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Abstract 

 

Psychological researchers investigate complex phenomena with imperfect measures and limited 

resources. Quantitative methods can ameliorate these challenges, but only when the methods 

applied match the research question and goal. Because of this, methodologists explore the 

consequences of mismatched methodology, and develop guidelines for methodology selection. 

Regardless of the research question, it is important to (1) clearly state the theoretical target, (2) 

select an estimate that can inform this theoretical target, and (3) select a valid estimator for the 

estimate. The following chapters in this dissertation focus on proposing a guide for variable 

selection, developing a model that allows for the integration of information across models (both 

important for estimate selection), and evaluating different estimation approaches (important for 

selection of the estimator).  
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Chapter 1. Introduction 

The Importance and Challenges of Complex Systems 

Psychologists study complex systems with many interacting parts. One reason 

psychologists are interested in these systems is because understanding their structures and 

mechanisms has real-world implications. For example, knowing how race and gender biases 

impact decision making can make college admissions more equitable. Or understanding the 

principles of childhood learning can guide the development of a fourth-grade reading curriculum.  

The complexity of these systems, however, means that learning about them is difficult. 

These systems are often centered on multi-dimensional constructs with definitions that are still 

debated among experts and that are difficult to measure. These systems also have a multitude of 

important influencing factors making it difficult to know or measure the full set of important 

variables. Further, the relations between these sets of factors are challenging to model due to the 

number and complexity (e.g., non-linear, multi-way interactions). As such, most psychological 

research studies have an important research question but only a fraction of the resources or 

information necessary to easily glean a valid answer.  

These challenges are why psychologists rely heavily on statistical models. Statistical 

models can be used to “make up the distance” between our research goals and our resource, 

design, measurement, and data limitations (Smaldino, 2016; 2017) For example, latent variable 

models can remove measurement error from imperfectly measured constructs (making up the 

distance between how we measure variables and how we wish we could measure variables; 

Wansbeek, & Meijer, 2001) and random-effects models can remove unmeasured confounding 

from causal estimates (making up the distance between the set of variables we measured and the 

set of variables we wish we could measure; Kim & Steiner, 2021). But these methods will only 

improve the validity of inferences if the modeling choices—which variables are included in a 
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model, what model is selected, which estimator is used—are matched with the research question 

and goal (Lundberg, Johnson, & Stewart, 2021).  

The Impact of Misaligned Research Questions and Statistical Models 

Often in research articles, pages are devoted to describing a complex system and 

underscoring the importance and novelty of the research question. But then there is a jump to 

describing the methods and models used with little discussion of the link between the research 

question and the methodology (Lundberg, et al., 2021; Grosz, Rohrer, & Thoemmes, 2020). This 

jump is a problem because a mismatch between the research goal and the methodology can result 

in incorrect inferences about the systems of interest. 

The negative impact of this misalignment is a topic that psychometricians have pointed 

out across various areas. For example, Rhemtulla and colleagues (2021) explained how latent 

variable models—used to remove measurement error from a construct of interest—will not 

remove measurement error or provide unbiased estimates if the construct being modeled is not a 

common factor underlying its indicators. Rohrer (2018) described how failing to control for an 

appropriate set of confounders can lead to biased estimates. Hamaker and colleagues (2015) 

wrote about how failing to model random intercepts when there are stable between-person 

differences leads to a conflation of between and within-person effects in estimated parameters.  

Improving the Link between Research Questions and Statistical Models  

Given the wide-spread impact of a misaligned research goal and methodology, multiple 

frameworks have been proposed to guide researchers through the selection of the research 

methods and models (e.g., Borsboom et al., 2021; McElreath & Smaldino, 2015; Lundberg et al., 

2021). Many of these guides focus on the importance of discussing the rationale behind design 
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and modeling decisions and underscore the value of acknowledging the uncertainty in those 

decisions.   

One such framework, proposed by Lundberg and colleagues (2021) suggests that all 

research studies should have 3 steps when developing a research question and matching it with a 

methodological approach. First, specify a theoretical target—the object of inquiry—which is the 

unit-specific quantity of interest as well as the target population. Here, researchers should argue 

why this theoretical target is important for understanding the larger system. Second, select the 

parameter that will be estimated to learn about this theoretical quantity—the estimate. Here, it is 

important to link the estimate to the theoretical quantity—how does this estimate help us learn 

about the theoretical quantity? Third, select an estimator—what approach will be taken to 

estimate the previously selected parameter? The selection of the estimator is informed by the 

target estimate as well as the data availability and constraints.  

Making these three steps distinct tasks that build on each other allows researchers to 

make clear what question they are interested in, justify their interest in that question, and defend 

how their specific research question is informative for the larger theory. And, most importantly 

to this dissertation, it allows researchers to then center all following decisions—what variables to 

measure, what model to select, and how to estimate that model—on the clearly specified 

theoretical target. The following chapters discuss specific frameworks and models for selecting 

an estimate once the theoretical target has been specified (Chapter 3 & 4) and selecting an 

estimator once the estimate has been specified (Chapter 2).  In the following subsections we 

outline chapters 2, 3, and 4 and describe how they add to the literature on the alignment of 

research goals and methodology.  

Estimating Network Models (Chapter 2) 
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Selecting the correct estimate for a theoretical target is a challenging but important 

endeavor, and it will often depend on the underlying structure of the construct(s) of interest. 

Common factor models, where measured variables are hypothesized to reflect a latent variable, 

are widespread in psychology for modeling constructs such as personality and psychopathology 

wherein the latent factor is thought to cause the measured variables (e.g., behaviors, symptoms; 

Borsboom, 2008; Borsboom, Mellenbergh, & van Heerden, 2003). More recently, however, 

psychometric network models, which depict psychological constructs as a system of behaviors, 

symptoms, or attitudes with direct causal influences on each other have been proposed as an 

alternative model (Borsboom & Cramer, 2013; Epskamp, Maris, Waldorp & Borsboom, 2018). 

If the construct of interest is a system of interacting components, then a network model can 

likely capture the construct better than the latent variable model.  

Network models were introduced to psychology a decade ago, and since then, have 

become popular particularly for modeling psychopathologies (Borsboom, 2017; McNally et al., 

2015).  But psychometric network models are new and as such how to estimate them (the final 

step in the 3-step framework outlined above) is an ongoing topic of research. Initially, the default 

approach to estimating network models was a regularization technique which induces a sparse 

network by deleting many of the paths connecting pairs of variables in a network (Friedman, 

Hastie, & Tibshirani, 2008). However, regularization was developed for high-dimensional 

settings—when the number of variables exceeds the sample size—which are uncommon for 

psychological data (Foygel & Drton, 2010; Friedman et al., 2010). Regularization decreases 

variance across estimates which in high-dimensional settings can make a complex model 

estimate-able. But it is likely not necessary for estimation in low-dimensional settings. As such, 

it is important to investigate how regularization performs in low-dimensional settings. In chapter 
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2 we explore whether regularization techniques are appropriate for psychological settings by 

comparing the performance of a set of regularization techniques in low-dimensional settings. Our 

goal here is to evaluate whether regularization is an appropriate estimation approach for the 

estimates of interest—the direct relations between variables.  

Causal Inference (Chapters 3 & 4) 

 Psychology is having a causal reckoning where some researchers are starting to realize 

that it is impossible to explain and understand processes without invoking causality (Grosz, et 

al., 2020; Foster, 2010). Many of the research questions that psychologists are interested in are 

centered on explaining systems and understanding how to change or intervene on these systems 

(Foster, 2010). This means that many psychological theoretical quantities are causal.   

However, the methodologies and research practices used in psychology are often not, by 

themselves, suited for causal inference (Rohrer, 2018). Fortunately, tools for causal inference 

have been extensively developed and discussed in fields like epidemiology and economics (e.g., 

Greenland, Pearl, & Robins, 1999; Hernán, Hernández-Díaz S & Robins, 2004; Hernán et al., 

2008). But for these tools to be useful for psychological research, they need to be adapted to the 

research designs and variables that psychologists deal with. For example, variables in 

epidemiology tend to be simpler to measure (e.g., are you a smoker?) or discrete events (e.g., 

what medication were you prescribed?). Whereas in psychology, many variables are complicated 

to measure and describe states (e.g., how satisfied are you with your life?) rather than events.  

As such, psychometricians have begun to adapt existing causal inference tools from other 

fields and develop new tools with the goal of making causal inference available to psychological 

researchers (e.g., Grosz et al., 2023; Kim & Steiner, 2021; Rohrer, 2018). These recent 

endeavors are centered on developing both estimates and estimation approaches that are valid for 
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learning about causal theoretical quantities in psychology. Chapter 3 and Chapter 4 in this 

dissertation develop two such contributions.  

When selecting an estimate that can inform on a causal theoretical quantity, a key step is 

controlling for the correct set of confounding (or biasing) variables. Chapter 3 outlines why the 

current approach to selecting control variables in psychology is not well-suited to the goal of 

causal inference and proposes a better suited framework for control variable selection. When the 

theoretical quantity is causal, it is inherently longitudinal (causes precede effects; change occurs 

over time), but psychologists regularly have cross-sectional data. Likely any estimate or 

estimation approach based on cross-sectional data will not be aligned with the causal theoretical 

quantity. Chapter 4 develops a model that allows researchers to integrate existing longitudinal 

information into cross-sectional estimates to create more robust and less biased estimates. 

Overall, the chapters in this dissertation develop methods and frameworks with the goal of 

helping psychologists better align their methodologies to their research questions.  
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Chapter 2. On Penalty Parameter Selection for Estimating Network Models1 

Network models are becoming popular in psychology (Borsboom, 2017; McNally et al., 

2015) largely because they provide a theoretical alternative to latent variable models and the 

common cause framework (Borsboom & Cramer, 2013). For example, psychopathologies such 

as depression are often conceptualized as arising from a common or underlying cause. As this 

cause is unobservable (i.e., the latent variable), the symptoms are considered passive indicators 

that allow for inquiry and the ability to diagnose the disorder. On the other hand, networks 

conceptualize constructs as systems arising due to interactions between variables rather than due 

to an underlying cause (Epskamp, Maris, Waldorp & Borsboom, 2018).  In practice, network 

models are used to estimate relations between nodes (e.g., symptoms), identify hubs (i.e., highly 

connected nodes), and visualize the overall structure of a construct (McNally, 2016); for a 

theoretical discussion and comparison of latent versus network models see Borsboom and 

Cramer (2013).  

One commonly estimated network is the Gaussian Graphical Model (GGM) wherein 

nodes represent random variables, and edges represent conditional independencies, estimated as 

partial correlations, between variables (Lauritzen, 1996). The estimation of partial correlations 

can produce rich inferences as variables that directly activate each other will be connected 

assuming all important variables are included in the model. As applied researchers can never be 

certain that this criterion is met, partial correlations provide a possible causal skeleton for a 

construct (Edwards, 2012).  In psychology, GGMs are used to estimate, for example, symptom, 

 
1 This chapter was slightly adapted from published paper: Wysocki, A. C., & Rhemtulla, M. 
(2021). On penalty parameter selection for estimating network models. Multivariate Behavioral 

Research, 56(2), 288-302. 
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personality, and health behavior networks (Costantini et al., 2015; Fried et al., 2017; 

Kossakowski et al., 2016). 

An important aspect of GGMs is not only the identification of important conditional 

relations, but also the identification of truly zero edges, which is necessary to achieve a sparse 

network. Setting edges to zero is a key feature of network estimation as having a fully connected 

model is less helpful than having a few potentially meaningful connections to focus on in future 

experiments or interventions. However, it is important to achieve this sparsity in a justified 

manner.  

In psychology, inducing sparsity is typically done through a form of penalized maximum 

likelihood, the graphical lasso or "glasso" (Friedman, Hastie, & Tibshirani, 2008), using a 

penalty selection method called EBIC (Foygel & Drton, 2010) for selecting the degree to which 

the likelihood is penalized.  Minimizing the EBIC is used to select the penalty parameter λ, that 

in turn achieves the goal of edge selection. Although there are multiple methods to select λ for 

the glasso equation (Kuismin & Sillanpää, 2017), EBIC has emerged as the default in 

psychology with no published work establishing if its performance is superior for psychological 

data. We understand that 'psychological data' is a broad term and given the variety of research 

that is done in psychology (e.g., neural, psychopathology, social research) no single dataset or 

template could characterize all psychological data. We use the term to refer to psychopathology 

symptoms and personality scales, which have been the target of most glasso estimated networks 

to date (Beard et al., 2016; Briganti, Kempenaers, Braun, Fried, & Linkowski, 2018; Bryant et 

al., 2017; Pereira-Morales, Adan, & Forero, 2019) 

The selection of the penalty parameter term in glasso, λ, is critical as different values 

applied to the same data can result in different networks (Epskamp & Fried, 2018; Kuismin & 
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Sillanpää, 2017). For example, when λ = 0 the network is no longer penalized, and, assuming no 

sample partial correlations are precisely zero, the resulting network is fully connected (i.e., all 

edges are non-zero). As λ increases, so does the penalization of the network, resulting in an 

increasingly sparse network (i.e., fewer edges are estimated) eventually resulting in an empty 

network (Liu, 2013). Within the glasso framework, penalty selection is done through an 

automated data mining process whereby a sequence of λ are tested, and one is selected based on 

whether the corresponding network optimizes some criterion. This criterion depends on which 

penalty selection method is being used. As different methods have divergent priorities (e.g., 

stability, sparsity, predictive ability), they often select different λ and can return vastly different 

networks (Kuismin & Sillanpää, 2017). The aim of the present work is to characterize the 

performance of penalty selection methods. We seek to fill this gap in the literature by comparing 

four penalty selection methods for the glasso in conditions representative of psychological data. 

The rest of this chapter is outlined as follows. In the next section, we describe network 

estimation. Then, we outline four penalty selection methods: CV, StARS, RIC, and EBIC, and 

discuss the advantages and limitations of each approach. Then, with a motivating example, we 

use each method to estimate the network structure of PTSD symptoms, where we highlight how 

each method can (sometimes) estimate drastically different networks. Importantly, we also 

provide an overview of specific network characteristics (e.g., network density and partial 

correlation size) based on a review of published psychological networks. We next present two 

simulation studies and their results ending with a discussion of these findings in relation to 

psychological networks, the practical implications of this work, and future directions for 

methodological inquiry.    

Network Estimation  
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A key feature of estimating networks is imposing a sparsity pattern on the precision 

matrix (Θ), the inverse of the covariance matrix (Σ). The sparsity pattern of Θ provides the 

structure of the network model where a non-zero value in the off-diagonal represents an 

estimated edge between nodes. Networks discussed and estimated in the current paper are 

undirected, as are almost all networks estimated from cross-sectional data (Borsboom et al., 

2021b). This is because of the large number of equivalent directed models that result in the same 

fit (Hitchcock, 2001). Without experimental manipulation or strong theory, it is challenging to 

decrease the space of possible directional graphs. The precision matrix can be used to obtain 

partial correlations following:  

𝑐𝑜𝑟(𝑦𝑖 , 𝑦𝑗\ 𝑦−(𝑖, 𝑗)) =  
−𝜃𝑖𝑗

√𝜃𝑖𝑖𝜃𝑗𝑗

 , 

where Θ =  [

𝜃𝑖𝑖 ⋯ 𝜃𝑗𝑖

⋮ ⋱ ⋮
𝜃𝑖𝑗 ⋯ 𝜃𝑗𝑗

]   

where the partial correlations represent the correlation between each pair of variables, controlling 

for all other variables in the model. When variables can be assumed to follow a multivariate 

normal distribution, the precision matrix can be estimated using normal-theory maximum 

likelihood estimation. In psychological applications, the most common estimation method used 

when the data approximate multivariate normality is the graphical lasso (glasso), a form of 

penalized maximum likelihood that uses an ℓ1-penalty (Friedman et al., 2008), minimizing the 

likelihood: 

𝚤(𝚯̂) = log det 𝚯̂ − 𝑡𝑟(𝑺𝚯̂) − 𝝀 ∑(|𝚯̂𝑖,𝑗|)

𝑖≠𝑗

 

(1) 

(2) 
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where S is the sample covariance matrix, 𝚯̂ is the estimated precision matrix, and λ 𝜖 {0, 1} is the 

penalty parameter that is applied to the sum of the absolute edge weights. This penalty results in 

all edge weights being shrunk toward zero, and many of them set to exactly zero. In other words, 

glasso performs both edge selection and weight shrinkage, with the choice of λ affecting both 

which edges are estimated and the size of the estimated edge weights. When λ is set to 0, the 

penalty term drops out and the equation returns to normal-theory (i.e., non-penalized) maximum 

likelihood such that is typically used in regression:  

𝚤(𝜣̂) = log det 𝜣̂ − 𝑡𝑟(𝑆𝜣̂) 

Again, there are different methods to select λ with divergent criteria. It is important to note, 

because glasso estimates the entire network in one step, only one penalty parameter is used in 

estimation. This is in contrast to methods that use a series of univariate regression models to 

estimate edges for each node individually (Meinshausen & Bühlmann, 2006; Ravikumar, 

Wainwright, & Lafferty, 2010). In the next section, we outline four penalty selection methods.    

Methods for Parameter Selection 

Cross-Validation (CV) 

In psychology, there has been a surge of interest in predictive modeling, which stands in 

contrasts to more traditional explanation-centric frameworks (Yarkoni & Westfall, 2017). The 

goal of cross-validation (CV) is not exclusively to make inferences about individual parameters, 

but to select a model that is able to predict out-of-sample data.  Although inferences are still 

possible, cross-validation is prone to over-selection which results in a higher false positive rate 

(Chetverikov, Liao, & Chernozhukov, 2021; Yu & Feng, 2014). These limitations hold for CV in 

both regression and network settings. Although there are different ways to implement CV, the 

(3) 
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general procedure is to partition the data into a training set and a test set.  Different forms of CV 

(e.g., leave-one-out, K-fold) have been applied to network estimation (Efron, Hastie, Johnstone, 

& Tibshirani, 2004; Friedman et al., 2008; Friedman, Hastie, & Tibshirani, 2010; Zhang, 1993). 

For our purposes, we will focus on K-fold CV, which is computationally more efficient and has 

been found to have greater stability than other forms of CV (Homrighausen & McDonald, 2014; 

2017).  

K-fold CV partitions the data into K non-overlapping subgroups. Using Equation 2, a 

sparse precision matrix is estimated with the pooled data from K - 1 of the subgroups, inverted 

into a sparse covariance matrix (𝚺train) and then tested on predicting the covariance matrix from 

the remaining group (i.e., the testing group; (𝚺test). The prediction error is computed across folds 

(i.e., until each subgroup has been the test group) and averaged. The prediction error is estimated 

as follows: 

ℓ𝐶𝑉 (𝛴̂) =  
1

𝐾
∑ − log det 𝜮̂𝒕𝒓𝒂𝒊𝒏 − tr(𝜮̂𝒕𝒆𝒔𝒕𝜮̂𝒕𝒓𝒂𝒊𝒏

−𝟏 )

𝐾

𝑖 =1

 

This procedure is repeated across the range of λs resulting in a mean prediction error (prediction 

error is averaged across folds) for each λ. The λ that minimizes the mean cross-validation error is 

selected (for more details see Bien and Tibshirani, 2011). 

Stability Approach to Regularization Selection (StARS)  

StARS uses a re-sampling method to select a λ that provides maximal network stability 

(Liu, Roeder & Wasserman, 2010). There are parallels between this method and bootstrapping 

(although bootstrapping re-samples with replacement and StARS without) wherein both methods 

use re-sampling to assess the variance or stability of a model across samples (Efron & Tibshirani, 

(4) 
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1993). StARS does this by drawing K random, overlapping subsamples and fitting the range of 

λs to each of the subsamples. StARS begins with a large λ that results in an empty network 

providing stability with no variation between groups and λ is gradually reduced until there is a 

small but acceptable amount of variability between the subsample networks. Total instability for 

a given λ is defined as 

𝐷 =  
∑ (2 (𝜉𝑖𝑗(𝜆))  (1 − 𝜉𝑖𝑗(𝜆)))𝑖 ≠𝑗

𝑝(𝑝 − 1)
2

 

where p is the number of variables in the dataset and 𝜉𝑖𝑗(𝜆) is the probability of a network 

having a specific edge calculated as 

𝜉𝑖𝑗 =  
∑ 𝑎̂𝑖𝑗𝑖≠𝑗

𝐾
 

Where 𝑎̂𝑖𝑗 = 1 when 𝜃𝑖𝑗 ≠ 0 and 𝑎̂𝑖𝑗 = 0 when 𝜃𝑖𝑗 = 0. The smallest λ with a total instability 

between .01 < D(λ) < .08 is selected (Liu, Roeder & Wasserman, 2010). 

Extended Bayesian Information Criterion (EBIC) 

Information criteria, for the purpose of model section, are commonly used in psychology, 

and most can be justified in several ways. For example, minimizing the BIC approximates 

selecting the most probable model, assuming the true model is in the candidate set (Raftery, 

1995). When the ratio of sample size to number of variables is small, it has been noted that the 

BIC does not necessarily select a parsimonious model (Chen & Chen, 2008). As such, EBIC was 

developed by introducing an additional manually-set penalty, γ, to the BIC equation (Foygel & 

(5) 

(6) 
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Drton, 2010). 2 γ controls the prior probability of sparse models resulting in the return of sparser 

networks as γ increases (Chen & Chen, 2008; 2012). EBIC is calculated as  

 

EBIC = −2 𝚤(𝚯̂) + E log(n) + 4γE log(p) 

where 𝚤(𝜣̂) is defined in Equation 2 and E is the size of the edge set (i.e., the number of non-zero 

elements of 𝜣̂. When γ = 0 the added penalty is dropped, and the equation is reduced to the BIC. 

The selected network minimizes the EBIC with respect to λ. Per recommendations by Foygel & 

Drton (2010), the default setting for γ in popular R packages for estimating network models, 

such as qgraph, glasso, and huge, is .5 (Epskamp, Cramer, Waldorp, Schmittmann, & 

Borsboom, 2012; Friedman, Hastie, & Tibshirani, 2019; Zhao, Liu, Roeder, Lafferty, & 

Wasserman, 2012.  

 Epskamp (2016) investigated EBIC's performance across conditions (p = 25, 50 ≤ n ≤ 

2500) that are typical to psychology and showed that the sensitivity (defined in section 

Performance Meausures) of EBIC increased with sample size. Specifically, when sample size 

was less than 500, sensitivity was generally below 75% (i.e., the method only estimates 75% of 

the true edges). Additionally, EBIC is sensitive to the magnitude of edges in the population 

network wherein larger partial correlations resulted in worse performance (Williams, Rhemtulla, 

Wysocki, & Rast, 2019) 

 
2 The method originally proposed by Foygel & Drton (2010) is slightly different than the 

implementation of EBIC in the R package huge and, until recently, qgraph. Specifically, the 
original suggestion was to use EBIC to select a penalized model structure, and to use non-

penalized maximum likelihood to estimate the model parameters once the structure was chosen. 
The huge and original qgraph implementations of EBIC instead use it to select both a penalized 

model structure and to obtain penalized parameter estimates. 

(7) 
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Rotation Information Criterion (RIC) 

The RIC uses a rotation procedure, similar to a non-parametric permutation test, to select 

λ (Zhao et al., 2012; Zhu & Cribben, 2018). The data are reshuffled by randomly rotating the 

rows within each column of data. This procedure produces a rotated dataset in which all relations 

among variables are spurious. The reshuffled dataset is used to construct the expected sampling 

distribution under the null hypothesis (i.e., the null distribution). The RIC then finds the smallest 

value of λ that accurately regularizes all (spurious) edges to 0. This rotation procedure is 

repeated a number of times (the default in its R package, huge, is 20) and the smallest calculated 

λ across all rotations is returned as the selected penalty for the network. 

Method Performance 

The glasso depends on a number of assumptions and necessary conditions to perform 

well. One assumption is that the underlying population matrix is sparse. In the statistics 

literature, sparsity has been defined as having fewer true edges than sample size (Meinshausen & 

Bühlmann, 2006; Tibshirani & Wasserman, 2015). This is the minimum level of sparsity 

required for a network to be estimated. However, in psychology, sample sizes generally greatly 

exceed the number of variables, so the number of possible edges rarely meets this limit (see 

Section Psychological Network Review). As such, it is unclear what the impact of sparsity will be 

in this case. Second, there are two conditions that must be met to ensure consistent estimation. 

The irrepresentable condition is satisfied when unimportant variables are not highly correlated 

with important variables. More specifically, this condition is satisfied when the sum of irrelevant 

covariance is less than 1 (Zhao & Yu, 2006). The beta-min condition is satisfied when non-zero 

coefficients are sufficiently large; see Gauraha and Swapan (2018) for a full discussion of these 

necessary conditions.  
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Further, as these methods were developed for data where the ratio of sample size (n) to 

the number of variables (p) is small, most simulations have explored glasso's performance in 

such high-dimensional settings (Foygel & Drton, 2010; Friedman et al., 2010). Of the 

simulations that have looked at glasso's performance in low-dimensional settings, where p is 

smaller than n, many have only used EBIC to select the penalty parameter (Epskamp, 2016; 

Epskamp & Fried, 2018; Williams et al., 2019). However, there is a small amount of work 

comparing penalty parameter selection methods. For example, StARS was found to be 

competitive against BIC and AIC in conditions with a small n to p ratio (performance was 

measured using F1-scores, a measure of both recall and precision; Liu et al., 2010). Overall, 

StARS consistently estimated sparser graphs than other methods and as a result had a lower false 

positive rate but was also less sensitive (see Section Performance Measures for definition). K-

fold CV was also compared to StARS and was found to return a denser network with more false 

positive errors but fewer false negative errors (Liu et al., 2010). Mohammadi and Wit (2015) 

compared EBIC, RIC, and StARS across four low-dimensional conditions. They found that RIC 

and StARS were competitive with EBIC even outperforming (performance again measured by 

F1-scores) EBIC in multiple conditions particularly those most comparable to psychological data. 

In simulations comparing penalty selection methods, there have been few low-

dimensional conditions. This means that there has not been a full characterization of the impact 

of sample size and variable number on performance across methods. It also may be important to 

characterize these methods specifically for psychology-typical data. GGMs have typically been 

used to estimate gene or neural networks (Hecker, Lambeck, Toepfer, van Someren, & Guthke, 

2009). However, in psychology they are being used to estimate constructs such as symptom and 

personality networks. As these are vastly different areas, there is the possibility that 
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psychological networks contain different sized partial correlations than gene and neural 

networks. Given the impact partial correlation size seems to have on these methods' 

performance, it is important to characterize method performance with partial correlations that 

approximate the size found in psychology. Finally, to our knowledge, no simulation comparing 

penalty selection methods has directly manipulated sparsity, the percentage of truly zero edges, 

across conditions. Therefore, we do not know whether sparsity or the lack thereof impacts 

penalty selection methods differently. As such, it is important to assess how these methods 

perform in conditions and data that are typical to psychology.   

Psychological Network Review 

To better understand the characteristics of psychological networks, we reviewed 37 

recently published psychological networks assessing psychopathology (n = 33) and personality 

(n = 4) constructs. As the data for these two constructs were similar, their results will be 

presented together. Our review focused on the sample size, number of variables, sample sparsity 

and estimated partial correlations for each network. Figure 1 (left panel) depicts the distribution 

of sample partial correlations. Note these are non-regularized partial correlations (i.e., unbiased 

estimates). From this figure, we can see most networks have many partial correlations near 0, 

and large partial correlations are less frequent across networks. It is likely that many of these 

small partial correlations would be set to 0 through regularization. Although small partial 

correlations are more frequent, most networks have moderate to large partial correlations as well 

(see Table 1 for median partial correlation ranges and Table 2 for percentage of partial 

correlations within different ranges). 
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Figure 1. Sparsity and Partial Correlation Distributions from Network Review

 
Note. Left Panel: The distribution of estimated partial correlations across 37 networks. Each line 

represents a different network. Partial correlation size is depicted on the x-axis. Right Panel: The 

distribution of sample sparsity across 37 networks. Sparsity is depicted on the x-axis. 
 

To obtain an estimate of sparsity without the use of a regularization method, we set any 

partial correlations less than .05 to 0. Figure 1 (right panel) depicts the sparsity distribution 

across networks. Network sparsity varied from 25% to 75%. 76% of the networks had between 

50% and 75% sparsity.   

Table 1. Descriptive Statistics for Study Characteristics from Network Review 

 Median Mean SD 

Sample Size 404.5 1,044.74 2420.04 

Variables 18.5 19.84 7.25 

Max PC .52 .56 .18 

Min PC .000 .001 .003 
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Table 2. Percentage across Ranges for Study Characteristics from Network Review 

Sparsity Partial Correlation3 Sample Size Number of 

Variables 

Range Percentage Range Percentage Range Percentage Range Percentage 

0 - .25 0% 0 - .15 74.1% 100 - 250 42% 0 - 10 18% 

.25 - .50 24% .15 - .25 13.5% 250 - 500 13% 10 - 20 47% 

.50 - .75 76% .25 - .50 9.7% 500 - 1,000 26% 20 - 30 24% 

.75 - 1 0% .50 - 1 2.7% >1,000 18% >30 11% 

 

Table 2 displays the percentage of networks that fall between specific ranges for the 

features sparsity, sample size, and variable number (see Figure A1 in the supplementary material 

for the distribution of sample size and variables across the networks). 55% of the networks had a 

sample size less than 500, and most networks had between 10 and 30 variables. From this 

review, we surmise that psychological networks are often not extremely sparse and contain many 

small and a few larger partial correlations. Further, sample sizes are typically under 500, and the 

number of variables ranges from 10 to 30.  

Motivating Example 

To highlight the differences between methods, we estimated four network models, each 

using a different penalty selection method, from a post-traumatic stress disorder (PTSD) data set 

(McNally, 2016). Each method selected a different value of λ and estimated networks with 

different sparsities, although EBIC and RIC had near identical sparsities (< 1% difference; See 

 
3 Based on the absolute values of the partial correlations 
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Figure 2 (top panel) for visualization of each network). Even if a similar sparsity level is 

estimated across methods, the choice of λ also affects the edge weights (see Figure 2 lower 

panel). Comparing EBIC and RIC, even though each network has a similar number of edges, the 

edge weights within the RIC-selected network are smaller. Further, CV not only selects the 

densest network but also estimates the largest absolute edge weights while StARS selects the 

sparsest network with the smallest absolute edge weights. This example underscores how the 

choice of λ affects which edges get estimated and the edge weights, and, given that each penalty 

selection method selects a different lambda it bolsters the need for guidance on which method to 

use. 

Note. Top Panel: Returned networks estimated from a psychological dataset for each method. 
Bottom Panel: The solution path for each method. Each line depicts an edge (12 were selected 

out of the edge set) and the change in partial correlation size across lambdas. The dashed line 

represents the selected lambda for different methods. 

 

Simulation Study 

 In psychology, no recommendations exist for the use of one penalty selection method 

over another. Rather the performance of one method, EBIC, has been examined across various 

Figure 2. Estimated Networks and Partial Correlation Size from Applied Example 
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conditions (Epskamp, 2016; Epskamp & Fried, 2018). In an effort to bridge this gap, we 

conducted two simulation studies. The first used partial correlations estimated from a 

psychological dataset (Section Simulation 1: Empirical Partial Correlations), whereas the 

second simulated data to assess the effect of partial correlation size on performance (Section 

Simulation 2: Simulated Partial Correlations) By using empirical partial correlations from a 

psychological dataset we are establishing how these methods may reasonably perform when used 

to estimate a psychological network. Then, by varying partial correlation size, still within a range 

that is representative of psychological data, we are establishing how performance may vary with 

respect to different partial correlation ranges. The code for both simulations can be found at 

https://github.com/AnnaWysocki/Network-Penalty-Selection . 

Simulation 1: Empirical Partial Correlations 

In Simulation 1, we used a 20 variable PTSD symptom dataset (McNally et al., 2015). 

We selected this dataset for two reasons. First, the data have previously been used to assess the 

performance of EBIC allowing for greater comparability between our results and previous 

simulations, and second, simulating data based on a psychopathology dataset provides partial 

correlations that are comparable in size to those that are likely to appear in psychological 

network applications (see Figure A2 in the supplementary material for the distribution of 

estimated partial correlations). 

Our goal was to outline how these methods compare to each other along with how data 

characteristics such as sparsity, number of variables, and sample size influenced their 

performance. In addition, preliminary simulations suggested that the performance of these 

methods varied not only across samples and conditions but also across populations within a 

condition (e.g., two networks with the same level of sparsity, number of variables, and sample 

https://github.com/AnnaWysocki/Network-Penalty-Selection


 

22 
 

size with a different population matrix may return different false positive rates, on average, 

across randomly sampled data). To better assess this within-condition variability, we performed a 

nested model simulation to estimate both sampling variability within populations and between-

population variability within conditions (see Figures A3 and A4 in the supplementary materials 

for the between-population result figures). In other words, we simulated multiple datasets from 

the same population matrix as well as multiple populations within each simulation condition 

(described in greater detail below). We varied the number of variables (p; 10 and 20), sparsity 

level (50% and 80%), and sample size (n; 100, 200, 250, 500, 1,000, 2,000, and 3,000) across 

conditions. 

The simulation procedure to create each population matrix was as follows:  

1. We used the PTSD dataset to form a bank of partial correlations 

2.  All partial correlations within the range of ± 0.05 were removed (following 

Epskmap’s (2016) simulation procedure) 

3. X partial correlations were randomly sampled, without replacement, from the bank to 

create the population partial correlation matrix where 

𝑋 =  (
𝑝(𝑝−1)

2
) (1 − 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦), 

p ∈ {10, 20}, sparsity ∈ {.50, .80}, and X is rounded to the nearest integer. 

Thus, we had 2 (sparsity levels) by 2 (p) by 7 (n) conditions (i.e., 28 conditions). For each 

condition, 100 population matrices were created. For each population matrix we carried out the 

following procedure: 

1. Simulate 1,000 multivariate normally distributed datasets of size n 

(8) 
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2. With each dataset, estimate four networks using the four previously outlined penalty 

selection methods (i.e., CV, StARS, RIC, EBIC)  

3.  Compute performance measures (see Section Performance Measures) 

Simulation 2: Simulated Partial Correlations 

Simulation 2 assessed the effect of partial correlation size on method performance and 

more fully characterized the effect of sparsity. The edge weights were randomly generated from 

a G-Wishart distribution which is frequently used to simulate multivariate data as it can be 

defined with only two parameters 𝚯 ∽ 𝑊𝐺(𝑑𝑓,  𝐼𝑝) where 𝐼𝑝 represents a p by p identity matrix 

and df represents the degrees of freedom (Mohammadi & Wit, 2017).  The degree of freedom 

parameter determines the degree of shrinkage towards the identity matrix. As the parameter 

increases the distribution of 𝜃𝑖𝑗 narrows. In other words, as the degree of freedom parameter 

increases the partial correlations approach zero (Hsu, Sinay, & Hsu, 2012) through reduction of 

tail-heaviness (i.e., fewer extreme values). We adjusted the degrees of freedom to correspond to 

two ranges where 90% of the partial correlations on average fell between ± .35 and between ± 

.25.  

Simulating from a G-Wishart distribution also guarantees a positive definite posterior 

estimate for Θ (Kuismin & Sillanpää, 2016). To achieve a positive definite matrix, the partial 

correlations must become smaller as the network becomes more densely connected. As such, the 

same degree of freedom will result in smaller partial correlations when sparsity is at 50% 

compared to when it is at 80%. To account for this, we determined which degrees of freedom 

corresponded to the previously mentioned partial correlation ranges for each level of sparsity. 
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Sparsity varied from .1 to .9 in increments of .2. Sample size conditions were 100, 200, 250, 500, 

1,000, 2,000, and 3,000, as in Simulation 1, and p was fixed at 20. In total, we had 70 conditions. 

Performance Measures 

We were interested in quantifying the performance of these methods with respect to both 

the accuracy of edge detection and the accuracy of edge weights. For edge detection we 

calculated the sensitivity (i.e., the true positive rate) and the false positive rate (FPR) as   

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  and  FPR = 1 − (

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

where TP is the number of true positives (i.e., the number of estimated edges that are non-zero in 

the population matrix), FN the number of false negatives (i.e., the number of un-estimated edges 

that are non-zero in the population matrix), TN the number of true negatives, and FP the number 

of false positives detected by each method.  Sensitivity and the FPR range from 0 to 1. A 

sensitivity score of 1 indicates that the method is correctly detecting all true positives, and a FPR 

of 0 means the method is correctly estimating all true negatives as exactly zero. A method with 

perfect edge detection would have a sensitivity score of 1 and FPR of 0. Finally, we compared 

the sparsity of the estimated network to population sparsity to assess whether the methods were 

sensitive to population sparsity.   

A method with perfect edge detection may still estimate edge weights incorrectly. To 

capture the accuracy of the estimated edge, we calculated the correlation between the non-zero 

partial correlations in the population and the corresponding estimated edge weights. We refer to 

this performance measure as true edge correlation. Note, if an edge was non-zero in the 

population matrix but zero in the estimated matrix (i.e., a false negative) it was included in the 

(9) 



 

25 
 

estimation of the true edge correlation as we were interested in the correlation between the 

estimated and population values of true edges.  

Results 

Simulation 1: Empirical Partial Correlations 

Sensitivity and FPR are presented in Figure 3. The performance measure is denoted on 

the y-axis. The columns and rows correspond to different simulation conditions (p and sparsity), 

and sample size is denoted on the x-axis. The four methods are depicted as different lines, and 

the shading around the lines represents ± one standard deviation of the outcome. The variability 

depicted in the figures represents the average sampling variability within a population. Figure A3 

in the supplementary material depicts the between-population variability. 

For smaller sample sizes (n < 500), EBIC often returns empty networks. This can be 

improved by decreasing the γ parameter. However, we set γ = .5 for all conditions per 

recommendations in the psychological network literature (Epskamp & Fried, 2018). As such, a 

number of networks with a sample size of 100 or 200 were empty (particularly n = 100). The 

other methods never returned an empty network. However, StARS and RIC in those same 

conditions often returned exceptionally sparse networks (i.e., < 10% of possible edges were 

estimated). 

Sensitivity. Across both levels of p and both levels of sparsity, CV had far higher sensitivity than 

the other three methods. For sample size 500 and above, CV consistently had sensitivity rates of 

greater than 80%. EBIC, RIC, and StARS, in contrast, had low sensitivity at small n. For these 

three methods, although sensitivity improved as sample size increased, it did not reach 80% until 

sample size was greater than 1,000. For many conditions with a sample size of 500 or less, 
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sensitivity is under 50% particularly for StARS and EBIC. Sparsity did not have a great impact 

on sensitivity, but the size of the network did. When p = 10, all methods had higher sampling 

variability compared to p = 20, meaning the performance of a method was more uncertain. This 

was particularly true for EBIC. Greater variability when p = 10 was not unexpected as the 

performance metrics are computed as a proportion of the total number of edges. As such, when 

there are fewer potential edges each single edge has a greater influence on both the mean and 

variability of a performance index.  

Figure 3. Sensitivity and FPR Results from Empirical Partial Correlations Simulation  

Note. The columns (from left to right) correspond to the number of variables p (10 or 20), and 
the rows correspond to population sparsity (i.e., the percentage of edges equal to 0 in the 

population; 50% or 80%). The shading around each of the lines represents the average sampling 
variability within a population. 
 

False Positive Rate. The FPR results largely mirrored the sensitivity results: methods and 

conditions with higher (better) sensitivity typically exhibited higher (worse) FPRs. CV had a 

markedly higher FPR across all conditions compared to the other three methods. Unlike 
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sensitivity, the FPR of all methods was impacted by sparsity. Specifically, there was an 

interaction between sparsity and sample size. Within the sparse condition (sparsity = 80%), the 

FPR was generally low and constant across sample size. Once sparsity decreased to 50% the FPR 

was higher and increased as sample size increased. For example in the p = 20 and n = 500 

conditions, EBIC on average has an FPR of 5% when sparsity is 80% but the FPR rate increases 

to 60% when sparsity is 50%. The effect of sample size on the FPR may be explained by the 

decreased penalization of 𝚯̂ (i.e., smaller λs are being selected; see Figure A5 in the 

supplementary material for a visualization of selected lambda across sample size) as sample size 

increases, resulting in a denser estimated matrix. Note that StARS and RIC are more robust to 

this interaction. Like sensitivity, network size affected the variability of the results, but not the 

trends.   

True Edge Correlation.  The results for true edge correlation were similar to those for sensitivity 

(i.e., low correlation when n > 1000, greater variability at p = 10). Due to this similarity, all True 

Edge Correlation figures are included in the supplementary material (see Figure A6 in the 

supplementary material). 

Simulation 2: Simulated Partial Correlations 

Sensitivity and FPR are presented in Figure 4. Note, since we had five levels, sparsity is 

now denoted on the x-axis. The rows correspond to sample sizes. We selected three characteristic 

levels of sample size (250, 500, and 1000) to visualize, and the columns correspond to the 

average partial correlation ranges (±.35, ±.25) that contain 90% of the values. Each line depicts a 

different method, and the shading around the lines represents ±one standard deviation of the 

outcome.   
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Sensitivity. In agreement with Simulation 1, CV has the highest sensitivity across all conditions 

compared to the other three methods, and the sensitivity of all methods increases with sample 

size. Sparsity had an impact on methods in specific conditions but this effect was not consistent 

in direction across methods or conditions. For example, with larger sized partial correlations and 

a sample size of 1,000, sensitivity increased with sparsity for StARS and RIC but decreased for 

EBIC. In this condition, CV was not impacted. However, we noted a large effect of partial 

correlation size on sensitivity wherein conditions with larger partial correlations had higher 

sensitivity, particularly when sparsity was low. This is likely because larger effects require less 

power for detection.  
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Figure 4. Sensitivity and FPR Results from Simulated Partial Correlations Simulation  

Note. The columns correspond to the different partial correlation ranges, and the rows 

correspond to different sample sizes. The x-axis denotes varying levels of population sparsity 
(i.e., the percentage of edges equal to 0 in the population). The shading around each of the lines 

represents the average sampling variability within a population. 
 

False Positive Rate. A number of the results from Simulation 2 were in agreement with 

Simulation 1. First, there was a trade-off between sensitivity and FPR wherein conditions with 

high sensitivity also had a high FPR, and those with lower sensitivity tended to also have a lower 

FPR. This trade-off extended to methods more generally wherein methods with high sensitivity 

tended to also have a high FPR (e.g., CV). Second, CV had a higher FPR across all conditions in 
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comparison with the other methods. Third, both sparsity and sample size had an impact on FPR. 

Specifically, the FPR increased as sparsity decreased and sample size increased.  

Simulation 2 allowed us to investigate the effect of partial correlation size. Importantly, 

the effect of sample size and sparsity on FPR was moderated by the absolute partial correlation 

size. Notably, networks with smaller absolute partial correlations had a lower FPR across all 

conditions compared to those with larger absolute partial correlations. When on average 90% of 

the partial correlations were between ± 0.25, sample size and sparsity had less impact on the 

FPR, particularly for RIC and StARS. However, as the average partial correlation range 

increases, so does the FPR, and the interaction between sample size and sparsity is greater. 

Although this is the case for all methods, it is most apparent for EBIC and CV.  

To explain the effect of partial correlation size, it is important to consider the 

assumptions and necessary conditions inherent in the glasso (for more details see the 

Discussion). For example, consistent model selection depends on the irrepresentable condition 

being fulfilled (Meinshausen & Bühlmann, 2006). This condition is more likely to fail as sparsity 

decreases. When this condition is not met, the true edges are excessively penalized, and more 

false positives are estimated increasing the false positive rate (Zhao & Yu, 2006).  
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Note. The dashed line denotes the correct level of sparsity (i.e., equal sparsity between 

population and estimated sparsity). Lines represent different partial correlation ranges wherein 

on average 90% of the partial correlations are between the values (e.g., -.24, .25). 

 

True Edge Correlation. True edge correlation (depicted in Figure A7 in the 

supplementary material) does not seem to be greatly impacted by sparsity. However, conditions 

with larger partial correlations tended to have higher true edge correlations, likely due to greater 

variance in the true edge weights. This finding is most pronounced for EBIC but observed across 

all methods. 

Population versus Estimated Sparsity. Figure 5 depicts population sparsity on the x-axis and 

estimated sparsity on the y-axis. The rows represent sample size, and the columns represent 

different methods. The dashed line represents the accurate estimation of sparsity for reference 

(i.e., when the population and estimated network's sparsity are equal). Note that, RIC and StARS 

tended to underestimate the number of edges, although their performance improved as sparsity 

Figure 5. Population versus Estimated Sparsity.  
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and sample size increased. CV tended to overestimate the number of edges. EBIC tended to 

overestimate edge number in conditions with larger partial correlations, and underestimate in 

conditions with smaller partial correlations. Importantly, EBIC had high accuracy when sample 

size was large and the partial correlations were smaller. However, it is important to take into 

consideration the FPR. Even though there were conditions where the methods estimated the 

correct number of edges, it is likely many of the wrong edges were estimated.  

Overall, it appears as though these methods were often not able to capture population 

sparsity. Given the impact of sparsity on method performance, it is important for researchers 

using the glasso to consider the population sparsity of the construct they are investigating (e.g., 

do I expect this construct to have many true connections?). However, the results comparing 

population to estimated sparsity show that estimated sparsity cannot be used to infer population 

sparsity. For example, a researcher cannot assume since the estimated network has 30% sparsity 

the population network must also be sparse. This is particularly true as these methods do not 

consistently under or over-estimate sparsity. Rather the magnitude of the population partial 

correlations, which are also unknown to researchers, impacts whether sparsity is under, over, or 

accurately-estimated.  

Discussion 

In this paper, we compared four methods for selecting the penalty parameter to compute 

the graphical lasso across conditions that are typical in psychology. We found that all methods 

had concerning performance features. First, all methods, with the exception of cross-validation, 

had low sensitivity at sample sizes that were most typical to psychology (n < 1,000). Second, we 

found that the sparsity of the population network, absolute partial correlation size, and sample 

size all impact the false positive rate. Notably, for networks with larger absolute partial 
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correlations, there was an interaction between sparsity and sample size wherein the FPR 

increased as sample size increased, particularly when the population network was dense. This 

interaction was not present or was attenuated for networks with smaller absolute partial 

correlations. Third, we found greater variability both within and between conditions and 

populations as sparsity decreased. This is important as it suggests that as true sparsity decreases, 

the uncertainty of the results increases. Finally, we found a consistent trade-off between 

sensitivity and the FPR when comparing both methods and conditions. For example, cross-

validation had extremely high sensitivity (a desirable feature) but a high false positive rate (an 

undesirable feature). Additionally, conditions with larger absolute partial correlation sizes had 

high sensitivity but also a high false positive rate. The opposite was found for conditions with 

smaller absolute partial correlations.  

When considering these results, it is important to note that regularization methods, 

including glasso, were developed for high-dimensional situations (i.e., n << p). In these cases, 

the inverse of the sample covariance matrix cannot be computed due to singularity: det(Σ) = 0. 

Regularization, by shrinking the variable space, allows for the estimation of a high-dimensional 

matrix. However, to accurately estimate the underlying network the assumption of sparsity and 

the irrepresentable and beta-min (i.e., non-zero coefficients must be sufficiently large) conditions 

must hold (Meinshausen & Bühlmann, 2006; Zhao & Yu, 2006). Previous research has 

characterized method performance when these conditions are met (Fu & Knight, 2000), but these 

conditions have been found to rarely hold without explicit specification (Zhao & Yu, 2006). In 

our simulations, we did not ensure these assumptions were met. Rather we were guided by the 

sparsity and partial correlation sizes observed in psychological applications of network models.  
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Our results demonstrate that as true sparsity decreases (i.e., the population network 

increases in density) the FPR is higher and there is more variability in method performance both 

within and across conditions. This suggests that the methods are not viable when true networks 

are densely connected. Thus, it is important to consider population sparsity before using these 

methods. Unfortunately, none of the methods included in our simulations were consistently 

sensitive to population sparsity. That is, estimated sparsity is a poor indicator of true sparsity. 

Our results also indicate that when there are larger absolute partial correlations in the population 

network, the FPR increases. One potential explanation is the failure of the irrepresentable 

condition, which can result in an increase in false positives due to an over-penalization of true 

edges (Zhao & Yu, 2006). Overall, these results strongly suggest that researchers think about the 

possible properties of the network they are investigating to qualify whether a regularization 

method would be appropriate for their data (e.g., is it likely the population network is sparse?). 

This is important as there are many situations, particularly in low dimensions, where the costs of 

regularization supersede the benefits (Williams & Rast, 2020; Williams et al., 2019). It is also 

important to note that some of these performance issues can be attenuated. For example, 

sensitivity can be improved with a large sample size (n > 1,000) and the FPR can be improved 

with the use of thresholding (i.e., setting smaller edges to 0 after regularization) which has 

recently been advocated in psychological applications (Epskmap, 2018). 

When deciding which penalty parameter selection method to use, it is important to 

consider the research goal. Given the consistent trade-off observed between sensitivity and the 

FPR, an important consideration is whether controlling the FPR or increasing sensitivity is more 

important to the research question at hand. If the goal is to obtain a dense network that contains 

the true model, then cross-validation, due to its high sensitivity, may be an appropriate method. 
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In this case, a high FPR is acceptable.  Across our simulations, StARS consistently returned the 

sparsest network, so if the research goal is to return a network containing only the most 

important edges, then StARS, due to its low FPR, may be an appropriate method. In this case, 

low sensitivity is acceptable (see Table 3 for summary of each method's strengths and 

weaknesses). Finally, if both sensitivity and the FPR are equally important then using the RIC 

may be best as it tends to return the most balanced network. In other words, an RIC-selected 

network would tend to have greater sensitivity than StARS but lower than CV and a lower FPR 

than CV but higher than StARS.  

Table 3. Method Strengths and Weaknesses 

 Strength Weakness 

EBIC Moderately High Sensitivity Inconsistent Results 

CV High Sensitivity High False Positive Rate 

StARS Low False Positive Rate Low Sensitivity 

RIC Low False Positive Rate Moderate Sensitivity 

 

Another consideration for penalty method choice is whether the researcher is most 

interested in prediction or explanation. For example, a cross-validation method may be 

appropriate when the goal is prediction. However, when the goal is explanation, CV's high FPR 

may be prohibitive even though it is highly sensitive.  

In this paper, we only assessed the performance of these methods on continuous data. 

Estimating networks from ordinal data is another ongoing area of research. In current practice, 

EBIC is sometimes applied to a polychoric correlation matrix computed from ordinal data 

(Epskamp, 2016). This practice would be tricky to generalize to the other three methods we 
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investigated, as they all require raw data to carry out their resampling or reshuffling procedures. 

It may be possible to adapt these procedures to ordinal data (e.g., by computing polychoric 

correlation matrices after resampling or reshuffling), but these extensions have not been tested. 

In summary, EBIC seems to be greatly influenced by the characteristics of the population 

and data, more so than RIC and StARS, such as sparsity, sample size, and partial correlation size. 

Although RIC and StARS are influenced by these factors as well, it is to a lesser extent 

compared to EBIC. Further, RIC tends to strike the best balance between sensitivity and the FPR, 

compared to the other methods. As such, if glasso is being used to fit a psychological network, 

using the RIC to select λ may be more appropriate. However, given the concerning performance 

of all methods we evaluated, a non-regularized approach is likely best (Williams & Rast, 2020; 

Williams et al., 2019).  

Conclusion  

Network modeling is an important tool in psychological research. However, the 

estimation of networks is a rapidly evolving area of study. Here, we found that regularization 

approaches have concerning performance in conditions that are typical for psychological data, 

and we recommend using non-regularized estimation approaches instead.  Importantly, our 

results underscore the need to carefully consider the likely population properties and the 

inferential goal before implementing an estimation method.   

Network models are not the only methodological tool that has gained popularity in 

psychology recently. Causal inference has also become more commonplace due to psychologists’ 

interest in understanding and explaining systems. But, like network models, much is still 
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unknown about building and estimating causal inference models. As such, the following chapter 

develops a framework for variable selection when the research goal is causal inference.   
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Chapter 3. Statistical Control Requires Causal Justification4 

Psychological research that uses observational or quasi-experimental designs can benefit 

from statistical control to remove the effect of third variables—variables other than the target 

predictor and outcome—from an estimate of the causal effect that would otherwise be 

confounded (Breaugh, 2006; McNamee, 2003)5. Statistical control can lead to more accurate 

estimates of a causal effect (Pearl, 2009), but only when the right variables are controlled for 

(Rohrer, 2019)6. Although controlling for third variables is common practice (Atinc, Simmering, 

& Kroll, 2012; Bernerth & Aguinis, 2016; Breaugh, 2008), the selection of these variables is 

rarely justified on causal grounds.  

In this chapter, we illustrate that controlling for an inappropriate variable can result in 

biased causal estimates. We begin by giving a brief introduction to causal inference and 

regression models, defining statistical control, and examining situations where statistical control 

is useful for researchers. We then highlight the pervasive issues surrounding how control 

variables are typically selected in psychology. We outline the assumptions required to justify 

controlling for a third variable—most importantly, that the control variable is a plausible 

confounder or lies on the confounding path. Next, we discuss the consequences of controlling for 

 
4  This chapter was slightly adapted from published paper: Wysocki, A. C., Lawson, K. M., & 

Rhemtulla, M. (2022). Statistical control requires causal justification. Advances in Methods and 

Practices in Psychological Science, 5(2). 
5 It should be noted that many statisticians prefer the term "adjust" over "control" in the context 

of regression; The concern is that statistical control may be mistakenly conflated with (the 
stronger) experimental control (e.g., Gelman, 2019). Although we agree that "adjust" is more 

precise, we continue to use the term "control" as it is more prevalent in applied psychological 

research. 
6 We use the terms “accuracy” and “bias” to describe the relation of a population regression 

coefficient (Y regressed on X) to the average causal effect of X on Y. This use is different from 
how “bias” is used in statistics, where it describes the relation of an estimated statistic to its 

population quantity. 
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other types of third variables, including mediators, colliders, and proxies. We then discuss how 

longitudinal data can be used to deal with more complex models. Using an applied example, we 

provide practical recommendations for applied researchers working with observational data who 

wish to use statistical control to bolster their causal interpretations.  

An Brief Introduction to Causal Inference 

In this section, we provide a very brief introduction to the field of causal inference, 

including key concepts and definitions that are relevant for the present paper. The field of causal 

inference expands far beyond what we are able to cover here. We direct interested readers to 

(Dablander, 2020) for a slightly lengthier introduction, and to Pearl, Glymour, and Jewell (2016) 

or Peters, Janzing, and Schölkopf (2017) for book-length introductions. 

Causal inference involves estimating the magnitude of causal effects, given an assumed 

causal structure. We use Pearl’s (1995) definition of causality, namely that X is a cause of Y 

when an intervention on X (e.g., setting X to a particular value) produces a change in Y. A causal 

effect—the expected increase in Y for a one-unit intervention in X—is identified when it is 

possible to derive an unbiased estimate of the causal effect from data. Estimating the magnitude 

of causal effects is key to understanding psychological phenomena; however, causal inference 

relies on theoretical assumptions that come from prior knowledge in addition to statistical 

information. Identifying a single causal effect requires accounting for and removing confounding 

effects without inducing spurious effects. As such, although it is common practice in 

psychological research to estimate and interpret multiple coefficients simultaneously (e.g., based 

on a regression model with six predictors), we will focus on the identification of a single causal 

effect at a time using a tool called a directed acyclic graph (DAG).  
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A DAG depicts hypothesized causal relations between variables (see Rohrer, 2018 for a 

detailed introduction to DAGs in psychology). The DAGs used throughout this paper contain 

three features: capital letters that represent variables, the letter U that represents a set of 

unmeasured variables, and arrows that represent causal effects. For example, Figure 6 (left panel) 

depicts that X is a cause of Y, Z, and, indirectly, V (X affects V through the mediating variable Z), 

and there is an unmeasured set of common causes that affects both V and W7. We use DAGs to 

represent causal relations in the population, and, in the same way, researchers can use DAGs to 

encode hypothesized causal systems and to inform decisions about which statistical models 

enable the identification of a causal effect. Importantly, DAGs are non-parametric; that is, they 

do not require any particular functional form. However, throughout this paper, we assume that all 

causal effects are linear and that each variable has a normally distributed residual.  

In a DAG, a path is a sequence of arrows that connects one variable to another. A path 

connecting two variables will transmit association (i.e., the path results in the two variables being 

associated) unless there is a fork (i.e., two arrowheads coming together; e.g., X → Y ← W) 

anywhere along the path. Each pair of variables may be connected by multiple paths and, if one 

of these paths transmits an association, then the pair of variables is expected to be associated8. In 

Figure 6 (left panel), X and Y are connected by two paths: X → Y and X → Z → V ← U → W → 

Y. The latter path does not transmit association due to the inverted fork, Z → V ← U. But, the 

path X → Y does transmit association, and, as such, we expect X and Y to be associated in sample 

data drawn from a population represented by this causal graph.  

 
7 DAG figures 6, 8, 9, 10, and 15 were created in R using the package ggDag (Barrett, 2021). All 

result figures were created in R Version 3.6.2 (R Core Team, 2021) using the package ggplot 
(Wickham, 2016).  
8 Assuming two (or more) paths do not cancel each other out. 
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Figure 6. Directed Acyclic Graphs (DAGs).  

Note. Left Panel: An example DAG with one set of unmeasured variables, U. Right Panel: A 

simple example of confounding. 
 

 

The association information embedded in DAGs can help researchers discover potential 

threats to identifying a causal effect. We use bias to mean the discrepancy between a population 

parameter (e.g., a population regression coefficient) and the causal effect. In Figure 6 (right 

panel), there are two paths that connect X and Y and transmit association—both paths contribute 

to the association between X and Y. Crucially, one path, X ← C → Y, is noncausal; that is, it is 

not part of the causal effect of X on Y so manipulating X does not change C nor does it change Y 

through C. As such, the association between X and Y is a biased estimate of the causal effect. In 

general, a common cause (i.e., a confounder) of a predictor and an outcome results in an 

association that is biased for the causal effect. To remove this bias, the common cause path (in 

this case, the path through C) must be removed from the estimated association. This can be done 

through an experimental research design where the predictor is randomized (Greenland, 1990), 

but experimental manipulation of psychological variables is often unfeasible. Thus, 
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psychologists have had to find another method to block confounding paths. One such method is 

statistical control, which can be accomplished via regression (McNamee, 2005).  

Linear Regression and Statistical Control 

In this section, we review how multiple linear regression produces coefficients that 

represent the linear association between each predictor and the outcome variable, conditional on 

the set of other predictors. To simplify the presentation, we assume all variables are standardized 

(with means = 0 and variances = 1). The linear regression model formulates an outcome variable, 

Y, as a linear function of a set of p predictor variables, X1,..., Xp plus error:  

 

𝑌 =  𝛽1𝑋1 + 𝛽2𝑋2+…+ 𝛽𝑝𝑋𝑝 + 𝜀 

In simple regression (p = 1), 𝛽1 is equivalent to the correlation between X1 (which for 

simplicity we denote as X in the p = 1 case) and Y (when all variables are standardized). 

Similarly, when p > 1 and all predictors are perfectly uncorrelated with each other, then the β for 

each predictor is equal to the correlation between that predictor and the outcome. In these special 

cases, each β reflects the total linear association between the predictor and Y and can be 

interpreted as the expected change in Y for a one-unit change in X.  

When the predictors are correlated with each other, the estimation and interpretation of 

regression coefficients is more complicated. In these cases, the variance shared among predictors 

gets partitioned among the regression coefficients, such that each regression coefficient 

represents the expected change in Y for a 1-unit increase in X, holding all other predictors fixed. 

Conceptually, this approach is the statistical equivalent of sampling participants who have the 

same value on all but one of the predictors, and estimating the association between that one 

(10) 
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predictor and Y in the sample. Thus, multiple regression coefficients are known as partial 

regression coefficients because they represent the isolated association between a single X and Y 

when none of the other predictors are changing. If the predictors other than X represent the full 

set of variables that confound the X-Y association and if there is no reverse causality (i.e., Y does 

not cause X), then the causal effect (X → Y) is identified using the partial regression coefficient.  

Figure 7. Visualizing Statistical Control 

Note. Left Panel: the confounded regression of Y on X reveals a strong linear association. The 

color of individual points represents their values on the confounding variable, C. Middle Panel: 

Within each level of C, the association between X and Y is 0. Right Panel: When C is included as 

an additional predictor in the regression equation of Y on X, its confounding influence is removed 

to reveal only the partial association between X and Y. X.C is the residual scores that are obtained 

when X is regressed on C. 

 

Figure 7 illustrates statistical control. The scatterplot on the left shows a strong linear 

association between X and Y, and the color of the points in this plot represents values of a third 

variable, C. C is correlated with both X and Y, raising the possibility that it may be a confounder. 

The middle plot shows the population-level regression lines that one would get if it were possible 

to compute the simple regression coefficient of Y on X for each subpopulation with a fixed value 

on C. In practice, however, there is not enough information in this small dataset to accurately 

estimate the regression coefficient within each subpopulation sample. The plot on the right 

shows the statistical approach to do this; that is, the de-confounded association between X and Y. 
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The x-axis now represents the residuals that are obtained when X is regressed on C; that is, the 

part of X that is independent of C (𝑋 =  𝛽1𝐶1 + 𝑋. 𝐶). When Y is regressed on this residualized 

predictor, 𝑌 =  𝛽2𝑋. 𝐶 + 𝜀, there is little remaining relation between X.C and Y and 𝛽2 is close to 

0. Adding the control variable C to the regression of Y on X (𝑌 =  𝛽2𝑋 + 𝛽3𝐶 + 𝜀) is equivalent 

to regressing Y on the residualized X—the value of 𝛽2 is the same in both equations.  

By statistically controlling for the correct variable, a confounding effect can be removed 

from an estimate, making statistical control a valuable tool for researchers who are interested in 

causal inference and have access to observational or quasi-experimental data (Morabia, 2011; 

Pourhoseingholi, Baghestani, & Vahedi, 2012). Here, we focus on controlling for the correct 

variable(s), but obtaining an unbiased association depends on several additional assumptions: (1) 

Any interactions or non-linear effects must be specified correctly (Cui, Guo, Lin, & Zhu, 2009; 

Simonsohn, 2019), (2) the predictor and control variables must be measured without error or a 

model that deals with the measurement error must be used (Savalei, 2019; Westfall & Yarkoni, 

2016), (3) the relevant variables must be measured at a time when the causal process can be 

captured.9 

Causal inference is not the only reason that a researcher may choose to control for a third 

variable. Controlling for a variable that shares variance with the outcome but not the predictor 

will decrease the amount of residual variance in the outcome which, in turn, lowers the standard 

error of the estimated regression coefficient and increases power (Cohen, Cohen, West, & Aiken, 

2003). Control variables are also sometimes used to establish that a new measure is uniquely 

 
9 Some research questions can only be answered when the set of variables are measured at a 

specific interval. For example, if the research question pertains to how asking questions in class 
impacts one’s final grade, then the ‘question’ variable should represent the number of questions 

each student asked across the entire class, rather than just a single week. 
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predictive beyond some already established measure (Wang & Eastwick, 2020; we discuss this 

practice in Box 3). Researchers may also be interested in using the partial regression coefficients 

to describe partial associations, rather than using them to explain psychological processes.  

Frequently, though, researchers aim to develop and test theories of psychological 

processes, and this endeavor almost always involves making and testing causal hypotheses. 

Although it is rare that causal inference is explicitly acknowledged as the goal in non-

experimental studies (Grosz et al., 2020), a key component of theory building is proposing a set 

of principles that explains a process and then formulating a model based on these principles 

(Borsboom et al., 2021a)—in other words, positing a set of causal hypotheses (Shmueli, 2010; 

Yarkoni & Westfall, 2017). When coefficients are interpreted as reflecting the strength of a 

causal effect, then selecting and controlling for the correct variable is of the utmost importance 

because controlling for the wrong variable can increase, rather than decrease bias. 

Common Practices: How Do Researchers Typically Choose Control Variables? 

Reviews of published studies in psychology journals have found that over 50% of the 

studies reviewed gave no justification for the inclusion of specific control variables (Becker, 

2005; Bernerth & Aguinis, 2016; Breaugh, 2008). Moreover, Atinc and colleagues (2012) and 

Carlson and Wu (2012) noted that, when researchers did justify their control variables, they 

typically did so by noting the statistical association between the predictor and the control (e.g., 

the predictor and third variable correlate at .40, so it is appropriate to control for the third 

variable). 

Psychological researchers also receive relatively little helpful advice about what 

constitutes strong evidence for inclusion of a control variable in their area of research. The 



 

46 
 

available advice is often too vague (e.g., “offer rational explanations, citations, 

statistical/empirical results, or some combination”; Becker, 2005), too minimalistic (e.g., use a 

theoretical model to motivate control variable selection, Breaugh, 2006), or is of little practical 

use (e.g., provide evidence that control variables are accomplishing their intended purpose; 

Carlson & Wu, 2012). The handful of articles that do focus more specifically on the need to 

explicate relations between the control, predictor, and outcome provide some helpful guidance, 

but it can be difficult to know how to implement this guidance in one’s own line of research. For 

example, Meehl (1970) noted that controls should not be automatically considered exogenous, 

and instead, researchers must consider the possibility that other important variables in the 

model—the predictor or outcome—might impact the control. Additionally, others have argued 

that researchers should outline the theory behind their decision to include/exclude control 

variables (Berneth & Aguinus, 2016; Edwards, 2008). However, on their own, these calls to 

integrate theory may be difficult to implement. Fortunately, recent work on the importance of 

causal language and causal thinking in psychology (Dablander, 2020; Grosz et al., 2020; Rohrer, 

2018) suggests that one way to implement these calls for proper control variables is to give more 

consideration to how control variables are causally linked to the other variables in the model. 

As we will show in the coming sections, when a central goal of an analysis is to learn 

about a process, the only way to qualify a variable as a good control is to consider the causal 

model connecting the control(s), predictor, and outcome. In the following sections, we show 

how, depending on the causal status of the third variable and the strength of its causal relations 

with both the predictor and outcome, controlling for the third variable can either remove or add 

substantial bias to the estimate of the causal effect. In doing so, we present a framework for 

principled control variable selection and justification.  
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One Step Forward, Two Steps Back: Controlling for the Wrong Variable 

Though it is possible to remove bias from an estimate of a causal path by controlling for a 

confounding variable, it is also easy to add bias to an estimate by controlling for a variable that is 

either not a confounder or does not block a confounding path (VanderWeele, 2019). In the 

following paragraphs we describe different kinds of variables and discuss the consequences of 

controlling for each. Our goal is not to give a comprehensive list of all variables that one might 

possibly control for (see Cinelli et al., 2022 for a more comprehensive list of “good” and “bad” 

control variables), but rather to underscore how the impact of statistical control depends on the 

type of control variable. Figure 8 depicts eight types of third variables (C) that differ in their 

causal relation to the predictor (X) and outcome variable (Y). Panel A shows a confounder and 

panels B & C show two “confound-blockers”, all of which can remove bias when controlled 

for.10 Panels D-H show colliders, mediators, and a proxy, all of which are problematic when 

controlled for (Cinelli et al., 2022; Elwert & Winship, 2014; Pearl 2009; Rohrer 2018). 

 
10 Bias amplification can occur when, after controlling for a confounder or an instrumental 
variable (especially one that is strongly correlated with X and only weakly correlated with Y), the 

bias from a second uncontrolled confounding path can increase. If the bias removed by 
controlling for one confounder is less than the amount of bias induced by bias amplification, the 

overall bias can increase (Pearl, 2011; Steiner & Kim, 2016). 
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Figure 8. Example Causal Models 

 

Confounder and Confound-Blocker 

A confounder is a variable that is a (direct or indirect) cause of both X and Y, (see Figure 

8A).11 By controlling for a confounder, we can block the confounding path that obscures the 

causal effect of X on Y. But it is also possible to block the confounding path by controlling for 

any other variable that lies on that path. We call such a variable a confound-blocker, because it is 

not itself a confounder but controlling for it nevertheless blocks the confounding path. For 

example, to estimate the causal effect of coffee on concentration, it may be important to control 

for the confounding effect of sleep (because less sleep may lead to both greater caffeine 

consumption and lower concentration). This confounding path can be blocked either by 

measuring and controlling for the confounder itself—hours of sleep—or by measuring and 

controlling for another variable along the confounding path (e.g., desire for coffee). In panels B 

and C, the confounder is unmeasured, but controlling for C, a confound-blocker, de-biases the 

association.  

 
11 Some other definitions of a confounder (e.g., VanderWeele & Shpitser, 2013) do not draw a 

distinction between confounders and confound-blockers. 
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Collider 

When two variables share a common effect, the common effect is called a collider 

between that pair of variables (Figure 8D & E). For example, both IQ and hard work can result in 

getting accepted to college, so college student status is a collider between IQ and hard work 

(Elwert & Winship, 2014; Rohrer, 2018). Controlling for a collider will induce a spurious (i.e., 

non-causal) association between the variables that are causes of the collider. For example, if 

regressing hard work on IQ produced a simple regression coefficient of zero, controlling for 

college student status (which is positively affected by both hard work and IQ) would induce a 

spurious negative effect between these variables. A variable that is a collider for a pair of 

variables other than the outcome and predictor can still bias the target causal estimate. As 

controlling for a collider induces a spurious association between its causes, this can transform a 

path between the predictor and outcome from a path that does not transmit association to a path 

that does. For example, in Figure 8E, C is a collider for X and U. When C is not controlled for, 

the non-causal path from X to Y (X → C ← U → Y) does not transmit an association due to the 

inverted fork (X → C ← U). But controlling for C induces a spurious association between X and 

U, and the new non-causal path from X to Y (X – U → Y; where X –U denotes a spurious 

association) now transmits association, resulting in a biased causal estimate. 

Mediator  

A mediator is a variable that is caused by X and is a cause of Y (Figure 8F & G; Baron &  

Kenny, 1986; Hayes, 2009; Judd & Kenny, 1981). For example, sleep problems might mediate 

the relation between anxiety and tiredness, such that sleep problems are a mechanism by which 

anxiety increases tiredness. If a researcher is interested in the total effect of the predictor (X→ Y 
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plus X→ C→ Y) on the outcome (compared to only the direct effect, X→ Y), then controlling for 

a mediator will undermine this effort by blocking one causal path of interest. Even if a researcher 

is only interested in the direct effect, controlling for a mediator could induce bias if the mediator 

and the outcome share a common cause (Figure 8G). When such a common cause exists, the 

mediator is a collider for the predictor and this common cause, and because the mediator is being 

conditioned on, the non-causal path, X—U → Y, now transmits association and biases the 

estimate (Rohrer et al., 2022).  

Proxy 

A proxy is caused by X and has no causal relation to Y (Figure 8H; Pearl, 2009). Note this 

does not mean the proxy is a ‘good’ or sensical measure of the predictor.  For example, GPA and 

number of cars owned might be proxies for cognitive ability, such that cognitive ability is a 

cause of GPA and (indirectly via income) cars owned. The number of cars owned, however, is 

likely a poor measure of cognitive ability.  

If the predictor is a perfectly reliable variable (i.e., X contains no measurement error), 

controlling for a proxy will not affect the estimate of the X→ Y path: the regression coefficient of 

X on Y will capture the causal effect and the coefficient of the proxy regressed on the outcome 

will be zero (in the population). But if X is in fact an unreliable measure of the true causal 

variable (e.g., cognitive ability is measured with a test that is not perfectly reliable), then 

controlling for a proxy will attenuate the estimated causal path of interest. This attenuation effect 

arises because the proxy can be understood as a second unreliable measure of the same 

underlying predictor (e.g., GPA and the unreliable cognitive ability test are both measures of 

cognitive ability). When both the predictor and control variable are unreliable measures of the 

same construct, the true predictive effect of the construct gets partitioned into two coefficients, 
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neither of which capture the full causal effect. The magnitude of the attenuation depends on the 

strength of the paths from the true (latent) predictor to the measured predictor and to the proxy.  

Inappropriate Control Leads to Bias: Demonstrating the Importance of the Causal 

Structure 

In the following section we demonstrate how the causal structure influences the partial 

regression coefficients. Each figure displays the consequences of controlling for a third variable 

given a range of hypothetical population models. We used path tracing (i.e., Wright’s Rules; 

Alwin & Hauser, 1975; see section Path Tracing in the Supplementary Material for an example) 

to obtain a population correlation matrix for each causal structure, and calculated regression 

coefficients from each population correlation matrix, using the formula:  

𝛽 =  𝛴𝑥𝑥
−1𝛴𝑥𝑦 

where 𝜮𝒙𝒙 is the p x p correlation matrix of predictors and 𝛴𝑥𝑦 is a p x 1 vector containing 

correlations between each predictor and the outcome. 12 We compare the partial regression 

coefficient (when a variable is controlled for) to the simple regression coefficient (when no other 

variables are controlled for). We show the population values of simple and partial regression 

coefficients under three of the causal structures depicted in Figure 8: when the third variable is a 

(1) confounder, (2) mediator, and (3) collider for the predictor and outcome (see Figure A9 in the 

Supplementary Material for results from all models shown in Figure 8). We assume, for the time 

being, that all variables are measured without error (in the section, Measurement Error Makes 

Proxy Variables Problematic, we relax that assumption and look at the impact of controlling for 

 
12 The code used to calculate the coefficients is available at 
https://osf.io/64rfv/?view_only=f49974350af14a7185994eeb00374306. 

 

(11) 

https://osf.io/64rfv/?view_only=f49974350af14a7185994eeb00374306
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a proxy). For each population model, the direct effect of X on Y is set at .15, and the direct effect 

between C and Y is set at .5 (these are standardized values). The direct effect between X and C 

varies to demonstrate the variability of the bias within a population model.  

Results are shown in Figure 9. The top row shows the effect of failing to control for a 

confound: The yellow line depicts the effect of X on Y (which accurately estimates the causal 

effect), controlling for the confounder C, whereas the green line depicts the overestimated or 

underestimated value when C is not controlled for. The second and third rows of Figure 9 show 

two situations in which controlling for a non-confounder introduces bias. When the control 

variable is a mediator, as the absolute strength of the effect of X on C increases, the total causal 

effect increases as well, but the partial coefficient remains the same, resulting in an increasing 

discrepancy between the coefficient and the causal effect.  When the control variable is a collider 

for the predictor and outcome variables, as the absolute strength of the effect of X on C increases, 

the discrepancy between the simple and partial coefficients increases as well. It is important to 

note that the direction of the bias that arises when controlling for a collider or a mediator 

depends on the parameters of the model. Without knowing the true causal effect values (and we 

may safely assume that these are unknown!), the impact of controlling for a non-confounder is 

unpredictable. As such, if a researcher is unsure whether the variable that they plan to control for 

is either a confounder or a variable that blocks the confounding path, they should not interpret 

the resulting partial coefficient as a conservative approximation of the true causal effect. 

Measurement Error Makes Proxy Variables Problematic 

Measurement error can further muddy the interpretation of controlled regression 

coefficients. In the presence of measurement error, simple regression coefficients (confounded or 

not) will be attenuated (Shear & Zumbo, 2013), and controlling for an imperfectly-measured 
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confound may not remove its full confounding effect (Westfall & Yarkoni, 2016). Figure 10 

shows results from the same series of three models as Figure 9 plus the proxy model where both 

X and C have 80% reliability. The path values connecting each of the variables are kept the same 

as Figure 9 except that we set the direct causal effect of X on Y in the proxy model to .5 instead 

of .15, to more clearly show the attenuation effect that ensues as a result of controlling for a 

proxy. As Figure 10 shows, controlling for a proxy is problematic when the predictor and proxy 

are highly correlated. As described earlier, when X is measured with error (so that the observed 

variable is Xm, rather than X itself), Xm and C can be seen as two imperfect measures of the same 

true construct (with C being a much weaker measure than Xm to the extent that the causal path 

from X to C is smaller than the path from X to Xm), and they each are able to account for some of 

the true causal effect. 
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Figure 9. Partial and Simple Regression Coefficients under Three Causal Structures 

Note. In each graph, the x-axis depicts the population value of the direct effect connecting the 

control variable and the predictor (denoted by label a), and the y-axis depicts the value of the 

regression coefficient of Y on X. The direct effect of X on Y and the value of the direct effect 
connecting Y and C are held constant across the results. Solid lines represent the partial (yellow 

line) and simple (green line) regression coefficients. The dashed line represents the total X→Y 

causal effect. 
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Figure 10. Controlled and Uncontrolled Regression Coefficients When Variables are Measured 

with Error.  

Note. In each graph, the x-axis depicts the population value of the direct effect connecting the 

control variable and the predictor (a), and the y-axis depicts the value of the regression 

coefficient of Y on Xm. The direct effect of X on Y and the value of the direct effect connecting Y 
and C are held constant across the results. Solid lines represent the partial (yellow line) and 

simple (green line) regression coefficients. The dashed line represents the total X→Y causal 
effect. Predictor and control variables are measured with error (reliability = .8) so neither the 

simple nor partial coefficients capture the causal effect. 

 

Each of the causal structures in Figures 9 and 10 produces a correlation between the third 

variable and both the predictor and the outcome variable. In fact, the very same correlation 

matrix (and thus, the very same set of regression coefficients) could be produced by every one of 

these models. As such, these correlations alone cannot reveal whether the third variable is, for 

example, a mediator or a collider for the predictor and outcome variable (Maxwell & Cole, 2007; 

Pearl, 1998). Evidence of a statistical association among a third variable, predictor, and outcome 

merely implies that there is some causal structure that connects these variables (either directly or 

via a set of unobserved variables)—but the confounder structure is just one possibility among 
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many. Therefore, it would be a mistake to assume that a variable should be controlled for, merely 

on the grounds that it is correlated with both the predictor and outcome.  

More Complicated Models and Longitudinal Data 

In the previous section we used simple causal structures to show how bias arises, but 

often the true causal diagrams are more complicated. For instance, a causal effect may be 

confounded by a large set of variables, of which many are unmeasured. Measuring all 

confounders is not necessary if there is a more proximate variable through which many (or all) of 

the confounders influence the outcome or predictor. Controlling for such a variable would block 

all the confounding paths where it functions as a mediator (between the confounder and the 

outcome or predictor) without having to measure or control for the confounders themselves.  

Another complicated situation is when a potential control variable occupies two roles. 

For example, a variable may act as a confounder between two other constructs if measured at one 

time point and a mediator if measured at another; however, it is not necessarily possible to make 

this distinction for the same instantiation of the predictor and outcome (see Box 1). Because the 

goal of statistical control is to remove a confounding effect without blocking the causal effect, it 

is important for a researcher to identify and measure the control variable at a time when it serves 

as a confounder between the predictor and outcome, rather than a time when it serves as a 

mediator. Box 1 explains in more detail what we mean and gives an example of how to do this. 

Similarly, if there were bi-directional causality between a control variable and the outcome, the 

control variable would be a confounder if measured at some time points and a collider for the 

predictor and outcome variables at others. When such complicated structures exist, it can be 

difficult to obtain a set of control variables that de-biases a causal effect. Often, longitudinal data 

can help with this endeavor.  
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Longitudinal data—when the same variables are measured at multiple measurement occasions in 

the same individuals—provide information about the temporality of variables. These data, along 

with the use of longitudinal models, can be used to make propositions about the location and 

direction of effects. For example, if XT1 (where the subscript denotes the measurement occasion) 

is found to predict YT2 even after controlling for previous measurements of Y, then X is said to 

Granger-cause Y. Granger causality depends on two criteria: 1) the Granger-cause precedes its 

effect, and 2) the Granger-cause explains unique variation in its effect over and above what is 

predicted by a previous measure of Y (Granger, 1980; Maziarz, 2015). Establishing Granger 

causality is not the same thing as establishing causality, however (Eichler & Didelez, 2010). 

Effects that meet the definition of Granger causality may still be influenced by confounders, 

because controlling for a previous version of Y may not block all confounding paths. For 

example, in Figure 12 (left panel) controlling for YT1 blocks one of the confounding paths (XT1 

← C → YT1→ YT2) but not the other (XT1← C → YT2). Longitudinal data can make it much easier 

to control for confounders, but it does not negate the need to clearly justify the underlying causal 

structure (Rohrer, 2019). 

Figure 11. Examples of Time-invariant and Time-varying Confounders. 

 

Note. Left Panel: The confounder, C, does not change across the two measurements. There are 
two confounding paths: 1) XT1 ← C→ YT2 2) XT1 ← C → YT1 → YT2. Controlling for YT1 only 
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blocks the second confounding path. Right Panel: The confounder does change across 
measurements. Because an effect precedes its cause, the subscript for the first version of the 

confounder is 0. Again, there are two confounding paths: 1) XT1 ← CT0 → CT1 → YT2 2) XT1 ← 

CT0 → YT1 → YT2. Controlling for YT1 only blocks the second confounding path. 

 

Combined with a justified causal structure, longitudinal data can address some 

complicated causal structure problems. First, by repeatedly measuring a pair of variables that 

influence each other (X→ C & C → X) at the correct interval, the once bi-directional paths 

become uni-directional paths (e.g., XT1 is a cause of CT2 and CT1 is a cause of XT1). 13 Second, 

measuring the same variables across time allows for the removal of a specific kind of 

unmeasured confounding, namely time-invariant confounding. A time-invariant confounder 

(Figure 12 left panel) is a confounder whose level and effects do not change across the measured 

time points (e.g., ethnicity—assuming the effect of participants’ ethnicity on the other variables 

in the model is constant across measurement occasions). In contrast, a time-varying confounder 

(Figure 12 right panel) is a variable whose level or effect changes between measured time points 

(e.g., positive affect, relationship satisfaction).  

One way to remove unmeasured time-invariant confounds is to use a fixed effects model 

(Allison, 1994; Kim & Steiner, 2021). 14 A fixed effects model estimates an individual-specific 

intercept, which captures all effects that vary between but not within individuals in a sample (or 

another unit of analysis such as school or country). Because time-invariant confounds do not  

 
13 The interval at which a set of variables should be measured depends on the causal effect of 

interest (Lundberg, et al., 2021). For example, the effect of high school mentorship on post-
college income is a different causal effect than the effect of college mentorship on post-college 

income. Each of these causal effects would require measuring mentorship at a different interval. 
14 Two other methods of removing time-invariant confounding is by estimating mean deviation 

scores and gain scores. See Kim and Steiner (2020) for a comparison of these methods. 
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Box 1. Directional Causality 

Imagine a researcher is interested in the effect of student content knowledge on final 

grades, and the researcher posits that the number of questions a student asks is a potential 

confounder for this effect. However, the researcher recognizes that the number of questions a 

student asks could also be a mediator. Therefore, it is plausible that (1) how much a student 

knows could influence how many questions they ask in class, but also (2) how many questions 

a student asks in class could also influence how much they know about class content. As such, 

there may be bidirectional causality between the number of questions asked in class and the 

amount a student knows about class content. Figure 11 (left) shows one depiction of such a 

causal model. But, this figure is misleading as it suggests that course knowledge could be a 

cause of questions asked and, in the same instantiation, questions asked could be a cause of 

course knowledge. This is impossible as causality happens across time. As such, one of these 

variables—either content knowledge or questions asked—had to occur before the other, 

excluding the previous variable from being caused by the latter variable. Therefore, an 

appropriate DAG should depict this bidirectional effect across different instantiations of 

content knowledge and questions asked (see Figure 11 right panel). For example, knowledge 

at week 1 of the course may be a cause of the number of questions asked in midterm week, and 

questions asked at week one may be a cause of knowledge at midterm week. Specifying the 

DAG with different instantiations of the same variable allows researchers to query which 

causal effect they are interested in (the effect of content knowledge at week 1 on final grade or 

the effect of content knowledge at midterm week on final grade) and explore which 

instantiation of the control variable blocks a confounding path. 
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vary within individuals, the fixed effects model can de-bias a coefficient for unmeasured time-

invariant confounders. A fixed effect can be estimated by including a dummy variable in the 

regression model for each participant (see Hanck et al., 2017 and Colonescu, 2016 for tutorials 

on estimating a fixed-effects model in R). Rather than controlling for a specific variable, the 

fixed-effects model simultaneously controls for all the attributes of individuals that do not vary 

over time. Although fixed-effects models remove the effects of unmeasured time-invariant 

confounders, they do not remove the effects of time-varying confounders. Therefore, considering 

whether time-varying confounders exist for a pair of variables and making a plan, if needed, to 

deal with them is still important when estimating a fixed effects model. 

In summary, the causal structure must still be proposed and justified even if longitudinal 

data are available (Imai & Kim, 2016; Hernán et al., 2002) and the only way to provide a valid 

argument that it is appropriate to control for a particular variable is to discuss the causal structure 

that includes the control(s), predictor, and outcome. This argument, which should be presented 

for each control variable, can include empirical motivation (e.g., an estimated association from a 

Box 1 (Continued). Directional Causality  

Figure 12. Incorporating Multiple Instantiations of a Variable into a DAG 
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previous study) but it must be justified on a theoretical basis (outlined below). This strategy 

aligns with advice from psychometricians to be conservative with the number of control 

variables (Becker, et al., 2016; Carlson & Wu, 2012) and to carefully justify each one (Bernerth 

& Aguinis, 2016; Breaugh, 2006; Carlson & Wu, 2012; Edwards, 2008). Of course, proposing a 

full causal map of relations among all the variables in one’s model is more difficult than using 

the default methods of selecting control variables. To assist in this difficult but necessary 

endeavor, we next use an applied research example to demonstrate how to decide which 

variables to control for using causal reasoning. 

Using the Causal Structure to Justify Control Variables: An Applied Example  

In this section, we outline the steps to properly justify control variables based on causal 

structures. As a demonstration, we use a simplified, applied example from the literature on 

personality and work. 

Selecting Variables  

 Begin with a pair of outcome and predictor variables, where the predictor variable is 

hypothesized to be a cause of the outcome.15 We chose conscientiousness or the disposition to be 

hard-working, responsible, and organized, as the predictor and career success, including annual 

income, occupational prestige, and job satisfaction, as the outcome. Past research supports 

conscientiousness as a predictor of future career success (Dudley et al., 2006; Moffit et al., 2011; 

Sutin et al., 2009; Wilmot & Ones, 2019). We propose that this relation exists because being a 

 
15 If a predictor is not a likely cause of the outcome, then the researcher may be interested in 

prediction, rather than explanation. In that case, they may want to choose a set of predictors that 
maximizes the variance explained rather than focusing on the interpretation of coefficients. 

 



 

62 
 

conscientious worker (e.g., fulfilling work responsibilities, being punctual, working diligently) 

increases one’s career success.  

Next, generate a list of variables that could be confounders or confound-blockers—the 

(potential) controls. This list should include variables that are statistically associated with both 

the predictor and outcome. We considered variables that might be confounders of personality and 

career success and identified two–educational attainment and childhood socioeconomic status 

(SES).  

Specifying and Justifying the Causal Structure 

With this list of potential controls, the next step is to specify a causal structure that 

includes the predictor, outcome, potential confounders, and other important third variables (see 

Figure 13 for our example). For this step, researchers can use U to stand in for a set of non-

specific common causes.  Using U as a stand-in variable allows researchers to reason about 

potential confounding paths and consider how to block them even when the full set of 

confounders are unknown. After outlining a causal structure, each part of the structure should be 

justified. Importantly, for the list of potential controls, researchers must justify why these 

variables are either confounders or confound-blockers of the predictor and outcome. For 

example, based on the social investment principle of personality, which posits that age-graded 

social roles serve as one mechanism of personality development (Roberts & Wood, 2006), we 

hypothesized that educational attainment influences conscientiousness; that is, engaging in the 

structured context of higher education that demands individuals to act responsibly should 

promote individuals to become more organized, hardworking, and responsible (i.e., more 

conscientious; Roberts et al., 2004). We also theorized that higher educational attainment would 

lead to greater career success given robust associations between educational attainment and 
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income, unemployment, job satisfaction, occupational prestige, and control over work (Gürbüz, 

2007; Ross & Reskin, 1992; Slominski et al., 2011; U.S. Bureau of Labor Statistics, 2020). 

Together, these two lines of research support our hypothesized structure that educational 

attainment is a plausible confounder of the causal effect of conscientiousness on career success. 

Additionally, childhood SES may also be a confounder or confound-blocker for 

conscientiousness (mediated by educational attainment) and career success because children 

from families with higher incomes and more highly educated parents are, themselves, more 

likely to achieve higher levels of educational attainment and have higher paying and more 

prestigious jobs (Gürbüz, 2007; Ross & Reskin, 1992; Slominski et al., 2011; U.S. Bureau of 

Labor Statistics, 2020). These causal hypotheses are depicted in Figure 13 (left panel). Of course, 

any of these hypotheses about the causal structure may be wrong. The value of this framework, 

however, lies in the clear outlining of assumptions and hypotheses and, in turn, the consequences 

that arise if these assumptions are wrong.  

Figure 13. Considering Alternative Structures: Educational Attainment as a Confounder or a 

Mediator 

 

Researchers should also justify why each control variable will not bias the estimate by 

blocking a causal path (i.e., it is not a mediator) or inducing a spurious path. In most research 



 

64 
 

studies there will be uncertainty about parts of the causal structure (e.g., a variable may be a 

plausible confounder and also a plausible collider for a pair of variables). These uncertainties can 

be depicted by having multiple competing models—a set of plausible causal structures. In our 

example, there is reason to believe that educational attainment might be a mediator between 

conscientiousness and career success, although it is unlikely to be a proxy or a collider.16 That is, 

conscientiousness may be a cause of educational attainment—because being dispositionally 

hard-working and reliable causes people to do better in school and receive more opportunities to 

further their education, and and higher educational attainment, in turn, causes career success. 

Childhood SES, however, could neither be a mediator nor a collider for conscientiousness and 

career success because events that occur in adulthood do not change events that happened in 

childhood. Therefore, we propose that we have a clear confounder—childhood SES—and one 

variable that could be a confounder and/or a mediator—educational attainment.  

Comparing Alternative Models and Selecting Control Variables 

With a set of plausible causal structures, the next step is to select an appropriate set of 

control variables, which should block all confounding paths without blocking any causal paths or 

inducing any spurious associations between the predictor and outcome. This appropriate set of 

control variables need not contain every confounder–sometimes all confounding paths can be 

blocked with a subset of the confounders. 

With a set of appropriate controls for each plausible model, researchers will end up in one 

of three positions. First, there may be a set of control variables that are appropriate across all 

 
16 Educational attainment is unlikely to be a proxy for conscientiousness, given its clear and 

well-substantiated relation to career success. Additionally, it is unlikely to be a collider between 
conscientiousness and work success, given the typical temporal relation between education and 

career success (i.e., most individuals complete their education before entering in the workforce). 
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plausible models. In this case, the researcher can argue that the value of the partial coefficient is 

a more accurate estimate of the hypothesized causal path than the simple coefficient. Researchers 

who interpret their estimated association causally must make it clear to readers that the causal 

interpretation of the results is predicated on the specified model being true and the assumptions 

outlined previously (see section Statistical Control: How and When it Works; e.g., all non-linear 

and interaction effects are correctly specified). Second, researchers may find that the appropriate 

set of control variables varies across the set of plausible models.  In this case, researchers could 

select a single model and control for its corresponding control set and discuss how the 

interpretation of the results depends on the chosen structure being true. Here, the alternative 

models should be included in the paper along with their associated control sets. Alternatively, 

researchers could run separate models that control for each of the appropriate control sets and 

present the partial associations from each model along with a discussion of the assumptions that 

have to hold for each of these coefficients to be unbiased for the causal effect. Researchers may 

also consider conducting a sensitivity analysis to investigate which effects hold up to control by 

various possible confounders, keeping in mind that, without making assumptions about the 

causal model, there is no basis to claim that partial effects are more or less “conservative” than 

simple effects. Finally, researchers could be in a position where one or more of the models have 

no appropriate control set. When this is the case, researchers may consider blocking the 

confounding paths through some other method (e.g., instrumental variables or front-door 

criterion; Pearl, 1995) reporting the simple coefficients, or reporting the partial coefficients with 

an acknowledgement that not all of the confounding paths are blocked. These recommendations 

are summarized in Table 3.  
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When reporting partial coefficients, there are some practices researchers should always 

follow. First, both the simple and partial coefficients should be made accessible to the reader; not 

providing access to both sets of coefficients leaves the reader without valuable information about 

how statistical control impacts the estimates. Additionally, it is important to stress that the 

coefficient relating the outcome to the predictor and the coefficients relating the outcome to the 

controls cannot generally be interpreted in the same way, because control → outcome 

coefficients represent direct (rather than total) effects and they may themselves be confounded 

(Westreich & Greenland, 2013).17 

Table 3. Guidelines for Controlling after Justification Process 

 
17 The tendency to interpret these coefficients in the same way is known as the Table 2 Fallacy. 

Results of Causal Structure Reasoning Suggested Approach 

 

 
A single control set is appropriate across the 

plausible models 

• Control for the control set 

• List assumptions that the causal 
interpretation is predicated on 

 

 

 

 

 
 

Different control sets are appropriate across 
plausible models 

• Control for one of the control sets 

• Discuss how the interpretation of the 

coefficient depends on the selected model 
being true 

 
Or 

• Run multiple models with different control 
sets 

• Present results from different models as 
competing estimates 

 

 

• Use another method to de-bias effects 

(e.g., instrumental variables) 
 

Or 
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In our example, because educational attainment may serve as either a mediator or a 

confounder, we must consider and discuss the consequences of both causal models (see Figure 

13). If educational attainment is a confounder, then controlling for educational attainment would 

block the two confounding paths. Instead, if educational attainment is a mediator, then 

controlling for educational attainment not only blocks a causal path but also induces a spurious 

path (due to Conscientiousness → Educational Attainment ← Childhood SES). As such, if 

educational attainment is a mediator, controlling for childhood SES is the correct approach.  If 

longitudinal data were available, then it could be possible to distinguish educational attainment 

as a confound from educational attainment as a mediator. Longitudinal data would also allow 

fixed effects to be estimated, thereby removing time-invariant confounding by controlling for all 

fixed person-level attributes. Another way to disentangle whether a variable is a confounder or a 

mediator is to take a more nuanced view of each of the variables (see Box 2).   

 

 

 

No control set • Report simple coefficients 
 

Or 
 

• Report partial coefficients with an 

acknowledgement that it is a biased 
coefficient 
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Box 2. Breaking Down Variables: Figure 14 depicts DAGs that include variables that are 

amalgams of complex processes that unfold across time (e.g., educational attainment). 

Collapsing over a variable can be useful, but it can also create ambiguity when de-biasing a 

causal effect. One way to disambiguate this process is by specifying each variable’s content 

and time-scale. For example, educational attainment could be broken down into multiple 

parts–being a college attendee, engaging in the educational demands of college (e.g., 

completing schoolwork), and receiving a college degree. Additionally, conscientiousness can 

be assessed multiple times–once during high school and once after high school. Adding this 

nuance helps us to clarify the causal effects; in particular, early conscientiousness influences 

college admittance and the educational demands of college influences later conscientiousness. 

It also clarifies how childhood SES impacts multiple steps in the educational path, including 

college attendance and degree attainment. Assuming this more nuanced structure is accurate, 

controlling for childhood SES would allow for the effect of post-high school conscientiousness 

on later career success to be identified. 

Figure 14. Breaking Down Variables in a DAG 
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Discussion 

In this paper, we demonstrated the importance of carefully selecting control variables. In 

particular, we highlighted how controlling for the wrong variable can lead researchers to results 

and interpretations that are less accurate than if no variables had been controlled. Further, we 

showed that the underlying causal structure determines whether controlling for a variable adds or 

removes bias. Additionally, we clarified that statistical associations are not sufficient justification 

for selecting a control variable because these associations could arise from a number of different 

causal structures.  

Throughout this paper, we discussed estimating the weights of causal paths and how 

these weights can be biased by controlling for the wrong variable. But this framework is 

important even for researchers who are only interested in assessing whether a causal effect exists 

(rather than estimating the weight of that causal effect). In this case, the researcher may not be 

concerned whether the weight of the causal path is an underestimate (or overestimate) as long as 

the results indicate that there is a non-zero causal path between the two variables. There are two 

reasons why the causal structure is important even if the existence, rather than the weight, of a 

causal effect is the focus. First, controlling for the wrong variable can, in some situations, 

entirely remove the effect of interest. In particular, if the impact of X on Y is mainly mediated by 

a third variable and that mediator is controlled for, the association between X and Y can be 

reduced to (or very near to) zero, leading to the relation being mistakenly dismissed as 

unimportant. The same thing can happen if a spurious association that biases the effect of interest 

is induced when controlling for a collider, and this association is of the opposite sign and 

sufficiently strong. Additionally, although researchers may not be concerned with the exact 

weight of the path of interest, they likely care that it is at least in the right direction (e.g., if 
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higher Machiavellianism increases aggressive behavior then it would not be helpful to have 

results indicating that higher Machiavellianism decreases aggressive behavior). As Figures 9 and 

10 show, controlling for an inappropriate third variable can inaccurately flip the sign of the 

coefficient, leading to an estimate that indicates a causal effect in the opposite direction. 

Therefore, we reiterate that, for controlled results to be meaningfully interpreted to explain a 

process, a causal structure must be proposed and defended. Without a causal structure, neither 

the researcher nor the reader is able to make sense of discrepancies between the partial and 

simple coefficients. 
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Box 3. What about Controlling to Assess Incremental Validity?  

Researchers will sometimes cite incremental validity, rather than explanation, as the motivation 

for statistical control. Incremental validity means that a new predictor accounts for substantial variance 

in an outcome variable over and above the variance accounted for by other, known predictors s 

(Sechrest, 1963), and it is typically established using multiple regression with the previously known 

predictors included as controls. If the new predictor accounts for significant variance over and above the 

other predictors, then the new predictor is said to have incremental validity.  

There are three common ways in which incremental validity is used in psychological research. 

The first is to establish the clinical usefulness of a test to predict a specific criterion (Smith et al., 2003). 

In this use, the research goal is improved prediction, and it is appropriate to choose control variables that 

represent whatever measures are currently most popular or predictive in the field. Incremental validity 

for the sake of establishing predictive utility does not require causal justification.  

The second common use of incremental validity is to establish that a new theoretically 

motivated predictor explains a phenomenon over and above previously established predictors. In this 

case, incremental validity allows researchers to “[demonstrate] the empirical novelty of a conceptual 

contribution” while “simultaneously [acknowledging] a precedent established in earlier work” (p. 157, 

Wang & Eastwick, 2020). This use of incremental validity can lead to greater “understanding of the 

relations between a focal predictor, a covariate, and an outcome variable” (p. 157, Wang & Eastwick, 

2020). We have endeavored to make clear by now that any method that aims to build up a theoretical 

understanding of variable relations needs to consider the causal direction of those relations when 

choosing which predictors to control for. 

But Wang and Eastwick (2020) describe a third use of incremental validity testing, which may 

initially seem not to require causal theory, namely the “isn’t-it-just” argument. The isn’t-it-just argument 

uses incremental validity to dispute a criticism that a new measure only predicts an outcome because it 

is a proxy for some already established predictor (e.g., “you found an effect of Machiavellianism on  
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Box 3 (Continued). What about Controlling to Assess Incremental Validity?  

aggressive behavior but isn’t Machiavellianism just psychopathy?”). 

This “isn’t it just…” argument, though using different language, is equivalent to ruling out an 

alternative explanation that Machiavellianism is a proxy for psychopathy (i.e., variability in 

psychopathy causes or produces variability in scores on a Machiavellianism scale). Someone arguing 

this point might claim that the estimated effect is due to a causal path from psychopathy to aggressive 

behavior rather than such a path from Machiavellianism to aggressive behavior (see Figure 15). In 

other words, the “isn’t it just…” argument is another way to posit a confounder. As such, it makes 

sense to control for psychopathy to estimate the remaining (i.e., unique) effect of Machiavellianism 

on aggressive behavior. But, before testing for incremental validity, it is still important to establish 

that psychopathy is a potential confounder by defending the underlying causal structure. If it were 

more plausible that psychopathy was a proxy for Machiavellianism, rather than the other way around, 

or that psychopathy was a plausible mediator of the effect of Machiavellianism on aggressive 

behavior, then it would not make sense to investigate the incremental validity of Machiavellianism 

over and above psychopathy. Therefore, researchers making the “isn’t it just…” argument to test for 

incremental validity should carefully consider the plausible causal ordering of variables to 

appropriately control for third variables.  

Figure 15. Incremental Validity as a Question of Confounding 
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Conclusion  

Although the causal structure holds the key to identifying confounders, it is uncommon 

for psychological researchers to present causal justification for their choice of control variables. 

The absence of explicit causal reasoning may be due to an unspoken ban on causal language 

within psychology (Dablander, 2020; Grosz et al., 2020). In contrast to fields such as 

epidemiology and economics, psychologists who report on non-experimental findings often 

claim to be interested in prediction or association even though the interpretations made within a 

paper are more compatible with causal inference (Grosz et al., 2020). In this paper, we have 

argued that statistical control for the goal of causal inference is incompatible with causal 

agnosticism about how the control variable relates to the predictor and outcome: Whether 

controlling for some variable increases or decreases bias is a function of how the variables in a 

model causally relate to each other.    

There are three main benefits to justifying the causal structure. First, control variables are 

selected in a more appropriate and careful manner. This will improve results from analyses with 

control variables and increase the alignment between the estimate and the theoretical quantity of 

interest. Second, there will be an improvement in the theoretical models motivating the study. 

Most researchers have, at least implicitly, a hypothesized causal structure. Taking the time to 

(literally) draw the causal model may give researchers an opportunity to think carefully about 

their causal assumptions and to consider alternative plausible causal structures. Third, when the 

hypothesized causal structure is made explicit, readers will more easily glean the causal 

framework the authors are working from. Readers can then be aware of the assumptions that are 

inherent in a model and can reason about how those assumptions may influence the results if 

they are violated. In summary, psychological research stands to benefit substantially from 
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researchers thinking and communicating carefully about why they selected specific control 

variables.  

As we have underscored in this chapter, variable selection is crucial for valid inference. 

But one aspect of variable selection that we have only briefly discussed is measuring the set of 

variables at the correct time interval. Generally, measuring the correct set of variables at the 

wrong time will result in missing the effect of interest (Gollob & Reichardt, 1987). In the next 

chapter, we develop a statistical model that allows researchers to use existing empirical 

information to improve estimates calculated from the correct set of variables that are measured at 

the wrong time.  
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Chapter 4. Incorporating Stability Information into Cross-Sectional Estimates 

Many psychological theories and research questions involve processes that unfold over 

time, and are thus inherently longitudinal (e.g., impact of education on income). But 

psychological researchers commonly use data collected at a single time point (cross-sectional 

data) to make inferences about such processes (Gollob & Reichardt, 1987). It is well-known that 

regression and correlation coefficients based on cross-sectional data are not unbiased estimates 

of their corresponding longitudinal coefficients (Maxwell & Cole, 2007; Maxwell, Cole & 

Mitchell, 2011; O’Laughlin, Martin, & Ferrer, 2018). Because cross-sectional coefficients do not 

account for the longitudinal stability of either predictors or outcomes, the resulting estimates 

reflect a mixture of cross-lagged associations (i.e., associations between two different variables) 

and auto-regressive associations (i.e., association between a variable and a future version of 

itself). A coefficient that is a combination of both associations with no clear way to disentangle 

the two is problematic when a cross-lagged effect is of interest.   

The standard advice to researchers, then, is that longitudinal research questions require 

longitudinal data (Maxwell & Cole, 2007; Maxwell et al., 2011; O’Laughlin, et al., 2018). But 

collecting longitudinal data with the relevant time lag is not always feasible. In such cases, it 

would be useful to have a method that can improve cross-sectional estimates. To this end, we 

outline an approach that combines cross-sectional data with existing knowledge about variable 

stability, which allows researchers to estimate longitudinal coefficients with data collected at a 

single time point. We also explore, via simulation, the effect of misspecification on the bias of 

stability-informed estimates. 

Terminology 
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In this article, the term cross-sectional coefficient refers to a regression coefficient 

derived from a model in which all variables are measured at a single time point, and longitudinal 

coefficient refers to a regression coefficient derived from a longitudinal model in which all 

variables are measured at two time points. An autoregressive coefficient (e.g. ARX) is a 

longitudinal regression coefficient of a single variable on itself at a previous time point. A cross-

lagged coefficient (e.g., CLYX is the longitudinal regression of a variable (e.g., Y) on a different 

variable (e.g., X) measured at a previous time point, controlling for the outcome variable 

measured at the earlier time point (e.g., Y measured at T0). To be clear, these coefficients are not 

necessarily equivalent to causal effects. For a longitudinal coefficient to be an unbiased estimator 

of a causal effect, several additional assumptions must be met, such as accounting for all 

confounding variables and specifying the model correctly (e.g., correctly specifying a non-linear 

effect; Simonsohn, 2015). 

The Use of Cross-Sectional Estimates in Psychology 

Recent research has illuminated a disconnect between psychological theories, which tend 

to focus on explaining causal mechanisms, and the preponderance of psychological research 

articles that purport to examine those theories, which often avoid explicit causal inference (Grosz 

et al., 2020). In particular, Grosz and colleagues (2020) found that many studies that use 

regression or path analysis models do not explicitly state that their goal is causal inference but 

describe model decisions and inferences that are only justifiable under a causal interpretation of 

the results. One implication of this disconnect between theory and research method is that 

researchers often avoid the difficult (but possible) work of delineating, justifying, and testing the 

assumptions required for causal inference (e.g., the assumption that no omitted third variables act 

as a common cause that may explain the observed associations). Another implication is that 
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researchers do not delineate the time interval over which purported mechanisms are theorized to 

occur, and thus do not acknowledge the discrepancy between the theorized time interval and the 

measured time interval. In fact, a great deal of published regression and path analysis research 

uses data in which the hypothesized predictors and outcomes were measured at the same time. 

For example, Maxwell and Cole (2007) evaluated 72 studies that mentioned mediation in their 

abstract and found that 53% of those studies used cross-sectional data to estimate the mediation 

model. When the research goal is causal inference, all research questions are longitudinal and 

variables measured at a single timepoint can rarely capture these effects (Gollob & Reichardt, 

1987).  

Two recent papers exemplify the use of cross-sectional designs to answer longitudinal 

questions. In one, Devine and Apperly (2022) were interested in how theory of mind and social 

motivation impact social competence in children. The authors found positive cross-sectional 

associations between both predictors (theory of mind and social motivation) and the outcome 

(social competence), leading them to the causal-sounding inference that "both theory of mind 

ability and social motivation contribute to successful social interaction at school" (Devine & 

Apperly, 2022, p. 1). In another paper (Kim, Sommet, Na, & Spini, 2022), researchers were 

interested in how subjective social class impacts both social trust (How much do you trust most 

people?) and institutional trust (How much do you trust various institutions?). These authors 

interpreted positive cross-sectional associations between social class and social and institutional 

trust to indicate that "[...]individuals from higher social classes are usually motivated to maintain 

social hierarchy and support institutions" (Kim et al., 2022, p. 193). Their conclusion implies a 

mediated causal effect of social class on trust. In both cases, the authors interpreted a cross-

sectional association as a longitudinal effect. But the cross-sectional coefficient incorporates 
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information from only one time point and it is unclear what time lag this effect unfolds over.  As 

such, the cross-sectional association is likely to be biased for the effect of interest.  

By using these two studies as an example, we do not intend to single out either group of 

authors; rather we mean to highlight a ubiquitous practice that stems from (1) researchers' desire 

to understand mechanisms and develop theories and (2) the challenge of obtaining longitudinal 

data. Below, we explain why using cross-sectional estimates to answer longitudinal questions 

can complicate the matter of obtaining an unbiased estimate. 

The Problem with Cross-sectional Estimates 

Estimating a parameter whose expected value is equal to the weight of the population 

coefficient (i.e., an unbiased estimate) is an important goal. And getting an unbiased estimate for 

a longitudinal effect, when only cross-sectional data are available, is exceptionally difficult. 

Figure 16. A Path Model and the Corresponding Stability Informed Model.  

Note. Left Panel: Depicted is a stationary model with two variables, X and Y, at two time points. 
ARX and ARY represent the weights of the auto-regressive effects and CLXY represents the weight 

of the cross-lagged effect. Right Panel: A phantom variable model where a variable’s stability 

can be set at a specific value to enable the estimation of the longitudinal (cross-lagged) effect. 

ARX*, ARY*, and Cor(X0, Y0)* denote constrained parameters. 
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Suppose a researcher is interested in the effect of X on Y. If the true model is as depicted 

in Figure 16 (left panel), then the weight of the effect of interest is equal to CLXY. An unbiased 

estimate for the effect of interest could be obtained by regressing Y1 on X0, controlling for Y0. But 

only measuring X1 and Y1—while remaining interested in the longitudinal effect—complicates 

matters. The standardized regression coefficient of Y1 on X1 is equal to: 

𝛽𝑌1𝑋1
=  𝐴𝑅𝑋𝐶𝐿𝑋𝑌+ 𝐴𝑅𝑋𝐴𝑅𝑌𝐶𝑜𝑟(𝑋0, 𝑌0) 

As shown in Equation 11, under most circumstances, the cross-sectional coefficient will 

be biased for the longitudinal coefficient. Part of the reason for this bias is that the cross-

sectional coefficient is also a function of the auto-regressive coefficients (ARX and ARY). Cross-

sectional data do not contain the longitudinal information that is necessary to disentangle auto-

regressive from cross-lagged coefficients. As a result, the weight of the auto-regressive 

associations can drastically impact cross-sectional estimates which is problematic when the 

cross-lagged coefficient is of interest.  

In Figure 17, we demonstrate this by plotting the change in the simple regression 

coefficient of Y1 on X1 for varying auto-regressive coefficients. 18 The value of ARX varies on the 

x-axis and the values for ARY are depicted with different colored lines. The black line represents 

the true value of the cross-lagged coefficient (i.e., the parameter of interest) which is set to .5. 

For this model, 𝛽𝑌1𝑋1  is unbiased for the longitudinal parameter when 𝐴𝑅𝑋 =
1

1+𝐴𝑅𝑌
 (Gollob & 

Reichardt, 1985). It is clear from Figure 17 that, although this condition is occasionally met 

(namely, where the colored lines intersect .5), the cross-sectional coefficient is almost always 

 
18 These results were generated by solving for 𝛽𝑌1𝑋1

 (using Equation 11) with a range of weights 

for the auto-regressive effects. The generating model is stationary. 

(12) 
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biased. Moreover, the direction of the bias is not constant, in that sometimes the cross-sectional 

coefficient over-estimates the cross-lagged coefficient and other times it underestimates it.19  

Figure 17.  The Impact of Auto-regressive Effects on Cross-sectional Estimates.  

Note. The horizontal black line at .5 depicts the weight of the true cross-lagged effect. The 

generating model is stationary (i.e., Cor(X0, Y0 ) = Cor(X1, Y1)) 

 

There is one more complication. Often, psychological researchers are interested in 

estimating multiple effects simultaneously (e.g., mediation models, path models). If a variable is 

both a predictor and outcome (e.g., the mediator in a mediation model), then it becomes even 

more unlikely that the set of auto-regressive weights will result in unbiased estimates, and often 

such a set does not exist (Maxwell & Cole, 2007; Maxwell et al., 2011).  

The fact that few conditions will render cross-sectional estimates unbiased for 

longitudinal parameters vastly undercuts the value of cross-sectional data for many research 

questions. Accurately estimating cross-lagged effects requires information about auto-regressive 

 
19 Similar results can be found in Maxwell and Cole (2007). 
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parameters. Although cross-sectional data cannot provide this information, longitudinal 

information may exist in the literature from previously collected longitudinal data. In these cases, 

having a method to integrate longitudinal information (from another data set) into cross-sectional 

estimates could assist in getting an estimate that accounts for the auto-regressive effects. In the 

following section, we describe the Stability Informed Model, which combines cross-sectional 

data with existing knowledge about a variable’s stability—the degree to which a variable 

correlates with itself across two time points. 

The Stability Informed Model  

 We developed a model that we call the Stability Informed Model to augment cross-

sectional estimates with longitudinal information. Later, we discovered that such a model had 

been proposed by Gollob and Reichardt (1985). Although this model was introduced into the 

literature many years ago, few methodologists or substantive researchers appear to be familiar 

with it. Additionally, to our knowledge, it has never been used. As such, we believe there is 

value in re-introducing and extending the Stability Informed Model, testing its robustness, and 

providing usable tools and explanation for its estimation.   

The Stability Informed Model combines cross-sectional correlational data with pre-

specified stability coefficients and produces estimates of longitudinal coefficients. If the process 

being modeled is stationary and the correct model is specified, this approach allows for the 

estimation of longitudinal coefficients with data collected at a single time point. We capitalize on 

the fact that information about the stability of variables may exist in the literature (e.g., from 

previous longitudinal studies), and, as such, it may be more plausible for researchers to obtain 

cross-sectional correlations and independent stability estimates than to obtain longitudinal data. 
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The Stability Informed Model uses phantom variables within an SEM framework: 

unmeasured previous time points of the measured variables are specified as standardized 

phantom latent variables and auto-regressive paths are specified between each measured variable 

and its associated phantom variable (e.g., Measured: X1, Y1, Unmeasured and included as 

phantom variables: X0, Y0; see Figure 16 right panel). The Stability Informed Model shares 

similarities with other phantom variable approaches (e.g., Harring, McNeish, & Hancock, 2017), 

and is similar to single-indicator measurement models in which external reliability estimates are 

used to derive fixed measurement error variance (Savalei, 2019). What sets the Stability 

Informed Model apart from these other models is the added model constraints and the motivation 

behind the inclusion of these constraints.   

The Stability Informed Model is identified by imposing three sets of constraints. First, the 

auto-regressive paths of each variable are constrained to be a nonlinear function of the user-

specified stability of the variable and other model parameters. Second, the stationarity 

assumption is imposed, such that the variance-covariance matrix of phantom variables at Time 0 

is equal to the variance-covariance matrix of the measured variables at Time 1.20 Third, the 

within-time-point residual covariances are fixed to 0 (although, as we will discuss later, these can 

be fixed to non-zero values or estimated). With these constraints imposed, the model has the 

freedom to estimate 
𝑝(𝑝−1)

2
 additional cross-lagged paths from phantom variables at Time 0 to 

observed variables at Time 1 (see section Degrees of Freedom for the Stability Informed Model 

in the Supplementary Material for more information). 

 
20 These constraints can be imposed using software packages like lavaan (Rosseel, 2012) 
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Figure 16 (right panel) shows the Stability Informed Model corresponding to a two-

variable model in which Y is regressed on X. To estimate the cross-lagged path CLXY when only 

Y1 and X1 are measured, the parameters ARX*, ARY*, and 𝐶𝑜𝑟(𝑋0, 𝑌0)* are constrained to: 

𝐴𝑅𝑥
∗ = 𝐶𝑜𝑟(𝑋0 , 𝑋1) 

 

𝐴𝑅𝑦
∗ = 𝐶𝑜𝑟(𝑌0, 𝑌1) − 𝐶𝐿𝑥𝑦 𝐶𝑜𝑟(𝑋0, 𝑌0)∗

 

 

𝐶𝑜𝑟(𝑋0, 𝑌0)∗ =
𝐴𝑅𝑥

∗𝐶𝐿𝑥𝑦

1 − 𝐴𝑅𝑥
∗𝐴𝑅𝑦

∗  

where 𝐶𝑜𝑟(𝑋0, 𝑋1) and 𝐶𝑜𝑟(𝑌0 , 𝑌1) would be replaced with plausible stability values for these 

variables. These plausible stability values would be informed by the existing longitudinal 

literature on these variables.  

Assuming the correct model was specified, the correct stability values were used, and the 

process was stationary, the stability-informed estimate of CLXY would be unbiased for the cross-

lagged coefficient. Although stability-informed estimates can be unbiased for the longitudinal 

coefficient when the 3 key assumptions are met, it is likely that these assumptions are violated in 

real data. Additionally, the Stability Informed Model will often be saturated which means that 

model fit indices cannot be used to identify misspecification. As such, it is important to 

investigate how this model responds to violations of these assumptions. To this end, in the 

following section we explore the effects of both stability misspecification and structural model 

misspecification. 

Exploring Misspecification within the Stability Informed Model 

(13) 

(14) 

(15) 
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Stability Misspecification 

In this section, we explore the impact of stability misspecification, which occurs when 

the specified stability values are not equal to the true stability values in the generating model. We 

generated data from the model depicted in Figure 18 with all auto-regressive coefficients having 

the same value of either .3 or -.3, and all cross-lagged coefficients having the same value of 

either .3 or -.3.21 We then fit the Stability Informed Model to the generated population 

covariance matrix (i.e., no sampling variability was imposed), with one variable's stability fixed 

to an incorrect value in the fitted model. We manipulated the specified stability of one variable at 

a time so that the impact of each variable's stability misspecification would be clear. The stability 

misspecification varied from -50% of its true value to +50% of its true value in increments of 

10%. For example, in conditions where X's stability misspecification is being varied, the stability 

of X would be some percentage greater or less than its true value while the stability of Y and Z 

would be set at their true values. 

 
21 These weights were used because they are within the interval of weights that we may plausibly encounter for 

psychological estimates. 
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Figure 18. Generating Model for Misspecification Simulations.  

Note. For conditions exploring misspecification due to correlated residuals, one of the residual 

covariances between the observed variables was non-zero. 

 

Figure 19 shows the stability-informed estimates (depicted by points) produced by fitting 

the Stability Informed Model to the generated Time 1 data (i.e., X1, Y1, and Z1). These results are 

from conditions where the auto-regressive coefficients are set at .3 (see the Figures A10-A12 in 

the Supplementary Material for the results when auto-regressive paths are set at -.3). For 

reference, solid lines depict the corresponding estimates from a cross-sectional model in which 

Y1, is regressed on X1, and Z1 is regressed on both Y1, and X1. The dashed line depicts the true 

value of the cross-lagged coefficients in the longitudinal generating model. Only conditions that 

resulted in a positive definite covariance matrix and where a solution was found are shown in 

Figure 19. 
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When the specified stabilities are equal to those in the generating model (i.e., at 0% on 

the x-axis), the stability-informed estimates are unbiased for the longitudinal parameters. But 

when a specified stability is inflated or deflated relative to the true value, the stability-informed 

estimates show considerable bias. In some cases, this bias is greater than that of the cross-

sectional estimates. Comparison between the three column panels in Figure 19 shows that the 

consequence of misspecifying the predictor stability is more costly than misspecifying the 

outcome stability. For example, misspecifying the stability of X has negative consequences for 

all three of the cross-lagged coefficients. But misspecifying the stability of Y only has a negative 

consequence on CLYZ. Finally, misspecifying the stability of Z, which is strictly an outcome 

variable, has little effect on any of the stability-informed estimates (assuming that the stability of 

X and Y are correct). As such, this model may be particularly useful for research questions where 

researchers are confident in their estimate of the predictor's stability, such as when the predictor 

is an unchanging variable like race or childhood SES. Additionally, the impact of under-

estimating a variable's stability appears to be worse than that of over-estimating it. As such, if 

there is uncertainty about a variable's stability, we suggest picking a value in the upper range of 

the plausible stabilities.   
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Figure 19. Assessing the Impact of Stability Misspecification.  

Note. The values of each of the auto-regressive paths in the generating model are set at .3. The 

black dashed line represents the population weight for each of the estimated cross-lagged paths, 

and the solid lines represent the cross-sectional estimates for each path (colors correspond 
between the same cross-lagged and the cross-sectional estimate). The lines and dots depicting the 

unestimated cross-lagged and cross-sectional paths overlap at zero in each panel. For each 

condition, the stability in the estimated Stability Informed Model was set at its true value. 

 

Structural Model Misspecification 

Structural model misspecification concerns whether the correct paths are estimated in the 

structural model (e.g., two residuals covary but their covariance is constrained to be 0). We 

investigated two kinds of structural model misspecification: missing cross-lagged paths and 

missing covarying residuals. 
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Missing Cross-lagged Paths. First, we explored the impact of estimating an incorrect set of 

cross-lagged paths. Recall that the model allows only 
𝑝(𝑝−1)

2
 paths to be estimated; as a result, 

researchers may wish to estimate more cross-lagged paths than they are able to. We tested how a 

cross-lagged path being inaccurately set to zero impacted the other estimates. We did this by 

calculating the generating covariance matrix for the model depicted in Figure 18. For each 

condition, one of the cross-lagged paths CLXY, CLXZ, or CLYZ), was fixed to zero in the Stability 

Informed Model. The true weight of the unestimated path ranged from -1 to 1. The true weight of 

the other two cross-lagged paths were equal to each other and set at either .3 or -.3. Across 

conditions, the auto-regressive effects were all equal to each other and set at either .3 or -.3.  

  Our goal was to explore the impact of structural—not stability—misspecification and, as 

such, the stability values for each variable were specified at their true values. But the auto-

regressive estimates could be biased since they are a function of both stability and cross-lagged 

parameters. Only conditions that resulted in a positive definite matrix and where a solution was 

found are depicted in Figure 20. In Figure 20, the true weight of the unestimated path varies 

along the x-axis. The stability-informed estimates are depicted by different colored dots, and the 

cross-sectional estimates (for comparison) are depicted by different colored lines. In the figure, 

each column represents the results when a specific cross-lagged path is inaccurately fixed to 

zero, and each row depicts a different true cross-lagged weight for the estimated coefficient. The 

black dashed line depicts the true value for the cross-lagged coefficients that are included in the 

Stability Informed Model specification. Only the results from when the auto-regressive values 

are set at .3 are shown in Figure 20.   
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We can see that as the absolute value of the unestimated path increases, the stability-

informed estimates of the other cross-lagged coefficients become more biased. The CLYZ path is 

the most impacted by either the CLXY or the CLXZ path being erroneously fixed to zero. This is 

because the association between Y and Z comes from two sources—Y and Z share a common 

cause (X) and Y is a cause of Z. If one of the paths from X to either Y or Z is erroneously 

constrained to zero, then the CLYZ path will be biased to account for the association between Y 

and Z that is due to their common cause. Additionally, fixing the CLYZ path to zero affects both 

CLXY and CLXZ, because the common cause paths are forced to account for the association that, in 

the generating model, is due to the longitudinal regression of Z on Y. More generally, setting a 

non-zero effect in the population to zero biases the other estimates as there is now extra 

association that they have to account for. A similar issue would occur if an important variable 

(e.g., X) was not included in the model (this is known as omitted variable bias; Wilms, Winenn 

& Lanwehr, 2021). Misspecified cross-lagged paths could be particularly problematic for the 

Stability Informed Model as the limited degrees of freedom of the model strongly restrict how 

many of these paths may be estimated. One option is to constrain some of the cross-lagged 

effects to be equal, which would allow for more cross-lagged paths to be estimated. 
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Figure 20. Assessing the Impact of Cross-lagged Path Misspecification.  

Note. The values of each of the auto-regressive paths in the generating model are set at .3. The 
black dashed line represents the population weight for each of the estimated cross-lagged paths, 

and the solid lines represent the cross-sectional estimates for each path (colors correspond 
between the same cross-lagged and the cross-sectional estimate). The lines and dots depicting the 

unestimated cross-lagged and cross-sectional paths overlap at zero in each panel. For each 

condition, the stability in the estimated Stability Informed Model was set at its true value. 

 

Missing Residual Covariance. 

The second kind of structural model misspecification we explored is a non-zero residual 

covariance in the data generating model (e.g., the residual covariance for X and Y was set at .2). 

To do this, we estimated the Stability Informed Model with the correct stability specification and 

the correct set of cross-lagged paths, but a residual covariance inaccurately constrained to 0. 

Across conditions, we varied the non-zero residual covariance between -.2 and .2 in increments 

of .01. Note that, because all variables in the generating model have variance of 1, the residual 

covariances can be interpreted as being on a standardized metric corresponding to the total 

correlation between variables. For example, if X and Y have a residual covariance of .2, this 

means that .2 of the correlation between X and Y can be attributed to a covariance between their 
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residuals. As in the previous sections, the set of cross-lagged coefficients were set to be equal to 

each other; the set of auto-regressive coefficients were set to be equal to each other; the auto-

regressive and cross-lagged coefficients were set to be either -.3 or .3. Only conditions that 

resulted in a positive definite matrix and where a solution was found are depicted in Figure 21.  

In Figure 21, the true weight of the residual covariance varies along the x-axis, with 0 in 

the center. The stability-informed estimates are depicted by different colored dots, and the cross-

sectional estimates are depicted by different colored lines. Each column represents the results 

when a different pair of variables have a non-zero residual covariance. The black dashed line 

depicts the population value for each of the cross-lagged coefficients.  

Figure 21 shows that the bias from residual covariances being inaccurately set to zero can 

be severe. This is particularly true for the cross-lagged path between the two variables that have 

a covarying residual. For example, when X and Y have a non-zero residual covariance, the path 

CLXY now has to account for either more or less of the covariance between these two variables 

than it does in the generating model (whether the effect is over or underestimated will depend on 

the values of both the residual covariance and other population parameters). But other cross-

lagged paths can be biased as well. For example, CLYZ is also biased when X and Y have 

covarying residuals. Other cross-lagged coefficients are impacted because when one cross-

lagged coefficient is biased the remaining cross-lagged coefficients will have to adjust as well. 

This is particularly true for `downstream' coefficients in which the predictor is not exogenous. 

For example, CLXY and CLXZ are only strongly biased when there is residual covariance between 

X and Y and X and Z, respectively. On the other hand, CLYZ (a downstream coefficient) is heavily 

impacted regardless of which two variables have a covarying residual.  
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Note. The values of each of the auto-regressive paths in the generating model are set at .3. The 

black dashed line represents the population weight for each of the estimated cross-lagged paths, 

and the solid lines represent the cross-sectional estimates for each path (colors correspond 
between the same cross-lagged and the cross-sectional estimate). For each condition, the stability 

in the estimated Stability Informed Model was set at its true value. 

 

Structural model misspecification is particularly a problem for the Stability Informed 

Model as there will likely be more paths a researcher would like to estimate than there are 

degrees of freedom available. This is an important limitation to keep in mind. One potential 

solution is to constrain some estimated paths to be equal which allows more paths to be 

estimated. In Table 4, we demonstrate this by constraining CLXY and CLXZ to be equal in the 

Stability Informed Model. This provides an extra degree of freedom and the ability to estimate 

Figure 21. Assessing the Impact of Covarying Residual Misspecification. 
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one more parameter, in situations where the assumption of equal cross-lagged paths is tenable. 

The model could then estimate the non-zero covariance between X and Y. Table 4 shows the 

parameter values returned by the Stability Informed Model when the residual covariance 

between X and Y is and is not fixed to zero. 

Table 4. Estimating Residual Covariances 

 Model 1: X and Y residual 

covariance constrained to 0 

Model 2: X and Y residuals 

allowed to covary 

ARX .3 .3 

ARY .3 .3 

ARZ .22 .3 

CLXY -.03 .3* 

CLXZ .31 .3* 

CLYZ .69 .3 

Cov(εx , εy) 0† -.10 

Note. The true weights for the cross-lagged and auto-regressive parameters is .3. The true 

weight for the residual covariance between X and Y is -.10  
* CLXY and CLXZ are constrained to be equal in Model 2. 

† Residual covariance between X and Y is fixed to zero in Model 1. 
 

Table 4 demonstrates that, if a researcher has enough knowledge about the model, this 

knowledge can be used to free up more degrees of freedom. This in turn can result in a better 

fitting model. But, if this knowledge is unavailable and the researcher believes that there may be 

model misspecification, then the estimates returned from the Stability Informed Model may be 

biased. But researchers can also use the Stability Informed Model to conduct a sensitivity 

analyses to assess the degree of variation in the estimates across specifications. This practice can 

help researchers calibrate their trust in both the cross-sectional and stability-informed estimates. 

 



 

94 
 

Introducing the stim Package 

To facilitate the estimation of the Stability Informed Model, we developed a software package—

stim—using the R coding language. However, the Stability Informed Model can be estimated in 

any other latent model estimation software. Names of R packages are bolded, and names of both 

R functions and arguments are italicized. We assume basic knowledge of the coding language R 

and the R package lavaan (Rosseel, 2012).22 23 

stim Package Overview 

The Stability Informed Model can be estimated by calling the function stim() which has the 

following arguments: 

• data: A data frame with the measured variables. Not needed if input for S is provided. 

• S: A covariance matrix for the measured variables. Not needed if input for data is  

    provided.  

• n: Number of observations in data set. Not needed if input for data is provided. 

• model: A vector object with the cross-sectional model specification (in lavaan syntax). 

• stability: A vector object with the stability value for each variable.  

The stim() function converts the specified cross-sectional model into its corresponding 

Stability Informed Model (see Figure 22), incorporates the stability values into the parameter 

constraints, and estimates the model using the R package lavaan. The function's output is an 

object of type stim.24 When the summary() function is used on a stim object, the stability-

informed estimates are printed along with their p-values and standard errors. Additionally, the 

 
22 There are many tutorials and example coding scripts available for lavaan. For example, 
https://lavaan.ugent.be/tutorial/tutorial.pdf 
23 An Rmarkdown version of this section is available at https://osf.io/s6xk7 
24 More information on the output object can be found 

https://github.com/AnnaWysocki/stim/blob/main/README.md 
 

https://lavaan.ugent.be/tutorial/tutorial.pdf
https://github.com/AnnaWysocki/stim/blob/main/README.md


 

95 
 

lavaanSummary() function prints the lavaan output for each estimated model. The stim output 

object also has the syntax for the Stability Informed Model—model syntax for the lavaan 

function. This contains the syntax to specify the structural part of the Stability Informed Model 

as well as the parameter constraints for the auto-regressive paths and the latent correlations. 

Researchers can re-use this syntax if they wish to run the Stability Informed Model directly 

through the lavaan function. 

Figure 22. Converting a Cross-sectional Model into a Stability Informed Model. 

Note. A cross-sectional model (left panel) and its corresponding Stability Informed Model (right 

panel). 

 

Below, we include an example for estimating the Stability Informed Model using 

empirical data from a study on the effect of experiencing cyberbullying on suicidal ideation and 

depression.  

An Applied Example 
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The stim() function requires three pieces of information: 1) a cross-sectional data set (in 

the form of raw data or a covariance matrix), 2) stability estimates for each variable, and 3) a 

model specification.  

For the following example, we use a covariance matrix of three variables—

cyberbullying, suicidal ideation, and depression—from Mitchell and colleagues (2018). Since the 

data input is a covariance matrix, the sample size of the data set (n = 348) will need to be 

provided. 

 

For the stability estimates, we searched the literature for longitudinal studies that measured at 

least one of the variables of interest. All stability estimates had a time lag between 1 year and 8 

months.25 Since we collected multiple stability estimates for each variable, we averaged them 

resulting in a single value for each variable. 

 

 We were interested in the effect of cyberbullying on both depression and suicidal ideation. Since 

depression and suicidal ideation are likely impacted by factors other than cyberbullying, we 

allowed the residuals of depression and suicidal ideation to covary (See Figure 22 right panel). 

 
25 see https://osf.io/cu2dx for an overview of the stability literature search 

https://osf.io/cu2dx
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Estimating a Stability Informed Model. The stim package is available on CRAN and can be 

installed and loaded with the following code:  

 

The input for the model argument must be an object with the cross-sectional model specified in 

lavaan syntax. The stim() function then translates the cross-sectional model into a Stability 

Informed Model and incorporates the stability estimates into the parameter constraints.  

 

After specifying inputs for the data, stability, and model arguments, the Stability Informed 

Model is estimated using the stim() function. 
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These results are consistent with there being a longitudinal cross-lagged coefficient of 

.146 of  cyberbullying on suicidal ideation and .147 of cyberbullying on depression. These 

estimates are similar but slightly lower than the cross-sectional estimates, which were .19 and 

.18, respectively. 

For the stability-informed estimates to be unbiased for their respective longitudinal 

effects, the stability values must be unbiased, the model must be specified correctly, and the 

assumption of stationarity must hold. We can assess how much an estimate varies within a 

plausible range of stability values by doing a sensitivity analysis in which we estimate a set of 

models where each model has a different set of stability values.  
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Conducting a Sensitivity Analysis. The stim() function estimates a model for each row in the 

stability argument input. For the sensitivity analysis, we created a range (+/- .1) around the 

stability estimates used in the previous model. This results in three plausible stability values for 

each variable, and 27 models (each with a different combination of stability values) to estimate. 

For example, the stability values for cyberbullying will be .57, .67, and .77. 

 

 

The output object from the stim() function now has the results from 27 models which can be 

challenging to visualize in a table format. Instead, we can summarize the stability-informed 

estimates across the 27 models by plotting them (see Figure 22). 
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Figure 23. Stability-informed Estimates across the 27 Models 

 

Based on our sensitivity analysis, we can see that both of the stability-informed estimates 

range from roughly .10 to .23 depending on the stability value inputs. However, note that 

regardless of the stability inputs both effects remain positive. This bolsters our conclusion that 

there is a positive longitudinal coefficient of cyberbulling on suicidal ideation and depression, 

over a time lag of about one year. To interpret this coefficient causally, we would have to 

consider the tenability of other assumptions such as whether there are any unaccounted common 

causes. 

Conclusion 

In this chapter we introduced the Stability Informed Model for estimating longitudinal 

coefficients from cross-sectional data, investigated the impact of several sources of 



 

101 
 

misspecification on the resulting coefficients, and introduced a software package to estimate the 

model.   

We believe this model is a valuable contribution to the field of psychology and can 

provide better estimates of longitudinal processes, particularly when a process is stationary and 

researchers have reliable information about the structural model and variable stability. But the 

stability-informed estimates can also be heavily biased when the model assumptions are violated 

or when the model is structurally misspecified. Structural misspecification is an important source 

of bias as often the population model will be more complicated than the model that can be 

estimated within the proposed framework. We proposed two solutions: 1) constraining estimated 

coefficients to be equal to each other, and 2) setting fixed parameters to a value other than zero. 

But these are only viable solutions when a researcher has correct information about what the 

non-zero constrained value should be or which parameters should be constrained.  

Another source of bias is stability misspecification. Currently, the Stability Informed 

Model allows a single stability value to be specified for each variable, and, if that value is not the 

true stability, the resulting estimates will be biased. But there will likely be a range of plausible 

stability values for each variable. An ideal solution would allow not only a range of stability 

values to be specified but also allow probabilities to be assigned to each of the values—values in 

the middle of the range may be more plausible than values in the extremes. As a next step, we 

intend to develop a Bayesian extension that estimates the Stability Informed Model using 

informative priors rather than rigid parameter constraints for the non-estimated parameters. As 

such, a prior distribution could be specified for each variable’s stability where the distribution 

shape (e.g., a normal distribution) would specify the probabilities of the values in the range. A 

Bayesian model could also replace exact zero constraints with approximate zero constraints (e.g., 



 

102 
 

a prior distribution with a mean of 0 and a small variance for a residual covariance). In this way, 

a Bayesian approach could ameliorate the issues of both stability and structural model 

misspecification.  

The Stability Informed Model is not intended to replace longitudinal models, but rather 

intended as a model that can provide more information and in certain situations less biased 

estimates than cross-sectional models. More generally, we believe the Stability Informed Model 

motivates a framework for incorporating different sources of information into a single model. As 

such, we think this model may be able to address the more general problem in causal inference of 

missing variables. Measuring every variable involved in a psychological process is infeasible, 

but incorporating information about a relevant variable from previous studies may be more 

achievable. Although this approach is not common in psychology, it has the potential to allow 

researchers to build more complex and nuanced models that are better representations of the 

world. 
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Chapter 5. Discussion & Conclusion  

Each of the chapters in this dissertation provide guidance or insight into an active 

question about the match between an estimate and its estimation approach or a theoretical target 

and its linked estimate. More specifically, these studies have informed how network models 

should be estimated and how causal models can be built. In Chapter 2, I explored how best to 

estimate network models by evaluating the performance of different estimation approaches. I 

found that all regularized approaches had concerning performance—low sensitivity, false 

positive rate increases as sample size increases, estimated sparsity seemingly unrelated to 

population sparsity. Ultimately, I suggest non-regularized methods be used to estimate low-

dimensional psychological networks. In Chapter 3, I demonstrated how control variables can 

either help or harm estimates depending on the causal relations between the control(s), outcome, 

and predictor. I then developed a control variable selection framework to guide applied 

researchers as they select their set of variables to measure. In Chapter 4, I discussed the 

challenge when cross-sectional estimates are used to learn about longitudinal parameters. I then 

outlined a model that integrates longitudinal information into cross-sectional estimates for 

situations where longitudinal parameters are of interest.  

But beyond these specific contributions, each study develops tools for a larger framework 

where methodology is evaluated for alignment with the research question across multiple steps. 

Each study underscores the importance of making methodological decisions based on existing 

theory and also provides tools and guidelines to do so. In Chapter 2, I disentangled estimate and 

estimator selection, and focused on comparing multiple estimators of the same estimate. The 

proposed framework in Chapter 3 encourages researchers to explicitly delineate the motivating 

model behind their estimate choice. By building such a model, researchers are encouraged to 
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make bold falsifiable claims that future researchers can build upon—a foundation for 

incremental progress and theory development. In Chapter 4, I proposed an approach to augment 

estimates with existing information. When studying complex systems, one study cannot measure 

and estimate all important parts of the system. In these cases, integrating estimates from multiple 

studies is vital, and Chapter 4 develops one approach to do so.  

Broadly, each of these chapters center on variable selection and its impact on model 

building and selection. Chapter 2 demonstrates that when sample size exceeds the number of 

variables measured (i.e., a low-dimensional setting), the costs of regularization exceed the 

benefits. Chapter 3 delineates the cost of incorrect variable selection for causal inference and 

proposes a framework for improved control variable selection and justification. Chapter 4 points 

out that variables measured at a single timepoint can rarely recover longitudinal parameters and 

develops a statistical model to augment the set of measured variables. In summary, variable 

selection is a foundational step in research, and the chapters in this dissertation investigate the 

impact of a mismatch between the variables selected and the research goals and propose 

solutions to ameliorate these consequences.   

Limitations and Future Directions 

Although I believe these chapters meaningfully add to each area’s body of research, there 

are a number of limitations that are important to note. Although the purpose of Chapter 2 was to 

evaluate different penalty selection methods, there are many more penalty selection methods 

than the ones compared here (see Kuismin and Sillanpää, 2017 for an over-view of different 

penalty selection methods). The included methods were chosen based on previous research 

demonstrating they were competitive with the default method in psychology (Liu et al., 2010; 
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Mohammadi & Wit, 2015), EBIC, and based on their ease of implementation for applied 

researchers (i.e., the availability of an R-package or code to fit these models).  

In Chapter 3, the framework and examples did not discuss composite variables—a 

variable created by combining another set of measured variables. Composites are common in 

psychology (e.g., summing items on an extraversion questionnaire to obtain an individual’s 

extraversion score) and have implications for causal inference. Crucially, the causal relation 

between the items being collapsed determines whether the causal estimate between a composite 

and another variable can be recovered. A future direction is to outline different kinds of 

composites, discuss how they impact causal inference, and provide guidelines on when and how 

causal inference can be achieved. 

Finally, the Stability-Informed Model, outlined in Chapter 4, can produce unbiased 

longitudinal estimates from cross-sectional data. But this model relies on the external 

information being correct and the model being correctly specified, and the model is sensitive to 

misspecifications. A future direction is to estimate this model in a Bayesian framework using 

informative priors—a distribution of plausible values—for the non-estimated parameters rather 

than rigid parameter constraints. As such, a prior distribution could be specified for each 

variable’s stability where the distribution shape (e.g., a normal distribution) would specify the 

probabilities of the values in the range. It is also possible to replace exact zero constraints with 

approximate zero constraints (e.g., a prior distribution with a mean of 0 and a small variance for 

a residual covariance) for the unestimated parameters that we would normally set at 0. In this 

way, a Bayesian approach could ameliorate the issues of both stability and model 

misspecification and return more robust and informative estimates.  

Implications and Conclusion 
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 Overall, these studies not only contribute to a general movement in psychology to 

explicitly and thoughtfully link methodology with research goals, but also contributes to the 

specific areas of network modeling and causal inference.  My research comparing penalty 

parameter methods (Wysocki & Rhemtulla, 2019) alongside others (Willams & Rast, 2020; 

Williams, Rhemtulla, Wysocki & Rast, 2019) has influenced the field to move away from 

regularized methods when estimating network models. Additionally, deliberately choosing and 

justifying control variables should be a central part of every published analysis, and the wide-

spread adoption of the framework proposed in Chapter 3 could both improve and clarify the 

theoretical models in psychology. Finally, the Stability Informed Model motivates a framework 

for incorporating different sources of information into a single model which will be foundational 

for causal inference in psychology.  
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