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Abstract

Although the toxicity of neonicotinoid insecticides has been demonstrated in several studies, 

the information on metabolism, behavior, and health risk remains limited and has raised 

concerns about its potential toxicity. Thus, in this study we assessed the effects of nitenpyram 

using different sublethal concentrations (one-third and one-tenth of the acute LC50 values) on 

various developmental and metabolic parameters from gene expression regulation in Drosophila 
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melanogaster (model system used worldwide in ecotoxicological studies). As a result, nitenpyram 

sublethal concentrations prolonged the developmental time for both pupation and eclosion. 

Additionally, nitenpyram sublethal concentrations significantly decreased the lifespan, pupation 

rate, eclosion rate, and production of eggs of D. melanogaster. Moreover, the mRNA expression of 

genes relevant for development and metabolism was significantly elevated after exposure. Mixed 

function oxidase enzymes (Cyp12d1), (Cyp9f2), and (Cyp4ae1), hemocyte proliferation (RyR), 

and immune response (IM4) genes were upregulated, whereas lifespan (Atg7), male mating 

behavior (Ple), female fertility (Ddc), and lipid metabolism (Sxe2) genes were downregulated. 

These findings support a solid basis for further research to determine the hazardous effects of 

nitenpyram on health and the environment.

GRAPHICAL ABSTRACT
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1. Introduction

Pesticides are considered a crucial aspect in controlling insect pests by contributing to the 

safe production of agriculture worldwide (Kathage et al., 2018; Buszewski et al., 2019; 

Ahmed and Vogel, 2020a). However, the intensive use of pesticides results in harmful 

effects on the environment and human health (Baines et al., 2017; Craddock et al., 2019). 

Furthermore, development of pesticide resistance is of concern and considered one of the 

major critical issues that we face today in the pest control field as well (Mouhamadou 

et al., 2019; Ahmed and Vogel, 2020b). Thus, focus on new strategies of insect pest 

control is critical. Neonicotinoids are considered one of the most effective pesticides for 

controlling pests, particularly sucking insect (Wang et al., 2018; Reynoso et al., 2019). 

In target organisms, neonicotinoid insecticides have a unique mode of action in that they 

bind and interact with the insect nicotinic acetylcholine receptors (nAChRs) of the nervous 
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system (Lu et al., 2020; Martelli et al., 2020; Ullah et al., 2020). However, exposure to 

neonicotinoids pose potential health risks to humans and they are known to reduce learning 

and homing ability in the behavior of honeybees (Wood et al., 2018; Buszewski et al., 2019; 

Osterman et al., 2019). Moreover, it has been shown that neonicotinoid insecticides residues 

in soil may translocate to weeds and flowers in targeted crops resulting in delaying the 

potential exposure to insect pollinators and persisting for a long time (Zhu et al., 2019). 

Moreover, overuse of neonicotinoid insecticides can lead to agricultural contamination of 

water, air, and soil, which implies several negative ecosystem impacts (Pisa et al., 2015). 

Among neonicotinoids, nitenpyram stands out, considered the new type of neonicotinoid 

insecticide widely used worldwide after the first generation of neonicotinoid insecticide 

imidacloprid, especially in agriculture and veterinary practices (Wang et al., 2019a; Pang et 

al., 2020). It is essentially an agonist of the nicotinic acetylcholine receptor, has genetic 

toxicity to insects, and can effectively control pests such as whitefly (Bivehed et al., 

2020). However, its use in large quantities to ensure crop yields has raised concerns among 

ecotoxicologists, as its residues have negative effects on aquatic and terrestrial ecosystems 

and even non-target organisms.

The survival and food consumption of honeybees, e.g., were decreased by nitenpyram 

exposure after the treatment of a selected series of concentrations (3, 30, and 300 μg/L) 

for 14 days (Zhu et al., 2019). Furthermore, nitenpyram caused significant changes in the 

relative abundance of different specific gut microbiotas related to metabolic homeostasis 

and immunity (Zhu et al., 2019). Jiang et al. (2018) demonstrated that the estimated total 

effect (E) of nitenpyram may be classified as harmless to Coccinella septempunctata, a vital 

aphid predator, lower or at a dose of 30 g a.i. ha−1. Additionally, nitenpyram was toxic to 

both adult and pupae of Encarsia formosa, which is the most important parasitoid used for 

controlling whitefly pests of vegetable crops (Wang et al., 2019b). A risk quotient analysis 

revealed that toxicity of nitenpyram to E. formosa adults was the highest. Furthermore, 

nitenpyram has a toxic effect on the physiological and biochemical indicators of earthworms 

in both superoxide dismutase (SOD) and glutathione S-transferase (GST) activity (Zhang 

et al., 2020). Despite this evidence, our knowledge about the mechanisms of action of 

nitenpyram and its impacts at a broader level on organisms is still incipient, which justifies 

the conduct of new studies in the area.

In this sense, one of the ways to assess the impacts of nitenpyram exposure to organisms 

is by conducting experiments using translational animal models, such as Drosophila 
melanogaster flies. Such a species is one of the most well understood model organisms 

in the field of toxicological studies in insects (Demir, 2021; Zhang et al., 2021; Sahoo et 

al., 2021; Tasman et al., 2021; El Kholy et al., 2021). Furthermore, the species genome 

is similar in gene structure and function to the human genome (Adams et al., 2000; 

Ahmed and Vogel, 2020a; Li et al., 2020), which allows us to make inferences beyond 

the biological aspects of the species invertebrates. Thus, we aim to evaluate the toxicity of 

nitenpyram on D. melanogaster third instar larvae and adults. We examined the effects of 

sublethal concentrations of nitenpyram on detoxification enzymes, growth, development, 

and reproduction of D. melanogaster. In addition, we assessed the changes in gene 

expression related to development and metabolism. Our hypothesis is that short exposure 

to nitenpyram and at low concentrations is sufficient to induce significant physiological 
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disorders in animals, predictive of negative impacts on the health of the studied animal 

model. We believe that our study provides insight into how the nitenpyram may act on D. 
melanogaster and predicting the impact of this insecticide on biodiversity.

2. Material and methods

2.1. Insecticide and animal model

To conduct the experiments, we used nitenpyram [(E)-N-(6-Chloro-3-pyridylmethyl)-N-

ethyl-N′-(methyl-2-nitrovinylidenediamine)] obtained from Sigma–Aldrich Co. (St. Louis, 

MO, USA) (purity: 99.9%; CAS number: 150824-47-8; molecular weight: 270.72 g/mol; 

Beilstein registry number: 8489488; empirical formula: C11H15ClN4O2). D. melanogaster 
wild type (w1118) were kindly obtained by Dr. Joanna Chiu, the University of California 

Davis and were utilized for all experiments. D. melanogaster flies were preserved at 25 °C, 

relative humidity of 70%, and light/dark cycle of 12-h vials (50 mL) containing a standard 

potato-based medium which was acquired from Carolina Biological Supply Co. (Burlington, 

NC, USA).

2.2. Acute toxicity assay

The applied assay was carried out as previously described by Ahmed and Vogel (2020a), 

with minor modification. Briefly, nitenpyram was dissolved in acetone (P.A.) and firmly 

mixed with 1 g food medium per vial to obtain the final concentration. The standard 

diet (composed of agar, yeast, a sugar source, and cornmeal) was the same diet for D. 
melanogaster larvae and adults. Preliminary evaluations demonstrated that the acetone 

residue in the food medium had no toxic effects (data not shown). Controls, which were run 

at similar times with each series of tests, received only acetone. A 500 μg/mL stock solution 

of nitenpyram was dissolved with acetone. Dilutions of 0 μg/mL, 0.01 μg/mL, 0.1 μg/mL, 

1 μg/mL, 10 μg/mL, and 100 μg/mL in drosophila diet for third instar larvae for acute 

toxicity assay. The 0.01 μg/mL and 0.1 μg/mL concentrations are like those identified in 

natural environments. Previous studies reported that neonicotinoids were frequently detected 

in surface water, with concentrations ranging between 0.001 ng/mL and 0.32 μg/mL, which 

commonly exceed several existing water quality guidelines [see review by Borsuah et al., 

2020]. Therefore, such evidence brings the design of our study closer to a more realistic 

context. On the other hand, the highest concentrations tested (1 to 100 μg/mL) represent a 

pessimistic pollution scenario.

In all acute toxicity assays, twenty D. melanogaster (4–8 h post-emerged) were conveyed 

to each treated vial while, as the vehicle, controls received acetone. Three replicates were 

fulfilled for each concentration and each assay was carried out at 25 °C. After 24-h of 

exposure, the mortality percentage was recorded. Approximately one-tenth of the acute LC50 

values of nitenpyram was used as sublethal concentration of nitenpyram at 0.71 μg/mL and 

3.81 μg/mL for third instar larvae and adults, respectively. Previous experiments confirmed 

that there was no mortality in D. melanogaster by applying the one-tenth of the acute LC50 

values of nitenpyram as sublethal concentration. These concentrations were utilized to the 

lifespan and oviposition experiments.
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2.3. Developmental effect assay

The developmental effect assay was carried out according to Li et al. (2020). Herein, 

one-tenth of the LC50 values of nitenpyram were used at 0.71 μg/mL. Twenty second-instar 

larvae were collected from vials and transferred to new vials for treatment. The assays were 

conducted in three replicates. All developmental effect parameters such as larval and pupal 

duration, adult eclosion duration, and the number of individuals were assessed. Based on 

the lifespan assay, twenty D. melanogaster adults (mixed sex - 1:1 male to female), were 

cultured independently in vials with feeding medium that mixed with one-tenth sublethal 

concentration of the LC50 values of nitenpyram (0.71 μg/mL). Food was changed every 10 

days. The number of deaths was recorded every day until the last fly died.

2.4. RNA extraction and quantitative real-time reverse transcriptase PCR (qRT-PCR)

To better understand the role of nitenpyram and its effects on the modifying the 

behavior of D. melanogaster, we followed the method of Ahmed and Vogel (2020a), 

with some modification. 4–5-day old adult flies were exposed for 24-h to two different 

concentrations of LC50 values, one-tenth (3.81 μg/mL) and one-third (12.69 μg/mL) 

nitenpyram, respectively. Gene expression was calculated using the ΔΔ-Ct method and 

standardized to the expression of actin gene. Gene primers were formed using Primer3 

primer design software (Untergasser et al., 2012). Primer sequences utilized in this study are 

presented in Table 1. Selected genes that were used in this study include Actin, Cyp12d1, 
Cyp9f2, Cyp4ae1, GSTd2, RyR, IM4, Atg7, Ple, Ddc, and Sxe2. The intra-assay variability 

was <7%. Data was evaluated with the Roche LightCycler analysis software.

2.5. Statistical analysis

According to Abbott’s formula (Abbott, 1925), the corrected mortality was assessed. The 

acute toxicity assay data (LC50, 95% CL values, slope, X2, and g values) were pooled and 

analyzed using IBM SPSS Statistics Desktop, V25 (SPSS, Inc., Chicago, IL). Tolerance 

ratio (TR) was calculated by LC50 value for adults divided by the LC50 value for third 

instar larvae after 24-h exposure. Developmental effects and qRT-PCR assay data were 

determined by Student’s t-test (after verification of assumptions for parametric analysis). 

Data represents mean fold induction ± SEM relative to control group. Significance levels 

were set at Type I error (p) values lower than 0.05. Figures were created using GraphPad 

Prism 6.01 software (San Diego, CA).

3. Results

3.1. Acute toxicity

The toxicity results of nitenpyram on D. melanogaster larvae and adults after 24-h exposure 

are presented in Table 2. The LC50 values of nitenpyram on third instar larvae was 7.12 

μg/mL, whereas the LC50 values on adults was 38.07 μg/mL, after 24-h of exposure. 

According to the tolerance ratio values, D. melanogaster adults had a higher tolerance to 

nitenpyram than third instar larvae (5.35-fold) (Table 2).

Ahmed et al. Page 5

Sci Total Environ. Author manuscript; available in PMC 2022 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2. Developmental effects of OR agonists

Nitenpyram significantly delayed the developmental time of eclosion of F1 generation 

flies. The time required for pupa to turn into adults in nitenpyram treated groups was 

greater than 50% compared to the control group (Fig. 1A), with an interaction between 

the factor’s “treatment” and “animal development stage” (F-value = 13.5; p = value = 

0.0032). Nitenpyram treatment reduced the lifespan of D. melanogaster adults to 38.52 ± 

5.23 compared to 51.40 ± 3.82 in the control group (Fig. 1B) (i.e.: 25.05% difference). 

Interestingly, pupation rate was significantly affected by nitenpyram using one-tenth of the 

LC50 value (Fig. 1C). The pupation rate of the treated group was 31.4% lower than that 

observed in the control group. In the same trend, eclosion rate was significantly reduced 

(nitenpyram = 42.91 ± 4.89%) compared to the control group (76.42 ± 5.98%) (Fig. 1D) 

(i.e.: 43.84% difference). Furthermore, the number of eggs laid in each vial of nitenpyram 

treated flies was 19.99 ± 6.80 and 51.67 ± 5.11 in the control group (Fig. 1E) (i.e.: >60% 

difference).

3.3. Effects of nitenpyram on gene expression of Drosophila melanogaster

Data of adults that treated by one-tenth (0.71 μg/mL) and one-third (2.37 μg/mL) of 

sublethal concentrations of nitenpyram exhibited significant effects on the selected genes 

(Fig. 2). The level of selected cytochrome P450 genes expressed in D. melanogaster was 

addressed. CYP12d1, was stimulated by both sublethal concentrations and the maximum 

expression induced by 9.31- and 11.87-fold at one-tenth and one-third of sublethal 

concentrations (Fig. 2A). CYP9f2 was upregulated by 7.01- and 9.34-fold for both sublethal 

concentrations (Fig. 2B). CYP4ae1 was increased by 5.11- and 7.48-fold for tested 

sublethal concentrations (Fig. 2C). Interestingly, GSTd2 was not significantly regulated 

by both sublethal concentrations, however, GSTd2, an isozyme that is able to catalyze the 

conjugation of the reduced form of glutathione to xenobiotic substrates for the purpose of 

detoxification (Fig. 2D).

RyR, which controls hemocyte proliferation, was upregulated by nitenpyram, especially at 

higher sublethal concentrations (5.90-fold) (Fig. 2E). However, IM4, which is associated 

with humoral immunity, was found to be significantly upregulated after treatment with both 

sublethal concentrations of nitenpyram (6.10- and 8.40-fold, respectively) compared to the 

control (Fig. 2F). Also, Atg7, which is a vital factor in the adjustment of D. melanogaster 
lifespan, was found to be downregulated by nitenpyram (5.26- and 16.39-fold, respectively) 

(Fig. 2G). Ple, which regulates mating behavior in males, was significantly downregulated 

by the pesticide at both sublethal concentrations (9.09- and 14.71-fold, respectively) (Fig. 

2H). Ddc, associated with female fertility and eclosion, was downregulated especially 

at one-third sublethal concentrations of nitenpyram by 8.33-fold, (Fig. 2I). Sxe2, which 

regulates lipid metabolism, was suppressed by nitenpyram particularly at the higher 

sublethal concentration (14.29-fold) (Fig. 2J).

4. Discussion

The extensive use of neonicotinoid insecticides has resulted in introduction of a wide 

range of residues to the environment and food. Currently, there is increased scrutiny into 
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the potential health risks that neonicotinoid pesticides pose. Nitenpyram belongs to the 

neonicotinoid group and is frequently used as a pesticide in agriculture and veterinary 

medicine (Wang et al., 2019b; Pang et al., 2020). In this study, we found that the sublethal 

concentrations of nitenpyram impact certain developmental and metabolic parameters. There 

is limited data focusing on the possible effects of nitenpyram on D. melanogaster through 

biochemical and molecular biological effects. This study found that nitenpyram was toxic 

on both larvae and adults of D. melanogaster after 24-h of exposure. The results agree with 

a previous study which focused on the potent effects of nitenpyram on larvae of Aedes 
aegypti mosquitoes after 24, 48, and 72-h of exposure (Ahmed and Vogel, 2015). Further, 

the sublethal concentrations of nitenpyram delayed the developmental stages, decreased 

the lifespan, reduced both pupation and eclosion rates, and minimized the number of 

eggs compared to the control groups. These results are in line with previous findings 

which revealed the sublethal effects of thiamethoxam, a widely used pesticide in the class 

of neonicotinoid pesticides, on certain developmental and metabolic characterizations of 

D. melanogaster (Li et al., 2020). Furthermore, we observed significant modification in 

the gene expression levels that are involved in certain major physiological parameters in 

D. melanogaster. Specifically, mixed function oxidases (MFOs), hemocyte proliferation, 

immune- and defense-related mechanisms, lifespan, male mating behavior, female fertility, 

and fat metabolism.

In this regard, MFOs, such as CYP12d1, which is arguably the most xenobiotic inducible 

P450 gene in the D. melanogaster genome (Willoughby et al., 2006), was upregulated after 

treatment with the sublethal concentrations of nitenpyram. Higher induction of cytochrome 

enzymes resulting from genetic changes may lead to either change of expression or function. 

Upregulation of the gene expression in these enzyme families will result in increased 

metabolism of nitenpyram prior to them reaching their molecular target in the insect 

(Willoughby et al., 2006). In contrast, the sublethal concentrations of nitenpyram used in 

this study did not significantly induce the gene expression of GSTd2. A similar study has 

stated that GSTd2 was not inducible by nitenpyram on D. melanogaster (Willoughby et al., 

2006).

We also found that the sublethal concentrations of nitenpyram increased the gene expression 

level of RyR, which is the major regulator of hemocyte proliferation (Tang et al., 2013). 

This increase is due to the response to the invasion of nitenpyram into the cell. Thus, 

the cell cycle renewal and production of hemocytes is expedited to preserve the normal 

concentration of hemocytes in the cell. This unique mechanism contributes to interaction 

of the sublethal concentrations of nitenpyram and hemocytes which lead to reduce the 

devastation that could happen to the D. melanogaster cell. These results are in line with 

several studies (George and Ambrose, 2004; Rajak et al., 2017; Li et al., 2020). Furthermore, 

there are several genes associated with defense and immunity. IM4, which is involved in 

immune and defense functions in D. melanogaster (Verleyen et al., 2006; Ahmed and Vogel, 

2020a), was induced after the treatment of sublethal concentrations of nitenpyram. This 

finding may be due to a robust increase in immunity and defense in response to nitenpyram-

induced stress. In agreement with previous results reported by Li et al. (2020), the authors 

noted that IM4 gene was highly upregulated in response to thiamethoxam exposure.
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Interestingly, Atg7, a gene associated with the cell cycle, was downregulated in our study, 

which resulted in a shortened lifespan in D. melanogaster. In agreement with our results, 

Juhàsz et al. (2007) demonstrated that downregulated Atg7 gene expression resulted in 

a reduced lifespan. Additionally, a previous study by Li et al. (2020) revealed that the 

loss or depletion of Atg7 decreased the lifespan of D. melanogaster. Furthermore, the 

gene expression of Ple, a gene associated with male mating behavior (Liu et al., 2009), 

was significantly downregulated in our study. The sublethal concentrations of nitenpyram 

inhibited the production ability of D. melanogaster which affected the number of positive 

of mating incidents. However, as a sequence, the number of eggs produced was decreased. 

Similar study focusing on the effects of thiamethoxam on the gene expression of Ple showed 

that the transcriptional level of the Ple gene was downregulated (Li et al., 2020). In this 

regard, Ahmed and Vogel (2020a) showed that Ple was downregulated after the exposure of 

certain pesticides such as amitraz and chlordimeform.

Importantly, Ddc, a gene with an essential role in female fertility, was downregulated 

after exposure to sublethal concentrations of nitenpyram. This downregulation effects the 

oviposition and may affect the depletion of molting, pupation, and the eclosion process in D. 
melanogaster (Wright et al., 1981; McCrady and Tolin, 1994; Li et al., 2020). Furthermore, 

Sxe2, involved in fat metabolism (Tang et al., 2013), was downregulated after the treatment 

of sublethal concentrations of nitenpyram. This may result in lessening of body fat and 

energy storage. Thus, it may affect the larval feeding, growth, development, pupation, and 

eclosion. This prolongation may impact reproduction and lifespan (Fujii and Amrein, 2002; 

Li et al., 2020).

Finally, it is important to emphasize that although our study gathers evidence on the negative 

effects of nitenpyram on biomarkers of reproduction, development and gene expression in 

D. melanogaster, many issues still need to be investigated. Assessments of the toxicity of 

this pesticide, at different concentrations and exposure periods and at different stages of 

animal life constitute some future investigative perspectives. Equally important will be to 

expand the list of biomarkers to be evaluated (e.g.: histopathological, molecular, endocrine, 

among others), as well as the environmental representativeness of the animal models to be 

studied, since the sensitivity to nitenpyram can be different between non-target organisms. 

Monitoring the effects observed in the adult life of animals, as well as their consequences 

at the population level and on their ecological roles, should also be the focus of further 

studies. We believe that approaches of this nature will be useful for a better understanding 

of the extent of the environmental/ecological impact of the nitenpyram, whether in the short, 

medium, or long term.

5. Conclusion

The result of the present study revealed that the sublethal concentration of nitenpyram has 

various effects on developmental and metabolic processes of D. melanogaster. However, 

these effects were perceived to be related to gene regulation. This study demonstrated a 

solid tool for the effects of nitenpyram, as an example of neonicotinoid pesticides, on other 

non-target insects. Further research will be required to better understand the toxicological, 

physiological, and genetic basis of nitenpyram on D. melanogaster. Additionally, this work 
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emphasized the use of D. melanogaster for the toxicological evaluation as standard model to 

detect the toxicological effects of nitenpyram.
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HIGHLIGHTS

• Nitenpyram is more potent on larvae than adults of D. melanogaster.

• Nitenpyram prolongs the developmental time for both pupation and eclosion.

• Cyp12d1, Cyp9f2, Cyp4ae1, RyR, and IM4 genes were significantly 

upregulated.

• Atg7, Ple, Ddc, and Sxe2 genes were significantly downregulated.
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Fig. 1. 
(A) Effect of nitenpyram (0.71 μg/mL) given in the feeding medium on development of 

second-instar larvae of wild type Drosophila melanogaster and the time required to become 

pupae till go through adult stage. (B) Effect of nitenpyram (3.80 μg/mL) for observation 

of the lifespan of D. melanogaster adult flies. (C) Effects of nitenpyram (0.71 μg/mL) on 

pupation rate of third-instar larvae in terms of the rate of formation and in the control group 

and the group treated with sublethal concentration. (D) Effects of nitenpyram (0.71 μg/mL) 

on eclosion rate of third-instar larvae in D. melanogaster exposed or not to nitenpyram. (E) 

Effects of nitenpyram (3.81 μg/ml) on egg production per vial after 24-h exposure. The bars 
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represent the mean ± SEM and the different letters represent significant differences between 

experimental groups (p < 0.05).
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Fig. 2. 
Gene Expression of (A) Cyp12d1, (B) Cyp9f2, (C) Cyp4ae1, (D) Gstd2, (E) RyR, (F) 

IM4, (G) Atg7, (H) Ple, (I) Ddc, and (J) Sxe2 of Drosophila melanogaster exposed or not 

to nitenpyram. Data represents mean fold induction ± SEM of mRNA expression relative 

to control group flies. Control value was set as 1. Different letters represent significant 

differences between experimental groups (p < 0.05). In “Fig. G-J”, value-1 in the control 

group, refers to our reference.
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Table 1

Teal-time PCR primer sequences used in this study.

Genes Forward primer Reverse primer

Actin 5′-CAAAGCGCAAAAAGAACACA-3′ 5′-AGAGGAGAGGGCGAGGTTAG-3′

Cyp12d1 5′-ATATCGACGCCCACCTACAG-3′ 5′-CTCATAATCACCGCCACCTT-3′

Cyp9f2 5′-TCAAGGATCGCGAAAATACC-3′ 5′-TTCATAGCATCGAGCACCAG-3′

Cyp4ae1 5′-GAAAGCAACAGGCAGGAGTC-3′ 5′-GCGAATTTGCTTGTCAGTCA-3′

GSTd2 5′-CAATCCACAGCACACCATTC-3′ 5′-TTCAAGTCCTCATCCGATCC-3′

RyR 5′-GCTGCACCATCTCTACGACA-3′ 5′-CGGACAGCGGAACTCTTTAG-3′

IM4 5′-ACCAACAACCACCAAACCTC-3′ 5′-TGTTGGGTCAACATGGTTCT-3′

Atg7 5′-CATTCCGCTATAGGCACCAT-3′ 5′-CGGCAAAGGAGAGAACAAAG-3′

Ple 5′-CAGACCAAACAAACCGTCCT-3′ 5′-GACTCCGACTGCTCCTGTTC-3′

Ddc 5′-ACACAAATGGATGCTGGTGA-3′ 5′-AAGTGGGATTTGCCAGTGAC-3′

Sxe2 5′-TATTCGGGAGACAGCAAACC-3′ 5′-CCATAAACCTGCGGAGTGAT-3′
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