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Abstract

Numerical Level Set Methods for High-Dimensional Dynamical Systems

by

Matthew R. Kirchner

Presented here is research focused on numerical advancements in Hamilton-Jacobi

(HJ) theory as they provide a fundamental tool to address many problems in autonomous

robotics such as optimal trajectory planning, safety critical reactive control, pursuit-

evasion, and the optimal gathering of information of an unknown environment. HJ

equations have had limitations in the past for computing usable solutions due to poor

scaling with respect to system dimension. This was because a spatial grid had to be con-

structed densely in each dimension. Two general frameworks are proposed to overcome

this limitation. First, methods based on trajectory optimization are presented and in

particular, those based on generalizations of the Hopf formula are developed. This class

of methods leverage the fact that for many real-world problems, only pointwise solutions

are necessary, and this enables these optimization-based approached to be implemented

on embedded hardware for real-time operation. Second, decomposition methods are

developed. This class of methods leverage certain problem structures that allow smaller-

dimensional subproblems to be formed. The solutions of these subproblems can then be

aggregated to compute the global solution of the original HJ equation.
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Chapter 1

Introduction

Demand for increased capabilities in robotics has dramatically increased over the last

decade, touching virtually every segment of the economy. This includes manufacturing,

defense, medical equipment, transportation, space exploration, and agriculture. The de-

mand is evidenced by growing investment in the field of robotics from both industry

and government. In particular, there is a demand for heightened levels of autonomy

for these application areas as their system complexity continues to grow. This will lead

to large-scale, mixed systems, consisting of fully autonomous agents interacting with

semi-autonomous (human-in-the-loop) and non-autonomous agents. There exist many

technological challenges that must be addressed before these systems become more incor-

porated into society, forming the basis of this research. Among these challenges is motion

planning of both single and multiple vehicles, reactive safety of vehicle systems, and how

information from onboard senors is gathered and shared among the group. Multi-vehicle

motion planning is of interest as we encounter increasingly dense environments in both

airspace and roadway traffic. By motion planning salvos of vehicles, we improve upon

system performance and reduce the congestion that results from entirely self-interested

path planning. Secondly, how information is collected and shared within a system is

1



Introduction Chapter 1

of significance as real-world systems ultimately lack the infrastructure for centralized

planning. Additionally, how information is collected should be studied as this would

direct how unknown areas are explored and maximize the information gain from the

environment. Lastly, we must consider reactive control for the inevitable, unforeseen cir-

cumstances. Reactive methods related to safety must have strong theoretical guarantees

that a collision can be avoided but at the same time it’s essential the solution can be

computed rapidly on embedded hardware using on-board sensors. An illustration of the

reactive collision avoidance problem is given in Figure 1.0.1.

Presented here is research focused on numerical advancements in Hamilton-Jacobi

(HJ) theory as they provide a fundamental tool to address many problems in autonomous

robotics, and can be used for single and multi-vehicle path planning and reactive collision

avoidance. HJ equations have had limitations in the past for computing usable solutions

due to poor scaling with respect to system dimension. This was due to the fact that a spa-

tial grid had to be constructed densely in each dimension. This exponential dimensional

scaling in optimization is sometimes referred to as the “curse of dimensionality”. Cre-

ating equivalent formulations that no longer require spatial grids leads to methods that

can execute in real-time on embedded hardware and is focus of the following research.

Some key contributions as listed below.

1.1 Contributions

1. Presented is a method for efficient computation of the Hamilton–Jacobi (HJ) equa-

tion for time-optimal control problems using the generalized Hopf formula. Typ-

ically, numerical methods to solve the HJ equation rely on a discrete grid of the

solution space and exhibit exponential scaling with dimension. The generalized

Hopf formula avoids the use of grids and numerical gradients by formulating an

2
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Set of Unsafe Configurations

Figure 1.0.1: After detection of a previously unknown vehicle in the airspace, the
relative configuration of the vehicles can be represented as a single point in a high
dimensional space. We need to rapidly determine if the configuration is unsafe so the
vehicle can react. The set of unsafe configurations is shown with the green shape. A
configuration outside of the green shape is safe and no action is necessary. A point on
or inside the green shape is unsafe and an evasive maneuver needs to be initiated. Such
unsafe regions can be characterized by specific Hamilton-Jacobi equations. Rapidly
computing pointwise solutions, as is the focus of this research, enables such safety
critical applications to be realized.

unconstrained convex optimization problem. The solution at each point is com-

pletely independent, and allows a massively parallel implementation if solutions at

multiple points are desired. This work presents a primal-dual method for efficient

numeric solution and presents how the resulting optimal trajectory can be gener-

ated directly from the solution of the Hopf formula, without further optimization.

Examples presented have execution times on the order of milliseconds and experi-

ments show computation scales approximately polynomial in dimension with very

small high-order coefficients.

2. Presented is a new method for calculating the time-optimal guidance control for

a multiple vehicle pursuit-evasion system. A joint differential game of k pursuing

vehicles relative to the evader is constructed, and a Hamilton–Jacobi–Isaacs (HJI)

equation that describes the evolution of the value function is formulated. The

value function is built such that the terminal cost is the squared distance from the

3



Introduction Chapter 1

boundary of the terminal surface. Additionally, all vehicles are assumed to have

bounded controls. Typically, a joint state space constructed in this way would have

too large a dimension to be solved with existing grid-based approaches. The value

function is computed efficiently in high-dimensional space, without a discrete grid,

using the generalized Hopf formula. The optimal time-to-reach is iteratively solved,

and the optimal control is inferred from the gradient of the value function.

3. We present a method for optimal coordination of multiple vehicle teams when mul-

tiple endpoint configurations are equally desirable, such as seen in the autonomous

assembly of formation flight. The individual vehicles’ positions in the formation

are not assigned a priori and a key challenge is to find the optimal configuration

assignment along with the optimal control and trajectory. Commonly, assignment

and trajectory planning problems are solved separately. We introduce a new multi-

vehicle coordination paradigm, where the optimal goal assignment and optimal

vehicle trajectories are found simultaneously from a viscosity solution of a single

Hamilton–Jacobi (HJ) partial differential equation (PDE), which provides a nec-

essary and sufficient condition for global optimality. Intrinsic in this approach is

that individual vehicle dynamic models need not be the same, and therefore can

be applied to heterogeneous systems. Numerical methods to solve the HJ equation

have historically relied on a discrete grid of the solution space and exhibits expo-

nential scaling with system dimension, preventing their applicability to multiple

vehicle systems. By utilizing a generalization of the Hopf formula, we avoid the use

of grids and present a method that exhibits polynomial scaling in the number of

vehicles.

4. We study a scenario where a group of agents, each with multiple heterogeneous sen-

sors are collecting measurements of a vehicle and the measurements are transmitted

4
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over a communication channel to a centralized node for processing. The commu-

nication channel presents an information-transfer bottleneck as the sensors collect

measurements at a much higher rate than what is feasible to transmit over the com-

munication channel. In order to minimize the estimation error at the centralized

node, only a carefully selected subset of measurements should be transmitted. We

propose to select measurements based on the Fisher information matrix (FIM), as

“minimizing” the inverse of the FIM is required to achieve small estimation error.

Selecting measurements based on the FIM leads to a combinatorial optimization

problem. However, when the criteria used to select measurements is both mono-

tone and submodular it allows the use of a greedy algorithm that is guaranteed to

be within 1− 1/e ≈ 63% of the optimum and has the critical benefit of quadratic

computational complexity. To illustrate this concept, we derive the FIM criterion

for different sensor types to which we apply FIM-based measurement selection.

The criteria considered include the time-of-arrival and Doppler shift of passively

received radio transmissions as well as detected key-points in camera images.

5. We study a scenario where an aircraft has multiple heterogeneous sensors collecting

measurements to track a target vehicle of unknown location. The measurements

are sampled along the flight path and our goals to optimize sensor placement to

minimize estimation error. We select as a metric the Fisher Information Matrix

(FIM), as “minimizing” the inverse of the FIM is required to achieve small esti-

mation error. We propose to generate the optimal path from the Hamilton–Jacobi

(HJ) partial differential equation (PDE) as it is the necessary and sufficient con-

dition for optimality. A traditional method of lines (MOL) approach, based on a

spatial grid, lends itself well to the highly non-linear and non-convex structure of

the problem induced by the FIM matrix. However, the sensor placement problem

5
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results in a state space dimension that renders a naive MOL approach intractable.

We present a new hybrid approach, whereby we decompose the state space into two

parts: a smaller subspace that still uses a grid and takes advantage of the robust-

ness to non-linearities and non-convexities, and the remaining state space that can

by found efficiently from a system of ODEs, avoiding formation of a spatial grid.

6
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Trajectory Optimization Approaches

to Solving Hamilton–Jacobi

Equations
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This section is devoted to the development of optimization techniques to compute

pointwise solutions to the HJ equation. This is accomplished by constructing a trajec-

tory optimization problem in such a fashion that the solution of which coincides with

the viscosity solution of the HJ equation. This class of mthods avoids a spatial grid by

replacing it with a scalar temporal grid, which can be computed in an efficient manner. It

is shown that solutions can be computed in mere milliseconds, demonstrating this tech-

nique is well suited for problems that need to be computed on-line in order to respond to

unpredictable situations. Chapter 2 develops an optimization method, based on proximal

splitting, that rapidly computes the HJ equation for optimal control problems.

An intriguing area of research that was investigated is the generalization of these

methods to differential games, which will open the door to many useful applications.

For instance, in the design of safety critical systems we ideally want to create methods

that not only react to unsafe events as they arise, but also preemptively react to avoid

dangerous situations before they occur. The differential game formulation, along with fast

numerical methods to solve their associated HJ equation, provide a rigorous mathematical

framework to solve such problems. Chapter 3 documents promising early work that

showed a generalization of the Hopf formula could be utilized for certain non-convex

Hamiltonians, thereby facilitating their use on game problems. The method is then

validated on a multi-vehicle pursuit-evasion problem.

8



Chapter 2

A Primal-Dual Method for Optimal

Control and Trajectory Generation

in High-Dimensional Systems

2.1 Introduction

Hamilton–Jacobi equations play a fundamental role in optimal control theory as they

establish sufficient conditions for optimality [4]. Traditionally, numerical solutions to

HJ equations require a dense, discrete grid of the solution space [5, 6, 7]. Computing

the elements of this grid scales poorly with dimension and has limited use for problems

with dimension greater than four. The exponential dimensional scaling in optimization

is sometimes referred to as the “curse of dimensionality” [8, 9]. Recent research [10, 11]

has discovered numerical solutions based on the generalized Hopf formula that do not

require a grid and can be used to efficiently compute solutions of a certain class of

Hamilton–Jacobi PDEs that arise in linear control theory and differential games.

A key hurdle in the development of efficient high-dimensional solutions is the time-

9
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dependent Hamiltonian that results for general control problems. Kirchner et al. [11]

applied the generalized Hopf formula with time-dependent Hamiltonian to efficiently

solve multi-vehicle optimal pursuit-evasion using the linearized models found in [12]. In

that work, the unique, specific structure of the model was used to derive a closed form

solution to the gradient of the objection function, thereby allowing efficient optimization.

This same technique cannot be applied to general linear systems and attempts to use

numeric gradient approximation would increase computation time.

Darbon and Osher presented a proximal splitting algorithm in [10] using the split

Bregman/ADMM approach [13], but this only applies to systems with time-independent

Hamiltonians of the form ẋ = f (u (t)), and has limited use for general linear control

problems. Chow et al. [14] developed a coordinate descent method, but this optimization

method lacks robustness for the nonsmooth optimization that typically result from the

Hopf formula for optimal control problems.

This work presents a parallel proximal splitting optimization method [15] for solving

time-optimal control problems with the generalized Hopf formula, including those with

time-dependent Hamiltonians. This allows efficient solutions to generalized linear models,

even when no explicit gradient of the objective function is known and without resorting to

consensus-type algorithms [16]. Section 2.2 reviews using the Hopf formula for solutions

to the Hamilton–Jacobi equations that arise in optimal linear control and largely follows

the work of [11] and [10]. The main contributions of this paper are presented in Section

2.3, with a primal-dual method for solving the Hopf formula, Section 2.4, which presents

obtaining the optimal control, and Section 2.5, where the optimal trajectory can be

obtained directly from the solution of the Hopf formula. The new methods are applied

on various time-optimal control problems and are presented in Section 2.6.

10
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2.2 Solutions to Hamilton–Jacobi Equations with the

Hopf Formula

Consider system dynamics represented as

ẋ (t) = f (u (t)) , (2.2.1)

where x (t) ∈ Rn is the system state and u (t) ∈ U ⊂ Rm is the control input, constrained

to lie in the convex admissible control set U . The system in (2.2.1) describes how the

state evolves in time and is considered a dynamic constraint when control inputs u (t)

are to be optimized. We consider a cost functional for a given initial time t, and terminal

time T

K (x, u, t) =

∫ T

t

L (u (s)) ds+ J (x (T )) , (2.2.2)

where x (T ) is the solution of (2.2.1) at terminal time, T . We assume that the terminal

cost function J : Rn → R is convex. The function L : Rm → R∪{+∞} is the running cost,

and represents the rate that cost is accrued. The value function v : Rn× (−∞, T ] → R is

defined as the minimum cost, K, among all admissible controls for a given state x, and

time t ≤ T with

v (x, t) = inf
u∈U

K (x, u, t) . (2.2.3)

The value function in (2.2.3) satisfies the dynamic programming principle [17, 18] and

also satisfies the following initial value Hamilton–Jacobi (HJ) equation by defining the

function φ : Rn ×R → R as φ (x, t) = v (x, T − t), with φ being the viscosity solution of


∂φ
∂t

(x, t) +H (∇xφ (x, t)) = 0 inRn × (0,+∞) ,

φ (x, 0) = J (x) ∀x ∈ Rn,

(2.2.4)

11



A Primal-Dual Method for Optimal Control and Trajectory Generation in High-Dimensional
Systems Chapter 2

where the Hamiltonian H : Rn → R ∪ {+∞} is defined by

H (p) = sup
c∈Rm

{⟨−f (c) , p⟩ − L (c)} . (2.2.5)

We proceed with the Hamilton Jacobi formulation for time-optimal control to reach

some convex terminal set Ω, though the following methods can be generalized to other

optimization problems. To apply the constraint that the control must be bounded, we

introduce the following running cost L = IU , where IC : Rn → R∪{+∞} is the indicator

function for the set C and is defined by

IC (x) =


0 ifx ∈ C

+∞ otherwise.

This reduces the Hamiltonian to

H (p) = max
c∈U

⟨−f (c) , p⟩ .

Solving the HJ equation (2.2.4) describes how the value function evolves with time at

any point in the state space, and from this optimal control policies can be found.

2.2.1 Viscosity Solutions with the Hopf Formula

It was shown in [18] that an exact, point-wise viscosity solution to (2.2.4) can be

found using the Hopf formula [19]. Moreover, no discrete grid is constructed, and the

formula can provide a numerical method that is efficient even when the state space is

12
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high-dimensional. The value function can be found with the Hopf formula

φ (x, t) = −min
p∈Rn

{J⋆ (p) + tH (p)− ⟨x, p⟩} , (2.2.6)

where the Fenchel–Legendre transform g⋆ : Rn → R ∪ {+∞} of a convex, proper, lower

semicontinuous function g : Rn → R ∪ {+∞} is defined by [20]

g⋆ (p) = sup
x∈Rn

{⟨p, x⟩ − g (x)} . (2.2.7)

2.2.2 General Linear Models

Now consider the following linear state space model

ẋ (t) = Ax (t) +Bu (t) , (2.2.8)

with A ∈ Rn×n, B ∈ Rn×m, state vector x ∈ Rn, and control input u ∈ U ⊂ Rm. We can

make a change of variables

z (t) = e−tAx (t) , (2.2.9)

which results in the following system

ż (t) = e−tABu (t) , (2.2.10)

with terminal cost function now defined in z with

φ (z, 0) = Jz (z, 0) = Jx
(
eTAz

)
. (2.2.11)

13
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For clarity in the sections to follow, we use the notation Hz to refer to the Hamiltonian

for systems defined by (2.2.10), and Hx for systems defined by (2.2.8). Additionally,

with a slight abuse of notation, we denote by J⋆
x (p, T ) the Fenchel transform of J (x, t)

with respect to the variable x at time t = T . Notice that the system (2.2.10) is now

time-varying, and it was shown in [21, Section 5.3.2, p. 215] that the Hopf formula can

be generalized for a time-dependent Hamiltonian to solve for the value function of the

system in (2.2.10) with

φ (z0, T ) = −min
p∈Rn

{
J⋆
z (p, 0) (2.2.12)

+

∫ T

0

Hz (p, s) ds− ⟨z0, p⟩

}
,

with Hz defined as

Hz (p, t) = max
c∈U

〈
−e−(T−t)ABc, p

〉
. (2.2.13)

The change of variable to (T − t) is required for time since the problem was converted

to an initial value formulation from a terminal value formulation in (2.2.4). The value

function found by solving the unconstrained optimization problem in (2.2.12) can be

thought of as the minimal cost of a system starting at initial state z (0) = z0 and ending

at terminal state z (T ).

Remark 2.1. While we are solving an initial value problem in this work, we can solve for

a candidate solution of a two point boundary value problem (TPBVP) by selecting for

the terminal set Ω a ball, and shrinking the radius until we get arbitrarily close to the

terminal boundary condition of the corresponding TPBVP [22, Section 2.7.2, p. 66].
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2.3 Proximal Splitting Methods for Control

Proximal splitting methods [15] are a powerful group of convex optimization al-

gorithms that efficiently solve non-smooth minimization problems in high dimensions.

These methods are used for problems of the form

min
p∈Rn

G (p) + F (p) ,

where proximal points for G and F can be easily computed. These family of methods

have been proven effective for image processing and compressed sensing applications [13].

The proximal point of f at p for some α > 0 is given by

(I + α∂f)−1 (p) = arg min
w∈Rn

{
αf (w) +

1

2
∥w − p∥22

}
.

The primal-dual algorithm [23] is a proximal splitting algorithm that solves the mini-

mization problem of the form

min
p∈Rn

G (p) + F (Kp) , (2.3.1)

withK ∈ Rm×n and G,F being assumed convex, by converting (2.3.1) to the saddle-point

problem

min
p∈Rn

max
y∈Rm

⟨Kp, y⟩+G (p)− F ⋆ (y) .
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The minimizer can be found by iterating the following update procedure


yk+1 = (I + σ∂F ⋆)−1 (yk + σKp̄k

)
pk+1 = (I + τ∂G)−1 (pk − τK⊤yk+1

)
p̄k+1 = pk+1 + θ

(
pk+1 − pk

)
,

(2.3.2)

until convergence with τ, σ > 0 being the primal and dual step sizes and θ ∈ [0, 1]. It

was shown in [23] that the primal-dual method of (2.3.2) converges at a rate of O (1/k)

for general convex functions F and G provided the condition τσ ∥K∥2 < 1 is satisfied.

If one or both of F and G are strongly convex, then [23] provides an alteration to the

algorithm in (2.3.2) that was shown to converge at a faster rate. While some problems in

Section 2.6 meet this criteria, these accelerated algorithms are outside the scope of this

work, and all examples used the algorithm in (2.3.2).

2.3.1 Primal-Dual Solutions to the Generalized Hopf Formula

Suppose U is a closed convex set such that 0 ∈ intU , where intU denotes the interior

of the set U . Then (IU)
⋆ defines a norm ∥(·)∥ and we denote by ∥(·)∥∗ its dual norm [20].

Also consider that the set U can be scaled by an injective linear transformation, Q−1, to

give the appropriate problem-specific control bound, then (2.2.13) can be written as

Hz (p, t) =
∥∥∥(−e−(T−t)ABQ

)⊤
p
∥∥∥
∗
. (2.3.3)

For simplicity, we follow [11] by approximating the integral in (2.2.12) with a left Riemann

sum quadrature with N equally spaced terms defined by

ti = i∆t, (2.3.4)
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with i ∈ {0, . . . , N − 1} and ∆t = T
N
. The generalized Hopf formula, for some terminal

time T , becomes

φ (z0, T ) = −min
p∈Rn

{
J⋆
z (p, 0)

+ ∆t
N−1∑
i=0

∥∥∥(−e−(T−ti)ABQ
)⊤
p
∥∥∥
∗

− ⟨z0, p⟩

}
. (2.3.5)

Other forms of quadrature can be used for integral approximations, such as trapezoidal

or Simpson’s rule [24], that increase approximation accuracy without sacrificing compu-

tational performance. Additionally, other advanced approximations could be considered,

such as those employed by pseudospectral methods in [25], and will be investigated in

future work.

To formulate as a primal-dual optimization, first set

G (p) = J⋆
z (p, 0)− ⟨z0, p⟩ . (2.3.6)

Now define

Ki =
(
−e−(T−ti)ABQ

)⊤
(2.3.7)

and Fi = ∆t ∥(·)∥∗ = (I∆tU)
⋆, where we denote by IαC the indicator function of a set C

scaled by a constant α > 0 defined as

IαC (x) =


0 if x

α
∈ C

+∞ otherwise.
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The sum term in (2.3.5) can be written as

∆t
N−1∑
i=0

∥∥∥(−e−(T−ti)ABQ
)⊤
p
∥∥∥
∗
=

N−1∑
i=0

Fi (Kip) .

We can now form the matrix K as

K =



K1

K2

...

KN


,

which gives

F (Kp) =
N−1∑
i=0

Fi (Kip) , (2.3.8)

and combined with (2.3.6) is now in the form of (2.3.1). Note thatK in this formulation is

non square (preconditioning [26] can be used to enhance convergence rate). If the action

of the matrix exponential in (2.3.7) is not known, then it can be quickly evaluated, for

all time samples, without resorting to computing the matrix exponential with [27]. The

structure of (2.3.8) forms a separable sum. This implies that for some y = (y1, y2, . . . , yN)

F ⋆ (y1, y2, . . . , yN) = F ⋆
1 (y1) + F ⋆

2 (y2) + · · ·+ F ⋆
N (yN) .

Recall that Fi = (I∆tU)
⋆, thus

F ⋆
i (yi) = I∆tU . (2.3.9)
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The proximal operator of a separable sum is simply

(I + ∂F ⋆)−1 (y1, y2, . . . , yN) =



(I + ∂F ⋆
1 )

−1 (y1)

(I + ∂F ⋆
2 )

−1 (y2)

...

(I + ∂F ⋆
N)

−1 (yN)


. (2.3.10)

The proximal operators in (2.3.10) are independent of each other, and as a result can be

computed in parallel. This can be advantageous for real-time implementations in hard-

ware such as multi-core embedded CPUs and field programmable gate arrays (FPGAs).

2.3.2 Stopping Criteria

Care must be taken to select the stopping criterion of the algorithm in (2.3.2). The

step sizes τ and σ are in general not equal and any stopping criteria must account for

this. As a result we choose the primal and dual residuals [28, See Eqs. 10 and 12] as a

step-size dependent stopping criteria and stop iterating (2.3.2) when the conditions

∥∥(pk − pk−1
)
/τ −K⊤ (yk − yk−1

)∥∥ < ε,

and ∥∥(yk − yk−1
)
/σ −K

(
pk − pk−1

)∥∥ < ε,

are both met. For all the experiments listed in Section 2.6, ϵ is set to 10−4.

19



A Primal-Dual Method for Optimal Control and Trajectory Generation in High-Dimensional
Systems Chapter 2

2.4 Time-Optimal Control

To find the time-optimal control to some convex terminal set Ω, choose a convex

terminal cost function Jx such that


Jx (x) < 0 for anyx ∈ int Ω,

Jx (x) > 0 for anyx ∈ (Rn \ Ω) ,

Jx (x) = 0 for anyx ∈ (Ω \ int Ω) ,

where intΩ denotes the interior of Ω. The intuition behind defining the terminal cost

function this way is simple. If the value function φ (x0, T ) < 0 for some x0 and T , then

there exists a control u (t) that drives the state from the initial condition at x0, to the

final state, x (T ) inside the set Ω. The smallest value of time T , such that φ (x0, T ) = 0

is the minimum time to reach the set Ω, starting at state x0. Recall that the initial

value function, Jz (p, 0), and its associated Fenchel–Legendre transform, J⋆
z (p, 0) of the

Hopf formula in (2.2.12), is defined in z, and must be transformed with (2.2.11). The

minimum time to reach Ω is denoted by T ∗, and the control computed at T ∗ is the

time-optimal control. As first noted in [29], Hopf formula is itself a Fenchel–Legendre

transform. It follows from a well known property of the Fenchel–Legendre transform [30]

that the unique minimizer of (2.2.12) is the gradient of the value function

∇zφ (z0, T ) = arg min
p∈Rn

{
J⋆
z (p, 0) (2.4.1)

+

∫ T

0

Hz (p, s) ds− ⟨z0, p⟩

}
,

provided the gradient exists. So when solving for the value function using (2.2.12),

we automatically solve for the gradient. We will refer to the minimizer in (2.4.1) as
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p∗ = ∇z (z0, T ).

We propose solving for the minimum time to reach the set Ω, T ∗, by a hybrid method

of the bisection method and Newton’s method. Newton’s method has been shown to have

faster convergence (quadratic) than bisection, but is unstable when the gradient is small

and motivates the use of a hybrid method. We can iterate time, tn+1, with Newton’s as

tn+1 = tn −
φ (x0, tn)
∂φ
∂t

(x0, tn)
. (2.4.2)

As noted in [10], ∂φ
∂t

(x0, t) must satisfy the Hamilton–Jacobi equation (2.2.4). Therefore

we have

∂φ

∂t
(x0, tn) = −Hx (∇xφ (x0, tn) , x0) .

We also see from (2.2.9) and applying the chain rule that

∇xφ (z (t) , T − t) = ∇xφ
(
e−tAx (t) , T − t

)
= e−tA⊤∇z (z (t) , T − t) .

Therefore when t = 0, then z0 = x0, φ (z0, T ) = φ (x0, T ), and

∇x (x0, T ) = ∇z (z0, T ) .

This implies that (2.4.2) can be written as

tn+1 = tn +
φ (z0, tn)

Hx (∇zφ (z0, tn) , z0)
. (2.4.3)

For the purpose of evaluating (2.4.3), there is no need to apply the change of variables
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as in (2.2.9). Therefore we have

Hx (p
∗, z0) = −z⊤0 A⊤p∗ +

∥∥−Q⊤B⊤p∗
∥∥
∗ .

If it is known that a single zero exists on the interval T ∗ ∈ [0, tmax], then we use the

Newton update from (2.4.3) to find tn+1. With the value function computed at each

Newton iteration, we can keep track of the updated interval T ∗ ∈ [tmin, tmax] and use a

bisection update if the Newton update of tn+1 is out side this interval. Once the minimum

time to reach the set Ω, T ∗, is found, the optimal control u∗ (t) can be found from the

relation

∇pHz (∇zφ (z0, T
∗) , T ∗) = ∇pHz (p

∗, T ∗)

= e−(T ∗−t)ABu∗ (t) . (2.4.4)

2.5 Trajectory Generation with the Generalized Hopf

Formula

Using the solution of the Hopf formula, we illustrate a dynamic programming point of

view [9, 18] of the associated Hamilton–Jacobi equation to compute the optimal trajec-

tory. We denote by γz (s) ∈ Rn, with s ∈ (0, T ), as the state trajectory with γz (0) = z0.

Recall the fact that the solution of short-time Hopf formula (2.2.6) is itself a Fenchel

transform [29]

φ (z, t) = (J⋆ + tH)⋆ (z) . (2.5.1)
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Note that the minimizer of J⋆
z (p) is the optimal terminal state γz (T ), and, if J⋆

z is

differentiable, then can be found with

γz (T ) =
∂

∂p
J⋆
z (p

∗, 0) , (2.5.2)

where p∗ is the solution to the Hopf formula in (2.2.6). Now consider the case where p∗

is the solution to the generalized Hopf formula given in (2.2.12), and what follows is an

analysis in the variable z. This implies that

φ (z0, T ) = −

{
J⋆
z (p

∗, 0) + ∆t
N−1∑
i=0

Hz (p
∗, ti) (2.5.3)

− ⟨z0, p∗⟩

}
,

where each of the quadrature time samples ti are equally spaced by ∆t seconds on the

interval [0, T ] as defined by (2.3.4). Recall from Section 2.2.2 that we denote by φ⋆
z (p, T )

the Fenchel transform of φ (z, t) with respect to the variable z at time t = T . If we write

the Hopf formula with initial convex data J (z, T −∆t) = φ (z, T −∆t), then we can

find the level set evolution only for a short time, ∆t, starting at value φ (z, T −∆t) with

φ (z0, T ) = −

{
φ⋆
z (p

∗, T −∆t)

= +∆tHz (p
∗, T −∆t)− ⟨z0, p∗⟩

}
.

Following (2.5.2), the optimal state, with respect to z is

γz (∆t) =
∂

∂p
φ⋆
z (p

∗, T −∆t) . (2.5.4)

23



A Primal-Dual Method for Optimal Control and Trajectory Generation in High-Dimensional
Systems Chapter 2

From (2.5.1) we conclude that

φ⋆
z (p

∗, T −∆t) = (J⋆ +∆tHz)
⋆⋆
p (z, T −∆t)

= J⋆
z (p

∗, T − 2∆t) (2.5.5)

+ ∆tHz (p
∗, T − 2∆t) .

The last line in (2.5.5) is due to the fact that if f is convex, proper and lower semicon-

tinuous, then f ⋆⋆ = f . We form a recursive operation, repeating (2.5.5) until we reach

time zero and get

φ (z0, T ) = −

{
φ⋆
z (p

∗, 0)

+ ∆t
N−1∑
i=0

Hz (p
∗, ti)− ⟨z0, p∗⟩

}
,

which is equivalent to (2.5.3) since by definition J (x, 0) = φ (x, 0). This suggests that

the generalized Hopf formula with the integral in (2.2.12) approximated by quadrature

is equivalent to the composition of many short-time Hopf formulas (2.2.6) of length ∆t.

Also, the recursion can be applied to the optimal terminal point from (2.5.4) as

γz (∆t) =
∂

∂p
φ⋆
z (p

∗, T −∆t)

=
∂

∂p

{
J⋆
z (p

∗, 0) + ∆t
N−1∑
i=0

Hz (p
∗, ti)

}
.
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This can equivalently used for the optimal trajectory at any time sample ti as

γz (ti) =
∂

∂p

{
J⋆
z (p

∗, 0) + ∆t
i∑

k=0

Hz (p
∗, tk)

}
(2.5.6)

=
∂

∂p
J⋆
z (p

∗, 0) + ∆t
i∑

k=0

∂

∂p
Hz (p

∗, tk) .

If we are interested in the trajectory at each quadrature time sample, we don’t have to

recompute the sum for each tk, since we can incrementally build the trajectory point

from tk+1. Note that each point in (2.5.6) is in terms of the state variable z, and can

be found for x by applying inverse of the transform given in (2.2.9). Non-rigorously we

see that the time rate of change of the state trajectory in (2.5.6) is equal to the gradient

with respect to p of the Hamiltonian, which satisfies Pontryagin’s Maximum Principal

[31], though it was derived using only the Hopf formula and basic principals of convex

analysis.

2.6 Results

The primal-dual method presented in Section 2.3 was implemented in MATLAB

R2017a on a laptop equipped with an Intel Core i7-7500 CPU running at 2.70 GHz.

For all experiments, 100 time samples were used for the quadrature in (2.3.5) and the

dual step size was set to σ = 1
τ∥K∥2 , and θ = 1. The initial conditions for all examples

is p0 = p̄0 = x0 for the primal variable and y0 = Kp0 for the dual variable. Note that

for some of the examples to follow, the action of the matrix exponential is known in

closed form and that can be used for increased computational enhancement. Since in

general this is not the case, we used [27] to numerically compute the action of the matrix

exponential as to show dimensional scaling properties even for the most general case.
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Figure 2.6.1: The double integrator example. The zero level set evolution solved at
various times shown in black. Direct trajectory generation shown in red. The terminal
set, Ω, is shaded green.

2.6.1 Double Integrator

We begin with the simple double integrator problem with system ẋ = Ax+Bu with

A =

 0 1

0 0


and

B =

 0

1

 ,
where the state x ∈ R2 is position and velocity. This problem is selected since closed form

optimal solutions exist and is low enough dimension to compare the level set evolution to

that of grid based numeric techniques such as that in [6, 32]. We consider the control to

be constrained to u ∈ [−1, 1] and implies a control of C = {u : |u| ≤ 1}. After a change
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of variables (2.2.9), the Hamiltonian becomes

Hz (p, t) =
∣∣∣(−e−(T−t)AB

)⊤
p
∣∣∣ .

We chose the terminal set to be an ellipsoidal with

Ω =
{
x :
〈
x,W−1x

〉
≤ 1
}
. (2.6.1)

where W is symmetric positive definite. For the initial cost function Jx, the elements of

W are selected such that Ω is a circle with radius r = 0.2. The terminal cost function

becomes

Jz (z, 0) = ⟨z, V (0) z⟩ − 1

where V (t) = e(T−t)A⊤
W−1e(T−t)A. This gives

J⋆
z (p, 0) =

1

4

〈
p, V (0)−1 p

〉
+ 1. (2.6.2)

In this example (2.3.6) becomes

G (p) =
1

4

〈
p, V (0)−1 p

〉
− ⟨z0, p⟩+ 1, (2.6.3)

which is quadratic and results in the following proximal point of G at p:

(I + τ∂G)−1 (p) =

(
I +

1

2
τV (0)−1

)−1

(p+ τz0) . (2.6.4)

Note that we do not need to compute the inverse of V (0) since

V (0)−1 = e−TAWe−TA⊤
.
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Likewise, with F ⋆
i defined in (2.3.9), the proximal points of each F ⋆

i at yi in (2.3.10) is

given by

(I + σ∂F ⋆
i )

−1 (yi) = ∆t sign (wi)min (|wi| , 1) ,

where wi =
yi
∆t

and sign (β) = 1 if β ≥ 0 and −1 otherwise.

We computed the solution to the Hamilton–Jacobi equation at each point on a grid,

[−1, 1]2, of 50 equally spaced points in each dimension. This was done to average execu-

tion time for a large number of initial conditions. The average computational time was

2.1ms per point on the grid and the zero contours of the value function for ten different

times equally spaced on t ∈ [0, T ∗] are shown in Figure 2.6.1. The value of T ∗ we set as by

solving for the minimum time to the zero level set for the initial state z0 = x0 = (1, 0)⊤

using the method presented in Section 2.4. The primal step size was set to τ = 10.

The optimal trajectory starting at z0 was computed following (2.5.6) with

γz (T
∗) =

∂

∂p
J⋆
z (p

∗, 0) =
1

2
V (0)−1 p∗,

since Jx (x) is quadratic. The gradient of the Hamiltonian is

∂

∂p
Hz (p

∗, tk) = −e−(T ∗−tk)AB

× sign
((

−e−(T ∗−tk)AB
)⊤
p∗
)
.

The trajectory as computed in (2.5.6) is shown in red in Figure 2.6.1.

2.6.2 Unscented Optimal Control

We can utilize the favorable dimensional scaling of the proposed methods to generate

solutions that are robust to system uncertainty. These uncertainties could be the initial
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(a) 100 random samples of initial conditions
with the existing control formulation. 66 sam-
ples reached the goal state and 34 missed.
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(b) 100 random samples of initial conditions
with uncertainty modeled as an unscented con-
trol problem. 79 samples reached the goal state
and 21 missed.

Figure 2.6.2: An example of unscented control applied to a time-optimal double in-
tegrator problem with uncertain initial state. Red are samples of the initial states.
Blue trajectories are random initial states that reached the goal state and green are
trajectories that missed the goal state. Best viewed in color.

state or system parameters such as mass, lift coefficients, or other properties. The idea

is to augment the system to include samples that represent different initial conditions or

parameters that share one, common control input. This system forms a tychastic [33]

differential equation, since the parameters are fixed, but unknown at run time. The goal

is to select a single control so the aggregate cost of all samples is optimized.

For uncertainties that can be modeled as Gaussian, we can choose the samples deter-

ministically with the unscented transform [34], and these samples are typically referred

to in literature as sigma points. This transform provides a second-order approximation

of the moments of a Gaussian distribution propagated through a nonlinear function. It

was developed for state estimation problems and in this context is known as the un-

scented Kalman filter [35, 36]. Using the unscented transform for sample selection to

approximate the tychastic optimal control problem was developed by Ross et al. [37, 38].

The extra state dimensions that result from this technique is not as problematic with
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proximal splitting as it may be with other methods.

Let x =
(
χ[1], χ[2], . . . , χ[2n+1]

)⊤
, with χ[i] ∈ Rn represent the new state vector aug-

mented by 2n + 1 states generated from the unscented transform and the new system

becomes

ẋ =



χ̇1

χ̇2

...

χ̇2n+1


=



f1
(
χ[1], u

)
f2
(
χ[2], u

)
...

f2n+1

(
χ[2n+1], u

)


,

subject to initial condition z0 = x0 =
(
χ
[1]
0 , χ

[2]
0 , . . . , χ

[2n+1]
0

)
. Take for example the

problem of uncertainty in initial condition, x0 ∼ N (µ,Σ). As an unscented control

problem, the dynamics are the same, so f1 = f2 = · · · = f2n+1 = f , and our augmented

system is ẋ = Ãx+ B̃u with

Ã =



A · · · 0

... A
...

. . .

0 · · · A


,

and

B̃ =



B

B

...

B


.

The initial state becomes x0 =
{
χ
[i]
0

}
i=1,...,2n+1

, where each χ
[i]
0 is formed by the unscented

transform with mean µ and covariance Σ. The mean square error of the terminal state

30



A Primal-Dual Method for Optimal Control and Trajectory Generation in High-Dimensional
Systems Chapter 2

relative to some goal state, x̂T is found with the unscented transform by

MSE ≈
2n+1∑
i=1

w[i]
m

(
χ
[i]
T − x̂T

)⊤ (
χ
[i]
T − x̂T

)
, (2.6.5)

where wm is the mean weight factor1, and χ
[i]
T is the terminal state for the i-th unscented

sigma point. For this example, we wish to find the minimum time to reach the origin

subject to the constraint that the mean square error is less than some threshold ℓ. This

can be found from (2.6.5) with

MSE = E
[
(x̂T − x (T ))⊤ (x̂T − x (T ))

]
≤ ℓ.

We select the origin as the goal with x̂ = (0, 0)⊤, and formulate as an unscented control

problem. The trace of the terminal covariance can be represented by the quadratic

J (z) = ⟨z, V (0) z⟩ − ℓ (2.6.6)

with V (t) = e(T−t)A⊤
W−1e(T−t)A and

W =


(
w

[1]
m

)−1

I2 · · · 0

...
. . .

...

0 · · ·
(
w

[2n+1]
m

)−1

I2

 ,

where I2 is the 2× 2 identity matrix.

Figure 2.6.2 shows example trajectories when the initial condition has random per-

turbations, with µ = x0 and Σ = π2I2, for a double integrator problem. The standard

deviation was set to π = 0.0667. If the initial state is exactly what was used to compute

1For more information on the generation of the unscented sigma points, and their weights, see [36].
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Figure 2.6.3: Dimensional scaling properties as described by the experiment in Section
2.6.3. The blue dots represent average computational time for an experiment and the
green line is the least squares polynomial fit to computational time. The red displays
average iterations to convergence.

the optimal control, then the trajectory generated reaches the goal and is time-optimal.

However, if the initial state is perturbed, some trajectories miss the intended goal en-

tirely. In this particular example, it is especially sensitive to perturbations to the “right”

in the spatial x direction and is shown in the Figure 2.6.2a on the left. Of 100 random

initial states, 34 miss the goal state. For the resulting 10 dimensional unscented control

problem with τ = 0.5, the HJ solutions were found on average 4.0ms per point. Trajec-

tory samples are shown in the Figure 2.6.2a on the right, the number of trajectories that

miss the goal is reduced to only 5.

2.6.3 Dimensional Scaling

Next we seek to analyze how the proposed method scales with dimension. We can

construct a problem similar to that presented in Section 2.6.2 but by selecting samples

at random as opposed to using the unscented transform. Constructing a problem in this

fashion is something not typically done in practice, but allows us to vary the number

of random samples, and hence alter the dimension of the problem in a consistent and

uniform way. The initial state for k samples becomes x0 =
{
χ
[i]
0

}
i=1,...,k

, where each χ
[i]
0
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is an independent and identically distributed (iid) random vector drawn according to

χ
[i]
0 ∼ N (µ,Σ). To again penalize the trace, the terminal cost function is the same as

(2.6.6) except W is now defined by

W =


kI2 · · · 0

...
. . .

...

0 · · · kI2

 .

Figure 2.6.3 shows the average computational time and average iterations to convergence

for dimensions ranging from 30 to 120. The green line in the figure is the least squares

polynomial fit for average computation time in milliseconds. If we let d denote problem

dimension for the experiments, the fit is tcomp = 2.382× 10−4d2 + 0.0414d+ 2.598. Note

the extremely small quadratic coefficient.

2.7 Conclusion

Presented is a parallel primal-dual method to solve the Hamilton–Jacobi equation for

time-optimal control using the generalized Hopf formula. We empirically showed how

the method scales approximately quadratic with dimension, though with small quadratic

coefficient. The experiments were shown using Matlab, and simple implementation in a

compiled language could provide significant computational improvement. Future work

includes increased experimentation with different systems, the use of more advanced

quadrature methods, adaptive step sizes, time-varying systems, and state dependent

Hamiltonians.
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Chapter 3

Time-Optimal Collaborative

Guidance Using the Generalized

Hopf Formula

3.1 Introduction

One of the first successful implementations of control laws for pursuit problems is

proportional navigation (PN) [39], which attempts to drive the rate of the line-of-sight

vector between pursuer and evading target vehicle to zero. In this derivation, the tar-

get vehicle is assumed moving, but not maneuvering (turning). Generalizations of this

concept attempt to estimate the vehicle maneuver [12], but these methods are not opti-

mal since evasion strategy is not considered, i.e. not formulated as a differential game

[40]. Additionally, this family of control laws does not account for control saturation.

PN typically requires the magnitude of the control bound of the pursuer to be much

greater than that of the evader to be successful, on the order of 3-5 times greater [12].

These guidance laws are strictly one-on-one in nature, and do not readily generalize to
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collaborative systems of multiple vehicles where the desired pursuit guidance is to ’team’

together to capture a target. These early pursuit problems typically referred to controller

designs as guidance laws, and in this letter we will use the terms controller and guidance

interchangeably.

More recently, [41] proposed a solution to multi-vehicle pursuit evasion in a plane. In

this case the problem was solved sub-optimally with heuristics in an effort to avoid the

computational burden of direct solution to the Hamilton-Jacobi equation. Additionally,

the method was based on simplified, single-integrator dynamics that require the vehicles

to maneuver instantaneously to ensure capture.

A general alternative is to formulate the pursuit-evasion problem as a differential

game, and derive a Hamilton–Jacobi–Isaacs (HJI) equation representing the optimal

cost-to-go of the system. Traditionally, numerical solutions to HJI equations require a

dense, discrete grid of the solution space [5, 6, 7]. Computing the elements of this grid

scales poorly with dimension and has limited use for problems with dimension of greater

than four. The exponential dimensional scaling in optimization is sometimes referred to

as the “curse of dimensionality” [8, 9]. This phenomenon is seen clearly in [42], which

formulated a differential game for a capture-the-flag problem and solved numerically on

a four dimensional grid with [32]. The computational time was as much as 4 minutes,

too slow for real-time application, even with a coarsely sampled grid of 30 points in each

dimension and with low numeric accuracy. When the grid is increased to 45 points in

each dimension and with high numeric accuracy, the computation time jumps to an hour.

Recent research [10] has discovered numerical solutions based on the generalized Hopf

formula that do not require a grid and can be used to efficiently compute solutions to a

certain class of Hamilton–Jacobi equations that arise in linear control theory and differ-

ential games. This readily allows the generalization with pursuit-evasion to collaborative

guidance of multiple pursuing vehicles.
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This letter presents a new method for multi-vehicle collaborative pursuit guidance of

a maneuvering target, showing that teams of vehicles can intercept the target without

requiring drastically higher control bound as in the family of methods in [12]. A joint

system state space representing the kinematics of all pursuing vehicles relative to the

target was constructed, the dimension of which makes it infeasible for traditional grid-

based methods. This high-dimensional problem was then efficiently solved using the

generalized Hopf formula, and included the constraint of time-varying bounds on the

magnitude of available vehicle control, while ensuring intercept when starting within the

reachable set.

The rest of the paper is organized as follows. We derive the models used in the study

in Sec. 3.2 followed the presentation of efficient solution techniques that employ the

generalized Hopf formula to solve the Hamilton–Jacobi equations for optimal control and

differential games in Sec. 3.3. The application of these methods to collaborative guidance

is given in Sec. 3.4, followed by results on a planar, multiple vehicle pursuit-evasion game

in Sec. 3.5.

3.2 Pursuit-Evasion Model

3.2.1 Single Vehicle Model

First consider the pursuit-evasion game with only a single pursuer. We construct a

state space representation of the position and orientation of the pursuer relative to the

evader, with geometry shown in Fig. 3.2.1. With x = [δx, δy, δθ]†, the relative system

36



Time-Optimal Collaborative Guidance Using the Generalized Hopf Formula Chapter 3

v
e

a
e

evader

v
p

a
p

pursuer

δx

δy
δθ

Figure 3.2.1: The engagement geometry of the system presented in (3.2.1).

becomes

ẋ (t) =


Vpcos (δθ)− Ve +

δyae
Ve

Vpsin (δθ)− δxae
Ve

ap
Vp

− ae
Ve

 , (3.2.1)

with Vp and Ve representing the forward speed of the pursuer and evader, respectively.

The terms ap and ae are the lateral acceleration inputs to the system for each vehicle.

These accelerations are limited by the physical maneuver capabilities of the vehicles. This

system is based on the relative state [7] of two modified Dubin’s car [43, 44] models, with

acceleration instead of the more common turn rate input. Additionally, we constructed

this system to be evader centric, allowing for the addition of multiple pursuers. Denoting

by † the transpose of a matrix, we introduce the new state vector x = [δx, δy, δvx, δvy]
†,

where δx and δy are the positional displacement separating the vehicles (see Figure 3.2.1),

δvx = Vp−Ve, and δvy is the relative vertical velocity. We proceed to linearize the system
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(3.2.1) with

ẋ (t) =

 02 I2

02 02

x (t) +


0

0

0

±1


ap +



0

0

0

−1


ae, (3.2.2)

= Ax (t) +Bap +Dae,

with the ± sign needed depending on whether its tail-chase (+) or head-on (−) engage-

ment. The linearization at first glance may seem extreme, but this linearization strat-

egy is used when deriving proportional navigation, or its variants such as augmented

proportional guidance and extended proportional guidance, using linear quadratic con-

trol techniques [12]. The controls for the pursuer are constrained to the set Ap ={
ap :

∥∥Q−1
p (t) ap

∥∥
∞ ≤ 1

}
and the controls for the evader are constrained to the set

Ae = {ae : ∥Q−1
e ae∥∞ ≤ 1}. The infinity norm with diagonal matrix Q, scales the control

limit independently in orthogonal directions. Qp is a function of time since some systems

have control bounds that vary with time, and is needed to model aerodynamic control

surfaces on decelerating vehicles. Both controls are considered symmetric (centered at

zero) for this paper and all simulations.

We represent the capture set, Ω, as an ellipsoid

Ω =
{
x :
〈
x,W−1x

〉
≤ 1
}
. (3.2.3)

where W is the ellipsoid shape matrix. The elements of W are selected such that the
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pursuing vehicle must be within a distance r

∥∥∥∥∥∥∥
 δx

δy


∥∥∥∥∥∥∥ ≤ r,

and the velocity at intercept is within some large bound Vmax (we don’t care what the

velocity was at capture, just as long as capture has occurred). This gives

W =



r2 · · · 0

r2
...

... V 2
max

0 · · · V 2
max


.
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3.2.2 Multi-Vehicle Model

For a multi-vehicle problem with k pursuers against a single evader, the joint state

space with state vector χ ∈ R4×k can be constructed as follows

χ =



ẋ1

ẋ2
...

ẋk


=



A · · · 0

A
...

...
. . .

0 · · · A





x1

x2
...

xk



+



B1 · · · 0

B2
...

...
. . .

0 · · · Bk





ap1

ap2
...

apk


(3.2.4)

+



D

D

...

D


ae

=⇒ χ̇ = Âχ+ B̂ap + D̂ae. (3.2.5)

Collaborative guidance is induced by noticing that capture can happen by any single

vehicle of the k vehicles in the system. The capture set for the i-th vehicle in the joint

system (3.2.4) is denoted as

Ωi =
{
χ :
〈
χ,W−1

i χ
〉
≤ 1
}
,

with the shape matrix defined as the block diagonal matrix with W on the i-th block of

the matrix, and the 4 × 4 matrix Σ = V 2
maxI occupying all other blocks. This implies
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that the capture set for the joint system is

Ω = ∪iΩi. (3.2.6)

3.3 Hamilton–Jacobi Equations with Bounded Con-

trol

3.3.1 Viscosity Solutions with the Hopf Formula

To compute optimal guidance, we use the generalized Hopf formula [10, 19, 29].

Consider system dynamics represented as

ẋ (t) = f (u (t)) (3.3.1)

where x (t) ∈ Rn is the system state and u (t) ∈ C ⊂ Rm is the control input, constrained

to lie in the convex admissible control set C. We consider a cost functional for a given

initial time t, and terminal time T

K (x, t, u) =

∫ T

t

L (u (s)) ds+ J (x (T )) , (3.3.2)

where x (T ) is the solution of (3.3.1) at terminal time, T . We assume that the terminal

cost function J : Rn → R is convex. The function L : Rn → R ∪ {+∞} is the running

cost, and is assumed proper, lower semicontinuous, convex, and 1-coercive. The value

function v : Rn× (−∞, T ] → R is defined as the minimum cost, K, among all admissible
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controls for a given state x, and time t ≤ T with

v (x, t) = inf
u∈C

K (x, t, u) . (3.3.3)

The value function in (3.3.3) satisfies the dynamic programming principle [17, 18] and

also satisfies the following initial value Hamilton-Jacobi (HJ) equation by defining the

function φ : Rn× → R as φ (x, t) = v (x, T − t), with φ being the viscosity solution of


∂φ
∂t

(x, t) +H (t,∇xφ (x, t)) = 0 inRn × (0,+∞) ,

φ (x, 0) = J (x) ∀x ∈ Rn,

(3.3.4)

where the Hamiltonian H : Rn → R ∪ {+∞} is defined by

H (p) = sup
c∈Rm

{⟨−f (c) , p⟩ − L (c)} . (3.3.5)

To apply the constraint that the control must bounded, we introduce the following run-

ning cost L = IC, where

IC =


0 if c ∈ C

+∞ otherwise,

is the indicator function for the set C. This induces a time-optimal control formulation

and reduces the Hamiltonian to

H (p) = max
c∈C

⟨−f (c) , p⟩ .

Solving the HJ equation (3.3.4) describes how the value function evolves with time at

any point in the state space and from this, optimal control policies can be found.

It was shown in [10] that an exact, point-wise viscosity solution to (3.3.4) can be found
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using the Hopf formula [19]. The value function can be found with the Hopf formula

φ (x, t) = −min
p∈Rn

{J⋆ (p) + tH (p)− ⟨x, p⟩} , (3.3.6)

where the Fenchel-Legendre transform g⋆ : Rn → R ∪ {+∞} of a convex, proper, lower

semicontinuous function g : Rn → R ∪ {+∞} is defined by [45]

g⋆ (p) = sup
x∈Rn

{⟨p, x⟩ − g (x)} . (3.3.7)

Following the basic definition of the Fenchel-Legendre transform, (3.3.6) can be written

[29] as

φ (x, t) = (J⋆ + tH)⋆ (x) .

This shows that value function is itself a Fenchel-Legendre transform. It follows from a

well known property of the Fenchel-Legendre transform [30] that the unique minimizer

of (3.3.6) is the gradient of the value function

∇xφ (x, t) = arg min
p∈Rn

{J⋆ (p) + tH (p)− ⟨x, p⟩} ,

provided the gradient exists. So by solving for the value function using (3.3.6), we

automatically solve for the gradient.

3.3.2 General Linear Models

Now consider the following linear state space model

ẋ (t) = Ax (t) +B (t)u (t) , (3.3.8)
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with A ∈ Rn×n, B ∈ Rn×m, state vector x ∈ Rn, and control input u ∈ C ⊂ Rm. We can

make a change of variables

z (t) = e−tAx (t) , (3.3.9)

which results in the following system

ż (t) = e−tAB (t)u (t) , (3.3.10)

with terminal cost function now defined in z with φ (z, 0) = Jz (z, 0) = Jx
(
eTAz

)
, which

depends on terminal time, T . Notice that the system is of the form presented in (3.3.1),

with the exception that the system is now time-varying. It was shown in [21, Section

5.3.2, p. 215] that the Hopf formula in (3.3.6) can be generalized for a time-varying

Hamiltonian to find the value function of the system in (3.3.10) with

φ (z, t) = −min
p∈Rn

{
J⋆
z (p, t) +

∫ t

0

H (p, s) ds− ⟨z, p⟩
}
, (3.3.11)

with the time-varying Hamiltonian defined as

H (p, t) = max
c∈C

〈
e−(T−t)AB (T − t) c, p

〉
.

The change of variable to (T − t) is required for time since the problem was converted

to an initial value formulation from a terminal value formulation in (3.3.4).

3.3.3 Linear Differential Games

Now consider the system

ẋ (t) = Ax (t) +B (t)u(t) +D (t)w (t) , (3.3.12)
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with D (t) ∈ Rn×ℓ, which is equal to (3.3.8) with an extra term, D (t)w (t), added. We

assume that the additional control input w (t) is adversarial and bounded by w (t) ∈ D ⊂

Rℓ. The cost functional becomes

G (x, t, u, w) =

∫ T

t

L (u (t) , w (t)) dt+ J (x (T )) , (3.3.13)

where x (T ) is the solution of (3.3.12) at terminal time, T . We assume that the goal of

the adversarial control input w (t) is to increase the cost functional (3.3.13), in direct

contradiction with the input u (t), which we are designing in an attempt to minimize the

cost. This system forms a differential game [40], and has a corresponding lower value

function

V (x, t) = inf
u∈C

sup
w∈D

G (x, t, u, w) ,

and upper value function

U (x, t) = sup
w∈D

inf
u∈C

G (x, t, u, w) .

As derived in [46], the upper and lower value functions are viscosity solutions of possibly

non convex HJ equation. We can define the following upper and lower Hamiltonians as

H+ (p, t) = sup
c∈Rm

inf
d∈Rℓ

{⟨−f (t, c, d) , p⟩ − L (c, d)} ,

H− (p, t) = inf
d∈Rℓ

sup
c∈Rm

{⟨−f (t, c, d) , p⟩ − L (c, d)} .

The running cost becomes

L (u,w) = IC (u)− ID (w) ,

45



Time-Optimal Collaborative Guidance Using the Generalized Hopf Formula Chapter 3

where ID is the indicator function of the convex set D. If the Hamiltonians H+ and H−

coincide, then from [46]

H+ (p, t) = H− (p, t) = H± (p, t) =⇒ U (x, t) = V (x, t) .

We can apply the same change of variables from (3.3.9) to get

ż (t) = e−tAB (t)u (t) + e−tAD (t)w (t) , (3.3.14)

and then we can find a candidate solution of the value function φ (z, t) = U (z, t) =

V (z, t) with the generalized Hopf formula

φ (z, t) = −min
p∈Rn

{
J⋆
z (p, t) +

∫ t

0

H± (p, s) ds− ⟨z, p⟩
}
,

with the time-varying, non convex Hamiltonian given by

H± (p, t) = max
c∈C

〈
e−(T−t)AB (T − t) c, p

〉
−max

d∈D

〈
e−(T−t)AD (T − t) d, p

〉
. (3.3.15)

In general, if H+ (p, t) ̸= H− (p, t), then the Hopf formula in (3.3.15) does not hold.

3.4 Time-Optimal Control with the Hopf Formula

Following the methods presented above in (3.3.14), we have the transformed system

(3.2.4) as

ż (t) = e−tÂB̂ap (t) + e−tÂD̂ae (t) ,
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and the Hamiltonian is the dual norm of the control set

H (p, t) =
∥∥∥Qp (T − t) B̂†e−(T−t)Â†

p
∥∥∥
1

(3.4.1)

−
∥∥∥QeD̂

†e−(T−t)Â†
p
∥∥∥
1
,

where we denote by ∥(·)∥1 the 1-norm. We choose a convex terminal cost function J (z, 0)

such that 
J (z, 0) < 0 for any z ∈ int Ω,

J (z, 0) > 0 for any z ∈ (Rn \ Ω) ,

J (z, 0) = 0 for any z ∈ (Ω \ int Ω) ,

(3.4.2)

where intΩ denotes the interior of Ω. The intuition behind defining the terminal cost

function this way is simple. If the value function φ (z0, T ) < 0 for some z0 and T , then

there exists a control u (t) that drives the state from the initial condition at z0, to the

final state, z (T ) inside the set Ω. The smallest value of time T , such that φ (z0, T ) = 0

is the minimum time to reach the set Ω, starting at state z0. The control associated

with the minimum time to reach is the time-optimal control. The ellipsoid terminal set

defined in (3.2.3) results in a quadratic terminal cost function

Jx (x) =
〈
x,W−1x

〉
− 1,

After variable substitution the cost function becomes

Jz (z) = ⟨z, V (0) z⟩ − 1,
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with V (t) = e(T−t)Â†
W−1e(T−t)Â. Following the property that the Fenchel-Legendre

transform of a norm function is the dual norm [47], we have

J⋆
z (p, t) = 1 +

1

4

〈
p, V (0)−1 p

〉
.

The generalized Hopf formula requires the integration of the Hamiltonian which is

approximated by Riemann sum quadrature [48] with step size h

∫ t

0

H (p, t) ds ≈ h
∑
sk∈S

H (p, sk) ,

where S denotes the set of discrete time samples. Rectangular quadrature with fixed step

size h was used to pre-compute the time samples sk from time 0 to T , which requires

only a simple sum at run time to evaluate the integral. We can approximate the matrix

exponential terms efficiently at fixed time intervals, with bounded error, using [27].

To solve the Hopf formula in (3.3.11), we are performing an unconstrained minimiza-

tion problem where the objective function is non-smooth. Non-smooth unconstrained

minimization problems can be solved in a variety of ways. However, because we can

explicitly derive the gradient and Hessian, this directs the use of a relaxed Newton’s

method [49]. We chose for the initial guess of Newton’s method p0 = V (0)z
2

, the mini-

mum of the Hopf objective without the Hamiltonian integral. The initial step size is 1

(full Newton), and is halved whenever the function value increases during an iteration

(without updating the search direction). The minimization is terminated when the norm

of the change in iterations is small. Most importantly for efficient implementation, the

gradient and Hessian (ignoring discontinuities), denoted as ∇p and Hp, respectively, for
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the minimization can be found directly. The gradient is

∇pφ (z, t) =
V (0)−1 p

2
− z

+ h
∑
sk∈S

(
Qp (sk)Ep (sk) sgn

(
Ep (sk)

† p
)

−Qe (sk)Ee (sk) sgn
(
Ee (sk)

† p
))

,

with Ep (t) = e−(T−t)ÂB̂, and Ee (t) = e−(T−t)ÂD̂. Additionally the Hessian is

Hp (φ (z, t)) =
V (0)−1

2
.

To find the optimal control to the desired convex terminal set Ω, we proceed by

solving for the T ∗, the minimum time to reach the boundary of the set Ω. This is solved

numerically with

T ∗ = argmin
t<T

φ (z0, t) .

If the minimum time to reach T ∗ is greater than total available time T , then the set Ω

is not reachable in time T . The optimal control can then be found from the following

relation

∇pH (∇zφ (z0, T
∗) , T ∗) = e−tÂB̂ (t) a∗p + e−tÂD̂ (t) a∗e.

To induce collaborative guidance we proceed to solve for the joint terminal set in

(3.2.6). Let Ji represent terminal cost function of vehicle i with shape matrix Wi, then

the terminal cost function of the collaborative system is

J (z, t) = min
i=1,...,k

Ji (z, t) . (3.4.3)
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It was shown in [10] that max/min-plus algebra [50, 51, 52] can be used to generalize

the Hopf formula to solve for non-convex initial data that can be formed as the union

of convex sets, such as the terminal cost considered in (3.2.6). This is true provided

that the Hamiltonian is convex. In general, the Hamiltonian of the differential game

given in (3.4.1) is non-convex. But consider the case where Qe ≤ Qp and the system is

constrained to the form in (3.2.2) and (3.2.4), then (3.4.1) is convex and max/min-plus

algebra holds. To find the value function with the terminal set given by (3.4.3), we solve

the k initial value problems of the form


∂ϕi

∂t
(z, t) +H (t,∇zϕi (z, t)) = 0 inRn × (0,+∞) ,

ϕi (z, 0) = Ji (z) ∀z ∈ Rn,

(3.4.4)

and take the pointwise minimum over the k solutions ϕi (z, t), each of which has convex

initial data, with

φ (z, t) = min
i=1,...,k

ϕi (z, t) .

Each ϕi (z, t) in (3.4.4) are independent of each other, and can be computed in parallel.

In the case where the (3.4.1) is non-convex, then the pointwise minimum is only an upper

bound of the true value function; see [53] for more details.

3.5 Results

The above control solution has been integrated into a closed loop 2-on-1 pursuit-

evasion 3 degree of freedom (3DOF) simulation using MATLAB R2016a and Simulink

at 120Hz with Euler integration. This included using a third order autopilot for each

pursuer, and using the gradient of the value function to find optimal evader control.

Preliminary results solved for the optimal control on average 40−83ms on a 3 GHz Intel
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Figure 3.5.1: The trajectory of Example 1, a tail chase scenario. The red is the
trajectory of the evader. The pursuing vehicles are shown in green and blue. Blue
indicates at that time, it was the pointwise minimum of the k initial value problems
in (3.4.4), while green was not.

Core i7 950.

As a post-process, the evader’s inertial state is found by solving the modified Dubin’s

car initial-value problem (3.2.1) relative to a fixed origin with zero initial conditions

and known inputs. Adding the evader’s inertial state to the vehicle’s relative state and

correcting for the induced rotational motion provides the vehicle’s inertial state.

The first example uses a simple geometry in the tail-chase scenario and the engage-

ment trajectory is shown in Figure 3.5.1. The capture radius is r = 3m, evader control

is limited to ∥ae∥ ≤ 10m/s2, and both pursuers have control bounds that decrease in

time with

∥ap∥ ≤ (t− 40)2

40
m/s2,

when 0 ≤ t ≤ 40, and 0 otherwise. The evader is assumed to travel at speed Ve = 50m/s

and the pursuers at speed 255.225m/s (0.75 Mach). Both pursuing vehicles, initially

launched at 4000m from the evader, are simultaneously traveling directly at the evader.

51



Time-Optimal Collaborative Guidance Using the Generalized Hopf Formula Chapter 3

Notice that both pursuers separate as to surround and contain the evader. The miss

distance was 0.879m < r = 3m and time to intercept was 19.533 seconds. In this

example, Qe ≤ Qp and the Hamiltonian remained convex for the duration of the simulated

engagement.

The second example utilized a similar engagement, but with head-on aspect config-

uration. The parameters are the same as example 1, but a 6000m initial separation.

In this case, the initial conditions are such that during simulation, the linearization er-

ror in (3.2.2) is large. When this occurs, the solution of the zero level set time maybe

higher than available flight time T . This indicates the set Ω is not reachable (due to

the linearization error) and in our simulations reverts to proportional navigation (PN)

until the set Ω is considered reachable. This can easily be countered by increasing the

control bound of the evader to account for linearization error. Additionally, the convexity

assumption of Qe ≤ Qp is violated in this example, but only for the last 0.158 seconds, or

about 0.78% of the engagement. With both vehicles launched simultaneously, intercept

still occurred, with a miss distance of 2.34m. Time to intercept was 20.158 seconds and

the flyout paths are given in Figure 3.5.2.

3.6 Conclusions and Future Work

The generalized Hopf formula provide new capabilities for solving high-dimensional

optimal control and differential games, such as the pursuit-evasion guidance presented

here. Additionally, the above work can be used for evasion strategies that could be of

interest for collision avoidance problems. Future work will focus on extending the gener-

alized Hopf formula for certain classes of non-linear systems, such as feedback linearizable

systems [54], and apply splitting algorithms [10, 13, 23] for efficient optimization when

the gradient and Hessian is not explicitly known.
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Figure 3.5.2: The trajectory of Example 2, a head-on scenario. The red is the trajec-
tory of the evader. The pursuing vehicles are shown in green and blue. Blue indicates
at that time, it was the pointwise minimum of the k initial value problems in (3.4.4),
while green was not. Black is when Ω was considered not reachable due to high
linearization error and proportional navigation was used.
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Part II

Decomposition Approaches to

Solving Hamilton–Jacobi Equations
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Decomposition-based approaches to large scale systems is presented. In this family

of techniques, we leverage the fact that some problems are too large to be effectively

computed using existing methods but can be decomposed into smaller subproblems.

Each of these subproblems are small enough to be efficiently computed using existing

methods, and then the indivdual subproblem solutions can be aggregated to find the

viscosity solution of the original problem. Decomposition methods are well suited for

systems comprised of multiple vehicles collaborating toward a joint goal and one such

technique is shown in Chapter 4. Motivated by a sensor selection problem given in

Chapter 5, we create a hybrid method of lines approach by decomposing the state space

into two parts: a low dimensional vehicle dynamics part, for which we construct a grid,

and a high dimensional where no grid is needed.
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Chapter 4

A Hamilton–Jacobi Formulation for

Optimal Coordination of

Heterogeneous Multiple Vehicle

Systems

4.1 Introduction

Multi-robot motion planning presents several challenges, and key among them are

trajectory planning and formation control, as well as the assignment of vehicles to goal

states. When the assignment of vehicles to goal states is made beforehand, many meth-

ods have been proposed. These include control theory approaches [43, 55], graph-based

techniques [56], and optimization methods [57, 58]. Approximations to assist in dimen-

sionality reductions have also been proposed, such as sequential methods [59] and hybrid

approaches [60, 61].

When the goal states of multi-vehicle teams are not set a priori, it is necessary to
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Figure 4.1.1: An illustration of the vehicle coordination problem. If a vehicle’s posi-
tion in the formation is not assigned a priori, then many different configurations are
possible to achieve the desired formation, each with a differing system objective cost.
Two such possibilities are shown, one in red and an alternate assignment in blue.

determine which vehicle to allocate to which terminal goal. There is a large body of liter-

ature developing allocation and assignment algorithms [62], and applying these methods

to engineering problems has appeared in diverse forms including sensor coverage [63],

weapon-target assignment [64], or network routing [65]. Dynamics are not considered in

this body of work, which commonly study worst-case system performance under equilib-

rium conditions using a game-theoretical framework [66, 67, 68]. Without consideration

of dynamics, these methods have limited applicability to vehicle coordination problems

and there exists a technical gap relating vehicle-goal allocation and motion planning, as

most prior work assumes each is done independently. The critical dependency between

assignment and trajectory planning is illustrated in Figure 4.1.1.

There have been recent attempts to close this gap as in [69]. But this work only

evaluates discrete spatial waypoints on a rectangular grid without considering vehicle

dynamics, and therefore the paths generated are not feasible for most physical systems.

Turpin et al. [70] considered continuous dynamics, but was restricted to only single

integrator dynamics and assumes homogeneous teams of vehicles. Morgan et al. [71]
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generalizes this concept to linear, discrete-time dynamics and constructs a non-linear

programming problem that is solved with sequential convex programming in conjunction

with an auction algorithm [62]. However, both [71] and [69] restrict the cost function to

one of additive individual vehicle weights (similar to the cost function presented in [62]),

which excludes many vehicle optimization problems of interest, including assembling the

desired formation shape in minimal time.

We present how the optimal assignment and trajectory can be found simultaneously

from the viscosity solution to a single Hamilton–Jacobi PDE, a necessary and sufficient

condition for optimality. We assume the vehicles can each have unique linear dynamics.

Remarkably, we show that the global viscosity solution can be found as the solution to a

linear bottleneck assignment problem (LBAP) [72]. This fact can be utilized to construct

a level set method that has polynomial computational scaling with the number of vehicles

and still ensures a global optimum.

Our formulation has a close relation to reachability analysis which can be useful for

the design and analysis of heterogeneous systems. When the dynamics of some vehicles

differ greatly from the rest, some formations may not be feasible (e.g. a slow-moving

vehicle attempting to join a formation with a much faster vehicle). The zero sub-level set

of the viscosity solution of a related HJ PDE defines an implicit surface representation

of the backwards reachable set [7], and from this one determines whether the formation

can be achieved given the unique collection of vehicle dynamics.

Traditionally, numerical solutions to HJ equations require a dense, discrete grid of the

solution space [5, 6]. Computing the elements of this grid scales poorly with dimension

and has limited use for problems with dimension greater than four. The exponential

dimensional scaling in optimization is sometimes referred to as the “curse of dimension-

ality” [8, 9]. A new result in [10] discovered a numerical solution based on the Hopf

formula [19] that does not require a grid and can be used to efficiently compute solu-
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tions of a certain class of Hamilton–Jacobi PDEs. However, that only applies to systems

with time-independent Hamiltonians of the form ẋ = f (u (t)), and has limited use for

general linear control problems. Recently, the classes of systems were expanded upon

and generalizations of the Hopf formula are used to solve optimal linear control problems

in high-dimensions [73] and differential games as applied to multi-vehicle, collaborative

pursuit-evasion problems [11].

The key contributions of this paper are to formulate the multi-vehicle coordination

problem as a single Hamilton–Jacobi equation, show that the solution of which can be

found from an LBAP, and use the generalized Hopf formula to simultaneously solve for

optimal trajectory, vehicle control, and goal assignment. By utilizing the generalized

Hopf formula, we create a level-set method to find the viscosity solution of the HJ in a

computationally efficient manner.

We introduce a multi-vehicle dynamical system and formulate the coordination prob-

lem in Section 4.2. Section 4.3 formulates the optimal vehicle coordination problem as

the viscosity solution to a single Hamilton–Jacobi PDE. Section 4.4 constructs a level-

set method for the multi-vehicle coordination problem and utilizes the generalized Hopf

formula as a computational tool to find the viscosity solution to the HJ PDE of the

joint, mutli-vehicle system. Section 4.5 shows the method as applied to several exam-

ples including a case of planar motion planning with 4 vehicles. This example shows

how assignment and path planning cannot be decoupled and even if a single vehicle has a

different initial condition, it may result in a different assignment for optimal coordination.
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4.2 Problem Formulation

We consider a system that consists ofN vehicles and each vehicle, i ∈ V = {1, . . . , N},

has linear dynamics

d

ds
xi (s) := Aixi (s) +Biαi (s) , (4.2.1)

for s ∈ [0, t], where xi ∈ Rni is the system state and αi (s) ∈ Ai ⊂ Rmi is the con-

trol input, constrained to a convex admissible control set Ai. We add the assumption

that no eigenvalue of matrix Ai has a strictly positive real part. We let [0, t] ∋ s 7→

γi (s;xi, αi (·)) ∈ Rni denote a state trajectory for vehicle i that evolves in time with

measurable control sequence αi (·) ∈ Ai, according to (4.2.1) starting from initial state

xi at s = 0. The trajectory γi is a solution of (4.2.1) in that it satisfies (4.2.1) almost

everywhere:

d

ds
γi (s;xi, αi (·)) = Aiγi (s;xi, αi (·)) +Biαi (s) ,

γi (0;xi, αi (·)) = xi.

4.2.1 Multi-Vehicle Model

For the set of N vehicles, we construct a joint state space with state vector x =

(x1, . . . , xi, . . . , xN) ∈ Rn and control α = (α1, . . . , αi, . . . , αN) ∈ A = A1 × · · · × Ai ×
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. . .×AN ⊂ Rm which is written as follows

ẋ =



ẋ1
...

ẋi
...

ẋN


=



A1 · · · 0

. . .

... Ai
...

. . .

0 · · · AN





x1
...

xi
...

xN



+



B1 · · · 0

. . .

... Bi
...

. . .

0 · · · BN





α1

...

αi

...

αN


=⇒ ẋ = Ax+Bα, (4.2.2)

We reiterate the above definition of the joint state space with the fact that when quantities

x, A, B, γ, and α appear without subscripts, they refer to the joint system in (4.2.2), and

when subscripts are used, they refer to a specific individual vehicle as defined in (4.2.1).

4.2.2 Vehicle Coordination

We assume there exists a set of N goals, and for each vehicle i ∈ V we associate closed

convex sets Ωi,j ⊂ Rni , j ∈ V with the understanding that xi ∈ Ωi,j means the vehicle

i is assigned to goal j. Our goal is to make sure that we have one vehicle at each goal,

but it does not matter which vehicle is at each goal. This goal can be expressed by the

requirements that the multi-vehicle state, x, belongs to the following goal set

Θ :=
{
x ∈ Rn : ∃σ ∈ SN s.t.∀i ∈ V , xi ∈ Ωi,σ(i)

}
, (4.2.3)
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where SN denotes the set of all permutations of V . We represent Θ implicitly with the

function J : Rn → R such that

Θ = {x ∈ Rn|J (x) ≤ 0} , (4.2.4)

and use it to construct a cost functional for the system trajectory γ (s;x, α (·)), given

terminal time t as

R (t, x, α (·)) =
∫ t

0

C (α (s)) ds+ J (γ (t;x, α (·))) , (4.2.5)

where the function C : Rm → R ∪ {+∞} represents the rate that cost is accrued over

time. The value function φ : Rn × (0,+∞) → R is defined as the minimum cost, R,

among all admissible controls for a given initial state x with

φ (x, t) = inf
α(·)∈A

R (t, x, α (·)) . (4.2.6)

4.3 Hamilton–Jacobi Equations For Optimal Coor-

dination

The value function in (4.2.6) satisfies the dynamic programming principle [17, 18] and

also satisfies the following initial value Hamilton–Jacobi (HJ) equation with φ being the

viscosity solution of

∂φ

∂s
(x, s) +H (s, x,∇xφ (x, s)) = 0, (4.3.1)

φ (x, 0) = J (x) ,
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for s ∈ [0, t], where the Hamiltonian H : (0,+∞)× Rn × Rn → R ∪ {+∞} is defined by

H (s, x, p) = −x⊤A⊤p+ sup
α∈Rm

{⟨−Bα, p⟩ − C (α)} , (4.3.2)

where p := ∇xφ (x, s) in (4.3.2) denotes the costate. We denote by [0, t] ∋ s 7→

λ (s;x, α (·)) ∈ Rn the costate trajectory that can be shown to satisfy almost everywhere:

d

ds
λ (s;x, α (·)) = ∇xf (γ (s;x, α (·)) , s)⊤ λ (s;x, α (·))

λ (t;x, α (·)) = ∇xφ (γ (t;x, α (·))) ,

with initial costate denoted by λ (0;x, α (·)) = p0. With a slight abuse of notation, we

will hereafter use λ (s) to denote λ (s;x, α (·)), when the initial state and control sequence

can be inferred through context with the corresponding state trajectory, γ (s;x, α (·)).

4.3.1 System Hamiltonian

We consider a time-optimal formulation with

C (α) = IA (α) ,

where IA : Rm → R∪{+∞} is the characteristic function of the set of admissible controls

and is defined by

IA (α) =


0 ifα ∈ A

+∞ otherwise.

In this case, the integral term in (4.2.5) disappears (as long as α remains in A) and

R (t, x, α (·)) is simply the value of J (γ (t;x, α (·))) at the terminal time, t. For this
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problem

φ (x, t) = inf
α(·)∈A

J (γ (t;x, α (·))) ≤ 0

means that there exists a feasible trajectory for the vehicles the ends at the state x (t) ∈ Θ;

whereas φ (x, t) > 0 means that such trajectories do not exist under the system dynamics

and initial conditions. Since each vehicle has independent dynamics, the Hamiltonian in

(4.3.2) is of the form

H (s, x, p) =
∑
i

Hi (s, xi, pi) , (4.3.3)

where each vehicle’s Hamiltonian is given by

Hi (s, xi, pi) =− x⊤i A
⊤
i pi (4.3.4)

+ sup
αi∈Rmi

{⟨−Biαi, pi⟩ − IAi
(αi)} .

4.3.2 Linear Bottleneck Assignment

Our goal is solving the Hamilton–Jacobi PDE in (4.3.1), and any J (x) that satisfies

(4.2.4) is, in general, non-convex and presents numerical challenges. We show that we

can overcome this challenge by alternatively solving for the global value function with

the following linear bottleneck assignment problem [72]:

φ (x, t) = min
σ∈SN

max
i∈V

ϕi,σ(i) (xi, t) , (4.3.5)

where ϕi,j (xi, t) is the viscosity solution to

∂ϕi,j

∂s
(xi, s) +Hi (s, x,∇xϕi,j (xi, s)) = 0, (4.3.6)

ϕi,j (xi, 0) = Ji,j (xi) ,
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with Hamiltonian defined by (4.4.9). The function Ji,j : Rni → R is an implicit surface

representation of Ωi,j such that

Ωi,j = {xi ∈ Rni |Ji,j (xi) ≤ 0} . (4.3.7)

The solution to (4.3.5) can be found from ϕi,j using the appropriate linear bottleneck

assignment algorithms (for example [74, Section 6.2]), requiring only N2 evaluations of

lower dimensional viscosity solutions and avoiding computation involving all |SN | = N !

permutations of vehicle-goal pairs. Also of note is that if each HJ equation (4.3.6) has

convex initial data, it enables the use of computationally efficient techniques that can

guarantee convergence to the appropriate viscosity solution. Additionally, since each of

the solutions are independent, the N2 solutions can be computed in parallel.

We introduce a set of mild regularity assumptions that guarantee Hamilton–Jacobi

equations have a unique viscosity solution [75, Chapter 7, p. 63]:

1. Each Hamiltonian

[0, t]× Rni × Rni ∋ (s, xi, pi) 7→ Hi (s, xi, pi) ∈ R, ∀i

is continuous.

2. There exists a constant ci > 0 such that for all (s, xi) ∈ [0, t] × Rni and for all

p′, p′′ ∈ Rni , the following inequalities hold

|Hi (s, xi, p
′)−Hi (s, xi, p

′′)| ≤ ρi (xi) ∥p′ − p′′∥ , ∀i

and

|Hi (s, xi, 0)| ≤ ρi (xi) , ∀i
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with ρi (xi) = ci (1 + ∥xi∥).

3. For any compact set M ⊂ Rni there exists a constant κi (M) > 0 such that for all

x′, x′′ ∈M and for all (s, pi) ∈ [0, t]× Rni the inequality holds, ∀i

|Hi (s, x
′, pi)−Hi (s, x

′′, pi)| ≤ µi (pi) ∥x′ − x′′∥ ,

with µi (pi) = κi (M) (1 + ∥pi∥).

4. Each terminal cost function

Rni ∋ xi 7→ Ji,j (xi) ∈ R, ∀i, j

is continuous.

Lemma 4.1. If each vehicle Hamiltonian, Hi (s, xi, pi), meets assumptions 1-3, then the

Hamiltonian defined in (4.3.3) also meets assumptions 1-3.

The proof is given in the appendix.

Theorem 4.1. Under assumptions 1-4, ϕi,j is a unique viscosity solution to (4.3.6) for

all i, j, and there exists a J : Rn → R that satisfies (4.2.4) such that with the Hamiltonian

given by (4.3.3), (4.3.5) is a viscosity solution to (4.3.1).

Proof. We will prove the theorem constructively by proposing a particular J : Rn → R

given as

J (x) = min
σ∈SN

Jσ (x) , (4.3.8)

with

Jσ (x) := max
i∈V

Ji,σ(i) (xi) , (4.3.9)
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where Ji,σ(i) (xi) is the implicit representation of Ωi,j, defined in (4.3.7), with i, j = i, σ (i).

We see that for any σ ∈ SN when xi ∈ Ωi,σ(i), ∀i ∈ V =⇒ Ji,σ(i) (xi) ≤ 0, ∀i which

implies Jσ (x) ≤ 0. We also see if there exists an i such that xi /∈ Ωi,σ(i), then Ji,σ(i) > 0

and implies Jσ (x) > 0. Therefore the J proposed in (4.3.8) satisfies (4.2.4) and is an

implicit surface representation of the set Θ. Furthermore, since by assumption each

Ji,j (xi) is continuous, then (4.3.9) is convex as the max of a finite number of continuous

functions is also continuous. This implies (4.3.8) is continuous as the minimum of a finite

number of coninuous functions is continuous. Therefore (4.3.8) satisfies assumption 4.

From Lemma 4.1, the system Hamiltonian defined in (4.3.3) meets assumptions 1-3

and implies that (4.3.1) has a unique viscosity solution, denoted as φHJ (x, t), when the

initial cost function is given by (4.3.8) [75, Theorem 8.1, p. 70]. The uniqueness of the

solution φHJ (x, t) implies that the viscosity solution is equivalent to the value function

in (4.2.6). It follows that

φHJ (x, t) = inf
α(·)∈A

J (γ (t;x, α (·))) , (4.3.10)

since C (α) = 0 when α ∈ A. Denoting by α∗ as the control that optimizes (4.3.10), we

have

φHJ (x, t) = J (γ (t;x, α∗ (·))) .

Substituting (4.3.9) and (4.3.8) we have

φHJ (x, t) = min
σ∈SN

max
i∈V

Ji,σ(i) ([γ (t;x, α
∗ (·))]i) , (4.3.11)

where we use the notation [γ (t;x, α∗ (·))]i to represent the i-th block of the vector

γ (t;x, α∗ (·)). Likewise (4.3.6) has a unique viscosity solution,ϕi,j, for each i, j with
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initial cost given (4.3.7), and as such

ϕi,σ(i) (xi, t) = inf
αi(·)∈Ai

Ji,σ(i) (γi (t;xi, αi (·)))

= Ji,σ(i) (γi (t;xi, α
∗
i (·))) , (4.3.12)

for each i and with α∗
i denoting the control that optimizes (4.3.12). Note that if

Ji,σ(i) ([γ (t;x, α
∗ (·))]i) < Ji,σ(i) (γi (t;xi, α

∗
i (·))) it would contradict (4.3.12) that α∗

i is

the optimal control. Also if Ji,σ(i) ([γ (t;x, α
∗ (·))]i) > Ji,σ(i) (γi (t;xi, α

∗
i (·))), then it

would contradict (4.3.10) that α∗ is the optimal control of the entire system. Therefore,

Ji,σ(i) ([γ (t;x, α
∗ (·))]i) = Ji,σ(i) (γi (t;xi, α

∗
i (·))) = ϕi,σ(i) (xi, t) and our value function in

(4.3.10) becomes

φHJ (x, t) = min
σ∈SN

max
i∈V

ϕi,σ(i) (xi, t) ,

and we arrive at our result.

4.4 A Level Set Method with the Generalized Hopf

Formula

First, we introduce the Fenchel–Legendre transform of a convex, proper, lower semi-

continuous function g : Rℓ → R∪{+∞}, denoted as g⋆ : Rℓ → R∪{+∞}, and is defined

as [20]

g⋆ (p) = sup
y∈Rℓ

{⟨p, y⟩ − g (y)} . (4.4.1)

We propose to find the viscosity solutions of (4.3.6) using the generalized Hopf formula.
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Theorem 4.2. Each viscosity solution of (4.3.6) can be found from the formula

ϕi,j (xi, t) =− min
pi∈Rni

{
J⋆
i,j

(
e−tA⊤

i pi

)
, (4.4.2)

+

∫ t

0

Ĥi (s, pi) ds− ⟨xi, pi⟩

}

with

Ĥi (s, pi) = sup
α∈Ai

{〈
−e−sAiBiαi, pi

〉}
. (4.4.3)

Proof. Proceeding similar to [11], we apply a change of variables to (4.2.1) with

zi (s) = e−sAixi (s) , (4.4.4)

which results in the following system

d

ds
zi (s) = e−sAiBiαi (s) . (4.4.5)

By utilizing this change of variables, we construct an equivalent HJ equation

∂ϕ̃i,j

∂s
(zi, s) + Ĥi

(
s,∇zϕ̃i,j (zi, s)

)
= 0, (4.4.6)

ϕ̃i,j (z, 0) = Ji,j
(
etAzi

)
.

From Lemma A.1 (given in the appendix), (4.4.3) meets assumption 1-3, and by compo-

sition rule Ji,j
(
etAzi

)
is continuous [76, Theorem 4.7] and meets assumption 4. Therefore

(4.4.6) has a unique viscosity solution that is equivalent to the cost functional

ϕ̃i,j (zi, t) = inf
αi(·)∈Ai

Ji,j
(
etAξi (t; zi, αi (·))

)
,
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where ξi (s; zi, α (·)) is a solution trajectory that satisfies (4.4.5) almost everywhere. Since

zi (t) = e−tAixi (t) ,

we have

ϕ̃i,j (zi, t) = inf
αi(·)∈Ai

Ji,j
(
etAξi (t; zi, αi (·))

)
= inf

αi(·)∈Ai

Ji,j (γi (t;xi, αi (·)))

= ϕi,j (xi, t) ,

noting that since xi = γi (0;xi, αi (·)) by the transform (4.4.4) implies zi = xi at t = 0.

Thus, ϕ̃ (zi, t) = ϕ (xi, t) and we can find ϕ (xi, t) by finding the viscosity solution to

(4.4.6).

Since Ωi,j is assumed closed and convex, this implies Ji,j is convex and by assumption

4 is continuous in zi. By assumption 1, H (pi) is continuous in pi, therefore (4.4.2) gives

an exact, point-wise viscosity solution for (4.4.6) [21, Section 5.3.2, p. 215].

Formula (4.4.2) shows that we can compute a viscosity solution to (4.4.6) by solving a

finite dimensional optimization problem. This avoids constructing a discrete spatial grid,

and is numerically efficient to compute even when the dimension of the state space is large.

Additionally, no spatial derivative approximations are needed with Hopf formula-based

methods, and this eliminates the numeric dissipation introduced with the Lax–Friedrichs

scheme [77], which is necessary to maintain numeric stability in grid-based methods.
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4.4.1 Numerical Optimization of the Hopf Formula

We transcribe the Hopf formula into a non-linear programming problem by approx-

imating the integral in (4.4.2) with an N -point quadrature rule sampled on the time

grid

πN = {sk : k = 0, . . . , N} ,

with sk ∈ [0, t] and corresponding weights wk. Additionally, we make a simple, invertible

change of variable p̃i = e−tA⊤
i pi and substituting into (4.4.2) results in the following

unconstrained optimization problem that solves (4.4.2):

{
min
p̃i

J⋆
i,j (p̃i) +

∑N
j=0wjĤi (sk, p̃i) −

〈
etAixi, p̃i

〉
, (4.4.7)

with Ĥi now being defined as

Ĥi (s, p̃i) = sup
αi∈Ai

{〈
−Biαi, e

sA⊤
i p̃i

〉}
. (4.4.8)

The variable transformation is done so that when the matrix A has at least one eigen-

value with strictly negative real part, we avoid computation of e−sA⊤
which would have

exponentially unstable poles since we are evaluating the matrix exponential of −A. This

divergence would cause sensitivity in the evaluation of the Hopf formula in (4.4.2) with

respect to small changes of p. By utilizing the variable transformation and optimizing

(4.4.7), we avoid this sensitivity.

Remark 4.1. Often the expression in (4.4.8) is known in closed form and we present one

such common case. Recall that (·)⋆ denotes the Fenchel–Legendre transform of a function

defined in (4.4.1), and suppose Ai is the closed convex set defined as

Ai := {u : ∥u∥ ≤ 1} ,
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where ∥(·)∥ is any norm. Then (IAi
)⋆ defines a norm, which we denote with ∥(·)∥∗, which

is the dual norm to ∥(·)∥ [20]. From this we write (4.4.8) as

Ĥi (s, p̃i) =
∥∥∥−B⊤

i e
sA⊤

i p̃i

∥∥∥
∗
. (4.4.9)

4.4.2 Time-Optimal Control to a Goal Set

The task of determining the control that drives the system into Θ in minimal time

can be determined by finding the smallest t such that

φ (x, t) ≤ 0. (4.4.10)

When the system (4.2.1) is constrained controllable, then the set of times such that x is

reachable with respect to Θ contains the open interval [t′,∞) [78]. This insures that if x

is outside the set Θ at time t = 0, then φ (x, 0) > 0 and there exists a time t′ such that

φ (x, τ) < 0 for all τ > t′. This implies standard root-finding algorithms can be used

to find (4.4.10). As noted in [73], we solve for the minimum time to reach the set Θ by

constructing a newton iteration, starting from an initial guess, t0, with

tk+1 = tk −
φ (x, tk)
∂φ
∂t

(x, tk)
, (4.4.11)

where φ (x, tk) is the solution to (4.3.1) at time tk. The value function must satisfy the

HJ equation

∂φ

∂t
(x, tk) = −H (s, x,∇xφ (x, tk)) ,

where∇xφ (x, tk) =
(
etkA

⊤
1 p̃∗1, · · · , etkA

⊤
N p̃∗N

)
and each p̃∗ is the argument of the minimizer

in (4.4.7). We iterate (4.4.11) until convergence at the optimal time to reach, which we

denote as t∗. This process is summarized in Algorithm 1.
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The optimal control and trajectory for each vehicle is found directly from the nec-

essary conditions of optimality established by Pontryagin’s principal [79] by noting the

optimal trajectory must satisfy

d

ds
γ∗i (s;xi, α

∗
i (·)) = −∇pH (s, xi (s) , λ

∗
i (s))

= Aiγi (s;xi, α
∗
i (·))

+Bi∇p

∥∥−B⊤
i λ

∗
i (s)

∥∥
∗ ,

where λ∗i is the optimal costate trajectory and is given by

λ∗i (s) = e−(t∗−s)A⊤
i p̃∗i .

This implies our optimal control is

α∗
i (s) = ∇p

∥∥∥−B⊤
i e

−(t∗−s)A⊤
i p̃∗i

∥∥∥
∗
, (4.4.12)

for all time s ∈ [0, t∗], provided the gradient exists.

4.5 Results

We present results for two examples. For the first we choose a toy example of two

vehicles, each with differing single integrator dynamics. The purpose of this example

is that it allows easy visualization of the level set propagation and the solution can be

verified by comparing with methods such as [32], which cannot be applied to the higher

dimensional second example to follow. The LBAP was solved using [74, Algorithm 6.1]

and the optimization (4.4.7) used sequential quadratic programming [80, Chapter 18]

with initial conditions p̃i = etAixi (0) for each vehicle. To prevent a singular control
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Algorithm 1 Algorithm to compute the viscosity solution at the minimum time to reach
of the set Θ.
1: Inputs:

xi, Ji,j, ∀i, j
2: Initialize:

t = t0, φ = ∞, ϵ = 10−5

3: while |φ| ≥ ϵ do
4: for all i, j do
5: Qi,j = min

p̃i
J⋆
i,j (p̃i) +

∑N
j=0wjĤi (sk, p̃i)−

〈
etAixi, p̃i

〉
6: end for
7: φ = LBAP (Q)

8: p =
(
etA

⊤
1 p̃∗1, · · · , etA

⊤
i p̃∗i , · · · , etA

⊤
N p̃∗N

)
9: t = t+ φ

H(x,p)

10: end while
11: Return:

p, t

condition, a slight smoothing was applied to the Hamiltonian in (4.4.12) and (4.4.8)

using [80] with parameter µ = 10−6.

4.5.1 Toy Problem

We present a two vehicle problem where the dynamics are ẋ1 = 3α1 for the first

vehicle and ẋ2 = α2 for the second vehicle. The states x1, x2 are the linear position

of each respective vehicle. The control is bounded by |αi| ≤ 1. The goal states are

|xi − 3| ≤ 1 for j = 1 and |xi + 3| ≤ 1 for j = 2. The level set contours of the joint

space are shown in Figure 4.5.1, for ten time samples equally spaced on t ∈ [0, 4]. Notice

this seemingly simple heterogeneous system can give rise to counterexamples for the

assignment formulations given in [71] where the sum of the vehicle distances are used

as the assignment metric and [69] where the time of arrival of vehicles was used. Take

the initial state x (0) = (4.667, 0.5)⊤, which is shown on Figure 4.5.1. For the time

metric, the assignment (1, 2) gives 0.222+2.5 = 2.7223, while the assignment (2, 1) gives
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Figure 4.5.1: The two vehicle example of Section 4.5.1. The zero level set evolution
solved at various times shown in green.

2.222 + 1.5 = 3.722, indicating (1, 2) is the clear choice. However, (2, 1) is the global

optimum in this example, as both vehicles reach their desired goal states in a time of

2.222, as the zero level set of the global value function intersects the point x (0) at that

time, giving the minimum time-to-reach. For the distance metric, the misassignment is

more pronounced, with the assignment (1, 2) giving 0.667+ 2.5 = 3.1670 as compared to

the assignment (2, 1) gives 4.667 + 1.5 = 8.167.

4.5.2 Planar Motion

We choose for dynamics (4.2.1) with state x ∈ [r, ṙ]⊤, where r ∈ R2 is spatial position

of a robot and ṙ ∈ R2 is the velocity and

Ai =



0 0 1 0

0 0 0 1

0 0 −1 0

0 0 0 −1


, Bi =



0 0

0 0

1 0

0 1


,
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(a) Optimal trajectories at t =
1.50 (10% of path).

(b) Complete optimal trajecto-
ries.

(c) Complete optimal trajecto-
ries for an alternate initial con-
dition.

Figure 4.5.2: The example presented in Section 4.5.2 with four vehicles guiding to four
possible goal sets. The optimal formation is achieved in t∗ = 15.015. The trajectories
are shown for two different times as they traverse the optimal path in the left two
figures. The figure on the right is the trajectories when the initial condition for vehicle
4 is different.

for each vehicle i ∈ V . The control αi ∈ R2 is constrained to lie in the set ∥αi∥2 ≤ 1. The

robots are tasked with reaching the goal formation and coming to rest, in minimum time.

The goal sets each have radius of 0.5 and the centers of the goals are located spatially

at (0, 5)⊤, (−5, 0)⊤, (5, 0)⊤, and (0,−5)⊤. Since the 2-norm is self-dual, the Hamiltonian

(4.4.9) for each vehicle is

Ĥi (s, p̃i) =
∥∥∥−B⊤

i e
sA⊤

i p̃i

∥∥∥
2
.

Since Ai contains eigenvalues with negative real part, we optimize using the variable

transformation of Section 4.4.1. The initial conditions of the vehicles were

x1 (0) = (3,−10,−1, 1)⊤ ,

x2 (0) = (−1,−12, 1, 1)⊤ ,

x3 (0) = (−4,−11, 2,−1)⊤ ,

x4 (0) = (6,−13,−1,−1)⊤ .
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Only 11 iterations of (4.4.11) were needed to solve for the minimum time to reach the

goal formation, which was found to be t∗ = 15.015. Figures 4.5.2a and 4.5.2b show

the optimal paths found from (4.4.12). Figure 4.5.2c shows the optimal paths when

the initial condition for vehicle 4 was changed to x4 (0) = (6,−13, 1, 1)⊤ and a different

optimal assignment results.

4.6 Conclusions and Future Work

We presented how to formulate vehicle coordination problems with unknown goal

assignments as the viscosity solution to a single Hamilton–Jacobi equation. We show the

solution of this single HJ PDE is equivalent to decomposing the problem and performing

a linear bottleneck assignment using the viscosity solutions of independent single-vehicle

problems. This allows quadratic computational scaling in the number of vehicles. Finally,

a level set method based on the Hopf formula was presented for efficient computation of

the vehicle value functions, in which each can be computed in parallel. Generalizations

of the Hopf formula can be used is this context, for example [81]. The Hamilton–Jacobi

formulation presented has other advantages for multi-robot systems, such as the com-

pensation of time delays which can be induced in several ways including computation,

sensing, and inter-robot communication. See for example [82]. Future work includes

to expand the class of allowable vehicle dynamics from general linear models to certain

types of nonlinear dynamics and to allow for dependencies between vehicles both in the

dynamics models and in the cost functional.
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Chapter 5

Heterogeneous Measurement

Selection for Vehicle Tracking using

Submodular Optimization

5.1 Introduction

The scenario we consider is that of a group of agents, each with multiple sensors

collecting noisy measurements of a vehicle, and the measurements are transmitted over

a communication channel to a centralized node. The central node collects the measure-

ments and estimates a vector of unknown parameters that describes the motion of the

vehicle. The communication channel restricts the amount of measurements that can be

transmitted to the centralized node. Inspired by the Cramer-Rao lower bound for the er-

ror estimate, we propose to select measurements based on the Fisher information matrix

(FIM), as “minimizing” the inverse of the FIM is required to achieve small estimation

error.

One can use the FIM as a criteria to select which subset of measurements are “best”
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Figure 5.1.1: An example scenario where two agents separately take measurements of
a ship and transmit them to a satellite for estimation. The ship being tracked has a
radio transmitter and the agent on the left passively receives the signal. The second
agent on the right is observing the ship with a camera.

by formulating a combinatorial optimization problem. However, this presents a computa-

tional challenge as finding the optimal selection of measurements is, in general, NP-hard.

We show that one common criteria used to “minimize” the inverse of the FIM, maximiz-

ing log det (FIM), is both monotone and submodular and therefore allows the use of a

greedy algorithm [83, Chapter 16] to find the selection of measurements. While the greedy

algorithm returns a sub-optimal solution, it is guaranteed to be within 1− 1/e ≈ 63% of

the optimum and has the critical benefit of quadratic computational complexity.

There have been numerous proposals [84, 85, 86, 87] to use submodular optimization

for sensor selection, however, these typically seek to optimize a criteria based directly on

the estimated error covariance. As a result, they require simplified estimation models

such as linear Kalman filtering to be used as in [84, 85] or Gaussian process regression on

a fixed, discrete grid of points as in [86, 87]. In general, estimation problems involving ve-

hicle tracking contain non-linear dynamics and sensor models that result in non-Gaussian
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and often non-unimodal distributions, even when all the observation noises are simple

independent zero-mean additive Gaussian distributions.

A key advantage of using the FIM is that we can utilize relatively simple and well-

described distributions of the measurements, without having to know the (possibly com-

plicated) distributions of the estimation error. This allows us to decompose the problem

into two independent parts, one of measurement selection and another of performing

estimates based on the selected measurements. The estimation can proceed with ad-

vanced estimation schemes such as non-parametric methods like particle filtering [36,

Ch. 4.3, pp. 96] or optimization approaches [88], among others, without regard to the

measurement selection process.

To illustrate this approach, we derive the FIM for different sensor types to which

we apply measurement selection. This includes the time-of-arrival and Doppler shift of

passively received radio transmissions as well as detected key-points in camera images.

We compare the track estimation of the vehicle with the FIM selected measurements

with that of random selection and show that selecting measurements based on the FIM

can greatly outperform the estimation task when the bandwidth limitation becomes sig-

nificant.

5.1.1 Problem Formulation

Consider an heterogeneous group of n mobile agents, each i ∈ {1, 2, . . . , n} with a

sensor that collects a set of mi measurements, which we denote by

{
yik : k ∈ Ki

}
,

with Ki := {1, 2, . . . ,mi}. Based on these measurements, we want to estimate a random

variable, θ, of interest at a measurement fusion center. Due to bandwidth limitations,
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each agent must select a subset of their own measurements to be transmitted to the

remote sensor fusion center. We denote by Fi ⊂ Ki the indices of the measures that

agent i sends to the fusion center. The bandwidth of the wireless channel imposes a

constraint that |Fi| ≤ Bi, where Bi is the maximum number of measurements that can

be transmitted over the channel. The set of all measurements available to the fusion

center is given by

Yfusion =
n⋃

i=1

{
yik : k ∈ Fi

}
.

Our goal is to select the sets Fi such that this set of measurements contains the “best”∑
iBi measurements from the perspective of estimating θ. Our goal is thus to design

algorithms for each agent so they select subsets Fi that optimize

min
Fi⊂Ki

{f (Fi) : |Fi| ≤ Bi} , (5.1.1)

where f (Fi) is a metric that relates the selected measurements to estimation performance.

We propose to use the Fisher information matrix (FIM) to construct the functions f as

such to select the best measurements.

Directly finding the optimal value of (5.1.1) is computationally challenging and, in

general, NP-hard [89]. This leads to approximations and heuristics to efficiently compute

the selection, such as branch and bound [90] or convex relaxation [91]. Branch and bound

can still be unreasonably slow while convex relaxations improve speed but is still cubic

in complexity. Neither of these two methods provide any guarantee on the performance

the approximate value relative to the true optimal.
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5.2 Fisher Information Matrix

Assuming that all measurements yk are conditionally independent given the unknown

random variable, θ, the Bayesian Fisher Information Matrix (FIM) associated with the

estimation of θ is given by

FIM (F ) := Q0 +
∑
k∈F

Qk (5.2.1)

where

F :=
n⋃

i=1

Fi

denotes the set of all measurements sent to the fusion center,

Q0 := E

[
∂ log p (θ)

∂θ

⊤∂ log p (θ)

∂θ

]
, (5.2.2)

denotes the contribution to the FIM due to the a-priori probability density function (pdf)

p (θ) of θ, and

Qk := E

[
∂ log p (yk|θ)

∂θ

⊤∂ log p (yk|θ)
∂θ

]
, (5.2.3)

the contribution to the FIM due to the measurement yk with conditional pdf p (yk|θ)

given θ. In both (5.2.2) and (5.2.3), ∂(·)
∂θ

denotes the gradient (as a row vector) with

respect to the vector θ.

The relevance of the FIM to our problem stems from the (Bayesian) Cramér-Rao

lower bound, which under the usual regularity assumptions on the pdfs gives

E
[(
θ − θ̂

)(
θ − θ̂

)⊤]
≥ FIM (F )−1 ,

[92], which conceptually means that “minimizing” the inverse of the FIM is required to
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achieve a small estimation error. In this paper, we propose to minimize the criteria

log
det
(
FIM (F )−1)

det
(
FIM (∅)−1)

= − log det (FIM (F )) + log det (FIM (∅)) (5.2.4)

which essentially corresponds to minimize the volume of the error ellipsoid, normalized

by the volume of the a-priori error ellipsoid. Alternative criteria include

trace
(
FIM (F )−1)

trace
(
FIM (∅)−1) (5.2.5)

or

λmax

(
FIM (F )−1)

λmax

(
FIM (∅)−1) , (5.2.6)

which correspond to minimizing the achievable normalized mean-square estimation error

E[||θ− θ̂||2] or the length of the largest axis of the error ellipsoid, respectively. However,

we shall see shortly that (5.2.4) has the desirable property that it leads to a submodular

optimization when the a-priori contribution to the FIM is nonsingular, whereas (5.2.5)

and (5.2.6) do not share this property [93, 85].

5.3 FIM-Based Measurement Selection

The selection of a set of measurements by agent i ∈ {1, 2, . . . , n} that minimizes the

(normalized) volume of the error ellipsoid associated with its own measurements, subject
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to communication constraints, can be formalized as the following maximization:


maximize f (Fi)

subject to Fi ⊂ Ki,

|Fi| ≤ Bi,

(5.3.1)

where f (Fi) is the symmetric of (5.2.4) with FIM (Fi) given by (5.2.1) with F = Fi,

which leads to

f (Fi) := log det

(
Q0 +

∑
k∈Fi

Qk

)
− log det (Q0) . (5.3.2)

We recall that a scalar-valued function f : 2K → R that maps subsets of a finite set K to

R is called submodular if for every X ⊂ Y ⊂ K, s ∈ K \ Y

f (X ∪ {s})− f (X) ≥ f (Y ∪ {s})− f (Y ) , (5.3.3)

monotone if

X ⊆ Y =⇒ f (X) ≤ f (Y ) , (5.3.4)

and normalized if

f (∅) = 0. (5.3.5)

Submodular functions are important for us because of the following well-known result

in combinatorial optimization, which provides an algorithm to approximate the solution

to (5.3.1) that has only quadratic complexity on the number of measurements and pro-

vides formal bounds on the performance of the approximation.

Theorem 5.1. [94] When f(·) is normalized, monotone and submodular, then the Al-

gorithm 2 returns a set F ∗
i that leads to a criteria f (F ∗

i ) no less than 1 − 1/e of the

optimum of (5.3.1).
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Algorithm 2 Greedy Optimization Algorithm.
1: Inputs:

{Σk}k∈Ki
,{µk}k∈Ki

2: Initialize:
Q = Q0, Fi = ∅, c = 0

3: while c < Bi do
4: j = argmin

k∈Ki\Fi

f (Fi ∪ {k})− f (Fi)

5: Q = Q+ FIM (j)
6: Fi = Fi ∪ j
7: c = c+ 1
8: end while
9: Return:

Fi

It turns out that the maximization in (5.3.1) has submodular structure:

Theorem 5.2. Assuming that the a-priori pdf p (θ) leads to a positive definite matrix Q0

in (5.2.2), the function f (·) in (5.3.2) is normalized, monotone, and submodular.

To prove Theorem 5.2, we introduce a result on general functions f of the form

f (X) = g

(
Q0 +

∑
k∈X

Qk

)
, ∀S ⊆ K, (5.3.6)

where all Q0, Qk, k ∈ S are n × n matrices and g is a function from Rn×n to R. In the

sequel, we use the notation

Dg (A) :=

[
∂g (A)

∂aij

]
ij

∈ Rn×n,

which allow us to write

dg (A (λ))

dλ
=

n∑
i=1

n∑
j=1

[Dg (A (λ))]ij
d [A (λ)]ij

dλ

= trace

[
Dg (A (λ))⊤

dA (λ)

dλ

]
. (5.3.7)
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Lemma 5.1. Assume that Q0 is a symmetric positive definite matrix, that all the Qk, k ∈

S are symmetric positive semidefinite matrices, and that the function g : Rn×n → R has

the property that for every pair of symmetric positive definite matrices A,B, we have that

Dg (A) and Dg (B) are both symmetric positive semidefinite and

A ⪰ B =⇒ Dg (A) ⪯ Dg (B) , (5.3.8)

then the function f defined by (5.3.6) is monotone and submodular.

Proof. To prove that f is monotone, pick X ⊂ Y ⊂ S and define

δ (λ) := g

Q0 +
∑
k∈X

Qk + λ
∑

k∈Y \X

Qk

 ,

∀λ ∈ [0, 1]. For this function we have that

δ (0) = g

(
Q0 +

∑
k∈X

Qk

)
= f (X) ,

and

δ (1) = g

Q0 +
∑
k∈X

Qk +
∑

k∈Y \X

Qk

 = f (Y ) ,

and, in view of (5.3.7) ,

dδ (λ)

dλ
= trace

[
Dg

Q0 +
∑
k∈X

Qk + λ
∑

k∈Y \X

Qk

⊤

×

 ∑
k∈Y \X

Qk

]. (5.3.9)

Since Q0 is positive definite, Q0 +
∑

k∈X Qk + λ
∑

k∈Y \X Qk is also positive definite and
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by assumption

Dg

Q0 +
∑
k∈X

Qk + λ
∑

k∈Y \X

Qk

 ⪰ 0.

Moreover, because the trace of the product of two positive semidefinite matrices is non-

negative, we conclude from (5.3.9) that dδ(λ)
dλ

≥ 0 and therefore

δ (0) = f (X) ≤ δ (1) = f (Y ) ,

from which monotonicity follows.

To prove that f is submodular, we pick X ⊂ Y ⊂ S, s ∈ S\Y and now define instead

δ (λ) := g

Q0 +Qs +
∑
k∈X

Qk + λ
∑

k∈Y \X

Qk


− g

Q0 +
∑
k∈X

Qk + λ
∑

k∈Y \X

Qk

 ,

∀λ ∈ [0, 1]. We now have

δ (0) = g

(
Q0 +Qs +

∑
k∈X

Qk

)
− g

(
Q0 +

∑
k∈X

Qk

)

= f (X ∪ {s})− f (X) ,
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and

δ (1) = g

Q0 +Qs +
∑
k∈X

Qk +
∑

k∈Y \X

Qk


− g

Q0 +
∑
k∈X

Qk +
∑

k∈Y \X

Qk


= f (Y ∪ {s})− f (Y )

and

dδ (λ)

dλ
= −trace

[(
Dg

Q0 +
∑
k∈X

Qk + λ
∑

k∈Y \X

Qk


−Dg

Q0 +Qs +
∑
k∈X

Qk + λ
∑

k∈Y \X

Qk

)⊤

×

 ∑
k∈Y \X

Qk

].
Since Q0 ≻ 0 and Qs ⪰ 0, we conclude from (5.3.9) that

Dg

Q0 +
∑
k∈X

Qk + λ
∑

k∈Y \X

Qk


−Dg

Q0 +Qs +
∑
k∈X

Qk + λ
∑

k∈Y \X

Qk

 ⪰ 0

and therefore

dδ (λ)

dλ
≤ 0,

because the trace of the product of two positive semidefinite matrices is non-negative.
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This shows that

δ (1) = f (Y ∪ {s})− f (Y ) ≤ f (X ∪ {s})− f (X) = δ (0) ,

from which submodularity follows.

Proof of Theorem 5.1. The function in (5.3.2) is normalized since for Fi = ∅, the two

terms cancel and therefore f (∅) = 0. We prove that this function is monotone and

submodular by applying Lemma 5.1 to the function

g (A) := log det (A)− log det (Q0) , ∀A ∈ Rn×n,

for which (5.3.6) precisely matches (5.3.2). For this function g, we have that for any

symmetric positive definite matrix A ∈ Rn×n

Dg (A) = A−T > 0,

and therefore, for every pair of symmetric positive definite matrices A,B ∈ Rn×n, we

have that

A ⪰ B =⇒ B−1/2AB−1/2 ⪰ I

=⇒ λi
[
B−1/2AB−1/2

]
≥ 1

=⇒ λi
[
B1/2AB1/2

]
≤ 1

=⇒ B1/2AB1/2 ⪯ I

=⇒ A−1 ⪯ B−1.

This shows that we can indeed apply Lemma 5.1 and the result follows.
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5.4 Motion Models

We consider a scenario in which the n mobile agents carry a suite of onboard sensors

to estimate the trajectory of a vehicle and denote by q (t) the vehicle’s position at time

t, expressed in an inertial coordinate system. We consider a constant curvature motion

model for q (t). Assuming that the vehicle’s linear and angular velocities have constant

coordinates vb and ωb, respectively, when expressed in the body frame, we have

q̇ = Rvb,

and

Ṙ = RJ
(
ωb
)
,

with R ∈ SO (3). For this model, the coordinates of the linear and angular accelerations

expressed in the inertial frame satisfy the equations

v̇i = Ṙvb = RJ
(
ωb
)
vb = J

(
Rωb

)
Rvb = J

(
ωi
)
vi,

and

ω̇i = Ṙωb = RJ
(
ωb
)
ωb = 0,

which leads to the motion model

q̇ = vi,

and

v̇i = J
(
ωi
)
vi,
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where we can view the angular velocity ωi as an (unknown) constant parameter. This

differential equation can be integrated exactly on a time interval t ∈ [tℓ−1, tℓ] since

vi (t) = eJ(ω
i)(t−tℓ−1)vi (tℓ−1)

=

(
I + sin (ρ (t− tℓ−1)) J (ω̄)

+ (1− cos (ρ (t− tℓ−1))) J (ω̄)2
)
vi (tℓ−1) ,

where

ω̄ :=
ωi

∥ωi∥
,

and

ρ :=
∥∥ωi
∥∥ .

Since the exact formula for q (t) is complex, we use its 2nd order Taylor series approxi-

mation for t close to tℓ−1, which leads to

vi (t) = vi (tℓ−1) + (t− tℓ−1) J
(
ωi
)
vi (tℓ−1) ,

and

q (t) = q (tℓ−1) + (t− tℓ−1) v
i (tℓ−1) (5.4.1)

+
(t− tℓ−1)

2
J
(
ωi
)
vi (tℓ−1) .

This motion model can be summarized as

q (t) = θ1 + (t− tℓ−1) θ2 +
(t− tℓ−1)

2

2
θ3, (5.4.2)
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where θ1, θ2, θ3 ∈ R2 can be viewed as three parameters that need to be estimated. These

parameters can be viewed as the target’s position, linear velocity, and curvature on the

interval t ∈ [tℓ−1, tℓ]. For targets moving in along a straight line, this model simplifies to

the case θ3 = 0 and for stationary targets θ2 = θ3 = 0.

5.5 Measurement Models

We denote by p (t) ∈ R3 the known position of a sensing agent that collects mea-

surements to estimate the vehicle’s trajectory. In this section, we specifically consider

on-board RF sensors that measure (i) the times of arrival of radio packets emitted by the

vehicle; (ii) the Doppler frequency shift in their carrier frequency arising from the relative

motion between the vehicle and receiver; and (iii) image coordinates of distinguishable

features of the vehicle, collected by on-board visible or IR cameras. With regard to

the RF measurements, we do not assume the vehicle’s transmissions are synchronized

with the receiver’s clock nor precise knowledge of the vehicle’s carrier frequency, which

essentially means that our measurements should be viewed as time difference of arrival

(TDoA) and frequency difference of arrival (FDoA). Because of the TDoA and FDoA

ambiguity, in additional to the motion model parameters θ1, θ2, θ3 in (5.4.2), we also need

to estimate sensor-specific parameters that account for the lack of synchronization and

knowledge of the carrier frequency.

The remainder of this section, discusses the different sensor measurement models and

implicitly assume that the different sensors produce conditionally independent measure-

ments, given all the parameters that need to be estimated. We also assume here that

measurements yk occur at times τk ∈ [tℓ−1, tℓ] and have multi-variable normal (condi-

tional) distributions with mean µk(θ) that depends on the vector θ of unknown parame-

ters and covariance Σk that, for simplicity, does not depend on θ. In this case, the matrix
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Qk in (5.2.3) is given by

Qk =
∂µk (θ)

∂θ

⊤

Σ−1
k

∂µk (θ)

∂θ
,

[95], where ∂µk(θ)
∂θ

denotes the Jacobian matrix of µk. Because of the nonlinearity of the

map θ 7→ µk(θ), the a-posteriori distribution of θ given such measurements will typically

be non-Gaussian and often multi-modal.

5.5.1 Time-of-Arrival Measurements

The vehicle’s radio transmitter sends symbols at times τk ∈ [tℓ−1, tℓ]

τk = kT + T0,

with k ∈ {0, 1, . . . , K − 1} where T is only approximately know and T0 is unknown to the

receiver. Note that T0 need not be the same as the initial time of the estimation inter-

val, tℓ−1. The receiver records noisy observations of the times-of-arrival of the symbols,

denoted by T , which is given by

T (τk) = τk +
ρ (τk)

c
,

where c denotes the speed of light and

ρ (t) := ∥q (t)− p (t)∥ . (5.5.1)

Therefore, the times-of-arrival scaled by the speed of light are given by

cT (τk) = ρ (τk) + θTk + θT0 , (5.5.2)
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where

θT := cT,

and

θT0 := cT0.

This model assumes that the relative motion between transmitter and receiver is suf-

ficiently slow so that the receiver’s position at the time the symbol is received is the

essentially the same as when it was transmitted. We regard the noisy measurements of

the times-of-arrival as Gaussian random variables with means given by the actual times-

of-arrival in (5.5.2) and variance σ2
cT independent of the unknown parameters, which

means that the likelihood of a measurement yk of (5.5.2) is given by

P (yk;σcT , θT , θT0) =
1√
sπσcT

e
−
(ρ(τk)+θT k+θT0

−yk)
2

2σcT .

The parameters θT and θT0 are typically not known a priori and must be estimated jointly

along with θ1, θ2, and θ3. For the motion model in (5.4.2), the gradient with respect to

the motion-specific parameters is given by

∂cT (τk)

∂θ1
=

(q (τk)− p (τk))

ρ (τk)
,

and

∂cT (τk)

∂θ2
=

(q (τk)− p (τk))

ρ (τk)
(τk − tℓ−1) ,

and

∂cT (τk)

∂θ3
=

(q (τk)− p (τk))

ρ (τk)

(τk − tℓ−1)
2

2
.
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The gradient with respect to the sensor specific parameters θT , and θT0 , is given as

∂cT (τk)

∂θT
= k,

and

∂cT (τk)

∂θT0

= 1.

5.5.2 Doppler Measurements

The vehicle’s radio decoder detects the frequency shift of the received carrier, which

results from both a mismatch between transmitter and receiver center frequencies as well

as from the relative motion between transmitter and receiver. Specifically, the frequency

shift associated with the kth symbol is given by for τk ∈ [tℓ−1, tℓ]

F (τk) = ∆f (τk)−
ρ̇ (τk)

λ
, (5.5.3)

where λ = c
fc
, fc is the carrier frequency of the transmitter, ∆f is the difference between

the carrier frequencies of the transmitter and receiver, and ρ is defined in (5.5.1), leading

to

ρ̇ (t) =
(q (t)− p (t))⊤ (q̇ (t)− ṗ (t))

∥q (t)− p (t)∥
.

Therefore, the frequency shifts (5.5.3) scaled by the wave length are given by

λF (τk) = θλ − ρ̇ (τk) , (5.5.4)

where

θλ := λ∆f.
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We regard the noisy measurements of the frequency shifts as Gaussian random variables

with means given by the actual frequency shifts in (5.5.4) and variance σ2
λF independent

of the unknown parameters, from which follows that the likelihood of a measurement yk

of (5.5.4) is given by

P (yk;σλF , θλ) =
1√

2πσλF
e
− (θλ−ρ̇(τk)−yk)

2

2σ2
λF .

Here, the parameter θλ is typically not know and also needs to be estimated. For the

motion model in (5.4.2), the gradient with respect to the motion parameters is given by

∂λF (τk)

∂θ1
=
(q̇ (τk)− ṗ (τk))

⊤

∥q (τk)− p (τk)∥

×

(
I − (q (τk)− p (τk)) (q (τk)− p (τk))

⊤

∥q (τk)− p (τk)∥2

)
,

and

∂λF (τk)

∂θ2
=

(q̇ (τk)− ṗ (τk))
⊤

∥q (τk)− p (τk)∥

×

(
I − (q (τk)− p (τk)) (q (τk)− p (τk))

⊤

∥q (τk)− p (τk)∥2

)

× (τk − tk−1)

+
(q (τk)− p (τk))

⊤

∥q (τk)− p (τk)∥
,
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and

∂λF (τk)

∂θ3
=

(q̇ (τk)− ṗ (τk))
⊤

∥q (τk)− p (τk)∥

×

(
I − (q (τk)− p (τk)) (q (τk)− p (τk))

⊤

∥q (τk)− p (τk)∥2

)

× (τk − tk−1)
2

2

+
(q (τk)− p (τk))

⊤

∥q (τk)− p (τk)∥
(τk − tk−1) .

The gradient with respect to θλis given as

∂λF (tk)

∂θλ
= 1.

5.5.3 Camera Measurements

The sensing agent has an on-board camera and associated image-processing algo-

rithms that determine the target’s image coordinates. Assuming a projective camera

model with optical center at the agent’s position p(τk) and a (known) camera orientation

Rc(τk), the target’s image coordinates at time τk ∈ [tℓ−1, tℓ] are given as [96, Chapter. 5,

p. 141]

I (τk) =
M (τk) (q (τk)− p (τk))

m (τk) (q (τk)− p (τk))
, (5.5.5)

where

M (t) :=

 1 0 0

0 1 0

ARc (t) ,

and

m (t) :=

[
0 0 1

]
ARc (t) ,
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and A denotes the camera’s intrinsic parameters matrix, which is defined as

A =


fx sxy ox

0 fy oy

0 0 1

 ,

where fu, fv are the camera focal lengths in the x, and y directions, respectively, in

the image plane; (ox, oy) is the focal center of the image plane and sxy is the skew

parameter. We regard the target’s image coordinates produced by the image processing

algorithms as Gaussian random vectors in R2 with means given by (5.5.5) and covariance

matrix ΣI independent of the unknown parameters, which means that the likelihood of

a measurement yk of (5.5.5) is given by

P (yk; ΣI) =
1

2π
√
detΣI

e−
1
2
(I(τk)−yk)

⊤ΣI(I(τk)−yk).

For the motion model in (5.4.2), the gradient with respect to the motion parameters is

given by

∂I (τk)

∂θ1
=
M (τk)

d (τk)
− U (τk)

d (τk)
2m (τk) ,

and

∂I (τk)

∂θ2
= (τk − tk−1)

(
M (τk)

d (τk)
− U (τk)

d (τk)
2m (τk)

)
,

and

∂I (τk)

∂θ3
=

(τk − tk−1)
2

2

(
M (τk)

d (τk)
− U (τk)

d (τk)
2m (τk)

)
,

where

U (t) :=M (t) (q (t)− p (t)) ,
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(a) 10 measurements selected.
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(b) 50 measurements selected.
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(c) 100 measurements selected.

Figure 5.6.1: Example 1, where 1000 total measurements are collected uniformly
along the path shown in black. Small subsets of measurements are selected using the
proposed methodology and are shown in red. The ground-truth location of the object
to be tracked is marked in blue.

and

d (t) := m (t) (q (t)− p (t)) .

5.6 Results

This section contains several examples based on synthetic data that illustrate the

benefits of FIM-based measurement selection.

5.6.1 Example 1: A Single Camera

Our first example is that of an agent with a single imaging sensor, measuring the posi-

tion of a stationary vehicle in the image plane as described in Sec. 5.5.3. The camera has

a focal length of 50 pixels and image-plane noise with a standard deviation of 0.8 pixels.

An agent follows the path show in Fig. 5.6.1. This example highlights how the FIM can

be used to asses how informative each of the vision measurements are. In this instance,

when the path is facing straight at the object then little information is gained in the ’y’

direction since any single image cannot measure depth. However, when multiple images

are captured at different angles relative to the object, then depth can be estimated. The
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Figure 5.6.2: Averaged estimation error versus the number of measurements selected
for Example 1. Red shows the average estimation error using measurement selected
using the FIM-based method in Algorithm 2 and blue show the average estimation
error using a random selection.

FIM quantifies this phenomenon and we can optimally pick the most informative subset

of measurements. This is shown in Fig. 5.6.1 where 1000 measurements are uniformly

collected along the agent’s path and a small subset of measurements are selected us-

ing Algorithm 2 to pick those measurements that minimally reduce the degradation of

estimation performance as compared to the full set of collected measurements. The FIM-

selected measurements provide a compromise between closeness to the target (which is

maximal right at the end of the path) and largest diversity of viewing angle. We use

the unscented transform [34, 97] to estimate the parameters and the resulting estimation

error is shown in Figure 5.6.2, though other state-of-the-art estimation schemes designed

specifically for tracking could also be utilized such as interacting multiple model methods

[98] or changepoint filtering [99]. Figure 5.6.2 shows tremendous reduction in estimation

error when using FIM-based selection instead of random selection for regimes with very

few measurements selected.
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(a) 10 measurements selected from 1000 measure-
ments collected each from a camera and RF sen-
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-100 -80 -60 -40 -20 0 20

x(m)

-280

-260

-240

-220

-200

-180

y
(m

)

Raw Measurements

Selected Camera Measurements

Selected RF Measurements

Tracked Vehicle

(b) Zoomed to show detail of the measurements se-
lected during the final section of the trajectory.

Figure 5.6.3: Example 2, where 1000 total measurements are collected each from
a camera and RF sensor, uniformly along the path shown in black. A subset of
10 measurements are selected between the sensors using the proposed methodology.
Selected camera measurements are shown red and selected RF measurements are
shown in blue. 7 vision measurements and 3 RF measurements were selected out of
1000 total available. The ground-truth location of the object to be tracked is marked
in green.

5.6.2 Example 2: Two Heterogeneous Sensors

The next example is based on similar trajectories for the vehicle and mobile agent as

in Example 1, but the latter has an additional RF sensor that measures the Doppler shift,

as in Section 5.5.2, with a noise standard deviation of 33ppb in frequency. The agent

uses the FIM-based criteria to select a mixture of measurements between the two sensors.

The performance is compared to randomly selecting measurements and is shown in the

Figure 5.6.4a, where we see a dramatic reduction in estimation estimation error with

just a small number of measurements selected. Figure 5.6.4b shows the ratio of image

measurements to RF measurements selected. Where we can see that, for this geometry

FIM-based selections roughly pick 2/3 of the measurements from the camera versus 1/3

from the radio receiver.
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Figure 5.6.4: Example 2, where measurements are jointly selected from two heteroge-
neous sensors.

5.6.3 Example 3: Multiple Platforms

We expand on Example 2 by having two agents, each with a camera and RF sensor

measuring frequency shifts. Each agent selects a mixture of camera and RF measurements

based in Algorithm 2 and sends it to a centralized node for processing. Figure 5.6.5

shows which measurements are selected from each agent. The error covariance versus the

number of measurements selected by each agent is shown in Figure 5.6.6. Compared to

estimation with only a single agent, multiple independent agents performing FIM-based

measurement selection performs better.

5.6.4 Cooperative Measurement Selection

The measurement selection algorithm provided by Algorithm 2 operates indepen-

dently across agents and therefore does not require inter-agent communication. However,

when communication between agents is available, there is opportunity for further perfor-

mance improvement, even when only a small amount of information can be exchanged
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Figure 5.6.5: Example 3, where each of the 2 agents collects 1000 total measurements
each from a camera and RF sensor, uniformly along the paths shown in black. A subset
of 10 measurements are selected between the sensors using the proposed methodology
from each agent. Selected camera measurements are shown red and selected RF
measurements are shown in blue. The ground-truth location of the object to be
tracked is marked in green.

between agents.

Consider Example 3 above, but after agent 1 chooses a set of measurements, the

FIM matrix FIM (F ∗
i ) is shared with agent 2 to use as a replacement of Q0 in its local

selection of measurements, F ∗
2 . This allows the consideration of agent 1’s selection to

aid in selecting a better subset from agent 2. The result is a substantial decrease in

estimation error compared to the independent selection and is shown in Figure 5.6.6.

5.7 Conclusions and Future Work

We presented a FIM-based submodular criteria to select measurements for near-

optimal estimation performance in a computationally efficient manor. We construct

the FIM for several sensors that are commonly used in vehicle tracking problems. Future

work includes establishing theoretical guarantees for cooperative sensor selection and val-
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Figure 5.6.6: Estimation error performance using only the given number of measure-
ments selected using the FIM-based approached. The blue and green show the per-
formance for using only agent 1 or 2, respectively. The cyan curve is the performance
when both are used at the centralized node to improve estimation after being selected
independently with a FIM-based criteria. Red is the performance when cooperative
FIM-based measurement selection is performed.

idation on experimental data. We have preliminary results showing that the cooperative

algorithm outlined in Section 5.6.4 provides theoretical guarantees of performance when

compared to the optimal centralized algorithm.
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Chapter 6

Trajectories for the Optimal

Collection of Information

6.1 Introduction

We present a method to optimize vehicle trajectories to gain maximal information for

target tracking problems. The scenario currently being studied is an aircraft receiving

passive information from sensors rigidly mounted to the airframe. These sensors include,

but are not limited to, infrared or visible spectrum, as well as RF receivers that measure

the frequency shifts from an external transmitter. The measurements are sampled in

order to determine the location of a target vehicle. The placement of the sensors is

determined by the path of the aircraft, influencing how much information is gained as well

as the overall effectiveness of estimating where the target is located. By optimizing the

trajectory, we can achieve maximum information gain, and hence the greatest accuracy

in localizing the target.

This problem is a generalization of what appeared in [100], where the path of the

vehicle was fixed and a subset of measurements were selected only from along this path.
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In this context we optimize a metric of the cumulative Fisher Information Matrix (FIM)

of the aircraft path, which is motivated by its connection to the (Bayesian) Cramér-

Rao lower bound [92]. The logdet metric is chosen as this gives a D-optimal estimate,

essentially corresponding to minimizing the volume of the error ellipsoid, and additionally

provides favorable numeric properties. It is worth noting that while the focus of this

paper is the logdet metric, other metrics may be considered, provided the metric meets

certain conditions that are outlined in what follows in the paper. Of particular interest

would be the trace of the inverse metric, as that gives the A-optimal estimate, effectively

minimizing the mean-square estimate error. Analysis of the trace of the inverse metric

is outside the scope of this paper and will be investigated in future work.

We formulate the problem in such a way that the optimal value function satisfies a

Hamilton-Jacobi (HJ) partial differential equation (PDE), from which the optimal tra-

jectories immediately follow. Naively, a solution of the corresponding HJ PDE using a

grid-based method would have many advantages since they handle the non-linear and

non-convex problems that arises in FIM-based optimization. However, the sensor esti-

mation problem induces a state space dimension that renders typical grid-based methods

[101] for PDE solutions intractable due to the exponential dimensional scaling of such

methods. Recognition of this problem is not new, and the phrase “curse of dimensional-

ity” was coined decades ago by Richard Bellman [102]. This creates a large gap between

the rigorous theory of HJ equations and practical implementation on many problems of

interest, especially vehicle planning and coordination problems.

New research has emerged in an attempt to bridge this technological gap, including

trajectory optimization approaches [10, 11, 73], machine learning techniques [103, 104,

105], and sub-problem decomposition [106, 107]. The structure of the sensor placement

problem lends itself well to the later strategy. Unique in this context, though, is that we

do not need to abandon spatial grids entirely, instead forming a hybrid approach. This
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Prior Belief
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Interest

Seek Trajectory 

That Optimizes 

Information Gain 

Figure 6.1.1: An illustration of the target tracking problem. An aircraft collects
measurement for sensors as it flies along a path, attempting to estimate the location
of the ship, denoted here as θ. Modifying the path of the vehicle can greatly improve
the estimation performance.

leverages the strength of grid-based methods in dealing with the non-convexities that

commonly arise when using the FIM matrix, but restricts their applications to a small

subspace of the problem.

In what follows we formally introduce the sensor estimation problem and form its

corresponding HJ PDE. We then proceed to show a new hybrid method of lines (MOL)

approach that involves decomposing the state space. and conclude with simulated results

of the optimal trajectories that result from heterogeneous sensors tracking the location

of a mobile target. Section 2 shows how the information collecting problem gives rise to

nonlinear dynamics with a cascade structure, that the input only directly affects one first

subcomponent of the state, whereas the optimization criteria only depends on a second

subcomponent. Section 3 addresses the optimal control of this type of systems using

the HJ PDE and the classical MOL. Section 4, develops the theory needed for the new

hybrid method of lines, which is applicable to systems in a cascade form. This type of

systems arises naturally in formation collecting, but the hybrid methods of lines can be

applied to the optimal of more general cascade systems. Section 5 specializes the hybrid

MOL to the information collection. Section 6 includes simulation results for a particular
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vehicle model and sensor type.

6.2 The Vehicle Sensing Problem

We choose as our vehicle a Dubin’s car [44] and denote by (X, Y, ψ) := x ∈ X :=

R2 × SO (2) the vehicle state where X and Y are the rectangular positional coordinates

of the vehicle center and ψ is the heading angle. The dynamics are defined by

d

ds
x (s) = f (x (s)) +Bu (s) , a.e. s ∈ [0, t] (6.2.1)

where

f (x) =


v cosψ

v sinψ

0

 , B =


0

0

1

 , (6.2.2)

where u (s) ∈ U := [−ωmax, ωmax] is the allowable control set of turn rates and v is the

fixed forward speed of the vehicle. The admissible control set is defined as

U [0, t] := {u (·) : [0, t] → U |u (·) is measurable} . (6.2.3)

Our method applied to vehicles that can be expressed in the general form (6.2.1), which

includes the Dubins vehicle in (6.2.2). The Dubins vehicle with bounded turning rate is

particularly interesting because it is a low-dimensional model that generates trajectories

that are easy to track by an aircraft flying at constant speed and altitude.

The vehicle defined above has a group of rigidly attached sensors collecting measure-

ments. The measurements, denoted as y, are sampled in order to determine an unknown

random variable, θ. The measurements are assumed to be random variables dependent
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on θ with density function

y ∼ ρ (y|θ) .

Assuming that all measurements y are conditionally independent given θ, the cumulative

Bayesian Fisher Information Matrix (FIM) associated with the estimation of θ is of the

form

FIM (t, x, u (·)) := Q0 +

∫ t

0

Q (γ (s;x, u (·))) ds,

where

Q (x) := Eθ [Q (x; θ)] , (6.2.4)

with

Q (x; θ) := Ey

[(
∂ log ρ (y|θ, x)

∂θ

)⊤(
∂ log ρ (y|θ, x)

∂θ

)]
, (6.2.5)

and

Q0 := Eθ

[(
∂ log ρ (θ)

∂θ

)⊤(
∂ log ρ (θ)

∂θ

)]
,

where ρ (θ) is the a-priori probability density function for θ. The formula above assumes

a scenario where the measurement, y (t), is collected by one sensor or by multiple in-

dependent sensors that generate at the same (constant) sampling rate. When multiple

independent sensors collect measurements at constant but different sampling rates, the

FIM matrix can be factored for each sensor i:

Q (t, x, u (·)) =
∑
i

F iQi (γ (s;x, u (·))) ,

where F i is the sampling rate of the i-th sensor. The above matrices are given from [108],

where the expectation over y in (6.2.5) is given in closed form for some distributions, see

for example [100, Sec. 5]. While the outer expectation over θ in (6.2.4) is rarely known

109



Trajectories for the Optimal Collection of Information Chapter 6

in closed form, many approximation schemes can be employed, for example Monte Carlo

sampling or Taylor series expansion.

The placement of the sensors is determined by the path of the aircraft, influencing

how much information is gained as well the overall effectiveness of estimating θ. Therefore

we optimize the trajectory to achieve maximum information gain, and hence the greatest

performance in estimating θ from the measurements y. For a given initial state x ∈ X

and terminal time t ∈ [0,∞), we define the following cost functional:

J (t, x, u (·)) := G (CFIM (t, x, u (·))) + log det (Q0) , (6.2.6)

where

G (x, Z) = G (Z) := − log det (Z) ,

We denote by V (t, x) the value function defined as

V (t, x) = inf
u(·)∈U [0,t]

J (t, x, u (·)) , (6.2.7)

which can be interpreted as the maximal information gain for a family of trajectory

optimization problems parameterized by initial state x ∈ X and terminal time t ∈ [0,∞).

The cost functional in (6.2.7) is not in a standard form, so we convert the problem

into a common standard, the so-called Mayer form. To do this we augment the state

vector with z := vec (Z), where the matrix Z ∈ Z := dom (G). Our new state becomes

χ := (x, z)⊤ ,

110



Trajectories for the Optimal Collection of Information Chapter 6

with augmented dynamics

d

ds
χ (s) = f̂ (χ (s) , u (s)) =

 f (x (s))

ℓ (x (s))

+

 B

0

u (s) , (6.2.8)

with

ℓ (x (s)) := vec (Q (x (s))) ,

where vec is the vectorize operator that reshapes a matrix into a column vector and 0 is

a vector of zeros of the same number of elements as the augmented variable z. If we fix

the z initial condition such that

z = vec (Q0) , (6.2.9)

then the cost functional (6.2.6) can equivalently written as

J (t, x, u (·)) = J (t, χ, u (·)) = G
(
vec−1 (z)

)
, (6.2.10)

where we denote by Z = vec−1 (z) the inverse operator such that

vec
(
vec−1 (z)

)
= z.

Hereafter we will denote by G̃ as the function G with the input reshaped as a function

of z with

G̃ (z) := G
(
vec−1 (z)

)
. (6.2.11)

Likewise the value function is equivalently written as

V (t, χ) = inf
u(·)∈U [0,t]

J (t, χ, u (·)) . (6.2.12)
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6.3 Decomposition of Coupled Systems

The approach we will develop to solve (6.2.12) is applicable to a more general class

of cascade systems that we introduce in this section, and for which we discuss the use

of HJ methods for optimal control. Denote by χ := (x, z)⊤ where x ∈ X = Rn and

z ∈ Z = Rm. The state has coupled dynamics as follows:


ẋ (s) = f (x (s)) + g (x (s))u (s) a.e s ∈ [0, t]

ż (s) = ℓ (x (s)) ,

(6.3.1)

with u ∈ U , where U is a closed convex set. We denote by [0, t] ∋ s 7→ γ (s;x0, u (·)) ∈ Rn

the x state trajectory that evolves in time according to (6.2.1) starting from initial state

x0 at t = 0. The trajectory γ is a solution of (6.2.1) in that it satisfies (6.2.1) almost

everywhere:


γ̇ (s;x0, u (·)) = f (γ (s;x0, u (·))) + g (γ (s;x0, u (·)))u,

γ (0;x0, u (·)) = x0.

(6.3.2)

Likewise, we denote by [0, t] ∋ s 7→ ξ (s;χ0, u (·)) the trajectory of the z variable and it

satisfies the following almost everywhere:


d
ds
ξ (s;χ0, u (·)) = ℓ (γ (s;x0, u (·))) ,

ξ (0;χ0, u (·)) = z0.

(6.3.3)

Note that the trajectory can be found directly from the expression:

ξ (s;χ0, u (·)) := z0 +

∫ s

0

ℓ (γ (τ ;x0, u (·))) dτ. (6.3.4)
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Denote G : Rm → R as the terminal cost function such that the mapping

Z ∋ z 7→ G (z) ∈ R,

We define the cost functional

J (t, χ, u (·)) := G (ξ (t;χ, u (·))) ,

and the associated value function as

V (t, χ) := inf
u(·)∈U [0,t]

J (t, χ, u (·)) ,

where U [0, t] is defined as in (6.2.3).

We denote by

f̂ (χ, u) :=

 f (x) + g (x)u

ℓ (x)

 ,
the joint vector field in (6.3.1). We assume that f̂ , U , and G satisfy the following

regularity assumptions:

(F1) (U, d) is a separable metric space.

(F2) The maps f̂ : X × U → Rn+m and G : Z → R are measurable, and there exists

a constant L > 0 and a modulus of continuity ω : [0,∞) → [0,∞) such that for

φ (χ, u) = f̂ (χ, u) , G (z), we have for all χ, χ′ ∈ X × Z, and u, u′ ∈ U

|φ (χ, u)− φ (χ′, u′)| ≤ L ∥χ− χ′∥+ ω (d (u, u′)) ,
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and

|φ (0, u)| ≤ L.

(F3) The maps f̂ , and G are C1 in χ, and there exists a modulus of continuity ω :

[0,∞) → [0,∞) such that for φ (χ, u) = f̂ (χ, u) , G (z), we have for all χ, χ′ ∈

X × Z, and u, u′ ∈ U

|φχ (χ, u)− φχ (χ
′, u′)| ≤ ω (∥χ− χ′∥+ d (u, u′)) .

6.3.1 Hamilton–Jacobi Formulation

Under a set of mild Lipschitz continuity assumptions, there exists a unique value

function (6.2.12) that satisfies the following Hamilton–Jacobi (HJ) equation [18] with

V (t, χ) being the viscosity solution of the partial differential equation (PDE) for s ∈ [0, t]

Vs (s, χ) +H (χ, Vχ (s, χ)) = 0, (6.3.5)

V (0, χ) = G (z) ,

where σ := (p, λ)⊤ and

H (χ, σ) := min
u∈U

H (χ, u, σ) , (6.3.6)

with the Hamiltonian, H, defined by

H (χ, u, σ) =

〈 f (x) + g (x)u

ℓ (x)

 ,
 p

λ

〉

= ⟨f (x) , p⟩+ ⟨g (x)u, p⟩+ ⟨ℓ (x) , λ⟩ .
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In the case where the set U is bounded by a norm, i.e.

U = {u ∈ Rnu| ∥u∥ ≤ c} , (6.3.7)

for some c, then (6.3.6) is given in closed form by

H (χ, ρ) = ⟨f (x) , p⟩+
∥∥∥g (x)⊤ p∥∥∥

∗
+ ⟨ℓ (x) , λ⟩ , (6.3.8)

where ∥(·)∥∗ is the dual norm to ∥(·)∥ in (6.3.7). We denote by π the control that

optimizes the Hamiltonian and is given by

π (s, χ) := arg min
u∈U

H (χ, u, Vχ (s, χ)) .

We note here that under mild assumptions, the viscosity solution of (6.3.5) is Lipschitz

continuous in both s and χ [109, Theorem 2.5, p. 165]. This implies by Rademacher’s

theorem [110, Theorem 3.1.6, p. 216] the value function is differentiable almost every-

where. For what follows, we assume that the value function has continuous first and

second derivatives. The points where this fails to be true only exists on a set of measure

zero, and any practical implementation of the method presented will only evaluate points

where the first and second derivatives exist. A characterization of the differentiability of

the value function is outside the scope of this paper and a full rigorous treatment will

appear in a forthcoming work.
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6.3.2 Necessary Conditions of the Optimal Trajectories

Fix x ∈ X and z ∈ Z as initial conditions and fix the terminal time t. Denote by

γ̄ (s) and ξ̄ (s) as the optimal state trajectories such that

γ̄ (s) := γ̄ (s;χ) = γ (s;x, ū (·;χ)) ,

and

ξ̄ (s) := ξ̄ (s;χ) = ξ (s;x, z, ū (·;χ)) ,

such that ū optimizes (6.2.12). By Pontryagin’s theorem [79] there exists adjoint trajec-

tories p (s) := p (s;χ) and λ (s) := λ (s;χ) such that the function

[0, t] ∋ s 7→
(
γ̄ (s) , ξ̄ (s) , p (s) , λ (s)

)
(6.3.9)

is a solution of the characteristic system



˙̄γ (s) = Hp

(
γ̄ (s) , ξ̄ (s) , p (s) , λ (s)

)
,

˙̄ξ (s) = Hλ

(
γ̄ (s) , ξ̄ (s) , p (s) , λ (s)

)
,

ṗ (s) = −Hx

(
γ̄ (s) , ξ̄ (s) , p (s) , λ (s)

)
,

λ̇ (s) = −Hz

(
γ̄ (s) , ξ̄ (s) , p (s) , λ (s)

)
,

(6.3.10)

almost everywhere s ∈ [0, t] with boundary conditions

p (t) = 0, λ (t) = Gz

(
ξ̄ (t)

)
.
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6.3.3 Numerical Approximations Viscosity Solutions to First-

Order Hyperbolic PDEs

Traditional methods for computing the viscosity solution to (6.3.5) rely on construct-

ing a discrete grid of points. This is typically chosen as a Cartesian grid, but many

other grid types exist. The value function is found using a method of lines (MOL)

approach by the solving the following family of ODEs, pointwise at each grid point

χk =
(
xk, zk

)
∈ S := X × Z:


ϕ̇
(
s, χk

)
= −H

(
χk, Dχϕ

(
s, χk

))
, s ∈ [0, t]

ϕ
(
0, χk

)
= G

(
zk
)
,

(6.3.11)

where ϕ
(
s, χk

)
should be viewed as an approximation to the value function V

(
s, χk

)
in

(6.3.5) and

Dχϕ
(
s, χk

)
≈ ϕχ

(
s, χk

)
is obtained by a finite difference scheme used to approximate the gradient of ϕ at grid

point k. Care must be taken when evaluating finite differences of possibly non-smooth

functions and the family of Essentially Non-Oscillatory (ENO) methods were developed

to address this issue [111]. The advantage of the method of lines is that we can com-

pute (6.3.11) independently at each grid point with ϕ
(
t, χk

)
≈ V

(
t, χk

)
. Under certain

conditions, for example the Lax-Richtmyer equivalence theorem [112],

∆s→ 0, ∆χ→ 0 =⇒ ϕ
(
t, χk

)
→ V

(
t, χk

)
when the scheme is both consistent, i.e. the error between ϕ

(
t, χk

)
and V

(
t, χk

)
tends

to zero, and stable. In this case, stability is enforced when the time step, ∆s, satisfies the
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Courant-Friedrichs-Lewy (CFL) condition [113]. When the HJ equation is a non-linear

PDE, then additionally a Lax-Friedrichs approximation [114, 77] is needed to ensure

stability. In the Lax-Friedrichs method the Hamiltonian in (6.3.11) is replaced by

Ĥ
(
χ, σ+, σ−) :=H

(
χ,
σ+ + σ−

2

)
− ν (χ)⊤

(
σ+ + σ−

2

)
,

where inputs D+
χ ϕ
(
s, χk

)
→ σ+ and D−

χ ϕ
(
s, χk

)
→ σ− are the right and left side bias

finite differencing approximations to the gradient, respectively. The term ν (χ) is the

artificial dissipation and depends on Hσ (χ, σ), the gradient of the Hamiltonian with

respect to the adjoint variable. The MOL approach in (6.3.11) becomes


ϕ̇
(
s, χk

)
= −Ĥ

(
χk, D+

χ ϕ
(
s, χk

)
, D−

χ ϕ
(
s, χk

))
,

ϕ
(
0, χk

)
= G

(
zk
)
,

(6.3.12)

In general, no closed form solution exists to (6.3.12) and therefore an explicit Runge-

Kutta scheme is employed. If the first order Euler method is used to solve (6.3.12), then

we have the following time-marching scheme with iteration for s ∈ [0, t]:


ϕ
(
s+∆s, χk

)
= ϕ

(
s, χk

)
−∆sĤ

(
χk, D+

χ ϕ
(
s, χk

)
, D−

χ ϕ
(
s, χk

))
,

ϕ
(
0, χk

)
= G

(
zk
)
.

(6.3.13)

The reader is encouraged to read [101] for a comprehensive review on numeric numeric

methods to solving first-order hyperbolic HJ PDEs.
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6.4 HJB Decomposition

We are especially interested in problems for which the x-component of the state in

(6.3.1) has a relatively small dimension, but z-component does not. This is common in

the vehicle sensing problem discussed in Section 6.2, because the dimension of z scales

with the square of the number of parameters to be estimated and therefore, even for

simple vehicle dynamics and a relatively small number of parameters, the dimension of

the state χ is too large to apply (6.3.13). To overcome this challenge, we present an

hybrid method of lines that uses a grid over x, but no grid over z.

A key challenge to creating such a method is to find a closed-form expression for

the gradient of the value function with respect to z, so as to avoid finite differencing

schemes in z. Taking advantage of the specific structure of the problem, we show that

we can use a grid over the state variable x to compute Dxϕ
(
s, χk

)
≈ ϕx

(
s, χk

)
with

finite differences, but avoid a grid over the state variable z by solving a family of ODEs

to compute Dzϕ
(
s, χk

)
. This is supported by the following theorem.

Theorem 6.1. Suppose the value function V (s, χ) is twice differentiable at (s, χ) ∈

[0,∞)×S. Then at any point χ, the gradient of the value function with respect to z can

be found using the following ODE:


V̇z (s, χ) = − ∂

∂z

〈
Gz

(
ξ̄ (s)

)
, ℓ (x)

〉
−Rx (s, χ, π (s, χ) , f (x) , g (x)) ,

Vz (0, χ) = Gz (z) ,

(6.4.1)

119



Trajectories for the Optimal Collection of Information Chapter 6

where

Rx (s, χ, u, α, β) :=
∂

∂x

{〈
Gz

(
ξ̄ (s)

)
, α
〉

(6.4.2)

+
〈
Gz

(
ξ̄ (s)

)
, βu

〉}
. (6.4.3)

The proof of Theorem 6.1 will need the following technical lemma.

Lemma 6.1. Suppose that the gradient Vz (t, χ) exists at (t, χ) ∈ [0,∞) × S. Then the

gradient of the value function with respect to the augmented variable is given by

Vz (t, χ) = Gz

(
ξ̄ (t;χ)

)
.

Proof. Recall from (6.3.4) and applying the optimal control sequence,

ξ̄ (s) = z +

∫ s

0

ℓ (γ̄ (τ)) dτ.

Therefore

Gz

(
z +

∫ t

0

ℓ (γ̄ (τ)) dτ

)
= Gz

(
ξ̄ (t)

)
:= λ (t) . (6.4.4)

Recognize that (6.4.4) is the boundary condition of the characteristic system (6.3.10),

and that

Vz (t, χ) = λ (0)

= Gz

(
ξ̄ (t)

)
−
∫ 0

t

Hz

(
γ̄ (s) , ξ̄ (s) , p (s) , λ (s)

)
ds.

Where the first line above uses the connection between the adjoint variable, λ, and the

value function [109, Theorem 3.4, p. 235]. Observing that the Hamiltonian (6.3.8) does
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not depend on the argument z, then it follows that

Hz

(
γ̄ (s) , ξ̄ (s) , p (s) , λ (s)

)
= 0, s ∈ [0, t] ,

which leads to

Vz (t, χ) = Gz

(
ξ̄ (t)

)
.

We now proceed to the proof of Theorem 6.1.

Proof. Fix x, z and noting the original HJB equation (6.3.5):

V̇z (s, χ) =
∂

∂s
{Vz (s, χ)}

=
∂

∂z
{Vs (s, χ)}

=
∂

∂z
{−H (χ, Vx (s, χ) , Vz (s, χ))} .

From the definition of the Hamiltonian

V̇z (s, χ) =
∂

∂z

{
− ⟨Vz (s, χ) , ℓ (x)⟩ − ⟨Vx (s, χ) , f (x)⟩

−min
u∈U

⟨Vx (s, χ) , g (x)u⟩

}
.

Fix time s ∈ [0, t], and define the function

φs (χ, u) : = min
u∈U

F s (χ, u) ,

where

F s (χ, u) := ⟨Vx (s, χ) , g (x)u⟩ ,
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and recall that

π (s, χ) := arg min
u∈U

⟨Vx (s, χ) , g (x)u⟩ .

Since by assumption both Vx (s, χ) and Vzx (s, χ) exist, and F
s (χ, u) is differentiable at

χ, this implies the gradient of φs can by found [115, Theorem 4.13] with the following

relation:

φs
z (χ, u) = F s

z (χ, π (s, χ)) .

This gives

V̇z (s, χ) =− ∂

∂z
{⟨Vz (s, χ) , ℓ (x)⟩}

− ∂

∂z
{⟨Vx (s, χ) , α⟩}

∣∣∣∣
α=f(x)

− ∂

∂z
{⟨Vx (s, χ) , βu⟩}

∣∣∣∣
u=π(s,χ),β=g(x)

.

Noting the symmetry of the gradients with respect to x, z we have

V̇z (s, χ) =− ∂

∂z
{⟨Vz (s, χ) , ℓ (x)⟩}

− ∂

∂x
{⟨Vz (s, χ) , α⟩}

∣∣∣∣
α=f(x)

− ∂

∂x
{⟨Vz (s, χ) , βu⟩}

∣∣∣∣
u=π(s,χ),β=g(x)

,

and then applying Lemma 6.1, the result follows.

6.4.1 Method of Lines with State Space Decomposition

Recall that we denote by ϕ (s, χ) the numeric approximation to the value function,

V (s, χ). The proposed hybrid MOL is relies on an approximations Dxϕ (s, χ) of the

gradient of the value function with respect to x, Vx (s, χ), that is based on the Lax-
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Friedrichs approximation. However, the approximation Φ (s, χ) of the gradient of the

value function with respect to z, Vz (s, χ), is obtained by solving an ODE in time and does

not require a spatial grid. In view of this, this method computes the two approximations

ϕ
(
s, xk, z

)
and Φ

(
s, xk, z

)
on points

(
xk, z

)
∈ S where the xk are restricted to a finite

grid of the x-component of the state, whereas z is not restricted to a grid. To accomplish

this, we need the following assumption that, together with Theorem 1, leads to the

following MOL.

Suppose that the first term in (6.4.1) can be written as

∂

∂z

{〈
Gz

(
ξ̄ (s)

)
, ℓ (x)

〉}
= Υ

(
x, z,Gz

(
ξ̄ (s)

))
, (6.4.5)

and fix z for any z ∈ Z. Denote by Φ
(
s, xk, z

)
≈ ϕz

(
s, xk, z

)
= Gz

(
ξ̄ (s)

)
as the gradient

estimate of the value function with respect to z. Then from Theorem 6.1 and Lemma

6.1, we construct the following method of lines approach, for
(
xk, z

)
∈ S:



ϕ̇
(
s, xk, z

)
= −H̃

(
xk, z,D+

x ϕ
(
s, xk, z

)
, D−

x ϕ
(
s, xk, z

)
,

Φ
(
s, xk, z

) )
,

Φ̇
(
s, xk, z

)
= −Υ

(
xk, z,Φ

(
s, xk, z

))
−Rx

(
s, xk, z, π

(
s, xk, z

)
, f
(
xk
)
, g
(
xk
))
,

ϕ
(
0, xk, z

)
= G (z) ,

Φ
(
0, xk, z

)
= Gz (z) ,

(6.4.6)
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where

H̃
(
x, z, ρ+, ρ−, λ

)
:=H

(
x, z,

ρ+ + ρ−

2
, λ

)
− ν (x)⊤

(
ρ+ + ρ−

2

)
,

is the Lax-Friedrichs approximation. The Lax-Friedrichs approximation is only needed

in the x dimension since that is the only space where a grid is constructed for computing

finite differences.

6.5 Optimal Information Collection

Recall that the system (6.2.8) presented in Section 6.2 is of the form of Section 6.3,

and we can use Theorem 6.1 to construct a method of lines. Recall that for Dubins car,

U = [−ωmax, ωmax], and the optimal Hamilton (6.3.6) becomes

H (x, z, p, λ) = ⟨f (x) , p⟩+ ωmax

∣∣B⊤p
∣∣+ ⟨λ, vec (Q (x))⟩ ,

and optimal control policy is given by

π (s;x, z) :=arg min
u∈U

H (x, z, u, Vx (s, x, z) , Vz (s, x, z))

∈


−ωmax B⊤Vx (s, x, z) < 0

[−ωmax, ωmax] B⊤Vx (s, x, z) = 0

ωmax B⊤Vx (s, x, z) > 0.

(6.5.1)

In order to compute the first term in (6.4.1) for the vehicle tracking problem presented

in Section 6.2, we present the following lemma.
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Lemma 6.2. Let χ ∈ S. When G (z) = −log det (vec−1 (z)) and ℓ (x) = vec (Q (x)), then

∂

∂z

〈
Gz

(
ξ̄ (s)

)
, ℓ (x)

〉
= vec

(
vec−1

(
Gz

(
ξ̄ (s)

))
·Q (x) · vec−1

(
Gz

(
ξ̄ (s)

))) ⊤.

Proof. Define Ξ̄ (z) := Ξ (s;x, z, ū (·)) = vec−1
(
ξ̄ (s;χ, ū (·))

)
as the optimal auxiliary

state trajectory at the time, s, reshaped into a matrix. The matrix forms simplifies

the following proof and the computations in the examples to follow. We also denote by

Z := vec−1 (z). The gradient with respect to a matrix of a function F (Z) is the matrix

defined by

∂

∂Z
F (Z) := vec−1

{[
∂F (Z)

∂Zij

]
i,j

}
.

Recall (6.2.11) and from Lemma 6.1 that Vz (s, x, z) = Gz

(
Ξ̄ (z)

)
= vec−1

(
Ξ̄ (z)−1).

Then we have

∂

∂z

〈
Gz

(
ξ̄ (s)

)
, ℓ (x)

〉
= vec

(
∂

∂Z
tr
(
Ξ̄ (z)−1Q (x)

))
.

We direct our attention to the term inside the vec operator in the last line above, and

find

∂

∂Zij

tr
(
Ξ̄ (z)−1Q (x)

)
= tr

(
∂

∂Zij

{
Ξ̄ (z)−1}Q (x)

)
= tr

(
−Ξ̄ (z)−1 ∂Ξ̄ (z)

∂Zij

Ξ̄ (z)−1Q (x)

)

where the last line is from [116]. Noting ∂Ξ̄(z)
∂Zij

= ∂Ξ̄(z)
∂Z

∂z
∂Zij

, recalling from Proposition
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B.1 that ∂Ξ̄(z)
∂Z

= I and noting ∂z
∂Zij

= Sij := eie
⊤
j , where ek is a vector with a 1 in k-th

element and zeros elsewhere. We now have

∂

∂Zij

tr
(
Ξ̄ (z)−1Q (x)

)
= −tr

(
Ξ̄ (z)−1 eie

⊤
j Ξ̄ (z)−1Q (x)

)
= −tr

(
e⊤j Ξ̄ (z)−1Q (x) Ξ̄ (z)−1 ei

)
= −e⊤j Ξ̄ (z)−1Q (x) Ξ̄ (z)−1 ei

=
[
Ξ̄ (z)−1Q (x) Ξ̄ (z)−1]

ji
,

=
[
vec−1

(
Gz

(
ξ̄ (s)

))
·Q (x) · vec−1

(
Gz

(
ξ̄ (s)

))]
ji

and the result follows.

Note Lemma 6.2 gives us the relation in (6.4.5) for the sensing trajectory problem,

and when in matrix form as in the proof, gives a relationship that is simple to compute.

6.6 Results

We consider a passive RF sensor that measures the Doppler frequency shift in the

carrier frequency, denoted as F , arising from the relative motion between transmitting

vehicle and the receiver. Note that we do not need to decode the underlying transmission,

as we are only tracking the shifts in received carrier frequency. More details about the

derivation of this, as well as other sensor models can be found in [100].

We assume in this paper the sensor produces conditionally independent measure-

ments, each with a Gaussian distribution with mean µF (θ). While the mean vector

depends on the parameter of interest, θ, the covariance does not depend1 on θand is

1It is not required that the covariance to be independent of θ, but it simplifies the example here.
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Figure 6.6.1: An optimal path computed for the first example, shown in red. In this
example, the aircraft is only using Doppler shift measurements. The blue dashed circle
is the 95% error ellipse of the prior distribution on θ, which in this example represents
the position of the vehicle target.

given as ΣF . This gives a closed form expression for (6.2.5) for measurement F , as

Q (x; θ) =

(
∂µF (θ)

∂θ

)⊤

Σ−1
F

(
∂µF (θ)

∂θ

)
, (6.6.1)

where ∂µF (θ)
∂θ

denotes the Jacobian matrix of µF (θ) [95]. To estimate the expectation

and find the expression (6.2.4), we choose a second-order Taylor series expansion. Let

Qij (x; θ) denote the i, j-th element of the (6.6.1), and θ is a random variable with mean

µθ and covariance Σθ. Then we approximate the element with a second order Taylor

expansion as

Qij (x; θ) ≈Qij (x;µθ) +∇Qij (x;µθ)
⊤ (θ − µθ)

+
1

2
(θ − µθ)

⊤ Hij (x;µθ) (θ − µθ) ,

where Hij (x; θ) is the hessian matrix of Qij (x; θ) with respect to θ. The expected value
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is then found as

Eθ [Qij (x; θ)] ≈ Qij (x;µθ) +
1

2
tr (ΣθHij (x;µθ)) . (6.6.2)

The closed-form gradient ∂µF (θ)
∂θ

in (6.6.1) are found from [100], while the Hessian values

were found using the CasADI toolbox [117].

In the example the parameters to be estimated, θ, consist of the (X, Y ) ∈ R2 position

of the target vehicle. The prior distribution of θ is given as

θ ∼ N


 0

0

 , υ2I
 ,

where υ = 10m is the standard deviation. The sensor measures the Doppler shifts

with noise standard deviation of ΣF = 1. The sensing aircraft is flying 1000m above

the ground level where the target vehicle is located and the turn rate is limited with

ωmax = 0.05 rad/s.

Figure 6.6.1 shows the optimal path from the initial condition of X (0) = 50m,

Y (0) = −36.6m, and ψ (0) = −π. The initial angle of −π implies the tracking aircraft is

moving from right to left initially at t = 0. It can be seen in the figure that the optimal

path begins with turning maneuvers before traveling straight along a ray extending out-

ward from the center of the prior distribution of θ. Conceptually, travel along this ray

will give maximum variation in Doppler shift, but the early maneuvers are still necessary

since multiple directions of measurements are required to fully localize using only Doppler

measurements. Figure 6.6.2 shows a series of optimal paths generated with same initial

conditions for X (0) and ψ (0), but with a variation in the initial condition, Y (0). The

vertical initial condition, Y (0), were chosen uniformly from a range [−50, 50]. While the

trajectories are different quantitatively from that of Figure 6.6.1, they share the same
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qualitative properties of an initial maneuver to gain measurements in various directions

before traveling away from the prior belief, on a ray extending directly from the center.

6.7 Conclusion

We present a hybrid method of lines approach for solving a class of Hamilton–Jacobi

PDEs that arise in the optimal placement of sensors. This method provides for ro-

bustness, where needed, in the x subspace by using a classic grid approach with finite

differencing. It avoids a grid in the z subspace and hence scales well with the number of

z dimensions. We applied this to a trajectory optimization problem where the goal is to

find the trajectory that minimizes the estimation error from the measurements collected

along the calculated path. Future work includes investigating metrics other than logdet

such as the trace of the inverse and studying if the hybrid method of lines approach can

be generalized to a broader class of systems.
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Figure 6.6.2: Here a series of optimal trajectories are shown in red from different
starting locations, with each vehicle starting out moving from right to left. Same as
in Fig. 6.6.1, the aircraft is only using Doppler shift measurements. The blue circle
is the 95% error ellipse of the prior distribution on θ.
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Appendix for Chapter 4

Lemma A.1. Given that (4.3.4) satisfies assumptions 1-3, then (4.4.3) also satisfies

assumption 1-3.

Proof. From assumption 1, Ĥi is continuous by composition rule [76, Theorem 4.7] and

since (4.4.6) does not depend on state, it therefore trivially meets assumption 3. It

remains to show that (4.4.3) meets assumption 2. We know assumption 2 holds for all

xi ∈ Rni and for all p′, p′′ ∈ Rni , therefore the following holds

∣∣∣Hi

(
s, xi, e

−sA⊤
i p

′
)
−Hi

(
s, xi, e

−sA⊤
i p′′
)∣∣∣

≤ ci (1 + ∥xi∥)
∥∥∥e−sA⊤

i p′ − e−sA⊤
i p′′
∥∥∥

≤ ci (1 + ∥xi∥)
∣∣∣λmax

(
e−sA⊤

i

)∣∣∣ ∥p′ − p′′∥

= c (1 + ∥xi∥) ∥p′ − p′′∥ .
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When xi = 0 we have

∣∣∣Hi

(
s, 0, e−sA⊤

i p
′
)
−Hi

(
s, 0, e−sA⊤

i p′′
)∣∣∣

=
∣∣∣Ĥi (s, p

′)− Ĥi (s, p
′′)
∣∣∣

≤ c ∥p′ − p′′∥ ≤ c (1 + ∥xi∥) ∥p′ − p′′∥ ,

for any xi. And since
∣∣∣Ĥi (s, xi, 0)

∣∣∣ = 0 for all xi, it follows that assumption 2 is met.

Proof of Lemma 4.1.

Proof. The sum of continuous functions is also continuous [76, Theorem 4.9], therefore

assumption 1 is met. To prove assumption 2, we first write, for all p′, p′′ ∈ Rn,

|H (s, x, p′)−H (s, x, p′′)|

=

∣∣∣∣∣∑
i

Hi (s, xi, p
′
i)−

∑
i

Hi (s, xi, p
′′
i )

∣∣∣∣∣
≤
∑
i

|Hi (s, xi, p
′
i)−Hi (s, xi, p

′′
i )| , (A.0.1)

≤
∑
i

ci (1 + ∥xi∥) ∥p′i − p′′i ∥

≤
∑
i

ci (1 + ∥x∥) ∥p′ − p′′∥ (A.0.2)

c (1 + ∥x∥) ∥p′ − p′′∥ ,

where line (A.0.1) comes from the triangular inequality and line (A.0.2) comes by noting

∀i, ∥xi∥ ≤ ∥x∥ and ∥p′i − p′′i ∥ ≤ ∥p′ − p′′∥. Therefore, there exists a c =
∑

i ci such that

the inequality holds and we arrive at our result for part 1 of assumption 2. The second

132



Appendix for Chapter 4 Chapter A

part of assumption follows from part 1,

|H (s, x, 0)| =

∣∣∣∣∣∑
i

H (s, xi, 0)

∣∣∣∣∣
≤
∑
i

|H (s, xi, 0)| ≤
∑
i

ci (1 + ∥xi∥)

≤
∑
i

ci (1 + ∥x∥) = c (1 + ∥x∥) .

And we have shown part 2. The proof of assumption 3 follows that of above. For any

compact set M ⊂ Rn and for all x′, x′′ ∈M

|H (s, x′, p)−H (s, x′′, p)|

=

∣∣∣∣∣∑
i

H (s, x′i, pi)−
∑
i

Hi (s, x
′′
i , pi)

∣∣∣∣∣
≤
∑
i

|H (s, x′i, pi)−Hi (s, x
′′
i , pi)| ,

≤
∑
i

κi (M) (1 + ∥pi∥) ∥x′i − x′′i ∥

≤
∑
i

κi (M) (1 + ∥p∥) ∥x′ − x′′∥

= κ (M) (1 + ∥p∥) ∥x′ − x′′∥ .

Therefore, there exists a κ (M) =
∑

i κi (M) such that the inequality holds.
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Appendix for Chapter 6

B.0.1 Regularity Assumptions of the Hamiltonian

Let n be the dimension of the augmented state variable χ, and denote by σ := (p, λ)⊤,

and with a slight abuse of notation note that H (s, χ, σ) = H (s, x, z, σ) = H (s, x, z, p, λ)

and vice versa. We introduce a set of mild regularity assumptions:

(H1) The Hamiltonian

[0, t]×X ×Z × Rn ∋ (s, x, z, p, λ)

7→ H (s, x, z, p, λ) ∈ R

is continuous.

(H2) There exists a constant c > 0 such that for all (s, x, z) ∈ [0, t]×X ×Z and for all

σ′, σ′′ ∈ Rn, the following inequalities hold

|H (s, x, z, σ′)−H (s, x, z, σ′′)| ≤κ1 (χ)

× ∥σ′ − σ′′∥ ,
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and

|H (s, x, z,0)| ≤ κ1 (χ) ,

with κ1 (χ) = c (1 + ∥χ∥).

(H3) For any compact set M ⊂ Rn there exists a constant C (M) > 0 such that for all

χ′, χ′′ ∈M and for all (s, σ) ∈ [0, t]× Rn the inequality holds

|H (s, χ′, σ)−H (s, χ′′, σ)| ≤ κ2 (σ) ∥χ′ − χ′′∥ ,

with κ2 (σ) = C (M) (1 + ∥σ∥).

(H4) The terminal cost function

Rn ∋ χ 7→ G (χ) ∈ R,

is continuous.

Next we present an important theorem on the existence and uniqueness of viscosity

solutions of the Hamilton–Jacobi equation.

Theorem B.1 ([75, Theorem II.8.1, p. 70]). Let assumptions (H1)− (H4) hold. Then

there exists a unique viscosity solution to (6.3.5).

B.0.2 Supporting Propositions

Proposition B.1. Let χ ∈ S, then

∂

∂z
ξ (t;χ, ū (·)) = I.
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Proof. By assumption, the terminal point of the state trajectory ζ (t;χ, ū (·)) is differen-

tiable with respect to initial condition χ ∈ S. Defining the Jacobin, for s ∈ [0, t],

m (s) :=

 mxx (s) mx,z (s)

mzx (s) mzz (s)


=

 γ̄x (s) γ̄z (s)

ξ̄x (s) ξ̄z (s)

 =
∂

∂χ
ζ (s;χ, ū (·)) .

We have from [109, Chapter 5, Equation 3.23] that m (t) satisfies the following matrix

equation almost everywhere:


ṁ (s) = f̂χ

(
ζ̄ (s;χ, ū (·)) , ū (s)

)
m (s) , s ∈ [0, t] ,

m (0) = I.

From which the mzz partition is written as


ṁzz (s) = ℓz (γ̄ (s;χ, ū (·)))mzz (s) , s ∈ [0, t] ,

mzz (0) = I.

Since ℓ does not depend on z, we have

ṁzz (s) = 0, ∀s ∈ [0, t] ,

and the result follows.
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