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Abstract

Early work from about two decades ago implicated DNA double-strand break (DSB) formation 

and repair in neuronal development. Findings emerging from recent studies of DSBs in 

proliferating neural progenitors and in mature, non-dividing neurons suggest important roles of 

DSBs in brain physiology, aging, cancer, psychiatric and neurodegenerative disorders. We provide 

an overview of some findings and speculate on what may lie ahead.
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1. Introduction

Overall stability of the genome is important for normal cellular function and disease 

prevention, yet it is becoming increasingly clear that the genome is subject to sequence 

alterations in the context of various cellular processes. Beyond endogenous sources of DNA 

damage, such as DNA replication, transcription, and chromosome segregation, chemical 

mutagens and radiation can cause DNA damage-mediated genomic alterations [1]. 

Depending on cellular context, genomic alterations can drive cancer development and have 

been implicated in aging, and neurodevelopmental and neurodegenerative disorders [1]. 

Strikingly, despite widespread expression of DNA repair factors in many cells types, the 

central nervous system is the predominantly affected organ when DNA repair is impaired 
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[2]. How genomic alterations are formed and how cells repair DNA damage in various 

tissues continue to be important fundamental questions with many implications for human 

health and disease.

Although genomic alterations can be mediated by various forms of DNA damage, in this 

article we focus on DNA double-strand breaks (DSBs), which arise when both DNA strands 

are broken at a given genomic position. When DSBs are not joined back together in the 

original configuration—and instead fuse with DSBs in other genomic locations—they give 

rise to DNA rearrangements. Such rearrangements can occur within a given chromosome or 

can fuse different chromosomes together to form of inter-chromosomal translocations.

Beyond any potentially negative outcomes, DSBs provide the opportunity to functionally 

modify genomic information. For example, during meiosis, DSBs mediate the exchange of 

genomic sequences between homologous chromosomes [3]. DSB-mediated genomic 

alterations are critical for the development and function of the adaptive immune system. 

V(D)J recombination in lymphocyte progenitors utilizes DSBs to generate a diverse 

repertoire of antigen receptors, and immunoglobulin heavy (IgH) chain class switch 

recombination in mature B lymphocytes relies on DSBs to alter the effector functions of a 

given antibody [4]. Based on cellular context and aspects such as cell cycle phase, 

mammalian cells use several different mechanisms to recognize and repair chromosomal 

DSBs, including homology-directed repair [5] and end-joining repair pathways requiring 

minimal or no homology of the DSB ends [6].

Classical non-homologous end joining (C-NHEJ) requires the evolutionarily conserved 

“core” NHEJ factors Ku70, Ku80, Xrcc4, and DNA Ligase 4 (Lig4), and is considered a 

major DSB repair pathway in mammalian cells due to its ability to operate in all phases of 

the cell cycle [4, 6, 7]. Although C-NHEJ is sometimes referred to as a “bad” form of DNA 

repair, it actually functions as a major protector of genomic integrity, rapidly repairing 

DSBs, frequently with no or only minimal loss of genomic sequence. C-NHEJ can, however, 

also catalyze the formation of gross chromosomal alterations in form of inter- and intra-

chromosomal translocations [6, 8]. Notably, “alternative” end-joining pathways, which can 

be defined as any form of end-joining not requiring the core C-NHEJ factors [7], also have 

been implicated in the formation of genomic aberrations [9].

Early studies of C-NHEJ factors in mice revealed that C-NHEJ is required for immune 

system development and neurodevelopment [10–13]. Recent findings, in significant parts 

based on studies of C-NHEJ-deficient cells, have identified recurrent DSB clusters in 

dividing neural progenitor cells [14, 15]. Further, DSB formation and repair have been 

implicated in the function of post-mitotic neurons [16, 17]. In the following sections, we will 

give an overview of recent findings about DSB formation and repair in neural cells in the 

contexts of neurodevelopment and the mature brain.

2. DNA double-strand breaks in dividing neural progenitor cells

Multiple lines of evidence suggest that somatic cells, including neural cells, are subject to 

much more extensive genomic alterations than previously anticipated. Variations in coding 
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and non-coding regions of the genome may confer differences amongst individuals in terms 

of brain function and susceptibility to brain disorders. Indeed, mature brain cells have been 

shown to contain frequent genomic alterations proposed to promote neuronal diversity [18–

20]. There is now great interest in somatic mutations that form post-zygotically – as opposed 

to inherited germline mutations – in neural cells and thus give rise to somatic brain 

mosaicism [19]. Such genomic alterations, which may arise in dividing neural progenitors, 

may underlie the diversity of neuronal cell types and have a role in neuronal physiology 

[19]. They may also be involved in the etiology of neurodevelopmental and psychiatric 

disorders [19].

Potential mechanisms causing genomic alterations in brain cells remain mostly unexplored. 

Early work performed shortly after the identification of C-NHEJ pathway factors [21, 22] 

that involved genetic inactivation of these factors in mice [10, 13] revealed critical roles in 

lymphocyte development and found abrogation of neuronal development because of 

unrepaired DSBs in neuronal progenitors [11, 12]. These findings suggested the possibility 

that neuronal development may involve genomic alterations and, perhaps, diversification of 

genomic information functionally related to the process of antigen receptor rearrangement 

via V(D)J recombination [12, 23, 24].

V(D)J recombination involves RAG endonuclease-mediated DSB formation [25] at the ends 

of antigen receptor gene segments known as V, D, and J segments. Subsequent processing 

and joining results in V(D)J variable region exons [26]. C-NHEJ inactivation in mice blocks 

progenitor B and T lymphocyte development because functional antibody and T-cell 

receptor genes required for development into mature B and T cells cannot be assembled in 

the absence of C-NHEJ-mediated repair of RAG-mediated DSBs [4]. Specifically, RAG-

mediated DSBs are introduced in the G1 phase of the cell cycle and persistent DSBs in C-

NHEJ-deficient B and T lymphocyte progenitors undergo p53 G1 checkpoint-mediated 

apoptosis [27–29]. p53 inactivation rescues the embryonic lethality of XRCC4- or Lig4-

deficient mice but does not restore lymphocyte development due to persisting inability to 

complete V(D)J recombination. However, p53 inactivation allows XRCC4- or Lig4-deficient 

lymphocyte progenitors with persistent RAG-mediated DSBs to divide [27, 28], which 

contributes to development of pro-B cell lymphomas with recurrent translocations between 

the IgH locus and c-Myc [29–31]. These pro-B cell lymphomas develop rapidly and cause 

early death in mice. Many of these mice also exhibit in-situ medulloblastomas, a primary 

tumor of the cerebellum [29], further suggesting that developing neural cells undergo 

abundant DSBs.

Neuronal progenitor cells in C-NHEJ-deficient mice undergo apoptosis at developmental 

time points associated with differentiation into post-mitotic, mature neurons [12]. This 

checkpoint-mediated apoptosis of newly post-mitotic neurons with persisting DSBs may be 

a mechanism to prevent incorporation of such neurons into the nervous system. Inactivation 

of p53 prevents neuronal death in XRCC4- or Lig4-deficient mice [13, 27, 28] but due to 

rapid death from pro-B cell lymphomas potential implications of unrepaired, developmental 

DSBs for neuronal function could not be assessed.
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Several fundamental questions related to neural DSBs remained unanswered for many years. 

What are the causes, genomic locations, and implications of abundant DSBs in developing 

neural cells? Initial answers came from studies involving conditional Xrcc4 inactivation in 

neural stem and progenitor cells in p53-deficient mice [32]. These mice developed 

medulloblastomas with recurrent chromosomal translocations, including translocations 

involving the N-myc and c-Myc oncogenes [32], further suggesting intriguing parallels 

between DSB formation and repair in lymphocyte and neural progenitor cells. However, 

because of a lack of appropriate technology, comprehensive identification of DSBs in 

developing neural cells was not possible at that time.

To comprehensively elucidate DSB biology in various contexts, we developed high-

throughput, genome-wide, translocation sequencing (HTGTS), an approach to rapidly 

identify DSBs genome-wide with high sensitivity and specificity [33–35]. HTGTS is based 

on the translocation of endogenous DSBs in any region of the genome to bait DSBs 

introduced in defined locations via endonucleases such as Cas9 [30, 33, 34, 36]. Further, 

recurrent endogenous DSBs such as those occurring during IgH class switch recombination 

(CSR) [37] or V(D)J recombination [38–40] can be used as bait DSBs. HTGTS studies 

provided several fundamental insights into how DSBs are formed and repaired. For example, 

they revealed that several classes of DSBs join preferentially to DSBs within the same 

topological domain because of proximity effects caused by spatial genome organization [4, 

39, 41].

Two random DSBs only rarely occur within close proximity of each other. Thus, the effect 

of spatial proximity is most pronounced in the context of two recurrent DSBs occurring 

within kilobase- to megabase-sized topological domains. In this regard, the physiological 

process of IgH CSR in mature B cells takes advantage of the preferential joining of high-

frequency DSBs within topological domains to achieve high levels of IgH isotype switching 

via joining of IgH switch-region DSBs [37, 41, 42]. Moreover, topological domains not only 

promote effective joining of antigen receptor gene segment DSBs during V(D)J 

recombination but can also control joining directionality within a domain [38, 43].

To address long-standing, fundamental questions about the nature of neurodevelopmental 

DSBs, we adapted HTGTS to dividing, primary mouse neural stem/progenitor cells (NSPC). 

We initially introduced bait DSBs on three chromosomes to reveal any potential 

endogenous, recurrent DSB clusters in the genome based on their ability to join to bait DSBs 

on multiple chromosomes [14]. This approach revealed 27 recurrent DSB clusters (RDCs) 

and implicated additional candidate RDCs throughout the NSPC genome [14]. All of the 27 

RDCs were enhanced by mild replication stress caused by the polymerase inhibitor 

aphidicolin and, strikingly, were found to lie within genes encoding proteins with roles in 

synaptogenesis and neural functions [14]. Genomic alterations of most of the 27 RDC-genes 

have been associated with psychiatric disorders such as autism and schizophrenia and 

several are altered in brain cancers including medulloblastoma [44, 45] and glioblastoma 

[46]. In the latter context, RDCs may potentially contribute to recurrent genomic alterations 

that contribute to gene amplifications, deletions, and translocations in medulloblastoma [32] 

and other cancers [14].
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Subsequent work involving introduction of CRISPR/Cas9-mediated bait DSBs into each of 

the 19 autosomes and the X chromosome of mouse NSPCs confirmed all 27 RDC genes and 

identified many additional RDCs [15]. All additional RDCs localize to genes or gene 

clusters and many were detected in the absence of induced replication stress, indicating that 

replication stress enhances an endogenous process present in NSPCs [14, 15]. NSPC RDCs 

can be assigned to three groups based on features including genomic length, organization, 

transcription rate, and replication timing [15]. Group 1 RDCs, which includes a majority 

(~80%) of the most robust RDCs, comprise a single, generally long gene; group 2 RDCs 

comprise several genes, including no less than one long (>80 kb) gene; and group 3 RDCs 

feature clusters of several small (<20 kb) genes [15]. Genomic lengths and transcription 

rates of group 1 and 2 RDCs are similar, yet group 3 RDCs are substantially shorter and 

display higher transcription rates [15].

DSBs in RDC genes in NSPCs could contribute to the formation of genomic copy number 

variations (CNVs) detected in normal neurons of the frontal cortex in humans [18]. In this 

regard, 30 RDCs map to regions reported to contain CNVs based on single-cell sequencing 

of human neurons [14, 15, 18] although the significance of these findings is not yet clear due 

to the current resolution limits of single-cell sequencing.

Much still remains to be elucidated with respect to the mechanisms causing RDC gene 

fragility in NSPCs and this is an area of active investigation. Replication timing and 

transcriptional activity of RDC genes suggests that they are prone to collisions between the 

replication and transcription machinery [14]. In this regard, the identification of RDCs 

provides a potential mechanistic model for many common fragile sites and CNVs that have 

been proposed to result from transcription/replication collisions [14, 15, 47, 48]. Indeed, 

some RDCs incur CNVs in embryonic stem cells and fibroblasts [14, 15, 47, 48]. How 

transcription/replication collisions cause DSBs in RDC is an important open question. 

Notably, a subset of RDCs fall into genomic regions reported to contain early replicating 

fragile sites in B cells [49], suggesting further potential mechanistic implications that will 

need to be explored [15].

The most robust RDC genes are generally large, occupying up to 2 Mb of genomic 

sequence, and lie within their own topological domains [14, 15]. Despite their large size, 

these RDC genes contain small exons and encode relatively short transcripts. DSBs occur 

across the RDC gene body, which means that most DSB occur in the long introns 

characteristic of these genes. Notably, because HTGTS can only detect endogenous DSBs 

that join to a bait DSB, it is likely that the DSB frequency within RDC genes is actually 

higher than the minimal frequency of 12 RDC translocations per NSPC that we estimated 

based on HTGTS [14]. These observations suggest an intriguing parallel to a major DSB-

mediated, physiologic process in B lymphocytes: although of lower density, RDC DSBs 

approach the frequency of DSBs mediating IgH CSR in activated B lymphoyctes [14].

As most long RDC genes occupy replication domains [14] that correspond to single 

topological domains or sub-domains [50], two DSBs within an RDC gene would be 

predicted to undergo preferential joining. As indicated above, preferential DSB joining 

promoted by topological domains drives IgH CSR [37, 38], which involves joining of two 
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DSBs over genomic distances of 100 kb or more, and deletion of the intervening DNA 

sequence [4]. Based on the estimated high frequency of DSBs in RDC-genes upon 

replication stress [14], we propose that separate, intronic DSBs within long RDC-genes are 

frequently joined to each other, thus potentially leading to gene diversification in NSPCs 

[51] (Figure 1A).

Many RDC genes, especially the neurexins, produce large numbers of isoforms via 

alternative splicing [52, 53]. Novel exon combinations can also potentially be generated by 

recombination between intronic regions at the DNA level via “exon shuffling” [54]. We 

propose that modification of RDC genes via DSB-mediated, intronic recombination might 

cause such exon shuffling in NSPCs, thus altering the repertoire of possible transcripts in 

neural progeny, including mature neurons. In this context, introns can split the reading frame 

between codons (phase 0 intron), or within codons (phase 1 and 2 introns) [55] (Figure 1B). 

Exons flanked by introns of the same phase can be joined without altering the downstream 

reading frame. Notably, analyses of intron phases revealed that introns in many RDC genes 

tend to form compatible clusters (B. Schwer, unpublished observations) (Figure 1C), 

suggesting that domains could be altered by DSB-mediated intron-intron joining at the level 

of genomic DNA.

The proposed exon shuffling via intronic DSBs would be somewhat akin to IgH CSR, which 

also generates different isoforms of a protein rather than new exons as during V(D)J 

recombination. In this regard, the structure of long neural genes, with their small exons and 

very large introns [56], theoretically could have evolved to support replication stress-

associated, DSB-mediated gene diversification. This poses important questions, including 

how such DSB-mediated gene diversification is prevented in the germline, highlighting the 

importance of investigating the extent of RDC-gene fragility in other cell and tissue types.

Beyond alterations caused by joining of DSBs in separate introns, RDC DSBs may also 

cause altered splicing patterns via localized DSB-induced splice site mutations and 

subsequent intron retention, which may impact transcript and protein abundance [57], or 

more limited intronic deletions that could affect gene function by altering regulatory 

elements. Thus, future work is required to determine whether increased replication stress 

during neurodevelopment promotes brain disorders via RDC formation in neural 

progenitors.

3. Neuronal activity and transcription-induced DNA double-strand breaks 

in neural cells

Recent work has implicated DSB formation and repair in the function of non-replicating, 

mature neurons [16, 17, 58]. The need to maintain mature neurons over the entire lifespan of 

an individual highlights the particular importance of repair and maintenance pathways in this 

cell type. Indeed, neurons are thought to incur frequent DNA lesions [2]. Whereas 

replication is likely a major source of DSBs in dividing neural progenitors, major sources of 

DSBs in non-dividing, mature neurons include oxidative stress and transcription. Notably, 

neurons undergo DSB formation in response to various forms of neuronal stimulation, 

including optogenetic activation, or physiological neurobehavioral tasks [16, 17, 58].
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In mature neurons, activity-induced DSBs form in early response gene promoters and have a 

role in induction of gene expression [16]. Most early response genes encode transcription 

factors with roles in learning and memory [59, 60]. Neuronal activity-induced DSBs have 

been proposed to be mediated by topoisomerase IIβ (Top2β) [16]. Decreased Top2β levels 

reduce DSB formation and early response gene induction, whereas targeted CRISPR/Cas9-

mediated DSBs in early response gene promoters are sufficient for gene induction [16], 

suggesting a direct role of DSBs in the regulation of neuronal activity.

Full evaluation of the implications of Top2β-mediated DSBs for neuronal function will 

require to determine if Top2β-mediated DSBs are routinely formed during early response 

gene activation–i.e., in all or most promoters–or only in a subset of early response gene 

promoters under specific circumstances. In this regard, Top2β mediates release of torsional 

stress during transcription [61] and Top2β-mediated transcription start site breaks are 

proportional to the rate of transcription in non-neural cells [62, 63]. If early response gene 

promoters in neurons are subject to a higher DSB burden over lifespan than other promoters, 

it would follow that they may incur higher rates of genomic alterations due to an expected 

rate of imperfect DSB repair over time. Such alterations could impact brain functions with 

age, given the important role of early response genes in cognitive function, and thus 

highlight a potential role of DSB repair in the prevention of aging-associated cognitive 

decline.

The mechanisms by which neuronal activity-induced DSBs promote gene activation are not 

well understood. The enrichment of Top2β-mediated DSBs at sites bound by CCCTC-

binding factor (CTCF) in neurons and other cell types suggests a potential role of DSBs in 

the topological remodeling of enhancer-promoter interactions [16, 64, 65]. Overall, high 

transcription activity appears to recruit Top2β to transcription start sites [66]. Findings 

showing that Top2β inhibition causes increased RNA polymerase II pausing at early 

response genes, suggest that Top2β-mediated DSBs may have a role in gene expression 

induction via release of paused RNA polymerase II [67]. Beyond transcription-associated 

DSBs in non-dividing neurons, early response genes have also been shown to undergo 

activation-induced Top2β-mediated DSBs in dividing, non-neural cells [67]. Indeed, Top2β-

mediated DSBs mediate stimulation-induced gene expression in various non-neural cell 

types [68–70]. Specifically, DSBs around transcription start sites have been implicated in 

nuclear hormone receptor gene activation in tumor cell lines [68, 71]. DSBs were also found 

enriched around active transcription start sites in activated B cells [33, 72] and NSPCs [73], 

although it is unclear if they were caused by Top2β activity. It should be pointed out that 

Top2β also has a role in the formation of transcription-independent DSBs at chromosome 

loop anchors bound by CTCF and cohesin [64].

It is possible that factors other than Top2β contribute to the formation of neuronal activity-

induced DSBs. Although the implications are not yet clear, Spo11, the endonuclease that 

generates DSBs during meiosis, has been speculated to contribute to the formation of 

activity-induced DSBs in neurons of the hippocampus [17].

The finding that neuronal activity-induced DSBs are marked by the DSB response factors 

γH2AX [16, 17, 58] and 53BP1 [17] suggests that they are recognized by the DSB repair 
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machinery. However, how precisely these breaks are resolved in neurons is currently unclear. 

Experiments involving chemical inhibition of DNA-PK suggest that neuronal activity-

induced DSBs are likely repaired via NHEJ [16]. Recent studies have further proposed a role 

of the BRCA1 factor in neuronal DSB repair [74]. Overall, these intriguing, recent findings 

suggest a role for DSB repair in cognition and neurodegenerative disorders such as 

Alzheimer’s disease [74] and highlight the importance of further studies of DSB formation 

and repair in neurons.

4. Conclusions

Emerging evidence points to potential roles of DSB formation and repair in 

neurodevelopment, somatic brain somaicism, and neuronal function. The field is beginning 

to address the causes and implications of DSB break formation and repair in various neural 

cell types. Identification of the underlying mechanisms will likely yield insights relevant for 

both brain physiology and disorders. In addition to gaining further insights into roles of DSB 

formation and repair in pathologic conditions such as cancer and aging-associated functional 

decline, we speculate that future studies of neural DSBs may reveal roles of DSBs and repair 

factors in physiologic processes beyond meiosis, V(D)J recombination, and immunoglobulin 

class switch recombination.
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Abbreviations

DSB DNA double-strand break

IgH immunoglobulin heavy

C-NHEJ classical non-homologous end joining

XRCC4 x-ray repair cross complementing 4

Lig4 DNA ligase 4

RAG recombination activating gene

HTGTS high-throughput, genome-wide, translocation sequencing

CSR class switch recombination

NSPC neural stem/progenitor cell

RDC recurrent DSB cluster

CRISPR clustered regularly interspaced short palindromic repeats
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Cas9 CRISPR-associated protein 9

CNV copy number variation

Mb megabase

kb kilobase

Top2β topoisomerase Iiβ

CTCF CCCTC-binding factor

γH2AX serine 139-phosphorylated histone H2AX

53BP1 tumor suppressor p53-binding protein 1

DNA-PK DNA-dependent protein kinase

BRCA1 breast cancer 1 gene

Ctnna2 catenin, alpha-2

Cadm2 cell adhesion molecule 2
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Figure 1. Hypothetical model of replication stress-induced, DSB-mediated RDCgene 
rearrangements in neural stem/progenitor cells.
(A) RDC-genes often contain very large introns and small exons (not drawn to scale). 

Joining of separate, intronic DSBs (indicated by black arrowheads, top) would result in exon 

deletions and RDC-gene diversification (bottom). In the model shown, exons 3 and 4 are 

deleted via end-joining of two intronic DSBs (dotted lines), with the resulting breakpoint 

junction indicated by a dashed box. Intragenic joining of DSBs is expected to be promoted 

by location of RDC-genes within topologically associated domains. Adapted from [51]. (B) 
Illustration of intron phases. Adapted from [55]. The three intron phases (1,2,0) are shown. 

Exons flanked by introns of the same phase (0–0, 1–1, 2–2) can be joined without shifting 

the reading frame. (C) Annotation of intron phases in RDC-genes Ctnna2 and Cadm2. Black 

rectangles indicate exons. First coding exon is shown in orange.
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