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Abstract

We hypothesize that artificial intelligence applied to relevant clinical testing in glaucoma 

has the potential to enhance the ability to detect glaucoma. This premise was discussed 

at the recent Collaborative Community for Ophthalmic Imaging meeting, “The Future of 

Artificial Intelligence- Enabled Ophthalmic Image Interpretation: Accelerating Innovation and 

Implementation Pathways,” held virtually September 3–4, 2020.

The Collaborative Community in Ophthalmic Imaging (CCOI) is an independent self-governing 

consortium of stakeholders with broad international representation from academic institutions, 

government agencies, and the private sector whose mission is to act as a forum for the purpose of 

helping speed innovation in healthcare technology. It was one of the first two such organizations 

officially designated by the FDA in September 2019 in response to their announcement of the 

collaborative community program as a strategic priority for 2018–2020. Further information on the 

CCOI can be found online at their website (https://www.cc-oi.org/about).
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Artificial intelligence for glaucoma diagnosis would have high utility globally, as access to care 

is limited in many parts of the world and half of all people with glaucoma are unaware of 

their illness. The application of artificial intelligence technology to glaucoma diagnosis has the 

potential to broadly increase access to care worldwide, in essence flattening the Earth by providing 

expert level evaluation to individuals even in the most remote regions of the planet.

Background

Tools to visualize ocular anatomy and analyze pathology have been paramount in the 

development of the field of ophthalmology, dating back to the development of the 

ophthalmoscope more than 170 years ago.

The Ocular Hypertension Treatment Study (OHTS) Confocal Scanning Laser 

Ophthalmoscopy (CSLO) Ancillary Study demonstrated that baseline measurements of the 

neuroretinal rim and optic cup, either alone or in combination with age, intraocular pressure, 

central corneal thickness, and visual field (VF) pattern standard deviation (PSD), could be 

used to predict the development of primary open-angle glaucoma (POAG).[1] In addition, 

eyes that progressed to POAG showed a greater rate of change in CSLO ONH parameters 

when compared to those that did not develop POAG.[2] Similarly, longitudinal studies have 

demonstrated that the CSLO was better able to identify eyes that demonstrated glaucoma 

progression compared to traditional measures.[3, 4]

In the 1990s, optical coherence tomography (OCT) was developed as a means for non-

invasive, objective, rapid, reproducible, and quantitative sampling of tissue. One initial 

use of OCT was for evaluation of anterior segment structures.[5] With time, the OCT 

became an invaluable tool in evaluating numerous ocular posterior and anterior segment 

structures including the retinal nerve fiber layer (RNFL), optic nerve head (ONH), retina, 

retinal and optic nerve vasculature, anterior chamber angle, and the aqueous outflow 

system. OCT measurements, particularly RNFL thickness, macular thickness and rim-based 

parameters such as Minimum Rim Width (MRW), have high diagnostic sensitivity and 

specificity to differentiate glaucomatous eyes from healthy eyes.[6–12] At this time the OCT 

measurements are frequently used in conjunction with measures of optic nerve function 

and clinical examination to assist ophthalmologists in the diagnosis of glaucoma. From a 

regulatory perspective, many of the uses of OCT mentioned in this paragraph represent the 

practice of medicine and not legally marketed devices or modalities.

In order to expedite and facilitate the development of ophthalmic imaging, the Collaborative 

Community for Ophthalmic Imaging (CCOI) was formed.[13] The CCOI executive 

committee then had to decide on the most pressing needs, and created workgroups to address 

these areas. Glaucoma Imaging was one of the first workgroups formed. What follows is 

a direct outcome of the CCOI meeting, “The Future of Artificial Intelligence- Enabled 

Ophthalmic Image Interpretation: Accelerating Innovation and Implementation Pathways,” 

held virtually September 3–4, 2020.
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Artificial Intelligence

The term artificial intelligence (AI) refers to the concept of programming computer systems 

to perform tasks to mimic human cognitive capabilities – such as understanding language, 

recognizing objects and sounds, learning, and problem solving – by using logic, decision 

trees, machine learning, or deep learning.[14] Subcategories of AI include machine learning 

(ML), with deep learning as a particular approach to ML.[15, 16] ML refers to the ability 

of a machine to learn without needing to be explicitly programmed and can be done 

with a supervised or unsupervised approach. For example, with supervised learning with 

classification, labeled examples are used as input into algorithms which then are “trained” 

to classify those examples into specific categories. A subtype of machine learning, deep 

learning is a type of AI where a machine has the capability of learning using multilayer 

neural networks, modeled after the cerebral cortex. Because of the complexity of the 

networks used, deep learning can allow for more nuanced decision making but requires more 

data to train networks. Deep learning appears to have great promise in the field of glaucoma. 

Medical applications in AI range from detecting disease in input images and signals 

in electronic health records to analyzing large volumes of data that can be categorized 

faster than possible with manual review.[17] These advanced analytics techniques typically 

analyze large and varied datasets that cannot normally be analyzed by humans without 

specialized software tools, and often discover new patterns in data. While AI can be used for 

detailed analysis, in some cases it can be difficult to parse out how the algorithms actually 

arrive at decisions.

The Potential Role of AI in Glaucoma

A large proportion of glaucoma remains undiagnosed. It can be a silent disease and often 

is not diagnosed until the disease is advanced. Fortunately, treatments are available that 

can prevent or slow disease progression and vision loss once glaucoma has been identified. 

Glaucoma has relatively low prevalence (~2% over 40 years of age), making it difficult to 

implement screening in large populations.[18] Currently, there does not exist a screening 

algorithm with high enough sensitivity to meaningfully identify patients with different 

stages of disease and determine the next appropriate stage of evaluation. The diagnosis of 

glaucoma at this time requires individual examination by specialists, adding an additional 

obstacle in identifying glaucoma in a population. One solution may be to develop and 

implement more sophisticated automated systems to detect glaucoma. The prevalence of 

glaucoma is highest in the elderly, which is a rapidly growing segment of the population. 

At the same time, it is predicted that ophthalmologists will be in ever shorter supply as 

the number of ophthalmologists trained each year is not increasing. Even if glaucoma is 

diagnosed, there are sub-populations that remain underserved in terms of medical care; this 

is an example of issues related to equity in healthcare. Finally, healthcare costs continue 

to grow and strain personal, industry, and government budgets.[16] Many of these issues 

may be addressed, at least in part, by AI, however, as Abramoff, et al. wrote, “Inappropriate 

bias, increase in health disparities, and thus decreased equity can exist across the entire 

AI pipeline, including in the choice of intended use of the AI, its design, its validability, 

its validation and the choice of reference standards, as well as how, and where, it is 

implemented.”[19]
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Patient Perspective—It is also important to take into account the patient’s perspective on 

technology that is being implemented with data from their eyes.[13] Using fundus imaging 

in community settings is an easy and relatively quick method to obtain information about 

their likelihood of having glaucoma. Patients may be reluctant to have their eyes imaged, 

due to a variety of concerns, including privacy and security. Patients also may not want to 

take the time to undergo VF testing and may be frustrated by the exam itself. Furthermore, 

in order for AI to be successful, there must be large databases with images from many 

patients’ eyes. Screening would require patient consent.

Applications of AI in Ophthalmology

Most published studies of AI applied to OCT imaging have so far focused on diseases 

impacting the posterior segment of the eye and have relied on interpretation of images.[17] 

While as of the writing of this manuscript the only currently Food and Drug Administration 

(FDA) approved AI ophthalmic devices are limited to Diabetic Retinopathy, there are have 

been many studies published in other areas of ophthalmology. AI has been shown to have 

a potential role in detecting disease and identifying worsening of disease in a diverse 

array of retinal pathologies. For example, AI has been applied as a method to distinguish 

healthy eyes from eyes with diabetic macular edema (DME) and distinguishing eyes with 

DME from eyes with age-related macular degeneration.[20–22] Additionally, OCT has been 

analyzed by AI to differentiate etiologies of disease. One study demonstrated that AI models 

can identify subretinal fluid that has accumulated from DME.[23] AI applied to OCT 

technology has also shown utility in detecting RNFL loss in multiple sclerosis and changes 

in photoreceptors in choroideremia and retinitis pigmentosa.[24] Moreover, AI algorithms 

have utilized OCT to link structural change to functional changes in glaucoma. In one study, 

retinal ganglion cell axonal complex optimized approach, which uses the ganglion cell – 

inner plexiform layer (GCIPL) thickness and RNFL thickness, had high predictive value in 

determining VF thresholds using OCT image, with an average correlation of 0.74. [25]

Applications of AI in Glaucoma

For AI to be effective in glaucoma, it must be capable of assessing the likelihood of the 

presence or absence of glaucoma and / or detecting the progression of glaucoma.[17] If used 

to classify patients, AI must be able to distinguish between glaucoma and non-glaucomatous 

optic neuropathy.[26] To train these types of classification AI algorithms, we need a 

definition of glaucoma that is objective, validated, and standardized, to serve as a ground 

truth that can be applied to the examples used to train the system.[27]

AI has a potential role in glaucoma screening to help identify affected patients more 

efficiently than human experts alone. It would be optimal if eyes with early stage glaucoma 

or that are at higher risk of developing glaucoma could be flagged by AI,[17] but this 

is not the initial priority. Instead, AI should be focused on automated identification 

of moderate glaucoma, when patients begin to experience functional changes or visual 

field abnormalities and are more likely to experience visual disability over their lifetime. 

Eventually, the scope of AI in glaucoma assessment will broaden, but first steps will 

necessarily be more limited than later applications. This begs the question, however, as 

to whether society is ready at all for legally marketed AI for glaucoma.
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Glaucoma can remain asymptomatic until moderate to severe stages of disease, which 

can make it even more difficult to diagnose. Studies have demonstrated that the number 

of undiagnosed cases of glaucoma may range from 60% to 92% in developed countries 

throughout the world.[28–31] Heijl et al. (2013) found that when screening for glaucoma in 

Sweden, one-third of subjects with previously undiagnosed glaucoma already had advanced 

glaucomatous disease in at least one eye.[32] Glaucoma is in theory an ideal disease to use 

in screening, as it is a chronic disease that progresses slowly and if treated early enough, 

irreversible visual decline can be prevented. If glaucoma is diagnosed at more advanced 

stages, it is more difficult to treat and eyes at such stage of disease are more likely to 

progress to blindness.[33]

In the past, glaucoma screening was not considered to be cost-effective.[34, 35] However, 

numerous studies have demonstrated that if screening is focused on patients that are high 

risk for glaucoma, including patients at 68 years of age or older, with family history of 

glaucoma, or of certain ethnicities, screening becomes more beneficial and cost-effective.

[36–41] In addition, the positive predictive value of screening tests increases when the 

prevalence increases, therefore screening is likely more effective when focused on these 

high-risk individuals.

On an individual level, identifying glaucoma at an earlier stage may prevent patients from 

being exposed to the risk and cost of drug escalation and procedures, and may prevent 

patients from progressing to blindness. Studies have demonstrated that the financial burden 

of glaucoma increases at later stages of disease.[42, 43] The study by Varma and colleagues 

(2011) demonstrated that at patients at early stages of disease incur direct costs through 

medications and office visits, however at advanced stages, there are additional indirect costs, 

which are particularly burdensome on health care resources and expensive on a global level.

[43]

By flagging eyes with moderate glaucomatous damage, which are more likely to progress, 

AI will be more cost-effective. Detecting glaucoma at moderate disease rather than early 

disease would not only still allow for treatment to begin in a timely manner to prevent 

any additional vision loss and further decline in quality of life, but also would avoid 

overwhelming the healthcare system. Asaoka and colleagues (2014) showed an area under 

the receiver operating characteristic curve (AUROC) of 0.79 for pre-perimetric glaucoma 

using a combination of inputs including total deviation plot, PSD, and MD.[44] This level of 

performance is not adequate to implement in a screening setting at this time, as it would be 

costly and increase patient care visits due to a high false positive rate. In contrast, targeting 

worse-than-mild disease is likely to result in more usable performance by AI systems as the 

task they are being asked to do is fundamentally “easier” than identifying even the earliest 

possible stage of disease.

Parameters for diagnosis: Structure

Structural changes are followed closely in the diagnosis and progression of glaucoma. The 

ONH cup-to-disc ratio, RNFL thickness, and GCIPL thickness are fundamental components 

of the glaucoma work up. A hallmark of glaucoma is cupping of the ONH with progressive 

neuroretinal rim loss of the optic nerve. However, the ONH cup-to-disc ratio is a more 
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subjective measurement and has high interrater variability. A quantitative structural change 

that is also monitored in glaucoma consists of OCT imaging of the RNFL thickness and the 

macular GCIPL thickness.

Important options for AI-assisted diagnosis of glaucoma include fundus photographer as 

well as quantitative OCT image analysis as glaucomatous structural damage has been shown 

to precede VF loss.[45] Fundus photography is a relatively inexpensive method to screen for 

eye disease that has already been utilized to assist in detecting retinal pathology.[46] There 

are also portable fundus cameras that are relatively cheap and can be used to image patient’s 

eyes in community settings and at primary care offices.

Parameters that are imaged by OCT include the RNFL, ganglion cell / inner-plexiform 

layer (GCIPL), and ONH. The superior and inferior temporal peripapillary RNFL are 

commonly associated with glaucoma damage.[16] Using the Diagnostic Innovations in 

Glaucoma Study, Zangwill and colleagues (2004) were able to show how structural variables 

can be used in the detection of glaucomatous damage. In one study, it was demonstrated 

that HRT measurements were able to identify glaucomatous eyes when focusing along 

the disc margin better than measurements obtained from the peripapillary region.[47] In 

addition, the Vizzeri et al. (2009) used Spectral domain-optical coherence tomographs 

(SD-OCT) to detect localized RNFL defects in eyes with glaucoma.[48] In another 

study, Belghith and researchers (2016) demonstrated that even within eyes with advanced 

glaucomatous disease, structural changes can be detected by analyzing the macular GCIPL, 

the minimum rim width, and the circumpapillary RNFL.[49] Furthermore, Hammel et al. 

(2016) utilized structural data, including neuroretinal rim imaged by confocal laser scanning 

ophthalmoscopy to study the rate and pattern of glaucomatous diseases.[50]

It is also possible that OCT can identify glaucoma using raw image data rather than relying 

on already defined structural parameters dependent on image segmentation, such as RNFL 

thickness, ONH measures, ganglion cell complex (GCC) or GCIPL.[86–89]

Parameters for diagnosis: Function

Quantitative measurement of the VF is another parameter that is used for the diagnosis of 

glaucoma. Glaucomatous neuropathy leads to functional changes that are represented by VF 

loss. The gold standard for analyzing VF function is Standard Automated Perimetry (SAP).

It is believed that structural changes occur prior to functional changes, and so structural 

changes may be detected at earlier stages in glaucoma.[51, 52] However, the interpretation 

of the seminal articles backing this belief have been challenged.[53–55] Further, recent 

evidence suggests that agreement between OCT (structure) and visual field (function) is 

better than believed if local regions of deviation maps are compared.[56, 57] In any case, 

automated perimetry can assist in diagnosis of glaucoma at early stages. VF loss also 

strongly correlates with quality of life measures. Additionally, monitoring the rate of VF loss 

may help guide how aggressively to treat glaucoma.

Quantitative OCT prediction of automated full-threshold standard achromatic perimetry can 

be performed (see below). [51]
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Providing an Objective Standard in Glaucoma Diagnosis for Evaluating AI Approaches

AI has been validated using structural data alongside functional assessments with or without 

clinical examinations.[26] Both approaches offer evidence-based validations for one or more 

definitions of glaucoma.

Clinical exams plus structural data, i.e. OCT data, and functional analysis through SAP 

testing requires clinicians to consider past history, clinical exam, OCT, and VF data to 

form a diagnosis, with diagnosis of each eye determined by one treating expert. Global 

and sectoral degrees of abnormalities in structure and function would need to be assessed 

by OCT and VF data, respectively. Subsequently, all analytical data and clinical data are 

taken into consideration in order to assist specialists in determining a diagnosis. Given the 

multitude of data available to aid in the diagnosis of glaucoma, it has been difficult to 

determine a specific algorithm to diagnose glaucoma. However, a systematic criteria for 

glaucoma diagnosis is required in order for AI assist in glaucoma diagnosis on a more global 

scale.

In pursuit of a standard definition of glaucoma, Iyer and colleagues (2020) performed 

a study that compared clinician diagnosis of definite glaucomatous optic neuropathy to 

objective data from OCT and visual field among 2500 eyes, with the best sensitivity and 

specificity identified as OCT RNFL sectoral measurements and VF glaucoma hemifield 

test (GHT) using specific criteria.[26] The purpose was to determine objective criteria to 

permit comparisons among glaucoma research studies with standard objective parameters. 

The criteria included (1) most recent or the preceding pairs of tests with abnormal sectoral 

OCT with matching abnormal superior/inferior GHT (sensitivity 77%, specificity 98%), 

(2) abnormal sectoral OCT in the most recent or preceding tests with normal or abnormal 

and correlating GHT in VF (sensitivity 75%, specificity 98%), (3) corresponding abnormal 

sectoral OCT and GHT VF abnormalities on the most recent tests (sensitivity 73%, 

specificity 98%), and (4) abnormal sectoral OCT with matching VF GHT abnormality on 

the most recent and preceding pair of tests (sensitivity 65%, specificity 99%). While their 

study demonstrated high specificity for glaucoma detection, the sensitivity ranged from 

65% to 77%. There was lower sensitivity for eyes with less visual field loss, and among 

“possible” glaucomatous neuropathy cases, clinician-objective agreement was lower still. 

This illustrates that so-called “early” examples of glaucoma represent a heterogeneous group 

in which clinician agreement as to true status is questionable and longitudinal, repeated 

examinations would be needed to confirm disease status. A more detailed grading of 1000 

eyes as to presence of glaucomatous neuropathy on a 0–100 scale is currently undergoing 

analysis by Vianna and Chauhan that will further detail which objective measurements 

correspond to clinician diagnosis. While AI methods may indeed prove prescient in sorting 

among such early examples, no single point in time objective method could be identified at 

this time for comparison.

More recently, Mariottoni and colleagues (2021) described a reference standard that can be 

used in AI for glaucoma detection.[58] In the study, SD-OCT and SAP tests within the same 

eye were paired and classified as either having glaucoma or as healthy eyes according to 

the objective reference standard that the authors created. The standard criteria created by 

the researchers defined glaucomatous eyes as having loss of global RNFL thickness outside 
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normal limits and SAP GHT outside normal limits, with P-values less than 5%. Localized 

loss was defined as RNFL thickness outside normal limits in at least one superior sector 

or inferior sector (temporal and/or nasal) alongside inferior or superior sectors. The study 

went further to implement this standard in a deep learning algorithm to classify eyes with 

glaucoma.

A third structure-function approach has been taken by Hood, De Moreas, Tsamis and 

colleagues who developed an automated and objective method for comparing abnormal 

regions of deviation maps from OCT (RNFL and GCL) and visual fields (24–2 and 10–2). 

They demonstrated that this method correctly identified eyes missed by other methods, and 

these eyes included those with damage near fixation.[27, 56, 57]

Additionally, a recent study by Xiong and researchers (2021) demonstrated that the AI 

algorithm, FusionNet, utilizing VF data and circular peripapillary OCT scans alone to 

differentiate patients with glaucomatous optic neuropathy vs. those without glaucomatous 

optic neuropathy achieved an AUROC of 0.950, outperforming VF data alone, OCT data 

alone, and two glaucoma specialists.[59] This study was conducted in patients only from 

China and had a higher rate of glaucoma. In addition, the study excluded patients with 

co-existing retinal or optic nerve diseases. Therefore, further studies are warrented to test the 

accuracy of FusionNet.

AI, including Neural Networks for Glaucoma

Detection—A number of studies have looked at the application of AI methods for assisting 

in glaucoma diagnosis. Davella et al. (2019) reviewed current research on use of structural 

and functional measures alone and in combination as inputs for AI in glaucoma detection.

[60] Many studies analyzing VF data inputs for AI algorithms to detect glaucoma showed 

promise, but had variability in success, likely related to the level of reliability and reliance 

on patient performance in VF data[61], and the wide diversity in structural features of the 

ONH region, including disc size, tilt, and positional entry of axons. Structural data has come 

in the form of CSLO, fundus color photography, and OCT data. While OCT has shown to 

be a successful tool in AI for assistance in glaucoma diagnosis, its utility depends on how 

accurately automated measurements can be made, which can be impacted by blood vessels 

and tissue reflectance.[62] A combination of both functional and structural data has the 

potential to differentiate glaucomatous eyes from healthy eyes more efficiently than either 

alone.

Studies have demonstrated the utility of AI technology with inputs from fundus photographs 

to assist in the detection of glaucomatous damage.[63–65] In a cross-sectional study, Liu and 

colleagues (2019) trained a deep learning algorithm with fundus photographs to categorize 

images as either definite, probable or unlikely glaucomatous optic neuropathy.[65] The 

model was then validated and evaluated using other images from their database. With 

primary data sets, the model was found to have an AUROC of 0.996, with a sensitivity 

of 96.2% and a specificity of 97.7%. The study also found that the most common cause 

for false-negative and false-positive outputs were pathologic or high myopia and manual 

grading.
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Additional structural parameters have also been studied for their use in AI for glaucoma 

detection.[26] Thompson et al. (2019) presented a deep learning program that utilizes 

minimum optic nerve rim width relative to Bruch’s membrane opening (BMO-MRW).[66] 

The BMO-MRW has been demonstrated to have a strong correlation to VF loss in glaucoma.

[67, 68] In their study, Thompson and colleagues trained the algorithm to predict the 

BMO-MRW when assessing photos of optic nerves of glaucomatous eyes, eyes of glaucoma 

suspects, and healthy eyes and showed that the predicted structural data correlated with 

VF loss (AUROC 0.945).[66] Park et al. (2018) analyzed artificial neural networks (ANN) 

using macular vessel density, macular GCIPL and the combination of both in ANN, and 

demonstrated improved performance using the combination (AUROC 0.87).[69] It will be 

important to confirm the validity of such methods against multiple databases in which the 

glaucoma diagnosis is standardized.

An important consideration is how the accuracy of AI models using deep learning are 

strongly impacted by the datasets used to train algorithms. The study by Christopher et al. 

(2020) evaluated the performance of two deep learning models, the University of California 

San Diego (UCSD) and the University of Tokyo (UTokyo), on independent datasets from 

different patient populations.[70] When testing the two AI models, they performed similar 

when using populations with mostly moderate-to-severe glaucoma. However, adding more 

mild glaucomatous eyes to train the UTokyo model, which was initially trained with a higher 

prevalence of severe glaucomatous eyes, increased the algorithms performance. Therefore, 

it is important to train AI models with populations with stratified severity of glaucoma for 

them to perform more accurately.[19]

Progression—Published studies have also investigated the use of AI in detecting the 

progression of glaucoma.[71] Although a variety of methods are used to determine 

glaucomatous structural and functional changes over time, there is no currently accepted 

single best definition of progressive change. Subsequently, algorithms need to be validated 

to detect change over time using longitudinal data on known progressive eyes from various 

centers. If models are not validated and generalized to different populations, they cannot 

be utilized in clinical settings. It has been recommended that a minimum sample size 

of 100 events, but more desirable would be a sample size of 200 events, be used for 

external validations.[72] Some models that attempted to show external validity did not use 

large enough sample size or reused the same datasets.[73, 74] More recently, the dynamic 

structure-function model was shown to predict glaucoma progression over a few visits 

accurately and is generalizable to other testing indices and populations, however the model 

is yet to have a clinical functionality.[75]

The first successful AI implemented to detect progression was completed by Lin et al. 

(2003) by examining VF to detect progression of glaucoma in patients with an established 

diagnosis of glaucoma (AUROC of 0.92).[76] Other studies have also implemented VF in 

AI algorithms for detecting glaucoma. A study by Wang and researchers (2019) used a new 

AI approach to track progression in glaucoma using VF data.[77] The authors found that 

their method outperformed existing algorithms of detecting glaucoma progression and that 

their method was also able to detect patterns of progression. Additionally, Dixit et al. (2020) 

used convolutional long short-term memory network, a network that can pass data between 
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layers and allow the networks to look at data overtime, with VF data to evaluate worsening 

disease.[71] The study demonstrated that the network was able to detect both global and 

regional changes in glaucoma eyes longitudinally, and that the network performed better 

when VF data was combined with clinical data, compared to VF data alone. In addition, 

Miri and colleagues (2017) used BMO-MRW to estimate nerve fiber bundles at the ONH 

and monitor glaucoma progression at the neuroretinal rim.[78]

Yousefi et al. (2020) compared using RNFL data, SAP data and the combination of RNFL 

with SAP data in machine learning algorithms to analyze which data set provided the most 

discriminating power to differentiate eyes with glaucoma with progressing disease from eyes 

with stable disease.[79] The researchers found that using RNFL data provided the most 

discriminatory power, particularly when analyzing global RNFL data as well as sectoral 

data from the inferior nasal sector, inferior temporal sector, superior temporal, and temporal 

sectors together. They did not show an advantage to combining SAP with RNFL data in 

differentiating eyes that had progressive disease from eyes with stable disease.

Feature Agnostic, Data Driven Approach—Another deep learning AI OCT data 

analysis methodology with regard to glaucoma and glaucoma progression is the use of a 

feature-agnostic, data driven approach. This method does not require known or assumed 

disease biomarkers, such as RNFL thickness or GCC or GCIPL thickness. A feature-

agnostic approach avoids using secondary analyses that rely upon accurate segmentation 

of OCT layers and may be more robust when analyzing lower signal strength scans, eyes 

with advanced disease, and eyes with other retinal pathologies. Studies using this technique 

have shown promising results.[80–84]

AI OCT Prediction of Visual Field Results—Using different AI/Deep Learning 

approaches, groups have found that OCT is capable of predicting the severity VF damage,

[82, 85, 86] including visual thresholds,[87] with good precision and accuracy. OCT 

prediction of VFs allows more objective and reproducible data compared to using SAP, 

that can be unreliable. Moreover, predicting the severity of visual field damage from OCT 

images opens the opportunity to tailor the frequency of visual field testing to the individual 

patient, by using the OCT prediction as an indicator of whether the visual field has changed. 

Additionally, using networks that are trained with OCT data, rather than SAP, is more timely 

and less subjective as it does not require manual labeling.

AI OCT and the Optic Disc—Finally, AI applications with optic disc photos may be used 

to assess glaucoma status and even to predict OCT RNFL parameters.[88, 89]

Future Considerations

For AI to establish a role in glaucoma, collaborations will be necessary to create programs 

that yield unbiased, reproducible, and accurate results. Training and validation sets must 

be large, diverse, and clinically verified against outcome or other prognostic standards. 

Support from many centers globally will be needed with glaucoma patients, glaucoma 

suspects, and healthy age-matched controls using standardized definitions. Input versus 

training data will need to be determined to avoid overfitting. These are issues that are central 
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to the Collaborative Community for Ophthalmic Imaging Glaucoma Workgroup, and were 

discussed in detail at the CCOI public meeting September 4, 2020.

Conclusions

There is great potential for the role of AI in glaucoma. Currently, there are a variety 

of criteria that are used to distinguish a healthy eye from one with glaucoma. Ideally, 

multiple parameters should be incorporated, including OCT RNFL, VF, macular and disc 

imaging, to enhance the efficacy of glaucoma diagnosis. As a first step, it would be most 

important to show that AI can identify a stage of glaucoma for which clinician agreement 

and objective criteria are more certain. Then, the search for AI methods that classify the 

early phases of glaucoma can be sought using eyes in which glaucoma developed over 

time. One consideration is to not rely on a binary decision of the presence or absence 

of glaucoma. Instead, using data points to create a likelihood scale may provide more 

utility in glaucoma screening. It also is important to use crowd-sourced data assessment and 

multicenter evaluation, as well as multiple evaluators in order to reduce errors and improve 

accuracy of AI outputs.

The utility of glaucoma screening may be more efficient and cost-effective if focused on 

populations with a higher prevalence of glaucoma, in which the pre-test probability is higher. 

It is also vital to ensure the testing has high specificity to avoid overwhelming the healthcare 

system and inappropriately labeling patients with a potentially blinding eye disease. By 

choosing lower cut-offs for RNFL thickness, there may be increased post-test probability, 

and in effect more patients with early-intermediate to intermediate stage glaucoma may be 

detected, as opposed to very early stage glaucoma. Patients detected at these stages could 

still allow for earlier detection than would be otherwise possible and such a system may 

therefore prevent visual field loss. Patients at earlier glaucoma stages that will eventually 

progress to reach the screening threshold will still be detected before reaching severe stages 

of glaucoma if screened at different timepoints, and therefore may still be protected from 

loss of quality vision. Another benefit of screening patients for glaucoma is the potential to 

detect other macular diseases. Medeiros et al. (2012) found that the average RNFL thickness 

for moderate glaucoma was 65 microns, which may provide a threshold that can be used to 

detect patient’s at moderate disease in AI.[90] One method that can be used for glaucoma 

screening would be to utilize OCT data, which is may be less timely and more reliable, in AI 

to first detect eyes with RNFL thicknesses of 65 microns or less, to capture those who likely 

have moderate to severe glaucoma. Subsequently, eyes screened as high risk for glaucoma 

can be evaluated further by using VF and IOP data.

In order for AI to emerge as a widespread technology for glaucoma management, cost 

savings need to be demonstrated. By detecting glaucoma at an earlier stage, patients may 

be able to avoid requiring more complicated and costly procedures, thereby reducing costs 

on both an individual and global scale. In addition, by detecting glaucoma in patients 

who otherwise would not have presented until they had advanced disease such a system 

may allow these patients to maintain visual function and also allow patients to continue 

to be productive. Using Medicare data, it was demonstrated that vision loss secondary 

to glaucoma is expensive, and more so with greater severity of disease.[91] This study 
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also showed that there is an increased risk for admission into nursing home, depression, 

accidents, femoral fractures with those that have visual decline from glaucoma compared to 

those with glaucoma without loss of vision. Therefore, if glaucoma can be detected earlier 

and patients’ can avoid severe vision loss, there can be cost saving benefits globally.

AI has been shown to have great potential in the detection of glaucoma and glaucoma 

progression. Clear definitions of these parameters require consensus to enable the 

widespread development, implementation, and acceptance of AI for glaucoma. Patient 

autonomy and equity must be considerations in the development and adoption of AI 

for glaucoma. AI offers the prospect of automating the detection of glaucoma and its 

progression, as well as improving patient access and reducing costs on an individual and 

global scale.
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