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Abstract 

Deduplicating Repeated Logic to Accelerate Simulation 

by 

Thomas J. Nijssen 

As time goes on, hardware designs get ever more complicated, and producing 

designs that work properly on time is crucial. An essential part of the design process is 

debugging by way of a digital logic simulation. Frustratingly, simulation feels very 

slow, taking hours of real time to simulate just a few seconds of a sufficiently complex 

design. Several solutions exist in this space, most of them commercial, but also some 

free and open source options. ESSENT is a relatively novel simulator that improves 

simulation performance by cleverly partitioning the design and then re-computing only 

the changed parts of the design. However, an important shortcoming is that all repeated 

hardware components are inlined, leading to bloated code sizes since there is 

effectively no longer any reuse. This work describes an improvement to the tool that 

deduplicates the largest and most frequently reused components to achieve a speedup 

of up to 4.7× compared to the previous version of ESSENT, and up to 15× compared 

to Verilator, greatly reducing the time needed to perform a simulation and improving 

designer productivity. 
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1 Introduction 

When designing digital hardware circuits, an indispensable part of the development 

process is testing to ensure that the design works as intended. Simulation has long been 

used to test hardware designs, although for a long time the paradigms and approaches 

have remained stagnant. Traditionally mired in expensive commercial software 

packages, logic design and simulation has not been easily accessible to hobbyists and 

academics as long for as software development has. Only in 1998 did the now-popular 

Verilator and Icarus Verilog tools become freely available to simulate synthesizable 

Verilog. 

 Verilog originally began its life as a language to write simulations only [6] (hence 

the “Veri-” in the name”), and was later co-opted for use as a language to also express 

the design as well. Along with VHDL, most commercial digital logic design is 

expressed in these venerable yet ancient languages; unfortunately, due to the 

complexity of these languages, and many organizations being slow to upgrade their 

tooling to newer versions supporting the latest versions of the Verilog and VHDL 

standards, logic design has developed a reputation of being tedious and arcane, since 

those languages do not offer the same flexibility that popular modern programming 

languages afford. However, an exciting trend in the open-source hardware community 

is the rising emergence of alternative and agile hardware languages that allow a 

designer to design and iterate quickly and comfortably. One example of such a 

language is Chisel [3], a Scala Domain-Specific Language providing an agile 

development environment allowing a designer to express their design in an object-
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oriented way while not falling into the trap of making the abstractions too high-level. 

The language is easily extensible, allowing for many developer tools to be easily 

created and integrated with minimal effort. 

The Flexible Intermediate Representation for RTL (FIRRTL) [8] is an intermediate 

language to express an elaborated design, which can be output from many other higher-

level tools and design languages. Coupled with the powerful eponymous Scala library, 

it becomes easy to write programs to apply transformations to a hardware design. 

However, the main benefit in the context of this work is that it provides a simple, 

unambiguous representation of the circuit; a Verilog representation of the same circuit 

(commonly used by other tools even as an intermediate representation) could 

potentially require the use of a preprocessor, or a parser supporting some non-standard 

syntax, in addition to being much more complex. The AST representation of FIRRTL 

is convenient to operate on, and the Scala library conveniently exposes all details of 

the design in an object-oriented fashion. Chisel, as well as several other emerging 

HDLs use FIRRTL as their intermediate representation. 

ESSENT [5] is a novel hybrid simulator which combines the full-cycle approach 

with clever ahead-of-time partitioning and scheduling to allow parts of the design 

whose state has not been mutated to be skipped from evaluation. The design is first 

flattened, removing all hierarchy from the design, and simply inlines any reused 

modules. Then the design is partitioned into many partitions that are conditionally 

evaluated on any given clock cycle. Finally, each statement in the design is converted 
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into C++, which is combined with the user-written testbench and then compiled into an 

executable.  

Unfortunately, in a large design with many instantiations of the same module, this 

approach is sub-optimal as it leads to huge bloating of the final executable, increasing 

compile times, and causing inefficient cache utilization. Prior work [2] has shown that 

a major cause of slowdown in large programs is instruction cache misses – in particular, 

those caused by fetching [4] – and so it is worthwhile to pursue any improvements that 

would shrink the code size to 

increase the chance that the code of 

interest is already in the cache. 

Figure 1 confirms that for large 

designs (these are introduced and 

discussed later on) there are many 

instruction cache misses while 

running the simulators, bottlenecking the performance as the host processor must 

constantly stall to fetch the appropriate code. The goal of this work, therefore, is to 

reduce the simulation time by way of reducing the number of instruction cache misses 

suffered while running the simulator binary.  

This thesis makes the following major contributions: 

1. A method of identifying the “greatest common shared module” (GCSM), which 

if deduplicated has a high probability of leading to a simulation speedup; and 
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2. Deduplication of that GCSM by partitioning it separately and adding an 

efficient layer of indirection to enable just one copy of the code needed for the 

GCSM to be reused many times; and 

3. Evaluating the impact of the aforementioned efforts, to explore the feasibility 

of future investigation in this area; and finally 

4. Contributing this work as free and open source software to benefit everyone in 

the hardware design community, available in the main ESSENT repository.1 

The rest of this work is organized as follows. Section 2 provides background 

information. Section 3 presents details of the technical work and implementation that 

enables the results. Section 4 describes the metrics used to evaluate the work, and the 

results compared to the previous state of the art. Section 5 discusses future work and 

directions for the project. Section 6 presents and discusses related work, and finally, 

Section 7 concludes the paper. 

  

 
1 https://github.com/ucsc-vama/essent 

https://github.com/ucsc-vama/essent
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2 Background 

2.1 Simulation Paradigms 

There are two dominant paradigms when it comes to logic simulator design: full-

cycle, and event-driven simulation. Their key difference is their scheduling methods. 

Event-driven simulators are the traditional design paradigm. They dynamically 

evaluate which signals to evaluate based on analyzing changes to all signals from one 

cycle to the next. Changes propagate through the design and result from a simulation 

testbench changing inputs or from a previous cycle’s effects on other components of 

the design [7]. This approach has a heavy scheduling overhead, especially in large 

designs with complex dataflow graphs. The programming model of Verilog is designed 

with this execution model in mind. Icarus Verilog is an example of a tool that leverages 

this paradigm; traditionally the commercial tools do as well. 

Full-cycle simulators evaluate the entire design on every clock cycle, so they avoid 

the overhead resulting from conditionally evaluating only some signals. Of course, this 

is inefficient when there is a low activity factor; that is to say, only a small fraction of 

the signals toggle over a given period of time. Verilator is an example of this kind of 

simulator design. 

ESSENT’s hybrid approach enables the scheduling to be done at compile time, 

performing full-cycle simulation only on the parts of the design that actually changed. 

More details about how this works are given in Section 2.3 below.  
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2.2 Anatomy of a FIRRTL design 

Due to its increasing ubiquity and existing tooling support, FIRRTL [8] is the input 

format chosen by ESSENT. Some discussion of the advantages of FIRRTL and the 

structure of a design is in order, and this section will provide a brief overview. A 

complete design is referred to as the circuit and has at least one module. There must 

also be a module with the same name as the circuit itself, which is designated the main 

module. Each module defines a set of inputs and outputs, which are connected to 

statements inside the module’s body. Modules cannot be parameterized,2 nor can they 

instantiate themselves. The statements inside the module body can define a signal, 

register, or memory; connect one signal or expression to another signal; print a message 

to the simulation console; halt simulation; instantiate another module; or evaluate a 

conditional. Expressions are literal numeric values, references to other signals 

(including sub-accesses of fields of other signals), or some computation involving the 

preceding types.  

An important advantage of FIRRTL is the formally specified forms that a design 

can be in: from Chirrtl being the highest-level form with many aspects of the design 

allowed to be unspecified so that they may be inferred later, to LoFIRRTL in which all 

widths are explicitly defined and a restricted subset of the statements are allowed to be 

used. The same approach is also used in the LLVM compiler framework. This allows 

tool authors to write simpler routines operating on the design: instead of being required 

 
2 In Verilog, one can add parameters to a module declaration, not unlike a template in C++. FIRRTL 

does not have this feature, so tools like the Chisel compiler will expand these into separate modules 

before FIRRTL emission. 
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to support the complexity of the higher forms of the design, the author can simply 

require that the design be transformed appropriately beforehand. ESSENT, for its part, 

requires input designs to be in the lowest FIRRTL form; the Scala FIRRTL library 

includes transformations to perform this lowering operation.  

Some deduplication already happens in the FIRRTL Scala library. Tools like Chisel 

tend to emit duplicate modules which are identical internally, for example, the same 

queue module will be emit as Queue_1, Queue_2, and so on, despite having the exact 

same functionality, inputs, and outputs. As touched upon earlier, however, sometimes 

those duplications are in fact necessary when there are different parameterizations of 

the module. To address this, the Scala FIRRTL library applies the DedupModules 

transformation, which runs before ESSENT processes the design. 

2.3 Current State of affairs in ESSENT 

As a simulator-generator, ESSENT takes a given FIRRTL input design and 

compiles it to a C++ behavioral model. First, several custom FIRRTL passes transform 

the design to add and remove information to simplify later transformations. Next, the 

design is flattened, removing all the hierarchy and inlining any reused modules. Each 

signal reference is rewritten to be a fully-qualified name to reflect the original hierarchy 

(for example, the signal a in the module which was instantiated with the name foo at 

the top level would be rewritten as foo.a). Each statement produces one signal and 

can consume one or more other signals. The flattened list of statements is then 

converted to a directed graph by analyzing the dependencies of each statement and 
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creating an edge from each producer to each consumer, called the statement graph. In 

particular, registers are split into two separate signals: the current value that can be used 

by other circuit elements, and the next value of the register, which will be placed into 

the register on the next clock cycle if it is enabled. Next, the statement graph is 

partitioned3 to exploit low activity factors by combining several statements into one 

supernode4. Finally, the graph representation is emitted as the C++ behavioral model. 

The user, in turn, writes a testbench that interfaces with the model, like in Verilator; 

the top level module is a C++ class with an evaluation function to be called once every 

clock cycle of the simulation. The testbench author provides stimuli to the design by 

setting members of the class in between each clock cycle. The signals and circuit state 

are expressed as classes that the testbench program can inspect. 

Even before this work started, ESSENT was in quite a good state: it already 

outperformed Verilator by 1.5-11.5× [5]. However, the major disadvantage is that 

repeated modules are simply inlined and any information about reuse is discarded; 

although simpler to handle, this leads to a massive bloating of the emitted code. 

Obviously, if the repeated modules have a lot of statements, then the replication factor 

is quite high. As with any program, all of the instructions will at some point be stored 

in the host processor’s instruction cache, but if the program is too large, then there will 

be many capacity misses. It is therefore desirable to re-use code where possible. This 

 
3 This does depend on which optimization level is selected by the user; there is generally no reason 

to select anything other than the maximum. 
4 For a full explanation, refer to [5] as the details of the partitioning algorithm are too complicated 

to restate here. 
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also has the added benefit of reducing the compile time of the C++ model. Section 4 

shows how this impacts program runtime. 

The key invariant of the partitioned graph as described above is that the supernodes 

(partitions) must be acyclic. If this holds, then each partition need only be evaluated 

one time per cycle. Otherwise, there is a chance that a change in a “downstream” signal 

causes a change to the output of an already-evaluated signal, and the entire partition (at 

least that signal) would need to be re-evaluated. 
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3 Elements of Effective De-Duplication 

This work currently only deduplicates one module per design, due to development 

time constraints as well as to provide a first order estimate as to how useful 

deduplication is for performance. Of course, in a given design, there might be many 

modules which are each reused many times, but here only one will be chosen to be 

deduplicated. We posit that that the largest, topmost module that is instantiated the most 

often is going to make the most impact when deduplicated. We call this module the 

Greatest Common Shared Module (GCSM).  

3.1 Finding the GCSM 

The essence of the heuristic used to determine the GCSM is quite simple: sort the 

multiply-instantiated modules from largest to smallest (by statement count, including 

any modules instantiated within), and then pick the module which is instantiated the 

most times. For example, in a multi-core CPU design, this is likely to be the individual 

cores. The algorithm to compute the score for a module is shown in Figure 2. 

This naturally selects the topmost module since the scoring recursively counts all 

statements used in a given module, so if there is a high-scoring module, but that module 

COMPUTEMODULESCORE(module): 

 accumulator = 0 
 For each statement in module: 

  If statement is instantiating another module module2: 

   accumulator += COMPUTEMODULESCORE(module2) 
  Else accumulator += 1 

 Return accumulator 

Figure 2: GCSM Scoring Algorithm. This is computed for each reused 

module in the design. 
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is instantiated by another module (which itself must be multiply-instantiated as well), 

then the latter will include the score of the former and thereby win. Of course, it is 

possible that some module obtains the largest score by virtue of being instantiated at 

many different points in the design hierarchy, but then it seems likely that deduplicating 

this module would be beneficial anyways, so this is an acceptable outcome. 

3.2 Determining module instance compatibility 

The goal of this entire exercise is to partition the GCSM separately from all of the 

other logic in the design. Of course, depending on the connectivity and size of the 

module, without considering the rest of the design it could be possible to incorrectly 

partition the design in a way that would cause a cycle in the statement graph. For 

example, it is tempting to simply consider the entire module as a single partition, but 

in most cases that will not work when taking the rest of the design into account. 

Therefore, a more careful approach is required, and it may be the case that not all 

instances of the GCSM can be partitioned in a compatible way. 

Although each instance of the GCSM is identical internally, the external 

connectivity to each instance can be very different. Therefore, the combinational paths 

through the rest of the design – from each output of each GCSM instance to any input 

of another instance of the GCSM – must be found and taken into consideration in order 

to keep the design acyclic. Each of these output-input pairs we call a constraint. 

Consider two instances of the GCSM, 𝑋 and 𝑌, and their constraint sets 𝐶𝑋 and 𝐶𝑌 

respectively. If 𝐶𝑋 ⊆ 𝐶𝑌 then since 𝑋 has fewer constraints than 𝑌, any partitioning of 
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𝑌 will be compatible with 𝑋. The instance which is compatible with the largest number 

of other instances is chosen as the master instance. The master instance is partitioned 

first, and its partitioning is copied onto 

the other compatible GCSM instances 

(hereafter referred to as cGCSM). The 

incompatible instances are treated as if 

they are part of the rest of the design and 

partitioned normally. 

Figure 3 shows an example to 

demonstrate the importance of ensuring 

the compatibility of the GCSM 

partitionings. There are three instances of the same module which is the GCSM. Since 

eventually only one instance of this module will truly be emitted, the goal is to alias 

each node of one instance with the corresponding node of each other instance. 

Effectively, this means that there exists a path 𝛾 → 𝛼 (back to itself) for the first two 

instances. If the third module were selected as the master GCSM, it could happen that 

the partitioning (𝛼𝛾, 𝛽) is chosen, but then there is a cycle in the effective graph, 

violating the acyclic invariant. 

3.3 Partitioning the modules 

Once the constraints have been identified and the master GCSM instance selected, 

the latter can be partitioned. To do this, the same partitioner from ESSENT is instructed 

Figure 3: (a) Three instances of the same 

module, in which an output is connected to the 
input of the next module combinationally. (b) 

The dashed blue line indicates the realized 

constraints. 
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to only partition the nodes belonging to that master instance. Then, the nodes from the 

master GCSM instance are mapped to their contemporaries in each cGCSM instance 

(this mapping is bijective since each instance must be exactly the same). Now the 

master partitioning can be applied to each cGCSM5. Finally, the remaining nodes not 

part of the cGCSM (including any instances of the GCSM that were not compatible) 

are partitioned to produce the final graph. 

Up to now, all statements in the graph have their inputs and outputs statically 

defined as fully-qualified signal names. In order to be able to reuse the same code from 

the cGCSM, the inputs and outputs of each partition must be able to accept several 

possible inputs, so we add a layer of indirection to the generated code. In our 

implementation, we use placeholder signals for those indirected signals. First, each 

partition of the master instance is inspected, and every reference to a signal external to 

that partition is replaced with a placeholder signal; the same is done for every cGCSM 

instance with their corresponding signals. In the top level of the simulation model, a 

structure is instantiated for each of the compatible GCSM instances connecting each 

placeholder to its actual signal. That structure is referenced by each GCSM partition 

evaluation function to access the placeholders. At compile time, this structure is filled 

with pointers to the corresponding signals. The code to evaluate a partition belonging 

to the GCSM dereferences the placeholder signal to get to the actual signal; just as in 

 
5 This is mainly done for convenience within the program; strictly speaking the other cGCSM nodes 

could be left unpartitioned since they will be ignored later on. 
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original ESSENT it is a global variable named according to the hierarchy of the original 

FIRRTL design (Section 2.3). 

3.4 Leveraging Activity Tracking 

The key advantage of ESSENT is its activity tracking that allows it to only evaluate 

the necessary parts of the design; it is imperative that this behavior is also applied to 

the GCSM logic to keep the speed advantage. Of course, since now the code is 

generalized, the partition triggers can no longer be statically defined in the evaluation 

functions directly, necessitating an indirection through a mapping table. The insight 

here is that since each GCSM instance is partitioned identically, there exists a one-to-

one mapping between any partition in one instance and each other instance. To 

facilitate the mapping of the aliased partitions, there is a lookup table to map the master 

instance partition’s view of the other partitions it can trigger, to the view that the other 

repeated partitions have. Figure 4 shows an example of this visually. It is possible that 

an output of one of the instances is left unconnected: in that case, a dummy output 

signal is created.  

Partition i

of GCSM instance 1

Partition i

of GCSM instance 2

Partition x Partition y

Partition i

of GCSM instance 2

Partition i

of GCSM instance 1

Partition x Partition y

(a) (b)

Figure 4: Example of partition aliasing. (a) Each partition of a given instance of the 

GCSM activates one or more external partitions, and the different instances of the 
GCSM may activate different ones. (b) To reconcile this, the repeated partitions are 

merged, and their external dependencies tracked. 
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Furthermore, one cGCSM instance partition may trigger multiple other partitions, 

whereas another cGCSM instance triggers only one other partition. In that case, the 

unmapped output trigger slots are mapped to an invalid partition which has no body 

and will never be evaluated. Figure 5 shows an example of this. 

  

Partition i

of GCSM instance 1

Partition x

Partition i

of GCSM instance 2

Partition y

Partition i

of GCSM instance 3

Partition w
Fake 

Partition
Partition z

Figure 5: When the master instance's partition (1) activates fewer other 

partitions than the corresponding partition of another instance (3), then a 

fake partition is inserted and activated to "balance" the outgoing 
activations. 



16 

 

4 Evaluation and Results 

4.1 Measurement Methodology and Workload Selection 

The key metric by which this work is measured is the speedup compared to an 

unmodified version of ESSENT and against Verilator 4.024. We also analyze 

instruction cache performance. Our initial hypothesis is that deduplication will shrink 

application binaries and thus improve instruction cache performance. Each simulator 

is run 10 times, and the average is reported here. 

All experiments were performed on a dual-socket Intel Xeon Platinum 8260 

Cascade Lake processor (2.4 GHz base), with 386 GB of DDR4 memory. The emitted 

C++ model and testbench are compiled with GCC 9.3.0 with -O3. The L1 instruction 

cache is 32KB per core (with another 32KB for the data cache, also per core), and has 

a 24 MB L2 cache shared among all cores. The host operating system is running 

Linux 5.4.0. 

Design FIRRTL 

Nodes 

FIRRTL 

Edges 

Total  

replication 
factor 

GCSM replication 

factor 

rocket18-1 62967 123145 5.5% 1.4% 

rocket18-2 91190 173595 54.7% 50.7% 

rocket18-4 146614 273665 65.7% 63.1% 

50 DinoCPU 27848 55998 99.3% 99.3% 
Table 1: Designs used for evaluation. 

To validate the hypothesis, we select several hardware design workloads that form 

a representative cross-section of typical digital logic designs (Table 1) and have 

varying replication factors (that is, the percentage of the design that is replicated and 

also how much of the overall is identified as the GCSM). Rocket Chip [1] generates a 
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RISC-V SoC and is written in Chisel; variations with one, two, and four cores are tested 

here. In the single-core version the GCSM is one parameterization of the Chisel Queue 

module,6 and for the multi-core versions it is one of the RocketChip Tiles (comprising 

the core and associated circuitry). The version from 2018 was chosen to best compare 

with the results obtained in the previous paper. DinoCPU [9] is a simple RISC-V 

processor designed for teaching, with the provided open source configuration being a 

single-cycle configuration. Since by itself it is only a small design, to enlarge it we 

make 50 instances that are each executing a program at the same time. In this case, the 

GCSM is one instance of a complete core, comprising a CPU and the memory.  

Furthermore, to measure the impact of the number of repeated instances of the 

GCSM, we repeat the DinoCPU experiment described above, sweeping the core count 

from just one core (no reuse) to 256 cores. Of interest here are the compilation runtimes 

and the simulation runtime, as well as the simulation binary size. 

To measure the performance of the processor design simulations, we need a 

program for them to run. We select a QuickSort program (taken from the riscv-tests 

project) due to the large number of instructions in it, allowing for the simulator code to 

be run for an adequate amount of time. 

Although there are of course other simulators available (Section 6), we only discuss 

Verilator and ESSENT to better compare aspects about their emitted code.  

 
6 Actually, the GCSM algorithm discussed in Section 3.1 identifies a tiny (yet frequently used) 

debugging module, but for the purpose of obtaining useful results this was overridden to be the Chisel 

Queue which is the next-most-used. 
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4.2 Results 

In general, performing deduplication is a worthy optimization: when the amount of 

replication is sufficiently high, it is both faster to run the simulation itself as well as to 

compile the C++ model. As seen in Table 2, a deduplicated dual-core RocketChip 

(rocket18-2) obtains a 4.7× speedup compared to the original ESSENT. The instruction 

cache miss rate is 1.5× lower and the host IPC improves by 1.8×, demonstrating that 

more of the simulator remains in the instruction cache. For the replicated DinoCPU, 

the IPC is 2.1× better and there is an order of magnitude reduction of the instruction 

cache miss rate. For a single-core RocketChip, the speedup is more modest (1.6×) but 

certainly enough to make this a worthy optimization. Unfortunately, a bug in the 

activity tracking in deduplicated ESSENT prevents us from being able to run 

rocket18-4, and more investigation is required than time permits. 

As noted earlier, the numbers reported here the averages of running each simulator 

10 times. The variance from these averages reported is very low, since all experiments 

were performed on a quiet system with nobody else logged in. Therefore, we are 

optimistic that these results are useful to validate the idea of deduplication in digital 

logic simulation. 
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Design Tool Bin size 
Instructions 

executed 

(×109) 

Host 

IPC 

Runtime 

(seconds) 

rocket18-1 
Original 2.8MB 50.8 1.62 8.09 
Verilator 3.4MB 151 0.78 50.4 

Dedup 1.6MB 32.3 1.67 4.99 

rocket18-2 

Original 3.5MB 82.1 1.17 22.4 

Verilator 4.2MB 194 0.69 72.7 

Dedup 1.7MB 32.2 1.75 4.76 

rocket18-4 

Original 4.9MB 108 0.83 33.8 

Verilator 5.7MB 297 0.64 119 
Dedup - - - - 

50 DinoCPU 

Original 636KB 12 0.82 3.80 

Verilator 608KB 6.33 0.60 2.75 
Dedup 312KB 17.1 1.97 2.25 

Table 2: Results of running the RISC-V qsort benchmark on each of the RISC-V 
processor designs. Each design is run under the original ESSENT, with Verilator, 

and with this work’s deduplicating ESSENT. Note that the number of 
instructions executed refers to the simulator itself, not the program on the 

design. 

In all cases, the Verilator simulation performance is much worse, which is not 

surprising given its scheduling model of re-evaluating the entire design’s state on every 

cycle. Furthermore, its generated binary size is a lot larger than either ESSENT 

implementation; although here the difference is not large in an absolute sense, it is large 

enough to produce an extreme difference in the instruction cache miss rate, as much 

more of the code must be executed per simulated clock cycle than is necessary in 

ESSENT.  One can imagine that in a much larger design with sufficient replication, 

this difference would become quite stark. Figure 6a shows the normalized L2 

instruction cache miss rate for each simulation. As the design gets larger, the simulator 

binaries also grow, and logically the number of instruction cache misses will grow as 
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well. By deduplicating, a lot of 

code is eliminated and therefore 

the number of misses drops 

precipitously.7 Figure 6b shows 

the average number of misses 

per simulated cycle, showing 

that since each cycle is 

responsible for nearly an order 

of magnitude fewer stalls in 

most cases. Verilator does 

already apply some 

deduplication, so some parts of 

the code can indeed be reused, 

and therefore the number of 

instruction cache misses do not 

rise as rapidly as the design 

becomes larger, compared to original ESSENT. Verilator and deduplicated ESSENT 

are essentially evenly matched on the 50 DinoCPU design since the binaries are so 

small that they easily fit in the L2 instruction cache.8  

 
7 In the case of rocket18-4, although it may seem like Verilator is performing closer to the original 

ESSENT, the former in fact experiences an order of magnitude more misses. 
8 In fact, the reused parts probably even fit into the L1 instruction cache, although we have not 

measured this precisely. 
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Figure 6: (a) Host L2 instruction cache misses normalized 

to that of the original ESSENT; (b) per simulated cycle. 
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To achieve the fastest execution times, as much as possible of the binary should be 

able to fit into the L1 instruction cache. To measure how much the code must be fetched 

and invalidated, we take a first-order measurement of the amount of instruction data 

flowing to the L1 cache. We measure the number of L1 instruction cache misses per 

simulated cycle, and multiply this by the cache line size of our host processor (64 

bytes). As seen in Figure 7, the deduplicated ESSENT causes less data transfer 

from L2 to L1, largely by virtue of its smaller binaries. This also suggests that the 

deduplicated code enjoys temporal locality by staying in the smaller L1 cache (32 KB 

per core). To be sure, this is not a perfect 

analysis, and future work could include a 

more accurate analysis of what parts of the 

simulator binary are repeatedly transferred. 

Another point in Verilator’s favor is that 

it includes some features not yet found in 

ESSENT, such as the ability to show 

simulation progress in the form of Value 

Change Dumps (VCD) and perform deeper 

inspection of all the signals in the design 

(many signals in ESSENT are scoped only to the partition they are used in, if they are 

not used anywhere else, whereas in Verilator any signal can be addressed with a 

deterministic name).  
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Contrary to our expectations, the branch prediction accuracy was not significantly 

impacted for any of the designs on any of the simulator generators. The miss rate is 

around 1.5% in all cases, which is quite low. This suggests that the indirection from the 

deduplication does not negatively affect performance in this regard.  

Not only does the simulation performance benefit from the deduplication, so does 

the C++ compilation speed, since there is less code to compile. As shown in Figure 8, 

a modest speedup is obtained over the original ESSENT C++ compilation time. On the 

other hand, Verilator’s compilation is still faster for RocketChip, perhaps due to the 

fact that the emitted code is split across multiple files.9 Only in the case of the 

50 DinoCPU is Verilator’s C++ compilation slightly slower, likely thanks to 

optimization. For the 50 DinoCPU design, the deduplicated C++ compilation is slightly 

 
9 This allows those files to be compiled in parallel, although that was not done in this evaluation for 

the purposes of fairly comparing compilation times. 
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slower than original ESSENT’s, which is likely thanks to the optimizer exploring some 

(futile) optimizations. Also, the time needed for ESSENT to generate the C++ model 

is much higher than Verilator, and our deduplication enhancements did not reduce this 

factor any further. The dominant component of the tool runtime is the partitioning; 

Verilator does not do this and so it handily beats either ESSENT implementation in that 

regard. This work partitions the design twice, which of course contributes to the 

runtime even further. Finally, most of Verilator is written in C++, while ESSENT runs 

on the Java Virtual Machine, so the former has a big advantage in that way as well. 

As the reuse factor goes up, it is expected that the deduplicated binary size grows 

slower than without deduplication. To measure the impact of the amount of replication 

in a design, we perform an experiment in which we sweep the number of 

DinoCPU instances and measure the impact on C++ compilation time, simulator binary 

size, and simulator runtime. Figure 9 shows the results. Our hypothesis is true, to an 

extent; however, when the total design is large enough (32 cores or more), the C++ 

compiler has difficulty keeping the binary size to a reasonable level. In addition, since 

the repeated portion grows without significantly growing the rest of the design, it is 

logical to predict that the C++ compilation time would not grow too much. However, 

as before, after 32 cores, the compilation times start to surpass those of the original 

ESSENT output. However, simulator runtime benefits tremendously, taking far less 

time to run. There are a few other noteworthy points. First, in Figure 9b we observe 

that the deduplicated binary size does not grow rapidly from 2 to 8 cores, but then 

shoots up quadratically after that. This is likely a result of the compiler trying to inline 
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some functions in the name of performance; we have not yet investigated if this delivers 

any benefit to the performance. Next, in Figure 9c we see that for smaller amounts of 

replication, the deduplication is actually slightly slower than before. According to our 

performance data, there is a considerably higher L1 instruction cache miss rate, which 

may be the result of poor spatial locality of the deduplicated code segments. 
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Metric Original ESSENT 
Dedup  

Singleton Instance 

# Instructions Executed (B) 50.8 41.6 
IPC 1.62 1.67 

L2-I$ misses (M) 468±2.2%  9.3±13% 

Binary size (MB) 2.8 1.58 

Runtime (s) 8.09 6.43 
Table 3: Simulation runtime overhead of “deduplicating” (applying the 

indirection treatment to) the singleton instance of RocketTile in rocket18-1. 

Note that the original ESSENT results are duplicated from Table 2. 

It is worth considering the cost of the indirection (as described in Section 3.3) to 

gauge its impact on simulation performance. To that end, we return to the rocket18-1 

design, and treat the top-level RocketTile (the main module holding all of the 

components of the CPU) as the GCSM, even though of course it is not actually reused 

at all. We run the same QuickSort benchmark as in the other evaluations. Table 3 

summarizes the results; whereas there are many more instructions executed as a result 

of all the extra pointer lookups, and a slightly larger binary in the latter case, ultimately 

the simulation completes faster and enjoys a slightly higher IPC and a lower instruction 

cache miss rate. 
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5 Future Work 

As with any emerging project in this space, there is a long laundry list of desired 

features and nice-to-haves. This list covers but a few of them that are relevant to this 

line of research. 

Multiple GCSMs. The code written for this thesis only identifies one module to be 

the GCSM, although it may be the case that there are several modules which are 

repeated such that they make up a significant percentage of the overall logic in the 

design. Even better gains could be realized if those are also deduplicated. For example, 

another good candidate for deduplication in RocketChip is the Floating-Point Unit, 

which is also instantiated in each tile, each one consisting of 5600 statement nodes. 

Better performance counting and more intelligence in choosing whether or not 

to deduplicate. To enhance the results obtained in this work, the performance of the 

simulator as a whole is measured. A good next step is to investigate the performance 

of the deduplicated code in greater detail. For example, how much of the deduplicated 

design is active every simulated cycle? If the module that was chosen to be 

deduplicated has low activity, perhaps there is another module which if deduplicated 

would provide a greater benefit overall. Ideally, this would be done by ESSENT so that 

the designer does not need to try out many different configurations (which, due to the 

dynamic nature of the field, may change over time). 

Compiler optimization improvements. As the designs get larger, so do the 

compile times. However, for some reason, in the case of the deduplicated code the 

compile times increase far more rapidly than with the original ESSENT. We 
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hypothesize that this is thanks to the compiler attempting to optimize the code in a way 

that is ultimately futile. It is worth looking into various compiler flags to control that 

behavior and temper the exploding compile times. 

Testers interface. A somewhat recent development in the Chisel space is the 

Testers interface which allows unit tests to be defined along with the modules in the 

design itself. Currently, this is able to target Treadle, a simulator written in Scala 

intended to be used specifically with Chisel designs, and Verilator. There have been 

efforts in the past to integrate ESSENT into this interface but have unfortunately 

stagnated.  

Better identifiers. Internally, many of the data structures and routines do their 

bookkeeping by way of strings that refer to other objects in the design. Of course, that 

means that when one of these identifies changes, all of the places that it is referenced 

must also be modified. In addition, there is some possibility for a conflict if a truncated 

name ends up aliasing to multiple other objects. We suspect that this could also help 

fix the problem with rocket18-4, in which our debugging done so far points to a 

problem concerning a conflicting name internally; the generated C++ code is 

syntactically correct but the behavior is incorrect. 

Multiple clocks and asynchronous resets. Many practical designs require 

multiple clocks and asynchronous resets, as found in many ASIC designs. Currently, 

ESSENT only supports one clock and one synchronous reset which is implicitly 

connected to all state elements. This will be a complicated task involving much more 
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bookkeeping in the tool and will undoubtedly be the subject of further research within 

our group.  

Multi-threading and parallelization. As described in [4], parallelization is a 

worthwhile future research avenue. With regards to the work performed in this thesis, 

it could be possible to evaluate each GCSM instance independently, especially if each 

instance is not connected to the others. For example, if the GCSM is one core of a 

multicore processor design, then each of the cores could be evaluated in their own 

thread. 
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6 Related Work 

Verilator [11] is a similar tool to ESSENT in that it generates a behavioral C++ 

model from RTL sources, and has already been discussed in this paper. Unlike 

ESSENT, however, its input format is synthesizable Verilog, which has the benefit of 

being able to leverage myriad existing designs, both open source and commercial. 

While elaborating the design, Verilator does handle deduplication: any module which 

is instantiated more than once is placed into its own C++ class (all others are inlined). 

As a full-cycle simulator, Verilator evaluates the entire design on every clock cycle, 

leading to extra work being performed even in designs with a low activity factor. 

Icarus Verilog (iverilog) [12] is a free and open source event-driven Verilog 

simulator. It takes a design and a testbench written in Verilog. This tool implements 

more of the Verilog standard, enabling much greater compatibility with the broader 

ecosystem. As an event-driven simulator, it carries the burden of runtime design re-

evaluation scheduling. 

LiveSim [10] aims to reduce the edit-run-debug loop’s latency – that is, shorten the 

amount of time needed before updated simulation results are ready after editing the 

HDL. To accomplish this, only the parts of the design that changed are compiled, and 

then patched into the final executable. Furthermore, it implements checkpointing and 

hot reloading to make it faster for the user to get results from their updated HDL. 

Importantly, it also demonstrates that instruction cache misses due to a large code size 

are a major bottleneck for simulation performance.  
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Treadle [13] is an event-driven simulator integrated into the Chisel language, and 

benefits from being tightly integrated with the rest of the Chisel ecosystem; both the 

design and the tests are written in Scala, and can even be placed next to each other in 

the same file.  

Commercial Simulation Tools are generally also event-driven simulators. Like 

Icarus, they support most of the Verilog standard, but have the same scheduling burden. 

Of course, it is not known what optimizations, if any, are made internally to speed up 

execution. These tools were not studied in this work; however, as shown in [5], even 

the original ESSENT handily beats their performance. 

Formal Verification Methods are not typical simulation tools, and do not simulate 

the design cycle by cycle. Instead of writing a testbench, the designer writes a set of 

assertions about the valid state(s) of the circuit, given a set of constraints on the inputs. 

Then an SMT solver is used to mathematically prove that the system cannot under any 

circumstance enter an invalid state; if it is possible to get to an invalid state then the 

solver will produce an example. While this provides the strongest guarantee of proper 

circuit operation, in practice most systems are too complex to precisely model their 

behavior in this way; typically, only smaller components of the design will be formally 

verified. Although out of scope for this paper, it is known that solvers, too, are typically 

slow.  
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7 Conclusion 

This paper presents an improvement to the state of the art in ESSENT by inspecting 

the input design, identifying reused hardware components, partitioning them in a way 

that is compatible with the maximal set of other instances of the GCSM, and emitting 

more efficient code. As demonstrated by the speedups we achieve of up to 4.7× over 

the previous version of ESSENT and up to 15× compared to Verilator, by deduplicating 

just one module of the design, this research shows that deduplication is a worthwhile 

research direction. Clearly, there is much more to explore, but it is certainly clear that 

deduplication is an important optimization to apply in digital logic simulators. Finally, 

by contributing this work back to the open source community, all may benefit from 

faster simulation times. 
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