
UC Irvine
UC Irvine Previously Published Works

Title
Wormhole Hamiltonian Monte Carlo.

Permalink
https://escholarship.org/uc/item/75t8w041

Journal
Proceedings of the AAAI Conference on Artificial Intelligence, 2014(1)

ISSN
2159-5399

Authors
Lan, Shiwei
Streets, Jeffrey
Shahbaba, Babak

Publication Date
2014-07-31

DOI
10.1609/aaai.v28i1.9006

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/75t8w041
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Wormhole Hamiltonian Monte Carlo

Shiwei Lan∗

slan@uci.edu
Jeffrey Streets†

jstreets@uci.edu
Babak Shahbaba‡

babaks@uci.edu

March 5, 2014

Abstract

In machine learning and statistics, probabilistic inference involving multimodal distributions is
quite difficult. This is especially true in high dimensional problems, where most existing algorithms
cannot easily move from one mode to another. To address this issue, we propose a novel Bayesian
inference approach based on Markov Chain Monte Carlo. Our method can effectively sample from
multimodal distributions, especially when the dimension is high and the modes are isolated. To this
end, it exploits and modifies the Riemannian geometric properties of the target distribution to create
wormholes connecting modes in order to facilitate moving between them. Further, our proposed
method uses the regeneration technique in order to adapt the algorithm by identifying new modes
and updating the network of wormholes without affecting the stationary distribution. To find new
modes, as opposed to rediscovering those previously identified, we employ a novel mode searching
algorithm that explores a residual energy function obtained by subtracting an approximate Gaussian
mixture density (based on previously discovered modes) from the target density function.

1 Introduction

In Bayesian inference, it is well known that standard Markov Chain Monte Carlo (MCMC) methods tend to fail
when the target distribution is multimodal (Neal, 1993, 1996; Celeux et al., 2000; Neal, 2001; Rudoy and Wolfe,
2006; Sminchisescu and Welling, 2011; Craiu et al., 2009). These methods typically fail to move from one mode
to another since such moves require passing through low probability regions. This is especially true for high di-
mensional problems with isolated modes. Therefore, despite recent advances in computational Bayesian methods,
designing effective MCMC samplers for multimodal distribution has remained a major challenge. In the statistics
and machine learning literature, many methods have been proposed address this issue (see for example, Neal, 1996,
2001; Warnes, 2001; Laskey and Myers, 2003; Hinton et al., 2004; Braak, 2006; Rudoy and Wolfe, 2006; Sminchis-
escu and Welling, 2011; Ahn et al., 2013) However, these methods tend to suffer from the curse of dimensionality
(Hinton et al., 2004; Ahn et al., 2013).

In this paper, we propose a new algorithm, which exploits and modifies the Riemannian geometric properties
of the target distribution to create wormholes connecting modes in order to facilitate moving between them. Our
method can be regarded as an extension of Hamiltonian Monte Carlo (HMC). Compared to random walk Metropo-
lis, standard HMC explores the target distribution more efficiently by exploiting its geometric properties. However,
it too tends to fail when the target distribution is multimodal since the modes are separated by high energy barriers
(low probability regions) (Sminchisescu and Welling, 2011).

In what follows, we provide an brief overview of HMC. Then, we introduce our method assuming that the
locations of the modes are known (either exactly or approximately), possibly through some optimization techniques
(e.g., (Kirkpatrick et al., 1983; Sminchisescu and Triggs, 2002)). Next, we relax this assumption by incorporating a
mode searching algorithm in our method in order to identify new modes and to update the network of wormholes.
∗Department of Statistics, University of California, Irvine, USA.
†epartment of Mathematics, University of California, Irvine, USA
‡Department of Statistics and Department of Computer Science, University of California, Irvine, USA.
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2 Preliminaries

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal, 2010) is a Metropolis algorithm with proposals guided
by Hamiltonian dynamics. HMC improves upon random walk Metropolis by proposing states that are distant from
the current state, but nevertheless have a high probability of acceptance. These distant proposals are found by
numerically simulating Hamiltonian dynamics, whose state space consists of its position, denoted by the vector θ,
and its momentum, denoted by a vector p. Our objective is to sample from the distribution of θ with the probability
density function (up to some constant) π(θ). We usually assume that the auxiliary momentum variable p has a
multivariate normal distribution (the same dimension as θ) with mean zero. The covariance of p is usually referred
to as the mass matrix,M , which in standard HMC is usually set to the identity matrix, I , for convenience.

Based on θ and p, we define the potential energy, U(θ), and the kinetic energy, K(p). We set U(θ) to minus
the log probability density of θ (plus any constant). For the auxiliary momentum variable p, we set K(p) to be
minus the log probability density of p (plus any constant). The Hamiltonian function is then defined as follows:

H(θ,p) = U(θ) +K(p)

The partial derivatives of H(θ,p) determine how θ and p change over time, according to Hamilton’s equations,

θ̇ = ∇pH(θ,p) = M−1p

ṗ = −∇θH(θ,p) = −∇θU(θ)
(2.1)

Note thatM−1p can be interpreted as velocity.
In practice, solving Hamiltonian’s equations exactly is difficult, so we need to approximate these equations

by discretizing time, using some small step size e. For this purpose, the leapfrog method is commonly used. We
can use some number, L, of these leapfrog steps, with some stepsize, e, to propose a new state in the Metropolis
algorithm. This proposal is either accepted or rejected based on the Metropolis acceptance probability.

While HMC explores the target distribution more efficiently than random walk Metropolis, it does not fully
exploits its geometric properties. Recently, Girolami and Calderhead (2011) proposed a new method, called Rie-
mannian Manifold HMC (RMHMC), that improvs the efficiency of standard HMC by automatically adapting to
the local structure. To this end, they follow Amari and Nagaoka (2000) and propose Hamiltonian Monte Carlo
methods defined on the Riemannian manifold endowed with metric G0(θ), which is set to the Fisher information
matrix. More specifically, they define Hamiltonian dynamics in terms of a position-specific mass matrix, M , set
to G0(θ). The standard HMC method is a special case of RMHMC with G0(θ) = I . Here, we use the notation
G0 to generally refer to a Riemannian metric, which is not necessarily the Fisher information. In the following
section, we introduce a natural modification of G0 such that the associated Hamiltonian dynamical system has a
much greater chance of moving between isolated modes.

3 Wormhole Hamiltonian Monte Carlo

Consider a manifoldM endowed with a generic metric G0(θ). Given a differentiable curve θ(t) : [0, T ] → M
one can define the arclength along this curve as

`(θ) :=

∫ T

0

√
θ̇(t)TG0(θ(t))θ̇(t)dt (3.1)

Under very general geometric assumptions, which are nearly always satisfied in statistical models, given any two
points θ1,θ2 ∈ M there exists a curve θ(t) : [0, T ]→M satisfying the boundary conditions θ(0) = θ1,θ(T ) =
θ2 whose arclength is minimal among such curves. The length of such a minimal curve defines a distance function
on M. In Euclidean space, where G0(θ) ≡ I , the shortest curve connecting θ1 and θ2 is simply a straight line
with the Euclidean length ‖θ1 − θ2‖2.
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As mentioned above, while standard HMC algorithms explore the target distribution more efficiently, they
nevertheless fail to move between isolated modes since these modes are separated by high energy barriers (Smin-
chisescu and Welling, 2011). To address this issue, we propose to replace the base metric G0 with a new metric
for which the distance between modes is shortened. This way, we can facilitate moving between modes by creating
“wormholes” between them.

Let θ̂1 and θ̂2 be two modes of the target distribution. We define a straight line segment, vW := θ̂2 − θ̂1,
and refer to a small neighborhood (tube) of the line segment as a wormhole. Next, we define a wormhole metric,
GW (θ), in the vicinity of the wormhole. The metric GW (θ) is an inner product assigning a non-negative real
number to a pair of tangent vectors u,w:GW (θ)(u,w) ∈ R+. To shorten the distance in the direction of vW , we
project both u,w to the plane normal to vW and then take the Euclidean inner product of those projected vectors.
We set v∗W = vW /‖vW ‖ and define a pseudo wormhole metricG∗W as follows:

G∗W (u,w) := 〈u− 〈u,v∗W 〉v∗W ,w − 〈w,v∗W 〉v∗W 〉
= uT[I − v∗W (v∗W )T]w

Note thatG∗W := I − v∗W (v∗W )T is semi-positive definite (degenerate at v∗W 6= 0). We modify this metric to make
it positive definite, and define the wormhole metricGW as follows:

GW = G∗W + εv∗W (v∗W )T = I − (1− ε)v∗W (v∗W )T (3.2)

where 0 < ε� 1 is a small positive number.
To see that the wormhole metric GW in fact shortens the distance between θ̂1 and θ̂2, consider a simple case

where θ(t) follows a straight line: θ(t) = θ1 + vW t, t ∈ [0, 1]. In this case, the distance underGW is

dist(θ̂1, θ̂2) =

∫ 1

0

√
vT
WGWvWdt =

√
ε‖vW ‖ � ‖vW ‖

which is much smaller than the Euclidean distance.
Next, we define the overall metric,G, for the whole parameter space of θ as a weighted sum of the base metric

G0 and the wormhole metricGW ,

G(θ) = (1−m(θ))G0(θ) + m(θ)GW (3.3)

where m(θ) ∈ (0, 1) is a mollifying function designed to make the wormhole metricGW influential in the vicinity
of the wormhole only. In this paper, we choose the following mollifier:

m(θ) := exp{−(‖θ − θ̂1‖+ ‖θ − θ̂2‖ − ‖θ̂1 − θ̂2‖)/F} (3.4)

where the influence factor F > 0, is a free parameter that can be tuned to modify the extent of the influence ofGW :
decreasing F makes the influence of GW more restricted around the wormhole. The resulting metric leaves the
base metric almost intact outside of the wormhole, while making the transition of the metric from outside to inside
smooth. Within the wormhole, the trajectories are mainly guided in the wormhole direction v∗W : G(θ) ≈ GW , so
G(θ)−1 ≈ GW

−1 has the dominant eigen-vector v∗W (with eigen-value 1/ε � 1), thereafter v ∼ N (0,G(θ)−1)
tends to be directed in v∗W .

We use the modified metric (3.3) in RMHMC and refer to the resulting algorithm as Wormhole Hamiltonian
Monte Carlo (WHMC). Figure 1 compares WHMC to standard HMC based on the following illustrative example
appeared in the paper by Welling and Teh (2011):

θd ∼ N (θd, σ
2
d), d = 1, 2.

xi ∼
1

2
N (θ1, σ

2
x) +

1

2
N (θ1 + θ2, σ

2
x).

Here, we set θ1 = 0, θ2 = 1, σ21 = 10, σ22 = 1, σ2x = 2, and generate 1000 data points from the above model.
In Figure 1, the dots show the posterior samples of (θ1, θ2) given the simulated data. While HMC is trapped in
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Figure 1: Comparing HMC and WHMC in terms of sampling from a two-dimensional posterior distribution with
two isolated modes.

one mode, WHMC moves easily between the two modes. For this example, we set G0 = I to make WHMC
comparable to standard HMC. Further, we use 0.03 and 0.3 for ε and F respectively.

For more than two modes, we can construct a network of wormholes by connecting any two modes with a
wormhole. Alternatively, we can create a wormhole between neighboring modes only. In this paper, we define the
neighborhood using a minimal spanning tree (Kleinberg and Tardos, 2005).

The above method could suffer from two potential shortcomings in higher dimensions. First, the effect of worm-
hole metric could diminish fast as the sampler leaves one mode towards another mode. Second, such mechanism,
which modifies the dynamics in the existing parameter space, could interfere with the native HMC dynamics in the
neighborhood of a wormhole.

To address the first issue, we add an external vector field to enforce the movement between modes. More
specifically, we define a vector field, f(θ,v), in terms of the position parameter θ and the velocity vector v =
G(θ)−1p as follows:

f(θ,v) := exp{−V (θ)/(DF )}U(θ)〈v,v∗W 〉v∗W
= m(θ)〈v,v∗W 〉v∗W

with mollifier m(θ) := exp{−V (θ)/(DF )}, where D is the dimension, F > 0 is the influence factor, and V (θ)
is a vicinity function indicating the Euclidean distance from the line segment vW ,

V (θ) := 〈θ − θ̂1,θ − θ̂2〉+ |〈θ − θ̂1,v∗W 〉||〈θ − θ̂2,v∗W 〉| (3.5)

The resulting vector field has three properties: 1) it is confined to a neighborhood of each wormhole, 2) it enforces
the movement along the wormhole, and 3) its influence diminishes at the end of the wormhole when the sampler
reaches another mode.

After adding the vector field, we modify the Hamiltonian equation governing the evolution of θ as follows:

θ̇ = v + f(θ,v) (3.6)

We also need to adjust the Metropolis acceptance probability accordingly since the transformation is not volume
preserving. (More details are provided in the supplementary file.) Figure 2 illustrates this approach based on sam-
pling from a mixture of 10 Gaussian distributions with dimension D = 100.

To address the second issue, we allow the wormholes to pass through an extra auxiliary dimension to avoid their
interference with the existing HMC dynamics in the given parameter space. In particular we introduce an auxiliary
variable θD+1 ∼ N (0, 1) corresponding to an auxiliary dimension. We use θ̃ := (θ, θD+1) to denote the position
parameters in the resulting D + 1 dimensional spaceMD × R. θD+1 can be viewed as random noise independent
of θ and contributes 1

2θ
2
D+1 to the total potential energy. Correspondingly, we augment velocity v with one extra

4
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Figure 2: Sampling from a mixture of 10 Gaussian distributions with dimension D = 100 using WHMC with a
vector field f(θ,v) to enforce moving between modes in higher dimensions.

dimension, denoted as ṽ := (v, vD+1). At the end of the sampling, we project θ̃ to the original parameter space
and discard θD+1.

We refer to MD × {−h} as the real world, and call MD × {+h} the mirror world. Here, h is half of the
distance between the two worlds, and it should be in the same scale as the average distance between the modes.
For most of the examples discussed here, we set h = 1. Figure 3 illustrates how the two worlds are connected by
networks of wormholes. When the sampler is near a mode (θ̂1,−h) in the real world, we build a wormhole network
by connecting it to all the modes in the mirror world. Similarly, we connect the corresponding mode in the mirror
world, (θ̂1,+h), to all the modes in the real world. Such construction allows the sampler to jump from one mode in
the real world to the same mode in the mirror world and vice versa. This way, the algorithm can effectively sample
from the vicinity of a mode, while occasionally jumping from one mode to another.

The attached supplementary file provides the details of our algorithm (Algorithm 1), along with the proof of
convergence and its implementation in MATLAB.

4 Mode Searching After Regeneration

So far, we assumed that the locations of modes are known. This is of course not a realistic assumption in many
situations. In this section, we relax this assumption by extending our method to search for new modes proactively
and to update the network of wormholes dynamically. In general, however, allowing such adaptation to take place
infinitely often will disturb the stationary distribution of the chain, rendering the process no longer Markov (Gelfand
and Dey, 1994; Gilks et al., 1998). To avoid this issue, we use the regeneration method discussed by Nummelin
(1984); Mykland et al. (1995); Gilks et al. (1998); Brockwell and Kadane (2005).

Informally, a regenerative process “starts again” probabilistically at a set of times, called regeneration times
(Brockwell and Kadane, 2005). At regeneration times, the transition mechanism can be modified based on the
entire history of the chain up to that point without disturbing the consistency of MCMC estimators.

4.1 Identifying Regeneration Times

The main idea behind finding regeneration times is to regard the transition kernel T (θt+1|θt) as a mixture of two
kernels, Q and R (Nummelin, 1984; Ahn et al., 2013),

T (θt+1|θt) = S(θt)Q(θt+1) + (1− S(θt))R(θt+1|θt)
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Figure 3: Illustrating a wormhole network connecting the real world to the mirror world (h = 1). As an example,
the cylinder shows a wormhole connecting mode 5 in the real world to its mirror image. The dashed lines show two
sets of wormholes. The red lines shows the wormholes when the sampler is close to mode 1 in the real world, and
the magenta lines show the wormholes when the sampler is close to mode 5 in the mirror world.

where Q(θt+1) is an independence kernel, and the residual kernel R(θt+1|θt) is defined as follows:

R(θt+1|θt)=


T (θt+1|θt)− S(θt)Q(θt+1)

1− S(θt)
, S(θt) ∈ [0, 1)

1, S(θt) = 1

S(θt) is the mixing coefficient between the two kernels such that

T (θt+1|θt) ≥ S(θt)Q(θt+1), ∀θt,θt+1 (4.1)

Now suppose that at iteration t, the current state is θt. To implement this approach, we first generate θt+1

using the original transition kernel θt+1|θt ∼ T (·|θt). Then, we sample Bt+1 from a Bernoulli distribution with
probability

r(θt,θt+1) =
S(θt)Q(θt+1)

T (θt+1|θt)
(4.2)

If Bt+1 = 1, a regeneration has occurred, then we discard θt+1 and sample it from the independence kernel
θt+1 ∼ Q(·). At regeneration times, we redefine the dynamics using the past sample path.

Ideally, we would like to evaluate regeneration times in terms of WHMC’s transition kernel. In general, how-
ever, this is quite difficult for such Metropolis algorithms. On the other hand, regenerations are easily achieved
for the independence sampler (i.e., the proposed state is independent from the current state) as long as the pro-
posal distribution is close to the target distribution (Gilks et al., 1998). Therefore, we can specify a hybrid sampler
that consists of the original proposal distribution (here, WHMC) and the independence sampler, and adapt both pro-
posal distributions whenever a regeneration is obtained on an independence-sampler step (Gilks et al., 1998). In our
method, we systematically alternate between WHMC and the independence sampler while evaluating regeneration
times based on the independence sampler only.

As mentioned above, for this method to be effective, the proposal distribution for the independence sampler
should be close to the target distribution. To this end, we follow Ahn et al. (2013) and specify our independence
sampler as a mixture of Gaussians located at the previously identified modes. The covariance matrix for each mix-
ture component is set to the inverse observed Fisher information (i.e., Hessian) evaluated at the mode. The relative
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energy function at T = 1.2. Right panel: Residual energy function at T = 1.05.

weight of each mixture component set to 1/k at the beginning, where k is the number of previously identified
modes through some initial optimization algorithm. The weights are updated at regeneration times to be propor-
tional to the number of times the corresponding mode has been visited. More specifically, T (θt+1|θt), S(θt) and
Q(θt+1) are defined as follows to satisfy (4.1):

T (θt+1|θt) = q(θt+1) min

{
1,
π(θt+1)/q(θt+1)

π(θt)/q(θt)

}
(4.3)

S(θt) = min

{
1,

c

π(θt)/q(θt)

}
(4.4)

Q(θt+1) = q(θt+1) min

{
1,
π(θt+1)/q(θt+1)

c

}
(4.5)

where q(·) is the independence proposal kernel, which specified using a mixture of Gaussians with means fixed at
the k known modes prior to regeneration. Algorithm 2 in the supplementary file shows the steps for this method.

4.2 Identifying New Modes

When the chain regenerates, we can search for new modes, modify the transition kernel by including newly found
modes in the mode library, and update the wormhole network accordingly. This way, starting with a limited number
of modes (identified by some preliminary optimization method), WHMC could discover unknown modes on the
fly without affecting the stationarity of the chain.

To search for new modes after regeneration, we could simply apply an optimization algorithm to the original
target density function π(θ) with some random starting points. This, however, could lead to frequently rediscover-
ing the known modes. To avoid this issue, we propose to remove/down-weight the known modes using the history
of the chain up to the regeneration time and run an optimization algorithm on the resulting residual density, or
equivalently, on the corresponding residual energy (i.e., minus log of density). To this end, we fit a mixture of
Gaussians with the best knowledge of modes (locations, Hessians and relative weights) prior to the regeneration.
The residual density function could be simply defined as πr(θ) = π(θ) − q(θ) with the corresponding residual
potential energy as follows,

Ur(θ) = log(πr(θ) + c) = − log(π(θ)− q(θ) + c)

where the constant c > 0 is used to make the term inside the log function positive. To avoid completely flat regions
(e.g., when a Gaussian distribution provides a good approximation around the mode), which could cause gradient-
based optimization methods to fail, we could use the following tempered residual potential energy instead:

Ur(θ, T ) = − log

(
π(θ)− exp

(
1

T
log q(θ)

)
+ c

)
7
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Figure 5: Comparing WHMC to RDMC using K mixtures of D-dimensional Gaussians. Left panel: REM (along
with 95% confidence interval based on 10 MCMC chains) for varying number of mixture components, K =
5, 10, 15, 20, with fixed dimension, D = 20. Right panel: REM (along with 95% confidence interval based on 10
MCMC chains) for varying number of dimensions,D = 10, 20, 40, 100, with fixed number of mixture components,
K = 10.

where T is the temperature. Figure 4 illustrates this concept.
When the optimizer finds new modes, they are added to the existing mode library, and the wormhole network

is updated accordingly.

5 Empirical Results

In this section, we evaluate the performance of our method, henceforth called Wormhole Hamiltonian Monte Carlo
(WHMC), using three examples. The first example involves sampling from mixtures of Gaussian distributions
with varying number of modes and dimensions. In this example, which is also discussed by Ahn et al. (2013),
the locations of modes are assumed to be known. The second example, which was originally proposed by Ihler
et al. (2005), involves inference regarding the locations of sensors in a network. For our third example, we also use
mixtures of Gaussian distributions, but this time we assume that the locations of modes are unknown.

We evaluate our method’s performance by comparing it to Regeneration Darting Monte Carlo (RDMC) (Ahn
et al., 2013), which is one of the most recent algorithms designed for sampling from multimodal distributions
based on the Darting Monte Carlo (DMC) (Sminchisescu and Welling, 2011) approach. DMC defines high density
regions around the modes. When the sampler enters these regions, a jump between the regions will be attempted.
RDMC enriches the DMC method by using the regeneration approach (Mykland et al., 1995; Gilks et al., 1998).

We compare the two methods (i.e., WHMC and RDMC) in terms of Relative Error of Mean (REM) (Ahn et al.,
2013), which summarizes the errors in approximating the expectation of variables across all dimensions, and its
value at time t is REM(t) = ‖θ(t) − θ∗‖1/‖θ∗‖1. Here, θ(t) is the mean of MCMC samples at time t and θ∗ is
the true mean. Because RDMC uses standard HMC algorithm with a flat metric, we also use the baseline metric
G0 ≡ I to make the two algorithms comparable. Our approach, however, can be easily extended to other metrics
such as Fisher information.

5.1 Mixture of Gaussians with Known Modes

First, we evaluate the performance of our method based on sampling from K mixtures of D-dimensional Gaussian
distributions with known modes. (We relax this assumption later.) The means of these distributions are randomly
generated from D-dimensional uniform distributions such that the average pairwise distances remains around 20.
The corresponding covariance matrices are constructed in a way that mixture components have different density
functions. Simulating samples from the resulting D dimensional mixture of K Gaussians is challenging because

8
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the modes are far apart and the high density regions have different shapes.
The left panel of Figure 5 compares the two methods for varying number of mixture components, K =

5, 10, 15, 20, with fixed dimension (D = 20). The right panel shows the results for varying number of dimen-
sions, D = 10, 20, 40, 100, with fixed number of mixture components (K = 10). For both scenarios, we stop the
two algorithms after 500 seconds and compare their REM. As we can see, WHMC has substantially lower REM
compared to RDMC, especially when the number of modes and dimensions increase.

5.2 Sensor Network Localization

For our second example, we use a problem previously discussed by Ihler et al. (2005) and Ahn et al. (2013).
We assume that N sensors are scattered in a planar region with 2d locations denoted as {xi}Ni=1. The distance
Yij between a pair of sensors (xi, xj) is observed with probability π(xi, xj) = exp(−‖xi − xj‖2/(2R2)). If the
distance is in fact observed (Yij > 0), then Yij follows a Gaussian distribution N (‖xi − xj‖, σ2) with small σ;
otherwise Yij = 0. That is,

Zij = I(Yij > 0)|x ∼ Binom(1, π(xi, xj))

Yij |Zij = 1, x ∼ N (‖xi − xj‖, σ2)

where Zij is a binary indicator set to 1 if the distance between xi and xj is observed.
Given a set of observations Yij and prior distribution of x, which is assumed to be uniform in this example,

it is of interest to infer the posterior distribution of all the sensor locations. Following Ahn et al. (2013), we set
N = 8, R = 0.3, σ = 0.02, and add three additional base sensors with known locations to avoid ambiguities of
translation, rotation, and negation (mirror symmetry). The location of the 8 sensors form a multimodal distribution
with dimension D = 16.

Figure 6 shows the posterior samples based on the two methods. As we can see, RDMC very rarely visits one
of the modes (shown in red in the top middle part); whereas, WHMC generates enough samples from this mode to
make it discernible. As a result, WHMC converges to a substantially lower REM (0.02) compared to RDMC (0.13)
after 500 seconds.

5.3 Mixture of Gaussians with Unknown Modes

We now evaluate our method’s performance in terms of searching for new modes and updating the network of
wormholes. For this example, we simulate a mixture of 10 D-dimensional Gaussian distributions, with D =
10, 100, and compare our method to RDMC. While RDMC runs four parallel HMC chains initially to discover
a subset of modes and to fit a truncated Gaussian distribution around each identified mode, we run four parallel
optimizers (different starting points) using the BFGS method. At regeneration times, each chain of RDMC uses the
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Figure 7: Comparing WHMC to RDMC in terms of REM using K = 10 mixtures of D-dimensional Gaussians
with D = 20 (left panel) and D = 100 (right panel).

Dirichlet process mixture model to fit a new truncated Gaussian around modes and possibly identify new modes.
We on the other hand run the BGFS algorithm based on the residual energy function (with T = 1.05) to discover
new modes for each chain. Figure 7 shows WHMC reduces REM much faster than RDMC for both D = 10 and
D = 100. Here, the recorded time (horizontal axis) accounts for the computational overhead for adapting the tran-
sition kernels. For D = 10, our method has a substantially lower REM compared to RDMC. For D = 100, while
our method identifies new modes over time and reduces REM substantially, RDMC fails to identify new modes so
as a result its REM remains high over time.

6 Conclusions and Discussion

We have proposed a new algorithm for sampling from multimodal distributions. Using empirical results, we have
shown that our method performs well in high dimensions.

Our method involves several parameters that require tuning. However, these parameters can be adjusted at
regeneration times without affecting the stationary distribution.

Although we used a flat base metric (i.e., I) in the examples discussed in this paper, our method can be easily
extended by specifying a more informative base metric (e.g., Fisher information) that adapts to local geometry.
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Appendix
In this supplementary document, we provide details of our proposed Wormhole Hamiltonian Monte Carlo

(WHMC) algorithm and prove its convergence to the stationary distribution. For simplicity, we assume that G(θ) ≡
I. Our results can be extended to more general Riemannian metrics.

In what follows, we first prove the convergence of our method when an external vector field is added to the
dynamics. Next, we prove the convergence for our final algorithm, where besides an external vector field, we
include an auxiliary dimension along which the network of wormholes are constructed. Finally, we provide our
algorithm to identify regeneration times.

A Adjustment of Metropolis acceptance probability in WHMC with vector field

As mentioned in the paper, in high dimensional problems with isolated modes, the effect of wormhole metric
could diminish fast as the sampler leaves one mode towards another mode. To avoid this issue, we have extended
our method by including a vector field, f(θ,v), which depends on a vicinity function illustrated in Figure 8. The
resulting dynamics facilitates movements between modes,

θ̇ = v + f(θ,v)

v̇ = −∇θU(θ)
(A.1)

We solve (A.1) using the generalized leapfrog integrator (Leimkuhler and Reich, 2004; Girolami and Calder-
head, 2011):

v(`+1/2) = v(`) − ε

2
∇θU(θ(`)) (A.2)

θ(`+1) = θ(`) + ε[v(`+1/2) + (f(θ(`),v(`+1/2)) + f(θ(`+1),v(`+1/2)))/2] (A.3)

v(`+1) = v(`+1/2) − ε

2
∇θU(θ(`+1)) (A.4)

where ` is the index for leapfrog steps, and v(`+1/2) denotes the current value of v after half a step of leapfrog. The
implicit equation (A.3) can be solved by the fixed point iteration.

The integrator (A.2)-(A.4) is time reversible and numerically stable; however, it is not volume preserving. To
fix this issue, we can adjust the Metropolis acceptance probability with the Jacobian determinant of the mapping T̂
given by (A.2)-(A.4) in order to satisfy the detailed balance condition. Denote z = (θ,v). Given the corresponding
Hamiltonian function, H(z), we define P(dz) = exp(−H(z))dz and prove the following proposition (See Green,
1995).

Proposition 1 (Detailed Balance Condition with determinant adjustment). Let z′ = T̂L(z) be the proposal accord-
ing to some time reversible integrator T̂L for dynamics (A.1). Then the detailed balance condition holds given the
following adjusted acceptance probability:

α̃(z, z′) = min

{
1,

exp(−H(z′))

exp(−H(z))
| det dT̂L|

}
(A.5)

Proof. To prove detailed balance, we need to show

α̃(z, z′)P(dz) = α̃(z′, z)P(dz′) (A.6)

The following steps show that this condition holds:

α̃(z, z′)P(dz) = min

{
1,

exp(−H(z′))

exp(−H(z))

∣∣∣∣dz′dz
∣∣∣∣} exp(−H(z))dz

z=T̂−1
L (z′)
= min

{
exp(−H(z)), exp(−H(z′))

∣∣∣∣dz′dz
∣∣∣∣} ∣∣∣∣ dzdz′

∣∣∣∣ dz′
= min

{
1,

exp(−H(z))

exp(−H(z′))

∣∣∣∣ dzdz′
∣∣∣∣} exp(−H(z′))dz′ = α̃(z′, z)P(dz′)

13



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

θ̂ 1 θ̂ 2

0.1 0.1

0.10.1

0.2 0
.2

0.20.2

0
.3

0.3

0
.3

0.3

0
.3

0.4 0.4

0
.4

0.4

0
.4

0.5 0.5

0
.5

0.5

0
.5

1

1

1

11

1

1
.5

1.5 1.5

1
.5

1.51.5

1
.5

2

2

2

2

22

2

Figure 8: Contour plot of the vicinity function V (θ) in Equation (6) of our paper.

We implement (A.2)-(A.4) for L steps to generate a proposal z(L+1) and accept it with the following adjusted
probability:

αV F (z(1), z(L+1)) = min{1, exp(−H(z(L+1)) +H(z(1)))| detJV F |}

where the Jacobian determinant, detJV F =
∏L
n=1

∣∣∣∣∣dz(`+1)

dz(`)

∣∣∣∣∣ =
∏L
n=1

∣∣∣∣∣∂(θ(`+1),v(`+1))

∂(θ(`),v(`))

∣∣∣∣∣, can be calculated

through the following wedge product:

dθ(`+1) ∧ dv(`+1) = [I− ε

2
∇θTf(θ

(`+1),v(`+1/2))]−1[I +
ε

2
∇θTf(θ

(`),v(`+1/2))] dθ(`) ∧ dv(`)

with∇θTf(θ,v) = v∗W (v∗W )Tv∇m(θ)T (See Lan et al., 2012, for more details.)

B WHMC in the augmented D + 1 dimensional space

Suppose that the current position, θ̃, of the sampler is near a mode denoted as θ̃
∗
0. A network of wormholes connects

this mode to all the modes in the opposite world θ̃
∗
k, k = 1, · · ·K. Wormholes in the augmented space starting

from this mode may still interfere each other since they intersect. To resolve this issue, instead of deterministically
weighing wormholes by the vicinity function (6), we use the following random vector field f̃(θ̃, ṽ):

f̃(θ̃, ṽ) ∼


(1−

∑
k

mk(θ̃))δṽ(·) +
∑
k

mk(θ̃)δ
2(θ̃
∗
k−θ̃)/e

(·), if
∑
k

mk(θ̃) < 1

∑
k mk(θ̃)δ

2(θ̃
∗
k−θ̃)/e

(·)∑
k mk(θ̃)

, if
∑
k

mk(θ̃) ≥ 1

where e is the stepsize, δ is the Kronecker delta function, and mk(θ̃) = exp{−Vk(θ̃)/(DF )}. Here, the vicinity
function Vk(θ̃) along the k-th wormhole is defined similarly to Equation (6),

Vk(θ̃) = 〈θ̃ − θ̃∗0, θ̃ − θ̃
∗
k〉+ |〈θ̃ − θ̃∗0, ṽ∗Wk

〉||〈θ̃ − θ̃∗k, ṽ∗Wk
〉|
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where ṽ∗Wk
= (θ̃

∗
k − θ̃

∗
0)/‖θ̃

∗
k − θ̃

∗
0‖.

For each update, f̃(θ̃, ṽ) is either set to ṽ or 2(θ̃
∗
k − θ̃)/e according to the position dependent probabilities

defined in terms of mk(θ̃). Therefore, we write the Hamiltonian dynamics in the extended space as follows:
˙̃
θ = f̃(θ̃, ṽ)

˙̃v = −∇θ̃U(θ̃)
(B.1)

We use (A.2)-(A.4) to numerically solve (B.1), but replace (A.3) with the following equation:

θ̃
(`+1)

= θ̃
(`)

+ e/2[f̃(θ̃
(`+1)

, ṽ(`+1/2)) + f̃(θ̃
(`)
, ṽ(`+1/2))] (B.2)

Note that this is an implicit equation, which can be solved using the fixed point iteration approach (Leimkuhler and
Reich, 2004; Girolami and Calderhead, 2011).

According to the above dynamic, at each leapfrog step, `, the sampler either stays at the vicinity of θ̃
∗
0 or

proposes a move towards a mode θ̃
∗
k in the opposite world depending on the values of f̃(θ̃

(`)
ṽ(`+1/2)) and

f̃(θ̃
(`+1)

, ṽ(`+1/2)). For example, if f̃(θ̃
(`)
, ṽ(`+1/2)) = 2(θ̃

∗
k − θ̃

(`)
)/e, and f̃(θ̃

(`+1)
, ṽ(`+1/2)) = ṽ(`+1/2), then

equation (B.2) becomes
θ̃
(`+1)

= θ̃
∗
k +

e

2
ṽ(`+1/2)

which indicates that a move to the k-th mode in the opposite wold has in fact occurred. Note that the movement
θ̃
(`) → θ̃

(`+1)
in this case is discontinuous since

lim
e→0
‖θ̃(`+1) − θ̃(`)‖ ≥ 2h > 0

Therefore, in such cases, there will be an energy gap, ∆E := H(θ̃
(`+1)

, ṽ(`+1))−H(θ̃
(`)
, ṽ(`)), between the two

states. We need to adjust the Metropolis acceptance probability to account for the resulting energy gap.1 Further,
we limit the maximum number of jumps within each iteration of MCMC (i.e., over L leapfrog steps) to 1 so the
sampler can explore the vicinity of the new mode before making another jump. Algorithm 1 provides the details of
this approach.

We note that according to the definition of f̃(θ̃, ṽ) and equation (B.2), the jump occurs randomly. We use `′ to
denote the step at which the sampler jumps. That is, `′ randomly takes a value in {0, 1, · · · , L} depending on f̃ .
When there is no jump along the trajectory, we set ∆E = 0, `′ = 0, and the algorithm reduces to standard HMC.
In the following, we first prove the detailed balance condition when a jump happens, and then use it to prove the
convergence of the algorithm to the stationary distribution.

When a mode jumping occurs at some fixed step `′, we can divide the L leapfrog steps into three parts: `′ − 1
steps continuous movement according to standard HMC, 1 step discontinuous jump, and L − `′ steps according
to standard HMC in the opposite world. Note that the Metropolis acceptance probability in standard HMC can be
written as

α(z̃(L+1), z̃(1)) = min{1, exp(−H(z̃(L+1)) +H(z̃(1)))} = min

{
1, exp

(
−

L∑
`=1

(H(z̃(`+1))−H(z̃(`)))

)}
Each summand H(z̃(`+1))−H(z̃(`)) is small (O(ε3)) except for the `′-th one, where there is an energy gap, ∆E.
Given that the jump happens at the `′-th step, we should remove the `′-th summand from the acceptance probability:

αRV F (z̃(1), z̃(L+1)) = min

1, exp

−∑
` 6=`′

(H(z̃(`+1))−H(z̃(`)))


= min

{
1,

exp(−H(z̃(L+1)))

exp(−H(z̃(`′+1)))

exp(−H(z̃(`
′)))

exp(−H(z̃(1)))

}
(B.3)

= min{1, exp(−H(z̃(L+1)) +H(z̃(1)) + ∆E)}
1Proposition 1 does not apply because Jacobian determinant is not well defined for discontinuous movement.
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That is, we only count the acceptance probability for the first `′−1 and the last L−`′ steps of continuous movement
in standard HMC; at `′ + 1 step, we “reset” the energy level by accounting for the energy gap ∆E. Therefore, the
following proposition is true.

Proposition 2 (Detailed Balance Condition with energy adjustment). When a discontinuous jump happens in
WHMC, we have the following detailed balance condition with the adjusted acceptance probability (B.3).

αRV F (z̃(1), z̃(L+1))P(dz̃(1))P(dz̃(`
′+1)) = αRV F (z̃(L+1), z̃(1))P(dz̃(L+1))P(dz̃(`

′)) (B.4)

Next, we use T̂` : z̃(`) 7→ z̃(`+1) to denote an integrator consisting of (A.2)(B.2)(A.4). Note that T̂` depends on
f̃ . Denote T̂1:` := T̂` ◦ · · · ◦ T̂1. Following Liu (2001), we can prove the following stationarity theorem.

Theorem 1 (Stationarity of WHMC). The samples given by WHMC (algorithm 1) have the target distribution π(·)
as its stationarity distribution.

Proof. Let z̃∗ = T̂1:L(z̃). Suppose θ̃
∗ ∼ f(θ̃

∗
). We want to prove that f(·) = π(·) through Ef [h(θ̃

∗
)] = Eπ[h(θ̃

∗
)]

for any square integrable function h(θ̃
∗
).

Note that θ̃
∗

is either an accepted proposal or the current state after a rejection. Therefore,

Ef [h(θ̃
∗
)]

=

∫∫∫
h(θ̃

∗
)[α(T̂−11:L(z̃∗), z̃∗)P(dT̂−11:L(z̃∗))P(dT̂−11+`′:L(z̃∗)) + (1− α(z̃∗, T̂1:L(z̃∗)))P(dz̃∗)P(dT̂1:`′(z̃

∗))]d`′

=

∫
h(θ̃

∗
)P(dz̃∗)+∫∫∫

h(θ̃
∗
)[α(T̂−11:L(z̃∗), z̃∗)P(dT̂−11:L(z̃∗))P(dT̂−11+`′:L(z̃∗))− α(z̃∗, T̂1:L(z̃∗))P(dz̃∗)P(dT̂1:`′(z̃

∗))]d`′

Therefore, it suffices to prove that∫∫∫
h(θ̃

∗
)α(T̂−11:L(z̃∗), z̃∗)P(dT̂−11:L(z̃∗))P(dT̂−11+`′:L(z̃∗))d`′ =

∫∫∫
h(θ̃

∗
)α(z̃∗, T̂1:L(z̃∗))P(dz̃∗)P(dT̂1:`′(z̃

∗))d`′

(B.5)
Based on its construction, T̂` is time reversible for all `. Denote the involution ν : (θ̃, ṽ) 7→ (θ̃,−ṽ). We have

T̂−1` (z̃∗) = νT̂`ν(z̃∗). Further, because E is quadratic in ṽ, we have H(ν(z̃)) = H(z̃). Therefore α(ν(z̃), z̃′) =
α(z̃, ν(z̃′)). Then the left hand side of (B.5) becomes

LHS =

∫∫∫
h(θ̃

∗
)α(νT̂1:Lν(z̃∗), z̃∗)P(dνT̂1:Lν(z̃∗))P(dνT̂1+`′:Lν(z̃∗))d`′

=

∫∫∫
h(θ̃

∗
)α(T̂1:Lν(z̃∗), ν(z̃∗))P(dT̂1:Lν(z̃∗))P(dT̂1+`′:Lν(z̃∗))d`′

ν(z̃∗) 7→z̃∗
=

∫∫∫
h(θ̃

∗
)α(T̂1:L(z̃∗), z̃∗)P(dT̂1:L(z̃∗))P(dT̂1+`′:L(z̃∗))d`′

On the other hand, by the detailed balance condition (B.4), the right hand side of (B.5) becomes

RHS =

∫∫∫
h(θ̃

∗
)α(T̂1:L(z̃∗), z̃∗)P(dT̂1:L(z̃∗))P(dT̂1:`′−1(z̃

∗))d`′

Note that P(dT̂1+`′:L(z̃∗)) = P(dT̂1:`′−1(z̃
∗)) since both T̂1+`′:L and T̂1:`′−1 are leapfrog steps of standard HMC

(no jump). The difference in the numbers of leapfrog steps (i.e., L − `′ and `′ − 1) does not affect the stationarity
since the number of leapfrog steps can be randomized in HMC (Neal, 2010). Therefore, we have LHS = RHS,
which proves (B.5).
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Algorithm 1 Wormhole Hamilton Monte Carlo (WHMC)
Prepare the modes θ∗k, k = 1, · · ·K
Set θ̃

(1)
= current θ̃

Sample velocity ṽ(1) ∼ N (0, ID+1)

Calculate E(θ̃
(1)
, ṽ(1)) = U(θ̃

(1)
) +K(ṽ(1))

Set ∆ log det = 0, ∆E = 0, Jumped = false.
for n = 1 to L do

ṽ(`+ 1
2
) = ṽ(`) − e

2∇θ̃U(θ̃
(`)

)
if Jumped then
θ̃
(`+1)

= θ̃
(`)

+ eṽ(`+ 1
2
)

else
Find the closest mode θ̃

∗
0 and build a network connecting it to all modes θ̃

∗
k, k = 1, · · ·K in the opposite

world
for m = 1 to M do

Calculate mk(
ˆ̃
θ(m)), k = 1, · · ·K

Sample u ∼ Unif(0, 1)

if u < 1−
∑

k mk(
ˆ̃
θ(m)) then

Set f(ˆ̃θ(m), ṽ(`+ 1
2
)) = ṽ(`+ 1

2
)

else
Choose one of the k wormholes according to probability {mk/

∑
k′ mk′} and set f(ˆ̃θ(m), ṽ(`+ 1

2
)) =

2(θ̃
∗
k −

ˆ̃
θ(m))/e

end if
ˆ̃
θ(m+1) = θ̃

(`)
+ e

2 [f(
ˆ̃
θ(m), ṽ(`+ 1

2
)) + f(θ̃

(`)
, ṽ(`+ 1

2
))]

end for
θ̃
(`+1)

=
ˆ̃
θ(M+1)

end if
ṽ(`+1) = ṽ(`+ 1

2
) − e

2∇θ̃U(θ̃
(`+1)

)
If a jump has occurred, set Jumped = true and calculate energy gap ∆E.

end for
Calculate E(θ̃

(L+1)
, ṽ(L+1)) = U(θ̃

(L+1)
) +K(ṽ(L+1))

p = exp{−E(θ̃
(L+1)

, ṽ(L+1)) + E(θ̃
(1)
, ṽ(1)) + ∆E}

Accept or reject the proposal (θ̃
(L+1)

, ṽ(L+1)) according to p
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Algorithm 2 Regeneration in Wormhole Hamiltonian Monte Carlo

Initially search modes θ̂1, · · · , θ̂k
for n = 1 to L do

Sample θ̃ = (θ, θD+1) as the current state according to WHMC (algorithm 1).
Fit a mixture of Gaussians q(θ) with known modes, Hessians and relative weights. Propose θ∗ ∼ q(·) and
accept it with probability α = min

{
1, π(θ

∗)/q(θ∗)
π(θ)/q(θ)

}
.

if θ∗ accepted then
Determine if θ∗ is a regeneration using (9)-(12) with θt = θ and θt+1 = θ∗.
if Regeneration occurs then

Search new modes by minimizingUr(θ, T ); if new modes are discovered, update the mode library, worm-
hole network, and q(θ).
Discard θ∗, sample θ(`+1) ∼ Q(·) as in (12) using rejection sampling.

else
Set θ(`+1) = θ∗.

end if
else

Set θ(`+1) = θ̃.
end if

end for
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