
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Deduplicating Repeated Logic to Accelerate Simulation

Permalink
https://escholarship.org/uc/item/75t986vh

Author
Nijssen, Thomas Johannes

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/75t986vh
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

DEDUPLICATING REPEATED LOGIC TO ACCELERATE SIMULATION

A thesis submitted in partial satisfaction

of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Thomas J. Nijssen

June 2021

The Thesis of Thomas J. Nijssen is

approved:

Professor Scott Beamer, chair

Professor Tyler Sorensen

Professor Jose Renau

Quentin Williams

Interim Vice Provost and Dean of Graduate Studies

Copyright © by

Thomas J. Nijssen

2021

iii

Table of Contents

Abstract ... vi

Acknowledgements .. vii

1 Introduction ... 1

2 Background .. 5

2.1 Simulation Paradigms .. 5

2.2 Anatomy of a FIRRTL design .. 6

2.3 Current State of affairs in ESSENT .. 7

3 Elements of Effective De-Duplication ... 10

3.1 Finding the GCSM ... 10

3.2 Determining module instance compatibility .. 11

3.3 Partitioning the modules ... 12

3.4 Leveraging Activity Tracking ... 14

4 Evaluation and Results .. 16

4.1 Measurement Methodology and Workload Selection 16

4.2 Results ... 18

5 Future Work .. 26

6 Related Work ... 29

7 Conclusion .. 31

8 References .. 32

iv

List of Figures

Figure 1: Number of L2 Instruction Cache misses in several representative designs’

simulators while running a QuickSort benchmark. .. 3

Figure 2: GCSM Scoring Algorithm. This is computed for each reused module in the

design. .. 10

Figure 3: (a) Three instances of the same module, in which an output is connected to

the input of the next module combinationally. (b) The dashed blue line indicates

the realized constraints. .. 12

Figure 4: Example of partition aliasing. (a) Each partition of a given instance of the

GCSM activates one or more external partitions, and the different instances of the

GCSM may activate different ones. (b) To reconcile this, the repeated partitions

are merged, and their external dependencies tracked. .. 14

Figure 5: When the master instance's partition (1) activates fewer other partitions than

the corresponding partition of another instance (3), then a fake partition is inserted

and activated to "balance" the outgoing activations. .. 15

Figure 6: (a) Host L2 instruction cache misses normalized to that of the original

ESSENT; (b) per simulated cycle. .. 20

Figure 7: L1 Instruction cache miss traffic volume shows how well a given design fits

in the L1 cache. .. 21

Figure 8: Time taken for C++ generation and compilation for each tool and its emitted

code.. 22

Figure 9: For each configuration of DinoCPU cores: (a) The C++ compilation time,

(b) the simulation binary size, (c) the simulation runtime (normalized to the

original ESSENT simulation runtime). ... 24

file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960212
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960212
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960213
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960213
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960214
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960214
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960214
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960215
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960215
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960215
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960215
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960216
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960216
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960216
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960217
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960217
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960218
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960218
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960219
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960219
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960220
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960220
file:///C:/Users/thomas/Documents/school2021/research/Thesis.docx%23_Toc75960220

v

List of Tables

Table 1: Designs used for evaluation. .. 16

Table 2: Results of running the RISC-V qsort benchmark on each of the RISC-V

processor designs. Each design is run under the original ESSENT, with Verilator,

and with this work’s deduplicating ESSENT. Note that the number of instructions

executed refers to the simulator itself, not the program on the design. 19

Table 3: Simulation runtime overhead of “deduplicating” (applying the indirection

treatment to) the singleton instance of RocketTile in rocket18-1. Note that the

original ESSENT results are duplicated from Table 2. 25

vi

Abstract

Deduplicating Repeated Logic to Accelerate Simulation

by

Thomas J. Nijssen

As time goes on, hardware designs get ever more complicated, and producing

designs that work properly on time is crucial. An essential part of the design process is

debugging by way of a digital logic simulation. Frustratingly, simulation feels very

slow, taking hours of real time to simulate just a few seconds of a sufficiently complex

design. Several solutions exist in this space, most of them commercial, but also some

free and open source options. ESSENT is a relatively novel simulator that improves

simulation performance by cleverly partitioning the design and then re-computing only

the changed parts of the design. However, an important shortcoming is that all repeated

hardware components are inlined, leading to bloated code sizes since there is

effectively no longer any reuse. This work describes an improvement to the tool that

deduplicates the largest and most frequently reused components to achieve a speedup

of up to 4.7× compared to the previous version of ESSENT, and up to 15× compared

to Verilator, greatly reducing the time needed to perform a simulation and improving

designer productivity.

vii

Acknowledgements

Behind every successful engineer stand numerous people that mentor, inspire,

guide, and shape. I am most grateful for their impact and encouragement throughout

this exciting and most transformative chapter of my life.

First, I would like to express my gratitude to Dr. Scott Beamer. I joined Scott’s lab

without an exact idea of what I wanted to do, but I knew that it would lie at the

intersection of some of our mutual interests: hardware design, computer architecture,

and the never-ending quest to make everything go faster. With open arms he welcomed

me, and we quickly identified this project as something that excites us both. Scott, I

thank you for the patience and direction you showed me, even when the path ahead was

not clear. I admire your passion for the field and selfless dedication to your students’

well-being and progress.

I would also like to extend my gratefulness to my committee members, Dr. Jose

Renau and Dr. Tyler Sorensen. Their quick feedback on my thesis as I approached the

deadline was invaluable to my success, and their diverse backgrounds gave me unique

perspectives on what I had written. Without your support and encouragement, I would

not have been able to do this.

Finally, I would like to give thanks to the FIRRTL and Scala communities,

especially to the kind people in the various chat rooms who were happy to answer my

questions and point me in the right direction when it came to using a library or

understanding some corner of their code. Also, my thanks go out to the Free Chips

Project, and the open source hardware communities. This entire project was made

viii

possible by the openness and freedom granted to everyone to push the boundaries of

what we know to be possible with hardware design.

1

1 Introduction

When designing digital hardware circuits, an indispensable part of the development

process is testing to ensure that the design works as intended. Simulation has long been

used to test hardware designs, although for a long time the paradigms and approaches

have remained stagnant. Traditionally mired in expensive commercial software

packages, logic design and simulation has not been easily accessible to hobbyists and

academics as long for as software development has. Only in 1998 did the now-popular

Verilator and Icarus Verilog tools become freely available to simulate synthesizable

Verilog.

 Verilog originally began its life as a language to write simulations only [6] (hence

the “Veri-” in the name”), and was later co-opted for use as a language to also express

the design as well. Along with VHDL, most commercial digital logic design is

expressed in these venerable yet ancient languages; unfortunately, due to the

complexity of these languages, and many organizations being slow to upgrade their

tooling to newer versions supporting the latest versions of the Verilog and VHDL

standards, logic design has developed a reputation of being tedious and arcane, since

those languages do not offer the same flexibility that popular modern programming

languages afford. However, an exciting trend in the open-source hardware community

is the rising emergence of alternative and agile hardware languages that allow a

designer to design and iterate quickly and comfortably. One example of such a

language is Chisel [3], a Scala Domain-Specific Language providing an agile

development environment allowing a designer to express their design in an object-

2

oriented way while not falling into the trap of making the abstractions too high-level.

The language is easily extensible, allowing for many developer tools to be easily

created and integrated with minimal effort.

The Flexible Intermediate Representation for RTL (FIRRTL) [8] is an intermediate

language to express an elaborated design, which can be output from many other higher-

level tools and design languages. Coupled with the powerful eponymous Scala library,

it becomes easy to write programs to apply transformations to a hardware design.

However, the main benefit in the context of this work is that it provides a simple,

unambiguous representation of the circuit; a Verilog representation of the same circuit

(commonly used by other tools even as an intermediate representation) could

potentially require the use of a preprocessor, or a parser supporting some non-standard

syntax, in addition to being much more complex. The AST representation of FIRRTL

is convenient to operate on, and the Scala library conveniently exposes all details of

the design in an object-oriented fashion. Chisel, as well as several other emerging

HDLs use FIRRTL as their intermediate representation.

ESSENT [5] is a novel hybrid simulator which combines the full-cycle approach

with clever ahead-of-time partitioning and scheduling to allow parts of the design

whose state has not been mutated to be skipped from evaluation. The design is first

flattened, removing all hierarchy from the design, and simply inlines any reused

modules. Then the design is partitioned into many partitions that are conditionally

evaluated on any given clock cycle. Finally, each statement in the design is converted

3

into C++, which is combined with the user-written testbench and then compiled into an

executable.

Unfortunately, in a large design with many instantiations of the same module, this

approach is sub-optimal as it leads to huge bloating of the final executable, increasing

compile times, and causing inefficient cache utilization. Prior work [2] has shown that

a major cause of slowdown in large programs is instruction cache misses – in particular,

those caused by fetching [4] – and so it is worthwhile to pursue any improvements that

would shrink the code size to

increase the chance that the code of

interest is already in the cache.

Figure 1 confirms that for large

designs (these are introduced and

discussed later on) there are many

instruction cache misses while

running the simulators, bottlenecking the performance as the host processor must

constantly stall to fetch the appropriate code. The goal of this work, therefore, is to

reduce the simulation time by way of reducing the number of instruction cache misses

suffered while running the simulator binary.

This thesis makes the following major contributions:

1. A method of identifying the “greatest common shared module” (GCSM), which

if deduplicated has a high probability of leading to a simulation speedup; and

0

5

10

15

20

25

30

35

rocket18-1 rocket18-2 rocket18-4

L2

-I
$

m
is

se
s

B
ill

io
n

s

Original Verilator

Figure 1: Number of L2 Instruction Cache misses in

several representative designs’ simulators while
running a QuickSort benchmark.

4

2. Deduplication of that GCSM by partitioning it separately and adding an

efficient layer of indirection to enable just one copy of the code needed for the

GCSM to be reused many times; and

3. Evaluating the impact of the aforementioned efforts, to explore the feasibility

of future investigation in this area; and finally

4. Contributing this work as free and open source software to benefit everyone in

the hardware design community, available in the main ESSENT repository.1

The rest of this work is organized as follows. Section 2 provides background

information. Section 3 presents details of the technical work and implementation that

enables the results. Section 4 describes the metrics used to evaluate the work, and the

results compared to the previous state of the art. Section 5 discusses future work and

directions for the project. Section 6 presents and discusses related work, and finally,

Section 7 concludes the paper.

1 https://github.com/ucsc-vama/essent

https://github.com/ucsc-vama/essent

5

2 Background

2.1 Simulation Paradigms

There are two dominant paradigms when it comes to logic simulator design: full-

cycle, and event-driven simulation. Their key difference is their scheduling methods.

Event-driven simulators are the traditional design paradigm. They dynamically

evaluate which signals to evaluate based on analyzing changes to all signals from one

cycle to the next. Changes propagate through the design and result from a simulation

testbench changing inputs or from a previous cycle’s effects on other components of

the design [7]. This approach has a heavy scheduling overhead, especially in large

designs with complex dataflow graphs. The programming model of Verilog is designed

with this execution model in mind. Icarus Verilog is an example of a tool that leverages

this paradigm; traditionally the commercial tools do as well.

Full-cycle simulators evaluate the entire design on every clock cycle, so they avoid

the overhead resulting from conditionally evaluating only some signals. Of course, this

is inefficient when there is a low activity factor; that is to say, only a small fraction of

the signals toggle over a given period of time. Verilator is an example of this kind of

simulator design.

ESSENT’s hybrid approach enables the scheduling to be done at compile time,

performing full-cycle simulation only on the parts of the design that actually changed.

More details about how this works are given in Section 2.3 below.

6

2.2 Anatomy of a FIRRTL design

Due to its increasing ubiquity and existing tooling support, FIRRTL [8] is the input

format chosen by ESSENT. Some discussion of the advantages of FIRRTL and the

structure of a design is in order, and this section will provide a brief overview. A

complete design is referred to as the circuit and has at least one module. There must

also be a module with the same name as the circuit itself, which is designated the main

module. Each module defines a set of inputs and outputs, which are connected to

statements inside the module’s body. Modules cannot be parameterized,2 nor can they

instantiate themselves. The statements inside the module body can define a signal,

register, or memory; connect one signal or expression to another signal; print a message

to the simulation console; halt simulation; instantiate another module; or evaluate a

conditional. Expressions are literal numeric values, references to other signals

(including sub-accesses of fields of other signals), or some computation involving the

preceding types.

An important advantage of FIRRTL is the formally specified forms that a design

can be in: from Chirrtl being the highest-level form with many aspects of the design

allowed to be unspecified so that they may be inferred later, to LoFIRRTL in which all

widths are explicitly defined and a restricted subset of the statements are allowed to be

used. The same approach is also used in the LLVM compiler framework. This allows

tool authors to write simpler routines operating on the design: instead of being required

2 In Verilog, one can add parameters to a module declaration, not unlike a template in C++. FIRRTL

does not have this feature, so tools like the Chisel compiler will expand these into separate modules

before FIRRTL emission.

7

to support the complexity of the higher forms of the design, the author can simply

require that the design be transformed appropriately beforehand. ESSENT, for its part,

requires input designs to be in the lowest FIRRTL form; the Scala FIRRTL library

includes transformations to perform this lowering operation.

Some deduplication already happens in the FIRRTL Scala library. Tools like Chisel

tend to emit duplicate modules which are identical internally, for example, the same

queue module will be emit as Queue_1, Queue_2, and so on, despite having the exact

same functionality, inputs, and outputs. As touched upon earlier, however, sometimes

those duplications are in fact necessary when there are different parameterizations of

the module. To address this, the Scala FIRRTL library applies the DedupModules

transformation, which runs before ESSENT processes the design.

2.3 Current State of affairs in ESSENT

As a simulator-generator, ESSENT takes a given FIRRTL input design and

compiles it to a C++ behavioral model. First, several custom FIRRTL passes transform

the design to add and remove information to simplify later transformations. Next, the

design is flattened, removing all the hierarchy and inlining any reused modules. Each

signal reference is rewritten to be a fully-qualified name to reflect the original hierarchy

(for example, the signal a in the module which was instantiated with the name foo at

the top level would be rewritten as foo.a). Each statement produces one signal and

can consume one or more other signals. The flattened list of statements is then

converted to a directed graph by analyzing the dependencies of each statement and

8

creating an edge from each producer to each consumer, called the statement graph. In

particular, registers are split into two separate signals: the current value that can be used

by other circuit elements, and the next value of the register, which will be placed into

the register on the next clock cycle if it is enabled. Next, the statement graph is

partitioned3 to exploit low activity factors by combining several statements into one

supernode4. Finally, the graph representation is emitted as the C++ behavioral model.

The user, in turn, writes a testbench that interfaces with the model, like in Verilator;

the top level module is a C++ class with an evaluation function to be called once every

clock cycle of the simulation. The testbench author provides stimuli to the design by

setting members of the class in between each clock cycle. The signals and circuit state

are expressed as classes that the testbench program can inspect.

Even before this work started, ESSENT was in quite a good state: it already

outperformed Verilator by 1.5-11.5× [5]. However, the major disadvantage is that

repeated modules are simply inlined and any information about reuse is discarded;

although simpler to handle, this leads to a massive bloating of the emitted code.

Obviously, if the repeated modules have a lot of statements, then the replication factor

is quite high. As with any program, all of the instructions will at some point be stored

in the host processor’s instruction cache, but if the program is too large, then there will

be many capacity misses. It is therefore desirable to re-use code where possible. This

3 This does depend on which optimization level is selected by the user; there is generally no reason

to select anything other than the maximum.
4 For a full explanation, refer to [5] as the details of the partitioning algorithm are too complicated

to restate here.

9

also has the added benefit of reducing the compile time of the C++ model. Section 4

shows how this impacts program runtime.

The key invariant of the partitioned graph as described above is that the supernodes

(partitions) must be acyclic. If this holds, then each partition need only be evaluated

one time per cycle. Otherwise, there is a chance that a change in a “downstream” signal

causes a change to the output of an already-evaluated signal, and the entire partition (at

least that signal) would need to be re-evaluated.

10

3 Elements of Effective De-Duplication

This work currently only deduplicates one module per design, due to development

time constraints as well as to provide a first order estimate as to how useful

deduplication is for performance. Of course, in a given design, there might be many

modules which are each reused many times, but here only one will be chosen to be

deduplicated. We posit that that the largest, topmost module that is instantiated the most

often is going to make the most impact when deduplicated. We call this module the

Greatest Common Shared Module (GCSM).

3.1 Finding the GCSM

The essence of the heuristic used to determine the GCSM is quite simple: sort the

multiply-instantiated modules from largest to smallest (by statement count, including

any modules instantiated within), and then pick the module which is instantiated the

most times. For example, in a multi-core CPU design, this is likely to be the individual

cores. The algorithm to compute the score for a module is shown in Figure 2.

This naturally selects the topmost module since the scoring recursively counts all

statements used in a given module, so if there is a high-scoring module, but that module

COMPUTEMODULESCORE(module):

 accumulator = 0
 For each statement in module:

 If statement is instantiating another module module2:

 accumulator += COMPUTEMODULESCORE(module2)
 Else accumulator += 1

 Return accumulator

Figure 2: GCSM Scoring Algorithm. This is computed for each reused

module in the design.

11

is instantiated by another module (which itself must be multiply-instantiated as well),

then the latter will include the score of the former and thereby win. Of course, it is

possible that some module obtains the largest score by virtue of being instantiated at

many different points in the design hierarchy, but then it seems likely that deduplicating

this module would be beneficial anyways, so this is an acceptable outcome.

3.2 Determining module instance compatibility

The goal of this entire exercise is to partition the GCSM separately from all of the

other logic in the design. Of course, depending on the connectivity and size of the

module, without considering the rest of the design it could be possible to incorrectly

partition the design in a way that would cause a cycle in the statement graph. For

example, it is tempting to simply consider the entire module as a single partition, but

in most cases that will not work when taking the rest of the design into account.

Therefore, a more careful approach is required, and it may be the case that not all

instances of the GCSM can be partitioned in a compatible way.

Although each instance of the GCSM is identical internally, the external

connectivity to each instance can be very different. Therefore, the combinational paths

through the rest of the design – from each output of each GCSM instance to any input

of another instance of the GCSM – must be found and taken into consideration in order

to keep the design acyclic. Each of these output-input pairs we call a constraint.

Consider two instances of the GCSM, 𝑋 and 𝑌, and their constraint sets 𝐶𝑋 and 𝐶𝑌

respectively. If 𝐶𝑋 ⊆ 𝐶𝑌 then since 𝑋 has fewer constraints than 𝑌, any partitioning of

12

𝑌 will be compatible with 𝑋. The instance which is compatible with the largest number

of other instances is chosen as the master instance. The master instance is partitioned

first, and its partitioning is copied onto

the other compatible GCSM instances

(hereafter referred to as cGCSM). The

incompatible instances are treated as if

they are part of the rest of the design and

partitioned normally.

Figure 3 shows an example to

demonstrate the importance of ensuring

the compatibility of the GCSM

partitionings. There are three instances of the same module which is the GCSM. Since

eventually only one instance of this module will truly be emitted, the goal is to alias

each node of one instance with the corresponding node of each other instance.

Effectively, this means that there exists a path 𝛾 → 𝛼 (back to itself) for the first two

instances. If the third module were selected as the master GCSM, it could happen that

the partitioning (𝛼𝛾, 𝛽) is chosen, but then there is a cycle in the effective graph,

violating the acyclic invariant.

3.3 Partitioning the modules

Once the constraints have been identified and the master GCSM instance selected,

the latter can be partitioned. To do this, the same partitioner from ESSENT is instructed

Figure 3: (a) Three instances of the same

module, in which an output is connected to the
input of the next module combinationally. (b)

The dashed blue line indicates the realized

constraints.

13

to only partition the nodes belonging to that master instance. Then, the nodes from the

master GCSM instance are mapped to their contemporaries in each cGCSM instance

(this mapping is bijective since each instance must be exactly the same). Now the

master partitioning can be applied to each cGCSM5. Finally, the remaining nodes not

part of the cGCSM (including any instances of the GCSM that were not compatible)

are partitioned to produce the final graph.

Up to now, all statements in the graph have their inputs and outputs statically

defined as fully-qualified signal names. In order to be able to reuse the same code from

the cGCSM, the inputs and outputs of each partition must be able to accept several

possible inputs, so we add a layer of indirection to the generated code. In our

implementation, we use placeholder signals for those indirected signals. First, each

partition of the master instance is inspected, and every reference to a signal external to

that partition is replaced with a placeholder signal; the same is done for every cGCSM

instance with their corresponding signals. In the top level of the simulation model, a

structure is instantiated for each of the compatible GCSM instances connecting each

placeholder to its actual signal. That structure is referenced by each GCSM partition

evaluation function to access the placeholders. At compile time, this structure is filled

with pointers to the corresponding signals. The code to evaluate a partition belonging

to the GCSM dereferences the placeholder signal to get to the actual signal; just as in

5 This is mainly done for convenience within the program; strictly speaking the other cGCSM nodes

could be left unpartitioned since they will be ignored later on.

14

original ESSENT it is a global variable named according to the hierarchy of the original

FIRRTL design (Section 2.3).

3.4 Leveraging Activity Tracking

The key advantage of ESSENT is its activity tracking that allows it to only evaluate

the necessary parts of the design; it is imperative that this behavior is also applied to

the GCSM logic to keep the speed advantage. Of course, since now the code is

generalized, the partition triggers can no longer be statically defined in the evaluation

functions directly, necessitating an indirection through a mapping table. The insight

here is that since each GCSM instance is partitioned identically, there exists a one-to-

one mapping between any partition in one instance and each other instance. To

facilitate the mapping of the aliased partitions, there is a lookup table to map the master

instance partition’s view of the other partitions it can trigger, to the view that the other

repeated partitions have. Figure 4 shows an example of this visually. It is possible that

an output of one of the instances is left unconnected: in that case, a dummy output

signal is created.

Partition i

of GCSM instance 1

Partition i

of GCSM instance 2

Partition x Partition y

Partition i

of GCSM instance 2

Partition i

of GCSM instance 1

Partition x Partition y

(a) (b)

Figure 4: Example of partition aliasing. (a) Each partition of a given instance of the

GCSM activates one or more external partitions, and the different instances of the
GCSM may activate different ones. (b) To reconcile this, the repeated partitions are

merged, and their external dependencies tracked.

15

Furthermore, one cGCSM instance partition may trigger multiple other partitions,

whereas another cGCSM instance triggers only one other partition. In that case, the

unmapped output trigger slots are mapped to an invalid partition which has no body

and will never be evaluated. Figure 5 shows an example of this.

Partition i

of GCSM instance 1

Partition x

Partition i

of GCSM instance 2

Partition y

Partition i

of GCSM instance 3

Partition w
Fake

Partition
Partition z

Figure 5: When the master instance's partition (1) activates fewer other

partitions than the corresponding partition of another instance (3), then a

fake partition is inserted and activated to "balance" the outgoing
activations.

16

4 Evaluation and Results

4.1 Measurement Methodology and Workload Selection

The key metric by which this work is measured is the speedup compared to an

unmodified version of ESSENT and against Verilator 4.024. We also analyze

instruction cache performance. Our initial hypothesis is that deduplication will shrink

application binaries and thus improve instruction cache performance. Each simulator

is run 10 times, and the average is reported here.

All experiments were performed on a dual-socket Intel Xeon Platinum 8260

Cascade Lake processor (2.4 GHz base), with 386 GB of DDR4 memory. The emitted

C++ model and testbench are compiled with GCC 9.3.0 with -O3. The L1 instruction

cache is 32KB per core (with another 32KB for the data cache, also per core), and has

a 24 MB L2 cache shared among all cores. The host operating system is running

Linux 5.4.0.

Design FIRRTL

Nodes

FIRRTL

Edges

Total

replication
factor

GCSM replication

factor

rocket18-1 62967 123145 5.5% 1.4%

rocket18-2 91190 173595 54.7% 50.7%

rocket18-4 146614 273665 65.7% 63.1%

50 DinoCPU 27848 55998 99.3% 99.3%
Table 1: Designs used for evaluation.

To validate the hypothesis, we select several hardware design workloads that form

a representative cross-section of typical digital logic designs (Table 1) and have

varying replication factors (that is, the percentage of the design that is replicated and

also how much of the overall is identified as the GCSM). Rocket Chip [1] generates a

17

RISC-V SoC and is written in Chisel; variations with one, two, and four cores are tested

here. In the single-core version the GCSM is one parameterization of the Chisel Queue

module,6 and for the multi-core versions it is one of the RocketChip Tiles (comprising

the core and associated circuitry). The version from 2018 was chosen to best compare

with the results obtained in the previous paper. DinoCPU [9] is a simple RISC-V

processor designed for teaching, with the provided open source configuration being a

single-cycle configuration. Since by itself it is only a small design, to enlarge it we

make 50 instances that are each executing a program at the same time. In this case, the

GCSM is one instance of a complete core, comprising a CPU and the memory.

Furthermore, to measure the impact of the number of repeated instances of the

GCSM, we repeat the DinoCPU experiment described above, sweeping the core count

from just one core (no reuse) to 256 cores. Of interest here are the compilation runtimes

and the simulation runtime, as well as the simulation binary size.

To measure the performance of the processor design simulations, we need a

program for them to run. We select a QuickSort program (taken from the riscv-tests

project) due to the large number of instructions in it, allowing for the simulator code to

be run for an adequate amount of time.

Although there are of course other simulators available (Section 6), we only discuss

Verilator and ESSENT to better compare aspects about their emitted code.

6 Actually, the GCSM algorithm discussed in Section 3.1 identifies a tiny (yet frequently used)

debugging module, but for the purpose of obtaining useful results this was overridden to be the Chisel

Queue which is the next-most-used.

18

4.2 Results

In general, performing deduplication is a worthy optimization: when the amount of

replication is sufficiently high, it is both faster to run the simulation itself as well as to

compile the C++ model. As seen in Table 2, a deduplicated dual-core RocketChip

(rocket18-2) obtains a 4.7× speedup compared to the original ESSENT. The instruction

cache miss rate is 1.5× lower and the host IPC improves by 1.8×, demonstrating that

more of the simulator remains in the instruction cache. For the replicated DinoCPU,

the IPC is 2.1× better and there is an order of magnitude reduction of the instruction

cache miss rate. For a single-core RocketChip, the speedup is more modest (1.6×) but

certainly enough to make this a worthy optimization. Unfortunately, a bug in the

activity tracking in deduplicated ESSENT prevents us from being able to run

rocket18-4, and more investigation is required than time permits.

As noted earlier, the numbers reported here the averages of running each simulator

10 times. The variance from these averages reported is very low, since all experiments

were performed on a quiet system with nobody else logged in. Therefore, we are

optimistic that these results are useful to validate the idea of deduplication in digital

logic simulation.

19

Design Tool Bin size
Instructions

executed

(×109)

Host

IPC

Runtime

(seconds)

rocket18-1
Original 2.8MB 50.8 1.62 8.09
Verilator 3.4MB 151 0.78 50.4

Dedup 1.6MB 32.3 1.67 4.99

rocket18-2

Original 3.5MB 82.1 1.17 22.4

Verilator 4.2MB 194 0.69 72.7

Dedup 1.7MB 32.2 1.75 4.76

rocket18-4

Original 4.9MB 108 0.83 33.8

Verilator 5.7MB 297 0.64 119
Dedup - - - -

50 DinoCPU

Original 636KB 12 0.82 3.80

Verilator 608KB 6.33 0.60 2.75
Dedup 312KB 17.1 1.97 2.25

Table 2: Results of running the RISC-V qsort benchmark on each of the RISC-V
processor designs. Each design is run under the original ESSENT, with Verilator,

and with this work’s deduplicating ESSENT. Note that the number of
instructions executed refers to the simulator itself, not the program on the

design.

In all cases, the Verilator simulation performance is much worse, which is not

surprising given its scheduling model of re-evaluating the entire design’s state on every

cycle. Furthermore, its generated binary size is a lot larger than either ESSENT

implementation; although here the difference is not large in an absolute sense, it is large

enough to produce an extreme difference in the instruction cache miss rate, as much

more of the code must be executed per simulated clock cycle than is necessary in

ESSENT. One can imagine that in a much larger design with sufficient replication,

this difference would become quite stark. Figure 6a shows the normalized L2

instruction cache miss rate for each simulation. As the design gets larger, the simulator

binaries also grow, and logically the number of instruction cache misses will grow as

20

well. By deduplicating, a lot of

code is eliminated and therefore

the number of misses drops

precipitously.7 Figure 6b shows

the average number of misses

per simulated cycle, showing

that since each cycle is

responsible for nearly an order

of magnitude fewer stalls in

most cases. Verilator does

already apply some

deduplication, so some parts of

the code can indeed be reused,

and therefore the number of

instruction cache misses do not

rise as rapidly as the design

becomes larger, compared to original ESSENT. Verilator and deduplicated ESSENT

are essentially evenly matched on the 50 DinoCPU design since the binaries are so

small that they easily fit in the L2 instruction cache.8

7 In the case of rocket18-4, although it may seem like Verilator is performing closer to the original

ESSENT, the former in fact experiences an order of magnitude more misses.
8 In fact, the reused parts probably even fit into the L1 instruction cache, although we have not

measured this precisely.

20
.3

5

20
.4

1

3.
91

0.
00

1

0.
15

0.
01

- 0.
00

1

0

5

10

15

20

25

rocket18-1 rocket18-2 rocket18-4 50 DinoCPU

L2

-I
$

m
is

se
s

(n
o

rm
al

iz
ed

)

Original Verilator Dedup

0

1

10

100

1000

10000

100000

rocket18-1 rocket18-2 rocket18-4 50 DinoCPU

L2
-I

$
M

is
se

s
p

er
 s

im
u

la
te

d
 c

yc
le

(a)

(b)

Figure 6: (a) Host L2 instruction cache misses normalized

to that of the original ESSENT; (b) per simulated cycle.

21

To achieve the fastest execution times, as much as possible of the binary should be

able to fit into the L1 instruction cache. To measure how much the code must be fetched

and invalidated, we take a first-order measurement of the amount of instruction data

flowing to the L1 cache. We measure the number of L1 instruction cache misses per

simulated cycle, and multiply this by the cache line size of our host processor (64

bytes). As seen in Figure 7, the deduplicated ESSENT causes less data transfer

from L2 to L1, largely by virtue of its smaller binaries. This also suggests that the

deduplicated code enjoys temporal locality by staying in the smaller L1 cache (32 KB

per core). To be sure, this is not a perfect

analysis, and future work could include a

more accurate analysis of what parts of the

simulator binary are repeatedly transferred.

Another point in Verilator’s favor is that

it includes some features not yet found in

ESSENT, such as the ability to show

simulation progress in the form of Value

Change Dumps (VCD) and perform deeper

inspection of all the signals in the design

(many signals in ESSENT are scoped only to the partition they are used in, if they are

not used anywhere else, whereas in Verilator any signal can be addressed with a

deterministic name).

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

L1
-I

$
M

is
s

T
ra

ff
ic

 (K
B

)
p

er
 s

im
u

la
te

d
 c

yc
le

Original Verilator Dedup

Figure 7: L1 Instruction cache miss traffic

volume shows how well a given design fits

in the L1 cache.

22

Contrary to our expectations, the branch prediction accuracy was not significantly

impacted for any of the designs on any of the simulator generators. The miss rate is

around 1.5% in all cases, which is quite low. This suggests that the indirection from the

deduplication does not negatively affect performance in this regard.

Not only does the simulation performance benefit from the deduplication, so does

the C++ compilation speed, since there is less code to compile. As shown in Figure 8,

a modest speedup is obtained over the original ESSENT C++ compilation time. On the

other hand, Verilator’s compilation is still faster for RocketChip, perhaps due to the

fact that the emitted code is split across multiple files.9 Only in the case of the

50 DinoCPU is Verilator’s C++ compilation slightly slower, likely thanks to

optimization. For the 50 DinoCPU design, the deduplicated C++ compilation is slightly

9 This allows those files to be compiled in parallel, although that was not done in this evaluation for

the purposes of fairly comparing compilation times.

217 239

36

50

455

34
111

168

302

34

14

17

24

2

271
350

568

21

95

126

199

12
0

100

200

300

400

500

600

700

800

900

rocket18-1 rocket18-2 rocket18-4 50 DinoCPU

T
im

e
(s

ec
o

n
d

s)

Original ESSENT

Original g++

Verilator

Verilator g++

Dedup ESSENT

Dedup g++

Figure 8: Time taken for C++ generation and compilation for each tool and its

emitted code.

23

slower than original ESSENT’s, which is likely thanks to the optimizer exploring some

(futile) optimizations. Also, the time needed for ESSENT to generate the C++ model

is much higher than Verilator, and our deduplication enhancements did not reduce this

factor any further. The dominant component of the tool runtime is the partitioning;

Verilator does not do this and so it handily beats either ESSENT implementation in that

regard. This work partitions the design twice, which of course contributes to the

runtime even further. Finally, most of Verilator is written in C++, while ESSENT runs

on the Java Virtual Machine, so the former has a big advantage in that way as well.

As the reuse factor goes up, it is expected that the deduplicated binary size grows

slower than without deduplication. To measure the impact of the amount of replication

in a design, we perform an experiment in which we sweep the number of

DinoCPU instances and measure the impact on C++ compilation time, simulator binary

size, and simulator runtime. Figure 9 shows the results. Our hypothesis is true, to an

extent; however, when the total design is large enough (32 cores or more), the C++

compiler has difficulty keeping the binary size to a reasonable level. In addition, since

the repeated portion grows without significantly growing the rest of the design, it is

logical to predict that the C++ compilation time would not grow too much. However,

as before, after 32 cores, the compilation times start to surpass those of the original

ESSENT output. However, simulator runtime benefits tremendously, taking far less

time to run. There are a few other noteworthy points. First, in Figure 9b we observe

that the deduplicated binary size does not grow rapidly from 2 to 8 cores, but then

shoots up quadratically after that. This is likely a result of the compiler trying to inline

24

some functions in the name of performance; we have not yet investigated if this delivers

any benefit to the performance. Next, in Figure 9c we see that for smaller amounts of

replication, the deduplication is actually slightly slower than before. According to our

performance data, there is a considerably higher L1 instruction cache miss rate, which

may be the result of poor spatial locality of the deduplicated code segments.

1

10

100

1000

1 2 4 8 16 32 64 128 256

T
im

e
(s

ec
o

n
d

s)

DinoCPU cores
Original g++ time Dedup g++ time

32

128

512

2048

8192

1 2 4 8 16 32 64 128 256

B
in

a
ry

 S
iz

e
(K

B
)

DinoCPU cores
Original binary size Dedup binary size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16 32 64 128 256

N
o

rm
al

iz
ed

 ru
n

ti
m

e
(s

ec
o

n
d

s)

DinoCPU cores
Original simulation Dedup simulation

Figure 9: For each configuration of DinoCPU cores: (a) The C++ compilation time, (b)
the simulation binary size, (c) the simulation runtime (normalized to the original

ESSENT simulation runtime).

(c)

(a) (b)

25

Metric Original ESSENT
Dedup

Singleton Instance

Instructions Executed (B) 50.8 41.6
IPC 1.62 1.67

L2-I$ misses (M) 468±2.2% 9.3±13%

Binary size (MB) 2.8 1.58

Runtime (s) 8.09 6.43
Table 3: Simulation runtime overhead of “deduplicating” (applying the

indirection treatment to) the singleton instance of RocketTile in rocket18-1.

Note that the original ESSENT results are duplicated from Table 2.

It is worth considering the cost of the indirection (as described in Section 3.3) to

gauge its impact on simulation performance. To that end, we return to the rocket18-1

design, and treat the top-level RocketTile (the main module holding all of the

components of the CPU) as the GCSM, even though of course it is not actually reused

at all. We run the same QuickSort benchmark as in the other evaluations. Table 3

summarizes the results; whereas there are many more instructions executed as a result

of all the extra pointer lookups, and a slightly larger binary in the latter case, ultimately

the simulation completes faster and enjoys a slightly higher IPC and a lower instruction

cache miss rate.

26

5 Future Work

As with any emerging project in this space, there is a long laundry list of desired

features and nice-to-haves. This list covers but a few of them that are relevant to this

line of research.

Multiple GCSMs. The code written for this thesis only identifies one module to be

the GCSM, although it may be the case that there are several modules which are

repeated such that they make up a significant percentage of the overall logic in the

design. Even better gains could be realized if those are also deduplicated. For example,

another good candidate for deduplication in RocketChip is the Floating-Point Unit,

which is also instantiated in each tile, each one consisting of 5600 statement nodes.

Better performance counting and more intelligence in choosing whether or not

to deduplicate. To enhance the results obtained in this work, the performance of the

simulator as a whole is measured. A good next step is to investigate the performance

of the deduplicated code in greater detail. For example, how much of the deduplicated

design is active every simulated cycle? If the module that was chosen to be

deduplicated has low activity, perhaps there is another module which if deduplicated

would provide a greater benefit overall. Ideally, this would be done by ESSENT so that

the designer does not need to try out many different configurations (which, due to the

dynamic nature of the field, may change over time).

Compiler optimization improvements. As the designs get larger, so do the

compile times. However, for some reason, in the case of the deduplicated code the

compile times increase far more rapidly than with the original ESSENT. We

27

hypothesize that this is thanks to the compiler attempting to optimize the code in a way

that is ultimately futile. It is worth looking into various compiler flags to control that

behavior and temper the exploding compile times.

Testers interface. A somewhat recent development in the Chisel space is the

Testers interface which allows unit tests to be defined along with the modules in the

design itself. Currently, this is able to target Treadle, a simulator written in Scala

intended to be used specifically with Chisel designs, and Verilator. There have been

efforts in the past to integrate ESSENT into this interface but have unfortunately

stagnated.

Better identifiers. Internally, many of the data structures and routines do their

bookkeeping by way of strings that refer to other objects in the design. Of course, that

means that when one of these identifies changes, all of the places that it is referenced

must also be modified. In addition, there is some possibility for a conflict if a truncated

name ends up aliasing to multiple other objects. We suspect that this could also help

fix the problem with rocket18-4, in which our debugging done so far points to a

problem concerning a conflicting name internally; the generated C++ code is

syntactically correct but the behavior is incorrect.

Multiple clocks and asynchronous resets. Many practical designs require

multiple clocks and asynchronous resets, as found in many ASIC designs. Currently,

ESSENT only supports one clock and one synchronous reset which is implicitly

connected to all state elements. This will be a complicated task involving much more

28

bookkeeping in the tool and will undoubtedly be the subject of further research within

our group.

Multi-threading and parallelization. As described in [4], parallelization is a

worthwhile future research avenue. With regards to the work performed in this thesis,

it could be possible to evaluate each GCSM instance independently, especially if each

instance is not connected to the others. For example, if the GCSM is one core of a

multicore processor design, then each of the cores could be evaluated in their own

thread.

29

6 Related Work

Verilator [11] is a similar tool to ESSENT in that it generates a behavioral C++

model from RTL sources, and has already been discussed in this paper. Unlike

ESSENT, however, its input format is synthesizable Verilog, which has the benefit of

being able to leverage myriad existing designs, both open source and commercial.

While elaborating the design, Verilator does handle deduplication: any module which

is instantiated more than once is placed into its own C++ class (all others are inlined).

As a full-cycle simulator, Verilator evaluates the entire design on every clock cycle,

leading to extra work being performed even in designs with a low activity factor.

Icarus Verilog (iverilog) [12] is a free and open source event-driven Verilog

simulator. It takes a design and a testbench written in Verilog. This tool implements

more of the Verilog standard, enabling much greater compatibility with the broader

ecosystem. As an event-driven simulator, it carries the burden of runtime design re-

evaluation scheduling.

LiveSim [10] aims to reduce the edit-run-debug loop’s latency – that is, shorten the

amount of time needed before updated simulation results are ready after editing the

HDL. To accomplish this, only the parts of the design that changed are compiled, and

then patched into the final executable. Furthermore, it implements checkpointing and

hot reloading to make it faster for the user to get results from their updated HDL.

Importantly, it also demonstrates that instruction cache misses due to a large code size

are a major bottleneck for simulation performance.

30

Treadle [13] is an event-driven simulator integrated into the Chisel language, and

benefits from being tightly integrated with the rest of the Chisel ecosystem; both the

design and the tests are written in Scala, and can even be placed next to each other in

the same file.

Commercial Simulation Tools are generally also event-driven simulators. Like

Icarus, they support most of the Verilog standard, but have the same scheduling burden.

Of course, it is not known what optimizations, if any, are made internally to speed up

execution. These tools were not studied in this work; however, as shown in [5], even

the original ESSENT handily beats their performance.

Formal Verification Methods are not typical simulation tools, and do not simulate

the design cycle by cycle. Instead of writing a testbench, the designer writes a set of

assertions about the valid state(s) of the circuit, given a set of constraints on the inputs.

Then an SMT solver is used to mathematically prove that the system cannot under any

circumstance enter an invalid state; if it is possible to get to an invalid state then the

solver will produce an example. While this provides the strongest guarantee of proper

circuit operation, in practice most systems are too complex to precisely model their

behavior in this way; typically, only smaller components of the design will be formally

verified. Although out of scope for this paper, it is known that solvers, too, are typically

slow.

31

7 Conclusion

This paper presents an improvement to the state of the art in ESSENT by inspecting

the input design, identifying reused hardware components, partitioning them in a way

that is compatible with the maximal set of other instances of the GCSM, and emitting

more efficient code. As demonstrated by the speedups we achieve of up to 4.7× over

the previous version of ESSENT and up to 15× compared to Verilator, by deduplicating

just one module of the design, this research shows that deduplication is a worthwhile

research direction. Clearly, there is much more to explore, but it is certainly clear that

deduplication is an important optimization to apply in digital logic simulators. Finally,

by contributing this work back to the open source community, all may benefit from

faster simulation times.

32

8 References

[1] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook, D.
Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, J. Koenig, Y. Lee,

E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson, B.

Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman, “The Rocket Chip
Generator,” EECS Department, University of California, Berkeley, UCB/EECS-2016-

17, Apr. 2016. [Online]. Available:

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html.

[2] G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev, C. Kozyrakis, T.

Krishnamurthy, H. Litz, T. Moseley, and P. Ranganathan, “AsmDB: understanding and

mitigating front-end stalls in warehouse-scale computers,” in Proceedings of the 46th

International Symposium on Computer Architecture, Phoenix Arizona, Jun. 2019, pp.
462–473, doi: 10.1145/3307650.3322234.

[3] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek,

and K. Asanović, “Chisel: constructing hardware in a Scala embedded language,” in
Proceedings of the 49th Annual Design Automation Conference on - DAC ’12, San

Francisco, California, 2012, p. 1216, doi: 10.1145/2228360.2228584.

[4] S. Beamer, “A Case for Accelerating Software RTL Simulation,” IEEE Micro, vol. 40,
no. 4, pp. 112–119, Jul. 2020, doi: 10.1109/MM.2020.2997639.

[5] S. Beamer and D. Donofrio, “Efficiently Exploiting Low Activity Factors to Accelerate

RTL Simulation,” in 2020 57th ACM/IEEE Design Automation Conference (DAC), San

Francisco, CA, USA, Jul. 2020, pp. 1–6, doi: 10.1109/DAC18072.2020.9218632.

[6] International Computer Symposium, “Proceedings of International Computer

Symposium 1980 : December 16-18, 1980, Taipei, Republic of China.,” 1980.

http://books.google.com/books?id=QHQ_AQAAIAAJ.

[7] D. M. Lewis, “A hierarchical compiled code event-driven logic simulator,” IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst., vol. 10, no. 6, pp. 726–737, Jun. 1991, doi:

10.1109/43.137501.

[8] P. S. Li, A. Izraelevitz, and J. Bachrach, “Specification for the FIRRTL Language,”
EECS Department, University of California, Berkeley, UCB/EECS-2016-9, Feb. 2016.

[Online]. Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-

9.html.

[9] J. Lowe-Power and C. Nitta, “The Davis In-Order (DINO) CPU: A Teaching-focused

RISC-V CPU Design,” in Proceedings of the Workshop on Computer Architecture

Education - WCAE’19, Phoenix, AZ, USA, 2019, pp. 1–8, doi:
10.1145/3338698.3338892.

[10] H. Skinner, R. Trapani Possignolo, S.-H. Wang, and J. Renau, “LiveSim: A Fast Hot

Reload Simulator for HDLs,” in 2020 IEEE International Symposium on Performance

33

Analysis of Systems and Software (ISPASS), Boston, MA, USA, Aug. 2020, pp. 126–
135, doi: 10.1109/ISPASS48437.2020.00028.

[11] W. Snyder, Verilator. .

[12] S. Williams, Icarus Verilog. .

[13] Treadle - a chisel/firrtl execution engine. .

	Abstract
	Acknowledgements
	1 Introduction
	2 Background
	2.1 Simulation Paradigms
	2.2 Anatomy of a FIRRTL design
	2.3 Current State of affairs in ESSENT

	3 Elements of Effective De-Duplication
	3.1 Finding the GCSM
	3.2 Determining module instance compatibility
	3.3 Partitioning the modules
	3.4 Leveraging Activity Tracking

	4 Evaluation and Results
	4.1 Measurement Methodology and Workload Selection
	4.2 Results

	5 Future Work
	6 Related Work
	7 Conclusion
	8 References

