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Distributed Beamforming in Wireless Multiuser
Relay-Interference Networks with Quantized
Feedback

Erdem Koyuncu and Hamid JafarkhaRellow, IEEE

Abstract

We study quantized beamforming in wireless amplify-andviird relay-interference networks with
any number of transmitters, relays, and receivers. We debig quantizer of the channel state infor-
mation to minimize the probability that at least one receineorrectly decodes its desired symbol(s).
Correspondingly, we introduce a generalized diversity snea that encapsulates the conventional one
as thefirst-order diversity. Additionally, it incorporates theecond-ordediversity, which is concerned
with the transmitter power dependent logarithmic termg #ppear in the error rate expression. First,
we show that, regardless of the quantizer and the amounedbgek that is used, the relay-interference
network suffers a second-order diversity loss comparedtésfierence-free networks. Then, two different
quantization schemes are studied: First, using a globaittea, we show that a simple relay selection
scheme can achieve maximal diversity. Then, using theiletadn method, we construct both fixed-
length and variable-length local (distributed) quansz@t Qs and vLQs). Our fLQs achieve maximal
first-order diversity, whereas our vLQs achieve maximaledsity. Moreover, we show that all the
promised diversity and array gains can be obtained withtrarily low feedback rates when the
transmitter powers are sufficiently large. Finally, we confour analytical findings through simulations.

Index Terms

Wireless relay network, beamforming, interference, thisted vector quantization, symbol error
probability, diversity gain, array gain.

I. INTRODUCTION

While it has been demonstrated in several studies that catipe can greatly improve the
performance and reliability of wireless network commutitas [1]-[5], interference still re-
mains to be a fundamental issue in cooperative network dedgst of the previous work on
cooperative networks relies on orthogonal channel allogaso that different transmitters do
not interfere with each other. However, allocating orthmgjochannels for each user may not
be desirable due to time and bandwidth limitations [6], [f].such cases, one should explore
effective ways to deal with interference while preservingmerative diversity gains.

This work was presented in part at IEEE Global CommunicatiGonference (GLOBECOM), Nov. 2009.
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Multiple antenna interference cancelation techniquesvarg effective when dealing with
interference in cooperative networks [8]. They offer rewdre performance with low decoding
complexity. In this work, we consider a different approadb. be able to study the ultimate
performance limits, we do not put any restrictions on ourodecs. We would like to design a
cooperation scheme that achieves maximal diversity benetitd thus provides high reliability,
even in the presence of multiuser interference.

For networks with a single transmitter-receiver pair andmerference, network beamforming
using amplify-and-forward (AF) relays has shown to achiéwe maximal spatial diversity
[9], [10]. However, the optimal beamforming policy requrene or two real numbers to be
broadcasted from the receiver to the relays. Using diggidblbeamforming with quantized
instantaneous channel state information (CSI), it is fdedio obtain both maximal diversity,
as well as high array gain with only a few feedback bits from tbceiver [11]-[13]. A special
case of quantized feedback for cooperative networks isdlagy 1selection scheme [14]-[16]. It
has been formally shown in [11] that, for a network withparallel relays, the relay selection
scheme provides the maximum diversiy

Quantized feedback schemes have also been studied foroopemtive multiuser interference
networks. In [17], the author considers zero-forcing beamfng with finite rate feedback in
multiple-input multiple-output (MIMO) broadcast chanselnterference alignment for multiuser
interference networks with limited feedback has been stlidhi [18]. Unlike what we shall study
in this work, where we seek to optimize the reliability of thgstem in terms of the diversity
gain, the goal of the above two papers was to optimize thetdatamission rate in terms of the
multiplexing gain. A common conclusion that we can infemfrboth studies is that, in order to
achieve the same multiplexing gain as a system with perf&lt the feedback rate should be
increased at least logarithmically with the transmittewpn any constant feedback rate results
in a complete loss of multiplexing gain. This is unlike peiatpoint systems where feedback
is not even necessary to achieve the maximal multiplexing f&/], and a few feedback bits
is usually sufficient to transmit with rates that are closeh® one with perfect CSI [19]. The
feedback requirements of interference networks appeabg toconsiderably higher than that of
interference-free networks.

What are the feedback requirements if instead we would bkensure maximal reliability in
the presence of interference? One goal of this paper is tweaanhis question for cooperative
networks with K transmitters,L receivers, andR parallel AF relays. We assume that each
transmitter and each relay has its own short term power @nstThe transmitters do not have
any CSI. Each receiver knows its own receiving channels hadhannels from the transmitters
to the relays. Each relay only knows the magnitudes of its oyeeiving channels. Each relay
and each receiver also has partial CSI provided by feed@dekfeedback information represents
a quantized beamforming vector. In that sense, this pap@sdsa generalization of single-user
guantized network beamforming [11] to multiuser interfere networks. On the other hand,
such a generalization is quite challenging because of thteilalited nature of the network. Let



us now describe some of these challenges and our approachdsress them.

In interference networks, the relays amplify both noise amdrference, which results in
completely different problem formulations and solutio®gcond, there are multiple receivers
that have different optimal beam directions. As a resulis idifficult to design a scheme that
can provide a reasonable performance to all the users.

Another difficulty is related to acquiring feedback inforoa from several separated receivers.
The optimal beamforming policy requires the full CSI of tmerference network. In practice
however, none of the receivers can obtain such informati@ntsaining methods. We thus
consider two different quantization schemes: In the firtegte, the feedback information is
provided by a global quantizer (GQ) that knows the entire. @& use this hypothetical quantizer
to analyze the performance limits of network beamforminthm presence of interference. In the
more practical second scheme, we use distributed localtigeaiLQ) encoders at each receiver.
Each receiver can access only a part of the CSI, and provisiesvih feedback information for
the relays and the other receivers.

In [20], we introduced a general systematic LQ design metlkatled localization, in which
one synthesizes an LQ out of an existing GQ using high-ratasquantization combined with
entropy coding. In the same work, we described an applicaticghe method to MIMO broadcast
channels. In this work, we apply it to design LQs for our nakwmodel. Therefore, our GQ
has another important purpose other than the one we haveopsiv mentioned: It will also
serve as the basis of our LQs.

We would also like to note that the LQ design in this paperinligtishes itself from the one
in [20] in several ways, even though the underlying locgimamethod will be the same. First,
we need to consider a totally different and much more coraf@it distortion function. Second,
the high-rate scalar quantizers, that form the crucial parthe method, should be designed
accordingly. Third, the performance analysis of the résgliQs is thus different and more
complicated. As a result, in this work, we will only analyze tperformance of localization for
a particular class of GQs that are based on relay selection.

Our performance measure is what we call tieéwork error rate(NER). Given a fixed channel
state, it is the probability that at least one user incolyeidtcodes its desired symbol(s). In that
sense, any receiver can be interested in the symbols traedrbly any subset of transmitters.

We use a generalized diversity measure to characterizesymepotic behavior of the NER as
the transmitter powers grow to infinity. In what follows, wesgribe this measure together
with its motivations: Suppose that a wireless communicatystem achieves an error rate
of C(P>log” P)~', where P is the transmitter power constraint ard is a constant that
is independent ofP. Then, we calla and 3, the first-order and the second-order diversity
gains, respectively, and say that the scheme achievessitijvéry, 5). Such a definition of
diversity is more precise than the traditional one as we destnate by an example: For two
hypothetical communication systems with diversity gainss,), and(«, 82), wherea > 1 and
oo > 1 > P > —o0, the former always outperforms the latter for &llsufficiently large. On



the other hand, the traditional definition, according to ckhthe diversity gain isy for both
systems, fails to distinguish between the asymptotic perdmce of the two.

The main contributions of this paper can be summarized dewsi First, we show that,
regardless of the quantizer and the amount of feedback shased, the maximal achievable
diversity of our network model i$R, —R) when K > 1, whereas it i R,0) when K = 1.1 In
other words, the relay-interference network suffers froseeond-order diversity loss compared
to an interference-free network that can achieve diverdity0) with K = L = 1 [11]. Then,
we construct a relay-selection based fixed-length GQ (f&@) tan achieve maximal diversity
for any K. Next, using our fGQ and the localization method, we desigth ixed-length and
variable-length LQs (fLQs and vLQs). Our fLQs can achiewediity (R, —2R) when K > 1,
and diversity(R, —R) when K = 1, using R feedback bits per receiver. They show that it is
possible to achieve very high reliability using a fixed numbg feedback bits. On the other
hand, our vLQs can achieve maximal diversity gain for &hyMoreover, the feedback rate they
require decays to zero as the transmitter powers grow tatiynfitherefore, they provide a very
fortunate answer to the question that we have posed edrlier:relay-interference network, it
is possible to achieve maximal reliability using arbitiatow feedback rates per receiver, when
the transmitter powers are sufficiently large. Another iddése property of our vLQs is the fact
that the array gain they provide can be made arbitrarilyeckosthe one provided by the fGQ.

The rest of the paper is organized as follows: In Section d,imtroduce our network model,
performance and diversity measures, and problem definitrorsection Ill, we show that the
maximal diversity of our network model {§2, —R). In Sections IV and V, we introduce our GQ
and LQ designs, respectively. Numerical results are peavic Section VI. In Section VII, we
draw our major conclusions. An upper bound on the probghdénsity function (PDF) and the
cumulative distribution function (CDF) of a frequently dseandom variable (RV) is provided
in Appendix A. Some other technical proofs are provided irpé&pdices B through E.

Notation: For a logical statemers, “S is true forx sufficiently large” means that there exists
xo < oo such that for allz > =z, S is true.| - || indicates the 2-norm| - ||, is the infinite
norm, (-|-) is the inner productC, R and Z* represent the sets of complex numbers, real
numbers, and positive integers, respectiveit.(A) is the determinant of a square matix
AT, AT denote the transpose and the Hermitian transposk, ofspectivelyP represents the
probability. fx(-) is the PDF, andFx(-) is the CDF of an RVX. E[X] is the expected value

—x/6

of X. X ~ I'(k,0) means thatX is a Gamma RV withfx(z) = % for z > 0 and
fx(x)=0forz <0, k, 6> 0. For any sets4d andB, A— B is the set of elements i, but not
in B. | Al is the cardinality of4. A" = {(a1,...,a,) : a1, ...,a, € A}, 7 € Z*, is the cartesian
power.~, = 0.577... is the Euler-Mascheroni constamt= exp(1), and{) is the empty set. For

a real-valued functiorf : C — R with C C C¥, let M £ {x: x € C, f(x) = maxcc f(x)}.

1The caseK = 1 corresponds to a relay-broadcast network that does natrsarffy multiuser interference. Even though our
main goal in this paper is to analyze interference netwoslespresent the extension of our results to broadcast nesyedkas
to demonstrate the detrimental effects of interference oraparative manner.



Then,arg max,cc f(x) is the unique vectox* with the property thak* < x, Vx € M, and *<”
represents some partial ordering (e.g. lexicographicd¢ramg) of complex vectors. We define
argmin(-) in a similar manner. Finallylog(-) is the natural logarithmlog,(-) is the logarithm
to base2, cosh(-) is the hyperbolic cosing)(-) is the Gaussian tail function)(-) is the gamma
function, E,(z) £ [[" e e *!dt is the exponential integral, andl, (-) is the modified Bessel
function of the second kind of order.

II. NETWORK MODEL AND PROBLEM STATEMENT

A. System Model

The block diagram of the system is shown in Fig. 1. We have ayrealetwork with K
transmitters,L receivers, and? parallel relays. The casds = 1 and K > 1 correspond to a
relay-broadcast network and a relay-interference netwepectively. We assume that there is
no direct link between the transmitters and the receivers.

f11 o1 gi1 M1

7
fxR MoR JdRL ML

Fig. 1: System block diagram. In the figufEX,, Relay,, andRX, stand for thekth transmitter,
rth relay, and the/th receiver, respectively.

Denote the channel from theth transmitter to the'th relay by f., and the channel from
the rth relay to thefth receiver byg,,. Leth = (fi1,..., fxr, 911, .- ., gre) denote the channel
state of the entire network. We assume that the entrids afe independent and distributed as
frr ~ CN(0,0%, ), gre ~ CN(0,07 ) with finite variancesry, , o, < oo, Vr, k,{. For brevity,
let g, = (gus, . . ., gre), Which denotes all the channels from the relays to/hereceiver.

Only the short-term power constraint is considered, whiokans that for every symbol
transmission, the average power levels used atkthetransmitter and theth relay are no
larger thanPs, and Py, respectively.

We assume a quasi-static channel model; the channel rsatigavary independently from
one channel state to another, while within each channed #ti@ channels remain constant. We



assume that thé&h receiver knowg, and each relay knows the magnitudes of its own receiving
channels, i.e. theth relay knows|f..|, k = 1,..., K. Some possible procedures to reveal the
channel states to the receivers can be found in [11], [13].cBmpleteness, we give an outline
of one possible way: Théh destination can acquire the knowledgegof by training from the
rth relay. Therth relay can acquire the knowledge |of..| using training sequences from the
kth source. It can also amplify and forward its received trgyrsignal from the source to the
destination, so that the destination can estimate the ptamfuf,,. andg,,. As g,, is known by
the destinationf,, can be estimated.

Each relay and each receiver also has partial CSI providetedgback. In this paper, we
consider two different feedback schemes, namely the glabdllocal quantization schemes.

B. Global Quantization

Our global quantizeiq is defined by a global encoder and a global decoder, as dedcrib
in Fig. 2. The global encoder consists of two parts. For ed@nieel state, first, a GQ encoder
QGE : CRE+L) 5 76 maps the channel realizatidn to an index inZ¢ = {1,...,|Z%}, the
index set of the codebook elements. Then, a lossless globapessoiGQC : Z¢ — J¢ maps
this index to a binary description.

Global Encoder Global Decoder

Fig. 2: Global quantizer operation.

Let [(j) denote the length of a binary descriptigpnWe call GQ a fixed-lengthGQ (fGQ) if
[(7) = [logy |Z%], Vj € J¢. Otherwise, we caltQ a variable-lengthGQ (vGQ).

In either case, the global encoder feeds bag&(GQE(h)), using [(GQC(GQE(h))) bits. The
feedback bits are received by the global decoders withoytearors or delays.

There is a unique global decoder at each relay and each egceivich comprises of the com-
plementary parts to the global encoder: A lossless decaapreand a quantizer decoder. First
the decompress@qc—' : 7¢ — Z¢ reconstructs the quantization index from the receivedrigina
description. It is followed by the quantizer decod@b : Z¢ — C¢ which maps the quantization
index to a codebook element. The codeb@ékhas|Z¢| elementsC® = {x, ..., x|z¢/}. Without
loss of generality, folGQE(h) = m, we setGQD(m) = x,, € CY. For the rest of this paper, we
will use the well-known notatior@?(h) £ (GQD o GRC™* o GQC o GQE)(h) = (GQD o GQE)(h).
Therefore,GqQ : CRE+L) — €8 andcQ(h) = x, for somex € C¢.

In the most general case, théh relay may make use of the side informatipfy,| in the
process of decoding the feedback information. Howeverriewoto keep the relay operation as
simple as possible, we do not consider such a scenario irpéper.



C. Local Quantization

We define our local quantiz&q by L local encoders, with thé&h encoder at théth receiver,
and a unique local decoder at each receiver and relay, asilwesdn Fig. 3. Thelth local
encoder comprises of two parts: An LQ encod@E, : CF&+) — 7L and a lossless local
compressoiLQC, : Zy — J;. Note that the domain of each LQ encoder is different from the
domain of the GQ encoder. For théh encoder, the domain corresponds to the channel states
from the transmitters to the relays and from the relays to/thereceiver, represented by the
concatenation vectdf, g|.

-1 mi €L [
81| 1oy () —— 106}
T [
o _ _ __________ | , |
First Local Encoder (at the first receiver) L ma my [
f . | lLac() — Lap() H-x € C*
| |
| — _"n_L_E_IE _______ : Local Decoder (at each receiver and relay)

Lth local encoder (at the Lth receiver)

Fig. 3: Local quantizer operation.

The (th receiver feeds backQC,(LQE,([f, g¢])), using [(LQC,(LQE,([f, g/]))) bits. We callLQ
an fLQ if, [(j) = [log, | T}|1, Vj € JJ, VL. Otherwise, we call it a vLQ. For the latter case, the
feedback rate of théth receiver can be expressedrasLQ) = E[[(LQC,(LQE.([f, g:])))].

After all the L feedback messages are exchanged between the receivelseardalys, each
of them decodes the feedback bits using the local decoderlodal decoder is the compaosition
of a decompressamQc : [[, J* — [[,Z; and a quantizer decodeqD : [],Z} — C*. Overall,
LQ(h) £ LQD(LQE,([f,g1]),...,LQE.([f,gL])). Thus,Lq : CEE+L) 5 Ct andLQ(h) = x, for
somex € C".

D. Transmission Scheme

We use a two-step AF protocol [10], [11]. In the first step, ke transmitter selects a symbol
s, from a constellatiors;, where|S;| < oo, P(si) = |Sk|™!, Vsi € Sk, and sends/Ps, sp. We
normalizes; ask[|s,|?] = 1. Thus, the average power used at ke transmitter isPs, . During
the first step, there is no reception at the receivers, butttheelay receives

K
t, = Z frrsk/ Ps, + Nor, (1)
k=1

whererny, ~ CN(0, 1).
Suppose that a quantizer: CRX+L) — ¢, global or local, is employed in the network,
andQ(h) = x, for somex € C. Then, the relays use the beamforming vectdio adjust their



transmit power and transmit phase. During the second dteptransmitters remain silent, but
the rth relay transmits

Uy = Tpr/Prtr, (2)
where the relay normalization factgr. is given by
P
pr 2 = : (3)

1+ Zfil ‘fiTPPSi

The average power used at thh relay can be calculated to Bg ;. ..or[|ur]?] = |7,]|*Pg,, Vh.
We require0 < |z,|] < 1 as a result of the short term power constraint. The chanmagé st
dependent normalization factors ensure that the instantaneous transmit power of each relay
remains within its power constraint with high probabifty.

Also, note that within the restriction df < |z,.| < 1, p, is the maximal normalization factor
that we can use. In other words, if a factdf satisfiesp! > p, for someh, then it violates
the short term power constraint. Still, one can employ agotactor p!. with o/ < p,, Vh (e.g.
p.= Pr./(14+ 30 (14 |fr|*)Ps,)). We shall discuss later in Section Ill whether or not such
a different choice of the normalization factor can improke hetwork performance.

After the two steps of transmission that has been describedea the received signal at the
(th receiver can be expressed as:

K R R
Ye = Z Z Lr/Pr frrgren/ Ps;si + Z Ty Gren/ Prilor + Me, (4)
k=1 r=1 r=1
wheren,, ~ CN(0, 1) is the noise at théth receiver. We assume that the noisgs r = 1, ..., R,

andny, ¢ =1,..., L are independent.

E. Performance Measure

The /th receiver attempts to decode the symbols of the trangsteh indices given by an
arbitrary but fixed seD, C {1,...,K}, D, # (). As an example, for a network with" = 3
and L = 2, let D, = {1,2} and D, = {2,3}. Then, the first receiver is interested only in the
symbols of the first and the second transmitters, while thers&receiver is interested only in the
symbols of the second and the third transmitters. In genesmbssume that), D, = {1,..., K}.
This guarantees that at least one receiver is interestdueisytmbols of theéth transmitter. In
particular, forK = 1, we haveD, = {1}, V.

Let us call the vector of transmitted symbels= [s,].ep, @s the super-symbol relevant to the
(th receiver, and, be its decoded version. We say that an error event occursetedver if it
incorrectly decodes its desired super-symbol. In this,déeeoptimal decoder at thith receiver

Because of the noise at its received signal, a relay can éxteéransmit power constraint at some instants. The phrase

“short-term” comes from the observation that, regardidsh® channel states, the relay always obeys its power @nsivhen
its transmit power is averaged over the transmitted syméotsthe noise.



is an individual maximum likelihood (ML) decodegiven bys, = arg maxyc o, P(s}|ys, x, h),
where ., = erpé Si is the relevant super-symbol alphabet. For a fixed chanaét Bt and
beamforming vectox, let SERI™ (x, h) = P(3, # s;) denote the conditional super-symbol error
rate (SER) of the/th receiver with the individual ML decoder.

Let us now define a single quantity that represents the SERrpeance of all the receivers. We
define the conditionahetwork error rate(conditional NER, or CNER), denoted IG)ER(x, h),
as the probability that at least one receiver incorrectiyodes its desired super-symbol.

Our performance measure, the NER, is the expected valueedNER. Given a quantizey
global or local, the NER can thus be expressed as

NER(Q) £ Ep[CNER(Q(h), h)]. (5)

F. Diversity Measure

Let us also define a unique diversity measure for our netweekPg, = pg, P, r=1,..., R,
Ps, =ps. P, k=1,...,K, wherepg,,pr, < co. In other words, we allow the power constraint
of each transmitting terminal to grow linearly witR. Then, thefirst-order diversity achieved
by a quantizeq is given by

(6)

One problem with this conventional definition of diversity that it fails to characterize the
asymptotic effect of possible sub-line&rdependent terms (e.g. logarithmic terms) in the error
rate expression. In order to properly handle such cases efigedthesecond-ordediversity as

0(@) 2 lim _ log NER(Q) + d1(Q) logP. @

P—s00 log log P
Note that the first-order diversity is always positive, whthe second-order diversity can be
negative.
Now, thediversity (gain) achieved by a quantizqris given byd(Q) = (d;(Q), d2(Q)).
With these definitions, the asymptotic performance with argizerQ, as P grows to infinity,
can be expressed as

A log NER(Q)
(@) = fim ==

NER(Q) = G4 (P)(log P)~%@ p~d (@ 8)

where the factoG,(P) is thearray gain It is sublogarithmic in the sense thahp_, ., ‘fgg;) =0.
Also, we use it only when we compare the performance of twotjzers that provide the same
diversity gain.

Finally, for two diversity gainsi = (dy, d2), andd’ = (d}, d,), we say that! is higher than?’

(ord > d) if eitherd, > d} or dy = d}, dy > dj.

3In the literature, the phrase “individual” usually refesthe cases in which the a posteriori probability is maximipeer
a single transmitter alphabet. Note that, in our case, thaémization is over the product alphabs&t that represents the set of
all super-symbols that théh receiver is interested in.
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G. Problem Statement

Our goal is to design the quantizgr given a limited feedback rate, such that the NER is
minimized. We consider this problem for both GQs and LQs.

To achieve our goal, we first determine the maximal possitviersity with our network model.
Then, we design structured fGQs that can achieve this diyeFsnally, we use our observations
on fGQs to systematically design fLQs that achieve maximsi &irder diversity, and then, vLQs
that achieve maximal diversity.

We would like to note that, as demonstrated in [11], the nucaEroptimization of our
guantizers is always possible by using algorithms such asQGaneralized Lloyd Algorithm
[21], [22]. These algorithms can be used to improve the agay performance, or in some
particular cases, the second-order diversity performahaair structured codebook designs. We
will not consider such optimizations in this paper sinceythee straightforward.

[1l. L OWER BOUNDS ONQUANTIZER PERFORMANCE

Before we attempt to design a high-performance low-ratentiger, it is natural to determine
the best possible performance we can expect aithhquantizer. In this section, we find lower
bounds on the NER for both relay-interference and relagdbcast networks that hold for any
guantizerq, global or local.

Let X = {x € C®: ||x|| < 1} represent the set of all beamforming vectors. Then, we have

Theorem 1. Let Q : CRE+L) 5 ¢ with C ¢ X. Then, there are constants< C;, C, < oo that
are independent of bot®? and Q, such that for allq, and for all P sufficiently large,

1

log" P ©
NER(Q) 202%, K> 1.

Moreover, the bounds in (9) hold for any relay normalizatfaaotor p.. that satisfieg! < p,, Vh.

Proof: Please see Appendix B. [ |

In other words, for relay-broadcast networks, the maxinngrdity gain is(R, 0). Indeed, for
a network withK' = L = 1, it was shown in [11] that diversityR, 0) is achievable.

On the other hand, for relay-interference networks, theimakdiversity gain is(R, —R).
Since (R,0) > (R, —R), interference results in a second order diversity loss in retwork
model.

Theorem 1 also shows that a different relay normalizatiattofap. cannotimprove the
diversity upper bounds, provided that it satisfies the stesrh power constraint, and a codebook
C C X is employed. Thus, for the rest of this paper, we will only sider p, as our relay
normalization factor.
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An immediate question that stems from Theorem 1 is whettezetbxists finite rate quantizers
that can achieve maximal diversity. In the next section, westruct an fGQ that provides an
affirmative answer.

IV. MAXIMAL DIVERSITY WITH AN FGQ

In order to determine an fGQ that can achieve maximal digrigt us first determine, for
any K, the optimal GQ given a fixed codebook with finite cardinality

Proposition 1. Given a fixed codeboak with |C| < oo, the optimal GQ is given bgqg(h) £
arg min,cc CNER(x, h).

Proof: Let Q' : CEE+L) 5 C. We have
CNER(GQ;(h),h) < CNER(Q'(h),h) = NER(GQ;) < NER(Q), VQ'. (10)

Thus,GQ; performs at least as good as any quantizer with codelgook [ |

Therefore, given that we employ an optimal GQ encoder giverPtoposition 1, the GQ
codebook uniquely determines the system performance. tBeite is one complication: If we
ever want to implement the optimal GQ encoder, we should be t@bevaluateCNER(x, h),
for any givenx and h. Unfortunately, a closed form characterization of the CNERvery
difficult, if not impossible. For that reason, we design aagatbnal quantizer that, instead of the
actual CNER, uses an upper bound on the CNER. Fortunatedystlboptimal quantizer will be
powerful enough to achieve maximal diversity for aRy

A. An Upper Bound on the CNER

For the/th receiver, instead of the individual ML decoder describe&ection II-E, suppose
that we employ a joint ML decode¥; £ arg maxyc» P(s'|yy, x, h), where. = [], Si. Recall
that, for the individual ML decoder at th¢h receiver, the a posteriori probability was maximized
over [[,cp, Si- For the joint ML decoder, the maximization is oVEf, S;. at all the receivers.

Let SER™ (x,h) £ P(§, # s) denote the error rate of the joint ML decoder. Then, we have
SER{™ (x, h) < SERJ™(x, h), V/. Also, from (4);

1
SERM(x, h) < & > Q(V2wss(x b)), (11)
s,8€.
s#S§

where

K ~ R 2
- P r rYrélr
7eas(x,h) = | 2o (86 = S/ P 2oy firy/Prgree” (12)

R
41+ 22,2, prlgre?fr]?)

“Note that, in order to be able to perform ML decoding, the ir@re should know which beamforming vector is used by the
relays. In other words, for eadh, the receivers should kno&(h). This explains why we need to have a quantizer decoder at
each receiver as well as each relay.
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In (11) and (12), the decoded symbol vector for each recesvebviously different, i.es,,
though we have omitted the dependence/dor brevity. Furthermore, from now on, we shall
omit the conditions, § € .¥ in the summations as it is clear from the context.

Now, using a union bound over all the receivers, it follows ttte CNER that

SER[™ (x, h) (13)

M) =

CNER(x, h) <

~
Il

1

SER;"™(x, h) (14)

Mh

~
Il

1

?ZZQ (V276s5(x,0)). (15)

{=1 s#§
This upper bound can easily be evaluated for any constallatnd thus, it is good enough for

our purposes. However, for clarity of exposition in the refsthe paper, we seek a much simpler
bound. First, let us define

(. 1) 2 minas(x, ), (16)

and
7+(x.h) 2 min (. b) an
= mgin Igi? Yesa(x, h). (18)

Then, (15) can be further bounded as

CNER(x, h) |‘5ﬂ| ZQ V27(x, h)) (19)
< W max Q( 27,(x, h)) (20)
= 2CoQ(v/27(x, h)) (21)
< Cyexp(—7"(x, h)), (22)

whereCy £ L(|.| —1)/4. In the derivation above, (19) follows since there p#|(|.7| —1)/2
distinct terms withs # §. For (22), we have used the fact tHatx) < %exp(—g—Q).

We would like to note the similarity of (21) and (22) to the gentional error rate expressions
for single user wireless communication systems. Actudtlg, term~*(x, h) can be interpreted
as a network signal-to-noise ratio (NSNR) measure thatacianizes the overall performance
of the network.
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B. Diversity Analysis of the Relay Selection Scheme

For K = L = 1, we have shown in [11] that a feedback scheme based on rdksgtiea can
achieve diversity R, 0). Here, we generalize this result to ahy

For K > 1, due to both multiuser interference and its manifestatiodheorem 1, it is not
clear whether diversityR, —R) would be achievable. The main goal of this section is to show
that it is indeed achievable with a GQ that maximizes the NS&HRI surprisingly, again using
a simple relay selection codebook.

The relay selection codebook can be definedas: {e, : » =1,..., R}, wheree,, = 1 for
q=r,ande,, =0 for ¢ # r. Then, for anyK and L, We define our fGQ as

GQc, (h) = arg max (e, h), (23)
where, for any relay selection vectef, we have from (12) that
2
K 2 2
1 Y k1 (S = 86)\/ Ps, frr| |grel* PR,
f}/L(eru h) = — min min ! - (24)

dszs 0 14300 | firl2Pe, + |9rel* Pr,
Note thatGQ., chooses the relay selection vector that maximizes the NSNR.
In the following theorem, we show that, for both relay-broast and relay-interference net-
works, GQ¢, achieves maximal diversity by finding an upper bound on th&&NE

Theorem 2. There are constant8 < (5, 'y < oo that are independent aP such that for all
P sufficiently large,

1
NER(GQCS) S Cgﬁ, K = 1,
25)
log? P (
NER(GQe,) < C JgDR . K> 1.
Proof: Please see Appendix C. [ |

In other words, the relay selection scheme with an fGQ aelsiemaximal diversity for any
K. It is remarkable that full diversity is achieved regardles the number of transmitters and
receivers.

Note that our selection scheme requiféss, R| feedback bits. Withlog, R, | feedback bits,
where Ry € {1,..., R — 1}, diversity orders(Ry,0) and (R,, —Ry) are achievable fo¥ = 1,
and K > 1, respectively, simply by considering the selection schéomeany fixed R, of the
relays and disregarding the others.

In practical networks, we may not have a GQ that knows thaeei@BI of the network. In
such situations, we would like to characterize the achievalerformance using LQ encoders
that know only a part of the CSI.
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V. DIVERSITY WITH LQs

In the previous section, we showed that a GQ using relay ts@tecan achieve full diversity.
Motivated by this result, we expect that a relay selectiosedalLQ will achieve high diversity
orders. In this section, we design two such LQs: An fLQ thdtiaes maximal first-order
diversity, and a vLQ that achieves maximal diversity. Botiawgtizers will have similar structures.
We construct them using thecalization method [20], in which we synthesize an LQ out of
an existing GQ. The synthesized LQ and the GQ share the sadebaok. For our particular
quantization scheme, we use the GQ., in (23) as the basis of our LQs. SinGq,, is based
on relay selection, all of our LQs will be based on relay sidecas welf.

A. Localization

Let LQgJ‘J) denote a generic localization @f).,. For the synthesized quantizEQg]'\v,), the
superscript indicates whether it is fixed-lengtt) or variable-lengthf); and ¢, N are design
parameters that we shall specify later on. For a particutannel statéh, the components of
the synthesized quantizer operate as follows:

1) LQ Encoders:For notational conveniencey., = v;(e,, h). The/th LQ encoder calculates
wre, 7 =1,..., R. In other words, it calculates its own contribution to theNNSfor all possible
relay selection vectors. Then, it quantizes each of theilplessontributions using a scalar

guantizer

N - { n. 3 €{0.....N — 2} such thate € [n, (1 + 1)¢). 2eR (26
N, otherwise.
Its output message is the concatenationRo$ub-messaged/ (w,¢), r = 1,..., R.

2) An lllustration of the LQ Encoderd.et us now illustrate the operation of the LQ encoders
with a simple example withR = 3, and L. = 2, as shown in Fig. 4. For some fixed channel
variances, power constraints, and channel digtesuppose that;; = 1.7, wo; = 0.8, w31 = 1.2,
wie = 0.28, wyy = 0.67, andws, = 2.3. In the figure, each of these local NSNR values are
represented by a disle) on the real axis. Since we are using an L@;, » = 1,2,3 can be
calculated only by the first receiver, and similatly,, » = 1,2, 3 can be calculated only by the
second receiver. Note that the GQ has access to all the IddeESand in this example, selects
the relay with indexarg max;c(; 2 3y ming w,, = 3.

After the LQ encoder calculates its local NSNR values, itrgizas them using a scalar
quantizer\ that is uniquely determined by the parametérand N. In our example, we use
N =5 bins and set = % Each bin is represented by a half open intenta0) on the real
axis. The output message of the LQ encoder is the concatenatiits quantized local NSNR
values (submessages), shown as frames with a dashed puwattintbe right hand side of the
figure.

®In principle, the localization method itself is applicatite any GQ with any codebook; it is not limited to relay selenti

based GQs. However, for a general GQ, it is very difficult talgiically determine the performance of the synthesized LQ
Therefore, we focus only on the localization of relay sétecbased GQs.
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| | | | r=i
Wi i i — i = N(wn) =3,
: : M N
RX; w21 ; 0'8 ; ; ; > — N(wa) 2:1:
| . | | | | |
w1 l R — l = N(ws1) =2
I 1.2 I I [
| | | |
| | | |
0 : : : : 0. r—1
w12 *— i i : > = N(wi2) =0,
028 | : : : N
RXy wo2 — @ ' : ' — N(WQQ) =111
067 ! | | -
W32 i : : ——e—> = N(ws) =4
I I I I 2.3 L1
| | | |
N() l : : :
with . Bin0 ¢ Binl ¢ Bin2 ¢ Bin3 ¢ Bind |
¢=1, T 7N y8 78 7
N=50 5 1 3 2 00
Fig. 4: An illustration of the LQ encoders.

3) Compressorsin general, there ar& sub-messages, each with possible values. There-
fore, for a fixed-length synthesis); », at each channel state, each receiver feeds padkg, V|
bits without any compression.

For a variable-length synthesif); ,,, we use a lossless compressor that produces an empty
codeword (of lengtld) wheneverV'(€2,,) = N, Vr, and otherwise a codeword of lendtlg, (N7 —

1)] bits that can uniquely represent eabf{Q2,,). In other words, for a given channel state, the
number of feedback bits produced by any receiver is eithiits or [log,(N* — 1)] bits’.

After all the L feedback messages of the receivers are exchanged betveeesc#ivers and
the relays, each of them decodes the feedback bits usingedhkdecoder. The decoder operation
is the same for each receiver and relay.

4) DecompressorFirst, a decompressor perfectly recovers all the submessagm all the
receivers,N (wy), r =1,...,R, £ = 1,..., L. All of these submessages are passed to the LQ
decoder.

5) An lllustration of the LQ Decoderfor clarity of exposition, let us first present the LQ
decoder for the example scenario in Section V-A2 and the sdraenel statd’. A more formal
description of the general LQ decoder operation will be @nésd afterwards.

8If the empty codeword is not allowed, one can useDa(a codeword of lengthl bit) instead of the empty codeword, and
append a 1” to each remaining codeword of lengfliog, (N — 1)] bits. The resulting codewords are uniquely decodable as
well. Then, all of the results in this paper will hold for thase where the empty codeword is forbidden, given that theined
feedback rates are increased bpit.

Also, note that one can achieve a better compression by @sitrgpy encoders instead of teaboptimalcompressors that
we employ. Even though the localization method was intreduariginally with entropy encoders, the compressors tlratse
in this paper will be good enough for our purposes.
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In general, the main goal of the LQ decoder is to imitate the &Qood as possible. For
our particular example, the GQ selects the relay with indexmax,c 23 w,, Wherew, =
min{w,1,w,2}. Then, the first goal of the LQ decoder should be to determindHowever, the
LQ decoder only knows the quantized local NSNR valu&Sw,,), r = 1,2,3, ¢ = 1,2, as
shown in Fig. 4. Therefore, it cannot determine the exadctevaf w,. However, as we shall
describe in what follows, it can perfectly determine a stilo$eR wherew, resides.

Foranyw € R, N(w) =n = we [2,2),n=0,....3 andN(w) =4 = we
2, 00). We can use these facts to determine the possible locatfahe docal NSNR values, as
represented in Fig. 5 by half-open intervajss{®) of R.

0 I I I I o0

N(wn)=3 = wn € i i >
I I I I
N(wlg):O — w12€”: : : :
l l l l
I I I I
N(CU21):1:>CL}21€’—~ : :
I I I I
N(wp) =1 = wy € — [ : :
I I I I
I I I I
I I I I
I I I
N(ws) =2 = wy € , P |
I I I I

N(wz) =4 = wpc j | | —
I I I I
I I I I
N() : l l l

with . Bin 0 \}. Bin 1 \}. Bin 2 \}. Bin 3 \}. Bin4

g=1, € T T T T 7

N=50 3 1 3 2 00

Fig. 5: Possible locations of the local NSNRs according ®1tkp Decoder.

Sincew; = min{w;y, w2}, and we know for sure that,; € [3,2) andw;, € [0, 5), we should
havew; € [0, 3). Using the same arguments for aJlwe can obtainu, € [3,1), andw; € [1, 2).
We have thus determined the possible locations,ofas shown in Fig. 6, by having access only
to the quantized versions af..

The LQ decoder’s main goal was to finglg max,c(; 2 3 w,. Using the possible locations of
w, that we have found, it is now clear that the third relay shquiovide the best NSNR. The
LQ decoder’s output will bex;. Note that this is the same output as the GQ output. Therefore
for this particular channel state, the LQ operates in theesaranner as the GQ.

However, the LQ decoder will not be this lucky in general. Asexample, another channel
state might result i, € [0, %) andws,ws € [1,3). In this case, the LQ decoder will know for
sure that both the second relay and the third relay providesgar NSNR than the first relay.
On the other hand, it cannot determine which one of the seaaddhe third relays provides the
best NSNR. Therefore, it chooses one of them, and its decie@y not be the optimal one that
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0 I I I I o

wr € l i l

' : : :

wy € — = =

| | |

| | | |

w3 € : — l

| | | |

N() l : : :
with . Bin0 ¢ Binl ¢ Bin2 ¢ Bin3 ¢ Bind |
¢=1, © 7N T 8 T 7
N=50 3 1 3 2 00

Fig. 6: Possible locations of the NSNRs according to the L@dder.

would instead be provided by the GQ. We shall quantify theafbf such suboptimal decisions
later on.

6) LQ Decoder:We now give the general and formal description of the LQ decod

Let R, £ {q : min;w, = max, min,w,,} denote the set of indices from which our GQ in
(23) produces its outpdtln other words,R, is the set of indices of relays that provide the
maximal NSNR. Also, letR; £ {q : N(minyw,) = N (max, min, w,)}. Note thatR, C R;.
Moreover, due to the structure &f, not only

N (m}n wye) = min A (wge), (27)

but also
N(mfmx min wye) = mfmx/\/(m}n Wye) (28)
= max Hl}ﬂN(u)rg). (29)

Therefore,R;, = {q : min, N'(wy) = max, min, N'(w,.)}, andR, can be easily calculated by
the LQ decoder.

SinceR, C R;, the LQ decoder can determine which relay selection vesjtagn possibly
provide the maximal NSNR. In general, it can choose any ortbefelay selection vectors that
are indicated byR,. But, to be more precise, we define

LQg]'\‘;)(h) £ arg maxe, ccs ming N (wyy). (30)

7) Localization Distortion:Let us now study two possible cases of interest regardind.@he
output: If R, = R, then the LQ output provides the same NSNR as the GQ outpher®ise,
the LQ might make a suboptimal decision. This results in wiatall thelocalization distortion
(LD), given by

LD(€, N) £ NER(LQ{'Y) — NER(GQc,). (31)

"R, is not necessarily a singleton, but our definition of the max guarantees that the GQ output is unique.
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A useful upper bound on the LD can be calculated as:

NER(LQ{'Y)) = En[CNER(GQc, (h) }Rl = Ry|P(R1 = Ry)+
Ep [CNER(GQCS \Rl # Ry|P(Ri # Ry) (32)
< NER(GQg, ) + En [CNER(GQCS h)|R; # Ry|P(R: # Ry) (33)
= NER(GQc,) + En [CNER(GQg, (h), h) | [Ri| > [Ry|[P(|Ri| > [Ry|)  (34)
ER(GQg,) + LDY(&, N), (35)

whereLDY(¢, N) is the upper bound on the localization distortion, given by

LD(&, N) £ Ey [CNER(GQc, (h), h)||Ry| > 2]P(|Ry| > 2). (36)

B. Maximal First-Order Diversity with an fLQ

Our main result concerning the fLQs is given by the followthgorem:

Theorem 3. Let & = log™ P, and N; = 2. Then, forP sufficiently large, the NER witth,Nf,
which uses a fixed feedback bits per receiver per channel state, is upper bedrxy

log® P

NER(LQE, y,) < C5 K=1,
(37)
log2R P
NER(LQE, y,) < Co—pr— K>1
where( < Cs, Cg < oo are constants that are independent /of
Proof: Please see Appendix D. [ |

In other words, using a fixe® feedback bits per receiver per channel state, we can achieve
diversity (R, —R) for K = 1, and diversity(R, —2R) for K > 1. Since(R, —R) < (R,0) for
the broadcast network, and?, —2R) < (R, —R) for the interference network, our fLQ has a
second-order diversity loss compared to the optimal peréorce for both types of networks.
Also, it is straightforward to show that, using, bits, whereR, € {1,..., R}, we can achieve
diversity gains(R,, —R,) and (Ry, —2Ry) in relay-broadcast networks and relay-interference
networks, respectively.

The scalar quantizer resolution for our fLQlig, N; = 1 bit per local NSNR. In what follows,
we show that, by appropriately increasing the resolutiothw?, one can achieve maximal
diversity, while the compressors make sure that the feddtste remains bounded.

C. Maximal Diversity with a vLQ

For vLQs equipped with entropy coding, we have the followragult:
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Theorem 4. Let e > 0 be a fixed constant that is independentfaf For any A that satisfies

0<e<A<LP, letg =1, and
N, = [AlogA + RAlog P+ 1], K =1,
P (38)
N, = {AlogA—i—RAlog(@) + 1—‘, K > 1.
Then, for P sufficiently large, we have
1
U
< Cr—— =
LD (&, Vy) < C7APR’ K =1, o)
39
logh P
U
< -
LD (ngv) = C'8 APR K> 17
and, in addition, the feedback rate of theh receiver satisfies
log P
RALQL ) < Co—my K =1,
40)
log? P (
R(LQY, x,) < Cro—s—y K> 1,
where( < C7, Cg, Cy, C1p < oo are constants that are independent/ofand P.
Proof: Please see Appendix E. [ |

We now describe several consequences of this theorenkfor 1. The consequences for
K =1 will be analogous.

Let us first recall from (35) thallER(LQ} ) < NER(GQc,) + LD’(&y, IVy). We have found an
upper bound folNER(GQc, ) in Theorem 2. An upper bound fab’(&,, N,) is given by Theorem
4. Combining the two bounds, we haveR(LQ{ ) < (Cy + CSA‘l)l"}%#. In other words, our
vLQ achieves maximal diversity.

Moreover, using the same arguments as in the previous giagwe haveVER(LQY ) <
NER(GQc,) + %1"}%];’3. Thus, by increasing\, the array gain performance of our vLQ can be
made arbitrarily close to the one provided by the GQ, at anefipower levelP.

What is more interesting is the behavior of the upper boundhenfeedback rate given by
(40). As P grows to infinity, the required feedback rate decays to Zerother words, both the
diversity and array gain benefits 8ER(GQ.,) can be achieved using arbitrarily low feedback
rates, whenP is sufficiently large.

VI. SIMULATION RESULTS

In this section, we present numerical evidence that verdigsanalytical results. We assume
that each receiver attempts to decode all the symbols frotheltransmitters. In other words,
Dy ={1,..., K}, VL. In the graphs, “GQ" representf, in (23), “fLQ" denotesLq, ,, with
{r and Ny as defined in the statement of Theorem 3. Also, “vAQrepresentsLqy, y, that is
uniquely determined by the parametkras in the statement of Theorem 4.
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A. Networks With Equal Parameters

In Fig. 7, we show the performance results for a network with= R = L = 2, 0'122-k =
o), =Dr, =ps, = 1, Vr,k,(, andS; = S, = {+1, —1}. For this network, the NERs with the
GQ, fLQ, and vLQs forA = 2715 2712 212 915 is presented in Fig 7a. The horizontal and
the vertical axes represent in decibels (dBs), and the NER, respectively.

We can observe that both our GQ and vLQs achieve the maximeisitly (2, —2), while the
fLQ achieves diversity2, —4). Moreover, as we increask, the array gain performance of our
vLQs can be made arbitrarily close to that of the GQ.

In Fig. 7b, we show the SERs at the first receiver for the saneank. The horizontal axis
represents” in decibels, while the vertical axis represents the SERafitht (second) receiver.
As a result of our choice of network parameters, the SERs df eaceiver is the same. Also,
a particular quantizer achieves the same diversity as in Fg On the other hand, since the
SER is upper bounded by the NER, any quantizer in Fig. 7b desvmore array gain than it
does in Fig. 7a. Indeed, due to the symmetry of the networrpaters, the SER performance
is around1.6dB better than the NER performance for all quantizers.

The corresponding feedback rates of our vLQs are shown in Fig The horizontal axis
represents” in decibels, while the vertical axis represents the feeklloate of the first (second)
receiver in bits per channel state. Similarly, due to ouriah®f the network parameters, the
feedback rates of each receiver will be the same. We can\absiee validity of Theorem 4,
as for anyA, the required feedback rate decays to zero at litglAlso, by increasing\, the
performance of the LQs can be made arbitrarily close to tleepyavided by the GQ, while still
using very low feedback rates. As an example, at an NER)of, vLQ-2'° needsl.25 bits per
channel state per receiver on average and performsO2igiB worse than the GQ. At a SER
of 107?, vLQ-25 uses0.65 bits, and GQ performs onl§.8dB better.

B. Networks With Unequal Parameters

Our results also hold for networks with unequal power casts and/or channel variances.
To demonstrate that, we consider a network with= R = 3 and L = 4. The parameters
of the network are assumed to be, = 1, ps, = 1.3, ps, = 0.7, pr, = 0.6, pr, = 2,
PRy = 0.7, S = S5 = {+1,—1}, and S, = {¢/7% : 0 € {1,...,4}}. Also, we assume that
0 =Fy,00, =Gy, k=1,...,K,r=1,...,R, {=1,...,L, where

2 1 07
F=|15 09 3 |, (41)
1 4 05

and
7 1.2 25 09
G=]104 13 3 2 . (42)
1.3 09 16 5
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Fig. 7: Performance results for a network with= R = L = 2.
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Fig. 7: Performance results for a network with= R = L = 2 (continued).

In Fig. 8a, we show the NERs with the GQ, fLQ, and vLQs for= 2715 2712 20 93,
The results are analogous to what we have observed in FigBath. the GQ and the vLQs
achieve the maximal diversit{, —3), while the fLQ achieves diversity3, —6). Moreover, as
we increase\, the array gain performance of our vLQs can be made arlytrelose to that of
the GQ.

The SERs at the first and the third receiver are shown in Figar@bFig. 8c. We can observe
that, unlike the previous network with equal parameters,3ERs at each receiver is different
for this network with unequal parameters. In particulag.RBb reveals rather counterintuitive
results: The fLQ outperforms the GQ at loit, and some of the vLQs provide a higher array
gain than the GQ. The reason of these behaviors is that thesGiptimized with respect to
the NER, which takes into account the SERsatifthe receivers. Therefore, as far as the SER
at a receiver is concerned, one cannot claim the optimafitthe GQ. For the NER, the GQ
outperforms all the other quantizers, as shown in Fig. 8a.

For the vLQs, the feedback rates of the first and the thirdivece are shown in Fig. 8d
and Fig. 8e. For both figures, the feedback rates decay toasefogrows to infinity, verifying
Theorem 4.
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VIlI. CONCLUSIONS ANDDISCUSSIONS

We have studied quantized beamforming in wireless reltgrierence networks with any
number of transmitters, receivers and amplify-and-fodvgkF) relays. Our goal has been to
minimize the probability that at least one user incorredicodes its desired symbol(s).

We have introduced a generalized diversity measure in ¢odesive a more precise description
of the asymptotic performance of the network. It has endapsdi the conventional measure as
thefirst-order diversity. Additionally, it has taken into account teecond-ordediversity, which
is concerned with the transmitter power dependent logardhterms that appear in the error
rate expression.

First, we have shown that, regardless of the quantizer amdrttount of feedback that is used,
interference results in a second-order diversity loss inm@twork model. Care should be taken
though when making a general statement, as in this work, we fecused on AF networks
with a short-term power constraint. For other forwardingmoes, such as decode-and-forward,
the diversity results may be different. Even under the i&&in of using AF relays, one can
use a long-term power constraint and achieve higher diyeiso, the side information at the
relays may be exploited for a better performance, though @lieve this will not improve the
diversity.

Second, we have designed a relay-selection based globatizpra(GQ) that can achieve
maximal diversity. Then, using our GQ and the localizatiogtimod, we have synthesized fixed-
length and variable-length local quantizers (fLQs and VL@ur fLQ has achieved maximal
first-order diversity. Our vLQ has provided not only maxina@ersity gain, but also an array
gain performance that can be made arbitrarily close to tleeppovided by the GQ. Moreover, it
has achieved all of its promised gains using arbitrarily feedback rates, when the transmitter
powers are sufficiently large.

Regarding the LQs, there are many open problems that we havaddressed in this paper.
One important problem is to determine whether there existi @ that can achieve maximal
diversity. Another goal might be to generalize our relalgsiion based localization result to
show thatany GQ can be localized to synthesize an LQ that can achieve the aaray gain as
the GQ. Due to the complicated nature of our distortion fiomg, the latter goal seems difficult
to accomplish, even though we have observed its validityilmuktions.

APPENDIX A
UPPERBOUNDS ON THEPDF AND CDF OF 2,

First, let us present some useful lemmas.

Lemma 1. Let’fvc andﬂ be zero-mean real Gaussidti x 1 random vectors, with equal diagonal
covariance matrice€[f,f7] = E[f.f7] = K, K; > 0, Vi, K;; = 0, Vi # j, and zero cross-
covarianceE[f.f7] = 0. Letf £ f, + jf, denote the complex Gaussian random vector with real
and imaginary parts given bf. and f,. Also, letX = |(s,f)|2, wheres € CX — {0} is a fixed
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vector, andiW = ||f||2 — X. Then, there is a constant< \, < oo, such that for allz > 0 and
w > 0, we have

P, w) < %wm exp[ — Dol + )] (43)
Proof: Let f 2 Uf for a unitary matrixU that satisfies:; = Us. Also, let X; = |f;|?, and
X = [X;--- Xk]T. Note that
X = X1 = (s, ) = (e, D), (44)
and sinceU is norm-preserving,
W= |If]2 - X = [If]]* - X1 = 2,5, Xe. (45)

Now, letY; = X, Yo =W = ZfiQ X;, andY, = X, k=3,..., K. Using such a transforma-
tion of RVs [23], we have
Y2 ya—ys Y2 ops Uk
fyiye (Y1, y2) Z/ / / P, v2 = e Uk Yss - y)dys - dyx.  (46)
0 0 0

In the following, we find an upper bound fgik (x) for anyx = [z, - - - xx|" with z; > 0, Vi.
Let U. £ R(U), andU, = 3(U). The real and imaginary parts éfcan be calculated to be
f. 2 R(f) = U, — U,f,, andf, £ I(f) = U.f, + U,f.. Then, it is straightforward to show that

K. 2 E[f.f7] = UKU? + UKU?Z, (47)

K, 2 E[foST] = K, (48)
and

K. = Ef.f’] = UKU! - U,KU!. (49)
Therefore, K. and K, are symmetric matrices, arld., = —KZ.. The latter implies that for

anyx € R¥, xTK_,x = 0. Using these facts, we now show tH&t, + jK_, is positive definite.
For anyx € C¥, we have

XM (Kee + jKes)x = (x7 = %7 ) (Kee + 7Kes) (X + j) (50)
= XZKCCXC — XZKCSXS + szCSxC + szCCXS—I—

FxTK X + X Koxs — XL KX, + X KeoXs) (51)

= X KeeXe + 2X KeoX, + X! KeeX, (52)

= x!E[ff7)x, + 2xTE[f.f]]x, + xTE[f.f]]x, (53)

= E[(x/f; + x! f.)?] (54)

= E[(x/ U, + x Uo)f. + (x/ U, — xL U,)E,)?) (55)

= x] Kx; + x2 Kx, (56)
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wherex; = UTx, + UTx,, andx, = Ul'x, — UTx,. But,
Ux = (U} + jUL) (x, + jx,) = X + jx, (57)

and sinceUx # 0, eitherx; # 0 or x, # 0. Also, sinceK is positive definite, eithex? Kx; > 0,
or xJKx, > 0. Thus,x? (K, .+ jK.)x > 0, Vx € CK—{0}, andK .+ jK_, is positive definite.

Let A + jB = (K. + jK.) ™!, and6,; = tan'(B;;/A;;). According to [24, Eq. (24)], the
joint PDF of X;, i = 1,..., K can be expressed as

() = (17) det(A +7B) [ - [exp| = 5£(6)]de. (58)
where
Z Auz; + 2 Z (A2 4 B2)z /T cos(d; — b5 + 6,y), (59)

i,7=1
1<j

andD £ A + ;B is a Hermitian matrix [24, Eq. (21)].

Since f(¢) is continuous, and the range of integratipar, 7] is a compact subspace of
R%, there existep* € RE with ¢* = [¢7% - - - ¢%], such thatf(¢*) < f(p), Vo € [—7, 7|5, As
a result,

fx(x) < 2 det(D) exp| — 5 (6] (60)
Now, let
Xcos = [v/T1 C08(¢7) - -+ /Tr cos(9)] (61)
Xain = [V/T1sin(]) -+ /Tp sin(df)] " (62)
Then, using (59)f(¢*) can be expressed as
F(9") = R(xosDXcos + X031, DXstn). (63)

We have shown thak.. + jK., is positive definite. It follows thaD = (K. + jK.)™*
is also positive definite, and thus has eigenvalygs> 0, vz' Also, sinceD is a Hermitian
matrix, it admits a spectral decompositith= Z Awu?, whereu;, i = 1,..., K form an
orthonormal basis fo€*. It follows that

XcosDXCOS = XcosDXCOS - Zzlil )\i(uﬁXCOS>2 (64)
> Al Xcos [, (65)

where A = min; A;. Similarly, we have

x2, DXgin > A|[Xeinl| (66)
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Using (65), (66) and (63), a lower bound gii¢*) is given by

F(@") > R(A[[%cos||* + Allxs1al|*) (67)
= A Efil Ti, (68)
Then, using (68) and (60), we can find an upper boundfx) as
fx(x) < 27det(D) [T.2, exp(—3 ) (69)
< )\KH 1 exp(—Aos), (70)
where\, = 3. For the last inequality, we have used the fact thatD) = [T, M < K.
The lemma follows by substituting (70) to (46) and perforgnthe integration. [ ]

Lemma 2. Let X, ..., X,, ben non-negative possibly dependent RVs, ang min,, X,,. Then,
fz(2) < Z fx.(2), (71)
and
Fo(z) <3 Fx(2). (72)

Proof: Let us recall Leibniz's integral rule: For functions of a gi@ variablea(z), b(z),
and of two variables(zx, z), we have
b(z)

ob Oa
82’/fo = / 5,48 f(b(z), 2) 5~ = flalz), 2) 5. (73)

Note that (72) eaS|Iy follows from (71). We thus first provd)7Let 7, = min{ X1, ..., X;}.
We will show that f,, (z) < S2F, fx,(2), for any 1 < k < n by induction. Fork = 1, it
is obvious. Suppose it is true for > k£ > 1. We havef, (z) < Zle fx,(2). Noting that
Zi1 = min(Zy, Xg41),

ka+1(Z> = ka (Z) + ka+1( ) aa FZk Xk+1( ) (74)
k+1 5
< Z Ix,(2) — =— Zn Xpoa (U, v)dudv (75)
5[
— Z {08 T X (U v)dv} du — /ka,XkH(Z; v)dv (76)
0
= Z /f Zi Xy (Us 2 du—/kaXkH(z v)dv (77
k+1

< Z in<Z)7 (78)

i=1
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where for both (76) and (77), we have used Leibniz’s integrkd. This proves (71). Integrating
both sides of (71) frond to = proves (72). [ |
We can now find the desired upper bounds on the PDF and CDE.of

Proposition 2. For all w > 0, y > 0 and P sufficiently large,

1) If K =1,
w
fo,(w) < Cpy eXp<—Clzﬁ>¢o(W)a (79)
and
Fo,(y +w) — Fo,(y) < Criwthp(w), (80)
where
1 1
£ - —2
dolw) 2 3 (14+w73), (81)
and0 < (41, C1» < oo are constants. Otherwise,
2) If K >1,
V4
fo, (@) < Cryexp (~Cuuss ) (). (82)
log P
Fa(y+40) = Fo, () < (w0 + 255 12) 89)
and in particular, fory = 0,
Fo, (w) < Ciswip(w), (84)
where
Y(w) = loiP (1 + W TP + wl_loél’%> , (85)

and 0 < (3, C14 < oo are constants.

Proof: First we prove the case fok > 1. Let Q,..: = yk,s,é(er,h). Note that(, =
ming s ¢, s 5. First, let us first find an upper bound on the PDF and CDR,0f; ;.
Consider a fixed-, ¢, ands # §. For notational convenience, let us defife2 Q, 455 From
(24), we have

. 1 Zle(sk — Sk)\/Psy, fir : |gre|* Pr, (86)
4 14+ 30 | firl?Ps, + 1902 PR,
Now, let us rewrite (86) in a more compact form. First, we defin
' £ [/psi fir - v/Dsi frcrl (87)
82 (51— 8,5k — 5g]", (88)
X £[(,0)7, (89)
Y 2 [g.[*pr,, (90)

W fF)* - X, (91)
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wheref’ £ £//||f’||. Then, we have

B aXY P?
14+ XP+WP+YP’

wherea = 1||6]]%. Using a transformation of RVs [23], the PDF gfcan be expressed as

(92)

\8

0

osz2 —zP (xP? — zP)?
0
Now, let \; = (o2 pgr,)”'. Substituting the PDF of’, and using Lemma 1, we have
. AAK 70706 )\z1+xP+wP)>X
X
7 p axP? — zP
0 =

aP

azP?*(14 zP + wP)
(xP? — zP)?
where o > ), > 0 is a constant that is independent of =, and P. The inner inte-
gral can be evaluated first by a change of variahles axP — z and then using the facts
that [ v re Plrrde = 2(8/4)2 K, (2v/B7), 8,7 > 0 [26, Eq. 3.417.9], andk_,(z) =
Ki(z), Vz € R [25, Eq. 9.6.6], respectively. Then, after some straigiatésd manipulations, we
can rewrite (94) as

e_)‘xwxdwa_2e_)‘XWwdw, (94)

oo
K-2

MNE=Lexp(—AZ) /- 20wy (@ + 22 + awP) w
< P -1 xw Ay
fz(2) < Tk 1) /()\P kK (k) + P KO(/@)> o dw, (95)

0

wherer = /AA\Ayz(a + 2 + awP)/(a2P?), and A = (A + Ay)/a. It follows that
)\%) Ny p-1 -1,2 K—-2 _ —Jlww
gy /()\P KK (k) + 27K KQ(K))UJ e vdw. (96)

0
Now, let us find an upper bound fdky(x) in (96). According to [25, Eq. 9.6.24], we have
K,(z) = [;° e=t cosh(vt)dt, t,v € R. Moreover, sincecosh(vt) is an increasing function
of v, K,(z) is also an increasing function of It follows that

Ko(k) < K,(k), v > 0. 97)
Also, from [11, Eg. 25], we have
K, (k) <27 'T(v)s™, v > 0. (98)
Now let us sel) < v < 1. In this case,

D)= v ' Tw+1) = [e ™ dt < v [ etdt = v, (99)
0 0
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Combining (97), (98) and (99) gives us the desired upper thoun
Ko(k) <2 w1k, (100)
Using (100) and the fact that/; () < 1 [11, Eq. 25], (96) can be further bounded as

[e.e]

M exp(—A3) T <
fZ(Z) < (exp( ) P) / ()\P_l _|_21/—1V—12—1K2—1/) wE 2= Qo (101)
0
< 0151/_16_5‘% Py prvs /(1 +wP + z)l_ng_Qe_Axwwdw] , (102)

0

where C5 = AETUD(K — 1)) max{), 2\ Ay max{L, L}, 2(A\ oAy max{2, L})7}. Also,
since(rz +y)" < a2’ +y", Vo,y € R, 0 < v < 1, we have

o

Pty ptyy /(1 +w'Ti P 4 zl‘g)wK‘Qe‘Axwwdw] (103)
0

f2(2) < Cysp~te™

Tl

_ C'156_/_\ —Y —14v 1-Y K+1
=—p5 1+z72P (I+z2z"2)(K—-1)A )+
v

25T (K _ %) Axvf“Pz} (104)

< 20350 (K) max{1, \GE T A e Pt P (14 272 4 217 P (105)
l P 3 2 1
= Cg Oji e P (1 4o Teer 4 logPP_l) (106)
where Cis = 2eCy51'(K) max{1, A5 ALK}, and we have substituted = - to obtain

(106).
In general, the constants,; and \ in (106) depend om, ¢, s, ands. Let Ci6.r055 and S‘M,S,S
denote the dependent versions(@f; and \, respectively. Using Lemma 2, we have

fo @) <)Y Qes(w) (107)
{ s#s
Ci3log P z 1 S B
< f i p <_CI4F) (1 + 27705 P 4 2P P 1) ; (108)

whereC3 = 2L.7|(|.] — 1) max, ¢ 525 Ci6r0s5 aNdCry = min, g g4 ;\7‘,[753' This implies the
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upper bound on the PDF @1, in the statement of the lemma. Finally, using (107),

Fo,(y +w) = Fo,(y) (109)

ytw

= / fa, (w)dw (110)
Yy
CulogP [ 1
13 108 =1 1— L1

< —= og og P

<P / <1+x21 P41 PP) dx (1112)

Y

< %logP w -+ (y+w)1_2lolgp — y1—2101gp + [(y+w)2_$ — yz-@} l (112)
2 P P
013 10gP 1——1 o _1 o _1 1

< = og og 2 og :| — 11

<= 2 w4 w 21P+|:ylP+wlPP (3)

log P 2
p2 Y
where we have used Holder’s inequality and the fact thatw)* < y*+w®, y,2 > 0,0 < a <1
for (113). This concludes the proof fdt > 1.

For K =1, let X, = |f1r|2p31, Y, = pg, ming |g.¢|?, and Y, = H))?YW From (24), we
have(), = C1;Y,, whereCy; = mlnsl;,gsl(sl 51).

Now, note thatX, ~ F(l,pslaflr), andY, ~ I'(1,pg,(>_,0,2)7"). Therefore, X,, Y,, r =

., R are independent exponential RVs with finite variances. TB& Bf T, with such X,

andY, is given by [11, Eq. 22]. Using [11, Eq. 28] without omittinget exponential function,
and noting thatf, (w) = C”frr( -), we can show that (79) holds.

Finally, (80) follows (up to a constant multiplier) from (¥@nd (109). This concludes the
proof. [ |

TP ) , (114)

APPENDIX B
PROOF OFTHEOREM 1

We start with a lower bound on the CNER. By definition, we heNER (x, h) > SER;":(x, h), V7.
Suppose that, for some € D,, a genie reveals all the transmitted symbols futo the /th
receiver. The error rate of this genie-aided scheme prevadewer bound on the CNER. Without
loss of generality assume thate D,, and let us fix somé,, $, € S; with §; # $,. We have
CNER(x, h) > B |Q( 29Y(x,h)), where

A |Zr 1f1r\/,079r1$r| |31_52|2P31
A1+ 300 ol el 12)

7'(x,h) = (115)
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Let us find an upper bound off (x, h) for any h, andx € X. We have
(81 = $)V/Pss 051 fuv/Prgne, |

U
[ TS Sy PR ESE) N
|51 - 52|2PS1 | Zr 1 flr\/p_r\/_grlxr‘z (117)
4 R+ 3.1, o Rlgn (72
4 P, [ fhl\gzggﬂ TF A Rlon P | 118)
4 > L (1+ Rl gn[?) 7,2 ’
wherex £ T Hx is the projection of the beamforming vector onto the hypeese with norm

R. Applying the Cauchy-Schwarz inequality to (118), and tlwsing the fact thap! < p,, we
have

= 6Py, 5~ Lful?oeBlgn
U X,h < ‘31 52‘ S1 1r| Pril|gr1 119
TR < 4 Zl L+ prR[gn|? (119)
If K =1, we use the following upper bound that follows from (119).

|51 — $I*Ps,
77(x,h) < f Z | furl. (120)
r=1

This upper bound is, up to a constant multiplier, the samehasSNR of a maximal ratio
combining system witlR branches. The error rate of such systems is known to be lowerded
by a constant time#®~*, as stated in the theorem. This concludes the proofifor 1.

For K > 1, we use (119) to further bound’(x, h) as

R[4 — $,? | f1r1?|9:1|* Ps, Pr
Y(x,h) < max LA s 121
K ( ) - 4 r 1+Zk|fkr|2psk+R|gr1|2PRr ( )
R2 L 4|2 r2 . 2P P
< |$1 — $o A : | f1:1°lg 1|2 51 PR, : (122)
4 r 1+|f1r| PS1+|f2r| PSQ+R|gT’1| PR7.
R?|$; — $5]? max, {02 o2 X, Y, P?
| 1 2‘ { f17- grlpslpRr} rtr (123)

; ax )
~ 4min{l, aj% D15 0%, DSy, 02 PR} 7 1+ X, P+W,P+Y,P

where X, = o—;lfflr, r =0, 197"1, andW, = O'f2f27" Note thatX,, Y,, W, ~ I'(1,1) and they
are independent. Le@lg denote the constant multiplier in (123), aid = (X, Y, P?)/(1 +
X, P+ W,.P+Y,P). Thus, we can rewrite (123) as(x,h) < Csmax, Z°. Now, let

7 & max, 7Y, (124)
NER*(Q) £ 57E[Q(V2C1527)). (125)
SinceNER(Q) RE( ) vQ, it is sufficient to find a lower bound okER"(Q). Using the fact

that Q(z) > —=1%me %, we have

NER"(Q

\Sﬂf/l—l—Q exp(—zChg) fou(2)dz. (126)
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We thus need to find a lower bound for the PDFA% Using order statistics, we have

R
fzo(2 ZfZU ] Fa(2). (127)
=1
o
In the following, we find a lower bound on the PDF and CDFAJf for anyr. We first evaluate
the PDF ofZ”. Using a transformation of RVs [23], it can be expressed as

1+xP+wP) rP*(1+zP+wP) . .
faulz / / fr. ) pr ¢ e dw. (128)

This PDF is in the same form as (92) in Proposition 2, and caeJatuated using the same
methods discussed therein. We have

fZH(Z):eXp(_QFz>/{%\/4Z(1 +Pu;P+z)Kl(\/4z(1 +Pu;P+z))+ (129)
0

2(1+2;2+wP)K0(\/4z(1 +Pu;P+Z))]e_wdw (130)

zexp(—%)%/2(1—{—10P+2)K0<\/4Z<1 +P%P+Z>)fw(w)dw. (131)

0

Using the fact that for any > 0, Ko(z) = —log(%) —7ve+ (1 =)= + (1 +1/2— %)g—; +---
[26], we haveK((z) > —log(5) — 7., and thus

Jzu(2) > exp( QPZ) P12 /(1 +z+wP) [— log <Z(1 +jpz+ wP)) — 2%} e Ydw (132)
0

oo

2 1
:exp<—£) {( 279, + 2log P — log z) /1+z+wP) “Ydw—
0

0\8

(14 z+wP)log(l+ 2+ wP)e‘“’dw} (133)

2 1
:exp< ;)PZ{( 29, + 2log P —log z)(1 4+ 2z + P)—

[(1 +2)log(1 4 2) + Plog(1+2) + P+ PelztzEl(l;Z)} } (134)

Using the facts thalog z < log(1 + 2) < z, and

: 1 P
er E1< ;Z) §log(1+?> <log(l+ 2+ P) <log(l+ z+ P+ zP)
z

=log(l +2) +log(l+ P) < z+1og(2P) < z+1+log P, (135)
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we can show that

2z
fo(z) > exp( P)PZ{PlogP—i—QlogP(l +o)- (136)
(27 +2) 1+ 2+ P)+2(1+2)+2(z+ 1)P}} (137)
2z
> exp< - F) P2{PlogP P2+ 2)2+2) +2(1+2) +2(z + 1)}} (138)
B 2z 9
_ exp< _ F) 5 [logP (224 Tt 6)} (139)
After some straightforward manipulations, (139) leads tm@e compact lower bound
fzo(2) = ¢(2), (140)
where
o(z) 2 %) 5 llog P~ 14(1 + 2%)]. (141)
For the CDF ofZ’, we have
Fpu(z) > /Zexp< - 2—9“") 1 [log P — 14(1 + 2*)] d= (142)
= PJP
0
22\ z
> exp( — F) = [tog P — 14(1+2%)] (143)
> 2¢(2). (144)

We can now find a lower bound for the PDF &F. Suppose tha > e, and letz, =

(1°1g4p —1)2. Then,¢(z) > 0 for z < z, and¢(z) < 0, otherwise. Using (127), for < z, it

follows that

fzo(2) > R (2) (145)
2Rz\ 1 R
R-1 kit T .

= R exp (5 )P log P — 14(1 + 22)] (146)

> R2f! exp(—?Rz)Pi [log P —14(1 + = )}R (147)

= Rz exp(—2Rz2) PR Z( )logR PP (—14)" (14 22) (148)

> Rz71 exp(—2Rz)% [log P— Z ( ) log™™" P 14" (1 + 2%)’ ] (149)

> Rz exp(—2Rz) le [log" P — R2*7 114 1og" ™" P(1 + 2°7)] (150)

Since fzu(z) is a PDF, fz(z) > 0, Vz. Therefore, forz > z,, we can choose any negative
function as a lower bound ofyu(z). But, (150) is negative fot > z,. Thus, it is a lower bound
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on fzu(z) that holds for allz. We can therefore use it to bound (126) as

oo

R logfP zh72
NER"(Q) > —2(C1s+2R) 1, _
@= |S1|/m PR /1+2z6 ©

o

0
o)

_ R—1 _1
R?2%F-114% Jog P/ZR (1427 cwrzrg, (151)
|S1 |/ Pk 1+ 22
The first integral in (151) can be lower bounded by
[e’e) 1
zR_% zR_%
—2(018+2R)d > / —Z(Clg+2R)d 152
/1+2z€ =) 12" - (152)
0 0
1
6—(018+2R) L
z / fade (153)
0
2¢~(C18+2R)
= 154
3R+ 1) (154)
For the second integral in (151), we have
* _R-1 2R i
/ z 2 (1 + z )e—z(C1g+2R)dZ < /ZR_%(l + Z2R>€—z(018+2R)dZ (155)
1422 -
0 0
I(R+1 ['(3R+ 1
= ( ) -+ ( ) . (156)
(018 + 2R>R+§ (018 + 2R)3R+§
Substituting (154) and (156) to (151), it follows that
NER"(Q) > 2C19P~#(logh P — Cyylog"™* P), (157)
for some constantso > Cig, C5 > 0 independent of°.
Finally, Cy log"™!' P < %logR P, VP > exp(2Cy), and thus
NER'(Q) > Cyo P Flog” P, (158)
for all P > exp(max{14,2Cs}). This concludes the proof. [ |

APPENDIX C
PROOF OFTHEOREM 2

We provide a proof forK > 1. The proof for K = 1 is very similar. Thus, we skip it for
brevity.
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Let Q = max, 2,, whereQ), = 7%(e,, h), as defined in Appendix A. Then, we have

R
/ —wz fo, () [ [Fa,(@)]" " dw (160)
0 r=1 q=1
q#r
1 11 R
< R(Jocfg (1 + w TP 4 wl—mﬁ) dw (161)
o R 1
< R3%7'C\CR / whtemw (1 +w TP 4 TP PR) dw (162)
0
R R 1
_ paR-1 R _ L
et o er (me B ) er (e ) L] sy
logf P
< On =2 (164)

where Cy; = R3%71CoCfi max{I'(2R),I'(3)}, and (160) follows from the order statistics of
independent RVs. For (161) and (162), we have used Proposij and Holder’s inequality,
respectively. This concludes the proof. [ |

APPENDIX D
PROOF OFTHEOREM 3

Let us prove the theorem fak > 1. The proof forK = 1 is very similar. It is thus omitted.

Let 2 and(2,, be as defined in Appendix C. We need to find an upper bound doc¢hkzation
distortion. According to (36), it is sufficient to calculatiee CNER givenR,;| > 2. Note that
|R,| > 2 if and only if there exists, ¢ € {1,..., R}, r # ¢ such that\'(Q2,) = N (Q,) =
N (). Depending onV (2), we divide the calculation ofD’(¢, N) to two separate parts as
LDY(és, N) = 327, LDY(€, N).

The first part is concerned with the cadg2) = 0, or equivalently, € [0,&), Vr. Since
the decoder chooses one of tRerelay selection vectors, the NSNR is at leash, €2,.. Using
Proposition 2, we have

s &t
LD (&,2) < Cy / - -/exp (— m}ncur) H fa, (wr) Hdwr (165)
0 0 T T
< CuCRERYR(g,) (166)
log?t P 1 11
< Co(RCy3)" ogPR [1 + (Rlog P) 2%s? + (Rlog P)l_Wﬁ (167)

< Co(RCh3)" (168)

log?® P 1 RlogP
PR (H YTTP
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log2R P
PR
for a constant) < (53 < oo, and all P sufficiently large.
For the second part, we consider the cASE)) =1 <= Ir € R, Q, € [&,0). In this
case, the minimum NSNR i&, and we simply havebj(&;, 2) < Cox.
Combining the final upper bounds for the two parts, we HVES:, 2) < Co3 for some
constant) < Cs3 < oo. This concludes the proof. [ |

< Cyp (169)

log P

APPENDIX E
PROOF OFTHEOREM 4

We prove the theorem fak > 1. The proof forK = 1 is very similar and skipped for brevity.
Let 2 and (2., be as defined in Appendix C. Also, for simplicity of notatipret{ = &,
N = N,, and= = (N, — 1)¢. Depending onV (Q2), we divide the calculation ofDY(¢, N) to
three separate parts aB’(¢, N) = 37 LDY(¢, N).
The first part is concerned with the case whafé) = 0 < Q, € [0,£), Vr. In this case,
the NSNR is at leastin, €),.. Using Proposition 2, we have
3 3

LDY(¢, N) < Cy / - / exp (— min wr> I fo. (@) [] dwr < CoCLe™R (). (170)
0 0 T T

Now we consider the term (&) in (170). For future reference, we shall calculate an uppend
for the more general quantity given hyn¢), for anyn € {1,..., N — 2}. We have

log P 1 ——
b(ng) = 28 {1 + (ng) ZeeF + (n&)“l%f’;] (171)
L T (172)
log P 1 11
< 2Tog og P —
_logP
< Jgg <1+f +ené— ) (174)

where the last inequality follows fromd < P. Moreover, for alln € {1,...,N — 1}, n{ <
(N —1)¢ <log A+ Rlog P — Rloglog P+ 1+ < ¢ 4 (R + 1) log P. Combining with (174),
we can argue that there is a constant Cy; < oo such that

log P

P(ng) < Cy (175)

for all P sufficiently large. Using (170), it follows tham?(¢, N) < %}%@“O}i#.
For the second part, we evaluate the cases for wiigf)) € {1,..., N — 2}. For each
n € {1,...,N — 2}, suppose that > 2 of €2, are in the intervaln¢, (n + 1)¢£), and the rest
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R — i of them are in[0, n¢). The minimum NSNR is at least. Also, there are(") possible
ways to choose whick, will be in [n, (n + 1)£). Therefore,

né né (n+1)§ (n+1)¢

ETS 055 o B Y

ng
\____\,____/

R—1 integrals i integrals

exp(— min w,) H (w, Hdwr H dw,, (176)

relkl
rekl r'ekCe
where 7% is the collection of all possiblé-combinations of the setl,..., R} (e.g. %’ =
{{1,2},{1,3},{2,3}}), andK¢ = {1,..., R} — K. Then, similarly, we can use Proposition 2 to
arrive at

LD;(E, N)
1 i
<cocf§,Z > Ze " (g (n€)) ’[&ms) ng(nf) ] (177)
1= ZKGQ/Rn 1
R 2 R z'—lN_2 R—i _—né j R—i R i R—i 2 #2i logiP
<ach Y ()2 Snr et [shui(e) + €0 (14 ) 25T a7
=2 n=1

log® P &
PR

1=2

N-2 Rii N2
(é-R + é-R—iP—i) Z nR—z —né + fPZ Z nR—H —né
n=1 n=1

< 00(4013)R ) (179)

where (178) follows from Holder’s inequality, and the féleht (né)* =7 < (1+n2¢%), i > 1.
For (179), we have applied (175). Now, we shall evaluate thmrsations with respect ta in
(179). The following lemma provides a useful upper bound:

Lemma 3. Let f be a non-negative real valued Riemann integrable functiah vi(z) <
oo, Yz € R that is increasing on the intervdl-oo, b), and decreasing ofib, o). Then

/ F(x)da + 2b. (180)

nn1

Proof: Let n, = |b] be the largest integer less thanAssume that; < n, < ny. Then

np—1 n+1 np—1 n+1

Z/f dx<Z/f dx—/f (181)

where the inequality follows from the fact thétis increasing in the range of integration. Also,

nb

n=n

n+1 n+1

n:anHf MZbH/f dx<nn2+2/fx—1dx— / flo)de,  (182)

TLb—‘rl
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where the inequality follows sincg¢ is decreasing otin, + 1, c0), and thus forn, +2 < n <
xr<n+1, f(n) < f(z —1). Finally, combining (181) and (182),

no np—1
> )= Fn) + flm) + flm+1) + Z f(n (183)
n=ny n=ny n=np+2
np—1 n2
< / flx)dz+b+b+ / f(z)dx (184)
np+1
< /f(x)dx + 20, (185)
which is the desired inequality for; < n, < n,. The other cases can be proved similarly. We
skip them for brevity. [ |
Note that the functiory(x) = z‘ exp(—x¢) has a global maximum at =1/ with f(z) =
i'¢ " exp(—i). Moreover, for any0 < a < b < oo, [* f(z)dz < I flz)da = T(i 4 1)),

Using Lemma 3, for any < R, we have

-2

Z nfle™ <T(R—i+ 1) WD 4 o(R — i)fig () (186)
n=1
< F(R — i+ 1)5—(R—i+1) + 2<R . i)R—ig—(R—i—l—l) (187)
< 2(R —q)Brig=(Bitl), (188)

where the second inequality follows from the assumption ¢ha 1.
Using (188), (179) can be bounded as:

R R
LDH(E, V) < Co(2Ch) 5Tl S [2(R i) (€ 4 € P) + 2R +9)e P (189)
1=2
R R
< (20" BT S [a(R —2)"2 4 2(2R)e (190)
=2
R
< RCo(2C13)" [A(R — 2)"7% + 2(2R)*"] % (191)

where the second inequality follows from the assumption fha ¢ 1.
For the last part, we consider the cases for whiétZ) = N — 1. The minimum NSNR is

(N —1)¢ =Z > log A + Rlog(;:25), and we hava.y(¢, N) < Coe = < ooloAg}f,{’.

Combining the final upper bounds fabp} (¢, N), i = 1,2,3, LDY({, N) < Cos 2L for all P

APE
sufficiently large, and a constafit< Cy; < oo that is independent aP and A. This proves the

upper bound on the LD.
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Finally, by the definition of our compressor in Section V-A@ have

Re(LQg, n,) = [logy (N — 1)]P(3r, Q¢ < N) (192)
R
< [Rlogy N1) " P(Q < E) (193)
r=1
P log P
< RCy 31+ Rlog, |[AlogA + RAlog [ —— | +2| L 282 (194)
log P P
log® P
< Cy gP ; (195)
for some constan® < Cy < oo, and P sufficiently large. The third inequality follows from
(175). This concludes the proof. [ |
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