

estimates when using the prior on lifetime injection drug

use. Using a uniform prior essentially communicates little

prior knowledge and an almost complete reliance on the

data to estimate the population size. The fact that posterior

estimates were similar when using a uniform prior and the

lifetime injection drug use prior is likely due to the fact

that the prior for lifetime injection drug use was similar

to the multiplier method estimates from 2005 (Figure 1).

In fact, the point estimate for this prior fell between the

point estimates for the multiplier methods, and the confi-

dence interval for the prior overlapped the confidence

intervals of the four estimates from the multiplier method.

Because the prior and the data were in agreement in this

case, replacing the informative prior with a uniform prior,

thus relying heavily on information from the data (the mul-

tiplier methods), did not meaningfully change the posterior

estimates.

The results of our sensitivity analysis demonstrate the

robustness of estimates using the Anchored Multiplier,

compared with estimates using the standard approach of

calculating the median (Figure 3). Leaving out one of the

multiplier method estimates did not meaningfully change

the final Anchored Multiplier estimates. In contrast, the

standard approach of calculating the median of estimates

was clearly influenced by which estimate was removed

from the calculation. This approach resulted in two dispa-

rate population size estimates (1.3% vs 2.69%) and mar-

ginally overlapping intervals. Thus, using a prior and this

Bayesian framework appears to stabilize the final estimate.

The Anchored Multiplier relies on estimates from the

multiplier method as input. Point estimates from the multi-

plier method may be biased due to strong dependence be-

tween participation in the service (benchmark) and the

survey of the key population. Biases in the multiplier

method arise from several other reasons, including: the ser-

vice providing the benchmark count may provide the num-

ber of visits rather than the number of unique clients;

people who are not a part of the target population (i.e. not

PWID) may erroneously be included in the benchmark

count; and study participants (contributing to the multi-

plier) may not remember that they visited the service in

question. The Anchored Multiplier is not an automatic fix

to these biases. However, the influence of these biases may

be mitigated. If the estimates are biased, the anchored mul-

tiplier is unlikely to completely correct this unless the bias

is known a priori and the prior is strong enough in the op-

posite direction. Furthermore, if the bias is known a priori,

the investigator may widen the confidence intervals (effec-

tively weakening the contributions of this data point to the

posterior distribution).

Conclusion

As with most studies exploring population size estimation,

the absence of a gold standard precludes our ability to de-

finitively declare how much closer our method brings us to

the truth. Unlike other studies, however, we propose a

method that synthesizes available knowledge and data to

reach a consensus estimate to inform public health action.

Often estimates calculated from multiple implementations
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of PSE methods do not agree with each other (i.e. point

estimates differ and confidence intervals do not overlap).6

To resolve any disagreements and to put forward a single

estimate, some researchers will simply take the median of

all estimates. This approach assumes that all estimates are

equally biased (or valid); albeit in different directions, such

that the median of all estimates will balance out the biases.

In other cases, estimates from PSE methods conflict with

local stakeholder knowledge, jeopardizing the credibility

and acceptance of these estimates. In practice, this conflict

is often resolved using the modified Delphi approach, a

subjective PSE method that presents local data to stake-

holders, allowing them to update their previous beliefs

about the population size now that they have seen the data

(similar conceptually to the more formalized Bayesian ap-

proach we present in this paper). Again, a measure of cen-

tral tendency (e.g. the median) summarizes the updated

stakeholder beliefs. The Anchored Multiplier addresses

both of these limitations in the current PSE field by: (i)

combining information through an approach that effec-

tively down-weights estimates where there is less certainty,

rather than combine estimates in a way that assumes all

estimates are equally valid and precise; and (ii) providing a

framework to systematically synthesize multiple data

points (including prior knowledge) in a way that is trans-

parent. As such, the Anchored Multiplier is a promising

new approach to estimating the size of key populations

and thereby inform programmatic strategies to counter the

HIV epidemic. A freely accessible web browser-based tool

has been developed to implement the Anchored Multiplier.

This online tool is available at the following link: [http://

globalhealthsciences.ucsf.edu/resources/tools].

Supplementary Data

Supplementary data are available at IJE online.
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