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ABSTRACT OF THE DISSERTATION

On the Scalability and Efficiency of Graph Processing Systems

by

Xizhe Yin

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2024

Dr. Rajiv Gupta, Co-Chairperson
Dr. Zhijia Zhao, Co-Chairperson

Developing scalable and efficient graph systems to support low-latency streaming analysis

and high-throughput concurrent query evaluation poses significant challenges. This thesis

proposes solutions to address these challenges.

Existing streaming graph systems require prior knowledge of queries; otherwise,

they fall back to expensive full query evaluations. The proposed Tripoline system overcomes

this by applying principles similar to triangle inequalities in Euclidean geometry, generaliz-

ing them for various vertex-specific graph problems. This allows the reuse of existing query

results to accelerate new queries. Tripoline achieves a speedup of up to 41.5× compared to

traditional streaming graph engines.

Another limitation of streaming graph analysis is that when changes to the graphs

become large, the incremental graph computation starts running slower than the full query

evaluation. Moreover, present incremental graph algorithms cannot handle edge weight

updates elegantly, resorting to a sub-optimal two-phase process. The proposed IncBoost

addresses these scalability issues with algorithmic enhancements and system-level optimiza-

vii



tions. It employs a novel bottom-up dependency tracing technique to identify vertices af-

fected by edge updates without accessing the graph data. It introduces a direct method for

handling edge weight updates. IncBoost scales to handle large update batches with sizes of

30% to 50% of the graph and achieves up to a 4.9× speedup over RisGraph.

To enhance the efficiency of a query processing system, concurrent query pro-

cessing is used for higher throughput. However, efficiency is often hampered by misaligned

graph traversals, causing unfavorable last-level cache misses. A runtime system called Glign

is developed to address this issue by automatically aligning graph traversals for concurrent

queries. Glign features novel optimizations at three levels: (1) the intra-iteration alignment

effectively reduces memory footprint for graph traversals; (2) the inter-iteration alignment

enlarges the overlapping of vertices for better-shared graph access; (3) a query batch for-

mation strategy predicts query subsets with better affinity for batching. Glign outperforms

the state-of-the-art concurrent graph processing systems, achieving speedups of up to 4.7×.

To improve the system throughput of graph-based approximate nearest neigh-

bor search (ANNS), this dissertation explores the design of graph construction and search

phases, particularly with temporal information. The proposed graph construction algorithm

considers the correlation between input queries and the final answers in the time dimension.

A fully parameterized best-first search algorithm is also designed for flexible performance

tuning. These techniques improve query throughput by up to 1.9× compared to the state-

of-the-art DiskANN while maintaining recall. Additionally, the constructed graph size can

be reduced by up to 30% without compromising query quality.
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Chapter 1

Introduction

Graph analytics is crucial for extracting insights from large volumes of connected

data, such as social networks, web graphs, internet topology, and brain networks. These

analyses use iterative algorithms to update the properties of vertices within a graph until

reaching a stable solution. Due to the vast size of real-world graphs, which often contain

millions of vertices and billions of edges, graph analytics is both data-intensive and compute-

intensive, requiring substantial computational resources.

To manage the challenges of scale and computational demand, there has been sig-

nificant interest in developing efficient graph analytics systems. Systems such as Ligra [106],

GraphLab [66], GraphIt [66], PnP [126], PowerGraph [41], GridGraph [142], Gemini [140],

and many others have been introduced to handle large graphs effectively. These systems

are primarily designed to evaluate a single query on a static graph. The focus is on opti-

mizing the computation of individual graph queries by leveraging memory abstraction and

designing highly parallelized iterative algorithms.
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In contrast to the above work, the focus of this thesis is on two more complex

and demanding scenarios in graph processing involving streaming (changing) graphs and

multi-query evaluation systems as described below.

(1) Low-latency evaluation of queries over a streaming graph. The graph dy-

namically changes with frequent edge insertions and deletions. This scenario is demanding

because dynamic changes require the system to promptly update its data structures and

recalculate affected query results in real-time. Applications such as network optimization,

temporal graphs analyses, fraud detection, and real-time recommendation systems necessi-

tate immediate responses to graph changes, making timely processing critical. Additionally,

as the graph grows, the system must scale efficiently to handle increasing volumes of up-

dates, which traditional static graph processing methods cannot achieve.

(2) High-throughput evaluation of multiple queries on static graphs. This sce-

nario is challenging because multiple queries access the graph simultaneously, leading to re-

source contention and degraded performance. Graph processing systems such as GraphM [139]

and Krill [18] have been developed to enable concurrent query evaluation on static graphs.

The aim is to compute multiple graph queries at the same time on the same graph. However,

the shared graph access among concurrent queries is insufficient, causing frequent last-level

cache misses and limiting such systems’ throughput.
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Figure 1.1: Dissertation Overview.

1.1 Dissertation Overview

This dissertation focuses on improving the scalability and efficiency of graph pro-

cessing systems in these complex scenarios. It proposes system and algorithmic optimiza-

tions from three perspectives: (1) Generalizability of streaming graph systems, (2) Scala-

bility of incremental graph computation, and (3) Efficiency of concurrent graph processing.

1.1.1 Generalizability of Streaming Graph Systems

Tripoline: Generalized Streaming Analysis Existing streaming systems are limited

by their need for apriori knowledge of the query (i.e., the query has to be installed and eval-

uated once); otherwise, such systems have to fall back to the expensive full query evaluation

that starts from scratch. Tripoline sidesteps this limitation by applying principles akin to

triangle inequalities in Euclidean geometry. These principles can be generalized for several

vertex-specific graph problems and help establish constraints between the evaluation of one

graph query and the results of another, thus enabling the reuse of existing query results to

accelerate arbitrary new user queries. Tripoline has demonstrated a remarkable speedup

of up to 41.5× compared to the traditional streaming graph engine Aspen [27]. Moreover,
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Tripoline’s triangle inequality-based optimization has also been adopted to Differential

Dataflow [84], a state-of-the-art general-purpose streaming framework, and provided extra

speedups over its existing design.

1.1.2 Scalability of Incremental Graph Computation

IncBoost: Scalable Incremental Analysis Efficient support of massive graph updates

is demanding, as it is commonly seen in evolving graphs and dynamic communication net-

work analyses where a relatively large region of the graph can be updated simultaneously.

However, existing incremental graph processing systems do not scale well when changes

to the graphs become large – incremental computation starts running slower than the full

(non-incremental) query evaluation. Moreover, present incremental graph algorithms can-

not handle edge weight updates elegantly, resorting to a sub-optimal two-phase process

instead of a direct method.

IncBoost addressed the above issues by proposing both algorithmic enhancements

and system-level optimizations. IncBoost employs a novel bottom-up dependency tracing

technique that identifies vertices affected by edge updates, obviating the need to access the

graph data. Additionally, a new algorithmic approach is proposed for directly handling

edge weight updates. This approach leverages a local monotonicity test to discern whether

to treat weight increments or decrements differently, thus circumventing the two-phase

process and eliminating unnecessary computation. Experimental evaluations demonstrate

that IncBoost successfully scales to handle very large update batches with sizes of 30% to

60% of the graph and achieves up to 4.9× speedup over RisGraph [34], a state-of-the-art

streaming graph processing system.
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1.1.3 Efficiency of Concurrent Graph Processing

Glign: Concurrent Multi-query Evaluation In the multi-query evaluation scenario,

the efficiency of concurrent evaluations is often hampered by the misalignment in graph

traversals, resulting in unfavorable last-level cache misses. To address this issue, a runtime

system called Glign is developed, which automatically aligns graph traversals for concurrent

queries. Glign is equipped with novel optimizations at three computation levels: (1) Intra-

iteration: A query-oblivious frontier design is introduced to deliberately ignore the frontier

differences across all queries, effectively reducing memory footprint. (2) Inter-iteration: By

identifying the “heavy iterations” of graph queries, a delayed-start strategy is used by Glign

to align them, which effectively enlarges the overlapping of vertices for better-shared graph

access. (3) Query batch formation: By leveraging heuristics for heavy iteration estimation,

Glign predicts which query subsets will most likely exhibit better affinity when batched

together. Combining these techniques, Glign consistently outperforms existing state-of-

the-art systems, achieving speedups of up to 4.7×.

TANNS: High-throughput Graph-based Approximate Nearest Neighbor Search

Approximate nearest-neighbor search (ANNS) has become a key component in modern deep

learning applications, serving efficient similarity search over high-dimensional vector data.

Recently, graph-based ANNS solutions have demonstrated high throughput by concurrently

evaluating ANNS queries. These systems construct query graphs from vector datasets and

evaluate user queries using best-first search algorithms. However, the design space for both

the graph construction and search phases has not been fully explored. Specifically, the

construction phase often overlooks potential correlations between input queries and final
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answers when temporal information exists. Additionally, in the best-first search, the design

space has not been fully exploited for potential performance improvements. To address

these limitations, we introduce the TANNS system. TANNS constructs a proximity graph that

incorporates temporal information, revealing correlations between queries and results. It

also features a fully parameterized search algorithm, allowing extensive performance tuning.

TANNS can achieve up to a 1.9× speedup in query throughput compared to the state-of-the-

art DiskANN implementation while maintaining the same recall levels. Moreover, the size

of the constructed graph can be reduced by up to 30% without compromising query quality.

1.2 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents Tripoline,

the system for generalized streaming graph analysis that is able to incrementally evalu-

ate arbitrary user queries via triangle inequalities. Chapter 3 introduces IncBoost, the

scalable incremental graph query processing engine that can support very large update

batches. Chapter 4 describes the Glign system for concurrent graph query evaluations

and introduces several alignment techniques. Chapter 5 presents techniques for enhancing

query throughput of approximate nearest neighbor search (ANNS). It introduces a fully

parameterized search algorithm for performance tuning and an adaptive graph construc-

tion algorithm that leverages temporal information to improve query evaluation. Chapter

6 provides a detailed discussion of related works in graph processing. Finally, Chapter 7

concludes this dissertation and discusses potential future directions in this field.
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Chapter 2

Generalizing Incremental Graph

Processing via Triangle Inequality

2.1 Introduction

In many real-world application scenarios, a stream of updates is continuously ap-

plied to the graph, often in batches for better efficiency, known as the streaming graph

scenario. Taking social network graphs as an example, new data that carry rich connection

information, such as tweets, are continuously generated, causing updates to the existing

graph. Similar scenarios also occur in the mining of online shopping activities, where new

purchases may generate new connections between customers (e.g., those who bought the

same product) and between products (e.g., those that are bought together). In such sce-

narios, new edges and vertices are continuously added to the graph.
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Figure 2.1: Streaming Graph Processing with Incremental Query Evaluation and the
Limitation of Existing Solutions.

In the streaming graph scenario, to reduce the latency of query evaluation, it is

critical to evaluate the expensive iterative graph queries incrementally upon graph updates.

State of the Art. Several streaming graph systems have been proposed recently with

support for incremental evaluation of iterative graph queries. Examples include Kineo-

graph [22], Tornado [105], Naiad [84], KickStarter [117], Graphbolt [75], and so on. The

basic idea of these systems is to reevaluate the query each time the graph gets updated,

as illustrated in Figure 2.1. Instead of reevaluating the query from scratch (i.e., a full

reevaluation), they start the reevaluation directly on the results of the previous evaluation,

performing just enough calculations based on the newly inserted edges and vertices until the

results stabilize again. As the new edges and vertices in each update batch usually represent

just a tiny fraction of the existing graph, the incremental evaluation usually converges much

faster than a full reevaluation.
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However, the above approach requires a priori knowledge of the query to be in-

crementally evaluated, referred to as the standing query. This may not be an issue for

queries without source vertex specification, such as PageRank; but creates a fundamental

challenge for vertex-specific queries, like breath-first search (BFS), which target specific

vertices of interest (e.g., BFS(v5)). The source vertex of interest may be unknown until

the query arrives. Thus, only the pre-selected standing queries (e.g., BFS(v5)) can be in-

crementally evaluated; queries with other source vertices have to undergo an expensive full

evaluation once they are received. This limitation significantly compromises the generality

of the existing incremental streaming graph systems.

In this chapter, we propose a principled way to generalize incremental graph pro-

cessing so that vertex-specific queries without their prior knowledge may also benefit from

incremental processing. The key to our solution is a concept called graph triangle inequality.

Similar to the classic triangle inequality in Euclidean space, triangle inequalities with gener-

alized distance and comparison operators may also be derived for vertex-specific queries in

the graph space. Based on them, we can establish rigorous constraints between a user query

(whose source vertex can be any vertex in the graph) and the pre-selected standing query,

thus enabling reusing the results of the latter to accelerate the evaluation of the former.

We refer to this technique as graph triangle inequality-based incremental processing. For

correctness, the graph query implementation is assumed to be monotonic and safe under

asynchrony (more details are given in Section 2.4.3).

To demonstrate the effectiveness of the above generalized incremental graph pro-

cessing, we developed a streaming graph system on top of a state-of-the-art streaming
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graph engine called Aspen [27], which offers a compact yet efficient data structure for high-

throughput graph updates. We name the new system Tripoline to encapsulate its essence:

use the graph triangle inequality as a “trampoline” to fast-forward the evaluation of queries

different from the standing one. By continuously and incrementally evaluating a small set

of pre-selected standing queries upon graph updates, Tripoline can incrementally evalu-

ate previously unseen queries based on the results of the standing ones and the triangle

inequalities.

We evaluated Tripoline using eight types of vertex-specific graph queries and four

real-world large graphs (more details in Section 2.6). The results show that the performance

benefits of Tripoline vary depending on the vertex-specific problems (and their graph trian-

gle inequalities). Overall, we observed 8.83-30.52× speedups on four types of the evaluated

graph queries, 1.18-1.89× speedups on three types of graph queries, and limited speedup

(1.08×) on one type of graph queries.

In summary, this work makes the following contributions:

• It proposes to leverage graph triangle inequality in the scheme of incremental graph

processing, which, to our knowledge, for the first time enables generalized incremental

evaluation of vertex-specific queries;

• It introduces the triangle abstraction based on a pair of generalized distance and

comparison operators and establishes the specific graph triangle inequalities for a

spectrum of vertex-specific graph queries.
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Figure 2.2: Vertex-Centric Programming and Incremental Query Evaluation (SSSP(v1) as
the Example).

• Finally, it develops Tripoline, a streaming graph system that supports generalized

incremental evaluation for vertex-specific graph queries. The system has shown sub-

stantial performance improvements on multiple vertex-specific iterative graph queries.

2.2 Background

Vertex-Centric Programming. A commonly used model for programming graph appli-

cations is the vertex-centric programming model. It was first introduced by Pregel [70] based

on the bulk synchronous parallel (BSP) model [114]. The model requires defining a vertex

function that computes some properties of the vertices (a.k.a. vertex values). The graph

computations start from some default initial vertex values, then apply the vertex function

across all (or a subset of) vertices of the graph, iteration by iteration until the vertex values

become stable (or some threshold is reached).

Figure 2.2-(a) illustrates a vertex-centric implementation of the single-source short-

est path (SSSP) query, which finds the shortest distances from a source vertex to all other

vertices in the graph. The vertex function f(v) computes an alternative distance based on

the current value of the vertex and then compares it with the value of each of its outgo-
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ing neighbors. If the new value is less than the existing one, the neighbor’s value will be

updated. This is known as the push model 1. As shown in Figure 2.2-(b), initially, all the

vertex values are set to ∞, except the source vertex whose value is set to zero. Then, the

vertex function f(v) is evaluated across all the vertices over iterations until all the vertex

values stop changing. To improve the efficiency, an active vertex list (a.k.a. frontier) can be

maintained, which only consists of vertices whose values were changed in the last iteration,

so only vertices in the frontier need to be evaluated in each iteration. In the case of SSSP,

the frontier is initialized with only the source vertex and will become empty once all the ver-

tex values are converged. Hereinafter, this work assumes a frontier-based implementation

of the push model.

Incremental Graph Processing. As mentioned earlier, in the common streaming graph

processing scenario [22, 105, 84, 117, 75], the graph is continuously updated with new edges

and vertices, usually in batches for better efficiency. A recent work [117] also discussed the

scenario with edge deletions, which is orthogonal to the focus of this work. Like many prior

works [22, 105], we assume the growing graph scenarios in this work. After each batch of

insertions, the standing graph query needs to be reevaluated to reflect the latest results.

Instead of re-evaluating the query on the updated graph from scratch (i.e., viewing it as

a completely new graph), existing streaming graph systems adopt an incremental graph

query evaluation strategy to improve efficiency.

The design of the incremental query evaluation naturally matches the BSP model

in the aforementioned vertex-centric programming. Consider the example in Figure 2.2-(c).

1The vertex function can also be implemented using a pull model, which updates the value of the vertex
based on its in-neighbors’ values.
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After a new edge (v1, v3) is inserted, the reevaluation directly starts from the converged

vertex values of the prior evaluation rather than initializing the vertex values with ∞. To

ensure correctness, the source vertices of the newly inserted edges (i.e., v1) need to be

inserted into the frontier, which resumes the iterations until a new stabilization is reached.

As each insertion batch is typically a tiny fraction of the existing graph, the reevaluation

tends to terminate much faster than a full reevaluation [22, 117].

Despite the promise of incremental graph processing, there exists a fundamental

limitation in the existing design – it assumes prior knowledge of the query. The assumption

holds for queries that do not depend on a specific vertex, such as PageRank, but imposes a

major obstacle for vertex-specific queries, like BFS and SSSP. For the latter, the incremental

evaluation would work only for the pre-selected standing query, like SSSP(v1); for queries

originating at other vertices in the graph, an expensive full evaluation is required.

In fact, vertex-specific graph queries appear more common than “whole-graph

queries” in real-world applications. First, vertex-specific queries are concerned with the

interests or capture the perspective of a specific vertex, which are common in online shopping

and social networks, such as generating recommendations for individual customer [130] and

finding the overlap of friends of two specific users [23]. Second, as subproblems, vertex-

specific graph queries often require less time and space than their counterpart whole-graph

queries (e.g., SSSP vs all-pair shortest path). This is especially critical in the streaming

graph scenario, where the query evaluation needs to keep up with the graph updates.

In summary, incremental graph processing is essential to streaming graph systems.

However, its existing design suffers from a fundamental applicability challenge for an im-
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Figure 2.3: Triangle Inequality in Euclidean Geometry.

portant group of graph queries – vertex-specific queries. Before presenting our solution, we

first introduce the key principle behind it – graph triangle inequalities.

2.3 Graph Triangle Inequality

In this section, we first provide an intuition of graph triangle inequality, then

formally define the principle and present several graph triangle inequalities examples.

2.3.1 Intuition

Triangle inequality [46], as illustrated in Figure 2.3, is a basic principle in Euclidean

geometry. It states the fact that for any given triangle ∆xyz, the sum of the lengths of any

two sides must be greater than or equal to the length of the third side. Prior research [30]

has shown the possibility of leveraging triangle inequality to accelerate K-means clustering

in the Euclidean space. Inspired by this, we wondered if similar principles exist in graph

problems and, hence, may be used to optimize streaming graph processing. In fact, for a

spectrum of vertex-specific graph problems, similar inequalities can be naturally derived.

Next, we first use SSSP as an example to introduce the graph triangle inequality because

it calculates distances which are similar to the lengths in the classical triangle inequality,

except that the “domain” is a graph rather than the Euclidean space.
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SSSP Triangle. It is not hard to find that the vertices in a graph are analogous to the

points in the Euclidean space. The distance between two points in the Euclidean space is

the length of the line segment connecting them. Similarly, the distance between two vertices

v1 and v2 in a weighted graph is the minimum weight of all paths connecting them:

dist(v1, v2) = min{w(p) | p is a path from v1 to v2} (2.1)

where w(p) is the sum of weights on all the edges in path p. Note that, for undirected

graphs, as paths are symmetric, we have dist(v1, v2) = dist(v2, v1). Based on this analogy,

it is not hard to find that a triangle inequality also holds for graph distances, as illustrated

in Figure 2.4.

dist(r, x)dist(u, r)

dist(u, r) + dist(r, x) ≥ dist(u, x) 
x

r

u
dist(u, x)

for any u, r, and x

Figure 2.4: Triangle Inequality in SSSP (dashed lines represent the shortest paths between
two vertices).

In fact, the above triangle inequality in Figure 2.4 becomes obvious once one

realizes that the shortest path from u to r can be concatenated with the shortest path from

r to x, and the resulted path is just one of the many paths from u to x, hence must be no

shorter than the shortest path from u to x.

Actually, the above graph triangle inequality based on the distances between ver-

tices is well-known in the theoretical graph community [13]. Some prior work [24] has

exploited this principle to approximate distances in web-scale large graphs, which shares

some of the spirit of this work. However, as we will demonstrate shortly, our work discusses
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a broader definition of “distance” that goes beyond the conventional one shown in Equa-

tion 2.1. Furthermore, our work exploits the graph triangle inequality in a different context

– streaming graph processing, where the accuracy of each query result is always guaranteed

– no approximation is allowed.

For brevity, we refer to the above distance-based triangle inequality as SSSP tri-

angle. Next, we generalize it by defining a more general definition of “distance” and two

abstract operators for addition and comparison, respectively.

2.3.2 Triangle Abstraction

Rather than referring to the distance, we define the graph triangle inequality for

a property between two vertices – property(v1, v2), where (v1, v2) is an ordered pair for

directed graphs and an unordered pair for undirected graphs.

Definition 1. Given the property definition between two vertices property(v1, v2), the

graph triangle inequality can be formally defined by the following equation:

property(v1, v2)⊕ property(v2, v3) ⪰ property(v1, v3) (2.2)

where ⊕ depicts an abstract addition and ⪰ represents an abstract greater than or equal

to operator.

To demonstrate the generality of the triangle abstraction, we next present several

concrete graph triangle inequalities that are not based on the distance property.

16
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(a) SSWP Triangle

(b) SSNP Triangle

Figure 2.5: Triangle Inequalities in SSWP and SSNP (dashed lines depict the
widest/narrowest paths between vertices).
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u
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nsp(r, x)nsp(u, r)
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u
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(a) SSR Triangle (b) Viterbi Triangle

level(r, x)level(u, r)

level(u, r) + level(r, x) ≥ level(u, x) 
x

r

u
level(u, x)

for any u, r, and x

(c) BFS Triangle (d) SSNSP Triangle

if level(u, r) + level(r, x) = level(u, x) 

Figure 2.6: Triangle Inequalities in SSR, Viterbi, BFS/Radii, and SSNSP (where a dashed
line depicts the connectivity, maximum probability path, BFS-level, and the shortest

paths between two vertices, respectively).

SSWP/SSNP Triangle. SSWP and SSNP are abbreviations for single-source widest

path and single-source narrowest path, respectively. Both of them play important roles in

network routing [124] and transportation planning [25].
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Given a source vertex v, SSWP and SSNP compute the widest and narrowest path

from v to every other vertex in the graph. The widest path between two vertices is the path

whose minimum edge weight is the largest, while the narrowest path between two vertices

is the path whose maximum edge weight is the smallest, as defined below:

wide(v1, v2) = max{minw(p) | path p from v1 to v2} (2.3)

naro(v1, v2) = min{maxw(p) | path p from v1 to v2} (2.4)

where minw(p) and maxw(p) represent the minimum and maximum edge weight along path

p, respectively.

Based on their definitions, it is not difficult to derive the triangle inequalities for

SSWP and SSNP, shown in Figure 2.5. The reasoning behind these inequalities is similar

to that of SSSP, except that they are based on different addition ⊕ and comparison ⪰

operators. For example, the inequality holds for SSWP because the widest paths from u to

r and from r to x can be concatenated, and the width of the concatenated path must be no

larger than the width of the widest path from u to x as it is just one of the paths from u

to x. Similarly, we refer to the triangle inequalities for SSWP and SSNP as SSWP triangle

and SSNP triangle, respectively, for brevity.

Other Triangles. Due to space limitations, we next briefly present the triangle inequalities

for the other graph problems that we have considered. These include:

• Single-source reachability (SSR) [47] which finds all the vertices connected to the

source vertex. Figure 2.6-(a) shows its triangle inequality based on the reachability

property defined in Equation 2.5.
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• Viterbi algorithm (Viterbi) [62] which computes the probability along the Viterbi path

(a state path that maximizes the conditional probability) from the source vertex.

Figure 2.6-(b) shows its triangle inequality based on the vite property defined in

Equation 2.6, where w(p) depicts the total weights of edges in path p.

• Breath-first search (BFS) [81] which computes the level of each vertex in the BFS

tree rooted at the source vertex. Figure 2.6-(c) shows its triangle inequality based on

the BFS level property defined in Equation 2.7, where nEdges(p) depicts the number

edges in path p.

• Radii estimation (Radii) [106] which estimates the graph radius by running multiple

SSSP and selecting the largest distance among their results. As it is based on SSSP,

its triangle inequality is just that of SSSP.

• Single-source number of shortest path (SSNSP) [102] which computes not only the

BFS levels 2, but also the number of shortest paths from the source vertex to all the

other vertices. Figure 2.6-(d) shows its triangle inequality based on both the BFS

level property and the number of shortest paths property. The latter is defined in

Equation 2.8, where | · | depicts the set size.

rech(v1, v2) =


1 if a path from v1 to v2 exists

0 otherwise

(2.5)

2In this case, SSNSP is for unweighted graphs.
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vite(v1, v2) = max{1/w(p) | path p from v1 to v2} (2.6)

level(v1, v2) = min{nEdges(p) | path p from v1 to v2} (2.7)

nsp(v1, v2) = |{the shortest paths from v1 to v2}| (2.8)

For brevity, we refer to the above triangle inequalities as SSR triangle, Viterbi

triangle, BFS triangle, and SSNSP triangle, respectively. Among these triangles, the Viterbi

triangle and BFS triangle can be intuitively derived just based on their definitions and the

fact that the paths from u to r and from r to x can be concatenated to form one path from

u to x. For SSR triangle, the situation is different in that the property of interest (i.e.,

reachability) is about the existence of any path between two vertices. In this case, a logical

AND perfectly fits in the role of the ⊕ operator. The last one, the SSNSP triangle is also

special in that it requires a predicate (condition) for the triangle inequality to hold. As we

will show later, the predicate actually affects the effectiveness of the triangle inequality in

the use of incremental query evaluation.

In summary, the graph triangle inequality, as abstracted in Equation 2.2, is gen-

erally enough to capture a spectrum of vertex-specific graph problems.

2.4 Generalized Incremental Evaluation

In this section, we show that, based on the graph triangle inequality abstraction,

incremental evaluation of queries without a priori knowledge can be achieved in general.
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Figure 2.7: Triangle Inequality (∆)-based Incremental Query Evaluation for an Arbitrary
Query of the Same Type (i.e., a query starting from a different source vertex but asking

for the same graph property, like SSWP(v1) and SSWP(v2)).

2.4.1 ∆-based Incremental Evaluation

The key to our solution is a principled way of “connecting” the evaluation of

a vertex-specific query to the results of another query evaluation of the same type (e.g.,

SSWP) based on their graph triangle inequality.

Execution Model. Figure 2.7 illustrates the basic idea of our solution. Assume q(r) is

the pre-selected standing query (the selection will be discussed later), where r is the source

vertex. In the programming system, query q() is a user-specified function that implements

the (vertex-specific) querying logic while r is the parameter to the function.

First, the standing query q(r) is evaluated continuously and incrementally upon

graph updates, like those in the existing incremental graph processing systems [84, 22, 117].

Meanwhile, the system accepts user queries like q(u) which is of the same type as q(r),

but its source vertex u could be any vertex in the graph. From the evaluation of q(r), we

can obtain the values of property(r, u) and property(r, x). For easier explanation, here we
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assume the graph is undirected (directed ones will be discussed later), which means that we

can also obtain property(u, r) – the same as property(r, u). In addition to vertices r and u,

consider an arbitrary vertex x in the graph different from r and u. Together, r, u, and x

form a triangle, just like one of those in Section 2.3. Then, based on the addition operator

⊕ in the triangle abstraction (see Equation 2.2), we can compute the following value set:

∆(u, r) = {property(u, r)⊕ property(r, x) | x ∈ V } (2.9)

Next, instead of evaluating q(u) from scratch (i.e., using the default initial values) on the

current version of the graph, the system starts its evaluation directly from ∆(u, r), and

runs until all the vertex values are converged. Note that, just like full evaluation, the above

incremental evaluation also starts from the source vertex u (i.e., the frontier is initialized

with u).

In the above process, the system maintains an in-memory state consisting of three

parts: (i) the streaming graph, (ii) the evaluation of standing query, and (iii) the evaluation

of user query. As detailed later, in our prototype, the streaming graph can be incrementally

maintained with a compression tree-based data structure (Aspen [27]), while the results of

query evaluation are kept in a property array of size |V |.

We refer to the above streaming graph execution model as triangle inequality-based

incremental evaluation, or ∆-based incremental evaluation 3 for short.

In the following sections, we will first extend the proposed ∆-based incremental

evaluation to directed graphs, then analyze its correctness, benefits and costs, and finally

discuss how the standing query can be selected.

3Here, ∆ reads as triangle inequality, not delta (difference).
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Figure 2.8: Computing property(r, x) and property(x, r) on Directed Graphs: Prior
Work [24, 22] vs. Our Solution.

2.4.2 Dual-Model Evaluation for Directed Graphs

In the case of directed graphs, property(u, r) may not be the same as property(r, u),

thus not available in the evaluation results of the standing query q(r). In this case, we turn

to the reversed graph problem, denoted as q−1(r), which computes the properties from all

vertices to r.

Results of q−1(r) = {property(x, r) | x ∈ V } (2.10)

Taking SSSP as an example, SSSP−1(v) is to find the shortest distance from every vertex

in the graph to v.

A straightforward way to evaluate q−1(r), as elaborated in prior work [24, 22],

is to update values of the in-neighbors, rather than the out-neighbors as in the evaluation

of q(r). Figure 2.8-(a) illustrates this idea. However, with this solution, the evaluations of

queries q(r) and q−1(r) need to access both outgoing and incoming edges efficiently (i.e.,

indices for both outgoing and incoming neighbors). This not only doubles the memory

consumption of the edge data (two-way indices rather than one-way), but also increases

the cost of streaming graph maintenance – need to keep both incoming and outgoing edge

representations up to date.
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To address the above issue, we propose a novel dual-model query evaluation solution

for directed graphs. The solution enables us to evaluate both queries q(r) and q−1(r) on a

graph with only one-way edge representation (outgoing or incoming edge-based). The key

to this solution is the fact that both the push/pull model and incoming/outgoing edges are

relative. From the global view, a push model along the incoming edges from the perspective

of x is equivalent to a pull model along the outgoing edges from the perspective of one of

x’s neighbors, say n2
4, as illustrated in Figure 2.8-(b). By adopting both models for the

two queries, respectively, a one-way edge representation is sufficient for calculating both

property(r, x) and property(x, r) for any x in V .

We have presented the ∆-based incremental evaluation on both undirected and

directed graphs. Next, we discuss its applicability and correctness.

2.4.3 Applicability and Correctness

First, ∆-based incremental evaluation targets vertex-specific queries. For non-

vertex-specific queries, such as PageRank and connected components (CC), because they

are already well-suited to the existing incremental graph computation models [117, 22], they

can be incrementally evaluated without triangle inequalities (also supported by Tripoline).

Second, to apply ∆-based incremental evaluation to a type of vertex-specific query,

a graph triangle inequality needs to be established. Note that the triangle inequality is

derived based on the property of interest rather than the specific implementation of its

queries. Given property(u, ∗), where ∗ refers to any vertex in the graph, a triangle inequality

among property(u, r), property(r, x), and property(u, x) often can be intuitively derived

4Or vice versa if the pull model is assumed to be the default model.
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based on the fact that a path from u to r, then to x is just one of the possible paths from

u to x. Following this intuition, in Section 2.3, we have demonstrated the possibility of

establishing triangle inequalities for several commonly seen graph problems.

Though triangle inequality is independent of the query implementation, some prop-

erties of the vertex function f(v) are still closely relevant to the correctness of the trian-

gle inequality-based incremental evaluation. Next, we mainly discuss two such properties:

monotonicity and safety under asynchrony, which are formally defined below.

Definition 2. In vertex-centric programming framework, vertex function f(v) is monotonic

if all vertex values only change monotonically across iterations.

Definition 3. In vertex-centric programming framework, vertex function f(v) is safe under

asynchrony, or async-safe for short, if the vertex values still converge correctly even when

f(v) is executed asynchronously based on the new values of its neighbors calculated in the

current iteration.

Note that, for vertex-centric graph algorithms, the above two properties are not

rare. In fact, they are in the abstraction of many existing graph programming frame-

works [66, 33, 117, 102]. For example, GraphLab [66] asynchronously executes graph al-

gorithms for better efficiency, GRAPE [33] relies on the monotonicity of iterative graph

algorithms for automatic parallelization, Subway [102] leverages the asynchrony and mono-

tonicity to reduce the data transfer in out-of-memory graph processing, and most relevantly,

KickStarter [117] requires monotonicity to support edge deletions in streaming graph pro-

cessing. In the following discussion, we assume that the vertex function f(v) is monotonic

and async-safe.
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In the following, for conciseness, we use tinit(x) to denote the initial value of vertex

x under the ∆-based incremental evaluation of query q(u) (i.e., tinit(x) = property(u, r)⊕

property(r, x)), and tconv(x) to denote the correct converged value of x (i.e., tconv(x) =

property(u, x)).

Lemma 4. In ∆-based incremental evaluation, if vertex x’s initial value tinit(x) ≻ tconv(x),

then at least one of its in-neighbors, say vertex z, must be initialized with value tinit(z),

such that tinit(z) ≻ tconv(z), and z is on the path from source vertex u to x that yields

tconv(x).

Proof Sketch. By contradiction, assume that all in-neighbors of x, denoted as zi, 1 ≤ i ≤ k

(where k is the number of neighbors of x), are initialized with their correct converged values

tconv(zi), 1 ≤ i ≤ k, then the vertex r in the standing query q(r) is on the paths from u

to zi that yield tconv(zi). Also, o¡zl¿ne in-neighbor of x must be on the path from source

vertex u to x that yields tconv(x). Together, we have that r is on one path from u to x

that yields tconv(x). Thus, tinit(x) = tconv(x), which contradicts with the assumption in the

lemma.

Based on Lemma 4, we have the following conclusion.

Theorem 5. Given a vertex function f(·) that is monotonic and async-safe, if triangle

inequality holds on the property that f(·) computes, the ∆-based incremental evaluation

yields the same results as the non-incremental evaluation.

Proof Sketch. Consider an arbitrary vertex x, which is initialized with tinit(x) by ∆-based

incremental evaluation. First, based on triangle inequality, tinit(x)⪰ tconv(x), where tconv(x)
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is the correct converged value of vertex x. If tinit(x) = tconv(x), then based on monotonicity,

the evaluation will not change its value, so it will remain correct in the end. Otherwise,

if tinit(x) ≻ tconv(x), by applying Lemma 4 on vertex x, we know there exists one in-

neighbor of x, say z, which is on the path that yields tconv(x) and its initial value tinit(z)

≻ tconv(z). Similarly, we reapply Lemma 4 on vertex z. By repeating these, we can find a

reversed path starting from vertex x, along which all the vertices have initial values that

are greater than their correct converged values, and they are on the path from u to x that

yields tconv(x). If the reversed path can reach the source vertex u, an activation of u will

gradually stabilize all the vertex values along the path with their correct converged values,

including x’s value. Here, monotonicity ensures that the initial values of these vertices will

be updated with their corresponding correct converged values (as tinit(x) ≻ tconv(x)), while

async-safety ensures that these updates will not alter the converged values even when they

are performed asynchronously. On the other hand, if the reversed path cannot reach the

source vertex, then it would stay unchanged (the default initial value).

Besides the theoretical correctness discussion of ∆-based incremental evaluation,

our experimental evaluation also confirmed the correctness of results under many different

testing cases (Section 2.6). Next, we discuss the benefits and costs of ∆-based incremental

evaluation.
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Figure 2.9: Benefits of ∆-based Incremental Evaluation.

2.4.4 Cost-Benefit Analysis

To examine the benefits of ∆-based incremental evaluation, we discuss how the

two basic cases in its initialization: tinit(x) = tconv(x) and tinit(x) ≻ tconv(x), affect the

computations.

Figure 2.9-(a) illustrates the first case tinit(x) = tconv(x), where the vertex value

will not be changed during iterations according to monotonicity, thus the vertex will never

activate its out-neighbors (bottom two vertices) 5. This means that all value propagations

reaching x stop. In this way, it reduces the amount of computations. In the second case,

as shown in Figure 2.9-(b), the initial value of x is not stable, but better than the default

initial value (i.e., t(x) ≺ init). In this case, it may “block” some value propagations (e.g.,

the blue one which yields a worse value than tinit(x)), but allow others (e.g., the red one

which yields a better value than tinit(x)).

In both cases, the benefits come from the reduction of the vertex function eval-

uations. Thus, the benefits can be roughly captured by the activation ratio, denoted as

Ract:

Ract =
Nact with ∆-based inc. eval.

Nact without ∆-based inc. eval.
(2.11)

5They may still be activated due to changes of their other in-neighbors.
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where Nact denotes the total number of times that the vertex function is evaluated. Note

that Ract ≤ 1 because the new initial values ∆(u, r) are no worse than the default ones. In

general, the closer ∆(u, r) are to the stable values, the lower the Ract is. In addition, as a

side-effect, the reduction of vertex activations often leads to fewer number of iterations –

faster convergence.

On the other hand, ∆-based incremental evaluation also brings overhead. A direct

cost comes from calculating the initial values – {property(u, r)⊕property(r, x) | x ∈ V }. As

property(u, r) is fixed for the given standing query q(r) and user query q(u), the calculation

simply traverses the results of q(r) to read property(r, x), x ∈ V , from an array. Due to

spatial locality, this overhead is often negligible (e.g., about 0.3% for SSSP). Besides that,

there are indirect costs regarding the incremental evaluation of standing queries. For exam-

ple, for direct graphs, we incrementally evaluate not only q(r), but also q−1(r). Depending

on applications, the evaluation of q−1(r) may be counted as an overhead if its results are

not needed. As we will discuss shortly, we may also want to incrementally evaluate multi-

ple standing queries, whose costs may also be counted as the overheads depending on the

application (more details in Section 2.4.5).

In summary, the performance improvements of ∆-based incremental evaluation

mainly depend on the activation ratio Ract. Even with low Ract, the incremental evaluation

only introduces limited direct overhead. Next, we discuss a key factor for Ract – the selection

of standing query.
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2.4.5 Standing Query Selection and Cost Management

The effectiveness of ∆-based incremental evaluation, roughly measured by Ract,

depends on which query is selected as the standing query q(r). A better selection may yield

a lower Ract, thus a higher speedup. Moreover, is it worthwhile to select multiple standing

queries? We address these questions next. First, we present two basic selection strategies.

Triangle-based Selection. As discussed in Section 2.4.4, the effectiveness of ∆-based

incremental evaluation depends on how close the initial values ∆(u, r) are to the stable

values (in terms of ≺), hence it is the better to select the standing query that yields lower

values of ∆(u, r). Based on this, given user query q(u), we select q(r∗), such that,

r∗ = arg min
r∈V

∑
∀x∈V

property(u, r)⊕ property(r, x) (2.12)

= arg min
r∈V

property(u, r) · |V | ⊕
∑
∀x∈V

property(r, x) (2.13)

However, in practice, we do not know the user query q(u) – u can be any vertex

in V . To find the best q(r) overall, we need to compute the summation in Equation 2.12

for every u in V and select the one that minimizes the summation of those summations.

Essentially, this requires collecting the property(vi, vj) between every pair of vertices in the

graph. Apparently, this is impractical for large graphs 6 even in non-streaming scenarios

due to the high time and space complexities, not to mention the streaming scenarios where

the property values change as the graph is updated.

Topology-based Selection. From the perspective of graph topology, it may be attempted

to select the standing query q(r) whose source vertex r is closer to the vertex u in the user

6For small graphs that are affordable for collecting these properties, the results can be directly cached –
no need for incremental evaluation.
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query q(u) in terms of the number of hops, because in this way, u and r share more paths

or path segments to other vertices. Interestingly, we find that this heuristic only works for

some graph problems, such as SSSP and BFS, but not the others, like SSWP and Viterbi.

The reason is that the heuristic may contradict the triangle inequalities. Taking SSWP as

an example, in fact, the more hops that u and r are away from each other, the larger value

wide(u, r) might be, thus the better value wide(u, r)⊕ wide(r, x) may possess.

Instead, for graph topology, we focus on the reachability of r in the standing query

q(r) to the other vertices in the graph. In fact, to effectively leverage the triangle inequality,

there should be at least one path from r to vertex u in the user query q(u), and to every

other vertex x, x ∈ V ; otherwise, property(u, r) ⊕ property(r, x) would be as “worst” as

the default initial value (e.g., ∞ in SSSP). One simple yet reliable way to approximate the

reachability is to select a query with a high-degree source vertex 7, which is more likely

to reach a larger amount of vertices. Thus, we have the following heuristic for selecting

standing query q(r).

r∗ = arg max
r∈V

degree(r) (2.14)

As shown next, in practice, we adopt a solution combining the triangle-based and

topology-based selections to achieve a balance between complexity and effectiveness. The

key to exploiting this tradeoff is adopting multiple standing queries.

Selecting Multiple Standing Queries. First, we pre-select a set of K standing queries

offline using the topology-base selection, that is, queries with the top-K high-degree vertices:

StandingK = {q(r1), q(r2), · · · , q(rK)}
7Following the push model, here it refers to the out-degrees.
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Then, at runtime, we pick the best one among the K standing queries based on the specific

user query q(u), according to a simplified version of Equation 2.13:

r∗ = arg min
r∈StandingK

property(u, r) (2.15)

Equation 2.15 is based on our experimental finding that, for the standing queries with top-K

high-degree vertices, there is a limited variation for the summation in Equation 2.13.

In this way, the standing query selection not only becomes query-specific, but also

incurs negligible runtime overhead.

Managing the Costs. However, incrementally evaluating multiple standing queries may

take longer – each time the graph is updated, it has to ensure that the evaluation of every

standing query reaches stabilization. Here, we present two ways to alleviate these costs.

First, we evaluate the K standing queries in batch mode. That is, we maintain a

combined frontier for all the active vertices among the K queries, and for each active vertex

v, we apply the vertex function for the K standing queries together (those are inactive on

v are masked). In this way, both the graph and vertex value arrays of standing queries can

be accessed in a coalesced manner, thus incurring much less cost compared to evaluating

each standing query separately.

Second, we can adjust K to exploit the tradeoff between the maintaining cost of

standing queries and the effectiveness of ∆-based incremental evaluation. When the user

queries are made relatively more frequently than the graph updates (in batches), we may

afford a larger K, as the overhead can be amortized by more user queries. In the opposite

scenarios, we may reduce K such that the (incremental) standing query evaluation can

finish quickly, and the following user query evaluation can start earlier.
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Figure 2.10: System Architecture of Tripoline.

So far, we have discussed the major aspects of the proposed ∆-based incremental

evaluation. Next, we present a new streaming graph processing system that supports ∆-

based incremental evaluation for vertex-specific queries.

2.5 Implementation of Tripoline

Based on the proposed generalized incremental evaluation, we developed Tripoline,

a shared-memory streaming graph processing system. To our best knowledge, Tripoline is

the first system of this kind that supports incremental processing of vertex-specific queries

requiring no a priori knowledge of source vertices. Figure 2.10 illustrates its high-level

structure, which consists of four major components:

• A streaming graph engine that accepts graph updates and maintains the data struc-

tures of the current graph. As the focus of this work is not to build such an engine,

Tripoline adopts a state-of-the-art streaming graph engine called Aspen [27]. Inter-
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nally, Aspen leverages a compressed tree-based graph representation to achieve both

high-space efficiency and high-throughput graph updates. Note that the released As-

pen does not support edge weights; we extended it to support this feature, so that

more applications can be evaluated.

• A standing query evaluation module that continuously and incrementally evaluates a

set of standing queries upon graph updates. For better efficiency, we implemented the

batch mode mentioned in Section 2.4.5.

• A user query evaluation module that employs ∆-based incremental evaluation to fulfill

the user requests.

• Finally, a programming interface that not only provides the conventional vertex-centric

programming, but also offers a triangle abstraction for specifying the triangle inequal-

ity of the specific graph problem. Basically, the developers need to overwrite the

generic addition and comparison operators ⊕ and ⪰, respectively.

Configuration and Parameters. The above three runtime modules (colored boxes in

Figure 2.10) are configured to be executed exclusively (i.e., in serial), though each of them

runs in parallel individually. This configuration maximizes the resource availability for each

task: graph updates, standing query evaluation, and user query evaluation, respectively.

In our current setup, K standing queries are first selected based on their reacha-

bility to all possible source vertices in the user queries, for which we choose the top-K high-

degree vertices as an approximation (i.e., the “topology-based selection” in Section 2.4.5).

With that, the only parameter to be tuned is K, which depends on the query type and the
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memory capacity of the machine (a larger K means the results of more queries need to be

kept in memory). When the system is set up initially, K can be tuned and selected using a

few sample values (as shown later in the evaluation – Table 2.5). To ease its deployment, a

basic auto-tuner can be added to make the K selection transparent to the users. Further-

more, the standing query selection might be further improved based on the distribution of

user queries when it is available.

Note that non-vertex-specific queries (e.g., PageRank and CC) can also be im-

plemented on Tripoline, in which case, the system simply maintains them incrementally

as the standing queries, like the existing incremental query evaluation [84, 22]. Similarly,

vertex-specific queries with a priori knowledge can be treated as the standing queries, so

that they can be maintained incrementally and answered directly.

In addition, Tripoline includes a set of built-in benchmarks for which the vertex

functions are designed to satisfy the desired properties for correctness (see Section 2.4.3).

Table 2.1 summarizes their vertex functions.

2.6 Evaluation

2.6.1 Methodology

We compiled the built-in benchmarks of Tripoline using g++ 8.3, and ran the

experiments on a 32-core Linux server. The server is equipped with Intel Xeon CPU E5-

2683 v4 CPU and 512GB memory, running on CentOS 7.9.
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Table 2.1: Benchmarks in Tripoline

Bench. Pseudo-code of Vertex function

BFS
for each out-neighbor n of s
level(n) = min { level(n), level(s) +1 };
if level(n) changed then add n to frontier;

SSSP
for each out-neighbor n of s
dist(n) = min { dist(n), dist(s) + w(s, n) };
if dist(n) changed then add n to frontier;

SSWP
for each out-neighbor n of s
wide(n) = max { wide(n), min { wide(s), w(s, n) } };
if wide(n) changed then add n to frontier;

SSNP
for each out-neighbor n of s
naro(n) = min { naro(n), max { naro(s), w(s, n) } };
if naro(n) changed then add n to frontier;

Viterbi
for each out-neighbor n of s
vite(n) = max { vite(n), vite(s) / w(s, n) };
if vite(n) changed then add n to frontier;

SSR
for each out-neighbor n of s
rech(n) = true;
if rech(n) changed then add n to frontier;

Radii

for each out-neighbor n of s
dist1(n) = min { dist1(n), dist1(s) + w(s, n) };
· · ·
dist16(n) = min { dist16(n), dist16(s) + w(s, n) };
if any dist∗(n) changed then add n to frontier;

SSNSP

for each out-neighbor n of s
if level(n) == level(s) + 1 then
delta(n) += delta(s); add n to frontier;

ssnsp(s) += delta(s);
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The experiments used a set of four real-world large graphs whose statistics are

listed in Table 2.2. Like many existing graph systems, such as PowerGraph [41], Power-

Lyra [20], and Tigr [86], Tripoline mainly targets power-law graphs, which are more common

in real-world applications. Thus, this evaluation focuses on such kinds of graphs. Similar

to prior work [105, 117, 75], we assume that a substantial portion of edges – 50%, 60%, and

70%, has been streamed in, then the remaining edges of the graph are streamed in batches

of randomly selected edges. By default, we set the update batch size to 10K. Note that,

under the design of Tripoline, the impact of update batch size is limited to the standing

query evaluation, which has been intensively studied in the evaluation of Aspen [27]. But,

for completeness, we have included results for different batch sizes (from 1K to 500K).

As to the number of standing queries K, by default, we set it to 16. To demon-

strate the tradeoff between benefits and costs in adopting multiple standing queries (see

Section 2.4.5), we also vary the value of K from 1 to 64 and report their impacts to the

standing and user query evaluations.

For each benchmark, we randomly selected 256 non-trivial user queries (whose

source vertices are of degree more than two). After a batch of graph updates have been

applied and the evaluation of standing queries have been re-stabilized, we evaluated each

of the 256 user queries three times repetitively and reported the averaged performance. To

obtain sufficient samples, we collected the performance results from the first five consecutive

batches of updates at each preset starting point (50%, 60%, and 70% portions of edges).
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Table 2.2: Statistics of Input Graphs

Graph Type |V | |E| Avg. Degree

Orkut undirected 3.1M 234M 76.3
Friendster undirected 68M 2.9B 75.7
LiveJournal directed 4.8M 69M 28.3
Twitter directed 41M 1.5B 70.5

Table 2.3: Speedups of ∆-based Incremental Evaluation over Non-Incremental Evaluation.

Each entry is in the format of average speedup [speedup standard deviation, average time
(seconds) with incremental eval.] of 256 user queries

Graph SSSP SSWP Viterbi BFS

OR-50 2.52 [1.88, 0.15] 31.70 [6.76, 0.01] 40.16 [5.17, 0.01] 1.23 [1.04, 0.12]
OR-60 2.42 [1.69, 0.17] 33.91 [6.45, 0.01] 37.94 [3.95, 0.01] 1.25 [1.20, 0.13]
OR-70 2.45 [1.82, 0.18] 34.88 [6.14, 0.01] 39.90 [4.29, 0.01] 1.30 [1.38, 0.15]
FR-50 1.34 [0.13, 10.90] 29.69 [5.32, 0.40] 35.49 [5.38, 0.46] 1.02 [0.20, 6.62]
FR-60 1.34 [0.11, 12.26] 35.23 [5.86, 0.38] 41.48 [5.31, 0.38] 1.02 [0.24, 7.16]
FR-70 1.34 [0.18, 13.79] 36.09 [5.76, 0.42] 39.95 [3.87, 0.45] 1.01 [0.11, 8.63]
LJ-50 1.68 [0.62, 0.14] 9.27 [1.88, 0.02] 22.91 [4.60, 0.02] 1.10 [0.30, 0.08]
LJ-60 1.81 [0.87, 0.13] 11.56 [2.30, 0.01] 26.88 [5.47, 0.02] 1.12 [0.36, 0.07]
LJ-70 1.74 [0.73, 0.15] 10.60 [2.00, 0.02] 23.4 [4.60, 0.02] 1.12 [0.33, 0.08]

TW-50 1.97 [1.25, 1.24] 13.17 [2.28, 0.14] 17.61 [2.41, 0.13] 1.49 [0.80, 0.85]
TW-60 1.95 [1.18, 1.45] 15.97 [2.55, 0.13] 19.14 [2.33, 0.13] 1.56 [0.98, 0.94]
TW-70 2.11 [1.84, 1.56] 17.23 [2.61, 0.13] 21.41 [2.74, 0.13] 1.61 [1.12, 0.98]

avg. 1.89 23.28 30.52 1.24
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Table 2.3: Speedups of ∆-based Incremental Evaluation over Non-Incremental Evaluation.
(Continued)

Each entry is in the format of average speedup [speedup standard deviation, average time
(seconds) with incremental eval.] of 256 user queries

Graph SSNP SSR Radii SSNSP

OR-50 26.30 [5.42, 0.01] 10.40 [0.31, 0.01] 1.21 [0.05, 2.22] 1.09 [0.18, 0.25]
OR-60 29.06 [5.30, 0.01] 10.86 [0.27, 0.01] 1.22 [0.06, 2.43] 1.09 [0.18, 0.27]
OR-70 30.47 [5.13, 0.01] 11.70 [0.61, 0.01] 1.23 [0.05, 2.75] 1.10 [0.19, 0.29]
FR-50 17.30 [3.06, 0.45] 9.28 [0.27, 0.47] 1.16 [0.05, 50.09] 1.00 [0.03, 8.59]
FR-60 18.77 [2.96, 0.45] 10.44 [0.23, 0.45] 1.18 [0.04, 56.43] 1.00 [0.03, 9.58]
FR-70 20.56 [3.04, 0.45] 11.43 [0.30, 0.45] 1.16 [0.05, 61.52] 1.00 [0.03, 9.99]
LJ-50 10.23 [2.08, 0.02] 4.94 [0.39, 0.02] 1.14 [0.03, 1.28] 1.03 [0.11, 0.18]
LJ-60 11.53 [2.35, 0.02] 5.50 [0.43, 0.02] 1.16 [0.05, 1.31] 1.03 [0.11, 0.20]
LJ-70 12.56 [2.49, 0.02] 6.01 [0.46, 0.02] 1.17 [0.04, 1.49] 1.03 [0.11, 0.20]

TW-50 12.76 [1.77, 0.13] 7.87 [0.13, 0.15] 1.16 [0.07, 11.42] 1.16 [0.32, 2.18]
TW-60 13.42 [1.81, 0.14] 8.32 [0.25, 0.15] 1.15 [0.07, 11.85] 1.18 [0.34, 2.27]
TW-70 15.94 [2.07, 0.13] 9.21 [0.20, 0.15] 1.19 [0.06, 13.51] 1.20 [0.41, 2.51]

avg. 18.24 8.83 1.18 1.08

2.6.2 Speedups

Table 2.3 lists the speedups of ∆-based incremental evaluation of user queries over

the non-incremental query evaluation and the average time of the former. Overall, we

observe a wide range of speedups across benchmarks. The highest come from the case of

Viterbi (17.6-41.5×), while the lowest are observed on SSNSP (1.0-1.2×). In between, the

results show significant performance improvements in the cases of SSWP (9.3-36.1×), SSNP

(10.2-30.5×), and SSR (5.0-11.7×), and modest speedups in the remaining cases: SSSP

(1.3-2.5×), BFS (1.0-1.6×), and Radii (1.1-1.2×). This large variation of speedups clearly

indicates that the effectiveness of ∆-based incremental evaluation depends on the graph

problems, in particular, their graph triangle inequalities. As mentioned in Section 2.4.4,
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Table 2.4: Vertex Activation Ratio of ∆-based Incremental Evaluation over
Non-Incremental Evaluation.

Each entry is: average [standard derivation] of 256 user queries

OR-60 FR-60 LJ-60 TW-60

SSSP 44.4% [13.1%] 61.7% [4.8%] 56% [12.2%] 52.8% [11.1%]
SSWP 1.9E-7 [9.0E-8] 1.3E-8 [3.6E-9] 0.79% (8.8%) 4.0E-8 [3.0E-8]
Viterbi 3.5E-7 [8.9E-7] 6.7E-8 [3.2E-7] 0.95% [9.1%] 1.7E-7 [2.8E-7]

BFS 82.2% [18.2%] 98% [6.9%] 89.4% [16.5%] 65.8% [22.6%]
SSNP 1.9E-7 [1.4E-7] 1.4E-8 [9.4E-9] 0.78% [8.8%] 3.6E-8 [2.3E-8]
SSR 3.3E-7 [0] 1.7E-8 [0] 0.78% [8.8%] 3.2E-8 [2.8E-9]

Radii 98.9% [3.7%] 91.9% [4.5%] 92.21% [4.06%] 93.9% [6.8%]
SSNSP 98.9% [4.3%] 99.97% [0.2%] 98.58% [4.88%] 94.9% [10.1%]
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Figure 2.11: Speedup Distributions of 256 User Queries (16 queries in the case of Radii;
x-axis is for the user queries while y-axis is for the speedups of ∆-based incremental

evaluation; the user queries are sorted by the corresponding speedups.)

the effectiveness can be measured more directly by the activation ratio Ract. Table 2.4

reports this ratio for cases where the graph is 60% loaded.

Overall, we find that the results are consistent with the speedups – lower activation

ratios usually correspond higher speedups. More specifically, we find Ract is extremely low

(less than 1%) in the cases of SSWP, SSNP, and Viterbi, which means more than 99% of the

vertex activations are avoided by incremental evaluation. Our further investigation reveals

an interesting fact: the initial values ∆(u, r) of incremental evaluation are nearly all stable
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Figure 2.12: Correlations between Speedups and property(u, r) for Verifying the Standing
Query Selection Heuristic.

values, that is, the “=” part of the inequality holds – the first case of benefits we discussed

in Section 2.4.4. There could be multiple reasons causing this phenomenon. One of them

is the min-max nature of the graph problems. In the cases of SSWP and SSNP, the whole

vertex function is based on the calculation of min and max. In these cases, it is not hard

to prove that, for undirected graphs or strongly connected components (SCC) of a directed

graph, if property(u, r) ̸= property(r, x), then the inequality turns to be the equality, thus,

the initial values are already stable. For Viterbi, one key reason for the high stable ratio

could be related to the max-division operation in the vertex function. The function tries

to choose the edge with the lowest weight to propagate the probability – dividing value by

the edge weight, and as we know, the lowest edge weight is one, thus the probability is

likely to stay the same simply because “vite(v1, v2) divided by 1 equals vite(v1, v2)”. Back

to the inequality, as long as there exists a path from u to r or a path from r to x where

the edge weights are all ones, then the inequality becomes an equality. This effect can be

significantly amplified by the power-law nature of the graphs, where u, r, and x are only a

few hops apart, thus the conditions are very likely to become true.
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At the other end of the stable ratio spectrum, Radii and SSNSP show the highest

stable ratios (over 90%), meaning that less than 10% of vertex function activations are

actually saved by incremental evaluation. Note that, even though Radii mainly involves a

group of SSSP evaluations, its stable ratios are much higher than those of SSSP. This is

because the number of vertex activations in Radii is bottlenecked by the slowest SSSP query

– the one with the most number of vertex activations. For SSNSP, our evaluation involves

two rounds: (i) a BFS round which computes the level of each vertex and (ii) a counting

round which counts the number of paths corresponding to the lowest levels. The activation

ratios reported in Table 2.4 are for the second round. In this case, the main problem comes

from the conditional inequality as shown in Figure 2.6-(d). Our profiling shows that the

condition is false for 90% of the cases during the initialization, which substantially limits

the effectiveness of ∆-based incremental evaluation, resulting in a high activation ratio.

Besides the aggregated speedups shown in Table 2.3, we also report the speedups

of the 256 individual queries on graph LiveJournal with 60% edges loaded in Figure 2.11.

From the results, we can see three patterns roughly. For SSSP, BFS, and SSNSP, the

speedup distributions are mostly biased, followed by SSWP, SSNP, Viterbi, and Radii, and

finally, the distribution of SSR is almost uniform. The variations, to a large extent, depend

on the property(u, r), which connects the user query q(u) and standing query q(r). We thus

discuss it together with the standing query selection next.

2.6.3 Standing Query Selection

Standing query selection is critical to the effectiveness of ∆-based incremental eval-

uation. To examine its impact, we grouped the speedups by property(u, r) – the heuristic
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that we use for selecting the standing query (see Section 2.4.5). The results are reported in

Figure 2.12. In the cases of SSSP, SSWP, SSNP, BFS, and SSNSP, there are clear correla-

tions between property(u, r) and the speedup; for Viterbi, the trend is less obvious, but still

observable; for Radii, no significant enough correlation is observed; finally, for SSR, as the

property is binary, we will discuss it separately. Note that whether the trend is increasing

or decreasing depends on the comparison operator ⪰. For SSSP, SSNP, BFS, Radii, and

SSNSP, ⪰ is ≥, while for SSWP and Viterbi, ⪰ is ≤. From this perspective, the trends

align well with our standing query selection heuristic – the “lower” the property(u, r) is,

the higher the speedup is achieved. Note that, in the case of SSR, the heuristic always

chooses the standing query with property(u, r) = 1, which is also the one with a higher

speedup. For Radii, we used the maximum distance among 16 SSSP queries, in which case

the “averaging effect” blurs the correlation.

Also, note that, in the cases of SSSP, BFS, and SSNSP, the speedups are more

sensitive to property(u, r) when its value is low, which explains the biased speedup distri-

butions in the corresponding graph problems shown in Figure 2.11.

Besides the selection heuristic, another important factor to the performance is

the number of standing queries – K (see Section 2.4.4). A larger K offers more options

for selecting the standing query, thus potentially making the incremental evaluation more

effective; on the other hand, a larger K can also increase the costs: (i) the time for incre-

mental standing query evaluation; and (ii) the time for selecting one from the K standing

queries for applying the triangle inequality. For the latter, as the selection simply accesses

K vertex values in the property arrays of K standing queries and chooses one based on
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Table 2.5: Benefits and Costs of Incrementally Evaluating K Standing Queries (on graph
TW-60).

Each entry is: avg. user query speedup [standing queries eval. time(s)]

#LQ 1 2 4 16 64

SSSP 1.43 [0.30] 1.43 [0.45] 1.70 [0.71] 1.95 [1.42] 2.36 [4.73]
SSWP 16.28 [0.30] 15.98 [0.47] 15.53 [0.71] 15.97 [1.23] 14.97 [3.51]
Viterbi 18.63 [0.30] 17.87 [0.45] 19.09 [0.69] 19.14 [1.20] 17.84 [3.44]

BFS 1.03 [0.32] 1.04 [0.43] 1.23 [0.67] 1.56 [1.29] 1.86 [4.45]
SSNP 13.44 [0.37] 13.09 [0.45] 13.24 [0.75] 13.42 [1.37] 13.84 [3.92]
SSR 8.39 [0.35] 8.60 [0.45] 8.22 [0.66] 8.32 [1.36] 8.12 [4.05]

Radii 1.11 [0.36] 1.13 [0.53] 1.16 [0.97] 1.15 [1.59] 0.84 [4.68]
SSNSP 1.01 [1.74] 1.00 [0.58] 1.09 [0.91] 1.18 [2.10] 1.28 [6.46]

Equation 2.12, the runtime cost is negligible. For the former, we report the standing query

evaluation time for K from 1 to 64 in Table 2.5 (numbers in brackets).

Table 2.5 also reports how K affects the speedups. For SSSP, BFS, and SSNSP,

larger K tends to yield higher speedups; For the others, there are no similar trends, which

means that adding more standing queries does not necessarily increase the effectiveness of

∆-based incremental evaluation; for such cases, a single standing query is sufficient. Note

that, when K increases, the evaluation time of standing queries only increases sub-linearly,

thanks to the batch mode execution. As to the space cost, the value can be computed

by (8 + 2) bytes × Bsize × |V |, where 8 is the size of vertex value (double/long) and

2 is the two masks (boolean) of vertex activeness in the prior and current iterations. In

general, users can tune K based on the sensitivity of their graph problem and the resource

constraints.
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Table 2.6: Standing Query Evaluation Time under Different Update Batch Sizes on LJ-60
and FR-60.

Graph Bsize SSSP SSWP Viterbi BFS SSNP SSR Radii SSNSP

LJ-60

1K 0.09 0.08 0.09 0.09 0.09 0.07 0.13 0.17
10K 0.13 0.10 0.10 0.09 0.11 0.08 0.17 0.19
50K 0.15 0.12 0.12 0.11 0.13 0.09 0.20 0.22

100K 0.16 0.14 0.14 0.11 0.16 0.10 0.21 0.22
500K 0.23 0.18 0.19 0.17 0.20 0.14 0.29 0.27

FR-60

1K 2.09 1.66 1.78 1.86 1.72 1.73 2.29 3.77
10K 2.50 1.95 2.00 2.09 1.87 1.78 2.73 4.04
50K 2.69 2.16 2.36 2.30 2.22 2.03 3.11 3.52

100K 3.08 2.52 2.60 2.67 2.44 2.38 3.30 3.88
500K 4.14 3.52 3.55 3.70 3.59 3.33 4.30 4.83

2.6.4 Graph Streaming

Next, we briefly report the impact of the graph update batch size on the standing

query evaluation. A detailed evaluation can be found in Aspen [27]. Table 2.6 shows the

standing query evaluation time with update batch size varying from 1K to 500K. The results

show that the evaluation time increases sub-linearly as the batch size increases. The main

reason for the sub-linear increase is that computations for handling different new edges are

largely shared. For example, many new edges may appear on the same paths, thus sharing

the activations of vertices along the paths. Moreover, the efficient data structure (a purely

functional tree) ensures fast graph data access for incremental query evaluation.

2.6.5 Integration into Differential Dataflow

Though Tripoline is implemented based on Aspen [27], the idea of triangle inequality-

based optimization may also be adopted in other streaming graph systems. To demonstrate
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its generality, we examined the potential of adopting it in a state-of-the-art general-purpose

streaming framework, called Differential Dataflow (DD) [84, 79].

In fact, the latest version of DD also supports inter-query sharing, called shared ar-

rangements [79]. In earlier versions of DD, each query 8 needs to maintain an indexed state

over the input stream independently. In the context of streaming graphs, this means that

each query needs to maintain its own indexed graph (for outgoing and/or incoming edges)

over a stream of edge pairs. This creates unnecessary redundancies when different graph

queries want to access the same input stream (edge-pair stream). Shared arrangements

address this issue by allowing different queries to share the same indexed state (graph),

rather than maintaining its own copy. Note that shared arrangements are an orthogonal

improvement to the proposed triangle inequality optimization—the former shares the in-

dexed graph data structure across queries while the latter “shares” the query evaluation

state, that is, the vertex values (e.g., distances of all vertices to the source vertex in SSSP)

across queries. The latter requires establishing the triangle inequalities to be applicable.

Experiment Setup. We pulled the latest version of DD from its GitHub repository 9. To

integrate the triangle inequality optimization, we added a filter to its graph processing

dataflow. The filter applies a predicate to each element of a collection, and removes those

for which the predicate returns false. In specific, the predicates are constructed based on

triangle inequality ∆(u, r) ⪰ property(u, x) (see Equations 2.2 and 2.9). For other operators

used in the dataflow (such as join map, concat, and reduce), we kept them intact.

8Here, a query refers to a type of queries in our context.
9https://github.com/TimelyDataflow/differential-dataflow, Jan 22, 2021.
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Table 2.7: Performance of Differential Dataflow with Triangle Inequality Optimization on
LJ and TW at 60% and 100%.

(DD-SA: differential dataflow with shared arrangements;
DD-SA-Tri: DD-SA with triangle inequality optimization)

Graph Method BFS SSSP SSWP

LJ-60
DD-SA 0.97s 6.90s 3.50s

DD-SA-Tri 0.93s 2.68s 0.48s
Speedup [1.04×] [2.57×] [7.29×]

TW-60
DD-SA 6.91s 42.88s 22.97s

DD-SA-Tri 7.23s 10.74s 5.75s
Speedup [0.96×] [3.99×] [3.99×]

LJ-100
DD-SA 1.10s 8.41s 4.63s

DD-SA-Tri 1.11s 3.24s 0.52s
Speedup [0.99×] [2.60×] [8.90×]

TW-100
DD-SA 10.69s 58.63s 32.68s

DD-SA-Tri 10.71s 14.72s 7.74s
Speedup [1.00×] [3.98×] [4.22×]

Note that the above integration may not be the only way to adopt triangle in-

equality optimization into DD. We choose this design for its simplicity and modularity - it

isolates the modifications to one dataflow operator, leaving other parts of the graph pro-

cessing dataflow intact. A more intrusive integration that yields better performance might

be possible, but requires a redesign of the existing DD to some extent.

Due to space limits, we focus our evaluation on three query benchmarks (BFS,

SSSP, and SSWP) and two graphs (LJ and TW), at 60% and 100% loaded ratios. For each

configuration, we issued 256 queries (the same as the prior experiments) and collected the

average time of query evaluation.

Performance Results. Table 2.7 reports the performance with and without the triangle

inequality optimization. Note that the baseline (DD-SA) is the DD with shared arrange-
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Table 2.8: Reduction of reduce Operations for DD-SA with Triangle Inequality
Optimization on LJ-100.

Graph Method BFS SSSP SSWP

LJ-100
DD-SA 9156594 30418846 20622003

DD-SA-Tri 8956638 17570555 6292821
Reduction [1.02×] [1.73×] [3.28×]

ments enabled. In general, the results are of similar trends as those reported for Tripoline

(see Table 2.3): (i) for SSSP and SSWP, the speedups are more significant, ranging from

2.57× to 3.99× for SSSP and 3.99× to 8.90× for SSWP; (ii) by contrast, the speedups for

BFS are limited, actually they are close to one. In the context of DD, the effectiveness of

triangle inequality optimization can be reflected by the number of invocations of the down-

stream reduce operator, which are shown in Table 2.8. For SSSP and SSWP, there are

significant reductions in the invocations of reduce operator, while for BFS, the reduction

is very limited. These results align with the speedups of the three types of queries.

2.7 Summary

This work reveals a fundamental limitation in the existing streaming graph sys-

tems – lack of incremental evaluation for queries without a priori knowledge. To address

the limitation, this work proposes to leverage the graph triangle inequalities that can be

naturally derived from vertex-specific graph problems to enable such capabilities. This idea

leads to a generalized incremental processing design for vertex-specific queries, in which

the correctness is ensured by the triangle inequality and proper design of the vertex func-

tions, and the efficiency is optimized based on the “distance” between the user and standing
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queries. Finally, our evaluation of the developed system Tripoline confirms the effectiveness

of the proposed techniques for a spectrum of graph problems on real-world graphs.
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Chapter 3

Scaling Incremental Graph Query

Evaluation for Large Update

Batches

3.1 Introduction

While most existing graph system research has focused on static graphs, real-

world graphs are usually dynamic. For example, on social networks, users join, connect,

and interact with each other over time. New friendships, status updates, and interactions

constantly change the graph structure [23]. In online recommendation systems, as users

rate, review, or interact with items, the graph that represents the user-item relationships

evolves [121]. More obviously, transportation networks, such as road networks or airline
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networks, undergo constant changes due to factors like traffic patterns, road closures, and

flight schedules [67].

Motivated by the dynamic nature of real-world graphs, a series of systems have

been proposed recently for changing graphs, such as Kineograph [22], Chronos [43], Tor-

nado [105], KickStarter [117], Aspen [27], GraphBolt [75], Ingress [40], Tripoline [56],

and more recently RisGraph [34]. Instead of re-evaluating the queries from scratch, most of

these systems incrementally update query results in response to the changes to the graph.

For path-based algorithms like single-source shortest path (SSSP), state-of-the-art

incremental approaches (e.g., RisGraph [34]) have shown great scalability—handling large

batches of edge insertions up to 30-50% of the graph size (see Figure 3.1). However, it

remains a fundamental challenge to scale the incremental evaluation for edge deletions and

weight updates. As shown in Figure 3.1, the existing incremental method can only scale

the batches of edge deletions and weight updates up to 10-15% of the graph size. In fact,

efficient handling of substantial graph updates, especially edge deletions and weight updates,

is crucial for real-world analytics. For example, in dynamic communication networks, link

weights often signify key attributes like latency, bandwidth, reliability, or cost. These

attributes fluctuate based on user demands and network conditions that vary over time,

causing substantial graph updates [48, 92, 57]. In evolving graph analysis, when comparing

two temporally distant snapshots of the same graph, the extent of changes between them

can be considerable, leading to a large update batch (e.g., 30% edges of the Stack Overflow

temporal network [63]).
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Figure 3.1: Scalability of Incremental Evaluation (The maximum update ratio where inc.
eval. is faster than the full eval. on LiveJournal graph).

A closer examination of the existing incremental graph query processing systems

highlighted a few challenges in scaling up the handling of edge deletions and weight updates:

• Expensive dependency tracing. When an edge is deleted, it is required to find all the

affected vertices. It is intuitive to trace down the dependencies (like a tree) originating

from the deleted edge [117, 34] (see Section 3.2.1). This top-down dependency tracing

requires to access both the graph and the dependency data, making it the dominating

cost of edge deletion handling (70-80% based on our observation).

• Two-round handling. Existing incremental systems [117, 34] handle edge weight

changes in two rounds: delete the edges with their old weights, then reinsert them with

the new weights. While being intuitive, this solution often involves a large amount of

unnecessary computations.

• Unawareness of workload. State-of-the-art graph systems employ a single processing

strategy for updating batches of varying sizes. However, substantial changes in batch
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size result in different computation characteristics, potentially leading to sub-optimal

performance.

To address the above challenges, this work introduces three key techniques for

scaling the incremental evaluation for edge deletions and weight updates: (i) bottom-up de-

pendency tracing; (ii) direct edge weight change handling; (iii) workload-adaptive evaluation.

• Bottom-up dependency tracing traverses the dependency data (e.g., a tree) bottom-

up to find the vertices affected by edge deletions. Unlike top-down tracing, it solely

relies on the dependency data, bypassing the graph access.

• Direct weight change handling directly processes edge weight updates in a single

round. The key is to separate weight increases and decreases and treat them in a way

similar to edge insertions and deletions. To support it, this work designs a method

to test if a weight change violates the monotonicity of the graph algorithm. Based on

the test result, the system chooses the right treatment.

• Workload-adaptive evaluation addresses the changing behaviors of computations

due to changes in the workload volume. It automatically selects the dependency

tracing strategy and the representation of the active vertices. In general, for relatively

small batches, top-down tracing with a sparse representation is chosen, while for large

batches, bottom-up tracing with a dense representation is used.

To integrate the above techniques, we implemented a new graph system for in-

cremental query evaluation—IncBoost. It builds upon the widely used in-memory graph

processing framework, Ligra [106]. Our evaluation focuses on comparing the performance
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𝑓!!!"(𝑣) {

for each out-neighbor 𝑛 of 𝑣 {
if (dist[𝑛] > dist[𝑣] + w(𝑣,𝑛))  {

dist[𝑛] = dist[𝑣] + w(𝑣,𝑛);
add 𝑛 to frontier;

}
}

(a) vertex function (b) a directed graph

Iter# A B C D E F G Frontier

0 0 ∞ ∞ ∞ ∞ ∞ ∞ {A}

1 0 5 ∞ 20 ∞ ∞ ∞ {B, D}

2 0 5 25 20 27 ∞ 105 {C, E, G}
3 0 5 25 20 27 32 105 {F}

4 0 5 25 20 27 32 105 {}

(c) iterative evaluation of SSSP(A) from scratch

𝐴

Figure 3.2: Full Evaluation of Query SSSP(A) (thick edges are dependent edges for the
given query).

of IncBoost against the state-of-the-art system, RisGraph. Our results show that Inc-

Boost can boost the update batch size from 10-15% to 50-60% of the graph size for edge

deletions and weight changes (as shown in Figure 3.1), without losing the benefits of incre-

mental evaluation. More specifically, for large update batches, our results indicate up to

1.6× speedup in dependency tracing with the bottom-up approach, while the direct weight

update handling delivers 2.1× speedup over the two-round approach. Overall, IncBoost

achieves up to 3.1× and 203× speedups for edge deletions, 4.9× and 299× speedups for

edge weight updates over RisGraph and KickStarter, respectively.
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3.2 Background

3.2.1 Existing Incremental Methods

To avoid the expensive full evaluation each time after the graph is updated, incre-

mental query evaluation has been proposed [105, 117, 75, 27, 40, 56, 34]. Next, we present

the basic ideas of incremental query evaluation with respect to the three types of graph up-

dates1: (i) edge insertions, (ii) edge deletions, and (iii) weight updates. We will focus on the

widely studied monotonic path-based graph algorithms and use the example in Figure 3.2

to help explain the ideas.

Edge Insertion Handling. Assume a new edge (A,C, 10) is inserted to the graph in

Figure 3.2-b. The edge creates a new way to reach C through A which may result in a

better value for C. To find it out, we can apply the vertex function on A but limit its

scope to only the out-neighbor C (like an edge function). Based on vertex A’s prior result,

which is 0 (see Figure 3.2-c) and the weight of the new edge “10”, a new best value “10”

is found for C. Next, we need to propagate this new value of C to the other vertices in

the graph. To achieve this, we can put C to the frontier and resume the iterative query

evaluation, as illustrated by Figure 3.3-c. Once all values are converged again, the latest

shortest distances are found.

Edge Deletion Handling. To handle edge deletions, the system needs to track the depen-

dencies among vertices and memorize how the values were computed. Consider the example

in Figure 3.3-a, thick edges reflect the dependencies among the final values of vertices. For

1A vertex deletion deletes all the edges of the vertex, while deleting/inserting a vertex without any edges
is usually a trivial case to compute.
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(a) after inserting edge AC (b) after removing edge AC

Iter# A B C D E F G Frontier

init 0 5 10 20 27 32 105 {C}

5 0 5 10 20 15 17 105 {E, F}

6 0 5 10 16 15 17 105 {D}
7 0 5 10 16 15 17 105 {}

(c) re-convergence of SSSP(A) after inserting edge AC

Iter# A B C D E F G Frontier

reset 0 5 ∞ ∞ ∞ ∞ 105 -

init 0 5 ∞ 20 ∞ ∞ 105 {D}
8 0 5 25 20 27 ∞ 105 {C, E}

9 0 5 25 20 27 32 105 {F}

10 0 5 25 20 27 32 105 {}

(d) re-convergence of SSSP(A) after removing edge AC
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Figure 3.3: Incremental Evaluation of Query SSSP(A) (vertices in red are those affected
by the deletion of edge AC).

example, the final value of D, “16”, is computed based on the final value of E, “15”, so D

depends on E. For path-based graph queries, the dependencies form a tree rooted at the

query’s source vertex (more details in Section 3.3). Figure 3.3-a shows a dependency tree

(thick edges) rooted at vertex A.

In general, there are three steps in handling an edge deletion.

1○ Dependency Tracing. If the deleted edge is NOT a dependent edge, then no

vertices are affected; otherwise, it requires finding out the affected vertices. Consider the
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graph in Figure 3.3-a, deleting edge DE has no effects on the value of any vertex. However,

deleting edge AC, a dependent edge, may impact the values of vertices that depend on this

edge. First, the directly impacted vertex is C. Without edge AC, C’s prior value “10” is

no longer valid, so do the values of other vertices that depend on C, including E, F , and

D (see Figure 3.3-a). To ensure correctness, they need to be reset to ∞ (see Figure 3.3-d).

2○ “Jump-Start”. This step finds a safe approximation value (i.e., no better than

the best value) for each reset vertex [34]. One way is to “pull” values from their in-neighbors

and use them to update the values of these reset vertices. In Figure 3.3-d, the “init” row

shows the initial values of reset vertices after applying a pull operation.

3○ Re-convergence. The graph system then resumes the iterative evaluation until

all values are re-converged. Note that, during this time, the value propagation only happens

within the reset vertices because the other vertices do not depend on the deleted edge.

Among the three steps, we found that dependency tracing often dominates the

execution time of edge deletion handling for the existing systems (about 70-80% for large

deletion batches).

For both edge insertion and deletion handling, the correctness is ensured by the

safe approximation of affected vertices’ values and the monotonicity of the iterative graph

algorithms [117].

Edge Weight Change Handling. Existing graph systems [117, 75, 34] treat an edge

weight change as two separate updates: an edge deletion and an edge insertion, and process

them in two rounds. While simplifying the design, the two-round method may incur a lot

of unnecessary computations.
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Vtx A B C D E F G

Value 0 5 10 16 15 17 105

Value 0 5 25 20 27 32 105

Value 0 5 7 13 12 14 105

𝐴 𝐶10

Delete edge (A, C, 10)

Insert edge (A, C, 7)

3 iterations

3 iterations

𝐴 𝐶7

before update after update

Figure 3.4: Two-Round Handling of Weight Update.

At the high level, the two-round handling always “takes a detour” to reach the

final convergence. As illustrated by the example in Figure 3.4, when the weight of edge AC

is changed from 10 to 7, the two-round handling first makes the values of affected vertices

worse (larger values in SSSP) in the first round, then re-converges them to better values

in the second round. This “detour” greatly limits the efficiency of incremental edge weight

change handling.

One Strategy for All Cases. Finally, existing graph systems [117, 75, 34] uniformly

employ a single processing strategy, keeping the same representation of the frontier and

traversal direction regardless of the workload. Based on our observation, the lack of work-

load adaption often leads to sub-optimal performance.

In the upcoming sections, we address existing limitations. In Section 3.3, we

introduce a new dependency tracing strategy for large deletion batches. In Section 3.4, we

explore a direct method for handling weight updates. Lastly, in Section 3.5, we present an

adaptive processing scheme based on update batch size.
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Table 3.1: Average-case Complexities (din and dout are the average in-degree and
out-degree, respectively).

Children Parent Maint. Space
Representation (per vtx) (per vtx) (per vtx) (all)

Sparse children vec. O(1) O(din) O(dout) O(|V |)
Dense children vec. O(dout) O(din ∗ dout) O(dout) O(|E|)
Children hashtable O(1) O(din) O(dout) O(|V |)
Children in nbr. vec. O(1) O(din ∗ dout) O(dout) O(1)
Parent vec. O(dout) O(1) O(din) O(|V |)
Depen. discovery O(dout) O(din) - -

3.3 Dependency Tracing

Dependency tracing is a key step in handling edge deletions for incremental query

evaluation. It helps the graph system identify vertices affected by an edge deletion. In

this section, we first discuss the data representation options for dependency, then introduce

the strategies for dependency tracing, including the existing top-down tracing and our new

design—bottom-up tracing.

First, we define the dependency in our context more formally.

Definition 6 (Dependency). Given a graph algorithm and a graph, if the value of a vertex

vi is determined solely by the value of one of its in-neighbors vj
2, vertex vi depends on vj .

We refer to vi as the dependent child while vj as the dependent parent.

The dependency relations among vertices form a tree structure for vertex-centric

queries like SSSP, while for weakly connected components (WCC), the dependencies form

a forest. In the following, we refer to them as dependency trees.

2It is possible that multiple in-neighbors have the same value, but during the iterative evaluation, only
one of them will be actually used to update the value of this vertex.
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3.3.1 Dependency Representation

Although the design of data structure for dynamic graphs has been widely dis-

cussed, such as adjacency lists [34, 117] and tree-based representation for graph multi-

versioning [27], there are limited discussion on the data representation for dependency.

Our discussion covers the lookup costs for dependent children and parent, the

maintenance cost, and the space overhead. The children lookup is used for identifying

affected vertices during dependency tracing, while the parent lookup could be used when

changing the parent of a vertex. The maintenance is to update the dependency tree to reflect

new dependencies after the graph is updated and the query is incrementally evaluated.

In total, we examined six design choices for storing dependency (assuming the

dynamic graph is stored in an adjacency vector):

• Sparse children vector stores the dependent children of a vertex (their indices in the

neighbor vector) in a vector.

• Dense children vector combines a boolean vector with the neighbor vector to indicate

dependent children.

• Children hashtable stores the dependent children of a vertex in a separate hashtable

(unordered set).

• Children in neighbor vector arranges the dependent children at the beginning of the

neighbor vector, separating them from the rest neighbors with a pointer.

• Parent vector stores dependent parent (index in the vertex array) of each vertex in a

vector.
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• Dependency discovery detects the dependencies by checking the value relations be-

tween two neighboring vertices—an in-neighbor that determines a vertex’s value is its

parent.

Table 3.1 lists the complexities based on the average in-degree din and out-degree

dout of the graph. In general, children-based representations (except the dense children

vector) offer constant access time to the dependent children, but take longer to find the

parent of a vertex as they have to examine each in-neighbor of the vertex to find out if it

has this vertex as a child. In comparison, parent vector offers constant access time to the

parent of a vertex, but takes longer to find the children of a vertex as it needs to scan the

out-neighbors of the vertex and check which one has this vertex as the parent. Dependency

discovery does not explicitly store the dependency, so its maintenance and space costs are

zero, but it requires extra computations to find out the dependent children.

Besides complexities, another key factor is the parallelization cost. Since a ver-

tex may have multiple dependent children, updating the children of different vertices for

children-based representations (except the dense one) requires use of locks when performed

in parallel. By contrast, the parent vector and dependency discovery require no locks for

parallel parent changing.

In addition, one may use two representations together to address the disadvantages

of each. For example, when using children-based representations along with the parent

vector, the parent lookup cost could be reduced to O(1) at the cost of more memory usage.

Offline vs. Online Maintenance. The maintenance costs listed in Table 3.1 assume an

offline approach—the dependency tree is updated after the re-convergence. For children-
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based representations, this can be done by traversing the out-neighbors of each vertex to

identify the new dependent children. Likewise, for parent vector, it needs to traverse the

in-neighbors of each vertex to identify the new dependent parent. In both cases, the offline

approach needs to access the graph structure which could be costly.

Alternatively, one can update the dependency tree online during the re-convergence

of the affected vertices. In this case, each time the value of a vertex is updated, the parent-

child dependency is also updated. For children-based representations, it involves removing

a child from its old parent’s children list and adding it to that of the new parent. Note

that changing children for different vertices in parallel requires locks. For parent vector, the

dependency update involves updating the parent of the affected vertex.

For some graph algorithms (e.g., SSSP), the value of a vertex may be updated

multiple times before reaching the convergence. In this case, the online approach would

involve some “unnecessary” dependency updates. On the other hand, by updating the

value and dependency together, the online approach avoids the additional graph access

that would otherwise occur in the offline approach.

So far, we have examined several dependency representations in terms of the ben-

efits and costs. The best choice also depends on how dependency tracing is conducted.

3.3.2 Top-Down Dependency Tracing

Given the dependency information, the goal of dependency tracing is to find out

all the vertices affected by edge deletions. Existing systems, like KickStarter [117] and

RisGraph [34], follow a top-down dependency tracing strategy and use the parent vector to

represent the dependency tree, as outlined in Algorithm 1.
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Algorithm 1 Top-down Dependency Tracing

1: function DepTracingTopDown(G, parent, S0)
2: S = S0

3: Frontiercur = S0

4: Frontiernext = ∅
5: while Frontiercur ̸= ∅ do
6: parfor u in Frontiercur do
7: for v in G[u].outNeighbors do
8: if parent[v] == u && v /∈ S then
9: Frontiernext = Frontiernext ∪ {v}

10: S = S ∪ {v}
11: end parfor
12: swap(Frontiercur, Frontiernext)
13: Frontiernext = ∅
14: return S

When edges are deleted from the graph, there is a set of vertices whose values

directly impacted (see Section 3.2), referred to as DDI vertices (for ”deletion directly im-

pacted”), denoted as S0. Top-down tracing starts from vertices in S0 and traverses the

dependency tree downwards till reaching leaves. At last, the algorithm outputs the vis-

ited vertices as the full set of impacted vertices S. The traversal can be expressed as a

frontier-based iterative algorithm.

Figure 3.5-a illustrates the top-down dependency tracing, where S0 = {B, D}.

After the tracing, the impacted vertex set S = {B,C,D,E}.

Scalability Issues. Top-down tracing works well when the directly impacted vertex set

S0 is relatively small. When S0 becomes larger, we observed that the performance of

dependency tracing degrades badly—it can take up to 80% of the total handling time.

We found the primary factor limiting the scalability of top-down tracing is the

mismatch between top-down tree traversal and the use of a parent vector. The former needs
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the dependent children of vertices, but given the parent vector, it has to access the graph—

scanning the out-neighbors of a vertex to find its dependent children (Line 7-8 in Algo-

rithm 1), which takes O(dout) time complexity (see Table 3.1). When there are a large

number of directly impacted vertices, the cost of graph accessing becomes significant.

One way to address the above issue is to use the children-based representations

outlined in Section 3.3.1, instead of the parent vector. While most of them offer constant

time to access the dependent children, as discussed earlier, they have their own issues. For

sparse children vector and children in neighbor vector, it is costly to remove a dependent

child, which requires shifting the elements in the vector. More generally, all children-

based representations take non-trivial time to maintain the parent-child relations online (see

Table 3.1). In fact, most of them require locks during parallel children updates. Overall, the

costs outweigh the benefits, hence the prior systems [117, 34] still chose to use the parent

vector despite the mismatch.

3.3.3 Bottom-up Dependency Tracing

In this work, we explore a novel way to address the mismatch by proposing a

bottom-up traversal strategy that aligns well with the parent vector. Moreover, it does

not require accessing the graph at all. Together, they make it a promising solution for

dependency tracing in handling large-scale edge deletion batches.

It is less intuitive to traverse from the leaves of a dependency tree “backward”. We

need to address two key questions: 1○ how to identify the leaf vertices of the dependency

tree? and 2○ how to correctly find impacted vertices starting from the leaves?
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1○ Identifying leaves. Leaves are vertices with no children. If we know the count

of dependent children for each vertex, it becomes trivial to identify the leaves. However,

to collect the dependent children count for a vertex v, we may still need to know which

out-neighbors are the dependent children of v—going back to the same situation as in the

top-down dependency tracing. In fact, there is a way to work around the above issue.

The key is to maintain the dependent children counts of vertices incrementally, instead of

computing them from scratch. To do so, we keep a copy of the old parent vector before graph

updates are applied and compare it with the new parent vector afterwards. If the parent of

a vertex v is changed from p1 to p2, we decrement the count of p1 and increment the count

of p2. For parallel count updates, atomic operations (like fetch add and fetch sub) are

required.

Compared to children-based representations, our solution keeps the count of de-

pendent children instead of maintaining the list of dependent children. This difference

brings a few critical advantages for an efficient implementation:

• First, the count of dependent children is a single integer that can be easily stored in

a vector for all the vertices;

• Second, maintaining the counts of dependent children does NOT need to access the

graph;

• Lastly, its parallelization needs atomic operations, instead of the locks required in

children-based representations.

With the leaves of the dependency tree, the next question is to find all vertices impacted

by the edge deletions.
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Figure 3.5: Top-Down vs. Bottom-up Dependency Tracing (solid circles are vertices
directly impacted by edge deletions, i.e., S0).

2○ Finding impacted vertices. An intuitive idea is to start from each leaf and

traverse the tree bottom up until it reaches a vertex directly impacted by the edge deletions

(i.e., a vertex from S0 in Algorithm 1) or the root of the tree. However, there is a caveat

to the above idea—along one bottom-up traversal path, there could be multiple vertices

directly impacted by edge deletions, as illustrated in Figure 3.5-a. Stopping the traversal at

the place where the first directly impacted vertex is found might miss out other impacted

ones that appear even higher up in the path.

To address the above issue, we first introduce a new concept:

Definition 7 (DDI Tree). A DDI tree is a maximum subtree in the dependency tree where

only the root is a DDI vertex.

In Figure 3.5-a, there are two DDI trees: one with vertices B and C and the other

with vertices D and E, where B and D are the only DDI vertices in each and both are the

root of their subtrees.

Given a dependency tree and a set of DDI vertices (i.e., S0), we can find all DDI

trees by detaching each DDI vertex from its parent. Each detachment creates a new DDI
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tree, thus, in total, there would be |S0| DDI trees created. Since only the DDI vertices are

detached from the dependency tree, we have the following conclusion:

Theorem 8. After the DDI tree detachments, the remaining part of the dependency tree

form a single tree.

We refer to this remaining single tree as the reminder tree.

Definition 9 (Reminder Tree). Given a dependency tree and a set of DDI vertices, the

reminder tree is the remaining part of the dependency tree after all DDI trees are detached.

Figure 3.5-b shows a reminder tree with three vertices {A, F , G}.

During the DDI tree detachments, we also update the counts of children of their

parents, which may create a set of new leaves. If we start a bottom-up traversal from both

the new leaves and the original leaves, denoted as leavesall, then we can cover all the vertices

in the original dependency tree, more importantly, we can tell if a vertex u is impacted by

the edge deletions or not.

• If a vertex u is visited on a path that reaches a DDI vertex (i.e., part of a DDI tree),

it is impacted by deletions, u ∈ S.

• Otherwise, u must be on a path to the original root of the dependency tree (i.e., part

of the reminder tree), in which case it is NOT impacted by deletions, u /∈ S.

However, at the beginning of the bottom-up traversal, it would be unknown if a

traversal path will finally reach a DDI vertex in S0 or the original tree root. Thus, it cannot

decide if a visited vertex should be marked (i.e., added to Sv) or not. To address this,
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Algorithm 2 Bottom-up Dependency Tracing

1: function DepTracingBottomUp(parent, leaf, S0)
2: removeDeletedEdges(parent)
3: updateLeaves(leaf) /* leaf is represented using a boolean array */
4: S = S0 /* S0 and S are represented using boolean arrays */
5: parfor v in leaf do
6: p = v /* keep a copy for potential re-traversing */
7: while hasParent(p) and p /∈ S do /* bottom-up traversal */
8: p = parent[v]

9: if p ∈ S then /* stopped at an impacted vertex */
10: while hasParent(v) and v /∈ S do /* re-traverse */
11: S = S ∪ {v} /* mark it as an impacted vertex */
12: v = parent[v]

13: end parfor
14: return S

we first assume every path eventually reaches the original root, so no vertices are marked

during this traversal. Later if the assumption fails—the traversal did encounter a DDI

vertex, our algorithm would re-traverse this path from the leaf, and this time it marks the

vertices visited along the path as the impacted ones (see Figure 3.5-b). More details of this

bottom-up tracing are outlined in Algorithm 2.

3.4 Weight Updates Handling

As explained earlier (Section 3.2), existing graph systems [117, 34, 40] simulate

an edge weight update with an edge deletion followed by an edge insertion, which takes

a “detour” to reach the final convergence. In this section, we show that it is possible to

directly handle weight changes in a single round. We will start the discussion using SSSP,

then generalize the ideas to other graph algorithms.
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Iter# A B C D E F G

Init 0 5 7 16 15 17 105
1 0 5 7 16 12 14 105

2 0 5 7 13 12 14 105

3 0 5 7 13 12 14 105

𝐴 𝐶10 𝐴 𝐶7before after

𝐴 𝐶10 𝐴 𝐶13

Iter# A B C D E F G

reset 0 5 ∞ ∞ ∞ ∞ 105

init 0 5 13 20 ∞ ∞ 105
1 0 5 13 20 18 20 105

2 0 5 13 19 18 20 105

3 0 5 13 19 18 20 105

(a) re-convergence of SSSP(A) after weight decrease

(b) re-convergence of SSSP(A) after weight increase

before after

Figure 3.6: Direct Handling of Weight Changes.

3.4.1 Case Study: SSSP

The key to effectively addressing changes in edge weights is to differentiate between

“weight increases” and “weight decreases”. Consider the example in Figure 3.3-a, if the

weight of edge AC is decreased from 10 to 7, because AC is a dependent edge, we can

easily tell that the value of vertex C should also be updated from 10 to 7. After this,

we can propagate the new value of C to the other vertices in the graph by resuming the

iterative evaluation from vertex C. Figure 3.6-a illustrates this process, which is similar to

the handling of an edge insertion (see Figure 3.3-c).

Using the same example, but this time assume the weight of edge AC is increased

from 10 to 13. Again, because AC is a dependent edge, the old value of vertex C becomes

invalid. Since the edge weight was increased, the new value of C may come from another
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different in-neighbor. So, we check all the in-neighbors of C to find out the new best

value. However, some of its in-neighbors may also be impacted by this weight increase, as

a result, their values should not be valid at the moment. In this case, to be safe, we need

to first reset the value of C and the values of all the vertices depending on C to ∞. After

this, for each reset vertex, we can safely “pull” the values from its in-neighbors to get a

new approximated value. Finally, we need to resume the iterative evaluation starting from

all the affected vertices. Figure 3.6-b illustrates this process, which, in fact, is similar to

the 3-step handling (tracing→jump-start→re-convergence) of an edge deletion outlined in

Section 3.2 (see Figure 3.3-d).

In summary, in the case of SSSP, edge weight decreases can be handled similarly

to edge insertions, whereas edge weight increases can be addressed similarly to edge dele-

tions. Also, similar to how correctness was ensured in handling edge insertions and edge

deletions [117], the correctness of handling weight increases and decreases is ensured by the

safe approximation of affected vertices’ values and the monotonicity of the iterative SSSP

algorithm.

Next, we generalize this insight to some other graph algorithms.

3.4.2 Generalization

Though the insight from SSSP may look intuitive, it is non-trivial to generalize

them to other graph algorithms. To address this, we turn to a fundamental property of

SSSP—monotonicity, a property that is well-known by the graph research community.
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Theorem 10. During an iterative evaluation of query SSSP(u), the value of every vertex—

the shortest path distance from the source u to this vertex—never increases.

The monotonicity can be “violated” when (i) a dependent edge is deleted or (ii)

the weight of a dependent edge is increased. In both cases, the old values of impacted

vertices become “better” than the actual best values (under the changed graph), which

is incorrect. To recover from this wrong state, we need to reset the values of all affected

vertices, approximate their new initial values, and re-propagate these values until all values

are converged again.

By contrast, when a new edge is inserted or the weight of an edge decreases, the

monotonicity still holds—the old values remain no better than the actual best values. Thus,

we can simply resume the iterative evaluation from these old values.

Besides SSSP, some other common weight-based iterative graph algorithms also

exhibit monotonicity, such as Single-Source Widest Path (SSWP), Single-Source Narrowest

Path (SSNP), and Viterbi.

Definition 11 (Monotonicity). A weight-based iterative graph algorithm is monotonic if

the value of every vertex varies in such a way that it either never decreases or never increases.

As a result, it might be possible to extend this optimization for SSSP to these

algorithms as well. The pivotal question is: for a weight-based monotonic graph algorithm,

which of the two scenarios, weight increase or weight decrease, violates the monotonicity?

To answer this question, we propose local monotonicity test.

Definition 12 (Local Monotonicity Test). Given a weight change (increase/decrease) on

edge (u, v), if (u, v) is a dependent edge, the test resets the value of the directly impacted
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Algorithm 3 Local Monotonicity Test

1: function LocalMonoTest(u, v, w, val, parent, f)
2: tmp val← val
3: if parent[v] == u then /* (u, v) is a dependent edge */
4: tmp val[v] = INIT

5: new = f(u, v, w, tmp val)
6: if |INIT − new| ≥ |INIT − val[v]| then
7: return true
8: return false

Algorithm 4 Direct Handling for Weight Updates

1: function DirectHandling(G, src, valold, parentold, updates, f)
2: (val, parent) ← (valold, parentold)
3: (S0, Frontier) ← (∅, ∅)
4: for (u, v, wnew) in updates do
5: Pass← LocalMonoTest(u, v, wnew, val, parent, f)
6: if Pass then
7: if f(u, v, wnew, val) improves v then /* insertion-like */
8: val[v] ← f(u, v, wnew, val)
9: Frontier ← Frontier ∪ {v}

10: else /* deletion-like */
11: S0 ← S0 ∪ {v}
12: S ← DepTracing(G, S0, val, parent)
13: Pull(G, S, val, parent) /* assign an approx. val for each vtx in S*/
14: Frontier ← Frontier ∪ S
15: Compute(G, val, parent, Frontier)
16: return (val, parent)

vertex v to the initial value INIT . Then, it applies the edge function f(·) to u. If the

new value of vertex v is closer to INIT than the old value, the monotonicity is violated;

otherwise, the change passes the test.

The ideas of this test are also summarized in Algorithm 3, which returns true

only when the weight change conforms with the monotonicity of the given graph algorithm.

If a weight change passes the local monotonicity test, it can be handled like edge

insertions; otherwise, it has to be treated like edge deletions (requiring dependency tracing).
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Table 3.2: Local Monotonicity Test Results

Bench. Edge Function f(·) INIT Monot. Passed

SSSP min(val(v), val(u) + w) ∞ ↓ w ↓
SSWP max(val(v),min(val(u), w)) 0 ↑ w ↑
SSNP min(val(v),max(val(u), w)) ∞ ↓ w ↓
Viterbi max(val(v), val(u)/w) 0 ↑ w ↓

Table 3.2 lists the results of this test to the aforementioned weight-based monotonic graph

algorithms. The last column shows the passed cases.

With the help of local monotonicity testing, the idea of direct weight change

handling can be generalized to all weight-based iterative graph algorithms that exhibit

monotonicity. Algorithm 4 outlines the direct edge weight handling, which generalizes the

handling process discussed in Section 3.4.1.

3.5 Workload-Adaptive Evaluation

Based on our observations, no single processing design works the best in all sce-

narios. Therefore, we found it is better to select the dependency tracing direction and the

data representation based on the workload, in particular, the volume of graph updates.

3.5.1 Selection of Tracing Strategy

For small update batches, top-down tracing begins with a small set of DDI vertices

(S0). By traversing the dependency tree downwards, it tends to visit only a small portion

of the dependency tree. In comparison, bottom-up tracing always starts from all the leaves
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of DDI trees and the remainder tree and its traversal covers all the vertices in the original

dependency tree (O(|V |)).

With larger update batches, top-down tracing would visit a larger portion of the

dependency tree. Since its traversal depends on the graph (see Figure 3.5-a), it would also

traverse a larger portion of the graph (O(|E|)), escalating the cost. In contrast, bottom-up

tracing still performs similar traversals, except for more re-traversals due to a larger S0 (see

Lines 9-12 in Algorithm 2).

As a result, we found bottom-up tracing is more efficient when dealing with rel-

atively large update batches, while top-down tracing is better suited for smaller batches.

Based on the above insight, we design a workload-adaptive evaluation that selects the de-

pendency tracing strategy based on the given workload.

Specifically, we define a threshold Hr for the following ratio:

rtracing = |S0|/|V | (3.1)

where |S0| is the number of DDI vertices and |V | is the graph size. If rtracing ¿ Hr, bottom-

up tracing is used; otherwise, top-down tracing is employed. Based on our experimental

results, we found that 0.015 is a practical value for the threshold.

We chose |S0| rather than the update batch size because the latter may not indicate

workload accurately for dependency tracing. As pointed out by prior work [117, 34], most

edges in the deletion batch are not dependent edges, thus carrying no computations.

Note that other factors, such as the locations of deleted edges and the degrees of

impacted vertices, may also affect the performance of dependency tracing. However, it is
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impractical to derive guidelines based on such fine-grained factors. In this work, we choose

a simple and practically working policy (see Section 3.7 for results).

3.5.2 Selection of Data Representation

Another key design factor is the data representation. For bottom-up dependency

tracing (see Algorithm 2), there are two ways to store the set of (deletions or weight in-

creases) impacted vertices S.

• Dense representation which uses a boolean array whose size equals to the number of

vertices in the graph |V | to indicate which vertices are impacted.

• Sparse representation which directly stores the impacted vertices in a set (or a vector),

whose size equals to the number of impacted vertices |S|.

Similar classifications have been used for storing the frontier (i.e., active vertices) in

conventional static graph processing [106, 137, 140, 58, 141, 85]. The switching threshold is

usually set empirically based on the frontier size and the number of outgoing edges [106]. In

general, the sparse representation works better when the frontier size is relatively small as it

is more space-efficient and requires no membership checking while the dense representation

works better for relatively large frontiers as it requires no locks.

However, we are unaware of discussions on data representations for affected ver-

tices in dynamic graph processing. For example, RisGraph chose a fixed scheme—sparse

representation. However, we observe that the sparse representation does not scale well as

the batch size increases. When the batch size is roughly greater than 1.5% of the total
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edges, the dense representation offers better performance, thanks to its better support for

concurrent updates.

Based on the aforementioned rationale and complexity of the system design, we

opt to use a dense representation for bottom-up tracing and a sparse one for top-down

tracing. With this fixed coupling, the graph system only needs to determine the tracing

strategy, simplifying the decision making.

3.6 IncBoost Implementation

We implemented the above proposed ideas in a new graph system, called IncBoost.

IncBoost extends Ligra [106]—an in-memory static graph processing framework. To sup-

port dynamic graphs, we replaced the Compressed Sparse Row (CSR) [113] format used

in Ligra with indexed adjacency lists (from RisGraph [34]). Basically, for vertices whose

degrees are greater than a threshold (set to 512), their edges are indexed by a hashtable

where the key is the vertex ID of the destination and the value is the position of the vertex

in the edge adjacency list. IncBoost provides a set of APIs for common graph updates,

which include EdgeDeletions, EdgeInsertions, WeightUpdates, VertexDeletions, and

VertexInsertions.

When inserting an edge, IncBoost appends the new edge to the end of the edge

list and updates the index. For edge deletions, IncBoost first swaps the edge to delete

and the last edge in the edge list, then updates the degree and index of the relevant vertex

accordingly. Additionally, IncBoost also conducts batch insertions and deletions using batch

reordering [11] to ensure lock-free edge mutations: edges are clustered by the edge source
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upon the batch arrival, then edge mutations from the same source are applied sequentially.

RisGraph applies all edge deletions in parallel as it does not require the swap operation but

keeps tomb (deleted) edges.

IncBoost uses either bottom-up or top-down dependency tracing to handle edge

deletions based on the workload (rtracing is set to 0.015). For edge weight updates, IncBoost

handles them with the direct approach. To match RisGraph’s performance for very small

batches, we provide a highly tuned sparse representation of the frontier. Additionally, we

set a parallelism threshold (8K), below which a sequential implementation is adopted to

avoid the overhead associated with parallel primitives. Regarding space usage, IncBoost

requires an additional array of size |V | for storing the dependent children counts.

3.7 Evaluation

We compare IncBoost with two state-of-the-art graph systems, KickStarter [117]

and RisGraph [34]. For KickStarter, we chose its latest version with graph mutation

optimizations (DZig [74]). Both systems were configured according to the instructions from

their repositories. We also report the scalability of IncBoost and the detailed performance

of different dependency tracing methods.

We ran experiments on a 32-core machine (CentOS 7.9) with Intel Xeon E5-2683 v4

CPU and 512GB memory. All source code were compiled with g++ 7.3. To avoid impacts

of non-uniform memory access (NUMA), we only used a single socket with 16 physical cores

and 32 hyper-threads.
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Table 3.3: Graph Statistics (“D” for directed and “T” for temporal)

Graph Abbr. D T |V | |E| Avg. deg.

LiveJournal [9] LJ ✓ ✗ 4.8M 69M 14.2
Orkut [63] OR ✗ ✗ 3.1M 234M 76.3
Wikipedia [3] WP ✓ ✗ 13.5M 437M 32.2
StackOverflow [63] SO ✓ ✓ 2.6M 63.5M 24.4
Wiki-Dynamic [59] WD ✓ ✓ 2.2M 43.3M 19.7
Twitter [60] TW ✓ ✗ 41.7M 1.5B 35.3
UK-2007 [59] UK ✗ ✗ 105.2M 3.3B 31.4
roadNet-USA [98] RD ✗ ✗ 24M 58M 2.4

Table 3.4: Performance of Incremental Processing (Deletion Batch)

col.: query exec. time (in seconds); S.: small batch (1K); M.: medium batch (6%); L.: large batch (30%).
SSSP SSWP SSNP Viterbi BFS WCC

S. M. L. S. M. L. S. M. L. S. M. L. S. M. L. S. M. L.

LJ
KickStarter 1.3E-2 0.54 1.34 1.6E-2 0.85 1.63 1.8E-2 0.75 1.63 1.4E-2 0.80 1.64 1.1E-2 0.27 0.70 1.3E-2 0.29 0.85
RisGraph 3.0E-4 0.19 0.74 3.8E-4 0.13 0.77 3.2E-4 0.14 0.75 1.6E-4 0.13 0.80 2.5E-4 0.05 0.27 2.0E-4 0.03 0.21
IncBoost 2.1E-4 0.09 0.21 3.6E-4 0.10 0.28 2.6E-4 0.09 0.29 2.2E-4 0.09 0.27 1.7E-4 0.04 0.11 1.8E-4 0.03 0.05

OR
KickStarter 1.1E-2 1.08 2.25 9.7E-3 0.67 1.91 1.0E-2 0.71 1.79 1.1E-2 1.74 2.70 9.5E-3 0.80 1.61 9.3E-3 0.49 1.29
RisGraph 1.4E-4 0.24 1.12 1.5E-4 0.06 0.50 1.5E-4 0.05 0.39 1.5E-4 0.08 0.90 1.7E-4 0.08 0.36 1.2E-4 0.03 0.15
IncBoost 1.7E-4 0.15 0.38 1.4E-4 0.03 0.36 1.5E-4 0.03 0.29 2.7E-4 0.05 0.20 1.5E-4 0.05 0.16 9.6E-5 0.02 0.05

WP
KickStarter 3.2E-2 1.59 4.02 4.2E-2 2.57 4.77 3.7E-2 1.84 4.42 3.2E-2 1.86 4.59 2.8E-2 0.98 2.81 2.7E-2 0.96 2.45
RisGraph 2.2E-4 0.36 1.81 1.2E-4 0.24 1.65 2.3E-4 0.24 1.51 2.3E-4 0.22 1.44 1.3E-4 0.20 1.15 1.6E-4 0.08 0.41
IncBoost 2.0E-4 0.24 0.74 1.3E-4 0.16 0.98 2.5E-4 0.17 0.60 1.7E-4 0.15 0.43 1.2E-4 0.10 0.37 1.4E-4 0.09 0.20

TW
KickStarter 5.2E-2 2.84 11.80 7.4E-2 7.54 12.29 6.9E-2 5.20 12.40 6.6E-2 3.94 11.49 7.0E-02 4.63 12.11 6.9E-2 2.51 7.86
RisGraph 2.7E-4 0.94 9.01 1.8E-4 0.40 11.43 1.6E-4 0.37 11.41 1.7E-4 0.76 9.25 1.4E-4 1.06 7.86 1.9E-4 0.29 2.47
IncBoost 3.5E-4 0.74 3.27 2.0E-4 0.27 4.13 1.5E-4 0.28 4.20 1.7E-4 0.51 3.41 1.5E-4 0.78 3.41 1.7E-4 0.31 1.93

UK
KickStarter 2.2E-1 16.66 34.04 4.3E-1 14.01 33.70 1.8E-1 12.56 29.74 2.8E-1 20.48 41.74 1.5E-1 7.68 13.94 1.6E-1 5.56 15.72
RisGraph 4.5E-4 5.28 15.86 2.7E-4 0.93 9.04 3.1E-4 1.28 12.27 2.1E-4 3.45 14.60 2.6E-4 1.82 7.47 1.6E-4 0.74 4.52
IncBoost 2.1E-4 1.87 5.81 1.2E-4 0.56 6.19 1.2E-4 0.85 4.72 1.6E-4 2.12 5.56 1.8E-4 0.87 3.24 1.4E-4 0.55 2.38

Geo
vs. KS 158.41× 6.29× 5.34× 265.49× 18.17× 4.75× 216.10× 14.67× 5.44× 201.43× 12.49× 7.44× 206.10× 8.95× 5.99× 228.72× 12.67× 10.58×
vs. Ris 1.16× 1.79× 2.86× 1.16× 1.55× 1.92× 1.26× 1.52× 2.29× 0.94× 1.53× 3.19× 1.19× 1.64× 2.48× 1.15× 1.20× 2.25×

We used six path-based graph algorithms, including SSSP, SSWP, SSNP (single-

source narrowest path), BFS, WCC (weakly connected components), and Viterbi3. Except

for BFS and WCC, all the other algorithms operate on weighted graphs. Table 3.2 list some

of the relevant properties of the first four algorithms.

We chose eight real-world graphs listed in Table 3.3. All edge weights are integers

between 1 and log2 |V |. The size of the update batch varies from small (1K edges) to medium

(6% of total edges) and large (15% to 40% of total edges). The updates in the batches are

sampled randomly. To perform weight updates experiments, the new weights are selected

3The Viterbi algorithm [62] finds the most likely sequence of hidden states (i.e., the Viterbi path) in a
Hidden Markov Model (HMM), which is widely used in speech recognition [91], code decoding [116], etc.
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Table 3.5: Performance of Incremental Processing (Weight Update Batch)

col.: query exec. time (in seconds); S.: small batch (1K); M.: medium batch (6%); L.: large batch (30%).

SSSP SSWP SSNP Viterbi
S. M. L. S. M. L. S. M. L. S. M. L.

LJ
KickStarter 1.70E-02 0.65 1.97 2.1E-2 1.01 2.31 2.3E-2 0.82 2.08 1.9E-2 0.97 2.21
RisGraph 3.6E-4 0.26 1.10 4.5E-4 0.17 1.05 3.7E-4 0.17 0.94 3.9E-4 0.18 1.03
IncBoost 2.0E-4 0.08 0.22 2.3E-4 0.08 0.27 2.1E-4 0.08 0.20 2.7E-4 0.10 0.24

OR
KickStarter 1.4E-2 1.20 2.82 1.2E-2 0.74 2.21 1.3E-2 0.76 2.06 1.4E-2 1.92 3.39
RisGraph 1.7E-4 0.31 1.63 1.8E-4 0.09 0.65 1.8E-4 0.08 0.52 1.8E-4 0.11 1.09
IncBoost 1.5E-4 0.09 0.31 7.1E-5 0.05 0.15 1.2E-4 0.04 0.13 1.5E-4 0.09 0.33

WP
KickStarter 4.5E-2 1.88 5.07 5.3E-2 3.16 6.93 4.9E-2 2.07 5.31 4.6E-2 2.14 5.81
RisGraph 2.5E-4 0.52 2.67 1.6E-4 0.44 3.20 2.6E-4 0.34 2.02 2.6E-4 0.32 1.97
IncBoost 2.0E-4 0.28 0.85 2.9E-4 0.29 1.10 1.9E-4 0.16 0.52 2.7E-4 0.17 0.68

TW
KickStarter 1.1E-1 3.96 22.54 1.1E-1 8.39 20.60 9.8E-2 5.48 20.80 1.0E-1 4.48 23.95
RisGraph 3.1E-4 1.40 18.61 2.3E-4 0.62 15.67 1.9E-4 0.59 15.67 3.4E-4 1.18 19.00
IncBoost 1.9E-4 0.67 4.06 7.9E-5 0.14 5.84 1.2E-4 0.25 1.25 2.0E-4 0.40 3.98

UK
KickStarter 3.2E-1 21.04 48.23 5.3E-1 16.77 44.92 3.9E-1 14.52 36.86 4.2E-1 24.27 54.65
RisGraph 1.1E-3 4.42 25.48 8.7E-4 5.66 24.51 6.6E-4 2.29 15.61 6.6E-4 2.16 18.53
IncBoost 1.4E-3 1.99 6.07 8.0E-4 1.48 4.38 9.8E-4 0.89 3.88 2.4E-4 1.01 5.65

Geo
vs. KS 197.52× 7.36× 5.51× 299.06× 13.21× 5.50× 271.55× 13.02× 9.15× 204.31× 12.66× 6.81×
vs. Ris 1.27× 2.51× 4.37× 1.54× 2.55× 3.73× 1.31× 2.23× 5.13× 1.51× 1.91× 3.66×

randomly within ±50% range of the old weights. For temporal (timestamped) graphs (SO

andWD), the sampled batches may contain mixed updates (insertions, deletions, and weight

updates), thus we report their results for mixed batches only. We chose non-trivial sources

for vertex-specific queries. The reported times are the average over three runs.

3.7.1 Performance

This section compares IncBoost against two existing systems in terms of process-

ing time for update batches of three representative sizes: small (1K edges), medium (6%

edges), and large (30% edges), with a focus on edge deletions and weight change updates.

Edge Insertions. As discussed in Section 3.2.1, edge insertion batch is an easier case

to process and IncBoost achieves comparable performance as RisGraph for small batches

but scales better by switching to the dense representation (for both dependency tracing

and iterative evaluation). On average, the speedups IncBoost over RisGraph are 0.98×,
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Table 3.6: Performance of Incremental Processing (Mixed Updates Batch)

col.: query exec. time (in seconds); S.: small batch (1K); M.: medium batch (6%); L.: large batch (30%).

SSSP SSWP SSNP Viterbi
S. M. L. S. M. L. S. M. L. S. M. L.

LJ
KickStarter 2.3E-02 0.41 1.04 9.5E-03 0.49 1.11 7.7E-03 0.15 0.77 8.6E-03 0.16 0.98
RisGraph 3.6E-04 0.15 0.60 3.5E-04 0.12 0.46 3.6E-04 0.11 0.43 3.9E-04 0.12 0.45
IncBoost 2.9E-04 0.08 0.27 2.7E-04 0.07 0.22 2.1E-04 0.07 0.23 2.5E-04 0.07 0.21

TW
KickStarter 9.8E-02 2.74 10.39 5.1E-02 4.19 10.30 5.1E-02 2.51 9.43 9.8E-02 2.85 4.49
RisGraph 3.1E-04 1.00 5.31 2.3E-04 0.38 1.64 1.9E-04 0.38 1.51 2.4E-04 0.84 3.02
IncBoost 2.3E-04 0.66 2.60 1.3E-04 0.30 1.02 1.1E-04 0.32 0.99 1.5E-04 0.52 1.72

SO
KickStarter 2.0E-01 0.73 1.04 2.0E-01 0.91 1.18 1.9E-01 0.84 1.11 3.3E-02 0.66 1.14
RisGraph 2.7E-04 0.18 1.56 2.9E-04 0.06 0.59 2.8E-04 0.06 0.28 3.6E-04 0.08 0.27
IncBoost 2.9E-04 0.10 0.31 2.6E-04 0.04 0.18 2.6E-04 0.04 0.17 3.3E-04 0.04 0.14

WD
KickStarter 2.2E-02 0.49 1.01 3.5E-02 0.55 1.27 2.6E-02 0.69 1.16 2.2E-02 0.73 1.39
RisGraph 8.3E-04 0.19 1.80 4.3E-04 0.10 0.39 5.0E-04 0.07 0.39 4.8E-04 0.10 0.38
IncBoost 9.0E-04 0.09 0.33 4.7E-04 0.05 0.16 3.7E-04 0.04 0.17 3.4E-04 0.03 0.14

Geo
vs. KS 153.98× 5.31× 3.56× 168.34× 12.08× 7.21× 171.45× 8.86× 6.16× 108.87× 8.35× 5.67×
vs. Ris 1.10× 1.75× 3.35× 1.23× 1.57× 2.30× 1.43× 1.46× 1.81× 1.39× 2.00× 2.13×

1.30×, and 2.0× for small, medium, and large batches, respectively. More results on the

performance of edge insertions can be found in Section 3.7.2.

Edge Deletions. Table 3.4 shows the incremental computation time for handling deletion

batches. Thanks to its workload-adaptive evaluation, IncBoost evaluated all small batches

using top-down tracing with a sparse representation, and medium and large batches using

the bottom-up tracing with the dense representation.

For small batches, IncBoost exhibits similar performance to RisGraph, with speedups

from 0.94× to 1.26×. For medium and large batches, the speedups of IncBoost over Ris-

Graph become more significant, ranging from 1.20× to 1.79× and from 1.92× to 3.19×,

respectively, thanks to its use of the bottom-up dependency tracing. KickStarter is the

least competitive among the three systems for all three batch sizes. Note that, for smaller

batches, KickStarter shows even worse performance, mainly because of its use of the dense

data representation for dependency tracing and iterative evaluation. As discussed earlier,

for smaller update batches, the sparse data representation offers better efficiency.

Weight Updates. The handling time for edge weight updates is presented in Table 3.5,
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which covers four algorithms for weighted graphs (SSSP, SSWP, SSNP, and Viterbi). On

average, we found IncBoost is 2.6× (1.3×-5.1×) faster than RisGraph and 87.0× (6.8×-

299×) faster than KickStarter. In general, the speedups follow the same trends as those

in the edge deletion case.

The primary reason for the speedups of IncBoost is its adoption of a direct ap-

proach to handling weight changes, rather than the two-round approach used by the existing

graph systems. To show a more direct comparison, we also implemented the two-round ap-

proach in IncBoost, which we denote as IB-2R. Table 3.7 reports the detailed profiling

results on batches of medium size (6% batch), including the ratio of directly impacted

vertices (|S0|/|V |), the ratio of all impacted vertices (|S|/|V |), the number of vertex ac-

tivations during iterative computation (Tot. Act.), the tracing time (Tr. Time), and the

iterative computation time (Iter. Time). For IB-2R, the “Iter. Time” is the sum of iterative

computation times for both deletion and insertion rounds.

The results show that with direct weight update handling, the number of vertices

requiring dependency tracing (|S0|) is reduced by half compared to the two-round han-

dling. This is because the update batch consists of an equal distribution of weight increases

and decreases (50%-50%), and the direct approach treats the two cases separately, one for

each round. For the same reasons, the total number of vertex activations and iterative

computation time are also significantly reduced accordingly.

Mixed Batches. IncBoost is capable of handling heterogeneous batches that contain

mixed types of updates: edge insertions, edge deletions, and edge weight updates. RisGraph

only supports batches containing a single type of updates (homogeneous update batches).
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Table 3.7: Profiling of Direct and Two-round on SSSP.

|S0|/|V | |S|/|V | Tot. Act. Tr. Time Iter. Time

LJ
IB-2R 5.33% 29.60% 3.6E+06 0.054 0.086
IncBoost 2.73% 13.20% 1.6E+06 0.037 0.043

WP
IB-2R 3.37% 15.09% 4.6E+06 0.144 0.305
IncBoost 1.78% 7.77% 2.4E+06 0.104 0.167

TW
IB-2R 4.85% 15.05% 1.1E+07 0.456 0.646
IncBoost 2.42% 7.10% 5.2E+06 0.317 0.352

KickStarter supports batches of mixed insertions and deletions, but could not handle

batches which have insertions and deletions of the same edge. Fortunately both systems

can preprocess mixed batches into homogeneous sub-batches.

Table 3.6 presents the performance of evaluating mixed batches where the batch

is configured as containing 50% edge insertions and 50% edge deletions when the graph

is non-temporal. For temporal graphs that have timestamps associated with each edge,

we delete edges with older timestamps and insert newer ones. If an edge is inserted more

than once in a batch, it is considered as a weight update. Under this setting, a temporal

graph update batch contains mixed updates. For example, a 30% WD batch may contain

33% insertions, 51% deletions, and 16% weight updates. Generally, we observed that the

speedups fall between those achieved in pure weight updates and pure deletion batches.

Table 3.8: Graph Mutation Throughput (edges/sec, TW Graph)

Edge updates per second
Insertions Deletions Weight Updates

RisGraph 1.1E+07 1.2E+07 5.8E+06
Aspen 3.9E+07 3.7E+07 Not Suported
IncBoost 1.4E+07 1.3E+07 1.5E+07
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Graph Mutations. For completeness, we briefly compare the cost of graph mutations

with RisGraph and Aspen [27]. Table 3.8 reports the throughput of the edge-related up-

dates. Note that the released version of Aspen only supports unweighted and undirected

graphs. While IncBoost and RisGraph exhibit comparable throughput for edge insertions

and deletions, both show significantly lower throughput compared to Aspen, mainly due to

Aspen’s utilization of a compressed tree data structure for the graph. For weight changes,

IncBoost achieves a throughput roughly 2.6× higher than that of RisGraph, thanks to its

avoidance of the two-around handling.

Performance on Road Networks. We evaluated IncBoost on a non-power-law graph:

roadNet-USA [98]. Unlike power-law graphs, road networks often have a higher vertex-to-

edge ratio and their edges are distributed more evenly across vertices. These properties

lead to a high ratio of dependent edges. As a result, graph updates tend to affect a larger

portion of the vertices.

Our results show that IncBoost and RisGraph are capable of handling up to

80K edge insertions and 20K edge deletions for SSSP before becoming slower than the full

evaluation. To put it in the context, 20K edge deletions (0.03% of the total edges) affect

73% vertices in roadNet-USA.

3.7.2 Workload Scalability

Figure 3.7 reports processing time of IncBoost and RisGraph for different batch

sizes. The horizontal dotted lines indicate the full query evaluation times. For all three
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Figure 3.7: Scalability with Varying Batch Sizes on TW Graph.

batch types (edge insertions, deletions, and weight updates), both systems deliver notably

fast incremental evaluation for relatively small batches (below 500K).

As update batch size increases, the two systems scale well on edge insertions. How-

ever, for edge deletions and weight updates, IncBoost scales much better than RisGraph

and its incremental computation remains faster than the full query evaluation even for large
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batch sizes (30% - 40%), while RisGraph struggles to yield performance benefits when the

batch size gets close to 20% for SSSP edge deletions and 15% for SSSP weight updates.

Although RisGraph exhibits super linearity when evaluating batches with sizes

from 6% to 30%, it does not imply the system can be more efficient if breaking the larger

batch down into several small batches. Evaluating multiple (different) sub-batches is more

costly than evaluating one big batch since the former can cause a lot of affected vertices

to converge to unnecessary states, incurring even more vertex activations. In addition, a

large batch can potentially cause a large portion of vertices to be affected by edge deletions,

which are non-linear to the batch size.

3.7.3 Dependency Tracing

Figure 3.8 presents the costs of dependency tracing under different configurations

of IncBoost and RisGraph. In general, we found the performance trend of IncBoost-Top-

down closely aligns with that of RisGraph, since both use the top-down tracing.

For update batches with sizes less than 1% of the graph, we noticed IncBoost-

Bottom-up performs the poorest. However, as the batch size approaches approximately

1.5% of the total graph size, a significant shift occurs—IncBoost-Bottom-up transforms

into the fastest method. These results validate the necessity of workload-adaptive evaluation

(see Section 3.5).
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Figure 3.8: Dependency Tracing Performance.

3.7.4 Bottom-up Tracing in a Distributed System

IncBoost is implemented as a shared memory graph processing system. However,

adapting the ideas of IncBoost to a distributed environment does not require algorithmic

changes. In fact, thanks to its avoidance of graph access, the bottom-up dependency tracing

can be efficiently performed on a single node.
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With a moderate level of effort, we have adopted the idea of bottom-up dependency

tracing into a state-of-the-art distributed graph processing system Gemini [140], which

clearly demonstrates the applicability of our techniques in the distributed setting.

Gemini uses the master-mirror notion to partition and distribute vertices across

nodes. Every active vertex broadcasts its vertex value as well as the parent information

from the master to its mirrors. This introduces extra communication overhead for the top-

down dependency tracing as it may traverse several partitions of the graph on different

nodes. The bottom-up tracing saves the graph traversal and communication overhead by

performing the dependency tracing on a single node and then broadcasting the parent array

to other nodes in the end.

Table 3.9 reports the costs of dependency tracing in Gemini for SSSP on TW

graph. The results cover three representative batch sizes (1k, 6%, and 30%) to test the

top-down and bottom-up tracing performance. For larger batches, the bottom-up tracing

in Gemini delivers more performance improvements (4.7× to 7.1× speedup over the top-

down one) than it does in a shared memory environment thanks to the additional savings

in communication cost. On the other hand, the top-down tracing remains outperforming

the bottom-up one when the batch size is small.

Table 3.9: Dependency Tracing Time in Gemini (seconds)

1K 6% 30%

Top-down 0.03 0.47 1.27

Bottom-up 0.07 0.10 0.18
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3.8 Summary

This work targets the scalability limitations in handling edge deletions and weight

updates for incremental graph query evaluation. For edge deletions, it introduces a bottom-

up dependency tracing strategy, along with a workload-adaptive evaluation scheme that

changes the tracing strategy based on the update volume. For weight changes, it presents

a direct approach to handle the weight changes, instead of simulating them with edge

insertions and deletions. It is general enough to cover a group of weight-based monotonic

graph algorithms. Finally, it demonstrates the effectiveness of the proposed ideas with a

new graph system IncBoost. Our results show that IncBoost is able to scale to very large

update batches with sizes of 30% to 60% of the graph size.
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Chapter 4

Taming Misaligned Graph

Traversals in Concurrent Graph

Processing

4.1 Introduction

Although the last decade witnessed significant advances in developing efficient graph pro-

cessing systems, support for concurrent query evaluation remains underexplored. Most

existing graph processing systems are designed to process one analytical query each time,

such as a single-source shortest path (SSSP) query. On the other hand, as the demands

of graph analytics grow, so do the needs for concurrent evaluation of graph queries [129,

134, 139]. A prior study on social network applications shows that most graph query jobs

are executed concurrently [129]. To fill this gap, several concurrent graph processing sys-
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Figure 4.1: Last-Level Cache Misses (64 concurrent queries on LiveJournal [9] and
Twitter [60], measured by perf profiler).

tems [88, 129, 134, 139, 18] have been proposed in recent years, including Seraph [129] for

distributed platforms, CGraph [134] and GraphM [139] with supports for out-of-core process-

ing, and Congra [88] and Krill [18] which focus on in-memory evaluation of a batch of

concurrent graph queries.

Opportunities and Challenges. By evaluating multiple queries simultaneously on a

graph, concurrent graph processing enables graph access sharing across queries via the

memory hierarchy, that is, the graph data fetched to the cache(s) by one query may be used

directly by other queries. Intuitively, such sharing may reduce the total number of cache

misses, benefiting overall performance. However, this work finds that the actual cache miss

reduction brought by concurrent graph query evaluation could be quite limited.

Figure 4.1 reports the last-level cache (LLC) misses of evaluating 64 concurrent

queries on two graphs using some representative graph systems. As a baseline, Ligra-S

evaluates the queries one by one using Ligra [106], a well-known in-memory graph process-

ing framework that evaluates each query in parallel. In comparison, Ligra-C evaluates all

64 queries simultaneously using an extended Ligra with basic concurrency supports (see
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Section 4.4); Krill is a state-of-the-art concurrent graph processing system just released

recently [18]. As the results show, even with a concurrency degree of 64 queries, the cache

misses of Ligra-C and Krill are reduced by a limited fraction compared to Ligra-S, and

sometimes, their cache misses may even exceed that of the baseline (LJ-BFS and TW-BFS).

A primary reason causing the above unfavorable results lies in the potential “mis-

alignment” of underlying graph traversals among concurrent queries. Though the above

64 queries are of the same type, they may traverse the graph very differently due to their

vertex-specific nature (i.e., starting from different source vertices). For queries of different

types, their underlying graph traversals can be even more diverse. When the traversals

are misaligned—visiting different parts of the graph for most time of the processing, the

concurrent evaluation of queries will not benefit much from the shared memory accesses.

Even worse, they may even “hurt” each other by competing for the caches.

Solution of This Work. To address the above issue, this work proposes a runtime system

for in-memory graph processing on multi-core platforms 1, namely, Glign 2. Glign can

automatically align different graph traversals of concurrent queries to maximize graph access

sharing. As a result, it can significantly reduce cache misses compared to other systems

(see Figure 4.1). Glign primarily targets vertex-specific queries that employ iterative graph

algorithms for evaluation, such as SSSP and BFS. In addition, to benefit the most from

Glign, the vertex function of the iterative algorithms f(v) needs to be monotonic, a common

property shared by many vertex-centric graph query algorithms [117, 56, 102]. Next, we

briefly introduce the key techniques behind Glign.

1Similar ideas could be applied to out-of-core and distributed processing scenarios.
2Pronounced as /gline/.
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First, like most existing concurrent graph processing systems [134, 139, 18], Glign

synchronizes the iterations of different queries during evaluation—the barriers used for iter-

ative evaluation are shared across queries. This design allows Glign to treat the iterations

as a logical timeline for aligning graph traversals. To distinguish them from the itera-

tions in single-query graph processing, we refer to the iterations shared by queries as global

iterations.

Based on the global iterations, Glign addresses the problem of graph traversal

misalignment at three levels:

• Intra-iteration alignment. In each iteration of the evaluation, a query needs to access

an active part of the graph (a.k.a. frontier). Intuitively, the active parts of different

queries may overlap. If the overlapped parts are accessed around the same time, the

evaluation will benefit from temporal locality.

• Inter-iteration alignment. For a given batch of queries, Glign allows their evaluation

to start at different global iterations, thus making it possible to align the iterations

across queries based on their graph access sharing.

• Alignment-aware batching. At the high level, considering all the concurrent queries

available, which queries should be put into the same evaluation batch? Different

batching strategies may yield different amounts of graph access sharing.

For intra-iteration alignment, existing designs [18, 125] require two levels of fron-

tiers to achieve synchronized frontier traversal. Instead, Glign proposes query-oblivious

frontier, a single-level frontier that deliberately ignores the frontier differences across queries.

This is possible if the vertex function of the query is monotonic. On the other hand, this
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may evaluate extra vertices due to its inability to distinguish some inactive ones for certain

queries. Overall, we found the benefits of reduced memory (from the use of a single-level

frontier) easily outweigh the side effects of extra computations.

For inter-iteration alignment and alignment-aware batching, Glign leverages an

important insight revealed in this work:

the “heavy iterations” of concurrent queries

should be well aligned during the evaluation.

Here, “heavy iterations” refer to iterations that access a relatively larger portion of the

graph (i.e., a large frontier). The insight is backed by two facts. First, heavy iterations

often dominate the total processing cost of a query; Second, larger frontiers often expose

more opportunities for intra-iteration alignments—a potentially larger overlapping among

the frontiers of different queries.

The above insight reduces the two higher-level alignments into the alignment of

heavy iterations. To solve the latter, this work uses a simple yet effective heuristic to

estimate the arrival time of heavy iterations. Based on the estimation, two scheduling

techniques are proposed to improve the alignments:

• Delayed start. For a given batch of concurrent queries, this technique postpones the

start of the evaluation of certain queries to later global iterations, based on the arrival

time differences of their heavy iterations;
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Figure 4.2: Three Levels of Alignments from Glign.

• Affinity-oriented batching. Considering all the concurrent queries received, it groups

queries with closer arrival times of heavy iterations (affinity) to the same evaluation

batch.

Figure 4.2 lists the above techniques. To confirm their effectiveness, this work

evaluated Glign with commonly used graphs and query benchmarks, and compared it with

two state-of-the-art concurrent graph systems: GraphM [139] and Krill [18]. The results

show that the proposed alignment techniques can reduce the LLC misses by a significant

ratio. They also show that Glign achieves on average 3.6× speedup over Krill and 4.7×

speedup over GraphM.

In summary, this work makes a three-fold contribution:

• First, it reveals a key performance issue in concurrent graph processing—graph traver-

sal misalignments, and categorizes it at three levels of the graph processing system.

• Second, it proposes a series of techniques to address the misalignments at each level:

a new design of synchronized frontier traversal and two scheduling techniques based

on the insight of heavy iterations.
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/* single-source shortest path */
fsssp(v) {
for each out-neighbor n of v {
dist(d) = min { dist(n), dist(v) + w(v, n) };
if dist(n) changed
then add n to frontier;

}

(a)

Figure 4.3: Example Vertex Function and Graph.

• Finally, it systematically evaluates the above techniques and compares Glign with

the state-of-the-art systems.

4.2 Background

Table 4.1: Iterative Evaluation of sssp(v1)

Iter# v1 v2 v3 v4 v5 v6 v7 v8 v9 Frontier

0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ {v1}
1 0 ∞ 4 ∞ ∞ ∞ ∞ ∞ ∞ {v3}
2 0 ∞ 4 12 5 7 6 ∞ ∞ {v4, v5, v6, v7}
3 0 17 4 12 5 7 6 ∞ 10 {v2, v9}
4 0 17 4 12 5 7 6 22 10 {v8}
5 0 17 4 12 5 7 6 22 10 {}

4.2.1 Concurrent Evaluation of Graph Queries

Recently, several graph processing systems have been proposed to support concur-

rent graph query evaluation, such as Seraph [129], CGraph [134], GraphM [139], Congra [88],

and Krill [18]. Take the more recent system Krill as an example. Krill is built on top of
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Ligra [106], a state-of-the-art in-memory graph processing system. Under the hood, Ligra

exploits the vertex-level parallelism where the vertex function is executed on the active

vertices (in the frontier) in parallel, guided by a work stealing scheduler (from Cilk [14]).

So even for a single query, the system can evaluate it in parallel with relatively balanced

workload across CPU cores.

Though the designs and targeted platforms may vary, the above mentioned systems

all support simultaneous evaluation of multiple graph queries on a given graph. The basic

idea is to put each K queries into an evaluation batch B, meanwhile maintain a separate

vertex value array and frontier for each query in B. The evaluation stops when all frontiers

in B become empty. For in-memory graph processing, K is bounded by the memory capacity

for the space costs of vertex value arrays (and others).

Table 4.2: Graph Access Sharing between Two Queries.

Iter# Frontier(sssp(v2)) Frontier(sssp(v8))

0 {v2} {v8}
1 {v3, v8} {v4}
2 {v4, v5, v6, v7} {v2, v6}
3 {v9} {v3, v9}
4 {} {v5, v6, v7}
5 {} {v9}
6 {} {}

A key potential benefit of concurrent graph query evaluation is that the sharing of

graph accesses via the memory hierarchy, which improves the overall data locality. Consider

two queries, sssp(v2) and sssp(v8), to the graph in Figure 4.3-(b). In fact, both queries need

to access the out-neighbors of vertices v2 - v9 during the evaluation, as dictated by their

frontiers in Figure 4.2. If the graph data fetched by one query still resides in the shared
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Figure 4.4: Overview of Glign.

cache when the other query tries to access it (i.e., temporal locality), the overall cache

misses could be dramatically reduced. However, for many real-world graphs, their sizes are

well beyond the cache capacity. In order to benefit from this temporal locality, the graph

traversals should be roughly aligned—visiting the same vertices (and their out-neighbors)

around the same time.

In fact, as reported earlier in Figure 4.1, the underlying graph traversals on real-

world graphs could be largely misaligned in the existing concurrent graph processing sys-

tems, limiting the benefits of shared graph accesses. In the following, we will present a

solution to addressing the graph traversal misalignment issue—Glign.

4.3 Glign Design

Figure 4.4 illustrates the high-level ideas of Glign. First, considering all the con-

current queries available in the buffer, Glign uses an affinity-oriented batching strategy to

group queries with higher potential of large amount of graph access sharing to the same

97



evaluation batch (see ①). After a batch is formed, Glign estimates the “heavy iterations”

for each query in the batch. Based on their differences in arriving times (global iterations),

Glign delays the start of certain queries in order to align the “heavy iterations” of differ-

ent queries (see ②). Finally, within each global iteration, Glign traverses a single unified

frontier, called query-oblivious frontier, to make sure that all the shared graph accesses

(dictated by the overlapping of frontiers) are accessed in a fully coalesced manner (see ③).

Next, we will present each of these key techniques in detail. Due to their dependences, we

will introduce them in reverse order with respect to the number labels in Figure 4.4.

4.3.1 Global Iterations

First, we introduce the concept of global iterations, which serve as the basis for

some of the proposed alignments. Given a batch of iterative graph queries, there are two

ways to evaluate them:

• Synchronous evaluation evaluates queries in the batch in the same pace with respect to

iterations (see Figure 4.4). This is ensured by a series of global barriers that are shared

across queries in the batch. Most existing concurrent graph systems (CGraph [134],

GraphM [139] and Krill [18]) follow this scheme.

• Asynchronous evaluation evaluates each query in the batch independently, regardless

of the evaluation pace of other queries, that is, the iterations of evaluating different

queries may be interleaved arbitrarily. Congra [88] uses this scheme.

Clearly, the asynchronous design has no control over the graph traversals, so the

traversals may or may not align well depending on their interleaving in a specific evaluation.
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For this reason, Glign follows the synchronous evaluation. To distinguish the iterations in

the synchronous batch evaluation from those in single-query evaluation, we refer to the

former as global iterations.

4.3.2 Intra-Iteration Alignment

A commonly used design for evaluating concurrent graph queries is to keep a

frontier for each query qi in the evaluation batch B. In a global iteration, the frontiers

of different queries are traversed independently, as shown in Figure 4.5-(a). The frontier

is designed as a boolean array frontier[], where the i-th element shows the activeness

of vertex vi. If frontier[i]=1, the vertex function f(v) needs to be evaluated on vi,

including accessing the out-neighbors of vi. In another word, the frontier traversal defines

how graph data is accessed in a global iteration. When these frontiers of different queries

are traversed independently, there is no guarantee that the commonly used graph data are

accessed around the same time. As a result, the data locality could become sub-optimal.

To ensure that different frontiers are traversed in a synchronized manner, some

recent works (Krill [18] and SimGQ [125]) propose to add an extra frontier, called unified

frontier, defined as follows:

Frontierunion =
∨
qi∈B

Frontier qi (4.1)

where Frontier qi (a boolean array) is the frontier for evaluating query qi and
∨

is the logical

OR operator. This means that as long as vertex vi is active for one query in the batch,

Frontierunion(i) = 1. To synchronize the frontier traversals, we can simply traverse the

unified frontier: if its value for vertex vi is “1”, we further check each individual frontier

99



v1 vmax
0110011001001

1010011001000

1010011001001

1100001000001

(a) Separate frontiers

v1 vmax

Eval. batch qi+1

qi

qi+3

qi+2

0110011001001

1110011001000

1010011001001

1100001000001

(b) Unified + separate frontiers

1110011001001

Eval. batch qi+1

qi

qi+3

qi+2

v1 vmax
1110011001001

Eval. batch

qi+1 qiqi+3 qi+2

(c) Query-oblivious frontier

Figure 4.5: Different Designs of Frontier Traversal.

Frontier qi to find out the specific queries for which vi needs to be evaluated (see Figure 4.5-

(b)).

The above design ensures that the shared accesses to an active vertex and its

out-neighbors are perfectly aligned across queries. However, there are some caveats asso-

ciated with this design. First, it increases the memory cost with an extra labeling array

Frontierunion ; Second, it needs to check the frontiers at two levels. Overall, our evaluation

reports limited performance benefits (see Section 4.4).

To avoid the above caveats, this work proposes an alternative design to the syn-

chronized frontier traversal, called query-oblivious frontier. This new design explores an

interesting tradeoff between computations and memory accesses, which to our best knowl-

edge, has not yet been discussed before by any prior work.
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Query-Oblivious Frontier. Our key insight is to deliberately ignore the differences among

the frontiers of queries in the evaluation batch, that is, when a vertex function f(v) is

invoked, it is applied for all queries in B. This eliminates the need of second-level frontiers

(Frontier qi , qi in B) used in the prior design. Figure 4.5-(c) illustrates this idea with a

single frontier Frontierunion .

However, the above design immediately raises two concerns:

• Correctness. Does the evaluation based on a single unified frontier (Frontierunion)

always produce the same results as the one using two levels of (or seperate) frontiers?

• Efficiency. A vertex v that is not in the frontier of query qi would be evaluated

anyway, if v is in the frontier of some other query in the batch. This introduces extra

computations.

First, for correctness, we have established a theorem for safely adopting query-

oblivious frontier for a range of iterative queries based on the monotonicity property of

their vertex functions.

Definition 13. In vertex-centric programming, a vertex function f(·) is monotonic iff. it

always changes the values of vertices monotonically (always increasing or decreasing) over

iterations.

In fact, the monotonicity property has been widely exploited by multiple existing

graph systems for better efficiency [66, 102] and it serves as the basis for incremental query

evaluation [117, 56].
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Theorem 14. Evaluating a query batch using query-oblivious frontier yields the same

vertex values as the evaluation using separate frontiers iff. the vertex function is monotonic.

Proof Sketch. Without loss of generality, assume the evaluation batch consists of two queries

q1 and q2, and the evaluation is in global iteration i. Consider an arbitrary vertex vj . Assume

vj is inactive according to q1’s frontier, but active based on q2’s frontier. Thus, vj is marked

as an active one in the unified frontier, as illustrated in Figure 4.6. Next, we discuss the

impacts of an extra evaluation of vj with q1’s vertex function, that is, fq1(vj). There are

two basic cases. In the first case, at the time of evaluating fq1(vj), the value of vj has not

been updated by any of its in-neighbors. As its value remains the same as it was in the

prior iteration i − 1, this evaluation will not change the value of any of its out-neighbors

(like vt). In the second case, at the time of evaluating fq1(vj), the value of vj has been

updated by at least one of its in-neighbors in the current iteration i. In this case, the

evaluation may update the value(s) of some out-neighbor(s) of vj , causing some side-effects.

However, note that even if separate frontiers are used, vj would be marked as an active

vertex and evaluated in the next iteration i + 1. That is, using query-oblivious frontier

might lead to some earlier evaluation of certain vertices that are supposed to be evaluated

in the next iteration— a form of asynchronous evaluation. One sufficient for the correctness

of asynchronous query evaluation is that the query evaluation should be monotonic.

Second, as to the efficiency concern, will the extra evaluation of inactive vertices

slow down the overall processing? Interestingly, our evaluation (see Section 4.4) shows that

using query-oblivious frontier can substantially improve the overall performance despite the

extra evaluation of inactive vertices. This is due to fact that query-oblivious frontier skips
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Figure 4.6: Correctness of Using Query-Oblivious Frontier.

the maintenance and accesses to the separate frontiers all together, dramatically reducing

the memory footprint of concurrent query evaluation (see Section 4.4).

So far, we have introduced the intra-iteration alignment which addresses the po-

tential misalignments among different frontier traversals in a global iteration. Next, we

will shift the focus to more coarse-grained misalignments, along the iterations of different

queries and during the formation of query batches.

4.3.3 Inter-Iteration Alignment

We first use a simple example to motivate the alignment problem, then formalize

it and present a heuristic-based solution.

Motivation. In general, the evaluation of a graph query may access different parts of the

graph in different iterations, thus the amount of graph sharing may vary depending on the

interleaving of the (local) iterations of different queries. Revisit the examples in Table 4.2

(Section 4.2) and assume the two sssp queries are evaluated in the same batch, then compare

their frontier overlapping per iteration with those in Table 4.3 where a different alignment
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between the (local) iterations of the two queries is used: sssp(v2) starts two iterations later

than sssp(v8). From the comparison, we can find that the latter alignment exposes more

overlapped active vertices than the former (6 v.s. 2). As a result, when these active vertices

are evaluated and their (out-)neighbors are accessed, the latter alignment will yield more

shared graph accesses.

Table 4.3: A Better Alignment of Iterations.

Iter# Frontier(sssp(v2)) Frontier(sssp(v8))

0 – {v8}
1 – {v4}
2 {v2} {v2, v6}
3 {v3, v8} {v3, v9}
4 {v4, v5, v6, v7} {v5, v6, v7}
5 {v9 } {v9}
6 {} {}

Next, we formalize the above inter-iteration alignment problem.

Problem Formalization. First, we define the alignment vector I for a given batch of

queries B as follows:

Definition 15. Given a batch B of n queries [q1, q2, ..., qn], its alignment vector I =

[a1, a2, ..., an], where ai is the global iteration number from which the evaluation of qi is

started.

Considering the batch B=[sssp(v2), sssp(v8)], Table 4.3 shows an alignment where

the alignment vector I = [2, 0].

Next, we introduce the concept of affinity to quantify the amount of graph access

sharing, which is defined as follows:
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Definition 16. Given a query batch B and an alignment vector I, the affinity of this

evaluation is defined by the following equation:

Affinity(B, I) = 1−
∑K

j=1 |Frontier
j
union |∑K

j=1

∑
qi∈B |Frontier

j
qi |

(4.2)

where Frontier junion and Frontier jqi are the unified frontier and the separate frontier for

query qi, respectively, at iteration j, and K is the total number of global iterations.

Again, consider the examples in Table 4.3, where we have

Frontier2union = {v2, v6}, Frontier3union = {v3, v8, v9},

Frontier4union = {v4, v5, v6, v7}, Frontier5union = {v9}.

Hence, Affinity(B, I) = 1 − (2 + 3 + 4 + 1)/(8 + 10) = 1/2. In comparison, we can also

calculate the affinity for the prior alignment in Table 4.2: Affinity(B, I ′) = 1− (2+ 3+ 5+

2 + 3 + 1)/(8 + 10) = 1/9. Obviously, the former achieves a significantly higher affinity.

The best affinity occurs when all separate frontiers are perfectly overlapped, while

the worst affinity happens when no separate frontiers overlap at all through all the itera-

tions. Note that the affinity may become negative in certain cases, due to the potential

asynchronous evaluation as detailed in the proof of Theorem 14.

The above definition of affinity is based on the ratio of active vertices. Alterna-

tively, one can also define affinity based on the ratio of active edges (the outgoing edges

of active vertices), which is supposed to be more precise. However, our evaluation shows

minimal differences between the two definitions in practice.

Now we can formalize the inter-iteration alignment problem:

max
∀I

Affinity(B, I) (4.3)
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That is, given an evaluation batch B, the problem is to find out the best alignment

vector I that maximizes the affinity.

Unfortunately, as the frontier of each query will NOT be known until the query

execution is finished, we cannot precompute the affinity for a batch of queries without

evaluating them. Hence, we cannot solve the above optimization problem precisely in

advance. To address this challenge, we need a more proactive approach. Next, we present

a heuristic to approximate the best alignment.

Heuristic-based Solution. First, we observe that the distribution of frontier sizes tends

to be highly biased across iterations, thanks to the power-law nature of many real-world

graphs. Figure 4.7 reports the frontier sizes across iterations during the evaluation of a few

vertex-specific queries on two real-world graphs.

From the results, we can easily find some patterns in evaluating vertex-specific

queries on power-law graphs: in the early iterations, the frontier grows exponentially, which

we call the expansion phase. After reaching the “peak”, the frontier starts to shrink quickly

and steadily until it becomes empty, referred to as stabilization phase. The several iterations

around the “peak” often dominate overall size of frontiers for the whole query evaluation.

With the above observations, we decide to focus the alignment on these dominating

iterations, referred to as “heavy iterations”. The rationale behind this decision is two-fold:

• First, heavy iterations expose more opportunities for shared graph accesses. The

larger the frontiers are, the more likely that they overlap. In the extreme case, when

the (separate) frontiers include all vertices, they are perfectly overlapped.
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Figure 4.7: Frontier Size Distribution across Iterations.

• Second, as the vertex activations in the heavy iterations often dominate the total

amount of vertex activations for the whole evaluation, their alignments could make a

significant impact on the overall alignment.

To demonstrate the effectiveness of heavy iteration alignment in improving the

overall affinity, we manually delayed the “faster” queries in Figure 4.7 such that their

“peaks” align with those in the “slower” queries. As a result, we observed that the affinity

value gets improved from −0.11 to 0.34 and from 0 to 0.47, respectively.

One can quantify the heavy iterations based on different metrics, such as the

ranking of frontier sizes across iterations. However, regardless the metric being used, just

like affinity, heavy iterations are unknown before the query evaluation. In fact, one may

choose to detect the heavy iterations dynamically during the query evaluation and use

that information to guide the alignments at runtime, for example, pausing the evaluation
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Table 4.4: Arrival Time of Heavy Iterations

Query Arrival Time Query Arrival Time

sssp(v1) iter. 9 bfs(v1) iter. 3
sssp(v2) iter. 2 bfs(v2) iter. 7

of queries whose heavy iterations have arrived, then resuming them after all the ”slowest”

query has reached its heavy iterations. Though the idea sounds promising, it has a caveat—

to “pause and resume” the iterative evaluation of some queries, the system needs to keep

“their contexts”—their individual frontiers. This requires to a design similar to the two-

level frontiers (see Figure 4.5-(b)). As discussed earlier, this design is inferior to the query-

oblivious frontier in terms of performance.

To work around the above dilemma, we propose to proactively approximate the

“arrival time” of heavy iterations—the iteration that marks the beginning of heavy iter-

ations. The key insight behind our arrival time approximation is the correlation between

frontier size and the activation of high-degree vertices:

When evaluating a vertex-specific query on a power-law graph,

the frontier size often grows sharply once a high-degree vertex is activated.

To demonstrate the above phenomenon, Table 4.4 lists the first iteration where at

least one of the top-4 high degree vertices is activated for the four queries used in Figure 4.7.

These iterations are also highlighted with larger marks in Figure 4.7, which clearly indicate

the beginning of (relatively) heavy iterations.

Based on the above discussion, we only need to identify the first iteration where a

high-degree vertex is activated. In fact, given a high-degree vertex vh (based on a threshold),

108



it takes i iterations for it to be activated, where i is the least number of hops from the source

vertex v in query q(v) to the high-degree vertex vh. Such information can be pre-computed

simply by running a BFS query on the high-degree vertex vh, that is, bfs(vh). Note that, for

directed graphs, the BFS query should run on the edge-reversed graphs or use a pull-based

model.

Figure 4.8 summarizes our reasoning—reducing the inter-iteration alignment to

the problem of BFS queries on high-degree vertices.

inter-iteration alignment
reduce

heavy iteration alignment
reduce

heavy iteration arrival time estimation
reduce

least hops to high-degree vertices

reduce

BFS queries on high-degree vertices

approx. results

results

results

accu. results

Figure 4.8: Flow of Solving Inter-Iteration Alignment.

Next, we present the algorithm of inter-iteration alignment (see Figure 4.9). First,

some one-time preparation is needed: (i) identifying the top-K high-degree vertices in terms

of the out-degree (due to the use of push model) at Line 2; (ii) reversing the edges’ directions

if the graph is directed (Line 3); (iii) running a BFS query on each selected high-degree

vertex to find the least number of hops from an arbitrary vertex vi to each high-degree

vertex vh (Line 4-5).
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/* preparation for graph G */
HV = getTopHighOutDegreeVertices(G, K)
Gr = getEdgeReversedGraph(G)
for each vertex vh in HV

leastHops[v1 - vmax][vh] = bfs (Gr, vh)

/* find alignment vector I for query batch B */
getAlignment(B )  {  
for each query q(vi ) in B

closestHV[vi ] = min { leastHops[vi ][vh] | ∀ vh ∈ HV }
latestInBatch = max { closestHV[vi ] | ∀ q(vi) ∈ B }
for each query q(vi ) in B

I [vi] = latestInBatch – closestHV[vi ]
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Figure 4.9: Pseudocode for Inter-Iteration Alignment.

After the preparation, the algorithm is ready to compute the alignment vector

I for a given query batch B. First, it computes the least hop number to the closest high-

degree vertex for each query q(vi), stored in closestHV[vi]. Then, it finds the largest value

among cloestHV[vi] for queries in the batch, which essentially is the latest time of reaching

a high-degree vertex (i.e., arrival time) for a query in the batch, stored in latestInBatch.

Finally, based on the difference of arrival time relative to the latest (latestInBatch), it

calculates the alignment vector I.

From another perspective, the alignment delays the start time of certain queries in

the evaluation batch, thus we also refer to the above technique as delayed start. As shown

later in the evaluation, compared to the ground truth—the optimal alignment, the accuracy

of the above heuristic-based alignment is quite high (usually off by at most 2 iterations)

and also its performance is close to that with the optimal alignment. See more details in

Section 4.4.
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Next, we will move our discussion of alignment to the most coarse-grained level—

query batching.

4.3.4 Alignment-Aware Batching

In the prior section, we align (local) iterations of different queries to improve the

sharing of graph accesses (measured by affinity). In fact, we may achieve similar or even

better effects by grouping queries whose iterations are better aligned into the same batch.

For example, it is better to put sssp(v1) (in Table 4.1) and sssp(v2) into the same batch,

rather than sssp(v2) and sssp(v8) (in Table 4.2), as the former exposes a better alignment

at the iteration level.

Based on the above intuition, we propose affinity-oriented query batching. The

goal is to maximize the affinity for queries in a batch through the management of batching

policy.

Affinity-Oriented Query Batching. By default, all queries in the evaluation buffer

are processed in the order they are received. Though intuitive, this first-come, first-serve

policy may produce query batches with low affinity. To avoid this, affinity-oriented batching

creates batches based on the affinity among queries, which can be approximated as detailed

in the prior section. However, in theory, a simple affinity-oriented batching may postpone

the processing of some queries—those exhibit poor affinity with most queries, with an

unbounded delay. To avoid this caveat, we limit the number of queries considered each time

for affinity-oriented batching using a threshold Bw. That is, every Bw queries in the buffer

are scheduled together, referred to as a batching window.
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Figure 4.10: Affinity-Aware Query Batching.

Figure 4.10 illustrates the idea of affinity-oriented query batching. First, the earli-

est received Bw queries in the buffer are selected and ranked by their least number of hops

to the closest high-degree vertex (i.e., closestHV[] in Figure 4.9). Then, every consecutive

|B| ranked queries in the batch window are selected to form an evaluation batch. Note that

array closestHV[] is pre-computed just like that used in inter-iteration alignment.

Connection with Inter-Iteration Alignment. Note that unlike the intra-iteration align-

ment which is orthogonal to the later two alignment techniques, the relation between the

two inter-iteration alignments and affinity-oriented batching are not fully orthogonal. This

is due to the fact that both aim at improving the affinity defined at the iteration level. In

another word, if affinity-oriented batching has been employed, then the extra benefits from

inter-iteration alignment might be limited, even though in theory, each alignment technique

may provide its unique benefits.

So far, we have introduced the alignments at all three levels. Next, we briefly

explain their implementations.
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4.3.5 Implementation

We implemented Glign on top of the popular in-memory graph processing engine

Ligra [106]. In fact, thanks to its high-efficiency, Ligra also serves as the base for two

recently proposed concurrent graph systems: Congra [88] and Krill [18]. One of our

goals is to implement Glign as a transparent runtime system, thus keeping the original

programming interface of Ligra mostly untouched. For example, developers can still call

functions EdgeMap() and VertexMap() for traversing edges and vertices, and VertexSubset

remains to be the frontier representation.

Under the hood, Glign maintains the query-oblivious frontier and leverages the

original parallelization supports from Ligra to process each query in parallel. To support

batching, we extended Ligra to let it consume a query buffer based on the batch size B

and the batching policy (e.g., affinity-oriented batching). At the beginning of an iteration,

Glign first checks the alignment vector I (in Section 4.3.3) to decide if some queries need to

be started at the current iteration. For better locality, the memory layout of vertex values

is implemented as a single array and the value of vertex vj for query qi can be accessed via

ValArray[vj*B+i], where B is the batch size. When the graph is loaded into the memory

for the first time, Glign will automatically compute the least hops from each vertex to the

closest high degree vertex (closestHV[]), which will later be used to guide the alignments.

4.4 Evaluation

This section evaluates the effectiveness of the proposed alignment techniques and

the efficiency of Glign.
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Table 4.5: Methods in Evaluation

Method Brief Description

Ligra-S Eval. queries in batch one by one w/ Ligra [106]
Ligra-C Eval. queries in batch simultaneously w/ Ligra [106]

GraphM [139] A high-throughput concurrent graph system
Krill [18] A compiler & runtime for concurrent graph processing

Glign-Intra Glign with only intra-iteration alignment
Glign-Inter Glign-Intra + inter-iteration alignment
Glign-Batch Glign-Intra + affinity-oriented batching

Glign Glign with all proposed alignment techniques

4.4.1 Methodology

First, we set up two baselines for comparing with Glign: (i) Ligra-S and (ii)

Ligra-C. The former evaluates the queries in a batch one after another, using Ligra [106]—

a state-of-the-art in-memory graph processing engine. Note that Ligra itself processes each

single query in parallel. The latter extends Ligra to support concurrent query evaluation

using both unified and separated frontiers (see Section 4.3.2), representing a design that

has been adopted by the existing concurrent graph processing systems [139, 18, 65].

Also, we compare Glign in general with two state-of-the-art concurrent graph

processing systems that are publicly accessible: GraphM [139] and Krill [18]. To show the

contributions of different techniques, Glign is configured differently as listed in Table 4.5.

In addition to the above systems, we also tested a system design that exploits query-

level parallelism—each concurrent query is evaluated using the serial implementation from

BGL [107], while different queries are processed on different threads. However, we found it

ran slower than our baseline Ligra-S in most cases tested.
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Queries. We evaluated five types of graph queries, including BFS (breadth-first search),

SSSP (single source shortest path), SSWP (single source widest path), SSNP (single source

narrowest path), and Viterbi. Table 4.6 lists their vertex functions in pseudo-code.

All queries are vertex-specific in that they start from one source vertex and com-

pute property values for all vertices in the graph. To generate the query set for each type

of query, we followed a sampling strategy similar to the one used by Qi and others [93].

First, the graph vertices are divided into disjoint bins based on their distances (hops) to the

(top-4) high-degree vertices. Then, these bins are scanned in rounds, and in each round a

vertex is randomly picked from each bin, until 512 vertices are selected, which serve as the

source vertices of our queries. In this way, the selected queries provide a better coverage of

the entire graph structure. We assume all the 512 queries are already in the buffer when

the systems start to process them. This allows us to focus on evaluating the throughput of

the concurrent systems. One can also add the query arrival time information, with which

the latency of processing each query could also be inferred. We leave such latency study

for future work.

Besides grouping queries of the same types into the same query buffer (i.e., homo-

geneous query buffer), we also generated a query buffer of mixed types of queries, randomly

selected with types of BFS, SSSP, SSWP, and SSNP. We refer to this scenario as “Heter”.

By default, we set the query batch size to 64. For evaluating the impacts of batch

size, we changed the batch size from 2 to 128.

Graph Data Sets. We primarily evaluate Glign on power-law graphs, which include five

real-world graphs. For completeness, we also evaluate Glign on a couple of road networks,
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Table 4.6: Vertex Functions of Graph Queries

Bench. Pseudo-code of Vertex function f(s)

BFS
for each out-neighbor d of s
level(d) = min { level(d), level(s) +1 };
if level(d) changed then add d to frontier;

SSSP
for each out-neighbor d of s
dist(d) = min { dist(d), dist(s) + w(s, d) };
if dist(d) changed then add d to frontier;

SSWP
for each out-neighbor d of s
wide(d) = max { wide(d), min { wide(s), w(s, d) } };
if wide(d) changed then add d to frontier;

Viterbi
for each out-neighbor d of s
viterbi(d) = max { viterbi(d), viterbi(s) / w(s, d) };
if viterbi(d) changed then add d to frontier;

SSNP
for each out-neighbor d of s
narrow(d) = min { narrow(d), max { narrow(s), w(s, d) } };
if narrow(d) changed then add d to frontier;

which are more like planar graphs. Their basic properties are summarized in Table 4.7.

The number of edges ranges from 69M to 3.6B, and the diameter ranges from 10 to 9100.

Table 4.7: Graph Statistics

Graph Abbr. Directed |V | |E| Avg. deg. Dia.

LiveJournal [9] LJ Yes 4.8M 69M 14.2 13
Wikipedia [3] WP Yes 14M 437M 32.2 10
UK-2002 [15] UK2 No 19M 524M 28.3 45
Twitter [60] TW Yes 42M 1.5B 35.3 15
Friendster [2] FR No 125M 3.6B 28.9 38
roadNet-CA [98] RD-CA No 2.0M 5.5M 2.81 849
roadNet-USA [98] RD-US No 24M 58M 2.41 9100

The experiments are conducted on a 32-core Linux server that equips with Intel

Xeon E5-2683 v4 CPU and 512GB memory. The application is compiled with g++ 6.3 and

runs on CentOS 7.9.
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Figure 4.11: Overall Performance.

Next, we will first report the overall performance, followed by more detailed eval-

uation of each alignment technique.

4.4.2 Overall Performance

Table 4.8 shows the total execution time of evaluating a buffer of 512 queries using

Ligra-S, while Figure 4.11 reports the speedups of the other systems over Ligra-S. From

the results, we find that Glign clearly outperforms the other systems in almost all the cases

(except for the case UK2-Viterbi). The highest speedup it reaches is 9.4× (in the case of

UK2-BFS). On average, Glign achieves 5.2× speedup over the baseline Ligra-S.

Among the other systems, GraphM exhibits similar performance as Ligra-S. Note

that, unlike the other systems in our evaluation, GraphM is not built on top of Ligra,

instead, it is built on top of GridGraph [142], a system mainly designed for out-of-core

graph processing. This difference in the base system selection could be one of the reasons

that cause GraphM to perform worse than the other concurrent graph systems used in our

evaluation.

Krill and Ligra-C both achieve a substantial average speedup over Ligra-S

(1.4× and 2.1×), confirming the general benefits of concurrent query evaluation. However,
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Table 4.8: Time of Evaluating 512 Queries using Ligra-S

LJ WP UK2 TW FR

BFS 66s 300s 334s 1104s 3646s
SSSP 176s 579s 986s 2332s 10076s
SSWP 97s 392s 507s 1734s 4580s
Viterbi 224s 499s 1388s 2129s 7926s
SSNP 99s 372s 493s 1630s 4440s
Heter 107s 398s 567s 1819s 5858s

both perform worse than Glign, though all the three systems share the same base system

(Ligra). We believe this is mainly due to the locality improvement brought by the alignment

techniques that Glign employed.

To confirm the above speculation, we measured the last-level cache (LLC) misses

using the perf tool. The results are listed in Table 4.9. To save space, we report the results

mainly for two graphs. From the results, we find that Glign incurs significantly less LLC

misses than the other methods. For example, on LJ graph, Glign’s LLC misses is only

12%, 21%, 5%, and 23% of those (on average) incurred by Ligra-S, Ligra-C, GraphM, and

Krill, respectively. These significant LLC miss reduction echos the substantial speedups

brought by Glign as shown earlier in Figure 4.11.

In the following, we will break down the performance gains of Glign by evaluating

each alignment technique.

4.4.3 Intra-Iteration Alignment

In this section, we evaluate the proposed query-oblivious frontier (Section 4.3.2)

and compare it with the two-level frontier design (i.e., unified and separate frontiers) that
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Table 4.9: LLC Misses (in billions)

Ligra-S Ligra-C GraphM Krill Glign

LJ

BFS 9 11 44 15 1
SSSP 28 15 77 15 4
SSWP 21 12 52 15 2
Viterbi 53 20 91 8 4
SSNP 21 11 52 15 2
Heter 23 15 45 11 4

Mean 26 14 60 13 3

TW

BFS 302 245 1083 394 26
SSSP 621 237 1698 399 53
SSWP 545 217 963 397 29
Viterbi 757 242 1622 171 48
SSNP 540 214 1202 396 36
Heter 563 252 1201 241 52

Mean 555 235 1295 333 41

is employed by some of the existing concurrent query processing systems. Both designs

ensure synchronized frontier traversal—the key to intra-iteration alignment. In our setting,

Ligra-C employs the two-level frontier design, while Glign-Intra uses the query-oblivious

frontier (other alignment techniques are disabled).

First, we have verified the correctness of all the query results produced by Glign-

Intra, thus experimentally demonstrated the correctness of this new frontier design with

real-world large data, complimenting the theoretical proof in Section 4.3.2.

Second, in terms of performance, Figure 4.12 reports speedups of Glign-Intra

over Ligra-C. The results show that Glign-Intra yields consistent speedups across different

queries and graphs, which range from 1.13× to 1.96×.
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Figure 4.12: Speedups of Glign-Intra over Ligra-C

Table 4.10: LLC Misses Reduction by Glign-Intra

(Numbers are the ratios between the LLC misses of
Glign-Intra and the LLC misses of Ligra-C)

LJ OR WP UK2 TW FR

BFS 22% 29% 24% 13% 23% 32%
SSSP 33% 42% 37% 12% 34% 36%
SSWP 32% 44% 27% 17% 28% 24%
Viterbi 34% 44% 39% 19% 36% 31%
SSNP 32% 41% 28% 17% 31% 21%
Heter 35% 48% 42% 22% 31% 31%

Geomean 31% 41% 32% 16% 30% 29%

In addition, we also collected the LLC misses of Glign-Intra, which may offer

more direct evidence on the effectiveness of query-oblivious frontier. The results are reported

in Table 4.10. From the results, we find that Glign-Intra can consistently reduce the LLC

misses under all the evaluated cases, and the average reduction is quite substantial—its

LLC misses are only around 30% on average of those incurred by the baseline Ligra-C. The

reduction mainly comes from the elimination of separate frontiers and the two-level frontier

checking used by the baseline and other existing concurrent graph systems. These results,

to a large extent, explain Glign-Intra’s speedups shown in Figure 4.12.
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Table 4.11: Memory Footprint Breakdown (64 queries)

LJ TW

Ligra-C Glign-Intra Ligra-C Glign-Intra

Graph 545MB 545MB 11,400MB 11,400MB
Vertex Value 1,180MB 1,180MB 10,200MB 10,200MB
Frontier 296MB 4.6MB 2,540MB 39.7MB

Finally, to get a sense of the memory reduction brought by the query-oblivious

frontier in comparison to a two-level frontier, we profiled the memory footprints. Table 4.11

reports the sizes of major data structures in Ligra-C and Glign: (i) the graph topology

data, the values of all vertices, and the frontier (as a labeling array). Note that even though

the frontier is only a relatively small portion of the total memory footprint, it is accessed

entirely in every iteration. In comparison, only some parts of the graph and some vertex

values are accessed in each iteration. The results show that the frontier size is reduced

dramatically with query-oblivious frontier, which leads to the LLC misses reduction as

shown in Table 4.10.

4.4.4 Inter-Iteration Alignment

To show the benefits of inter-iteration alignment, we compare Glign-Inter with

Glign-Intra.

Performance. Figure 4.13 reports the speedups of Glign-Inter over Glign-Intra. Over-

all, Glign-Inter achieves better performance in all evaluated cases, except for WP-SSWP

and WP-SSNP. The speedups range from 0.89× to 2.95×. This demonstrates the benefits

of our proposed inter-iteration alignment technique—delayed start. In general, we found
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Figure 4.13: Speedups of Glign-Inter over Glign-Intra

Glign-Inter does not perform significantly better on WP graph. The reason might be

related to the fact that WP has a relatively smaller diameter (see Table 4.7). Smaller diam-

eters imply that the vertices selected as the source vertices of the queries tend to be closer

to each other in terms of hops. Based on the discussion in Section 4.3.3, queries with closer

source vertices tend to align better (i.e., yielding better affinity) during their evaluation.

As a result, there is less room for inter-iteration alignment to improve.
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Figure 4.14: Affinity Comparison: Glign-Intra vs Glign-Inter vs Glign-Batch

Affinity. To get a deeper understanding of the improvements, we also collected the affinity

values (see Definition 16). The results are shown in Figure 4.14. Note that we set the

Y-axis to 1− affinity because, for a batch of 64 queries, the affinity value tends to be close
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to 1, using 1 − affinity can better reflect its significants. In fact, 1 − affinity reflects how

much different frontiers are misaligned, thus the lower the value is, the better alignment we

get. The results show that Glign-Inter substantially reduces the divergence, from 0.068

to 0.041 on average. The highest reductions happen to BFS on UK2 and FR graphs, which

match well with the top two best speedups (2.91× and 2.95×) reported in Figure 4.13. The

results also show that divergence for Glign-Intra is already very low in the case of WP

graph, leaving little room for further improvements. This explains the limited speedups

achieved by Glign-Inter on this graph (see Figure 4.13).

In addition, we report the LLC miss reduction by Glign-Inter over Glign-Intra

in Table 4.12. In general, the results echo well the above findings. For example, the highest

cache miss reductions also happen to BFS on UK2 and FR graphs (37% and 32%) and the

reduction ratio on WP graph is the least.

Table 4.12: LLC Misses Reduction by Glign-Inter

(Numbers are the ratios between the LLC misses of
Glign-Inter and the LLC misses of Glign-Intra)

LJ WP UK2 TW FR

BFS 67% 96% 37% 68% 32%
SSSP 73% 91% 53% 77% 51%
SSWP 73% 101% 39% 76% 48%
Viterbi 64% 69% 38% 60% 37%
SSNP 74% 97% 41% 67% 42%
Heter 64% 81% 31% 65% 51%

Geomean 69% 88% 39% 69% 43%

Heuristic v.s. Ground Truth. To examine the effectiveness of the proposed heuristic,

we profiled the ground-truth best alignments for 512 sampled batches, where each batch

consists of only two queries. The best alignment of each batch is found by exhaustively
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Table 4.13: Ground Truth Study of Glign-Inter

Speedup

Diff Cnt Ratio Glign-Intra Glign-Inter Best-Align

0 172 33.6% 1.36× 1.51× 1.51×
1 217 42.4% 1.32× 1.42× 1.51×
2 102 19.9% 1.20× 1.27× 1.46×
3 20 3.9% 1.13× 1.20× 1.47×
4 0 0.0% N/A N/A N/A
5 1 0.2% 1.62× 1.52× 1.56×

Sum./Avg. 512 100% 1.30× 1.41× 1.50×

trying all possible alignments and calculating the corresponding affinity value. Table 4.13

summarizes our findings. Among the 512 batches, our heuristic finds the best alignments

in 33.6% of them, and the difference with the optimal alignment is within 2 iterations for

over 95% cases. As to the speedups, the best alignments outperform ours (1.50× vs 1.45×),

indicating that extra room exists for further improving the performance via alignments.

Profiling Costs. As discussed in Section 4.3.3, our heuristic requires profiling—running

BFS queries on (four) high-degree vertices. Note that the profiling happens at the beginning

when the system and graph is set up. It is a one-time effort for each graph, with benefits

applying to different types of queries that run on the graph. Table 4.14 lists the profiling

costs on two graphs (LJ and TW), compared to the query evaluation time on the same

graphs. During the concurrent query evaluation, accessing the profiling result (a table

lookup) is quick and the cost is negligible.

124



Table 4.14: Profiling Costs

LJ TW

Profiling Cost 0.20s 3.84s

Query Eval. Cost SSSP 4.47s 53.40s
(batch size:64, Glign) BFS 1.56s 25.51s
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Figure 4.15: Speedups of Glign-Batch over Glign-Intra

4.4.5 Alignment-Oriented Batching

To demonstrate the benefits of alignment-oriented batching, we compare Glign-

Batch with Glign-Intra. Figure 4.15 reports the speedups of Glign-Batch over Glign-

Intra. These speedups are slightly higher than those achieved by Glign-Inter (Fig-

ure 4.13). This is expected as both alignments essentially explore the same affinity op-

portunities. The additional improvements indicate that the alignment opportunities across

queries (in the query buffer) are slightly higher than those within a single evaluation batch,

which is also confirmed by the affinity differences between Glign-Inter and Glign-Batch

as shown in Figure 4.14.
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Figure 4.16: Impacts of Query Batch Size (Left: LJ graph, Right: TW graph)

4.4.6 Impacts of Batch Size

To understand the sensitivity of Glign to a basic parameter—the batch size. We

changed the batch size from 2 to 128. Note that 128 is the largest value Glign can achieve

based on the memory capacity of our machine and the size of the evaluated graphs.

Figure 4.16 reports the results using four types of queries and two input graphs.

Most curves in the figure follow a similar trend, that is, the speedup first grows as the batch

size increases, until the batch size reaches around 64, then the speedup starts to drop. The

upward trend indicates that increasing the degree of concurrency tends to be beneficial,

while the downward trend indicates there is a limit for the benefit—the memory pressure

also increases as the batch size increases, which eventually would curb the gain.

4.4.7 Performance on Road Networks

Though Glign is primarily designed for processing power-law graphs, for com-

pleteness, we also report its performance on some road networks (RD-CA and RD-US).

Table 4.15 reports the speedups of Glign and their variants over our baseline Ligra-S.

First, the results show that Glign-Intra still achieves good or even higher speedups (e.g.,

9.3× and 14.7× speedups for BFS). This is due the fact that, typically, only a small por-

tion of the road network needs to be accessed in each iteration, which makes the costs to
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Table 4.15: Performance on Road Networks

RD-CA RD-US

SSSP BFS SSWP SSSP BFS SSWP

Ligra-S 369.8s 239.5s 219.6s 15224s 7916 s 1298 s
Ligra-C 2.91× 5.30× 1.45× 1.25× 2.66× 0.30×

Glign-Intra 6.08× 9.31× 2.99× 2.04× 14.67× 1.86×
Glign-Inter 6.85× 10.05× 3.15× 1.75× 13.51× 1.25×
Glign-Batch 8.36× 11.15× 3.66× 2.52× 15.37× 1.91×

Glign 8.90× 12.41× 3.64× 2.77× 16.91× 1.29×

access frontier(s) relatively higher. On the other hand, the extra benefits brought by the

inter-iteration alignment and alignment-oriented batching are more limited. This is be-

cause evaluation on such graphs often fails to yield sufficiently “heavy” iterations, making

the affinity issue less of a concern.

4.4.8 Comparison with iBFS

Finally, we compare Glign with iBFS [65]—a specialized graph system dedicated

to concurrent BFS queries. It is an early work that groups BFS query instances and lever-

ages shared frontier traversal, which resembles affinity-oriented batching. However, there

are a few key differences between the two. First, iBFS maintains both the unified and

separate frontiers to achieve synchronized frontier traversal, just like Ligra-C and Krill.

In comparison, Glign uses unified frontier only (i.e., query-oblivious frontier); Second, to

group BFS queries, iBFS uses a different heuristic based on the out-degrees of source ver-

tices. In specific, it requires two conditions for grouping queries: (i) out-degrees of source

vertices should be less than p; and (ii) the source vertices must connect to at least one

common vertex whose out degree is greater than q. In comparison, Glign groups queries
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Table 4.16: Comparison with iBFS

iBFS Glign-Intra Glign-Batch

LJ 16.6s 0.98× 1.78×
OR 31.6s 0.94× 1.49×
WP 41.1s 0.92× 1.45×
UK2 130.8s 0.95× 3.17×
TW 276.3s 1.08× 2.10×
FR 2465.1s 1.02× 3.04×

only based on the affinity (or number of hops to a high-degree vertex). Last but not least,

iBFS does not support inter-iteration alignment. To experimentally compare the two, we

have implemented the heuristic of iBFS in Ligra-C. Note that the original iBFS work is

implemented for the GPU platform.

Table 4.16 reports the performance of using iBFS for evaluating 512 BFS queries,

and the speedups of Glign-Intra and Glign-Batch over iBFS. Overall, we find that the

performance of iBFS is similar to Glign-Intra, but substantially slower than Glign-Batch.

On average the gap between iBFS and Glign-Batch is between 1.45× and 3.17×. A further

examination reveals that the heuristic of iBFS is too strict—it works better when there are

an extremely large number of queries involved (e.g., querying all vertices in the graph).

4.5 Summary

This chapter reveals a major performance issue in concurrent graph processing—

alignment of graph traversals. It addresses this issue at three levels. First, it proposes

the query-oblivious frontier to achieve synchronized frontier traversal within each global

iteration. Second, it introduces a heuristic-based solution based a series of insights and
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observations to intelligently align the iterations of different queries and to group queries

with different affinities. It integrates the proposed techniques into a runtime system called

Glign. A full evaluation of Glign has confirmed the effectiveness of the proposed alignments

and demonstrated superior performance over state-of-the-art concurrent graph processing

systems.
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Chapter 5

Improving Throughput of

Graph-based ANNS with

Temporal Information

5.1 Introduction

Similarity search in high-dimensional datasets has become an important part of

modern deep learning applications, including recommendation systems, retrieval augmented

generation, content filtering, large language models (LLMs), and others. These datasets

usually contain millions or billions of high-dimensional vector representations (a.k.a. em-

beddings) of documents, images, videos, and user content generated by pre-trained deep

neural networks. The algorithm used to find vectors similar to user input from datasets is

known as the k-nearest neighbor search, where the most similar k embeddings for a query

are returned.
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Calculating the exact k-nearest vectors can be very expensive in high-dimensional

space, and most real-world applications can tolerate small errors. Therefore, the approxi-

mate nearest neighbor search (ANNS) has been widely deployed in production environments,

which provides better query latency and throughput and retains good search quality.

There are several approaches to solving the ANNS problem. The Inverted File

Indexing (IVF) method [7, 108, 52] partitions vectors into buckets. Thus, queries need

only search a portion of datasets rather than the entire space. More recently, graph-based

solutions for ANNS [90, 51, 72, 97] have been shown to perform superiorly while achieving

high recall. Graph-based ANNS algorithms first construct a proximity graph from the

vector dataset. Queries are evaluated on the constructed graph through a best-first search.

The best-first search terminates when all vertices in a fixed-size buffer (the beam) have been

visited. And the top-k vectors are returned as the query results.

By carefully profiling and characterizing the ANNS workload, we have identified

some limitations in existing ANNS solutions:

Unexploited parameter space Despite the high throughput (queries per second, or

QPS) achieved by graph-based ANNS, existing systems control the QPS-recall tradeoff

only at a coarse-grained level: there is one parameter called the beam size, which is the

maximum queue size of the best-first search. The larger the beam size, the higher the recall

and the worse the QPS is.

Unexploited nearest neighbors correlation The query-dataset correlation was first

described by Baranchuk et al. [10] as “content drift”, where the recency relationship is
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observed among user queries and the returned results. In several real-world datasets (images

or ad videos), user queries usually exhibit consistent temporal distributions of their nearest

neighbors over periods of time. For example, more recent data are more likely to be close

to the query (the recency pattern), or nearest neighbors are more likely to appear in some

specific period of time (the seasonal pattern). Unfortunately, such temporal information is

not embedded in the vector and is not exploited for query optimization.

To this end, we propose TANNS, an adaptive and efficient system for graph-

based approximate nearest neighbor search with learned query-data correlation. TANNS

improves both the graph construction and search by novel techniques. First, we show that

the best-first search can be better parameterized to create more room for higher

performance. We observed that the search can be divided into two phases according to

the hardness of achieving a certain recall score: the first phase is very fast but can easily

find a good number of accurate top-k nearest neighbors to the query vector (80% to 90%

according to our profiling); the second phase runs much slower than the first one. Since

the best-first search algorithm stops only when there are no more unvisited vertices in the

buffer queue and it is oblivious to the recall score, there is no explicit early termination

condition that satisfies a target recall. This results in many vertex visits and distance

computations for the second phase but only slightly improves the recall score, which we

refer to as ”finding needles in a haystack” in the ANNS problem.

Based on the above interesting observation, our first goal is to improve the effi-

ciency of the search further. Specifically, we introduce new parameters for the two phases,

including step sizes that control the greediness of exploration at each iteration of the search

132



(i.e., how many vertices are expanded per iteration) and a cut-off factor for discarding

unpromising candidates. Because these two phases are artificially divided, each exhibiting

different patterns (fast or slow), we find that each phase requires a different set of parame-

ters. Generally speaking, the first phase requires a smaller step size (usually 1) to converge

without harming the search quality. The search in the second phase can be more aggressive

with a larger step size. Further, the cut-off factor should be different in each phase, unlike

previous solutions [50, 72] that have applied a cut for the whole search.

To exploit the correlation between queries and their results, we show that it is

possible to construct and refine the graph to favor these distributions. We have developed a

new algorithm for constructing the graph, which connects vertices in an adaptive manner.

By incorporating such correlation information, we are able to create a smaller and less dense

graph, while still providing faster navigation to nearest neighbors. As far as we know, these

techniques represent the first set of methods for optimizing graph queries under such a

biased distribution.

Overall, in this work, we make the following contributions:

• We conducted detailed profiling and gave an in-depth analysis of the graph-based

ANNS workload and depicted its optimization space. Our observations led to a full

parameterization of the search algorithm. We also provided a framework for parameter

auto-selection.

• To incorporate data that are not embedded into vectors (e.g., temporal information),

we proposed a new graph construction algorithm to favor the query-results correlation.
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• We conducted comprehensive experiments and demonstrated that, to achieve the same

level of recall, TANNS can improve the query throughput by up to 1.9× compared

to DiskANN when query-data correlation exists while reducing the constructed graph

size by around 30%. Our techniques introduce no slowdown for queries that do not

exhibit any correlation with their results.

5.2 Background

5.2.1 Approximate Nearest Neighbor Search (ANNS)

We first introduce the problem definition of k-NNS. Given a dataset P of n points

(vectors) in d-dimension space and a query point q, the k nearest neighbor search returns

a set K that contains k points, such that maxp∈K||p, q|| ≤ minp∈P\K||p, q||. Note that the

distance between two points p, q ∈ Rd, denoted as ||p, q||, can be either Euclidean distance

(L2 norm) or cosine distance. The Euclidean distance is used in most real-world datasets.

k-ANNS is defined as k-approximate NNS, in which only approximate results are

returned. Without any ambiguity, we use ANNS for k-ANNS throughout this paper. The

most commonly used metric for measuring the accuracy of ANNS is the recall score. Specif-

ically, the k@k′ recall of query q is defined as |K∩K′|
|K| , where K is the ground-truth set of

k-nearest neighbors of q in the dataset and K′ is the output of an k′-ANNS algorithm. In

this paper, we use k′ that is equal to k when calculating recall scores.
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5.2.2 Graph-based ANNS

ANNS can be efficiently solved using graph-based approaches. Graph-based ANNS

consists of two parts: graph construction and search on the graph.

ANNS graph construction There are various graph construction algorithms, including

NSG [36], HNSW [71], and DiskANN [51], and many others [83, 78, 19, 28, 35, 45], most of

which build the Proximity Graphs that enable fast navigation of a query point to its closest

neighbors in the dataset. For example, the graph construction algorithm, Vamana from

DiskANN [51], builds the proximity graph incrementally: it inserts points into the already

built graph by using Algorithm 6. The high-level idea is that for a given dataset P and

a point p ∈ P, the out-neighbors of p (denoted as Nout(p)) are decided through the beam

search and a pruning procedure (Algorithm 5 and Algorithm 7).

The pruning procedure is used for selecting both long and short edges as p’s out-

neighbors. This helps avoid results converging to local optima. The rationale behind this

pruning is that long edges connect neighbors that are far away, and short edges connect

neighbors that are close to point p. Creating long edges is necessary as they provide fast

navigation during graph traversals towards the region of points close to the query point,

while short edges ensure that once such a region is reached, the search can converge quickly.

Beam search Beam search is a variant of best-first search used for answering ANNS

queries. It works in a greedy manner. A queue or buffer called beam L is maintained, which

has the maximum capacity of L (the beam size). The beam stores points of the dataset along

with their distances to the query point. In each iteration, the search algorithm expands
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Algorithm 5 Beam Search

1: function beamSearch(G, s, q, k, L)
2: L ← {s}
3: V ← ∅
4: while L \ V ̸= ∅ do
5: p∗ ← argminp∈L\V d(p, q)
6: L ← L ∪Nout(p

∗)
7: V ← V ∪ p∗

8: if |L| > L then
9: update L to retain closest L points to q

10: return [closest k points from L; V]

Algorithm 6 Insert

1: function insert(p, G, s, L, R)
2: L,V ← beamSearch(p, s, L, 1)
3: Nout(p)← prune(p,V, R)
4: for v ∈ Nout(p) do
5: Nout(v)← Nout(v) ∪ {p}
6: if |Nout(x)| > R then
7: Nout(x)← prune(x,Nout(x), R)

the unvisited point in the beam that is currently the closest to the query vector. The out-

neighbors of the selected point are examined and their distances to the query point are

computed. Neighboring points are inserted into the beam, and points in the beam will be

sorted according to the distances in ascending order. This iterative process continues until

all points in the beam are visited. The top-k points are returned as the ANNS results for

the query. The beam search algorithm is depicted in Algorithm 5.
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Algorithm 7 Prune from DiskANN

1: function prune(p, V, R)
2: V ← V ∪Nout(p)
3: L ← ∅
4: while V ≠ ∅ do
5: p∗ ← argminp′∈V d(p, p′)
6: L ← L ∪ {p∗}
7: if |L| = R then
8: break
9: for p′ ∈ V do

10: if α · d(p∗, p′) ≤ d(p, p′) then
11: V ← V \ p′

12: return L

5.3 ANNS Workload Characterization

In this section, we report several interesting observations while profiling the ANNS

workload. Based on our findings, we then describe potential optimization space for ANNS

and introduce a fully parameterized beam search algorithm.

5.3.1 Parallelism of ANNS queries

The computation pattern of graph-based ANNS queries is quite different from

other graph queries (e.g., BFS, SSSP, PageRank, etc.). One key difference is the computa-

tion load of a single query evaluation. Vertex-specific queries such as SSSP require visiting

all vertices in the graph to calculate the shortest path values from the query source vertex

to all other vertices, which leads to a large memory footprint and many vertex value compu-

tations within one iteration. To improve the performance of such queries, efficient parallel

algorithms have been proposed, most of which exploit the intra-query and intra-iteration

parallelism. On the contrary, an ANNS query only visits a small portion of the graph

and a few vertices are computed for their distances to the query vector. For example, on
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BIGANN-50M dataset, on average, each query only visits around 360 points and calculates

7000 distances to find the top-10 nearest neighbors accurately. In addition, most ANNS

systems aim at improving the query throughput (QPS) [51, 72, 90] by serving as many

concurrent queries as possible.

Based on these observations, we propose to optimize ANNS throughput by im-

proving the beam search algorithm rather than the parallelism of a single query evaluation.

5.3.2 ANNS Phases Based on Hardness

Almost all graph-based ANNS solutions use the greedy beam search depicted in

Algorithm 5 with different implementation details. The beam search algorithm works iter-

atively until there are no more unvisited vertices in the beam L, and it has been shown to

achieve good performance and quality for solving ANNS queries; however, the throughput-

recall tradeoff can be tricky. For ANNS queries, the quality (recall) of returned top-k results

is determined by the number of distance computations during the graph traversal of search.

The more vertices in the graph have their distances to the input query vector computed,

the higher the chance that vertices close to the query can be found. The beam size L for

the beam search decides how many distances can be computed. The larger beam size allows

for exploring more of the graph, thus enhancing the recall score. However, increasing the

beam size for better recall significantly deteriorates the system’s query throughput, which

we refer to as the dilemma of recall and throughput. To improve the query throughput

while achieving a recall target, recent works, such as DiskANN [51] and ParlayANN [72],

use a parameter sweeping approach to find the best beam size for a given dataset and report

the highest throughput. Further, ParlayANN also adopts a method called (1 + ϵ)-cutting
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Figure 5.1: Iteration vs. Recall 100@100 and Number of Distance Computations.

from Iwasaki et al. [50] for the search. In each iteration, only vertices with distances to the

query point that are less than (1 + ϵ) times the current k-th nearest neighbor will be kept

in the beam.

However, sweeping the above parameters helps obtain a better QPS-recall tradeoff

curve. We show the potential to increase query throughput by exploring the beam search

design space. The intuition is that not every iteration contributes equally to the final results,

which we refer to as the hardness of ANNS computation. Figure 5.1 shows the recall score

(left y-axis) for the top-100 nearest neighbors in each iteration on dataset BIGANN-50M

(50 million points) averaged over 10K queries. In this example, the progress of ANNS

query evaluation accelerates rapidly within the first 100 iterations; the algorithm quickly

identifies over 80% of the final answers. Figure 5.1 also shows the accumulated total number

of distance computations (right y-axis). Combining these two lines, it is easy to see that the
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number of distance computations required to identify the top-k nearest neighbor increases

as the iterative query evaluation progresses. In the later iterations, numerous distance

calculations are performed, yielding only a few closest neighbors.

Based on the above phenomenon, it is natural to divide the search into two phases

according to the hardness of discovering closer neighbors to the query point. The first phase

easily finds the majority of nearest neighbors in a short time. The second phase runs much

longer and calculates many distances to ensure that the query quality reaches the high recall

regime (from 0.9 to 0.999). However, the benefit-cost ratio is low in the second phase, and

terminating the search early usually leads to lower recalls.

5.3.3 Parameterized Beam Search

To further optimize the search, we propose a fully parameterized beam search

algorithm by introducing separate cut-off factors (ϵ) and expanding sizes (e) for the two

phases. The expanding size is the number of vertices to be expanded in one iteration (the

original beam search always expands one vertex).

We now explain the rationales for introducing new parameters. First of all, the

two phases exhibit completely different graph traversal patterns. The first phase easily

finds many accurate vertices due to the fast navigability of the constructed graph. In this

case, long edges help locate the graph region close to the query vector. It is intuitive to

think that Phase 1 should use a smaller expanding size than Phase 2 to avoid prematurely

populating the beam with unpromising vertices. Similarly, the cut-off factor for Phase 1

should be as large as possible, meaning little to no vertices should be discarded. In Phase

2, the search explores more vertices to improve the query quality. However, the distance
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differences among vertices explored in Phase 2 are subtle. This indicates that a more

aggressive exploration scheme should be employed, i.e., expanding multiple vertices in one

iteration. The vertices to be expanded in the same iteration are quite similar in terms of

their distances to the query vector, so expanding them in the same iteration gives their

neighbors an equal opportunity to be considered.

To distinguish the two phases, one can use the number of iterations. However, the

iteration count is not a good indicator as it is affected by the datasets and how the graph was

constructed (the maximum degree). Instead, we propose to use a simple criterion, which

is the iteration when the first k vertices in the sorted beam are all visited, to decide the

boundary of the two phases. This criterion can be easily examined at runtime during the

query evaluation with little overhead. Algorithm 8 depicts the fully parameterized beam

search algorithm. We also remark on another benefit of identifying two phases – it enables

early termination of ANNS computation when only good enough results are required. We

found that the recall achieved by Phase 1 is only the dataset’s intrinsic property and is

irrelevant to query vectors. Thus, the proposed criterion that the first k vertices have been

visited can be used to stop a beam search with arguably good recall scores.

5.4 Temporal Data-Assisted Graph Construction

When constructing the graph from a vector dataset, existing works do not incor-

porate additional information, such as the timestamp associated with each data point. Such

information is lost as it is not embedded into the data vector. In this section, we intro-

duce our technique for further enhancing graph construction when additional information
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Algorithm 8 Parameterized Beam Search

1: function parameterizedBeamSearch(G, s, q, k, L, e1, e2, ϵ1, ϵ2)
2: L ← {s}
3: V ← ∅
4: [ϵ, e] ← [ϵ1, e1]
5: check ← true
6: while L \ V ̸= ∅ do
7: len← min(e, |L \ V|)
8: P ← ∅
9: for i = 0...len− 1 do

10: p∗ ← argminp∈L\V d(p, q)
11: P ← P ∪ {p∗}
12: V ← V ∪ {p∗}
13: for p ∈ P do
14: ngh len← Deg(p)− 1
15: for i = 0...ngh len do
16: v ← Nout[i]
17: if d(v, q) ≤ ϵ ∗ d(Lkth, q) then
18: L ← L ∪ {v}
19: if |L| > L then
20: update L to retain closest L points to q

21: if check then
22: Lk ← TopK(L) ▷ k=min(|L \ V|, max(k,10))
23: if Lk \ V = ∅ then
24: check ← false
25: [ϵ, e] ← [ϵ2, e2]

26: return [closest k points from L; V]

is available. The enhanced graph has a smaller size and can boost the ANNS query evalu-

ation without harming the query quality. Specifically, we illustrate our technique using the

temporal information of a dataset (timestamps).

5.4.1 Exploiting the Query-Results Correlation

It has been observed that in real-world datasets, there is usually a recency rela-

tion between an input query and ANNS results [10]. One common pattern is that more

recent content is more likely to appear in the top-k results of ANNS queries. Another
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commonly seen pattern is the seasonal trend, in which contents from the same season as

the query time are more likely to be returned. Figure 5.2 shows an example of such query-

results correlation in the time dimension1. The vectors in the dataset are evenly distributed

over a 36-month span, while the queries’ nearest neighbors exhibit a temporal correlation.

However, neither index-based nor graph-based ANNS systems have effectively utilized this

temporal correlation to enhance the query performance.
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Figure 5.2: Vectors Distribution (left) and Query-Results Correlation (right) on the
BIGANN-50M Dataset.

In this work, we propose to construct the ANNS graph adaptively. The intuition

is that rather than pruning out points based on a fixed scaling factor α (Line 10 in Algo-

rithm 7) and the vectors distance, we define α as a function of time to consider the temporal

correlation of query-results when determining whether to create an edge between two nodes.

We begin by modeling the query-results correlation, denoted by α(t), and then illustrate

how α(t) can be used to guide the construction of the ANNS graph.

1Synthetic timestamps are used to illustrate this pattern due to the lack of available public datasets.
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To incorporate the temporal correlation, we use a fitting function to convert the

pruning factor α to α(t):

α(t) = b− b− a

1 + ekt−T/2
(5.1)

α(t) is a scaled and shifted logistic function. Parameters a, b, k, and T are the scaling and

shifting factors. The range of α(t) is [a, b), T is the time span of interested data points in

the dataset, k controls the steepness of α(t), and t is the absolute time difference between

two data points (t = |tp∗ − tp′ |).

We now explain the rationales of using α(t). The original pruning procedure

(Algorithm 7) removes vertex p′ from p’s out-neighbors candidates set if p′ is too close

to p∗. This ensures that both short and long edges can be added to p’s outgoing edge

list, resulting in better navigability. Our design (Algorithm 9) considers the extra time

dimension; it prunes more aggressively for vertices that are close in time. The pruning plays

a less significant role for vertices that are far away in time — edges are inserted mainly based

on distance. The overall effect of our α(t)-based pruning for graph construction is that it

provides better navigability for vertices that are close in time, i.e., the search reaches the

region near the query point more quickly. In addition, the constructed graph has a smaller

average degree, reducing the memory footprint.
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Algorithm 9 Adaptive Pruning

1: function adaptivePrune(p, V, R)
2: V ← V ∪Nout(p)
3: L ← ∅
4: while V ≠ ∅ do
5: p∗ ← argminp′∈V d(p, p′)
6: L ← L ∪ {p∗}
7: if |L| = R then
8: break
9: for p′ ∈ V do

10: if α(|tp∗ − tp′ |) · d(p∗, p′) ≤ d(p, p′) then
11: V ← V \ p′

12: return L

5.5 Evaluation

5.5.1 Experimental Setup

We evaluate the TANNS and compare it with DiskANN [51]. ParlayANN [72]

provides implementations of the above algorithms within their framework. To perform a

fair comparison, we also implemented our graph construction algorithm and parameterized

beam search on top of ParlayANN. All experiments were run on a Google Cloud n2-standard-

128 instance with two Intel Xeon 3rd-generation CPUs with 128 vCPUs in total and 512

GB memory.

Datasets We use five datasets in our experiments: BIGANN-10M, BIGANN-50M, DEEP-

10M, GIST, and TEXT2IMAGE-10M. Among them, BIGANN-10M and BIGANN-50M are

sampled from the BIGANN dataset [53] that consists of 1 billion SIFT images embedded as

128-dimensional vectors. DEEP-50M is randomly sampled from the DEEP1B dataset [8]

that consists of 1 billion image vector embeddings of 96 dimensions. The GIST dataset was

first introduced by Jegou et al. [52]. It contains 1M Holiday images, and the descriptor
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dimensionality is 960. TEXT2IMAGE-10M is randomly sampled from TEXT2IMAGE [1],

which contains image embeddings produced by the SeResNet-101 model and textual queries

encoded by the DSSM model, both have a dimension of 200.

Timestamps generation Since the datasets studied by Baranchuk et al. [10] are propri-

etary and not publicly available, we mimic the recency pattern observed in their VideoAds

dataset in the following way. We first randomly generate a timestamp for each point in the

dataset, and the time range spans 36 months. We then evaluate a set of sampled queries

and use their top-100 results to mimic the query-results correlation, which follows a half-

normal distribution. During the graph construction, we use the following adaptive pruning

function α(t) in Equation 5.1 for all datasets:

α(t) = 1.8− 0.8

1 + e0.8t−16
(5.2)

Here a = 1.0, b = 1.8, k = 0.8, and T = 36.

Algorithm parameters All graphs are constructed with R = 32 (the degree bound),

L = 64 (the beam size when building the graph), and α = 1.2 (the pruning parameter).

For the beam search, we perform a parameter sweep over the parameter space for both the

baseline algorithm and ours and choose the best performance for each specific recall target.

As we are interested in the high recall regime (from 0.8 to 0.999), we omit the results for

low recalls (from 0.0 to 0.7).
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Figure 5.3: QPS-recall curves.
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Figure 5.4: QPS-recall curves. (Continued)

5.5.2 Comparison with DiskANN

We use graphs constructed by DiskANN’s Vamana algorithm (Algorithms 6 and 7)

and evaluate queries using the default beam search in Algorithm 5 as the baseline setup. We

report the performance of the proposed parameterized beam search using baseline graphs

as inputs. The TANNS is also evaluated by using the graphs constructed by Algorithm 9

with the generated timestamp data and the parameterized beam search. We report the

QPS-recall curves for both k = 10 and k = 100 on all datasets. All queries are issued
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simultaneously and evaluated concurrently since throughput is a more relevant metric when

serving ANNS queries on large shared memory machines.

Figures 5.3 and 5.4 show QPS-recall curves for a variety of datasets. In general,

our parameterized beam search can achieve better throughput for the same recall target

than the original beam search used in DiskANN with the same input graph. This throughput

improvement is mainly due to the two-phase separation of beam search and newly introduced

parameters for each phase. Our experiments indicate that, for all datasets, the parameter

sweep consistently selects a large cut-off factor ϵ1 (resulting in no dropping) and a unit step

size (e1 = 1) for Phase 1. For Phase 2, the algorithm selects the step size e2 larger than

e1 and a smaller cut-off factor ϵ2 (resulting in a more significant dropping effect). This

observation confirms the necessity of dividing the search into two phases: the first phase is

critical in finding most of the final nearest neighbors, so any cut-off or larger step sizes can

harm the quality of Phase 1. The second phase only finds a few final nearest neighbors,

but it requires many distance computations. Therefore, expanding the candidates and

dropping unpromising results more aggressively can improve the efficiency of finding the

nearest neighbors.

TANNS further improves the query throughput by up to 4.1× (BIGANN-10M,

k = 10) compared to the baseline DiskANN, when using both parameterized beam search

and the temporal information constructed graph. On average, TANNS achieves 1.9× higher

throughput than DiskANN for the highest recall.
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Table 5.1: Graph Statistics

Graph Avg. Degree

BIGANN-10M
DiskANN 29.1
Ours 24.2

BIGANN-50M
DiskANN 10.9
Ours 9.5

DEEP-10M
DiskANN 27.2
Ours 21.6

GIST
DiskANN 16.7
Ours 10.8

TEXT2IMAGE-10M
DiskANN 27.7
Ours 21.0

5.5.3 Graph Size Reduction

Table 5.1 shows the graph sizes when constructed by DiskANN’s Vamana algorithm

and our adaptive construction algorithm. When the query-results correlation exists, the

graphs constructed by our adaptive pruning algorithm have smaller average degrees and

reduced graph size.

5.6 Summary

We introduce the TANNS system, which constructs a proximity graph incorporat-

ing temporal information and optimizes the evaluation of queries that exhibit correlations

between queries and results. A fully parameterized search algorithm is also designed, al-

lowing for extensive performance tuning. TANNS achieves up to a 1.9× speedup in query

throughput compared to the state-of-the-art DiskANN implementation while maintaining

the same recall levels. Additionally, TANNS can reduce the size of the constructed graph

by up to 30% without compromising query quality.
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Chapter 6

Related Work

6.1 Static Graph Processing Systems

Many graph systems [41, 20, 66, 70, 120, 100, 42, 99, 104, 106, 118, 126, 54, 87,

103] are capable of solving queries on static graphs in various scenarios. PnP [126] offers

efficient algorithms for computing point-to-point graph queries. CoreGraph [54] exploits

edge centralities and creates a proxy graph to support fast iterative graph query evaluation.

PowerGraph [41], PowerLyra [20], GraphX [42], and Pregel [70] solve queries in a distributed

environment. Tigr [87] and Subway [103] are GPU graph systems.

To improve the performance of a single query evaluation, GraphIt [137, 136] de-

signs a DSL that provides custom scheduling functions for exploring various optimization

opportunities. Julienne [26] is specialized for bucketing-based algorithms like k-core and

approximate set-cover, which cannot be supported efficiently in Ligra [106]. There are also

works aimed at improving the memory locality for a single query evaluation [82, 133, 135].
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6.2 Streaming Graph Analyses

Streaming Graph Systems. Many querying systems for dynamic graphs employ in-

cremental evaluation. Earlier systems either only support incremental query evaluation

in the presence of edge insertions (e.g., Chronous [43]) or compute approximate query re-

sults (e.g., Kineograph [22]). To handle edge deletions for incremental query evaluation,

systems like KickStarter [117], RisGraph [34], and Tornado [105] record the value depen-

dency for monotonic path-based algorithms (KickStarter also tracks each vertex’s level in

the dependency tree). Tornado utilizes Lamport Clocks [61] to guarantee consistency and

correctness in a distributed environment. GraphBolt [75] and DZig [74] support both edge

insertions and deletions for accumulative graph algorithms. Ingress [40] is a system that

automatically incrementalizes graph algorithms. GIM-V [109] employs incremental graph

processing based on matrix-vector operations. Differential Dataflow [80, 79] and Naiad [84]

are generalized incremental computation models which are also capable of processing graph

workloads. CommonGraph [5, 6] incrementally evaluates a stream of graph snapshots by

finding a common graph and converting all edge deletions to edge insertions.

Incremental Algorithms for Streaming Graph Analyses. To the best of our knowl-

edge, the first incremental algorithm for handling SSSP edge deletions was described by

Ramalingam et al. [96], which briefly points out the connection between the handling of

weight changes and the handling of edge insertions and deletions. Some recent works have

focused on finding theoretical bounds for various incremental graph algorithms [31, 32],

particularly when link weights undergo slow changes [48], and when incorporating temporal

information [12].
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Data Structures for Changing Graphs. There have been works for enhancing graph

mutation performance. Aspen [27] supports low-latency graph mutation by using a com-

pressed tree-based graph representation. VCSR [49] leverages packed memory array (PMA)

to enable graph mutation on CSR. In addition, the indexing method has been employed to

improve graph mutation performance [34, 115]. Recently, Terrace [89] proposed to use a

hierarchical data structure to store edges based on the vertex degree.

6.3 Concurrent Graph Evaluation Systems

Seraph [128, 129] is an early work studying system-level supports for concurrent

graph query processing. Its key idea is to decouple the graph structure from query-specific

data to allow concurrent query evaluations to share the common graph structure data. Other

early works include iBFS [65] and multi-source BFS [110], which are systems dedicated to

the evaluation of concurrent BFS queries. iBFS groups BFS instances to leverage shared

frontier traversal. While the above works introduced the ideas of graph sharing and frontier

sharing among concurrent queries, Seraph is aimed at the distributed environment, and

iBFS targets GPU platforms. Krill [18] is a recent work that not only exploits graph

sharing but also gains benefits from efficient management of property data being computed.

A few other systems also target distributed and out-of-core concurrent graph query

processing. For example, GraphM [139] supports concurrent query evaluation with graph

sharing. Queries can be submitted at any time and executed concurrently. MultiLyra [76]

and BEAD [77] support efficient batched query evaluation with graph sharing and frontier

sharing in order to amortize the communication costs among computation nodes in the
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cluster. Finally, CGraph [134] optimizes the multi-query processing with a focus on out-

of-core systems and also supports evolving graphs. It also benefits from the sharing of the

underlying graph.

There are recent works for multi-query processing on a single multicore shared

memory machine. Congra [88] is built on top of Ligra [106] and tries to maximize the mem-

ory bandwidth by forking processes for new queries through the guidance of a scheduler.

However, each graph query requires heavy offline profiling to obtain the memory band-

width and scalability characteristics. Moreover, since each query is evaluated by a separate

process, Congra exploits no graph sharing or frontier sharing. SimGQ [125] exploits the

shared sub-computations of queries in the batch and adopts the reuse technique proposed

in VRGQ [55].

6.4 Graph Applications in Emerging Domains

Graph processing systems are becoming increasingly important in various fields,

including graph neural networks (GNNs), vector search, and healthcare. In the context of

graph neural networks, these systems are essential for handling large-scale graph data effec-

tively, which is crucial for training models that can capture complex relationships and node

features [112, 111, 127, 143, 145, 132, 123, 144, 21]. In vector search, which is fundamen-

tal to many modern AI applications, such as recommendation systems and large language

models [38, 44, 73, 101, 119, 122], graph processing systems optimize the retrieval of nearest

neighbors in high-dimensional spaces [51, 39, 72, 36, 90]. Furthermore, in healthcare, these

systems allow for the analysis of intricate networks of patient data and disease patterns,

leading to better predictive models and personalized treatment plans [64, 4, 69, 68, 29].
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6.5 Hardware Accelerators for Graph Processing

GraphPulse [94] is an asynchronous graph processing accelerator for static graphs.

JetStream [95] supports streaming graphs and incremental computations. It also exploits

the monotonicity property of iterative graph queries. GraphPulse and JetStream address

the single query evaluation scenario. LCCG [138] is a graph accelerator that supports

concurrent graph jobs by utilizing a topology-aware approach with new hardware units.

HyperGRAF [17] and HDReason [16] are hardware accelerators for knowledge graph min-

ing and reasoning. Basak et al. [11] improves streaming graph analyses through software and

hardware co-design driven by input knowledge and batch-reordering technique. MEGA [37]

is the hardware accelerator for graph analytics over evolving graphs. It supports evalu-

ating queries over multiple graph snapshots simultaneously. GraphABCD [131] supports

asynchronous graph analytics with a faster convergence rate via block coordinate descent.
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Chapter 7

Conclusions and Future Directions

7.1 Conclusions

This dissertation presents several innovative strategies that aim to improve the

scalability and efficiency of graph processing systems. These strategies are designed to

support low-latency streaming analysis and high-throughput concurrent query evaluation.

The contributions can be summarized across four main enhancements: the Tripoline system

for generalized streaming graph analysis, IncBoost for scalable incremental graph compu-

tation, the Glign runtime system for concurrent query evaluation, and enhancements to

graph-based approximate nearest neighbor search (ANNS).

The Tripoline system is a major improvement in streaming graph systems. In the

past, graph systems were limited because they required prior knowledge of queries, which

often resulted in computationally expensive full query evaluations. However, Tripoline

overcomes this limitation by using principles similar to triangle inequalities. This allows
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existing query results to be reused, which speeds up the evaluation of new user queries and

expands the applicability of the system to various vertex-specific graph problems.

Addressing the scalability challenges inherent in incremental graph computations,

especially under conditions of significant graph changes, IncBoost introduces algorithmic

enhancements and system-level optimizations. By adopting a novel bottom-up dependency

tracing technique, IncBoost efficiently identifies vertices impacted by edge updates, thereby

bypassing the need for extensive data access and handling edge weight updates more directly

and efficiently than conventional methods.

Glign enhances the shared graph access of concurrent query processing, a critical

aspect for achieving higher throughput in graph analysis. Glign’s innovative alignment

strategies—spanning intra-iteration and inter-iteration phases—optimize memory access

patterns, substantially reducing last-level cache misses and improving the performance of

concurrent graph traversals.

The dissertation also explores the design space of graph construction and searching

phases for ANNS, particularly in scenarios involving temporal information. The proposed

graph construction algorithm considers potential correlations between input queries and

final answers over time, enhancing the relevance and accuracy of search results. Moreover, a

fully parameterized best-first search algorithm has been devised, offering enhanced flexibility

for performance tuning.
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7.2 Future Directions

Designing efficient systems for non-monotonic graph algorithm. This disserta-

tion primarily focuses on vertex-centric, monotonic path-based graph algorithms. However,

there is also a significant demand for systems optimized for non-monotonic graph algo-

rithms. Non-monotonic algorithms, such as PageRank, Personalized Rank, and Graph

Neural Networks (GNNs), allow for approximated computation and can benefit greatly

from algorithmic and system-level optimizations.

Graph-based approximate nearest neighbor search (ANNS) represents just one

of many non-monotonic algorithms. Extending the principles and techniques developed in

this dissertation to other non-monotonic algorithms holds great potential. These algorithms

can benefit from batching for better cache localities, incremental computation for promptly

reflecting fast-changing data, and insights from datasets, such as data sparsity, which can

also shed light on designing more efficient graph systems in those domains.

System support for graph applications on heterogeneous computing platforms.

This dissertation focuses on shared memory machine environment and extends some of the

proposed techniques into distributed systems. Emerging platforms such as CPU-GPU het-

erogeneous computation and Compute Express Link (CXL)–enabled interconnected com-

putation systems provide significant potential for data-intensive workloads with optimized

resource utilization and energy efficiency.

System-level and algorithmic optimizations of graph algorithms targeting these

new architectures are in high demand. Graph computation tasks can be dispatched to
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different processor types (such as GPUs, CPUs, and FPGAs) based on their workload

characteristics to achieve optimized overall performance.

Our proposed two-phase ANNS algorithm is a promising example for CPU-GPU

heterogeneous computing. In this approach, the fast and accurate first phase can be exe-

cuted on the multicore CPU to meet low-latency requirements, while the more computa-

tionally expensive second phase can benefit from GPU’s massively parallel architecture.
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[62] Jüri Lember, Dario Gasbarra, Alexey Koloydenko, and Kristi Kuljus. Estimation of
viterbi path in bayesian hidden markov models. Metron, 77:137–169, 2019.

[63] Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large network dataset
collection, 2014.

[64] Michelle M Li, Kexin Huang, and Marinka Zitnik. Graph representation learning in
biomedicine and healthcare. Nature Biomedical Engineering, 6(12):1353–1369, 2022.

[65] Hang Liu, H Howie Huang, and Yang Hu. iBFS: Concurrent breadth-first search on
GPUs. In Proceedings of the 2016 International Conference on Management of Data,
pages 403–416, 2016.

[66] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,
and Joseph Hellerstein. GraphLab: A new framework for parallel machine learning.
arXiv preprint arXiv:1408.2041, 2014.

[67] Dennis Luxen and Christian Vetter. Real-time routing with openstreetmap data. In
Proceedings of the 19th ACM SIGSPATIAL international conference on advances in
geographic information systems, pages 513–516, 2011.

165



[68] Weimin Lyu, Xinyu Dong, Rachel Wong, Songzhu Zheng, Kayley Abell-Hart, Fusheng
Wang, and Chao Chen. A multimodal transformer: Fusing clinical notes with struc-
tured ehr data for interpretable in-hospital mortality prediction. In AMIA Annual
Symposium Proceedings, volume 2022, page 719. American Medical Informatics Asso-
ciation, 2022.

[69] Haixu Ma, Donglin Zeng, and Yufeng Liu. Learning individualized treatment rules
with many treatments: A supervised clustering approach using adaptive fusion. Ad-
vances in Neural Information Processing Systems, 35:15956–15969, 2022.

[70] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph pro-
cessing. In Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of data, pages 135–146, 2010.

[71] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs. IEEE transactions
on pattern analysis and machine intelligence, 42(4):824–836, 2018.

[72] Magdalen Dobson Manohar, Zheqi Shen, Guy Blelloch, Laxman Dhulipala, Yan Gu,
Harsha Vardhan Simhadri, and Yihan Sun. Parlayann: Scalable and deterministic
parallel graph-based approximate nearest neighbor search algorithms. In Proceedings
of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming, pages 270–285, 2024.

[73] Yu Mao, Weilan Wang, Hongchao Du, Nan Guan, and Chun Jason Xue. On the
compressibility of quantized large language models. arXiv preprint arXiv:2403.01384,
2024.

[74] Mugilan Mariappan, Joanna Che, and Keval Vora. Dzig: sparsity-aware incremental
processing of streaming graphs. In Proceedings of the Sixteenth European Conference
on Computer Systems, pages 83–98, 2021.

[75] Mugilan Mariappan and Keval Vora. Graphbolt: Dependency-driven synchronous
processing of streaming graphs. In Proceedings of the Fourteenth EuroSys Conference
2019, pages 1–16, 2019.

[76] Abbas Mazloumi, Xiaolin Jiang, and Rajiv Gupta. Multilyra: Scalable distributed
evaluation of batches of iterative graph queries. In 2019 IEEE International Confer-
ence on Big Data (Big Data), pages 349–358. IEEE, 2019.

[77] Abbas Mazloumi, Chengshuo Xu, Zhijia Zhao, and Rajiv Gupta. BEAD: Batched
evaluation of iterative graph queries with evolving analytics demands. In 2020 IEEE
International Conference on Big Data (Big Data), pages 461–468. IEEE, 2020.

[78] Leland McInnes. Pynndescent for fast approximate nearest neighbors. Webpage.
Retrieved December, 15:2022, 2020.

166



[79] Frank McSherry, Andrea Lattuada, Malte Schwarzkopf, and Timothy Roscoe. Shared
arrangements: practical inter-query sharing for streaming dataflows. Proceedings of
the VLDB Endowment, 13(10).

[80] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. Differ-
ential dataflow. In CIDR, 2013.

[81] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable gpu graph traver-
sal. ACM Sigplan Notices, 47(8):117–128, 2012.

[82] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and Daniel
Sanchez. Exploiting locality in graph analytics through hardware-accelerated traversal
scheduling. In Proceedings of the 51st Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-51, page 1–14. IEEE Press, 2018.
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