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Is focusing enough in category learning?
Hyungwook Yim (hwyim@hanyang.ac.kr)

Department of Cognitive Sciences, Hanyang University, Seoul, Republic of Korea

Sejin Yoon (ysj2021@hanyang.ac.kr)
Department of Cognitive Sciences, Hanyang University, Seoul, Republic of Korea

Abstract

We examined whether selective attention, which is mainly
theorized as the ability to focus on the category-relevant
dimension, is a sole construct in understanding category
learning. As the attention literature dissociates selective
attention into focusing and filtering, we argue that filtering
is another component that should be considered to fully
understanding category learning. In the study, we provide
an experimental paradigm that can dissociate filtering from
focusing. By utilizing the paradigm along with collecting
individual attention control measures, we show that filtering is
related to the ability to inhibit irrelevant information. We also
present that the current computational models that incorporate
selective attention only as an ability to focus can not explain
the results from the current study.
Keywords: category learning; selective attention; distraction;
executive function; individual difference

Introduction
Selective attention has been an important component in
theorizing the mechanisms underlying category learning
(e.g., Shepard, Hovland, & Jenkins, 1961; Kruschke,
1992; Nosofsky, 1986). Selective attention enables one
to attend to the category-relevant dimension, and filter out
the category-irrelevant dimensions. Therefore, selective
attention not only aids efficient learning, but also helps future
generalization as category-relevant dimensions are prioritized
when processing the stimulus (Mackintosh, 1965).

Computational models mathematically formalize selective
attention by assuming that the exemplars (or the prototype)
are represented in a multi-dimensional psychological space
(Love, Medin, & Gureckis, 2004; Kruschke, 1992; Nosofsky,
1986; Medin & Schaffer, 1978; Smith & Minda, 1998). Then
selective attention acts as stretching the dimension that is
attended. The stretched dimension, therefore, becomes easier
to discriminate than other dimension, and lead better learning
and generalization.

Selective attention has also been an important keyword
for explaining the development of category learning. As
the functionality of selective attention has been linked to
the maturation of the prefrontal cortex (Squire, Noudoost,
Schafer, & Moore, 2013; Diamond, 2002), and since the
maturation of the prefrontal cortex has been known to be
relatively slow (e.g., Kolk & Rakic, 2022), developmental
studies have provided crucial insights into how selective
attention effects category learning. For example, Best, Yim,
and Sloutsky (2013) examined infants and adults in a category
learning task using novel visual categories while tracking

their eye gaze. Although both groups learned the categories,
only adults selectively attended to the category-relevant
dimension and optimized their attention as they learned the
category. Infants, in the other hand, did not soley attend to
the category-relevant dimension, but rather distributed their
attention across dimension.

A study by Deng and Sloutsky (2016) supports the idea
of distributed attention as a hallmark of low functioning
selective attention during category learning. In their study,
four-to-five year-olds and adults were examined in a novel
visual category learning task. With a comparably more
mature prefrontal cortex, children do selectively attend to
the category-relevant dimension as adults do. However,
children still show a distributed attention pattern as infants
do. As a consequence when given a surprise memory test
about the category examplars after the learning task, children
retain the category-irrelevant information of the examplars
(information that should be filtered out in order to learn the
category efficiently), while adults do not.

Additionally, not attending to the irrelevant dimension
(i.e., learned inattention) affects learning future categories
when the irrelevant dimension becomes relevant. For
example, Hoffman and Rehder (2010) examined adults
in a classification task while tracking their eye gaze.
Unbeknownst to the participants the category-relevant
dimension changed midway as they learned the initial
category. Results showed that participants struggled to learn
the second category if they attended to the category-relevant
dimension in the first category. Moreover, Best et al. (2013)
examined infants and adults in a similar experiment, where
they find that adults but not infants struggle to learn the
second category. Therefore, the ability to attend to the
category-relevant dimension is helpful for highlighting the
category-relevant dimension. However, at the same time, it
decreases the relative sensitivity of the unattended dimension
(or the category-irrelevant dimension), and elicits a Cost of
selective attention when learning new information.

What is selective attention in category learning?
Although previous research has shown that selective attention
has a major effect in category learning, the majority of the
studies have defined selective attention as the ability to focus
on the category-relevant dimension. Computational models
of category learning also formalize selective attention as the
ability to flexibly shift one’s attention (e.g., λα parameter in
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ALCOVE; Kruschke, 1992).

However, focusing may not be the sole construct of
selective attention. Previous studies in attention and executive
function has supported that attention is a multi-component
construct (e.g., Miyake et al., 2000). Neuroimaging
studies show that there two separate components of selective
attention, where one is the ability to focus on the relevant
information while another is filtering out irrelevant dimension
(Bridwell & Srinivasan, 2012). Moreover, developmental
studies show that focusing and filtering may be separate
constructs by showing that the ability to filter matures
later in development (Unger & Sloutsky, 2023). Similarly,
developmental studies in category learning have provided
evidence of the low filtering ability through a behavioral
pattern called distributed attention (e.g., Best et al., 2013;
Deng & Sloutsky, 2016). In these studies, infants or children
learn an artificial category while showing a gaze pattern
which does not efficiently focus on the category-relevant
dimension, but is distributed across all dimensions.

Although the term distributed attention implies that
attention is controlled intentionally (or endogenously), given
that the distributed attention pattern is usually observed in
infants and children, the pattern may not be rooted in the
ability to intentionally distribute one’s attention (e.g., Chong
& Treisman, 2005). Therefore, the term distracted attention
may be a more precise term to describe the behavioral
patterns of infants and children during category learning,
and a more passive selective attention component (such
as filtering) may be the ability that is responsible for the
behavioral pattern.

In the current experiment, therefore, we (1) developed
an experimental paradigm that can dissociate the focusing
component and filtering component during category learning,
(2) examined how the filtering component may interact
during category learning, and (3) tried to specify which
attentional control (or executive function) component is
responsible for the filtering ability using an individual
differences approach. For the main category learning task,
we used the cost of selective attention task (Best et al.,
2013; Hoffman & Rehder, 2010), where the category relevant
dimension changed mid way during the task unbeknownst to
the participant. The paradigm has been known to capture the
a signature of attention optimization during category learning
(Yim, Best, & Sloutsky, 2011). We additionally manipulated
the presentation sequence of the examplars to control
trial-to-trial bottom-up distraction by changing the number of
features that changed on the next trial. Finally, we measured
each participant’s attentional control (or exeutive function
Engle & Kane, 2004; Miyake et al., 2000), and process
speed. For attentional control we used the anti-saccade task to
measure inhibition, symmetry span task for working memory
span, and the color-shape switch task for switching ability.
For process speed, we used the the simple reaction task,
and choice reaction task, which is known to measure both
process speed and some aspects of attentional control (Deary,

Johnson, & Starr, 2010). Finally, we simulated a category
learning model (ALCOVE; Kruschke, 1992), which assumes
selective attention as the ability to focus on category-relevant
information, and examined whether the model can explain
our experimental results.

Experiment
The order of experiments was fixed as follows: (1) category
learning task, (2) simple reaction task, (3) anti-saccade task,
(4) choice reaction task, (5) symmetry span task, and (6)
color-shape task.

Methods
Participants Fifty-two participants (33 females, M =
23.13yrs, SD = 2.45yrs) were recruited through an online
community page of Hanyang University, Seoul, Republic of
Korea. Each participant was compensated with 20,000 KRW
(approximately 15 USD) for their participation. The research
was approved by the Institutional Review Board at Hanyang
University.

Materials, Design & Procedure

Category learning task: Participants were introduced to
the task as they were observing an alien pond, which can
predict the typhoon of the next day. The category stimuli
were pictures of a pond with six different animals and plants
displayed around the pond. Each animal/plant changed in a
binary fashion rendering a total of 64 unique examplars (see
Figure 1A, B). Participants were presented with an image of
the pond one at a time and were asked to classify whether
the typhoon would come or not. The participant learned the
category until they achieved more than 14 trials in a block
of 16 trials or when they reached 15 blocks, where each
block included 16 trials. Unbeknownst to the participant the
category-relevant dimension changed once they learned the
category (more 14 correct trials in a block of 16 trials), which
was designed to generate the ‘cost of selective attention’.
Therefore, participants learned two categories using the same
stimuli set. We will refer the first category set the AB
Learning set, and the second category set the CD Learning
set. The category-relevant dimension (a location around the
pond) was randomly selected for each learning set, with a
constraint that the two dimensions are not adjacent to each
other. In a trial, a fixation cross was displayed for 1sec
in the center on a black background. Then the stimulus
was presented on a black background until the participants
made a decision using the button box (“Yes (a typhoon will
come)” or “No (a typhoon will not come)”). The left/right
side of the correct response was counterbalanced. After
the decision has been made, the stimulus disappeared and
the feedback(“Correct”, or “Incorrect”) was presented on the
screen for 1sec. Most importantly, there were two conditions
in the experiment regarding the presentation sequence of
the exemplars. In Condition 2, two dimensions changed
its feature in the following trial, while in Condition 4
four dimensions changed its feature. The participants were
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Figure 1: Stimuli and Tasks used in the Experiment. (A) An image of the alien pond that was used as a category exemplar
(prototype 1), (B) An image of the alien pond that was used as a category exemplar (prototype 2), (C) Simple reaction task, (D)
Choice reaction task, (E) Anti-saccade task, (F) Symmetry span task, (G) Color-shape switch task (when the cue was for the
shape and the target was a red circle), (H) Color-shape switch task (when the cue was for the color and the target was a green
triangle)

randomly assigned to one of the conditions. Each block had
an equal number for exemplars that predicted the typhoon and
that did not. The sequence of the trials were also constrained,
where the same category-type did not appear more than three
time in a row. The category learning task and the following
tasks were presented on a 27 inch monitor, and the experiment
was controlled by Psychtoolbox3. For the category learning
task, an Eyelink 1000 Plus (SR Research Ltd.) was used
for eye-tracking with the sampling rate of 1000Hz (Kleiner,
Brainard, & Pelli, 2007; Brainard, 1997; Cornelissen, Peters,
& Palmer, 2002). Moreover, the luminance was controlled to
12 lux at the point of view of the participants in front of a
gray (RGB: 220, 220, 220) screen.

Simple Reaction task: Both simple reaction task and choice
reaction task were adapted from Deary et al. (2010). The
letter ‘X’ appeared in the square with random intervals
between 1 to 3sec and remained until the subject responded.
Participants were asked to press the space key as quickly as
possible when they saw the ‘X’ on the screen (see Figure 1C).
There were eight practice trials and 20 main trials.

Choice Reaction task: In a trial, four white squares were
presented horizontally in the center of the screen until the
participant’s response. The four squares were assigned to
the letter x, c, b, and n on the keyboard. Participants were
asked to press the corresponding key as quickly as possible
when black ‘X’ was shown on the square (see Figure 1D).
The inter-trial-interval ranged from 1 to 3sec, and there were
8 practice trials followed by 40 main trials.

Antisaccade task: The anti-saccade task was adapted from
Draheim, Tshukara, and Engle (2023). In this task white
fixation cross appears on the gray background for either 1sec
or 2sec (see Figure 1E). Then a white asterisk(*) appeared at
12.3◦ visual angle on the right or left side of the screen for
300ms. Then a letter (O or Q) appeared on the opposite side
of the asterisk for 100ms and was rapidly be masked by ‘##’.
Participants sitting 60cm from the monitor, and were asked to
quickly look the opposite direction of the asterisk, and decide
whether the letter was a Q or O within 5sec. Feedback was
given with a cyan ‘O’ and magenta ‘X’ for 1sec. There were
16 practice trials followed by two blocks, which had 36 trials
each.

Symmetry Span task: The symmetry span task was based
on Unsworth and Brewer (2009). Participants were asked
to recall the sequence of the positions of the red squares in
4×4 matrix while the distraction task were given between the
presentation of red squares (see Figure 1F). In the distraction
task, the participants were asked to judge if the black
and white pattern drawn on the 16×16 matrix is left-right
symmetry or not. There were three practice phases to help
participants understand the task. In the first practice phase,
only red squares appeared one after another for four sets with
set-size two and three for twice each. In the second practice
phase, only symmetry judgements were executed with 15
trials, where feedback given for 1s right after the response.
The mean plus 2.5 standard deviation of the reaction time
in the second phase was use as a time limit for the main
following phases. In the third practice phase, the participant
had to solve the symmetry quiz their personalized time limit
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Figure 2: Category learning results plotted by a lag plot were all data was shift to the point where learning was accomplished
(lag 0 point). (A) accuracy data by block, (B) eye gaze (fixation) data by block, where the y-axis represents proportion of
fixation to the category-relevant dimension calculated by dividing the number of fixations to the category-relevant dimension
by the total number of fixations. (C) proportion of distraction across block, and (D) total fixation across block.

(i.e., distractor task), then a red square was presented for
the participant to remember the location for 650msec (i.e.,
main span task). Participants were informed that there was
a time limit for symmetric quizzes, and if the subject failed
to move on to the next page for symmetric quiz responses in
time, they were immediately shown the red square. Three sets
with set-size 2(two pairs) were executed as the third practice
and participants had to answer correctly at least 85% in the
symmetry quiz. In the main trials, the procedure was identical
to the last practice phase except that the set-size ranged from
two to five, and the trials consisted of three trials of each
set-size. This made a total of 42 symmetry quizzes and 42
square tasks.

Color-Shape Switch task: The color-shape switch task
which was adapted from Miyake et al. (2000). In a trial, a cue
letter ㅅ or ㅁ (each corresponding to the first consonant for
the word ‘color’ and ‘shape’ in Korean) appeared for 150ms,
followed by a presentation of the cue and a shape below the
cue (see Figure 1G, H). The shape was either a triangle or a
circle in a color of green or red. The participants were asked
to decide whether the color was green or red if the cue was
ㅅ, and whether the shape was a triangle or a circle if the
cue was ㅁ using the Z and M keys on the keyboard. The
interval between trials was 2.5s and feedback was provided
for 1sec after each trial. There were two blocks, each with
12 trials for the practice phase, and two blocks with 24 trials
per block for the main phase. There were 24 non-switch trials
and 23 switch trials, and the sequence was controlled so that
the switching or non-switching trials did not appeared more
than four times in a row.

Behavioral Results
Category learning task
We first examined how many participants learned the
category in each condition (the first AB Learning set)
within 15 blocks. There were 24 out of 25 participants in

Condition 2 who learned the first category, while 22 out of
27 participants in Condition 4 who learned the first category,
where a logistic regression showed a marginal difference
between the conditions (χ2(50) = 2.91, p = .087). When
comparing the total trials to learn the first category, Condition
4 (M = 61.23trials,SD = 51.05) took longer to learn than
Condition 2 (M = 42.67trials,SD = 39.25) with showing
a statistically marginal difference (one-tailed independent
t-test, t = 1.39, p= .086). When we included the non-learners
with assuming that they required a full 15 blocks to learn
the category, the results showed a statistically significant
difference (t = 2.20, p = .016).

Cost of selective attention was evaluated to see if there
were any differences in selectively attending to the relevant
dimension between the two Conditions by comparing the
performance in the second CD Learning set. There was only
one participant who did not learn in Condition 2, and two in
Condition 4 (χ2(44) = .46, p = .50). The number of trials
to learn the CD Learning set also did not differ statistically
(Condition 2: M = 45.96trials,SD = 34.66; Condition 4:
M = 42.14trials,SD = 23.73; t = .422, p = .68). As the
difference in the cost of selective attention was not evident,
we focused our analyses on the 1st learning (AB Learning
set). All analyses hereafter, we only included the data from
the learners.

To investigate the learning trajectory we first examined the
learning accuracy by block. Instead of looking at the data in a
chronological order, we re-arranged the data backwards from
the point where learning was accomplished and generated a
backward lag plot (see Figure 2A). Then, we fit the accuracy
data with a sigmoid function as follows: P(correct) = 1/(1+
exp(−k × (block − x0))), where P(correct) is the accuracy,
block is the number of blocks, and k, x0 were free parameters
that controls the x-axis shift and scale of the sigmoid
function respectively. A randomization task with 1,000
samples showed a statistically significant difference between
the two conditions for the scale parameter (Condition 2:
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x0 = −2.84,k = .73; Condition 4: x0 = −5.97,k = .23;
pempirical−x0 = .73, pempirical−k < .001). Using the same
method as above, we also examined eye gaze by calculating
the fixations on the category-relevant dimension divided by
the total fixations for each block (see Figure 2B). Results did
not show a statistically significant difference between the two
conditions (Condition 2: x0 = −.15,k = .85; Condition 4:
x0 =−.16,k = .74; psempirical > .21).

To examine the amount of distraction during learning, we
examined the proportion of fixations to the changed features
in each trial. As there are two features that change every trial
in Condition 2, and four in Condition 4, we expect that a
greater amount of distraction will be generated by Condition
4. However, interestingly, results show that there was a
statistically greater amount of distraction for Condition 2 than
for Condition 4 (Condition 2: M = .38,SD = .06; Condition
4: M = .32,SD = .02; Independent t-test; t = 4.11, p < .001;
the proportion of distractions for Condition 4 was weighted
by .5 as there are twice as many dimensions that change in
Condition 4).

We also examined the number of fixation across blocks. If
the participants selectively focused on the category-relevant
dimension, there would be lesser amount of fixation across
blocks, and the number of fixations would decrease rapidly.
Results are shown in Figure 2D, where the average number
of fixations per block did not differ across the conditions
(Condition 2: M = 11.59,SD = 5.68; Condition 4: M =
10.04,SD = 3.01; p = .27). However, Condition 2 showed a
more rapid decrease in the number of fixations than Condition
4 as learning progressed (linear regression with BLOCK and
CONDITION showed an statistically significant effect for
BLOCK, t = 8.39, p < .001, and BLOCK×CONDITION
interaction, t = 6.71, p < .001, but not for CONDITION,
t = 1.29, p < .20).

Table 1: Correlation coefficients between measure of
distraction and attentional control measures. Values in bold
represent Pearson correlation coefficients and the values in
the parenthesis represent p-values. * represents p < .05 and
+ represents p < .1.

Distraction Fixation
Color-Shape -.09 (.56) .27 (.094+)
Anti-saccade .14 (.38) -.04 (.80)

Symmetry span -11 (.49) -.12 (.44)
Simple reaction -.09 (.57) .08 (.62)
Choice reaction .33 (.035*) .19 (.23)

Source of distraction
In order to investigate which aspect of the attention
control ability is related to the distraction during learning
we examined the correlation between the two distraction
measures (proportion of fixations to the changed features
(Proportion of Distraction), number of fixations (Fixation

count)) and the results from five attentional control tasks.
For each participant’s data, we took the mean reaction time
for the Color-Shape task, accuracy for the Anti-saccade
task, accuracy for the Symmetry span task, and median
reaction times for the Simple reaction task, and Choice
reaction task. Then we calculated the Pearson correlation
coefficients for each pair. Results are shown in Table 1,
where the values represent correlation coefficients and the
values in the parenthesis show p-values. A statistically
significant correlation was found between the Proportion of
Distraction and the Choice reaction tasks (p = .35), and a
marginally significant relation between the Fixation count
and Color-shape task (p = .94).

ALCOVE Simulation
To examine whether the current experimental results
(different learning patterns between Condition 2 and
Condition 4) can be explained by assuming that
selective attention is majorly the ability to focus on the
category-relevant dimension, we simulated a category
learning model. We used ALCOVE as it incorporates
selective attention as an ability to flexibly focus one’s
attention, and that it can simulate the learning trajectory
(Kruschke, 1992).

For all simulations the parameters were fixed to C = 5, φ =
2, λα = 1.0E-2, and λw = 5.0E-2. For each condition, thirty
experimental trial sequences were randomly generated as in
the Experiment. However, we only generated four blocks
for the AB Learning set followed by four blocks for the CD
(switch) Learning set, which resulted in 128 trials (8 blocks
× 16 trials) for each randomly generated sequence. We
modified the catlearn library (Wills, O’Connell, Edmunds,
& Inkster, 2017) that implements the ALCOVE model in R,
while modifying the model to accommodate discrete features
instead of continuous ones (Lee & Navarro, 2002).

Results are shown in Figure 3. The top row shows
accuracy results between the conditions. Both conditions
show an increase in accuracy before the switch, while a
decrease in accuracy when the new category was introduced
as the experimental results. However, although the current
experimental results show that Condition 4 required more
trials to learn compared to Condition 2, the simulation results
showed an identical learning trajectory. The bottom row
shows how the attention weights in the model changed
through learning. Overall, attention was gradually optimized
in the first category (AB learning), where the relevant
dimension was D1. After the switch when learning the second
category (CD learning), attention gradually optimized to the
relevant dimension (D4) with some lingering attention to the
previously relevant dimension (D1), which shows thecost of
selective attention. However, again, there was no difference
between the two conditions regarding attention deployment.

Discussion
The current study examined whether focusing can be
distinguished from filtering in category learning. We
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Figure 3: Simulation results using ALCOVE. The first column shows results from Condition 2, and the second column shows
results from Condition 4. The top row shows mean accuracy for each block, and the bottom row shows attention allocation,
which can range from 0 to 1, of the model for each trial during learning. The relevant dimension for the first learning category
(AB learning) was D1, and for the second switched category (CD learning) was D4. Note that the error bars in the first row
represents SD of the simulated results.

provided a novel experimental design that can distinguish the
two components by manipulating the amount of new features
that change in the following trial. Results showed that when
changing more features in the following trial learning was
hindered. We also showed that more distraction during
the trials were related to attentional control tasks that were
related to inhibition (Color-shape task, and Choice reaction
task). Finally, we showed that a computational model that
only formalizes focusing can not explain the behavioral
differences generated by the manipulation.

Most importantly, the increasing the amount of new
features in the following trial increased the length of the
required trials to learn the categories. However, the shape
of learning (e.g., slope of learning) did not diff across the
two conditions supported by the accuracy data and eye gaze
optimization data. Moreover, there was no difference in
the CD Learning set, which implies that the amount of the
“Cost of selective attention” was similar. Therefore, the
manipulation seems to hinder the initial process of learning
such as searching the relevant information, which would
correspond to the definition of filtering.

On the other hand, it was interesting to observe that
the two distraction measures (i.e., proportion of distraction,
and fixation count) were both higher in Condition 2 than
in Condition 4. One possible explanation is that one’s
attention in Condition 4 was stuck to a few category-irrelevant
dimensions due to overflowing information. The notion
corresponds to Engle’s theory of attention control (Burgoyne
& Engle, 2020), where attention control is categorized into

‘Maintenance’, and ‘Disengagement’. The two term may
possibly be related to ‘Focusing’ and ‘Filtering’, but further
investigation should be required for a conclusion.

The correlation results provide additional information
about the source of the distractions. The fact that distraction
was correlated with the Choice reaction task1, but not with the
anti-saccade task implies that the ability related to distraction
is not simply a low-level inhibition process. Instead it
seems that the ability is related to the inhibition mechanism
involved during the response process, which concur with the
interpretation of the choice reaction task (e.g., Deary et al.,
2010).

The simulation results apparently showed that defining
selective attention as only ‘focusing’ can not explain the
current results, which was generated by manipulating variable
that would affect the filtering mechanism. Selective
attention in most of the formal models of category learning
only considers the category-relevant information, and can
not consider category-irrelevant information. Importantly,
incorporating a filtering mechanisms that also monitors
category-irrelevant information would be beneficial for
understanding the development of category learning as the
effect of filtering is more crucial in infants and children (e.g.,
Unger & Sloutsky, 2023).

1It is noteworthy that even though Condition 2 showed more
distraction than Condition 4, the individual correlations (calculated
regardless of the conditions) showed that more distraction is linked
to worse performances in the two tasks as both attention tasks were
evaluated by reaction time.
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