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Distributed Beamforming in Wireless Multiuser

Relay-Interference Networks with Quantized

Feedback
Erdem Koyuncu and Hamid Jafarkhani,Fellow, IEEE

Abstract

We study quantized beamforming in wireless amplify-and-forward relay-interference networks with

any number of transmitters, relays, and receivers. We design the quantizer of the channel state infor-

mation to minimize the probability that at least one receiver incorrectly decodes its desired symbol(s).

Correspondingly, we introduce a generalized diversity measure that encapsulates the conventional one

as thefirst-order diversity. Additionally, it incorporates thesecond-orderdiversity, which is concerned

with the transmitter power dependent logarithmic terms that appear in the error rate expression. First,

we show that, regardless of the quantizer and the amount of feedback that is used, the relay-interference

network suffers a second-order diversity loss compared to interference-free networks. Then, two different

quantization schemes are studied: First, using a global quantizer, we show that a simple relay selection

scheme can achieve maximal diversity. Then, using the localization method, we construct both fixed-

length and variable-length local (distributed) quantizers (fLQs and vLQs). Our fLQs achieve maximal

first-order diversity, whereas our vLQs achieve maximal diversity. Moreover, we show that all the

promised diversity and array gains can be obtained with arbitrarily low feedback rates when the

transmitter powers are sufficiently large. Finally, we confirm our analytical findings through simulations.

Index Terms

Wireless relay network, beamforming, interference, distributed vector quantization, symbol error

probability, diversity gain, array gain.

I. INTRODUCTION

While it has been demonstrated in several studies that cooperation can greatly improve the

performance and reliability of wireless network communications [1]–[5], interference still re-

mains to be a fundamental issue in cooperative network design. Most of the previous work on
cooperative networks relies on orthogonal channel allocation so that different transmitters do

not interfere with each other. However, allocating orthogonal channels for each user may not

be desirable due to time and bandwidth limitations [6], [7].In such cases, one should explore
effective ways to deal with interference while preserving cooperative diversity gains.

This work was presented in part at IEEE Global Communications Conference (GLOBECOM), Nov. 2009.
The authors are with the Center for Pervasive Communications and Computing, University of California, Irvine, Irvine CA

92697-2625 USA. Email:{ekoyuncu, hamidj}@uci.edu.
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Multiple antenna interference cancelation techniques arevery effective when dealing with
interference in cooperative networks [8]. They offer reasonable performance with low decoding

complexity. In this work, we consider a different approach.To be able to study the ultimate

performance limits, we do not put any restrictions on our decoders. We would like to design a
cooperation scheme that achieves maximal diversity benefits, and thus provides high reliability,

even in the presence of multiuser interference.

For networks with a single transmitter-receiver pair and nointerference, network beamforming
using amplify-and-forward (AF) relays has shown to achievethe maximal spatial diversity

[9], [10]. However, the optimal beamforming policy requires one or two real numbers to be

broadcasted from the receiver to the relays. Using distributed beamforming with quantized
instantaneous channel state information (CSI), it is possible to obtain both maximal diversity,

as well as high array gain with only a few feedback bits from the receiver [11]–[13]. A special

case of quantized feedback for cooperative networks is the relay selection scheme [14]–[16]. It
has been formally shown in [11] that, for a network withR parallel relays, the relay selection

scheme provides the maximum diversityR.

Quantized feedback schemes have also been studied for non-cooperative multiuser interference
networks. In [17], the author considers zero-forcing beamforming with finite rate feedback in

multiple-input multiple-output (MIMO) broadcast channels. Interference alignment for multiuser

interference networks with limited feedback has been studied in [18]. Unlike what we shall study
in this work, where we seek to optimize the reliability of thesystem in terms of the diversity

gain, the goal of the above two papers was to optimize the datatransmission rate in terms of the

multiplexing gain. A common conclusion that we can infer from both studies is that, in order to

achieve the same multiplexing gain as a system with perfect CSI, the feedback rate should be
increased at least logarithmically with the transmitter power; any constant feedback rate results

in a complete loss of multiplexing gain. This is unlike point-to-point systems where feedback

is not even necessary to achieve the maximal multiplexing gain [17], and a few feedback bits
is usually sufficient to transmit with rates that are close tothe one with perfect CSI [19]. The

feedback requirements of interference networks appears tobe considerably higher than that of

interference-free networks.
What are the feedback requirements if instead we would like to ensure maximal reliability in

the presence of interference? One goal of this paper is to answer this question for cooperative

networks withK transmitters,L receivers, andR parallel AF relays. We assume that each
transmitter and each relay has its own short term power constraint. The transmitters do not have

any CSI. Each receiver knows its own receiving channels and the channels from the transmitters

to the relays. Each relay only knows the magnitudes of its ownreceiving channels. Each relay
and each receiver also has partial CSI provided by feedback.The feedback information represents

a quantized beamforming vector. In that sense, this paper isalso a generalization of single-user

quantized network beamforming [11] to multiuser interference networks. On the other hand,
such a generalization is quite challenging because of the distributed nature of the network. Let
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us now describe some of these challenges and our approaches to address them.
In interference networks, the relays amplify both noise andinterference, which results in

completely different problem formulations and solutions.Second, there are multiple receivers

that have different optimal beam directions. As a result, itis difficult to design a scheme that
can provide a reasonable performance to all the users.

Another difficulty is related to acquiring feedback information from several separated receivers.

The optimal beamforming policy requires the full CSI of the interference network. In practice
however, none of the receivers can obtain such information via training methods. We thus

consider two different quantization schemes: In the first scheme, the feedback information is

provided by a global quantizer (GQ) that knows the entire CSI. We use this hypothetical quantizer
to analyze the performance limits of network beamforming inthe presence of interference. In the

more practical second scheme, we use distributed local quantizer (LQ) encoders at each receiver.

Each receiver can access only a part of the CSI, and provides its own feedback information for
the relays and the other receivers.

In [20], we introduced a general systematic LQ design method, called localization, in which

one synthesizes an LQ out of an existing GQ using high-rate scalar quantization combined with
entropy coding. In the same work, we described an application of the method to MIMO broadcast

channels. In this work, we apply it to design LQs for our network model. Therefore, our GQ

has another important purpose other than the one we have previously mentioned: It will also
serve as the basis of our LQs.

We would also like to note that the LQ design in this paper distinguishes itself from the one

in [20] in several ways, even though the underlying localization method will be the same. First,

we need to consider a totally different and much more complicated distortion function. Second,
the high-rate scalar quantizers, that form the crucial partof the method, should be designed

accordingly. Third, the performance analysis of the resulting LQs is thus different and more

complicated. As a result, in this work, we will only analyze the performance of localization for
a particular class of GQs that are based on relay selection.

Our performance measure is what we call thenetwork error rate(NER). Given a fixed channel

state, it is the probability that at least one user incorrectly decodes its desired symbol(s). In that
sense, any receiver can be interested in the symbols transmitted by any subset of transmitters.

We use a generalized diversity measure to characterize the asymptotic behavior of the NER as

the transmitter powers grow to infinity. In what follows, we describe this measure together
with its motivations: Suppose that a wireless communication system achieves an error rate

of C(P α logβ P )−1, where P is the transmitter power constraint andC is a constant that

is independent ofP . Then, we callα and β, the first-order and the second-order diversity
gains, respectively, and say that the scheme achieves diversity (α, β). Such a definition of

diversity is more precise than the traditional one as we demonstrate by an example: For two

hypothetical communication systems with diversity gains(α, β1), and(α, β2), whereα ≥ 1 and
∞ > β1 > β2 > −∞, the former always outperforms the latter for allP sufficiently large. On
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the other hand, the traditional definition, according to which the diversity gain isα for both
systems, fails to distinguish between the asymptotic performance of the two.

The main contributions of this paper can be summarized as follows: First, we show that,

regardless of the quantizer and the amount of feedback that is used, the maximal achievable
diversity of our network model is(R,−R) whenK > 1, whereas it is(R, 0) whenK = 1.1 In

other words, the relay-interference network suffers from asecond-order diversity loss compared

to an interference-free network that can achieve diversity(R, 0) with K = L = 1 [11]. Then,
we construct a relay-selection based fixed-length GQ (fGQ) that can achieve maximal diversity

for anyK. Next, using our fGQ and the localization method, we design both fixed-length and

variable-length LQs (fLQs and vLQs). Our fLQs can achieve diversity (R,−2R) whenK > 1,
and diversity(R,−R) whenK = 1, usingR feedback bits per receiver. They show that it is

possible to achieve very high reliability using a fixed number of feedback bits. On the other

hand, our vLQs can achieve maximal diversity gain for anyK. Moreover, the feedback rate they
require decays to zero as the transmitter powers grow to infinity. Therefore, they provide a very

fortunate answer to the question that we have posed earlier:In a relay-interference network, it

is possible to achieve maximal reliability using arbitrarily low feedback rates per receiver, when
the transmitter powers are sufficiently large. Another desirable property of our vLQs is the fact

that the array gain they provide can be made arbitrarily close to the one provided by the fGQ.

The rest of the paper is organized as follows: In Section II, we introduce our network model,
performance and diversity measures, and problem definition. In Section III, we show that the

maximal diversity of our network model is(R,−R). In Sections IV and V, we introduce our GQ

and LQ designs, respectively. Numerical results are provided in Section VI. In Section VII, we

draw our major conclusions. An upper bound on the probability density function (PDF) and the
cumulative distribution function (CDF) of a frequently used random variable (RV) is provided

in Appendix A. Some other technical proofs are provided in Appendices B through E.

Notation:For a logical statementS, “S is true forx sufficiently large” means that there exists
x0 < ∞ such that for allx ≥ x0, S is true. ‖ · ‖ indicates the 2-norm,‖ · ‖∞ is the infinite

norm, 〈·|·〉 is the inner product.C, R and Z+ represent the sets of complex numbers, real

numbers, and positive integers, respectively.det(A) is the determinant of a square matrixA.
AT , AH denote the transpose and the Hermitian transpose ofA, respectively.P represents the

probability. fX(·) is the PDF, andFX(·) is the CDF of an RVX. E[X ] is the expected value

of X. X ∼ Γ(k, θ) means thatX is a Gamma RV withfX(x) = xk−1e−x/θ

θkΓ(k)
for x > 0 and

fX(x) = 0 for x ≤ 0, k, θ > 0. For any setsA andB, A−B is the set of elements inA, but not

in B. |A| is the cardinality ofA. Ar = {(a1, . . . , ar) : a1, . . . , ar ∈ A}, r ∈ Z+, is the cartesian

power.γe = 0.577... is the Euler-Mascheroni constant,e = exp(1), and∅ is the empty set. For
a real-valued functionf : C → R with C ⊂ CK , let M , {x : x ∈ C, f(x) = maxx′∈C f(x

′)}.

1The caseK = 1 corresponds to a relay-broadcast network that does not suffer any multiuser interference. Even though our

main goal in this paper is to analyze interference networks,we present the extension of our results to broadcast networks, so as
to demonstrate the detrimental effects of interference in acomparative manner.
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Then,argmaxx∈C f(x) is the unique vectorx∗ with the property thatx∗ ≺ x, ∀x ∈ M, and “≺”
represents some partial ordering (e.g. lexicographical ordering) of complex vectors. We define

argmin(·) in a similar manner. Finally,log(·) is the natural logarithm,log2(·) is the logarithm

to base2, cosh(·) is the hyperbolic cosine,Q(·) is the Gaussian tail function,Γ(·) is the gamma
function,E1(x) ,

∫∞
1
e−1e−xtdt is the exponential integral, andKν(·) is the modified Bessel

function of the second kind of orderν.

II. NETWORK MODEL AND PROBLEM STATEMENT

A. System Model

The block diagram of the system is shown in Fig. 1. We have a relay network withK

transmitters,L receivers, andR parallel relays. The casesK = 1 andK > 1 correspond to a

relay-broadcast network and a relay-interference network, respectively. We assume that there is
no direct link between the transmitters and the receivers.

TX1

TXK

s1

sK

×

f11

×

fKR

×

×
f1R

fK1

+

+

η01

η0R

Relay1

RelayR

t1

tR

u1

uR

×

g11

×

gRL

×

×
g1L

gR1

+

+

η11

η1L

y1

yL

RX1

RXL

Fig. 1: System block diagram. In the figure,TXk, Relayr, andRXℓ stand for thekth transmitter,

rth relay, and theℓth receiver, respectively.

Denote the channel from thekth transmitter to therth relay by fkr and the channel from

the rth relay to theℓth receiver bygrℓ. Let h = (f11, . . . , fKR, g11, . . . , gRL) denote the channel
state of the entire network. We assume that the entries ofh are independent and distributed as

fkr ∼ CN (0, σ2
fkr

), grℓ ∼ CN (0, σ2
grℓ
) with finite variancesσfkr , σgrℓ < ∞, ∀r, k, ℓ. For brevity,

let gℓ , (g1ℓ, . . . , gRℓ), which denotes all the channels from the relays to theℓth receiver.
Only the short-term power constraint is considered, which means that for every symbol

transmission, the average power levels used at thekth transmitter and therth relay are no

larger thanPSk
andPRr , respectively.

We assume a quasi-static channel model; the channel realizations vary independently from

one channel state to another, while within each channel state the channels remain constant. We
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assume that theℓth receiver knowsgℓ and each relay knows the magnitudes of its own receiving
channels, i.e. therth relay knows|fkr|, k = 1, . . . , K. Some possible procedures to reveal the

channel states to the receivers can be found in [11], [13]. For completeness, we give an outline

of one possible way: Theℓth destination can acquire the knowledge ofgrℓ by training from the
rth relay. Therth relay can acquire the knowledge of|fkr| using training sequences from the

kth source. It can also amplify and forward its received training signal from the source to the

destination, so that the destination can estimate the product of fkr andgrℓ. As grℓ is known by
the destination,fkr can be estimated.

Each relay and each receiver also has partial CSI provided byfeedback. In this paper, we

consider two different feedback schemes, namely the globaland local quantization schemes.

B. Global Quantization

Our global quantizerGQ is defined by a global encoder and a global decoder, as described

in Fig. 2. The global encoder consists of two parts. For each channel state, first, a GQ encoder

QGE : CR(K+L) → IG maps the channel realizationh to an index inIG , {1, . . . , |IG|}, the
index set of the codebook elements. Then, a lossless global compressorGQC : IG → J G maps

this index to a binary description.

h GQE(·) GQC(·)m ∈ IG

Global Encoder

GQC−1(·) GQD(·)
m

Global Decoder

xm

Fig. 2: Global quantizer operation.

Let l(j) denote the length of a binary descriptionj. We call GQ a fixed-lengthGQ (fGQ) if

l(j) = ⌈log2 |IG|⌉, ∀j ∈ J G. Otherwise, we callGQ a variable-lengthGQ (vGQ).
In either case, the global encoder feeds backGQC(GQE(h)), using l(GQC(GQE(h))) bits. The

feedback bits are received by the global decoders without any errors or delays.

There is a unique global decoder at each relay and each receiver, which comprises of the com-
plementary parts to the global encoder: A lossless decompressor and a quantizer decoder. First

the decompressorGQC−1 : J G → IG reconstructs the quantization index from the received binary

description. It is followed by the quantizer decoderGQD : IG → CG which maps the quantization
index to a codebook element. The codebookCG has|IG| elements,CG = {x1, . . . ,x|IG|}. Without

loss of generality, forGQE(h) = m, we setGQD(m) = xm ∈ Cg. For the rest of this paper, we

will use the well-known notationQg(h) , (GQD ◦ GQC−1 ◦ GQC ◦ GQE)(h) = (GQD ◦ GQE)(h).
Therefore,GQ : CR(K+L) → CG, andGQ(h) = x, for somex ∈ CG.

In the most general case, therth relay may make use of the side information|fkr| in the

process of decoding the feedback information. However, in order to keep the relay operation as
simple as possible, we do not consider such a scenario in thispaper.
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C. Local Quantization

We define our local quantizerLQ by L local encoders, with theℓth encoder at theℓth receiver,
and a unique local decoder at each receiver and relay, as described in Fig. 3. Theℓth local

encoder comprises of two parts: An LQ encoderLQEℓ : CR(K+1) → IL
ℓ and a lossless local

compressorLQCℓ : IL
ℓ → J L

ℓ . Note that the domain of each LQ encoder is different from the
domain of the GQ encoder. For theℓth encoder, the domain corresponds to the channel states

from the transmitters to the relays and from the relays to theℓth receiver, represented by the

concatenation vector[f , gℓ].

g1

f

gL
LQEL(·) LQCL(·)

mL∈IL
L

Lth local encoder (at the Lth receiver)

LQE1(·) LQC1(·)
m1∈IL

1

First Local Encoder (at the first receiver)
LQC−1(·) LQD(·)....

.

.

m1, . . . ,mL

Local Decoder (at each receiver and relay)

x ∈ CL

Fig. 3: Local quantizer operation.

The ℓth receiver feeds backLQCℓ(LQEℓ([f , gℓ])), using l(LQCℓ(LQEℓ([f , gℓ]))) bits. We callLQ

an fLQ if, l(j) = ⌈log2 |J L
ℓ |⌉, ∀j ∈ J L

ℓ , ∀ℓ. Otherwise, we call it a vLQ. For the latter case, the
feedback rate of theℓth receiver can be expressed asRℓ(LQ) , E[l(LQCℓ(LQEℓ([f , gℓ])))].

After all theL feedback messages are exchanged between the receivers and the relays, each

of them decodes the feedback bits using the local decoder. The local decoder is the composition
of a decompressorLQC−1 :

∏
ℓJ L

ℓ → ∏
ℓ IL

ℓ and a quantizer decoderLQD :
∏

ℓ IL
ℓ → CL. Overall,

LQ(h) , LQD(LQE1([f , g1]), . . . , LQEL([f , gL])). Thus,LQ : CR(K+L) → CL, andLQ(h) = x, for

somex ∈ CL.

D. Transmission Scheme

We use a two-step AF protocol [10], [11]. In the first step, thekth transmitter selects a symbol

sk from a constellationSk, where|Sk| <∞, P(sk) = |Sk|−1, ∀sk ∈ Sk, and sends
√
PSk

sk. We

normalizesk asE[|sk|2] = 1. Thus, the average power used at thekth transmitter isPSk
. During

the first step, there is no reception at the receivers, but therth relay receives

tr =
K∑

k=1

fkrsk
√
PSk

+ η0r, (1)

whereη0r ∼ CN(0, 1).
Suppose that a quantizerQ : CR(K+L) → C, global or local, is employed in the network,

andQ(h) = x, for somex ∈ C. Then, the relays use the beamforming vectorx to adjust their
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transmit power and transmit phase. During the second step, the transmitters remain silent, but
the rth relay transmits

ur = xr
√
ρrtr, (2)

where the relay normalization factorρr is given by

ρr ,
PRr

1 +
∑K

i=1 |fir|2PSi

. (3)

The average power used at therth relay can be calculated to beEs1,...,sK ,η0r[|ur|2] = |xr|2PRr , ∀h.
We require0 ≤ |xr| ≤ 1 as a result of the short term power constraint. The channel state

dependent normalization factorsρr ensure that the instantaneous transmit power of each relay

remains within its power constraint with high probability.2

Also, note that within the restriction of0 ≤ |xr| ≤ 1, ρr is the maximal normalization factor

that we can use. In other words, if a factorρ′′r satisfiesρ′′r > ρr for someh, then it violates

the short term power constraint. Still, one can employ another factorρ′r with ρ′r ≤ ρr, ∀h (e.g.
ρ′r = PRr/(1 +

∑K
k=1(1 + |fkr|4)PSk

)). We shall discuss later in Section III whether or not such

a different choice of the normalization factor can improve the network performance.

After the two steps of transmission that has been described above, the received signal at the
ℓth receiver can be expressed as:

yℓ =

K∑

k=1

R∑

r=1

xr
√
ρrfkrgrℓ

√
PSi

si +

R∑

r=1

xrgrℓ
√
ρrη0r + η1ℓ, (4)

whereη1ℓ ∼ CN(0, 1) is the noise at theℓth receiver. We assume that the noisesη0r, r = 1, . . . , R,

andη1ℓ, ℓ = 1, . . . , L are independent.

E. Performance Measure

The ℓth receiver attempts to decode the symbols of the transmitters with indices given by an
arbitrary but fixed setDℓ ⊂ {1, . . . , K}, Dℓ 6= ∅. As an example, for a network withK = 3

andL = 2, let D1 = {1, 2} andD2 = {2, 3}. Then, the first receiver is interested only in the

symbols of the first and the second transmitters, while the second receiver is interested only in the

symbols of the second and the third transmitters. In general, we assume that
⋃

ℓ Dℓ = {1, . . . , K}.
This guarantees that at least one receiver is interested in the symbols of thekth transmitter. In

particular, forK = 1, we haveDℓ = {1}, ∀ℓ.
Let us call the vector of transmitted symbolssℓ = [sk]k∈Dℓ

as the super-symbol relevant to the
ℓth receiver, and̃sℓ be its decoded version. We say that an error event occurs at a receiver if it

incorrectly decodes its desired super-symbol. In this case, the optimal decoder at theℓth receiver

2Because of the noise at its received signal, a relay can exceed its transmit power constraint at some instants. The phrase

“short-term” comes from the observation that, regardless of the channel states, the relay always obeys its power constraint when
its transmit power is averaged over the transmitted symbolsand the noise.
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is an individual maximum likelihood (ML) decoder3 given by s̃ℓ = argmaxs′ℓ∈Sℓ
P(s′ℓ|yℓ,x,h),

whereSℓ =
∏

k∈Dℓ
Sk is the relevant super-symbol alphabet. For a fixed channel stateh, and

beamforming vectorx, let SERIMLℓ (x,h) , P(̃sℓ 6= sℓ) denote the conditional super-symbol error

rate (SER) of theℓth receiver with the individual ML decoder.
Let us now define a single quantity that represents the SER performance of all the receivers. We

define the conditionalnetwork error rate(conditional NER, or CNER), denoted byCNER(x,h),
as the probability that at least one receiver incorrectly decodes its desired super-symbol.

Our performance measure, the NER, is the expected value of the CNER. Given a quantizerQ
global or local, the NER can thus be expressed as

NER(Q) , Eh[CNER(Q(h),h)]. (5)

F. Diversity Measure

Let us also define a unique diversity measure for our network.Let PRr = pRrP, r = 1, . . . , R,
PSk

= pSk
P, k = 1, . . . , K, wherepSk

, pR,r <∞. In other words, we allow the power constraint

of each transmitting terminal to grow linearly withP . Then, thefirst-order diversity achieved

by a quantizerQ is given by

d1(Q) , lim
P→∞

− log NER(Q)

logP
. (6)

One problem with this conventional definition of diversity is that it fails to characterize the

asymptotic effect of possible sub-linearP -dependent terms (e.g. logarithmic terms) in the error

rate expression. In order to properly handle such cases, we define thesecond-orderdiversity as

d2(Q) , lim
P→∞

− log NER(Q) + d1(Q) logP

log logP
. (7)

Note that the first-order diversity is always positive, while the second-order diversity can be
negative.

Now, thediversity (gain) achieved by a quantizerQ is given byd(Q) , (d1(Q), d2(Q)).
With these definitions, the asymptotic performance with a quantizerQ, asP grows to infinity,

can be expressed as

NER(Q) ∼= GA(P )(logP )
−d2(Q)P−d1(Q), (8)

where the factorGA(P ) is thearray gain. It is sublogarithmic in the sense thatlimP→∞
GA(P )
logP

= 0.
Also, we use it only when we compare the performance of two quantizers that provide the same

diversity gain.
Finally, for two diversity gainsd = (d1, d2), andd′ = (d′1, d

′
2), we say thatd is higher thand′

(or d > d′) if either d1 > d′1 or d1 = d′1, d2 > d′2.

3In the literature, the phrase “individual” usually refers to the cases in which the a posteriori probability is maximized over
a single transmitter alphabet. Note that, in our case, the maximization is over the product alphabetSℓ that represents the set of

all super-symbols that theℓth receiver is interested in.
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G. Problem Statement

Our goal is to design the quantizerQ, given a limited feedback rate, such that the NER is
minimized. We consider this problem for both GQs and LQs.

To achieve our goal, we first determine the maximal possible diversity with our network model.

Then, we design structured fGQs that can achieve this diversity. Finally, we use our observations
on fGQs to systematically design fLQs that achieve maximal first order diversity, and then, vLQs

that achieve maximal diversity.

We would like to note that, as demonstrated in [11], the numerical optimization of our
quantizers is always possible by using algorithms such as the Generalized Lloyd Algorithm

[21], [22]. These algorithms can be used to improve the arraygain performance, or in some

particular cases, the second-order diversity performanceof our structured codebook designs. We
will not consider such optimizations in this paper since they are straightforward.

III. L OWER BOUNDS ON QUANTIZER PERFORMANCE

Before we attempt to design a high-performance low-rate quantizer, it is natural to determine
the best possible performance we can expect withany quantizer. In this section, we find lower

bounds on the NER for both relay-interference and relay-broadcast networks that hold for any

quantizerQ, global or local.
Let X = {x ∈ CR : ‖x‖∞ ≤ 1} represent the set of all beamforming vectors. Then, we have

Theorem 1. Let Q : CR(K+L) → C with C ⊂ X . Then, there are constants0 < C1, C2 <∞ that

are independent of bothP and Q, such that for allQ, and for all P sufficiently large,

NER(Q) ≥ C1
1

PR
, K = 1,

NER(Q) ≥ C2
logR P

PR
, K > 1.

(9)

Moreover, the bounds in (9) hold for any relay normalizationfactor ρ′r that satisfiesρ′r ≤ ρr, ∀h.

Proof: Please see Appendix B.

In other words, for relay-broadcast networks, the maximal diversity gain is(R, 0). Indeed, for

a network withK = L = 1, it was shown in [11] that diversity(R, 0) is achievable.
On the other hand, for relay-interference networks, the maximal diversity gain is(R,−R).

Since (R, 0) > (R,−R), interference results in a second order diversity loss in our network

model.

Theorem 1 also shows that a different relay normalization factor ρ′r cannot improve the
diversity upper bounds, provided that it satisfies the short-term power constraint, and a codebook

C ⊂ X is employed. Thus, for the rest of this paper, we will only consider ρr as our relay

normalization factor.



11

An immediate question that stems from Theorem 1 is whether there exists finite rate quantizers
that can achieve maximal diversity. In the next section, we construct an fGQ that provides an

affirmative answer.

IV. M AXIMAL DIVERSITY WITH AN FGQ

In order to determine an fGQ that can achieve maximal diversity, let us first determine, for

anyK, the optimal GQ given a fixed codebook with finite cardinality.

Proposition 1. Given a fixed codebookC with |C| < ∞, the optimal GQ is given byGQ⋆C(h) ,

argminx∈C CNER(x,h).

Proof: Let Q′ : CR(K+L) → C. We have

CNER(GQ⋆C(h),h) ≤ CNER(Q′(h),h) =⇒ NER(GQ⋆C) ≤ NER(Q′), ∀Q′. (10)

Thus,GQ⋆C performs at least as good as any quantizer with codebookC.

Therefore, given that we employ an optimal GQ encoder given by Proposition 1, the GQ

codebook uniquely determines the system performance. But,there is one complication: If we
ever want to implement the optimal GQ encoder, we should be able to evaluateCNER(x,h),

for any givenx and h. Unfortunately, a closed form characterization of the CNERis very

difficult, if not impossible. For that reason, we design a suboptimal quantizer that, instead of the
actual CNER, uses an upper bound on the CNER. Fortunately, this suboptimal quantizer will be

powerful enough to achieve maximal diversity for anyK.

A. An Upper Bound on the CNER

For theℓth receiver, instead of the individual ML decoder describedin Section II-E, suppose
that we employ a joint ML decoder̂sℓ , argmaxs′∈S P(s′|yℓ,x,h), whereS =

∏
k Sk. Recall

that, for the individual ML decoder at theℓth receiver, the a posteriori probability was maximized

over
∏

i∈Dℓ
Si. For the joint ML decoder, the maximization is over

∏
k Sk at all the receivers.

Let SERJMLℓ (x,h) , P(ŝℓ 6= s) denote the error rate of the joint ML decoder. Then, we have

SERIMLℓ (x,h) ≤ SERJMLℓ (x,h), ∀ℓ. Also, from (4),4

SERJMLℓ (x,h) ≤ 1

|S |
∑

s,ŝ∈S

s6=ŝ

Q
(√

2γℓ,s,ŝ(x,h)
)
, (11)

where

γℓ,s,ŝ(x,h) =
|∑K

k=1(sk − ŝk)
√
PSk

∑R
r=1 fkr

√
ρrgrℓxr|2

4(1 +
∑R

r=1 ρr|grℓ|2|xr|2)
. (12)

4Note that, in order to be able to perform ML decoding, the receivers should know which beamforming vector is used by the
relays. In other words, for eachh, the receivers should knowQ(h). This explains why we need to have a quantizer decoder at

each receiver as well as each relay.
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In (11) and (12), the decoded symbol vector for each receiveris obviously different, i.e.̂sℓ,
though we have omitted the dependence onℓ for brevity. Furthermore, from now on, we shall

omit the conditions, ŝ ∈ S in the summations as it is clear from the context.

Now, using a union bound over all the receivers, it follows for the CNER that

CNER(x,h) ≤
L∑

ℓ=1

SER
IML

ℓ (x,h) (13)

≤
L∑

ℓ=1

SER
JML

ℓ (x,h) (14)

≤ 1

|S |
L∑

ℓ=1

∑

s6=ŝ

Q
(√

2γℓ,s,ŝ(x,h)
)
. (15)

This upper bound can easily be evaluated for any constellation and thus, it is good enough for

our purposes. However, for clarity of exposition in the restof the paper, we seek a much simpler

bound. First, let us define

γℓ(x,h) , min
s6=ŝ

γℓ,s,ŝ(x,h), (16)

and

γL(x,h) , min
ℓ
γℓ(x,h) (17)

= min
ℓ

min
s6=ŝ

γℓ,s,ŝ(x,h). (18)

Then, (15) can be further bounded as

CNER(x,h) ≤ |S | − 1

2

L∑

ℓ=1

Q
(√

2γℓ(x,h)
)

(19)

≤ L(|S | − 1)

2
max

ℓ
Q
(√

2γℓ(x,h)
)

(20)

= 2C0Q
(√

2γL(x,h)
)

(21)

≤ C0 exp(−γL(x,h)), (22)

whereC0 , L(|S |−1)/4. In the derivation above, (19) follows since there are|S |(|S |−1)/2

distinct terms withs 6= ŝ. For (22), we have used the fact thatQ(x) ≤ 1
2
exp(−x2

2
).

We would like to note the similarity of (21) and (22) to the conventional error rate expressions

for single user wireless communication systems. Actually,the termγL(x,h) can be interpreted

as a network signal-to-noise ratio (NSNR) measure that characterizes the overall performance
of the network.
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B. Diversity Analysis of the Relay Selection Scheme

ForK = L = 1, we have shown in [11] that a feedback scheme based on relay selection can
achieve diversity(R, 0). Here, we generalize this result to anyL.

For K > 1, due to both multiuser interference and its manifestation in Theorem 1, it is not

clear whether diversity(R,−R) would be achievable. The main goal of this section is to show
that it is indeed achievable with a GQ that maximizes the NSNR, and surprisingly, again using

a simple relay selection codebook.

The relay selection codebook can be defined asCS = {er : r = 1, . . . , R}, whereerq = 1 for
q = r, anderq = 0 for q 6= r. Then, for anyK andL, We define our fGQ as

GQCS(h) = arg max
er∈CS

γL(er,h), (23)

where, for any relay selection vectorer, we have from (12) that

γL(er,h) =
1

4
min
s6=ŝ

min
ℓ

∣∣∣
∑K

k=1(sk − ŝk)
√
PSk

fkr

∣∣∣
2

|grℓ|2PRr

1 +
∑K

k=1 |fkr|2PSk
+ |grℓ|2PRr

. (24)

Note thatGQCS chooses the relay selection vector that maximizes the NSNR.

In the following theorem, we show that, for both relay-broadcast and relay-interference net-

works,GQCS achieves maximal diversity by finding an upper bound on the NER:

Theorem 2. There are constants0 < C3, C4 < ∞ that are independent ofP such that for all

P sufficiently large,

NER(GQCS) ≤ C3
1

PR
, K = 1,

NER(GQCS) ≤ C4
logR P

PR
, K > 1.

(25)

Proof: Please see Appendix C.

In other words, the relay selection scheme with an fGQ achieves maximal diversity for any

K. It is remarkable that full diversity is achieved regardless of the number of transmitters and

receivers.
Note that our selection scheme requires⌈log2R⌉ feedback bits. With⌈log2R0⌉ feedback bits,

whereR0 ∈ {1, . . . , R − 1}, diversity orders(R0, 0) and (R0,−R0) are achievable forK = 1,

andK > 1, respectively, simply by considering the selection schemefor any fixedR0 of the
relays and disregarding the others.

In practical networks, we may not have a GQ that knows the entire CSI of the network. In

such situations, we would like to characterize the achievable performance using LQ encoders
that know only a part of the CSI.
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V. D IVERSITY WITH LQS

In the previous section, we showed that a GQ using relay selection can achieve full diversity.
Motivated by this result, we expect that a relay selection based LQ will achieve high diversity

orders. In this section, we design two such LQs: An fLQ that achieves maximal first-order

diversity, and a vLQ that achieves maximal diversity. Both quantizers will have similar structures.
We construct them using thelocalization method [20], in which we synthesize an LQ out of

an existing GQ. The synthesized LQ and the GQ share the same codebook. For our particular

quantization scheme, we use the GQGQCS in (23) as the basis of our LQs. SinceGQCS is based
on relay selection, all of our LQs will be based on relay selection as well5.

A. Localization

Let LQ(f|v)ξ,N denote a generic localization ofGQCS . For the synthesized quantizerLQ(f|v)ξ,N , the

superscript indicates whether it is fixed-length (f) or variable-length(v); and ξ, N are design

parameters that we shall specify later on. For a particular channel stateh, the components of
the synthesized quantizer operate as follows:

1) LQ Encoders:For notational convenience,ωrℓ = γLℓ (er,h). Theℓth LQ encoder calculates

ωrℓ, r = 1, . . . , R. In other words, it calculates its own contribution to the NSNR for all possible

relay selection vectors. Then, it quantizes each of the possible contributions using a scalar
quantizer

N (x) =

{
n, ∃n ∈ {0, . . . , N − 2} such thatx ∈ [nξ, (n+ 1)ξ),

N, otherwise.
, x ∈ R. (26)

Its output message is the concatenation ofR sub-messagesN (ωrℓ), r = 1, . . . , R.
2) An Illustration of the LQ Encoders:Let us now illustrate the operation of the LQ encoders

with a simple example withR = 3, andL = 2, as shown in Fig. 4. For some fixed channel

variances, power constraints, and channel stateh′, suppose thatw11 = 1.7, ω21 = 0.8, ω31 = 1.2,

ω12 = 0.28, ω22 = 0.67, andω32 = 2.3. In the figure, each of these local NSNR values are
represented by a disk (•) on the real axis. Since we are using an LQ,ωr1, r = 1, 2, 3 can be

calculated only by the first receiver, and similarly,ωr2, r = 1, 2, 3 can be calculated only by the

second receiver. Note that the GQ has access to all the local SNRS and in this example, selects

the relay with indexargmaxr∈{1,2,3} minℓ ωrℓ = 3.
After the LQ encoder calculates its local NSNR values, it quantizes them using a scalar

quantizerN that is uniquely determined by the parametersξ andN . In our example, we use

N = 5 bins and setξ = 1
2
. Each bin is represented by a half open interval ( ) on the real

axis. The output message of the LQ encoder is the concatenation of its quantized local NSNR

values (submessages), shown as frames with a dashed outline, on the right hand side of the

figure.

5In principle, the localization method itself is applicableto any GQ with any codebook; it is not limited to relay selection
based GQs. However, for a general GQ, it is very difficult to analytically determine the performance of the synthesized LQ.

Therefore, we focus only on the localization of relay selection based GQs.
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0 ∞

1.2
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=⇒ N (ω11) = 3

=⇒ N (ω21) = 1

=⇒ N (ω31) = 2

=⇒ N (ω12) = 0

=⇒ N (ω22) = 1

=⇒ N (ω32) = 4

N (·)
with
ξ = 1,
N = 5.

Fig. 4: An illustration of the LQ encoders.

3) Compressors:In general, there areR sub-messages, each withN possible values. There-

fore, for a fixed-length synthesisLQfξ,N , at each channel state, each receiver feeds back⌈R log2N⌉
bits without any compression.

For a variable-length synthesisLQvξ,N , we use a lossless compressor that produces an empty

codeword (of length0) wheneverN (Ωrℓ) = N, ∀r, and otherwise a codeword of length⌈log2(NR−
1)⌉ bits that can uniquely represent eachN (Ωrℓ). In other words, for a given channel state, the

number of feedback bits produced by any receiver is either0 bits or ⌈log2(NR − 1)⌉ bits6.

After all theL feedback messages of the receivers are exchanged between the receivers and
the relays, each of them decodes the feedback bits using the local decoder. The decoder operation

is the same for each receiver and relay.

4) Decompressor:First, a decompressor perfectly recovers all the submessages from all the
receivers,N (ωrℓ), r = 1, . . . , R, ℓ = 1, . . . , L. All of these submessages are passed to the LQ

decoder.

5) An Illustration of the LQ Decoder:For clarity of exposition, let us first present the LQ
decoder for the example scenario in Section V-A2 and the samechannel stateh′. A more formal

description of the general LQ decoder operation will be presented afterwards.

6If the empty codeword is not allowed, one can use a “0” (a codeword of length1 bit) instead of the empty codeword, and

append a “1” to each remaining codeword of length⌈log2(N
R − 1)⌉ bits. The resulting codewords are uniquely decodable as

well. Then, all of the results in this paper will hold for the case where the empty codeword is forbidden, given that the required
feedback rates are increased by1 bit.

Also, note that one can achieve a better compression by usingentropy encoders instead of thesuboptimalcompressors that

we employ. Even though the localization method was introduced originally with entropy encoders, the compressors that we use
in this paper will be good enough for our purposes.
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In general, the main goal of the LQ decoder is to imitate the GQas good as possible. For
our particular example, the GQ selects the relay with indexargmaxr∈{1,2,3} ωr, whereωr =

min{ωr1, ωr2}. Then, the first goal of the LQ decoder should be to determineωr. However, the

LQ decoder only knows the quantized local NSNR values,N (ωrℓ), r = 1, 2, 3, ℓ = 1, 2, as
shown in Fig. 4. Therefore, it cannot determine the exact value of ωr. However, as we shall

describe in what follows, it can perfectly determine a subset of R whereωr resides.

For anyω ∈ R, N (ω) = n =⇒ ω ∈ [n
2
, n+1

2
), n = 0, . . . , 3, andN (ω) = 4 =⇒ ω ∈

[2,∞). We can use these facts to determine the possible locations of the local NSNR values, as

represented in Fig. 5 by half-open intervals ( ) of R.

0 ∞
N (ω11) = 3 =⇒ ω11 ∈

N (ω12) = 0 =⇒ ω12 ∈

N (ω21) = 1 =⇒ ω21 ∈

N (ω22) = 1 =⇒ ω22 ∈

N (ω31) = 2 =⇒ ω31 ∈

N (ω32) = 4 =⇒ ω32 ∈

Bin 0 Bin 1 Bin 2 Bin 3 Bin 4

0 1
2 1 3

2 2 ∞

N (·)
with
ξ = 1,
N = 5.

Fig. 5: Possible locations of the local NSNRs according to the LQ Decoder.

Sinceω1 = min{ω11, ω12}, and we know for sure thatω11 ∈ [3
2
, 2) andω12 ∈ [0, 1

2
), we should

haveω1 ∈ [0, 1
2
). Using the same arguments for allr, we can obtainω2 ∈ [1

2
, 1), andω3 ∈ [1, 3

2
).

We have thus determined the possible locations ofωr, as shown in Fig. 6, by having access only

to the quantized versions ofωr.
The LQ decoder’s main goal was to findargmaxr∈{1,2,3} ωr. Using the possible locations of

ωr that we have found, it is now clear that the third relay shouldprovide the best NSNR. The

LQ decoder’s output will bee3. Note that this is the same output as the GQ output. Therefore,

for this particular channel state, the LQ operates in the same manner as the GQ.
However, the LQ decoder will not be this lucky in general. As an example, another channel

state might result inω1 ∈ [0, 1
2
) andω2, ω3 ∈ [1, 3

2
). In this case, the LQ decoder will know for

sure that both the second relay and the third relay provides alarger NSNR than the first relay.
On the other hand, it cannot determine which one of the secondand the third relays provides the

best NSNR. Therefore, it chooses one of them, and its decision may not be the optimal one that
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ξ = 1,
N = 5.

Fig. 6: Possible locations of the NSNRs according to the LQ Decoder.

would instead be provided by the GQ. We shall quantify the effect of such suboptimal decisions
later on.

6) LQ Decoder:We now give the general and formal description of the LQ decoder.

Let Rg , {q : minℓ ωqℓ = maxr minℓ ωrℓ} denote the set of indices from which our GQ in
(23) produces its output.7 In other words,Rg is the set of indices of relays that provide the

maximal NSNR. Also, letRl , {q : N (minℓ ωqℓ) = N (maxr minℓ ωrℓ)}. Note thatRg ⊂ Rl.

Moreover, due to the structure ofN , not only

N
(
min

ℓ
ωqℓ

)
= min

ℓ
N (ωqℓ), (27)

but also

N
(
max

r
min

ℓ
ωrℓ

)
= max

r
N
(
min

ℓ
ωrℓ

)
(28)

= max
r

min
ℓ

N (ωrℓ). (29)

Therefore,Rl = {q : minℓ N (ωqℓ) = maxr minℓN (ωrℓ)}, andRl can be easily calculated by
the LQ decoder.

SinceRg ⊂ Rl, the LQ decoder can determine which relay selection vector(s) can possibly

provide the maximal NSNR. In general, it can choose any one ofthe relay selection vectors that
are indicated byRℓ. But, to be more precise, we define

LQ
(f|v)
ξ,N (h) , argmaxer∈CS minℓN (ωrℓ). (30)

7) Localization Distortion:Let us now study two possible cases of interest regarding theLQ

output: If Rg = Rl, then the LQ output provides the same NSNR as the GQ output. Otherwise,

the LQ might make a suboptimal decision. This results in whatwe call thelocalization distortion

(LD), given by

LD(ξ, N) , NER(LQ
(f|v)
ξ,N )− NER(GQCS). (31)

7Rg is not necessarily a singleton, but our definition of theargmax guarantees that the GQ output is unique.
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A useful upper bound on the LD can be calculated as:

NER(LQ
(f|v)
ξ,N ) = Eh

[
CNER(GQCS(h),h)

∣∣Rl = Rg

]
P(Rl = Rg)+

Eh

[
CNER(GQCS(h),h)

∣∣Rl 6= Rg

]
P(Rl 6= Rg) (32)

≤ NER(GQCS) + Eh

[
CNER(GQCS(h),h)

∣∣Rl 6= Rg

]
P(Rl 6= Rg) (33)

= NER(GQCS) + Eh

[
CNER(GQCS(h),h)

∣∣ |Rl| ≥ |Rg|
]
P(|Rl| ≥ |Rg|) (34)

≤ NER(GQCS) + LD
U(ξ, N), (35)

whereLDU(ξ, N) is the upper bound on the localization distortion, given by

LD
U(ξ, N) , Eh

[
CNER(GQCS(h),h)

∣∣|Rl| ≥ 2
]
P(|Rl| ≥ 2). (36)

B. Maximal First-Order Diversity with an fLQ

Our main result concerning the fLQs is given by the followingtheorem:

Theorem 3. Let ξf = logR P , andNf = 2. Then, forP sufficiently large, the NER withLQfξf,Nf
,

which uses a fixedR feedback bits per receiver per channel state, is upper bounded by

NER(LQfξf,Nf
) ≤ C5

logR P

PR
, K = 1,

NER(LQfξf,Nf
) ≤ C6

log2R P

PR
, K > 1.

(37)

where0 < C5, C6 <∞ are constants that are independent ofP .

Proof: Please see Appendix D.
In other words, using a fixedR feedback bits per receiver per channel state, we can achieve

diversity (R,−R) for K = 1, and diversity(R,−2R) for K > 1. Since(R,−R) < (R, 0) for

the broadcast network, and(R,−2R) < (R,−R) for the interference network, our fLQ has a
second-order diversity loss compared to the optimal performance for both types of networks.

Also, it is straightforward to show that, usingR0 bits, whereR0 ∈ {1, . . . , R}, we can achieve

diversity gains(R0,−R0) and (R0,−2R0) in relay-broadcast networks and relay-interference
networks, respectively.

The scalar quantizer resolution for our fLQ islog2Nf = 1 bit per local NSNR. In what follows,

we show that, by appropriately increasing the resolution with P , one can achieve maximal
diversity, while the compressors make sure that the feedback rate remains bounded.

C. Maximal Diversity with a vLQ

For vLQs equipped with entropy coding, we have the followingresult:
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Theorem 4. Let ǫ > 0 be a fixed constant that is independent ofP . For any Λ that satisfies

0 < ǫ ≤ Λ ≤ P , let ξv = 1
Λ

, and

Nv = ⌈Λ logΛ +RΛ logP + 1⌉, K = 1,

Nv =
⌈
Λ logΛ +RΛ log

( P

logP

)
+ 1

⌉
, K > 1.

(38)

Then, forP sufficiently large, we have

LD
U(ξv, Nv) ≤ C7

1

ΛPR
, K = 1,

LD
U(ξv, Nv) ≤ C8

logR P

ΛPR
, K > 1,

(39)

and, in addition, the feedback rate of theℓth receiver satisfies

Rℓ(LQ
v

ξv,Nv
) ≤ C9

logP

P
, K = 1,

Rℓ(LQ
v

ξv,Nv
) ≤ C10

log2 P

P
, K > 1,

(40)

where0 < C7, C8, C9, C10 <∞ are constants that are independent ofΛ andP .

Proof: Please see Appendix E.
We now describe several consequences of this theorem forK > 1. The consequences for

K = 1 will be analogous.
Let us first recall from (35) thatNER(LQvξ,N) ≤ NER(GQCS) + LDU(ξv, Nv). We have found an

upper bound forNER(GQCS) in Theorem 2. An upper bound forLDU(ξv, Nv) is given by Theorem

4. Combining the two bounds, we haveNER(LQvξ,N) ≤ (C4 + C8Λ
−1) log

R P
PR . In other words, our

vLQ achieves maximal diversity.
Moreover, using the same arguments as in the previous paragraph, we haveNER(LQvξ,N) ≤

NER(GQCS) +
C4

Λ
logR P
PR . Thus, by increasingΛ, the array gain performance of our vLQ can be

made arbitrarily close to the one provided by the GQ, at any finite power levelP .
What is more interesting is the behavior of the upper bound onthe feedback rate given by

(40). AsP grows to infinity, the required feedback rate decays to zero.In other words, both the

diversity and array gain benefits ofNER(GQCS) can be achieved using arbitrarily low feedback

rates, whenP is sufficiently large.

VI. SIMULATION RESULTS

In this section, we present numerical evidence that verifiesour analytical results. We assume

that each receiver attempts to decode all the symbols from all the transmitters. In other words,

Dℓ = {1, . . . , K}, ∀ℓ. In the graphs, “GQ” representsGQCS in (23), “fLQ” denotesLQfξf,Nf
with

ξf andNf as defined in the statement of Theorem 3. Also, “vLQ-Λ” representsLQvξv,Nv
that is

uniquely determined by the parameterΛ as in the statement of Theorem 4.
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A. Networks With Equal Parameters

In Fig. 7, we show the performance results for a network withK = R = L = 2, σ2
frk

=

σ2
grℓ

= pRr = pSk
= 1, ∀r, k, ℓ, andS1 = S2 = {+1,−1}. For this network, the NERs with the

GQ, fLQ, and vLQs forΛ = 2−15, 2−12, . . . , 212, 215 is presented in Fig 7a. The horizontal and
the vertical axes representP in decibels (dBs), and the NER, respectively.

We can observe that both our GQ and vLQs achieve the maximal diversity (2,−2), while the
fLQ achieves diversity(2,−4). Moreover, as we increaseΛ, the array gain performance of our

vLQs can be made arbitrarily close to that of the GQ.
In Fig. 7b, we show the SERs at the first receiver for the same network. The horizontal axis

representsP in decibels, while the vertical axis represents the SER at the first (second) receiver.

As a result of our choice of network parameters, the SERs of each receiver is the same. Also,
a particular quantizer achieves the same diversity as in Fig. 7a. On the other hand, since the

SER is upper bounded by the NER, any quantizer in Fig. 7b provides more array gain than it

does in Fig. 7a. Indeed, due to the symmetry of the network parameters, the SER performance
is around1.6dB better than the NER performance for all quantizers.

The corresponding feedback rates of our vLQs are shown in Fig. 7c. The horizontal axis
representsP in decibels, while the vertical axis represents the feedback rate of the first (second)

receiver in bits per channel state. Similarly, due to our choice of the network parameters, the

feedback rates of each receiver will be the same. We can observe the validity of Theorem 4,
as for anyΛ, the required feedback rate decays to zero at highP . Also, by increasingΛ, the

performance of the LQs can be made arbitrarily close to the one provided by the GQ, while still

using very low feedback rates. As an example, at an NER of10−5, vLQ-215 needs1.25 bits per
channel state per receiver on average and performs only0.25dB worse than the GQ. At a SER

of 10−5, vLQ-26 uses0.65 bits, and GQ performs only0.8dB better.

B. Networks With Unequal Parameters

Our results also hold for networks with unequal power constraints and/or channel variances.

To demonstrate that, we consider a network withK = R = 3 and L = 4. The parameters
of the network are assumed to bepS1

= 1, pS2
= 1.3, pS3

= 0.7, pR1
= 0.6, pR2

= 2,

pR3
= 0.7, S1 = S3 = {+1,−1}, andS2 = {ej π

4
θ : θ ∈ {1, . . . , 4}}. Also, we assume that

σ2
fkr

= Fkr, σ
2
grℓ

= Grℓ, k = 1, . . . , K, r = 1, . . . , R, ℓ = 1, . . . , L, where

F =




2 1 0.7

1.5 0.9 3

1 4 0.5


 , (41)

and

G =




7 1.2 2.5 0.9

0.4 1.3 3 2

1.3 0.9 1.6 5


 . (42)
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Fig. 7: Performance results for a network withK = R = L = 2.
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Fig. 7: Performance results for a network withK = R = L = 2 (continued).

In Fig. 8a, we show the NERs with the GQ, fLQ, and vLQs forΛ = 2−15, 2−12, . . . , 20, 23.

The results are analogous to what we have observed in Fig. 7a.Both the GQ and the vLQs

achieve the maximal diversity(3,−3), while the fLQ achieves diversity(3,−6). Moreover, as

we increaseΛ, the array gain performance of our vLQs can be made arbitrarily close to that of
the GQ.

The SERs at the first and the third receiver are shown in Fig. 8band Fig. 8c. We can observe

that, unlike the previous network with equal parameters, the SERs at each receiver is different
for this network with unequal parameters. In particular, Fig. 8b reveals rather counterintuitive

results: The fLQ outperforms the GQ at lowP , and some of the vLQs provide a higher array

gain than the GQ. The reason of these behaviors is that the GQ is optimized with respect to
the NER, which takes into account the SERs ofall the receivers. Therefore, as far as the SER

at a receiver is concerned, one cannot claim the optimality of the GQ. For the NER, the GQ

outperforms all the other quantizers, as shown in Fig. 8a.
For the vLQs, the feedback rates of the first and the third receivers are shown in Fig. 8d

and Fig. 8e. For both figures, the feedback rates decay to zeroasP grows to infinity, verifying

Theorem 4.
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(c) SERs at the third receiver.
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(d) Feedback rates at the first receiver.
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Fig. 8: Performance results for a network withK = R = 3, L = 4.
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VII. CONCLUSIONS AND DISCUSSIONS

We have studied quantized beamforming in wireless relay-interference networks with any
number of transmitters, receivers and amplify-and-forward (AF) relays. Our goal has been to

minimize the probability that at least one user incorrectlydecodes its desired symbol(s).

We have introduced a generalized diversity measure in orderto have a more precise description
of the asymptotic performance of the network. It has encapsulated the conventional measure as

thefirst-order diversity. Additionally, it has taken into account thesecond-orderdiversity, which

is concerned with the transmitter power dependent logarithmic terms that appear in the error
rate expression.

First, we have shown that, regardless of the quantizer and the amount of feedback that is used,

interference results in a second-order diversity loss in our network model. Care should be taken
though when making a general statement, as in this work, we have focused on AF networks

with a short-term power constraint. For other forwarding methods, such as decode-and-forward,

the diversity results may be different. Even under the restriction of using AF relays, one can
use a long-term power constraint and achieve higher diversity. Also, the side information at the

relays may be exploited for a better performance, though we believe this will not improve the

diversity.

Second, we have designed a relay-selection based global quantizer (GQ) that can achieve
maximal diversity. Then, using our GQ and the localization method, we have synthesized fixed-

length and variable-length local quantizers (fLQs and vLQs). Our fLQ has achieved maximal

first-order diversity. Our vLQ has provided not only maximaldiversity gain, but also an array
gain performance that can be made arbitrarily close to the one provided by the GQ. Moreover, it

has achieved all of its promised gains using arbitrarily lowfeedback rates, when the transmitter

powers are sufficiently large.
Regarding the LQs, there are many open problems that we have not addressed in this paper.

One important problem is to determine whether there exists an fLQ that can achieve maximal

diversity. Another goal might be to generalize our relay-selection based localization result to
show thatany GQ can be localized to synthesize an LQ that can achieve the same array gain as

the GQ. Due to the complicated nature of our distortion functions, the latter goal seems difficult

to accomplish, even though we have observed its validity by simulations.

APPENDIX A

UPPERBOUNDS ON THEPDF AND CDF OF Ωr

First, let us present some useful lemmas.

Lemma 1. Let f̃c and f̃s be zero-mean real GaussianK×1 random vectors, with equal diagonal

covariance matricesE[̃fc f̃Tc ] = E[̃fs f̃
T
s ] = K, Kii > 0, ∀i, Kij = 0, ∀i 6= j, and zero cross-

covarianceE[̃fc f̃Ts ] = 0. Let f̃ , f̃c + j f̃s denote the complex Gaussian random vector with real

and imaginary parts given bỹfc and f̃s. Also, letX = |〈s, f̃〉|2, wheres ∈ CK − {0} is a fixed
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vector, andW = ‖f̃‖2 −X. Then, there is a constant0 < λ0 <∞, such that for allx ≥ 0 and

w ≥ 0, we have

fX,W (x, w) ≤ λK0
Γ(K − 1)

wK−2 exp
[
− λ0(x+ w)

]
. (43)

Proof: Let f , Uf̃ for a unitary matrixU that satisfiese1 = Us. Also, letXi = |fi|2, and

X = [X1 · · ·XK ]
T . Note that

X = X1 = |〈s, f̃〉|2 = |〈e1, f〉|2, (44)

and sinceU is norm-preserving,

W = ‖f̃‖2 −X = ‖f‖2 −X1 =
∑K

i=2Xi. (45)

Now, let Y1 = X1, Y2 = W =
∑K

i=2Xi, andYk = Xk, k = 3, . . . , K. Using such a transforma-
tion of RVs [23], we have

fY1,Y2
(y1, y2) =

y2∫

0

y2−y3∫

0

· · ·
y2−

∑K−1
k=3

yk∫

0

fX(y1, y2 −
∑K

k=3 yk, y3, . . . , yK)dy3 · · ·dyK . (46)

In the following, we find an upper bound forfX(x) for anyx = [x1 · · ·xK ]T with xi ≥ 0, ∀i.
Let Uc , ℜ(U), andUs , ℑ(U). The real and imaginary parts off can be calculated to be

fc , ℜ(f) = Ucf̃c−Us f̃s, andfs , ℑ(f) = Ucf̃s+Usf̃c. Then, it is straightforward to show that

Kcc , E[fcf
T
c ] = UcKUT

c +UsKUT
s , (47)

Kss , E[fsf
T
s ] = Kcc, (48)

and

Kcs , E[fcf
T
s ] = UcKUT

s −UsKUT
c . (49)

Therefore,Kcc andKss are symmetric matrices, andKcs = −KT
cs. The latter implies that for

anyx ∈ RK , xTKcsx = 0. Using these facts, we now show thatKcc+ jKcs is positive definite.
For anyx ∈ CK , we have

xH(Kcc + jKcs)x = (xT
c − jxT

s )(Kcc + jKcs)(xc + jxs) (50)

= xT
c Kccxc − xT

c Kcsxs + xT
s Kcsxc + xT

s Kccxs+

j(xT
c Kcsxc + xT

c Kccxs − xT
s Kccxc + xT

s Kcsxs) (51)

= xT
c Kccxc + 2xT

s Kcsxc + xT
s Kccxs (52)

= xT
c E[fsf

T
s ]xc + 2xT

s E[fcf
T
s ]xc + xT

s E[fcf
T
c ]xs (53)

= E[(xT
c fs + xT

s fc)
2] (54)

= E[((xT
c Us + xT

s Uc)f̃c + (xT
c Uc − xT

s Us)f̃s)
2] (55)

= xT
1Kx1 + xT

2Kx2, (56)
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wherex1 = UT
s xc +UT

c xs, andx2 = UT
c xc −UT

s xs. But,

Ux = (UT
c + jUT

s )(xc + jxs) = x2 + jx1, (57)

and sinceUx 6= 0, eitherx1 6= 0 or x2 6= 0. Also, sinceK is positive definite, eitherxT
1Kx1 > 0,

or xT
2Kx2 > 0. Thus,xH(Kcc+jKcs)x > 0, ∀x ∈ CK−{0}, andKcc+jKcs is positive definite.

Let A + jB = (Kcc + jKcs)
−1, andθij = tan−1(Bij/Aij). According to [24, Eq. (24)], the

joint PDF ofXi, i = 1, . . . , K can be expressed as

fX(x) = (4π)−Kdet(A+ jB)

π∫

−π

· · ·
π∫

−π

exp
[
− 1

2
f(φ)

]
dφ, (58)

where

f(φ) =

K∑

i=1

Aiixi + 2

K∑

i,j=1
i<j

(A2
ij +B2

ij)
1
2
√
xixj cos(φi − φj + θij), (59)

andD , A+ jB is a Hermitian matrix [24, Eq. (21)].

Sincef(φ) is continuous, and the range of integration[−π, π]K is a compact subspace of
RK , there existsφ⋆ ∈ RK with φ⋆ = [φ⋆

1 · · ·φ⋆
K ], such thatf(φ⋆) ≤ f(φ), ∀φ ∈ [−π, π]K . As

a result,

fX(x) ≤ 2−Kdet(D) exp
[
− 1

2
f(φ⋆)

]
. (60)

Now, let

xcos = [
√
x1 cos(φ

⋆
1) · · ·

√
xK cos(φ⋆

K)]
T , (61)

xsin = [
√
x1 sin(φ

⋆
1) · · ·

√
xK sin(φ⋆

K)]
T . (62)

Then, using (59),f(φ⋆) can be expressed as

f(φ⋆) = ℜ(xT
cosDxcos + xT

sinDxsin). (63)

We have shown thatKcc + jKcs is positive definite. It follows thatD = (Kcc + jKcs)
−1

is also positive definite, and thus has eigenvaluesλi > 0, ∀i. Also, sinceD is a Hermitian

matrix, it admits a spectral decompositionD =
∑K

i=1 λiuiu
H
i , whereui, i = 1, . . . , K form an

orthonormal basis forCK . It follows that

xT
cosDxcos = xH

cosDxcos =
∑K

i=1 λi(u
H
i xcos)

2 (64)

> λ‖xcos‖2, (65)

whereλ = mini λi. Similarly, we have

xT
sinDxsin > λ‖xsin‖2. (66)
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Using (65), (66) and (63), a lower bound onf(φ⋆) is given by

f(φ⋆) > ℜ(λ‖xcos‖2 + λ‖xsin‖2) (67)

= λ
∑K

i=1 xi, (68)

Then, using (68) and (60), we can find an upper bound onfX(x) as

fX(x) ≤ 2−Kdet(D)
∏K

i=1 exp(−λ
2
xi) (69)

≤ λK0
∏K

i=1 exp(−λ0xi), (70)

whereλ0 = λ
2
. For the last inequality, we have used the fact thatdet(D) =

∏K
i=1 λi ≤ λK .

The lemma follows by substituting (70) to (46) and performing the integration.

Lemma 2. LetX1, . . . , Xn ben non-negative possibly dependent RVs, andZ = minnXn. Then,

fZ(z) ≤
n∑

i=1

fXi
(z), (71)

and

FZ(z) ≤
n∑

i=1

FXi
(z). (72)

Proof: Let us recall Leibniz’s integral rule: For functions of a single variablea(z), b(z),

and of two variablesf(x, z), we have

∂

∂z

b(z)∫

a(z)

f(x, z)dx =

b(z)∫

a(z)

∂f

∂z
dx+ f(b(z), z)

∂b

∂z
− f(a(z), z)

∂a

∂z
. (73)

Note that (72) easily follows from (71). We thus first prove (71). LetZk = min{X1, . . . , Xk}.
We will show thatfZk

(z) ≤ ∑k
i=1 fXi

(z), for any 1 ≤ k ≤ n by induction. Fork = 1, it

is obvious. Suppose it is true forn > k > 1. We havefZk
(z) ≤ ∑k

i=1 fXi
(z). Noting that

Zk+1 = min(Zk, Xk+1),

fZk+1
(z) = fZk

(z) + fXk+1
(z)− ∂

∂z
FZk,Xk+1

(z, z) (74)

≤
k+1∑

i=1

fXi
(z)− ∂

∂z

z∫

0

z∫

0

fZk,Xk+1
(u, v)dudv (75)

=
k+1∑

i=1

fXi
(z)−

z∫

0




∂

∂z

z∫

0

fZk,Xk+1
(u, v)dv



du−

z∫

0

fZk,Xk+1
(z, v)dv (76)

=

k+1∑

i=1

fXi
(z)−

z∫

0

fZk,Xk+1
(u, z)du−

z∫

0

fZk,Xk+1
(z, v)dv (77)

≤
k+1∑

i=1

fXi
(z), (78)
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where for both (76) and (77), we have used Leibniz’s integralrule. This proves (71). Integrating
both sides of (71) from0 to z proves (72).

We can now find the desired upper bounds on the PDF and CDF ofΩr.

Proposition 2. For all ω > 0, y ≥ 0 andP sufficiently large,

1) If K = 1,

fΩr(ω) ≤ C11 exp
(
−C12

ω

P

)
ψ0(ω), (79)

and

FΩr(y + ω)− FΩr(y) ≤ C11ωψ0(ω), (80)

where

ψ0(ω) ,
1

P

(
1 + ω− 1

2

)
, (81)

and 0 < C11, C12 <∞ are constants. Otherwise,

2) If K > 1,

fΩr(ω) ≤ C13 exp
(
−C14

z

P

)
ψ(ω), (82)

FΩr(y + ω)− FΩr(y) ≤ C13

(
ωψ(ω) +

logP

P 2
y2
)
, (83)

and in particular, fory = 0,

FΩr(ω) ≤ C13ωψ(ω), (84)

where

ψ(ω) =
logP

P

(
1 + ω− 1

2 logP + ω1− 1
logP

1

P

)
, (85)

and 0 < C13, C14 <∞ are constants.

Proof: First we prove the case forK > 1. Let Ωr,ℓ,s,ŝ , γLℓ,s,ŝ(er,h). Note thatΩr =

minℓ,s6=sΩr,ℓ,,s,ŝ. First, let us first find an upper bound on the PDF and CDF ofΩr,ℓ,s,ŝ.
Consider a fixedr, ℓ, ands 6= ŝ. For notational convenience, let us defineZ , Ωr,ℓ,s,ŝ. From

(24), we have

Z =
1

4

∣∣∣
∑K

k=1(sk − ŝk)
√
PSk

fkr

∣∣∣
2

|grℓ|2PRr

1 +
∑K

k=1 |fkr|2PSk
+ |grℓ|2PRr

. (86)

Now, let us rewrite (86) in a more compact form. First, we define

f ′ , [
√
pS1

f1r · · ·
√
pS1

fKr]
T , (87)

δ , [s1 − ŝ1 · · · sK − ŝK ]
H , (88)

X , |〈f̃ ′, δ〉|2, (89)

Y , |grℓ|2pRr , (90)

W , ‖f ′‖2 −X, (91)
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where f̃ ′ , f ′/‖f ′‖. Then, we have

Z =
αXY P 2

1 +XP +WP + Y P
, (92)

whereα = 1
4
‖δ‖2. Using a transformation of RVs [23], the PDF ofZ can be expressed as

fZ(z) =

∞∫

0

∞∫

0

fY

(
z(1 + xP + wP )

αxP 2 − zP

)
αxP 2(1 + xP + wP )

(αxP 2 − zP )2
fX,W (x, w)dxdw. (93)

Now, let λy = (σ2
grℓ
pRr)

−1. Substituting the PDF ofY , and using Lemma 1, we have

fZ(z) ≤
λyλ

K
xw

Γ(K − 1)

∞∫

0

∞∫

z
αP

exp
(
−λyz(1 + xP + wP )

αxP 2 − zP

)
×

αxP 2(1 + xP + wP )

(αxP 2 − zP )2
e−λxwxdxwK−2e−λxwwdw, (94)

where ∞ > λxw > 0 is a constant that is independent ofw, x, and P . The inner inte-

gral can be evaluated first by a change of variablesu = αxP − z and then using the facts

that
∫∞
0
xν−1e−β/x−γxdx = 2(β/γ)

ν
2Kν(2

√
βγ), β, γ > 0 [26, Eq. 3.417.9], andK−1(x) =

K1(x), ∀x ∈ R [25, Eq. 9.6.6], respectively. Then, after some straightforward manipulations, we

can rewrite (94) as

fZ(z) ≤
λK−1
xw exp(−λ̄ z

P
)

Γ(K − 1)

∞∫

0

(
λ̄P−1κK1(κ) +

2λxwλy(α + 2z + αwP )

α2P 2
K0(κ)

)wK−2

eλxww
dw, (95)

whereκ =
√
4λxwλyz(α + z + αwP )/(α2P 2), and λ̄ = (λxw + λy)/α. It follows that

fZ(z) ≤
λK−1
xw exp(−λ̄ z

P
)

Γ(K − 1)

∞∫

0

(
λ̄P−1κK1(κ) + z−1κ2K0(κ)

)
wK−2e−λxwwdw. (96)

Now, let us find an upper bound forK0(κ) in (96). According to [25, Eq. 9.6.24], we have

Kν(z) =
∫∞
0
e−z cosh t cosh(νt)dt, t, ν ∈ R. Moreover, sincecosh(νt) is an increasing function

of ν, Kν(z) is also an increasing function ofν. It follows that

K0(κ) ≤ Kν(κ), ν ≥ 0. (97)

Also, from [11, Eq. 25], we have

Kν(κ) ≤ 2ν−1Γ(ν)κ−ν , ν > 0. (98)

Now let us set0 < ν < 1. In this case,

Γ(ν) = ν−1Γ(ν + 1) = ν−1
∞
∫
0
e−t1/νdt ≤ ν−1

∞
∫
0
e−tdt = ν−1. (99)
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Combining (97), (98) and (99) gives us the desired upper bound

K0(κ) ≤ 2ν−1ν−1κ−ν . (100)

Using (100) and the fact thatκK1(κ) ≤ 1 [11, Eq. 25], (96) can be further bounded as

fZ(z) ≤
λK−1
xw exp(−λ̄ z

P
)

Γ(K − 1)

∞∫

0

(
λ̄P−1 + 2ν−1ν−1z−1κ2−ν

)
wK−2e−λxwwdw (101)

≤ C15ν
−1e−λ̄ z

P

[
P−1 + P−2+νz−

ν
2

∞∫

0

(1 + wP + z)1−
ν
2wK−2e−λxwwdw

]
, (102)

where C15 = λK−1
xw [Γ(K − 1)]−1max{λ̄, 2λxwλy max{ 1

α
, 1
α2}, 2(λxwλy max{ 1

α
, 1
α2})

1
2}. Also,

since(x+ y)ν ≤ xν + yν, ∀x, y ∈ R, 0 < ν < 1, we have

fZ(z) ≤ C15ν
−1e−λ̄ z

P

[
P−1 + P−2+νz−

ν
2

∞∫

0

(1 + w1− ν
2P 1− ν

2 + z1−
ν
2 )wK−2e−λxwwdw

]
(103)

=
C15e

−λ̄ z
P

vP

[
1 + z−

ν
2P−1+ν(1 + z1−

ν
2 )Γ(K − 1)λ−K+1

xw +

z−
ν
2Γ

(
K − ν

2

)
λ
−K+ ν

2
xw P

ν
2

]
(104)

≤ 2C15Γ(K)max{1, λ−K+1
xw , λ−K

xw }e−λ̄ z
P ν−1P−1+ν

(
1 + z−

ν
2 + z1−νP−1

)
(105)

= C16
logP

P
e−λ̄ z

P

(
1 + z−

1
2 logP + z1−

1
logP P−1

)
(106)

whereC16 = 2eC15Γ(K)max{1, λ−K+1
xw , λ−K

xw }, and we have substitutedν = 1
logP

to obtain

(106).

In general, the constantsC16 and λ̄ in (106) depend onr, ℓ, s, andŝ. Let C16,r,ℓ,s,ŝ and λ̄r,ℓ,s,ŝ
denote the dependent versions ofC16 and λ̄, respectively. Using Lemma 2, we have

fΩr(ω) ≤
∑

ℓ

∑

s6=s

Ωr,ℓ,s,ŝ(ω) (107)

≤ C13

4

logP

P
exp

(
−C14

z

P

)(
1 + z−

1
2 logP + z1−

1
logP P−1

)
, (108)

whereC13 = 2LS |(|S | − 1)maxr,ℓ,s6=ŝC16,r,ℓ,s,ŝ, andC14 = minr,ℓ,s6=s λ̄r,ℓ,s,ŝ. This implies the
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upper bound on the PDF ofΩr in the statement of the lemma. Finally, using (107),

FΩr(y + ω)− FΩr(y) (109)

=

y+ω∫

y

fΩr(ω)dω (110)

≤ C13

4

logP

P

y+ω∫

y

(
1 + x

−1
2 logP + x1−

1
logP

1

P

)
dx (111)

≤ C13

2

logP

P

(
ω + (y + ω)1−

1
2 logP − y1−

1
2 logP +

[
(y + ω)2−

1
logP − y2−

1
logP

] 1

P

)
(112)

≤ C13

2

logP

P

(
ω + ω1− 1

2 logP +
[
y2−

1
logP + 2ω2− 1

logP

] 1

P

)
(113)

≤ C13

(
ωψ(ω) +

logP

P 2
y2−

1
logP

)
, (114)

where we have used Hölder’s inequality and the fact that(y+ω)α ≤ yα+ωα, y, z > 0, 0 ≤ α ≤ 1

for (113). This concludes the proof forK > 1.
For K = 1, let X̄r = |f1r|2pS1

, Ȳr = pRr minℓ |grℓ|2, andΥr = X̄r ȲrP 2

1+X̄rP+ȲrP
. From (24), we

haveΩr = C17Υr, whereC17 =
1
4
mins1 6=ŝ1(s1 − ŝ1).

Now, note thatX̄r ∼ Γ(1, pS1
σ2
f1r

), and Ȳr ∼ Γ(1, pRr(
∑

ℓ σ
−2
grℓ
)−1). Therefore,X̄r, Ȳr, r =

1, . . . , R are independent exponential RVs with finite variances. The PDF of Υr with suchX̄r

and Ȳr is given by [11, Eq. 22]. Using [11, Eq. 28] without omitting the exponential function,

and noting thatfΩr(ω) =
1

C17
fΥr(

ω
C17

), we can show that (79) holds.

Finally, (80) follows (up to a constant multiplier) from (79) and (109). This concludes the
proof.

APPENDIX B

PROOF OFTHEOREM 1

We start with a lower bound on the CNER. By definition, we haveCNER(x,h) ≥ SERIMLℓ (x,h), ∀ℓ.
Suppose that, for somek ∈ Dℓ, a genie reveals all the transmitted symbols butsk to the ℓth
receiver. The error rate of this genie-aided scheme provides a lower bound on the CNER. Without

loss of generality assume that1 ∈ D1, and let us fix somés1, ś2 ∈ S1 with ś1 6= ś2. We have

CNER(x,h) ≥ 1
|S1|Q(

√
2γU(x,h)), where

γU(x,h) ,
|∑R

r=1 f1r
√
ρ′rgr1xr|2|ś1 − ś2|2PS1

4(1 +
∑R

r=1 ρ
′
r|gr1|2|xr|2)

. (115)
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Let us find an upper bound onγU(x,h) for anyh, andx ∈ X . We have

γU(x,h) ≤ |(ś1 − ś2)
√
PS1

∑R
r=1 f1r

√
ρ′rgr1xr|2

4(1 +
∑R

r=1 ρ
′
r|gr1|2|xr|2)

(116)

≤ |ś1 − ś2|2PS1

4

|∑R
r=1 f1r

√
ρ′r
√
Rgr1x̃r|2

R +
∑R

r=1 ρ
′
rR|gr1|2|x̃r|2

(117)

=
|ś1 − ś2|2PS1

4

∣∣∣
∑R

r=1

f1r
√

ρ′r
√
Rgr1√

1+ρ′rR|gr1|2
√

1 + ρ′rR|gr1|2x̃r
∣∣∣
2

∑R
r=1(1 + ρ′rR|gr1|2)|x̃r|2

, (118)

where x̃ , R
‖x‖x is the projection of the beamforming vector onto the hypersphere with norm

R. Applying the Cauchy-Schwarz inequality to (118), and thenusing the fact thatρ′r ≤ ρr, we

have

γU(x,h) ≤ |ś1 − ś2|2PS1

4

R∑

r=1

|f1r|2ρrR|gr1|2
1 + ρrR|gr1|2

(119)

If K = 1, we use the following upper bound that follows from (119).

γU(x,h) ≤ |ś1 − ś2|2PS1

4

R∑

r=1

|f1r|2. (120)

This upper bound is, up to a constant multiplier, the same as the SNR of a maximal ratio
combining system withR branches. The error rate of such systems is known to be lower bounded

by a constant timesP−R, as stated in the theorem. This concludes the proof forK = 1.
For K > 1, we use (119) to further boundγU(x,h) as

γU(x,h) ≤ R2|ś1 − ś2|2
4

max
r

|f1r|2|gr1|2PS1
PRr

1 +
∑

k |fkr|2PSk
+R|gr1|2PRr

(121)

≤ R2|ś1 − ś2|2
4

max
r

|f1r|2|gr1|2PS1
PRr

1 + |f1r|2PS1
+ |f2r|2PS2

+R|gr1|2PRr

(122)

≤ R2|ś1 − ś2|2maxr{σ2
f1r
σ2
gr1pS1

pRr}
4min{1, σ2

f1r
pS1

, σ2
f2r
pS2

, σ2
gr1pRr}

max
r

XrYrP
2

1 +XrP +WrP + YrP
, (123)

whereXr = σ−2
f1r
f1r, Yr = σ−2

gr1
gr1, andWr = σ−2

f2r
f2r. Note thatXr, Yr, Wr ∼ Γ(1, 1) and they

are independent. LetC18 denote the constant multiplier in (123), andZU
r , (XrYrP

2)/(1 +

XrP +WrP + YrP ). Thus, we can rewrite (123) asγU(x,h) ≤ C8maxr Z
U
r . Now, let

ZU , maxr Z
U
r , (124)

NERL(Q) , 1
|S1|E[Q(

√
2C18ZU)]. (125)

SinceNER(Q) ≥ NERL(Q), ∀Q, it is sufficient to find a lower bound onNERL(Q). Using the fact

thatQ(x) ≥ 1√
2π

x
1+x2 e

−x2

2 , we have

NER
L(Q) ≥ 1

|S1|
√
π

∞∫

0

√
z

1 + 2z
exp(−zC18)fZU(z)dz. (126)
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We thus need to find a lower bound for the PDF ofZU. Using order statistics, we have

fZU(z) =
R∑

r=1

fZU
r
(z)

R∏

q=1
q 6=r

FZU
q
(z). (127)

In the following, we find a lower bound on the PDF and CDF ofZU
r , for anyr. We first evaluate

the PDF ofZU
r . Using a transformation of RVs [23], it can be expressed as

fZU
r
(z) =

∞∫

0

∞∫

0

fYr

(z(1 + xP + wP )

xP 2 − zP

)xP 2(1 + xP + wP )

(xP 2 − zP )2
e−xdxe−wdw. (128)

This PDF is in the same form as (92) in Proposition 2, and can beevaluated using the same
methods discussed therein. We have

fZU
r
(z) = exp

(
− 2z

P

) ∞∫

0

[
1

P

√
4z(1 + wP + z)

P 2
K1

(√
4z(1 + wP + z)

P 2

)
+ (129)

2(1 + 2z + wP )

P 2
K0

(√
4z(1 + wP + z)

P 2

)]
e−wdw (130)

≥ exp
(
− 2z

P

) 1

P 2

∞∫

0

2(1 + wP + z)K0

(√
4z(1 + wP + z)

P 2

)
fW (w)dw. (131)

Using the fact that for anyz > 0, K0(z) = − log( z
2
)− γe+ (1− γe)

1
4z2

+(1+1/2− γe)
z4

32
+ · · ·

[26], we haveK0(z) ≥ − log( z
2
)− γe, and thus

fZU
r
(z) ≥ exp

(
− 2z

P

) 1

P 2

∞∫

0

(1 + z + wP )

[
− log

(
z(1 + z + wP )

P 2

)
− 2γe

]
e−wdw (132)

= exp
(
− 2z

P

) 1

P 2

{
(−2γe + 2 logP − log z)

∞∫

0

(1 + z + wP )e−wdw−

∞∫

0

(1 + z + wP ) log(1 + z + wP )e−wdw

}
(133)

= exp
(
− 2z

P

) 1

P 2

{
(−2γe + 2 logP − log z)(1 + z + P )−

[
(1 + z) log(1 + z) + P log(1 + z) + P + Pe

1+z
P E1

(1 + z

P

)]}
. (134)

Using the facts thatlog z ≤ log(1 + z) ≤ z, and

e
1+z
P E1

(
1 + z

P

)
≤ log

(
1 +

P

1 + z

)
≤ log(1 + z + P ) ≤ log(1 + z + P + zP )

= log(1 + z) + log(1 + P ) ≤ z + log(2P ) ≤ z + 1 + logP, (135)
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we can show that

fZU
r
(z) ≥ exp

(
− 2z

P

) 1

P 2

{
P logP + 2 logP (1 + z)− (136)

[
(2γe + z)(1 + z + P ) + z(1 + z) + 2(z + 1)P

]}
(137)

≥ exp
(
− 2z

P

) 1

P 2

{
P logP − P

[
(2 + z)(2 + z) + z(1 + z) + 2(z + 1)

]}
(138)

= exp
(
− 2z

P

) 1

P

[
logP − (2z2 + 7z + 6)

]
(139)

After some straightforward manipulations, (139) leads to amore compact lower bound

fZU
r
(z) ≥ φ(z), (140)

where

φ(z) , e−
2z
P
1

P

[
logP − 14(1 + z2)

]
. (141)

For the CDF ofZU
r , we have

FZU
r
(z) ≥

z∫

0

exp
(
− 2x

P

) 1

P

[
logP − 14(1 + x2)

]
dx (142)

≥ exp
(
− 2z

P

) z
P

[
logP − 14(1 + z2)

]
(143)

≥ zφ(z). (144)

We can now find a lower bound for the PDF ofZU. Suppose thatP ≥ e14, and letz0 ,

( logP
14

− 1)
1
2 . Then,φ(z) ≥ 0 for z ≤ z0, andφ(z) < 0, otherwise. Using (127), forz ≤ z0, it

follows that

fZU(z) ≥ RzR−1φR(z) (145)

= RzR−1 exp
(
−2Rz

P

) 1

PR

[
logP − 14(1 + z2)

]R
(146)

≥ RzR−1 exp(−2Rz)
1

PR

[
logP − 14(1 + z2)

]R
(147)

= RzR−1 exp(−2Rz)
1

PR

R∑

i=0

(
R

i

)
logR−i P (−14)i (1 + z2)i (148)

≥ RzR−1 exp(−2Rz)
1

PR

[
logR P −

R∑

i=1

(
R

i

)
logR−i P 14i (1 + z2)i

]
(149)

≥ RzR−1 exp(−2Rz)
1

PR

[
logR P − R22R−114R logR−1 P (1 + z2R)

]
(150)

Since fZU(z) is a PDF,fZU(z) ≥ 0, ∀z. Therefore, forz > z0, we can choose any negative

function as a lower bound onfZU(z). But, (150) is negative forz > z0. Thus, it is a lower bound
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on fZU(z) that holds for allz. We can therefore use it to bound (126) as

NER
L(Q) ≥ R

|S1|
√
π

logR P

PR

∞∫

0

zR− 1
2

1 + 2z
e−z(C18+2R)dz−

R222R−114R

|S1|
√
π

logR−1 P

PR

∞∫

0

zR− 1
2 (1 + z2R)

1 + 2z
e−z(C18+2R)dz. (151)

The first integral in (151) can be lower bounded by

∞∫

0

zR− 1
2

1 + 2z
e−z(C18+2R)dz ≥

1∫

0

zR− 1
2

1 + 2z
e−z(C18+2R)dz (152)

≥ e−(C18+2R)

3

1∫

0

zR− 1
2dz (153)

=
2e−(C18+2R)

3(2R+ 1)
. (154)

For the second integral in (151), we have
∞∫

0

zR− 1
2 (1 + z2R)

1 + 2z
e−z(C18+2R)dz ≤

∞∫

0

zR− 1
2 (1 + z2R)e−z(C18+2R)dz (155)

=
Γ(R + 1

2
)

(C18 + 2R)R+ 1
2

+
Γ(3R + 1

2
)

(C18 + 2R)3R+ 1
2

. (156)

Substituting (154) and (156) to (151), it follows that

NER
L(Q) ≥ 2C19P

−R(logR P − C20 log
R−1 P ), (157)

for some constants∞ > C19, C20 > 0 independent ofP .
Finally, C20 log

R−1 P ≤ 1
2
logR P, ∀P ≥ exp(2C20), and thus

NER
L(Q) ≥ C19P

−R logR P, (158)

for all P ≥ exp(max{14, 2C20}). This concludes the proof. �

APPENDIX C

PROOF OFTHEOREM 2

We provide a proof forK > 1. The proof forK = 1 is very similar. Thus, we skip it for

brevity.
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Let Ω = maxr Ωr, whereΩr = γL(er,h), as defined in Appendix A. Then, we have

NER(QCS) ≤ C0E[exp(−Ω)] (159)

≤ C0

∞∫

0

e−w
R∑

r=1

fΩr(w)
R∏

q=1
q 6=r

[
FΩq(ω)

]R−1
dω (160)

≤ RC0C
R
13

∞∫

0

ωR−1e−w

(
1 + ω− 1

2 logP + ω1− 1
logP

1

P

)R

dω (161)

≤ R3R−1C0C
R
13

∞∫

0

ωR−1e−w

(
1 + ω− R

2 logP + ωR− R
logP

1

PR

)
dω (162)

= R3R−1C0C
R
13

[
Γ(R) + Γ

(
R− R

2 logP

)
+ Γ

(
2R− R

logP

)
1

PR

]
(163)

≤ C21
logR P

PR
, (164)

whereC21 = R3R−1C0C
R
13 max{Γ(2R),Γ(1

2
)}, and (160) follows from the order statistics of

independent RVs. For (161) and (162), we have used Proposition 2, and Hölder’s inequality,

respectively. This concludes the proof. �

APPENDIX D

PROOF OFTHEOREM 3

Let us prove the theorem forK > 1. The proof forK = 1 is very similar. It is thus omitted.
Let Ω andΩr, be as defined in Appendix C. We need to find an upper bound on thelocalization

distortion. According to (36), it is sufficient to calculatethe CNER given|Rl| ≥ 2. Note that

|Rl| ≥ 2 if and only if there existsr, q ∈ {1, . . . , R}, r 6= q such thatN (Ωr) = N (Ωq) =

N (Ω). Depending onN (Ω), we divide the calculation ofLDU(ξ, N) to two separate parts as

LDU(ξf, N) =
∑2

i=1 LD
U
i (ξ, N).

The first part is concerned with the caseN (Ω) = 0, or equivalently,Ωr ∈ [0, ξf), ∀r. Since
the decoder chooses one of theR relay selection vectors, the NSNR is at leastminr Ωr. Using

Proposition 2, we have

LD
U

i (ξf, 2) ≤ C0

ξf∫

0

· · ·
ξf∫

0

exp
(
−min

r
ωr

)∏

r

fΩr(ωr)
∏

r

dωr (165)

≤ C0C
R
13ξ

R
f ψ

R(ξf) (166)

≤ C0(RC13)
R log

2R P

PR

[
1 + (R logP )−

1
2 logP + (R logP )1−

1
logP

1

P

]
(167)

≤ C0(RC13)
R log

2R P

PR

(
1 + e

1
2e +

R logP

P

)
(168)
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≤ C22
log2R P

PR
, (169)

for a constant0 < C22 <∞, and allP sufficiently large.
For the second part, we consider the caseN (Ω) = 1 ⇐⇒ ∃r ∈ R, Ωr ∈ [ξf,∞). In this

case, the minimum NSNR isξf, and we simply haveLDU2(ξf, 2) ≤ C0
1

PR .

Combining the final upper bounds for the two parts, we haveLDU(ξf, 2) ≤ C23
log2R P

PR for some
constant0 < C23 <∞. This concludes the proof. �

APPENDIX E

PROOF OFTHEOREM 4

We prove the theorem forK > 1. The proof forK = 1 is very similar and skipped for brevity.

Let Ω and Ωr, be as defined in Appendix C. Also, for simplicity of notations, let ξ = ξv,

N = Nv, andΞ = (Nv − 1)ξ. Depending onN (Ω), we divide the calculation ofLDU(ξ, N) to
three separate parts asLDU(ξ, N) =

∑3
i=1 LD

U
i (ξ, N).

The first part is concerned with the case whereN (Ω) = 0 ⇐⇒ Ωr ∈ [0, ξ), ∀r. In this case,

the NSNR is at leastminr Ωr. Using Proposition 2, we have

LD
U

1(ξ, N) ≤ C0

ξ∫

0

· · ·
ξ∫

0

exp
(
−min

r
ωr

)∏

r

fΩr(ωr)
∏

r

dωr ≤ C0C
R
13ξ

RψR(ξ). (170)

Now we consider the termψ(ξ) in (170). For future reference, we shall calculate an upper bound
for the more general quantity given byψ(nξ), for anyn ∈ {1, . . . , N − 2}. We have

ψ(nξ) =
logP

P

[
1 + (nξ)−

1
2 logP + (nξ)1−

1
logP

1

P

]
(171)

=
logP

P

(
1 + n− 1

2 logP Λ
1

2 logP + n1− 1
logP ξΛ

1
logP

1

P

)
(172)

≤ logP

P

(
1 + Λ

1
2 logP + nξΛ

1
logP

1

P

)
(173)

≤ logP

P

(
1 +

√
e+ enξ

1

P

)
, (174)

where the last inequality follows fromΛ ≤ P . Moreover, for alln ∈ {1, . . . , N − 1}, nξ ≤
(N − 1)ξ ≤ log Λ + R logP − R log logP + 1

Λ
≤ ǫ−1 + (R + 1) logP . Combining with (174),

we can argue that there is a constant0 < C24 <∞ such that

ψ(nξ) ≤ C24
logP

P
, (175)

for all P sufficiently large. Using (170), it follows thatLDU1(ξ, N) ≤ C0CR
13C24

ΛR
logR P
PR .

For the second part, we evaluate the cases for whichN (Ω) ∈ {1, . . . , N − 2}. For each
n ∈ {1, . . . , N − 2}, suppose thati ≥ 2 of Ωr are in the interval[nξ, (n + 1)ξ), and the rest
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R − i of them are in[0, nξ). The minimum NSNR is at leastnξ. Also, there are
(
R
i

)
possible

ways to choose whichΩr will be in [nξ, (n+ 1)ξ). Therefore,

LD
U

2(ξ, N) ≤
R∑

i=2

∑

K∈K R
i

N−2∑

n=1

nξ∫

0

· · ·
nξ∫

0︸ ︷︷ ︸
R−i integrals

(n+1)ξ∫

nξ

· · ·
(n+1)ξ∫

nξ︸ ︷︷ ︸
i integrals

exp(−min
r∈K

ωr)
R∏

r=1

fΩr(ωr)
∏

r∈K
dωr

∏

r′∈Kc

dωr′, (176)

whereK R
i is the collection of all possiblei-combinations of the set{1, . . . , R} (e.g. K 3

2 =

{{1, 2}, {1, 3}, {2, 3}}), andKc = {1, . . . , R}−K. Then, similarly, we can use Proposition 2 to

arrive at

LD
U

2(ξ, N)

≤ C0C
R
13

R∑

i=2

∑

K∈K R
i

N−2∑

n=1

e−nξ [nξψ(nξ)]R−i

[
ξψ(ξ) +

logP

P 2
(nξ)2−

1
logP

]i
(177)

≤ C0C
R
13

R∑

i=2

(
R

i

)
2i−1

N−2∑

n=1

nR−ie−nξψR−i(nξ)

[
ξRψi(ξ) + ξR−i

(
1 + n2iξ2i

) logi P
P 2i

]
(178)

≤ C0(4C13)
R log

R P

PR

R∑

i=2

[
(
ξR + ξR−iP−i

)N−2∑

n=1

nR−ie−nξ +
ξR+i

P i

N−2∑

n=1

nR+ie−nξ

]
, (179)

where (178) follows from Hölder’s inequality, and the factthat (nξ)2i−
i

logP ≤ (1+n2iξ2i), i ≥ 1.

For (179), we have applied (175). Now, we shall evaluate the summations with respect ton in

(179). The following lemma provides a useful upper bound:

Lemma 3. Let f be a non-negative real valued Riemann integrable function with f(x) <

∞, ∀x ∈ R that is increasing on the interval(−∞, b), and decreasing on(b,∞). Then

n2∑

n=n1

f(n) ≤
n2∫

n1

f(x)dx+ 2b. (180)

Proof: Let nb = ⌊b⌋ be the largest integer less thanb. Assume thatn1 < nb < n2. Then

nb−1∑

n=n1

f(n) =

nb−1∑

n=n1

n+1∫

n

f(n)dx ≤
nb−1∑

n=n1

n+1∫

n

f(x)dx =

nb∫

n1

f(x)dx, (181)

where the inequality follows from the fact thatf is increasing in the range of integration. Also,

n2∑

n=nb+2

f(n) =

n2∑

n=nb+2

n+1∫

n

f(n)dx ≤
n2∑

n=nb+2

n+1∫

n

f(x− 1)dx =

n2∫

nb+1

f(x)dx, (182)
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where the inequality follows sincef is decreasing on(nb + 1,∞), and thus fornb + 2 ≤ n ≤
x ≤ n + 1, f(n) ≤ f(x− 1). Finally, combining (181) and (182),

n2∑

n=n1

f(n) =

nb−1∑

n=n1

f(n) + f(nb) + f(nb + 1) +

n2∑

n=nb+2

f(n) (183)

≤
nb−1∫

n1

f(x)dx+ b+ b+

n2∫

nb+1

f(x)dx (184)

≤
n2∫

n1

f(x)dx+ 2b, (185)

which is the desired inequality forn1 < nb < n2. The other cases can be proved similarly. We

skip them for brevity.

Note that the functionf(x) = xi exp(−xξ) has a global maximum atx = i/ξ with f(x) =

iiξ−i exp(−i). Moreover, for any0 ≤ a < b < ∞,
∫ b

a
f(x)dx ≤

∫∞
0
f(x)dx = Γ(i+ 1)ξ−(i+1).

Using Lemma 3, for anyi < R, we have

N−2∑

n=1

nR−ie−nξ ≤ Γ(R − i+ 1)ξ−(R−i+1) + 2(R− i)R−iξ−(R−i) (186)

≤ Γ(R − i+ 1)ξ−(R−i+1) + 2(R− i)R−iξ−(R−i+1) (187)

≤ 2(R− i)R−iξ−(R−i+1). (188)

where the second inequality follows from the assumption that ξ ≤ 1.
Using (188), (179) can be bounded as:

LD
U

2(ξ, N) ≤ C0(2C13)
R log

R P

PR

R∑

i=2

[
2(R− i)R−i(ξi−1+ ξ−1P−i) + 2(R + i)R+iξ−1P−i

]
(189)

≤ C0(2C13)
R log

R P

PR

R∑

i=2

[
4(R− 2)R−2ξi−1 + 2(2R)2Rξi−1

]
(190)

≤ RC0(2C13)
R
[
4(R− 2)R−2 + 2(2R)2R

] logR P
ΛPR

(191)

where the second inequality follows from the assumption that P ≥ ξ−1.
For the last part, we consider the cases for whichN (Z) = N − 1. The minimum NSNR is

(N − 1)ξ = Ξ ≥ log Λ +R log( P
logP

), and we haveLDU3(ξ, N) ≤ C0e
−Ξ ≤ C0

logR P
ΛPR .

Combining the final upper bounds forLDUi (ξ, N), i = 1, 2, 3, LDUi (ξ, N) ≤ C25
logR P
ΛPR for all P

sufficiently large, and a constant0 < C25 <∞ that is independent ofP andΛ. This proves the

upper bound on the LD.
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Finally, by the definition of our compressor in Section V-A3,we have

Rℓ(LQ
v

ξv,Nv
) = ⌈log2(NR − 1)⌉P(∃r, Ωrℓ < N) (192)

≤ ⌈R log2N⌉
R∑

r=1

P(Ωrℓ < Ξ) (193)

≤ RC24

{
1 +R log2

[
Λ logΛ +RΛ log

(
P

logP

)
+ 2

]}
logP

P
, (194)

≤ C26
log2 P

P
, (195)

for some constant0 < C26 < ∞, andP sufficiently large. The third inequality follows from

(175). This concludes the proof. �
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