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Abstract. Due to the aging of civil infrastructure and the associated economic 
impact, there is an increasing need to continuously monitor structural and non-
structural components for system life cycle management, including maintenance 
prioritization. For complex infrastructure, this monitoring process involves dif-
ferent types of data sources collected at different time scales and resolutions, in-
cluding but not limited to abstracted rating data from human inspections, histor-
ical failure record data, uncertain cost data, high-fidelity physics-based simula-
tion data, and online high-resolution structural health monitoring (SHM) data. 
The heterogeneity of the data sources poses challenges to implementing a diag-
nostic/prognostic framework for decision-making for life cycle actions such as 
maintenance. Using quoin blocks components of a miter gate as an example, this 
chapter presents a holistic Bayesian data analytics and machine learning (ML) 
framework to demonstrate how to integrate various data sources using Bayesian 
and ML methods for effective SHM, and Prognostics and Health Management 
(PHM). In particular, this chapter discusses how Bayesian data analytics and ML 
methods can be applied to (1) diagnosis of bearing loss-of-contact degradation in 
quoin blocks; (2) optimized sensor placement for SHM on the gate; (3) fusion of 
various data sources for effective PHM; and (4) deciding maintenance-strategies 
by considering the behavioral aspect of human decision-making under uncer-
tainty. 

Keywords: Bayesian methods; uncertainty quantification; FE model; surrogate 
model; damage estimation; remaining useful life prediction; decision-theory 

1 Introduction 

Advances in sensing technologies, accelerated by the “internet-of-things,” have al-
lowed collection of large amounts of data about our civil infrastructure, which includes 
complex transportation networks both over land and through our inland waterway nav-
igation corridors. Among the most important reasons for this data collection are dam-
age/state diagnostics and predictions of future state performance. Such assessments can 
lead to improved life-cycle management of civil infrastructure systems, which is critical 
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to keep these systems continuously operational under increasingly constrained budgets. 
Figure 1 shows an overview of the association between diagnosis, prognosis, and 
maintenance decision making for civil infrastructure; more detail can be found in [1]. 
In a general sense, Figure 1 shows the fundamental workflow of a “digital twin” for 
structural asset life cycle diagnosis and prognosis. 
 

 
Fig. 1. Diagnosis, Prognosis, and Maintenance Decision Making Framework for Civil Infra-
structure 

For damage diagnosis, engineers can rely on supervised learning algorithms when 
sufficient life-cycle data is available [2–4]. On the other hand, when life-cycle data is 
limited, engineers typically rely on physics-based modeling (such as finite element (FE) 
models) and model updating techniques to estimate the unknown parameters required 
to infer the current state of the system as indicated in Fig. 1. 

Prognostics and Health Management (PHM) is the notion of augmenting current 
structural state diagnostic information gleaned by inspections or SHM to make predic-
tions of the future state and reliability of the system based on degradation models or 
historic degradation/failure data [5]. When such prior data is available (not very com-
mon in the civil infrastructure domain), a data-driven degradation model is possible, 
but more commonly physics-based approaches [6,7] or empirical approaches to build 
the model [8–10] are required. 

Additionally, PHM uses its prediction capabilities to inform life cycle management, 
which targets optimization of a desired system performance criterion (e.g., cost, avail-
ability, reliability, etc.). For life-cycle management, maintenance approaches can be 
roughly classified into two categories, namely time-based maintenance (TBM) and con-
dition-based maintenance (CBM). This term is closely related to condition monitoring 
(CM), which usually refers to implementation of state diagnostics applied to rotating 
machinery [11]. When applied to civil and aerospace systems, CM is referred to as 
SHM, so these terms are used interchangeably in a general sense. When information 
from an SHM (equivalent, a CM) process is used to trigger maintenance decisions, a 
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CBM decision policy arises. TBM and CBM approaches have been benefited by ad-
vances in various fields such as data analytics, machine learning, computational me-
chanics, Bayesian statistics, and reliability engineering.  

As stated before, diagnostic and prognostic approaches are either physics-based (e.g. 
FE model updating) [12–14] or data-driven [15–18]. For some engineering systems, 
hybrid approaches that combine the physics-based approach with data-driven approach 
to improve the CBM predictive capabilities are useful. However, the study of hybrid 
approaches [19,20] has been very limited, and even more limited for large civil infra-
structure. Other limitations that occur, for example, are that the monitoring process 
sometimes involves different types of data sources collected at different time scales and 
resolutions, such as abstracted rating data from human inspections, historical failure 
record data, uncertain cost data, high-fidelity physics-based simulation data, and online 
high-resolution structural health monitoring (SHM) data. The heterogeneity of the data 
sources poses challenges to the diagnostic/prognostic implementation of decision-mak-
ing for maintenance. 

This chapter presents a holistic framework for diagnosis, prognosis, and mainte-
nance decision making for civil infrastructure using Bayesian data analytics and ma-
chine learning methods. It combines a physics-based approach for diagnosis with data-
driven approaches using various data sources for prognostics. In summary, this chapter 
discusses how to: (1) fuse various data sources using Bayesian methods; (2) perform 
damage diagnostics and prognosis using Bayesian data analysis and machine learning; 
(3) optimize maintenance strategies; and (4) apply these concepts to a real-world prob-
lem using a miter gate example, drawn from a navigation lock system used in the inland 
waterways navigation corridor. 

2 Summary of data sources 

2.1 Physics-based simulation data 

For civil systems, the approach is usually carried out by using a physics-based model 
(e.g. finite element (FE) model) of the structure [2–4]. It is fundamentally an inverse 
problem because the system parameters are estimated from measured response quanti-
ties. Generally, a physics-based model is a “forward” problem where the system re-
sponses (e.g., FE output response) are predicted as a function of the (known) system 
parameters (e.g., FE inputs). Synthetic system parameters may be used to obtain the FE 
system response, whose responses can be compared to the “true” system as shown in 
Figure 2. 
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Fig. 2. FEM modelling of a leaf of a miter gate including gap length deterioration 

2.2 Inspection data  

Regular condition assessments are conducted in critical structures such as bridges and 
offshore structures. These assessments are obtained from an inspection process, which 
can be part of a periodic or non-periodic inspection policy. One may reasonably hy-
pothesize that these inspections should reflect a deterioration state. These states can be 
in a continuous or discrete form, e.g., an inspection assignment of A, B, C, D, F, CF, 
such as is utilized for hydraulic structures owned by the U.S. Army Corps of Engineers 
(USACE). Inspections can be performed by inspectors, drones [21], or even robots [22]. 
The resulting data format is usually highly abstracted in the format of ratings as men-
tioned above. 

In [23], the failure condition in critical components is estimated using a transition 
matrix built from the discrete inspection ratings. The following is an example of a tran-
sition matrix built from the reported 6 damage ratings: 

   (1) 

where  is a probability operator,  are the damage 

ratings at time step t, and “ ” is a conditional operator. 
The above transition matrix obtained from inspection data can be used to estimate 

the possible condition (and failure condition) after n time steps as follows: 
   (2) 

PReport = P Xt+1
R Xt

R( ) =
P At+1

R At
R( ) ! P CFt+1

R At
R( )

! " !

P At+1
R CFt

R( ) ! P CFt+1
R CFt

R( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

,∀i, j = 1,!, 6,

P ⋅( ) Xt
R = [At

R , Bt
R ,Ct

R , Dt
R , Ft

R ,CFt
R]

|

P(Xn+k
R ) = P(Xk

R ) ⋅PReport
n ,



5 

where  are the condi-

tion probabilities at the current time or initial time (i.e. k=0) where  and  rep-

resents  and , respectively. The condition CF represents the complete failure 

condition. is the transition matrix built from the discrete ratings, and  

are the condition probabilities at n time steps in the future. The current time  
may be either obtained from current inspections or using SHM data. 

2.3 Human errors 

Human error can greatly affect the reliability of the inspection assessment. For example, 
human psychology influences inspectors to make conservative or nonconservative as-
sessment that can greatly influence maintenance decisions. Benchmark data may be 
available to account for the accuracy of the assessment given the inspector qualifica-
tion, training, and certification [24]. A human observation error matrix can be ob-
tained/estimated as follows to probabilistically measure the human error  
 

 (3) 
in which  is the probability that the reported OCA rating is k given 
that the true OCA rating is i.  

An example of a conservative human error matrix is given as below 

   (4) 

The above  models the behavior of an inspector that regularly tends to assess 

a component to be in a better condition than reality. Accounting for  allows to 

estimate the and  from  as will be discussed in Sec. 4.2. The terms 

and are the true transition matrix and the true condition probabilities, re-
spectively, at the current time. 
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2.4 SHM data 

SHM data involves periodically sampled response measurements from spatially distrib-
uted sensors, extraction of damage-sensitive features from these measurements and 
damage diagnosis using these features with either an inverse-problem approach or a 
data-driven approach.  

As stated earlier, SHM diagnostic capabilities can inform the current state of the 
structure. However, SHM data inevitably will contain noise due to a variety of stochas-
tic influences, not the least of which result from environmental and operational varia-
bility. In this chapter, the sensor monitoring data (i.e., strain measurement data for the 
miter gate example) at time step  is defined as , where  is the 

number of sensors. Also,  defines the sensor measurements col-

lected up to . 
Next, the following section will discuss how to utilize the above data sources for the 

damage diagnostics, prognostics, and maintenance planning using Bayesian data ana-
lytics and machine learning.  

3 Damage diagnostics using Bayesian data analysis and machine 
learning 

In this section, a summary of how to perform damage diagnostics using simulation data 
and SHM data based on machine learning and recursive Bayesian updating is presented. 

3.1 Surrogate modelling for physics-based models using machine learning  

For damage diagnosis with limited SHM data, inverse modelling via physics-based 
models such as finite element (FE) models have been used with data from SHM systems 
to estimate parameters that infer some form of damage state. A fast, efficient simulation 
of complex FE models is essential for appropriately fast damage diagnosis. Depending 
on the dimension space of the inputs and outputs of interest, different machine learning 
techniques can be chosen to build “cheap” yet accurate surrogate models of the physics-
based FE model. Two of the commonly used techniques, artificial neural networks and 
Gaussian process regression, are briefly summarized as below.  
Artificial Neural Network (ANN). ANNs are an attractive option for surrogate emu-
lation of FE models. This type of supervised learning model works well with classifi-
cation (for discrete classes) and regression (for continuous processes) problems. How-
ever, ANNs are effective when a large amount of data is available, and they are built to 
create point estimates rather than probabilistic estimates. Some researchers [25–28] 
have used Bayesian inference to estimate the ANN’s weight and model parameters, 
which has been referred to as Bayesian Neural Networks (BNN). BNNs are good for 
high-dimensional spaces and better handle the issue of limited data availability. 
Gaussian Process Regression (GP). GP (or Kriging) models are an attractive option 
for surrogate architectures because they are built to quantify the uncertainty in the esti-
mations rather than simply point-based estimates, as most other supervised learning 

it si = [si1, si2 ,!, siNS ] SN

s1:n !{s1, s2 ,", sn}

tn
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models (e.g., ANNs, support vector machines) do. Several researchers use GP regres-
sion to build Bayesian prediction models for civil engineering structures [23,29]. A GP 
surrogate model,  is defined as 

   (5) 

where , , and  are the coefficients of the trend func-
tion, the trend function, and a stationary Gaussian process, respectively.  

The stationary Gaussian process uses a correlation function  to quantify the 
correlation between responses at any two points as below  

   (6) 

where  is the number of variables, and  is the vector of roughness 

parameters.  
Furthermore, the aforementioned GP hyper-parameters  are esti-

mated using the maximum likelihood estimation method. After the estimation of the 
hyper-parameters  for any given inputs , the GP prediction are given by 
   (7) 

where  and  are the mean and variance of the prediction of , respec-
tively, for the input . 

In applications such as the miter gate presented in this chapter, the output space of 
the simulation or the sensors available (e.g., hundreds or thousands of nodes in the FE 
model) can be large. Also, it is known that sensors located close to each other may 
contain highly correlated information. Therefore, dimension reduction techniques are 
usually used in conjunction with GP models or ANNs to build surrogate models for the 
physics-based FE model. A commonly used technique is singular value decomposition 
(SVD). SVD is a linear algebra technique used to transform high-dimensional matrices 
into a reduced dimensional space preserving most of the original information. Fig. 3 
presents a generalize procedure of surrogate modeling based on a GP model and di-
mension reduction methods for a model with inputs  and . Following that, Fig. 4 
shows the prediction process using the trained kriging model for given FEM input pa-
rameters and features obtained from dimension reduction.  
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Fig. 3. Building Surrogate Model for FEM model using GP and dimension reduction 

 
Fig. 4. Prediction using GP surrogate modeling and dimension reduction 

The proposed framework explained in this work is based on a surrogate model using 
a Kriging model combined with SVD to develop a fast emulator of the FEM. Fig. 5 
shows the testing accuracy obtained at 46 sensors installed in the Greenup miter gate at 
a particular point in time, which shows how close ML-based surrogate model emulates 
the original FE model. 

 

 
Fig. 5. Testing Accuracy of Kriging Model 



9 

3.2 Damage diagnostics using recursive Bayesian updating 

Given the SHM data and a ML-based surrogate model of the physics-based FE model, 
damage diagnosis can be performed using Bayesian estimation of parameters, , that 
directly relate to a damage mode (e.g., cracks, gap, thickness loss due to corrosion, etc. 
See Fig. 2 for examples). Bayesian estimation of this parameters can be performed 
based on the following state-space equation 

   (8) 

where  is the state equation  that describes the evolution of  over time,  is 

the process noise,  is the ML surrogate model built in Sec. 3.1 where  rep-
resents the known/measurable input variables to the physics-based model (e.g. loads, 
geometry, material properties, etc.), and  are the observations from SHM system as 
discussed in Sec. 2.4.  

Note that the state equation given in Eq. (8) may be unknown due to a lack of un-
derstanding of the damage evolution mechanism. In that situation, a random walk type 
equation can be used as the state equation with large process noise as discussed in [23]. 
Assume there are  strain sensors installed in a structure such as the miter gate and 

the damage parameter, , to infer at time step  is the extent of the loss of bearing 
contacting (i.e. gap length). Then, the posterior probability density function of the gap 
length  at time step  conditioned on strain measurements  is estimated using 
Bayesian inference method recusively as follows 

   (9) 

which  is defined as follows  

   (10) 

in which  is the likelihood function, obtained from the measurement equation, 

of observing  for given  at time step , and the term  represents the 

probability distribution of  for a given  obtained using the state equation, which 
describes the damage evolution over time.  

The recursive Bayesian updating of Eqs. (9) and (10) is analytically intractable. In 
practical application, various filtering methods, such as particle filtering [30], extended 
Kalman filter [31], and unscented Kalman filter [32], have been developed to approxi-
mate recursive updating process. 

Fig. 6 presents an illustrative example of strain measurement data  of 10 sensors 
 over a certain time period of interest. After that, Fig. 7 shows the damage 

diagnostics results of gap length of miter gate (i.e., the gap damage in the miter gate as 
shown in Fig. 2) over time using recursive Bayesian updating and the ML-based surro-

na
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ĝ(an , xn ) xn

sn

NS
an tn

an tn s1:n

f (an | s1:n ) =
f (sn | an ) f (an | s1:n−1)
f (sn | an ) f (an | s1:n−1)dan∫

∝ f (sn | an ) f (an | s1:n−1),

f (an | s1:n−1)

f (an | s1:n−1) = f (an | an−1) f (an−1 | s1:n−1)∫ dan−1,

f (sn | an )

sn an tn f (an | an−1)

an 1na -

ns
( 10)SN =



10 

gate models. It shows that the recursive Bayesian inference method can effectively per-
form damage diagnostics by fusing the information from physics-based simulation 
model and SHM data. More details of the integration of ML-based surrogate model and 
SHM observation data using Bayesian recursive updating for damage diagnostics are 
available in [23].  

 
Fig. 6. Strain measurement from ten sensors over time 

 
Fig. 7. Gap length diagnostics result using Bayesian method and ML surrogate model (note that 
Gap here refers to the damage mode shown in Fig. 2) 

3.3 Sensor placement optimization for damage diagnostics using machine 
learning  

Sensor placement optimization (SPO) plays a critical role in improving the effective-
ness of the SHM system for damage diagnostics (see Eqs. (9) and (10)). Designing an 
optimal sensor network is very challenging in practice since the observations are not 
available in the design stage. In that case, the physics-based simulation model needs to 
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be employed to provide information on how to properly allocate the sensors. The phys-
ics-based model, moreover, is computationally very demanding. Machine learning 
techniques play a vital role in overcoming the challenges in SPO.  

A SPO model can be generalized as follows 

   (11) 

where  is a sensor network design,  is the sensor design domain,  is a cost 

function,  is the total cost of the sensor network, and  is the allowable budget. 
The cost function  may be formulated from different perspectives. For exam-

ple, probability of detection [33], Bayes risk [34], and information gain [35] have been 
used as cost functions in sensor placement design optimization. Taking the information 
gain measured by the Kullback–Leibler (KL) divergence as an example,  is for-
mulated as 
   (12) 

where  is the KL divergence 

(e.g. relative entropy) for given observations  and sensor placement design , which 
measures the difference (i.e., information gain) between the prior and posterior distri-
butions of damage state variables .  

Solving the sensor placement optimization model given in Eq. (11) is extremely 
challenging due to the high computational effort required in the repeated evaluations of 
Eq. (12). Bayesian data analytics and machine learning techniques are essential to over-
come the challenge. First, ML models and Bayesian inference methods as discussed in 
Secs. 3.1 and 3.2 enables for the efficient estimation of the posterior distributions of the 
damage states variables. More importantly, ML-based optimization methods make it 
possible to solve the model given in Eq. (11) when a large number of sensors need to 
be allocated to a large civil infrastructure. 

For example, when sensors need to be placed on the miter gate to detect the “gap” 
of the gate due to damage, the dimension of the design variables given in Eq. (11) will 
be very large. Assuming that 20 sensors need to be placed, the number of design vari-
ables will be 60, if the three-dimensional coordinates of each sensor are considered as 
design variables. In that case, directly solving the optimization model of Eq. (11) will 
be computationally prohibitive. Alternatively, a greedy-based framework can be em-
ployed to place the sensor one-by-one. In order to identify the optimal placement of the 
i-th sensor, the optimization model given in Eq. (11) is re-formulated as 

   (13) 

where  are the coordinates of the previous i-1 sensors and  are the coordinates 
of the i-th sensor. 

d* = argmax
d∈Ωd

{Ψ(d)},

s.t.C(d) ≤Ce ,
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* )},

s.t.C(d) ≤Ce  and d ={di ∪d1:i−1
* },

d1:i−1
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Through the formulation of the model in Eq. (13), the dimension of the design vari-
ables is reduced to 3 in each iteration of the greedy optimization scheme. Even for the 
three-dimensional optimization model, the global optimization of Eq. (13) is still com-
putationally challenging. Bayesian optimization method, which is also known as the 
efficient global optimization method, can be employed to efficiently solve the optimi-
zation model by leveraging the prediction capability of the Gaussian process model 
[36,37]. GP-based Bayesian optimization is a process of adaptively training a GP sur-
rogate model for the objective function of an optimization model. In each iteration of 
the adaptive training of the GP, training data are identified as those design locations 
which have the highest probability of being the maximum/minimum design point. The 
key to the GP-based optimization is the definition of the expected improvement func-
tion (EIF)  

   (14) 

where  and  are respectively the probability density function and cumulative 

distribution function of a standard normal random variable,  is the current best val-
ues in the training dataset,  and  are the mean and standard deviation of the 
GP surrogate model prediction. 

By maximizing the EIF in Eq. (14), new training points may be identified to adap-
tively refine the GP surrogate model to approach the optimal value. Fig. 8 shows an 
illustrative example of Bayesian optimization using GP.  

 

EIF(d) = (µ(d)−ϕ*)Φ µ(d)−ϕ*

σ (d)
⎛
⎝⎜
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⎞
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Fig. 8. An illustrative example of optimization using GP-based Bayesian optimization, (a) First 
iteration; (b) Second iteration. 

As shown in Fig. 8, an initial GP surrogate model is trained first. Based on the trained 
GP surrogate model, the EIF values over the design space are computed as shown in 
Fig. 8(a). By maximizing the EIF, a new training point is identified, and the GP model 
is retrained in the second iteration as shown in Fig. 8(b). After a few of iterations, as 
illustrated in Fig. 9, the maximum point can be identified. These iterations show that 
the GP-based optimization needs very few evaluations of the objective function to iden-
tify the global optimization, which is much more efficient than the other global optimi-
zation algorithms, such as genetic algorithm, simulated annealing, and etc. 
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Fig. 9. An illustrative example of optimization using GP after converges. 

The ML-based optimization method allows us to effectively allocate the optimal 
sensors and thereby increases the effectiveness of damage diagnostics as discussed in 
Sec. 3.2. Note that the greedy algorithm-based sensor placement design is an approxi-
mation of the original model. It may not find the “true” globally optimized sensor net-
work. This limitation can also be mitigated using other ML methods, such as the rein-
forcement learning method, which may be better suited for dynamic optimization prob-
lems. Fig. 10 presents an example of sensor placement optimization results of miter 
gate obtained using the method presented in this section. More details are available in  
[38]. 

 
Fig. 10. An example of sensor placement optimization results using machine learning 
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4 Failure prognostics using Bayesian data analysis and machine 
learning 

Failure prognostics is a process of predicting the end of life (EOL) of civil infrastruc-
tures to inform life-cycle management. Based on the state estimation from failure diag-
nostics as discussed in Sec. 3, the state of the system from the current time to a future 
time is obtained to predict the potential failure time or estimate the remaining useful 
life (RUL) of the system. Fig. 12 shows a schematic of how to use the predictions to 
calculate the EOL and RUL distributions. 

 
Fig. 11. RUL estimation based on failure prognostics 

An essential part of the failure prognostics or RUL estimation is the degradation 
modeling since it is required to perform the projection of the state into future. To build 
such degradation models for prognosis purposes, researchers have tried to model the 
evolution/degradation of damage using physical degradation models such as applica-
tions in fatigue crack growth [39–41] and corrosion growth [6,7]. These physical deg-
radation models are developed based on the understanding of the physical behavior and 
are usually validated by experiments. On the other hand, empirical degradation models 
are used when the evolution/degradation of damage is not well understood either due 
to limited understanding of the physical phenomenon or when the damage state cannot 
be measured continuously but rather occasionally. Approaches that combine physics-
based approaches with data-driven methods have also been developed in recent years 
and lead to a group of hybrid approaches. A comprehensive review of prognostics ap-
proaches for rotating machine is available in [42].  

For prognostics of civil infrastructure, however, the challenges come from the ab-
stracted data sources and the lack of a degradation model. For example, the inspection 
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data are highly abstracted ratings as discussed in Sec. 2.2 and the ratings may be pol-
luted by human errors as presented in Sec. 2.3. This section presents how to perform 
failure prognostics in this situation through three different approaches, namely 

• Failure prognostics based on inspection data 
• Failure prognostics using a continuous degradation model mapped from in-

spection data 
• Integrated failure diagnostics and prognostics using dynamic Bayesian net-

works (DBN) 
In the following subsections, the aforementioned three approaches are explained in 

detail. 

4.1 Failure prognostics based on inspection data 

As been discussed in Sec. 2.2, inspection data contains some degradation information 
of civil infrastructures even though they are highly abstracted. Since the damage state 
estimated from SHM is in continuous form, the continuous state can be converted into 
inspection data in discrete state through certain protocols. Taking the gap damage of a 
miter gate given in Fig. 2 as example, as shown in Fig. 12, the estimated gap length can 
be converted into gap state, which can then be used for failure prognostics using the 
gap state transition matrix given in Sec. 2.2. 

 
Fig. 12. Failure prognostics using inspection data. 

More specifically, a certain protocol is usually needed to map the continuous damage 
state to the abstracted discrete state of inspection data. For instance, the gap length  
of a miter gate (see Fig. 2) can be mapped into a gap state  based on an engineering 
protocol as follows 

   (15) 

where  are protocol parameters defined by the field engineers. 

ta
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Based on the mapping defined in the above equation, SHM data  can be used to 
estimate the gap state at current time step (i.e., highly abstracted inspection data) as 
follows  

  (16) 

where the PDF  of damage parameter , is estimated using the Bayesian 
updating method presented in Sec. 3.2.  

Once the gap state at current time step is estimated, the damage state of the failure 
m time steps into the future is obtained through the transition matrix given in Sec. 2.2 
as  
   (17) 

in which  and  are respectively given in Eq. (1) and Eq. (16).  
Using Eq. (17), the RUL for the system based on the current damage state and the 

future failure state can be estimated. Details on such predictions can be found in [23]. 
This approach assumes that the transition matrix  can accurately represent the 
underlying degradation patten of the structure. However, this assumption is usually not 
true since the abstracted ratings are often biased by human errors as discussed in Sec. 
2.3. To tackle this issue, an approach has been proposed in [10] to map the reported 
transition matrix to a more useful transition matrix that has eliminated some of the ef-
fects of the human errors. In order to map the reported rating transition matrix  

to the underlying “true” transition matrix , the underlying true transition rating is 

defined at time t as  and that at t+1 as . Similarly, the reported ratings from 

field engineers are defined at time t as  and that at time t+1 as . Based on  

these definitions and using the human error matrix given in Eq. (3),  can then be 

mapped into  by following the procedure shown in Fig. 13. More details of Fig. 13 

are available in [1]. Once  is obtained, it can be used to substitute  in Eq. 
(17) to get more accurate failure prognostics results. 
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Fig. 13. Mapping between reported transition matrix to compensated/true transition matrix 

In addition, a Bayesian method has also been developed in [23] to update the errors 
in the transition matrix using SHM data. The advantage of the approach presented here 
is that it requires minimal information for failure prognostics. The disadvantage is that 
there is very large uncertainty in the obtained RUL estimation results. Alternatively, a 
stochastic continuous degradation model can be built to improve the confidence of such 
predictions of the damage parameters which leads to better failure prognostics. 

4.2 Mapping inspection data into continuous degradation model for failure 
prognostics 

Using the gap growth of miter gate as an example, as shown in Fig. 14, an alternative 
approach to perform failure prognostics is to map the abstracted inspection data into a 
degradation model in continuous space and then perform failure prognostics in the con-
tinuous space. It is expected that prognostics in continuous space can increase the con-
fidence of RUL estimation. 

 
Fig. 14. Failure prognostics in continuous space by mapping inspection data into a degradation 
model. 

For a transition matrix  given in Section 2.2 or  obtained in Sec. 4.1 after 
mitigating human error bias, a continuous degradation model can be obtained through 
Bayesian or optimization-based calibration. More details of the mapping from inspec-
tion data to a degradation model are available in [10]. Here, a brief summary of the 

PReport PTrue
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major steps is presented. When optimization-based method is employed, the optimiza-
tion model is given by  
   (18) 

where  is the simulated transition matrix for a given degradation model with pa-
rameters . 

The most critical part is how to estimate  for given . To do that,  is cal-
ibrated for any given . The degradation model is modelled as a multi-stage degrada-
tion model as follows 

   (19) 

where  is the gap length at time t,  and  are stage-dependent degradation pa-

rameters,  is a standard deviation variable of degradation stage i, and  is a sta-
tionary standard Gaussian process with auto-correlation function given by  
   (20) 

in which  is a correlation length parameter. 
For the above degradation model and given degradation model parameters, a large 

number of realizations of the degradation curves is simulated using the Monte Carlo 
simulation method. The obtained realizations of the degradation curves in the continu-
ous space can then be converted into ratings in the discrete states as follows 

   (21) 

where  are parameters that govern the transition between different stages 
of degradations in the continuous space. 

After the simulated degradation curves are converted into degradation ratings using 
Eq. (21), the simulated transition matrix  can be obtained. For the above degrada-
tion model, the parameters of the degradation model, , can therefored be summarized 
as follows 

   (22) 

Then, the degradation model can be estimated as follows using the optimization 
model given in Eq. (18). Fig. 15 summarizes the overall procedure of estimating  
for a given degradation model and model parameters . 
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Fig. 15. Overview of obtaining simulated transition matrix for given . 

Once the degradation model is available, it can be used for failure prognostics in the 
continuous space as illustrated in Fig. 11. This procedure, however, is not limited to the 
model given in Eq. (19). It is also applicable to other degradation models and can be 
integrated into a Bayesian framework. More detailed discussions of this approach can 
be found in [10]. 

Fig. 16 depicts a comparison of the RUL estimates obtained using the approaches 
presented in Sec. 4.1 (denoted as TM mean prediction, TM Conf. limit) and Sec. 4.2, 
respectively. It shows that mapping inspection data into a continuous degradation 
model can significantly increase the confidence of the failure prognostics results. 

 
Fig. 16. Comparison of RUL estimates using discrete degradation model (Sec. 4.1) and piece-
wise continuous degradation model (Sec. 4.2). 

θ
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4.3 Integrated failure diagnostics and prognostics using dynamic Bayesian 
networks 

Failure diagnostics and prognostics of civil infrastructure usually require the usage of 
multiple models including degradation model [39–41] and physics-based model [12–
14], as discussed earlier. In addition to various analysis models, heterogeneous data and 
uncertainty sources are involved in the process of diagnostics and prognostics. A flex-
ible tool that can be used to tackle the challenges in diagnostics and prognostics caused 
by the heterogeneity of model and data sources is Bayesian networks (BN).  

A BN, which is also called probabilistic graphic model, is a directed acyclic graph 
that connects different variables in a probabilistic way. It allows for the flexible inte-
gration of multi-type of models and information sources in a systematic Bayesian 
framework, and thereby enable decision makers to update information and reduce un-
certainty in a holistic manner [43]. Due to its capability of fusing information and data 
sources, BN plays a vital role in building digital twins for SHM in various assets, from 
aerospace engineering to civil and mechanical engineering [40,44].  

For n random variables (nodes), and , BN represents the joint prob-
ability density function  as follows  

   (23) 

where  is a set of parent nodes of ,  is the conditional probability mass 
(CPM) function or conditional probability density (CPD) function, and nodes without 
parent nodes are called root nodes. For root nodes, assume  

A type of widely used BN in failure diagnostics and prognostics is the dynamic 
Bayesian network (DBN). Fig. 17 shows a simple example of DBN. As shown in this 
figure, the DBN consists of state variable denoted by  and measurement variable rep-

resented by . The CPD function  describes the transition of the state vari-

able  over time and  models the probabilistic relationship between the 
state variable and measurement variable. When the state variables are variables related 
to the failure modes or degradation stages of the civil infrastructure, the measurements 
collected from measurement variable  can be used for failure diagnostics using 
Bayesian inference methods. Based on the failure diagnostics or estimation of damage 
related state variables, failure prognostics may then be performed according the transi-
tion of state variables over time, which is governed by the CPD function .  

In practical engineering applications, the node in the DBN can be a mathematical 
model, a finite element model, or a data-driven machine learning model. The DBN used 
for failure diagnostics and prognostics can be constructed using physics-based method 
[12–14], Bayesian network learning method [44], or a hybrid of physics and data-driven 
methods [19,20].  
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Fig. 17. An example of dynamic Bayesian network 

Fig. 18 depicts a schematic Dynamic Bayesian network at one time instant for the 
failure diagnostics and prognostics of a miter gate (see Fig. 2), which is used an exam-
ple to explain the presented approaches in this chapter. Note that, for the sake of sim-
plification, the transient BN is not depicted. As shown in this figure, the DBN connects 
variables of a degradation model with variables of a strain analysis model of the miter 
gate. For example, the parent nodes of node  in Fig. 18 are nodes  and . The 
CPDs in the DBN can be derived according to the approaches discussed in Sec. 3.2 and 
Sec. 4.2 of this chapter. Using the strain measurement collected from SHM system, the 
uncertain variables of the degradation model can be updated. The updated degradation 
model can then be used to estimate RUL of the gate dynamically over time. 

1e σ e µ1
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Fig. 18. A schematic Bayesian network of a miter gate at one time instant for diagnostics and 
prognostics. 

Fig. 19 presents an illustrative example of the posterior distribution updating of pa-
rameter  over time using the strain measurements of the miter gate. Following that, 
Fig. 20 depicts the RUL estimation of the miter gate over time. It shows that the confi-
dence of RUL estimation increases over time as more and more measurements are col-
lected. Additionally, it is worth mentioning that the degradation model and strain anal-
ysis model are updated in an integrated manner in the DBN-based framework. This 
example illustrates the flexibility of DBN in connecting multiple models for failure 
diagnostics and prognostics. A good application of DBN for the failure diagnostics and 
prognostics is available in [45]. 

Moreover, the degradation model parameters obtained in Sec. 4.2 using optimization 
or Bayesian-based method can be used as prior information for the DBN-based method. 

 

1w
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Fig. 19. An illustrative example of updating posterior distribution of a degradation model pa-
rameter using DBN over time. 

 
Fig. 20. RUL estimation over time of the miter gate. 

In summary, this section presents three different approaches for failure diagnostics 
using Bayesian data analytics and machine learning. The advantage of the approach 
presented in Sec. 4.1 requires minimal information for failure prognostics. The ad-
vantages of the approaches presented in Secs. 4.2 and 4.3 are that they can provide 
prediction results with less uncertainty. Next, the maintenance planning based on fail-
ure diagnostics and prognostics is briefly introduced. 

5 Optimization of maintenance strategy  

As mentioned in Sec. 1, there are two types of maintenance strategies, namely TBM 
and CBM. TBM (also known as periodic-based maintenance) assumes that the esti-
mated failure behavior is statistically or experientially known [46]. Statistical model-
ling, such as Weibull analysis [47], is widely used in TBM to identify failure charac-
teristics of a component or system. The goal of TBM models is to find the optimal 
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policy that minimize a cost function. TBM approaches have been developed for both 
repairable or nonrepairable systems [48].  The complexity of a TBM model depends on 
the targeted system such as single-system, multi-systems, parallel and series structure. 
A more extensive review of TBM applications can be found here [49]. For example, in 
miter gates, historical data is available in the form of discrete ratings 

Fig. 21 shows a TBM approach using the transition matrix given in Sec. 2.2, whose 
goal is to estimate the optimal maintenance time based on a well-known cost function 
[48], which weight the probability of failure, , with the preventive, , and un-

scheduled (or emergency), , maintenance costs, 

 
Fig. 21. TBM approach using discrete ratings 

CBM is the most modern and popular maintenance technique among researchers and 
industry. CBM has gained increasing attention recently as a preferred approach to 
TBM. CBM is a maintenance approach that combines data-driven reliability models 
and information from a condition monitoring process. Based on the underlying degra-
dation model, CBM models can be categorized into two subgroups: 1) models that as-
sume discrete-state deterioration (such as in Sec. 4.1) and 2) models that assume con-
tinuous state deterioration (such as in Secs. 4.2 and 4.3). A most extensive list of CBM 
application can be found in here [50–53]. Most of the CBM applications available in 
the literature are for mechanical systems, aerospace systems, or manufacturing systems. 
For large civil engineering infrastructure, most of the applications have been applied to 
bridge engineering [54–56]. In CBM, maintenance schedules are predicted based on 
the results from diagnosis and prognosis, as discussed in Secs. 3 and 4. For diagnosis 
and prognosis, CBM approaches can be classified into physics-based approach [12–
14], data-driven approach [15–18], and hybrid approach [19,20].  The approaches pre-
sented in this book chapter can be classified as hybrid approaches since they combine 
physics-based approach with data-driven approach to improve CBM predictive capa-
bilities. 

( )F t Cp
Cu
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6 Conclusion  

This chapter presents comprehensive failure diagnostics, prognostics, and maintenance 
planning approaches using machine learning, Bayesian data analysis, computational 
mechanics, and reliability engineering. The presented framework is aimed to allow real-
time assessments of civil structures that has different forms of available data. The chal-
lenge of heterogeneity of the data sources has been successfully overcome to provide 
diagnostic/prognostic capabilities to the structure of interest. Additional steps have 
been discussed to improve these capabilities such as optimal sensor design and account-
ing for human error. Currently, the features used to update the models used in this work 
have been based on SHM data and human inspections. However, this framework can 
be adapted to work with more advanced data sources enhanced with supervised learning 
algorithms such images captured from drones or robots. 
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