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Fig. 1. Topology changes of sphere created by sweeping tori through it: octree cells (left), resulting mesh (middle)
and high-quality rendering using environment mapping.

Abstract—This paper describes an approach for the parametrization and
modeling of objects represented by adaptive distance fields (ADFs). ADFs
support the construction of powerful solid modeling tools. They can rep-
resent surfaces of arbitrary and even changing topology, while providing
a more intuitive user interface than control-point based structures such
as B-splines. Using the octree structure, an adaptively refined quadrilat-
eral mesh is constructed that is topologically equivalent to the surface.
The mesh is then projected onto the surface using multiple projection and
smoothing steps. The resulting mesh serves as the “interface” for interac-
tive modeling operations and high-quality rendering.
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I. Introduction

In recent years, the industrial design process has moved to-
ward computer-aided virtual reality based design. The use of
computer-aided geometric design (CAGD) techniques dra-
matically decreases the development time for product proto-
types. However, due to several factors, the design process is
still not fully virtual. Creating intricate (spline) models from
scratch is still complicated. Therefore, designers often first
create a model in clay or a similar material that is scanned
and converted to analytical form. ADFs, as described by
Perry and Frisken [1] promise to advance this process. For
example, using the ADF approach a very powerful virtual
toolkit can be constructed to model clay quite intuitively
and accurately in a fully virtual environment. Compared
to other volumetric modeling techniques, such as a voxel-
based [2] or constructive solid geometry (CSG) [3] represen-
tation, ADFs can provide improved image quality. However,
this ADF-based volume modeling is only useful if modeling
can be performed interactively and if the result can be con-

verted to traditional CAD model representations, such as B-
splines.

We describe a fast and simple approach that creates a quadri-
lateral mesh of a surface in ADF representation. This mesh
can be used for rendering and subsequent approximation of
the surface by splines. After discussing related work in Sec-
tion II, advanced modeling operations will be presented in
Section III, along with methods guaranteeing user-defined
error bounds. In Section IV, a fast method for model ren-
dering is described. The method provides a quadrilateral
mesh on the surface of the model that is a starting point for
conversion to B-spline representation.

II. Related Work

Several papers were published on volume-based modeling.
Galyean and Hughes [2] described a voxel-based approach
to volume sculpting that uses marching cubes [4], [5] to dis-
play the model. Later work includes [6], [7], [8]. The ap-
proaches described in these papers are limited by low res-
olution due to the data size of the volume and exhibit high
triangle counts for the displayed surface. Adaptively sam-
pled distance fields can solve some of these difficulties.

ADFs were described by Frisken et al. [9], based on ear-
lier work by Gibson [10]. In an ADF approach, discretize
distance functions (“fields”) are used to represent surfaces.
A distance field is a discrete volumetric data set, where
each sample point has an associated field value, the mini-
mal signed distance to the surface. This representation of-
fers the same flexibility as a voxel-based representation, but



requires, in the refined adaptive version, much less storage
space. Since distance values inside voxels are computed us-
ing trilinear approximation, smooth features can be repre-
sented using a lower resolution of the modeling space than
in a voxel-based method. Frisken et al. store the distance
field values in an adaptively refined octree to reduce data
size and increase local accuracy of the distance field. With
these refinements, ADFs can provide the framework for a
powerful modeling engine. In [1], Perry and Frisken de-
scribe a method for creating a surface mesh; this will be
discussed and compared to our approach in Section IV.

In principle, geometric modeling is done using a solid mod-
eling or surface modeling approach. Solid modeling is
mostly based on a direct voxel representation [2]. The mod-
eling space is divided into voxels that are segmented into
two categories: Voxels lie inside or outside the model. The
advantage of this method is its flexibility. Arbitrary topol-
ogy can be modeled, and topological changes require no ad-
ditional work. However, since the manageable data size, and
therefore resolution, is limited, image quality remains poor
and precision limited.

On the other hand, surface-based modeling techniques are
used extensively in industry. Extensive research describing
virtual modeling using surface deformations has been con-
ducted [11], [12], [13]. However, most of these approaches
share two fundamental problems: (1) Surface models are
control-point based, and the modeling process is in its nature
indirect. Even though much work on direct free-form de-
formations (FDDs) [14] has been done, these methods still
modify control points. (2) The initial topology of control-
point-based structures remains a problem. For all practical
purposes, this structure cannot be changed easily, and there-
fore the topology of the model itself cannot change.

Our work combines solid modeling with surface modeling
approaches. ADFs are used to model objects without any
topological constrains. A fast and simple method to gener-
ate a surface mesh for any given object is provided. This
approach allows us to achieve interactive rendering rates
and high image quality. A benefit of a mesh-based repre-
sentation is that the resulting mesh provides a good start-
ing point for converting a quadrilateral mesh to a (tensor-
product) spline-based representation.

III. Modeling

A primary advantage of ADFs is their flexibility. This is es-
pecially true for the implementation of Boolean operations.
For example, the difference between the distance field of an
object ��� and the distance field of a tool ��� can be com-
puted by 	�
����� ����� � ��� , see Figure 2. All other Boolean
operations (union, intersection) and ADF tools can be com-
puted in the same fashion [9]. In general, modeling is done
as follows: Depending on the tool size, a small local neigh-
borhood of the octree around the tool is updated. The spe-
cific update rules are defined by the operation, e. g., carving,
adding, etc. The following criterion is used: An octree cell
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Fig. 2. Isolines of a distance field before (a) and after carv-
ing operation (b).

is split if the local trilinear approximation of the distance
field in the cell differs by more than a user-defined error
bound from the distance field given by the tool. In the same
manner, eight children are merged when the parent node ap-
proximates the distance field within the error bound. During
modeling operations, we are interested in the isosurface of a
distance field f(x,y,z). The isosurface f=0 represents the sur-
face to be modeled. Therefore, the error introduced by only
updating the octree locally is not significant in our applica-
tion. Boolean operations also introduce an inherent error,
as described by Breen et al. [15], for points not close to the
surface. However, techniques exist that can correct this er-
ror if necessary, see [16], [15]. For surface modeling and
rendering only values “close to” the surface need to be cor-
rect. Since greater errors are introduced where one moves
away from the surface, it is reasonable to apply an adaptive
error bound: If the user-defined error bound is � , we want
this bound to be effective for cells whose centers are less
than ��� away from the surface (where � is a user-defined
constant). From there on, we want the error bound to de-
cline quadratically with increasing distance to the surface,
shown in Figure 3. According to the desired properties, we
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Fig. 3. Adaptive error bound.

define the adaptive error bound �� as: ������ , if ���! ���� , or
��"�#��$&%'� � � ���)(+*-,/.0)132 , otherwise. The parameter � � de-
notes the distance of a cell center to the surface, and 4 is
another user-defined constant. For an even less precise but
faster-to-calculate error bound, one can ignore all cells with
distance values � � greater than some constant, see [1]. An



adaptive error bound has two advantages: (1) It reduces the
number of octree cells.(Depending on � , 4 and the size of
the octree, we have observed savings by more than an order
of magnitude.) (2) It solves the problem of critical points in
the distance field.

Our method of enforcing the error bound depends on the lo-
cal derivatives of the distance field. Distance fields can con-
tain critical points where the gradient is ill-defined. An ex-
ample is shown in Figure 4. These critical points define the
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Fig. 4. Part of medial axis of an object.

medial axis, see [17], [18] for details. Such critical points
are generally far away from the surface and are not of inter-
est. However, due to ill-defined gradients, cells around the
critical points are usually subdivided further than cells close
to the surface. An adaptive error bound solves this problem.

IV. Mesh Creation

To render an ADF at interactive rates, polygon rendering
techniques must be applied. Perry and Frisken [1] use the
centers of what they call “boundary leaf cells” (called “data-
leaf cells” by us) as vertices for a triangulation. Based on
the local neighborhood of these leaf cells, certain edges are
chosen and triangles are constructed around them. The ver-
tices are then projected onto the surface and the triangles are
relaxed to improve triangle quality. The disadvantage of this
approach is that it can create cracks. However, cracks can
be detected and eliminated by locally refining the octree.

We use a different approach. Since a primary goal is the
eventual conversion to a spline representation, we prefer
dealing with quadrilateral elements. If a “nice” quadrilat-
eral mesh can be constructed, existing methods can be used
to convert the meshes to splines, e.g., hierarchical B-splines
[19]. A method that automatically displays the correct topol-
ogy of the distance field is also preferable.

Our method works as follows: Throughout the modeling
process, each octree node updates a data flag. This flag is
true when the node or one of its children contains or touches
parts of the surface. An octree node “touches” a surface
when the distance values at each of its corners have the same
sign but one or more distance values are zero ( or close to
zero within a user-defined error bound.) A node “contains”
parts of a surface when at least two of the distance values at
each corner have a different sign, see Figure 5. All leaves
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Fig. 5. Cells touching/containing surface.

that contain or touch the surface are called “data leaves.”
Figure 6 shows the data leaves of a bowl.

Fig. 6. Data leaves of a bowl.

The union of all data leaves defines a set that is topologi-
cally equivalent to the surface, (within a user-defined error
bound.) Considering an orientable two-manifold surface,
each data leaf has at least one face neighbor that is also a
data leaf. A leaf is a data-leaf when it contains the surface
or touches it. If the leaf contains the surface, the data at
corners of at least one face will have a different sign. How-
ever, since there is an octree node that shares this face, it
would also be chosen as a data leaf. Therefore, leaf A in
Figure 7 would have a data leaf as face neighbor. If a data
leaf touches the surface, there is at least one corner that has
a distance value of zero. Since this corner is shared by eight
octree nodes, all eight nodes are data leaves. Therefore, the
first leaf has at least three face neighbors that are also data
leaves, see Figure 7 (b).
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Fig. 7. Face neighbors for node containing surface (a) and
node touching surface (b). Vertices marked “+” are out-
side the object, the ones marked “-” are inside.

We now consider the set F of all faces of all data leaves:
Data leaves are divided into three categories: (1) outside



faces; (2) inside faces; and (3) partner faces. A face >�?"@BA
is called partner face when a face > * @CA exists such that
> ? and > * contain the same vertices in opposite orientation.
All other faces lie either on the inside or the outside of the
surface and are named accordingly. The subset of all out-
side faces define a quadrilateral mesh that is topologically
equivalent to the surface. By connecting all faces, project-
ing the vertices onto the surface and relaxing the mesh, we
can create a mesh whose vertices lie exactly on the sur-
face. The special case where faces of different levels share
an edge can be detected easily. In the octree, neighboring
cells are allowed to be one level apart. Therefore, the only
special case that can occur is depicted in Figure 8. For the

(a) (b)

Fig. 8. Avoiding cracks between levels: before connection
(a) and after connection (b).

projection of vertices we first calculate an approximate sur-
face normal. (One can either use the volumetric information
contained in the octree of the surface normals of the cur-
rent mesh.) The ADF provides a distance-to-closest-surface
value for each vertex amd we move the vertex by this dis-
tance along its normal. The resulting mesh is smoothed (re-
laxed) to distribute the vertices more evenly, using for ex-
ample a Laplacian smoothing. If necessary, the procedure
is repeated. Ususally at most three project/smooth steps are
necessary to move all mesh vertices onto the surface. Our
approach avoids cracks and maintains a quadrilateral struc-
ture. To selecte all outside faces one must considere for each
data leaf which of its six faces must be created. This deci-
sion is based on the distance values at the corners and the
leaf’s resolution level relative to that of its neighbors.

Severall special cases can occur for which the connection of
faces is not straightforward. In Figure 9, four faces share an
edge, and the connectivity is not necessarily obvious. Many
more complicated special cases exist, but will not be de-
scribed in this paper. For display purposes, it does not matter
how these edges are connected.

Fig. 9. Four faces sharing edge (bold).

V. Results

Figure 1 shows three views of the same model. The model
was created by sweeping a torus successively along the three
coordinate axes through a sphere. This results in multiple
topology changes. Not only can our algorithm create the
final mesh but it can also create topologically correct meshes
at any time during the carving process. Figure 10 shows the
UC Davis mascot as a 3D model. One notices that the model
is represented as a closed D ?* D surface. Figure 12 shows a
sphere with four rectangles carved out and two holes drilled
into it. In the close-up view of the mesh (Figure 13) one can
see the highly adapted mesh that captures the sharp edges.
In Figure 11 we show a cube rotated around one diagonal.
Both edges and corners are preserved.

The smaller models, like the cube, consist of about 10000
faces with a level-7 octree, while the mascot has about
155000 faces and a level 11 octree. The smaller meshes
required less than one second to generate, only the Davis
mascot mesh required three to four seconds. However, we
are using our prototype implementation which is not opti-
mized.

Fig. 10. Three-dimensional model of the UC Davis mascot.



Fig. 11. Cube partially “rotated” around its diagonal.

VI. Conclusions

We have described an algorithm that converts objects in
ADF representation to a two-dimensional surface represen-
tation consisting of quadrilaterals. Within a user-defined er-
ror bound, this quadrilateral mesh is topologically equiva-
lent to the object’s surface. The creation of the mesh is
numerically stable and can be used for efficient rendering.
This approach combines the modeling techniques provided
by ADFs with fast polygon-based rendering. We are able
to model objects of any topology, as long as their surface
is an orientable two-manifold. More importantly, changes
in topology are easily obtained as “byproducts” of simple
operations on an underlying ADF representation.

VII. Future Research

Our method has produced promising results. Some issues
need to be studied in more detail. We are currently working
on several methods to improve mesh creation and appear-
ance. To further increase rendering speed the mesh should
only change in a certain neighborhood for local modeling
operations. Additional work also needs be done concerning
the user interface, especially for virtual environments.

Several research directions are possible. As of now, our
mesh still contains many extraordinary vertices (vertices
with valences unequal four). We are investigating algo-
rithms to topologically “clean up” the mesh to reduce the
number of such extraordinary vertices substantially, without
distorting the mesh too much. Furthermore, user studies are
needed to determine what type of modeling tools are suit-
able for which types of modeling applications. Especially,
it should be clearly defined what kind of modeling will be
performed best using standard CAGD techniques and what
type could benefit most from ADF techniques.

Fig. 12. Spherical solid manipulated by multiple carving
operations.

Fig. 13. Magnified view of a hole of geometry from Figure
12.
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